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PÓLYA-TYPE INEQUALITIES ON SPHERES AND
HEMISPHERES

by Pedro FREITAS, Jing MAO & Isabel SALAVESSA (*)

Abstract. — Given an eigenvalue λ of the Laplace–Beltrami operator defined
on n-spheres or -hemispheres, with multiplicity m such that λ = λk = · · · =
λk+m−1, we characterize the lowest and highest orders in the set {k, . . . , k + m − 1}
for which Pólya’s conjecture holds and fails. In particular, we show that Pólya’s
conjecture holds for hemispheres in the Neumann case, but not in the Dirichlet case
when n is greater than two. We further derive Pólya-type inequalities by adding a
correction term providing sharp lower and upper bounds for all eigenvalues. This
allows us to measure the deviation from the leading term in the Weyl asymptotics
for eigenvalues on spheres and hemispheres. As a direct consequence, we obtain
similar results for domains which tile hemispheres. We also obtain direct and re-
versed Li–Yau inequalities for S2 and S4, respectively.

Résumé. — Soit λ une valeur propre de l’opérateur de Laplace–Beltrami sur
des n-sphères ou -hemisphères, de multiplicité m telle que λ = λk = · · · =
λk+m−1. On caractérise les ordres les plus bas et les plus élevés dans l’ensemble
{k, . . . , k + m − 1} pour lesquels la conjecture de Pólya est vraie ou échoue. En par-
ticulier, nous montrons que la conjecture de Pólya est vraie pour les hemisphères
dans le cas de Neumann, mais pas dans le cas de Dirichlet lorsque n est supérieur
à deux. Nous dérivons des inégalités de type Pólya avec un terme de correction
fournissant des bornes inférieure et supérieure optimales pour toutes les valeurs
propres. Cela nous permet de mesurer l’écart par rapport au terme principal de
l’asymptotique de Weyl pour les valeurs propres des sphères et hemisphères. Nous
obtenons des résultats similaires pour des domaines qui pavent des hémisphères,
et des inégalités de Li–Yau directes et inverses pour S2 et S4, respectivement.

1. Introduction

Let M be a smooth compact n-dimensional Riemannian manifold with
metric g and consider the Laplace–Beltrami operator in M . In the case
Keywords: Eigenvalues, Laplace operator, Spheres and hemispheres, Pólya’s inequalities.
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980 Pedro FREITAS, Jing MAO & Isabel SALAVESSA

where M has no boundary we consider the closed eigenvalue problem

∆u+ λu = 0,

and denote the corresponding sequence of eigenvalues by 0 = λ0 ⩽ λ1 ⩽
λ2 ⩽ · · · . When the boundary ∂M is non-empty, we impose either Dirichlet
or Neumann boundary conditions, and consider the problems{

∆u+ λu = 0, in M,

u = 0, on ∂M,
and

{
∆u+ µu = 0, in M,
∂u
∂ν = 0, on ∂M,

where ν denotes the outer unit normal to ∂M . For Dirichlet and Neumann
boundary conditions the spectrum is now given by 0 < λ1 ⩽ λ2 ⩽ · · · and
0 = µ0 ⩽ µ1 ⩽ µ2 ⩽ · · · , respectively. In all three cases the sequence of
eigenvalues converges to infinity and satisfies the Weyl asymptotics for the
manifold M [20, 21]

(1.1) λk = CW,n(M)k2/n + o
(
k2/n

)
, as k −→ ∞,

where the Weyl constant CW,n is given by

CW,n = CW,n (M) := 4π2

(ωn|M |)2/n
.

Here ωn and |M | denote the volume of the unit ball in Rn and the volume of
M , respectively – although defined in this way CW,n depends explicitly on
the volume of M , whenever it will be clear from the context which manifold
we are referring to, to simplify notation we will omit the dependence on M .
In the case of the Dirichlet problem, and under certain further conditions
on M , it can be shown that the remainder term in (1.1) is of the form [20]

(1.2) 2π2ωn−1|∂M |k1/n

n (ωn|M |)1+1/n
+ o

(
k1/n

)
,

where now |∂M | denotes the (n − 1)-measure of the boundary of M . One
consequence of this result is that for such a manifold and a sufficiently large
order k of the eigenvalue, λk must be larger than the first term in the Weyl
asymptotics (1.1), that is

(1.3) λk(M) ⩾ CW,n(M)k2/n.

In the Neumann case, the coefficient in k1/n in (1.2) is negative, and the
corresponding inequality is now

µk(M) ⩽ CW,n(M)k2/n.

In fact, in 1954 Pólya conjectured these inequalities to hold for all Dirichlet
and Neumann eigenvalues of the Laplace operator on bounded Euclidean
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PÓLYA-TYPE INEQUALITIES 981

domains [19]. A few years later, in 1961, he went on to prove this conjecture
for the Dirichlet problem in the special case of Euclidean domains which
tile the plane [18], and provide a partial result for the Neumann problem,
completed in 1966 by Kellner [14]. Although some progress has been made
since then, and it is now known that (1.3) is satisfied for some non-tiling
domains such as certain Cartesian products [15] or sufficiently thin sec-
tors of some classes of spherically symmetric domains [9], for instance, the
general case, which has become known as Pólya’s conjecture or inequality,
remains open to this day.

By exploring the examples of spheres and hemispheres, we aim a better
understanding of the relations between Pólya-type inequalities and Weyl
asymptotics, in particular in situations where the latter do not possess a
second term of the form (1.2). Our results provide us with an idea of what
we can possible expect to hold for more general situations, such as in the
case of manifolds for which all geodesics are closed [5], which would be a
natural next step to consider in light of the present results.

In another direction, inequalities for the average of the first k eigenvalues
which are the best possible compatible with (1.3) were obtained by Li
and Yau for a general bounded domain Ω in Rn with Dirichlet boundary
conditions [16]. These read as

(1.4) 1
k

k∑
j=1

λj (Ω) ⩾ n

n+ 2CW,n (Ω) k2/n,

and we will also consider such inequalities below in the case of spheres –
for other recent estimates of this type and Riesz means on spheres and
hemispheres, see [6].

A first motivation for the present paper was thus to consider examples of
manifolds where Pólya’s conjecture does not hold, and to see how (1.3) can
be modified to yield a set of valid sharp inequalities for the corresponding
Laplacian eigenvalues. More precisely, we shall consider the n-dimensional
sphere

Sn =
{
x ∈ Rn+1 : ∥x∥ = 1

}
,

with the canonical round metric, and the corresponding hemisphere

Sn
+ =

{
x ∈ Rn+1 : ∥x∥ = 1 ∧ xn+1 > 0

}
,

with either Dirichlet or Neumann boundary conditions on the equator. In
the former case there is no boundary, and in the latter case the remainder
term in the Weyl asymptotics is not of the form given in (1.2). The be-
haviour of the remainder for such manifolds has been the object of much
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982 Pedro FREITAS, Jing MAO & Isabel SALAVESSA

study in the literature – see [7] and the references therein, for instance,
for recent progress on this topic. This is another reason why we believe
it is of interest to provide sharp inequalities of the type given here as, in-
deed, Pólya’s inequality (1.3) will not hold for such manifolds in general, the
only known exception until now being S2

+ [3, 10]. Furthermore, some known
Weyl remainder estimates are sharp for the round sphere, see [7, 11, 20] for
some examples and references. In fact, although these are very specific do-
mains, because of their high degree of symmetry (and hence high eigenvalue
multiplicities), they are known to be useful benchmarks against which to
compare general results.

Furthermore, most of the results related to this have, until now and to
the best of our knowledge, concentrated on asymptotics, such as those given
in [11, 20], for instance. Another purpose of the paper is thus to go beyond
these asymptotics and complement them with upper and lower bounds
which are both valid for all eigenvalues and sharp in the first two terms.
These results fall into two categories. On the one hand, we characterise
instances of the eigenvalues of hemispheres for which Pólya’s inequality is
and is not satisfied. On the other hand, we determine and prove modified
(sharp) versions of Pólya’s inequality for both spheres and hemispheres by
adding correction terms, providing both lower and upper bounds allow-
ing us to measure the deviation from the first term in (1.1) in a precise
way. These bounds give us what we believe to be relevant insights into the
possible behaviour of eigenvalues and the relation between the Weyl asymp-
totics and Pólya-type inequalities in general. We observe, for instance, that
although the geometric non-periodicity condition necessary to derive the
second term in the asymptotics given by (1.2) fails in the case of Sn

+, as
all geodesics are periodic, it is still possible to show that the remainder
term, which is of order O

(
k1/n

)
, oscillates between an upper bound of this

order and a constant lower bound, thus making the difference in behaviour
at the upper and lower levels explicit – see Theorems B and C below for
the details. Furthermore, and perhaps more surprisingly, we obtain that
hemispheres satisfy Pólya’s conjecture in the case of Neumann boundary
conditions not only for the two-dimensional hemisphere, but in fact for all
n (Theorem D) – as in the Dirichlet case, this had already been proven
in [3] in two dimensions.

In the case of spheres our bounds show that the remainder term oscil-
lates between positive and negative values, but now these are both of order
O
(
k1/n

)
(see Theorem F below). However, and in spite of these upper and
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PÓLYA-TYPE INEQUALITIES 983

lower bounds for the remainder term, we still have that the 2-sphere satisi-
fies a Li–Yau inequality for the average of eigenvalues, while this inequality
is reversed in the case of S4 – see Theorem G below.

In order to state our main results, we need the concept of a chain of
eigenvalues corresponding to a multiple eigenvalue. Let λK be the Kth

distinct eigenvalue of Sn
+ or Sn, with corresponding multiplicity m = m(K),

such that λK = λq+j−1 for some q ∈ N and j = 1, . . . ,m. We shall call these
eigenvalues the K-chain associated with λK (or just a chain, if there is no
danger of confusion), and say that λq and λq+m−1 are the eigenvalues with
the lowest and highest order of the chain, respectively – a more detailed
definition is given in Section 2.

1.1. Hemispheres

We begin by giving a characterisation of which of the lowest and highest
order eigenvalues in each chain satisfy Pólya’s inequalities and which do
not. In particular, we obtain that for every n greater than 2 there exist
infinite sequences of eigenvalues of Sn

+ which do not satisfy (1.3). Although
in this case the boundary is not empty and the known conditions for (1.2)
to hold are not satisfied [20], as all geodesics are periodic, this by itself is
not enough to imply the failure of (1.3) for any eigenvalue, as the case of
S2

+ shows.

Theorem A. — For the Dirichlet eigenvalues of the Laplace–Beltrami
operator on the n-dimensional hemisphere Sn

+ we have the following:
(1) if n = 2 all eigenvalues satisfy Pólya’s inequality.
(2) if n ⩾ 3 the eigenvalue with the highest order of any chain does not

satisfy Pólya’s inequality; in particular,

λ1(Sn
+) < CW,n

(
Sn

+
)
= (n!)2/n.

(3) for all n there exists Kn ⩾ 2 such that for all K ⩾ Kn the low-
est order eigenvalue of the corresponding K-chain satisfies Pólya’s
inequality; in particular Kn = 2 for n ⩽ 8, and K9 = 3.

Remark 1.1. — As mentioned above, item (1) in Theorem A was first
proved in [3]. Our proof is not very dissimilar, but our general approach
allows us to obtain the other results in this theorem and further combina-
tion with Pólya’s method yields the results for wedges given in Section 1.2
below.
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984 Pedro FREITAS, Jing MAO & Isabel SALAVESSA

Remark 1.2. — As a consequence of Theorem A, there exists a function
j‡(K) such that any eigenvalue λq+j−1 in a given K-chain satisfies Pólya’s
inequality if and only if j ⩽ j‡(K). For large K we can approximate j‡(K)
by an element of Qn−1[K] (see Proposition 4.6).

Remark 1.3. — With the type of analysis developed here it is also pos-
sible to obtain estimates for eigenvalue averages, and we present these in
Sections 4 and 10.5.

We shall now provide estimates that measure how far from the first term
in the Weyl asymptotics the eigenvalues actually are. Our first result in this
direction shows that by introducing a constant correction term to (1.3) it
is possible to obtain a sharp lower bound satisfied by all eigenvalues of Sn

+
for all n.

Theorem B. — The Dirichlet eigenvalues on the hemisphere Sn
+ satisfy

λk

(
Sn

+

)
⩾ CW,n

(
Sn

+
)
k2/n − (n− 1)(n− 2)

6 .

This is asymptotically sharp for the eigenvalue with the highest order on
each chain, in the sense that over this subsequence of eigenvalues

λk

(
Sn

+

)
− CW,n

(
Sn

+
)
k2/n−→ − (n− 1)(n− 2)

6
as k goes to infinity, with the sequence being identically zero for n = 2.

The second result of this type consists in bounding the same difference
from above. However, the situation is not symmetric and the divergence
from the main term is no longer bounded and is, in fact, of order O(k1/n).

Theorem C. — For all n ⩾ 2 the eigenvalues λk on Sn
+ satisfy the

inequality

λk

(
Sn

+
)
⩽ CW,n

(
Sn

+
)
(k − 1)2/n + 2

√
CW,n

(
Sn

+
)
(k − 1)1/n + n,

with equality at k = 1. Furthermore, we have
λk

(
Sn

+
)

− CW,n

(
Sn

+
)

(k − 1)2/n

2
√
CW,n

(
Sn

+
)
(k − 1)1/n

−→ 1

along the subsequence of lowest order eigenvalues of each chain.

Remark 1.4. — The constant term in the upper bound is not optimal,
and in Section 7 we carry out a more careful study of the low dimensional
cases, providing a bound for S2

+ that is attained for all eigenvalues of lowest
order in each chain, and showing that the constant n may be replaced by
a term that decreases from n to 3/2 and 0, for S3

+ and S4
+, respectively.
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The case of Neumann eigenvalues may be treated using similar tech-
niques. Here we single out one such result, as it is slightly unexpected,
particularly in view of the above results. More precisely, we show that in
the Neumann case Sn

+ satisfies Pólya’s conjecture, not only when n is two,
which again had already been shown to be the case in [3], but that, in fact,
now it holds in any dimension.

Theorem D. — The Neumann eigenvalues on the hemisphere Sn
+ sat-

isfy the inequalities

µk

(
Sn

+
)
⩾ CW,n

(
Sn

+
)

(k+1)2/n −2
√
CW,n

(
Sn

+
)
(k+1)1/n − (n− 2)(n+ 5)

6
and

µk

(
Sn

+
)
⩽ CW,n

(
Sn

+
)
k2/n,

with equality in the lower bound when k = 0 and for all k of the form
j(j + 1)/2 when n = 2. Furthermore, along the lowest order subsequence
of each chain we have

CW,n

(
Sn

+
)
k2/n − µk

(
Sn

+
)

−→ (n− 1)(n− 2)
6

as k → ∞. The upper bound is asymptotically sharp, in the sense that
CW,n(Sn

+)(k + 1)2/n − µk(Sn
+)

2
√
CW,n

(
Sn

+
)
(k + 1)1/n

−→ 1

along the subsequence of highest order of each chain.

1.2. Wedges

In [3], Bérard and Besson also considered Pólya’s conjecture on wedges
defined by

(1.5) Wn
π/p =Sn∩

Rn−1 ×

(xn, xn+1) ∈R×R+ :
xn = xn+1 tanφ,

φ ∈
(

− π

2p ,
π

2p

)
 ,

for p a positive integer. They then proved that eigenvalues of both W2
π/2

and W2
π/4 satisfy Pólya’s conjecture. By noting that p copies of Wn

π/p tile
Sn

+ = Wn
π, and using an argument similar to that of Pólya’s for planar

tiling domains, it is possible to obtain that domains which tile Sn
+ also

satisfy similar inequalities. As a direct consequence of Theorem A (1) we
extend, for instance, Bérard and Besson’s result to W2

π/p in the Dirichlet
case.

TOME 75 (2025), FASCICULE 3



986 Pedro FREITAS, Jing MAO & Isabel SALAVESSA

Theorem E. — The Dirichlet eigenvalues of W2
π/p satisfy Pólya’s con-

jecture for all p in N.

Remark 1.5. — Although more precise, this result is in the same spirit
of a recent result by the first and third authors, showing that sufficiently
thin domains whose isometric copies tile a larger domain, do satisfy Pólya’s
conjecture, see [9] for the details.

For other applications of the results in Section 1.1 to wedges, see Sec-
tion 9.

1.3. Spheres

Since the spectrum of Sn consists of the union of the Dirichlet and Neu-
mann spectra on Sn

+, and taking the results for hemispheres given in The-
orem C into consideration, it is to be expected that now both upper and
lower bounds measuring the deviation of the spectrum of Sn from the first
term in its Weyl asymptotics should include a second term of order k1/n.
This is indeed the case, as is shown in the next result, where we obtain
sharp estimates for this deviation.

Theorem F. — For all n ⩾ 2 and k = 0, 1, . . ., the eigenvalues of Sn

satisfy the following inequalities

λk(Sn) ⩽ CW,n(Sn) k2/n +
√
CW,n(Sn)k1/n,

holding for all k ⩾ 0 where CW,n(Sn) =
(

n!
2
)2/n, and

λk(Sn) ⩾ CW,n(Sn) (k + 1)2/n −
√
CW,n(Sn) (k + 1)1/n

−
(
n+ 1

2

)2
− n2√

CW,n(Sn) (k + 1)1/n − n
,

holding for k ⩾ 2nn/n! − 1. Both inequalities are asymptotically sharp in
the sense that, regarding the former, we have

λk − CW,nk
2/n√

CW,nk1/n
−→ 1

along the subsequence consisting of the lowest order eigenvalues of each
chain, while for the latter

CW,n(k + 1)2/n − λk√
CW,n(k + 1)1/n

−→ 1

along the subsequence of the highest order eigenvalues of each chain.
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Remark 1.6. — In the case of S2 we have obtained sharper lower bounds,
which are attained by eigenvalues with the highest order on each chain, see
Proposition 10.2. Other lower bounds for Sn may be found in Proposi-
tion 10.10.

Finally, we show that a Li–Yau inequality holds for the average of the
first k+1 eigenvalues in the case of S2, but that this inequality is reversed in
the case of S4. In fact, in both cases we prove stronger results, particularly
for S2 where a second oscillatory term gives equality whenever k + 1 is a
perfect square and is positive otherwise.

Theorem G. — For all k ∈ N, the averages of the first k+1 eigenvalues
of S2 and S4 satisfy the inequalities

1
2CW,2

(
S2) k + k

2(k + 1)

∣∣∣sin(π√
k + 1

)∣∣∣ ⩽ 1
k + 1

k∑
j=0

λj

(
S2)

⩽
1
2CW,2

(
S2) k + 1

2 ,

and
1

k + 1

k∑
j=0

λj

(
S4) ⩽ 2

3CW,4
(
S4) k1/2 − 2√

3k(k + 1)2
,

respectively.

Remark 1.7. — In the case of S2, a lower bound without the (non-
negative) oscillating term may already be found in [12].

Remark 1.8. — It is not difficult to see that S3 cannot satisfy an inequal-
ity with respect to a term of the form

3
5CW,3

(
S3) k2/3

similar to either the lower bound for S2 or the upper bound for S4, as for
k = 1, 2 we obtain that the left-hand side is larger than this term, while the
situation is reversed for k = 3. We conjecture that Sn satisfies an inequality
of the same type as that for the 4-sphere for all n ⩾ 5, but haven’t been
able to prove this as our approach to the proof of these inequalities is based
on the analysis of certain polynomials in two variables that already gets to
be quite involved in the case of S4.

1.4. A note about the proofs and the structure of the paper

The main difficulty in dealing with the eigenvalues of Sn and Sn
+ is related

to translating the actual eigenvalues and their corresponding multiplicities

TOME 75 (2025), FASCICULE 3
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(two numbers) into the order of each eigenvalue (one number), singling
out individual eigenvalues among each K-chain. Thus, and although both
eigenvalues and multiplicities are known explicitly, the proofs require a
careful and precise handling of the expressions involved, which quickly runs
into both combinatorial and algebraic difficulties. The setting we use to deal
with these indexes is, in a way, analogous to a two-coordinate system, where
the first coordinate is K, and the second varies within the multiplicity of
each chain.

Apart from induction, which appears naturally in several of the proofs,
one other key ingredient is the usage of elementary symmetric functions
which we use to rewrite some of the polynomial inequalities appearing when
dealing with Pólya-type inequalities. One intermediate result which plays
a key role in many of the proofs throughout the paper is Lemma A.1, which
provides sharp lower and upper bounds for the rising factorial
K(K + 1) · · · (K + n − 1) in terms of quadratic polynomials related to
the relevant eigenvalue expressions. Finally, note that the intermediate in-
equalities used in the proofs are normally quite sharp, in that the difference
between both sides converges to zero as one of the parameters involved be-
comes large. Because of this, in some cases we found that the shortest way
of deriving a proof was to prove it analytically from a certain value onwards,
and then handle the remaining (finite) number of cases individually, some-
times using Mathematica – some of these, and other computations, are
collected at the end in Appendix C.

For ease of reference of the reader, we gather all the necessary notation
and background in the next section. Sections 3 to 7 contain the proofs of the
Theorems A, B and C for hemispheres with Dirichlet boundary conditions,
together with some other related results. The case of Neumann boundary
conditions and the proof of Theorem D are addressed in Section 8. Section 9
then uses the Dirichlet hemisphere results, together with an adapted tiling
argument, to derive similar inequalities for wedges tiling hemispheres, in-
cluding the proof of Theorem E. Finally, Section 10 is dedicated to spheres
and the proof of Theorems F and G. The three appendices at the end of
the paper collect some auxiliary results that are used throughout.

2. Notation and background

The manifolds under study in the present paper, namely Sn, Sn
+ and

Wn
π/p, all have high, unbounded, eigenvalue multiplicities. For our pur-

poses it will thus be convenient to consider not only the corresponding
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PÓLYA-TYPE INEQUALITIES 989

eigenvalues λk in increasing order and repeated according to multiplicity,
as defined in the Introduction, but also the corresponding sequence of dis-
tinct eigenvalues, also considered in increasing order, and which we will
denote by λK (with an upper-case K). Whenever necessary, an explicit
notation for the manifold under consideration will be used, as in λk(Sn)
or λK(Sn), for instance, and similarly to the corresponding Weyl constant
CW,n(Sn). However, if this is clear from the context we will omit such an
explicit reference.

For the sphere Sn, and given K ∈ N0, we define the quantity σ(K) to
be the sum of multiplicities from the zero-th eigenvalue up to the K-th
distinct eigenvalue

σ(K) =
K∑

i=0
m(i) = m(0) +m(1) + · · · +m(K).

Note that, since the sphere is connected, m(0) = σ(0) = 1, and for K ⩾ 1,
σ(K) = σ(K − 1) +m(K). We make the convention that σ(−1) = 0.

Each of these distinct eigenvalues λK defines the K-chain of length m(K)
of non-distinct eigenvalues λk

λσ(K−1) = λσ(K−1)+1 = · · · = λσ(K−1)+m(K)−1
(
= λK

)
,

and we denote by k− = k−(K) and k+ = k+(K) the lowest and the high-
est orders of the eigenvalues of the K-chain, respectively, that is, k− =
σ(K − 1), and k+ = σ(K) − 1 = k− +m(K) − 1. If K = 0, k− = k+ = 0.

In the case of manifolds with boundary such as Sn
+ or Wn

π/p, and with
Dirichlet boundary conditions, we proceed in a similar way as above, except
that now K ∈ N. We thus have that now the sum of multiplicities up to K
(which we also denote by σ) is given by

σ(K) =
K∑

i=1
m(i) = m(1) + · · · +m(K),

λσ(K−1)+1 = λσ(K−1)+2 = · · · = λσ(K−1)+m(K)
(
= λK

)
,

with the convention that σ(0) = 0. The corresponding lowest and highest
orders in each K-chain are now given by k− = σ(K − 1) + 1 and k+ =
σ(K) = k− +m(K) − 1.

Two straightforward observations are as follows. In both eigenvalue prob-
lems, if one eigenvalue in a K-chain satisfies Pólya’s inequality, then the
corresponding eigenvalue of the lowest order in that K-chain must also
satisfy Pólya’s inequality, that is

(2.1) λK ⩾ CW,n k
2/n
− .

TOME 75 (2025), FASCICULE 3
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All eigenvalues of the K-chain satisfy Pólya’s inequality if and only if it is
satisfied for the highest order k+, that is

(2.2) λK ⩾ CW,n k
2/n
+ .

2.1. Eigenvalues of Sn

The Weyl constant of Sn is given by

CW,n(Sn) =
(
n!
2

)2/n

.

It is well known (see e.g [4]) that the distinct closed eigenvalues are given by

λK = K(K + n− 1), K = 0, 1, 2, . . . ,

where the multiplicity of λK equals the dimension of the space of homoge-
neous harmonic polynomials of degree K, that is,

m(K) =
(
n+K

n

)
−
(
n+K − 2

n

)
,

where
(

m
k

)
is considered to be zero if m < k. We shall now compute the

sum of the multiplicities of the first K eigenvalues. We recall the notion of
K to the n rising factorial

(2.3) Kn = K(K + 1) · · · (K + n− 1).

Note that K1 = K and, by convention K0 = 1. We use the following
equivalent notations Γ(n+1) = n! = 1n, where Γ(x) is the Gamma function.

Lemma 2.1. — Let n ∈ N, n ⩾ 2, and K ∈ N0. Then

(2.4)
m(K) = (K + 1)n−1

(n− 1)!

(
2K + n− 1
K + n− 1

)
= Kn−1

(n− 1)!

(
2K + n− 1

K

)
σ(K) = Γ(n+K)

Γ(K + 1)n! (n+ 2K) = (K + 1)n−1

n! (n+ 2K) .

Proof. — It is straightforward to check that the identities with the bino-
mial terms and those with the rising factorial are equivalent. It thus remains
only to prove the first identity for σ(K), which we do by induction. From

(2.5) σ(K) =
K∑

ℓ=0

[(
n+ ℓ

n

)
−
(
n+ ℓ− 2

n

)]
,
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we see that when K = 0 (2.4) holds. Assume now that (2.4) holds for some
K. We have

σ(K + 1) = Γ(n+K)
Γ(K + 1)Γ(n+ 1)(n+ 2K) +

(
n+K + 1

n

)
−
(
n+K − 1

n

)
= Γ(n+K + 1)

Γ(K + 2)n! [n+ 2(K + 1)] . □

We extend σ as a smooth function defined over all reals, given by the
same formula, namely,

σ(x) = 1
n! [(x+ 1)(x+ 2) · · · (x+ n− 1)](n+ 2x).

The eigenvalues on each K-chain, λk, are ordered by the integers k− ⩽ k ⩽
k+ where we now write

k− = σ(K − 1) = Kn−1

n! (n+ 2(K − 1)),

k+ = σ(K) − 1 = (K + 1)n−1

n! (n+ 2K) − 1,

and so,

CW,nk
2/n
− =

(
Kn−1(K + n

2 − 1)
)2/n

,

CW,nk
2/n
+ =

(
(K + 1)n−1(K + n

2 ) − n!
2

)2/n

.

2.2. Eigenvalues of Sn
+

We now consider the Dirichlet eigenvalues of the unit hemisphere Sn
+

of Rn+1, n ⩾ 2. Note that |Sn
+| = n+1

2 ωn+1. Moreover, from the well-
known recursion formula ωn = 2π

n ωn−2, and ω2 = π, ω1 = 2, we can prove
by induction on n that (n+ 1)ωnωn+1/2 = 2nπn/n!, and so ωn|Sn

+| =
2nπn/n!, yielding

(2.6) CW,n

(
Sn

+
)

= (n!)2/n.

The distinct eigenvalues of Sn
+ are given by (cf. [2, 3])

(2.7) λK = K(K + n− 1), K = 1, 2 . . . ,

with multiplicity

(2.8) m(K) =
(
n+K − 2
n− 1

)
=
(
n+K − 2
K − 1

)
= Kn−1

(n− 1)! .
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Recall the parallel summation
∑k−1

s=0
(

r+s
s

)
=
(

r+k
k−1
)
, valid for all r ∈ N0

(cf. [1, 2]). Letting r = n− 1 we get

σ(K) =
K∑

s=1

(
n+ s− 2
s− 1

)
=

K−1∑
s=0

(
n− 1 + s

s

)
=
(
n+K − 1
K − 1

)
= Γ(n+K)

Γ(K)Γ(n+ 1) = Kn

n! .

The K-chain of eigenvalues λk defined by K(K + n− 1) corresponds to
the integers k such that k− ⩽ k ⩽ k+, where

k− = σ(K − 1) + 1 = (K − 1)n + n!
n! , k+ = σ(K) = Kn

n! .

Therefore,

CW,n k
2/n
− =

(
(K − 1)n + n!

)2/n
, CW,nk

2/n
+ = (Kn)2/n.

We proceed in a similar way in the Neumann case, denoting the eigen-
values of Sn

+, repeated according to multiplicities, by

0 = µ0 < µ1 ⩽ µ2 ⩽ · · ·

while the distinct eigenvalue are, as in the Dirichlet case, given by λK =
K(K + n − 1), but now for K ∈ N0. The corresponding multiplicities are
now

m′(K) =
(
n+K − 1
n− 1

)
= (K + 1)n−1

(n− 1)! .

Then

σ′(K) = m′(0) +m′(1) + · · · +m′(K) =
K∑

s=0

(
n− 1 + s

s

)
=
(
n+K

K

)
= (K + 1)n

n! ,

the corresponding K-chain is given by the eigenvalues µk where

k = σ′(K − 1) + r = Kn

n! + r, r = 0, . . .m′(K) − 1,

and so the lowest and highest orders are given respectively by

k′
− = k′

−(K) = σ′(K − 1) = Kn

n!

k′
+ = k′

+(K) = σ′(K) − 1 = (K + 1)n

n! − 1,
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where we use the convention σ′(−1) = 0. As a consequence,

CW,n k
′
−(K)2/n =

[
Kn
]2/n

CW,n k
′
+(K)2/n =

[
(K + 1)n − n!

]2/n

CW,n

[
k′

+(K) + 1
]2/n =

[
(K + 1)n

]2/n
.

We now introduce the following two functionals on distinct eigenvalues
λK of Sn

+,

R(K) = Rn(K) := CW,n σ(K)2/n

λK

=

(
Γ(n+K)

Γ(K)

)2/n

K(K + n− 1) = (Kn)2/n

K(K + n− 1) ,

Φ(K) = Φn(K) := CW,n(σ(K))2/n − λK

=
(

Γ(n+K)
Γ(K)

)2/n

−K(K + n− 1),

where we shall omit the index n whenever this is clear. With this notation
we may reformulate inequality (2.2) as R(K) ⩽ 1 (or Φ(K) ⩽ 0), respec-
tively. By Weyl’s asymptotic formula taking the subsequence defined by
k = σ(K), K = 1, 2, . . . , we have R(K) → 1 when K → +∞.

2.3. Elementary symmetric functions

Pólya’s inequalities for spheres and hemispheres are equivalent to certain
polynomial inequalities which may be stated in terms of elementary sym-
metric functions. Following [17], for instance, for any natural number n we
define the elementary symmetric functions σj : Rn → R by

σ0(x1, . . . , xn) = 1, σj(x1, . . . , xn) =
∑

i1<i2<···<ij

xi1 . . . xij
,(2.9)

and the related constants sj(n), j = 0, 1, . . . , n,

(2.10) sj(n) = σj(1, 2, . . . , n).

These functions appear in the factorization of monic polynomials such as

(K + x1)(K + x2) · · · (K + xn) =
∑

0⩽j⩽n

σj(x1, . . . , xn)Kn−j ,

which, in the particular case of xi = i− 1, yields

(2.11) Kn =
∑

0⩽j⩽n−1
sj(n− 1)Kn−j .
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3. Proof of Theorem A

Our first results consist in looking for which K ⩾ 1 and n ⩾ 2, Pólya’s
inequality holds for the lowest order eigenvalue of a K-chain, that is, the
weakest inequality holds

(3.1) K(K + n− 1) = λK ⩾ CW,n k−
2/n = ((K − 1)n + n!)2/n,

and when it holds for the highest order eigenvalue, that is, the strongest
inequality holds

(3.2) K(K + n− 1) = λK ⩾ CW,n k
2/n
+ =

(
Kn
)2/n

.

The first eigenvalue (k = K = 1) satisfies Pólya’s inequality if and only if
nn/2 ⩾ n!, which holds for n = 1, 2, while from Stirling’s lower bound (A.1)
we see it cannot hold for n ⩾ 3. This proves the last claim in item (2).

If K ⩾ 2, all eigenvalues of the K-chain satisfy Pólya’s inequality if and
only if (3.2) is satisfied. This inequality holds for n = 2, and statement (1)
is proved. From the left hand-side inequality of Lemma A.1 we conclude
that (3.2) never holds for any n ⩾ 3. This completes the proof of item (2).
Furthermore, some eigenvalue of the K-chain satisfies Pólya’s inequality
if (3.1) holds, or equivalently

(3.3) Qn(K) := (K(K + n− 1))n − ((K − 1)n + n!)2 ⩾ 0.

For n = 2, . . . , 8 inequality (3.3) holds for any K ⩾ 2. This may be verified
by determining the polynomials Qn(K) and computing their derivatives
with respect to K, since for all K ⩾ 2 these are positive polynomials and
Qn(2) > 0 for all n ⩽ 8. However, this will no longer be the case for n = 9.

Next we complete the proof of item (3) for any n ⩾ 3 by proving the
following lemma.

Lemma 3.1. — If n ⩾ 3, the polynomial Qn(K) is of degree 2n−1 with
principal coefficient given by 2n. In particular, we can find Kn ⩾ 2 such
that for all K ⩾ Kn the lowest order eigenvalue λk− of the K-chain satisfies
Pólya’s inequality.

Proof. — We have

[K(K + n− 1)]n =
[
(n− 1)K +K2]n

= K2n +
n∑

l=1

(
n

l

)
(n− 1)lK2n−l.
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Set σl = σl(−1, 1, 2, . . . , n− 2), for l = 0, 1 . . . , n− 1, (see (2.9)). We have
the following identity,

(K − 1)K(K + 1) · · · (K + n− 2) = K[(K − 1)(K + 1) · · · (K + n− 2)]

= K

(
n−1∑
l=0

σlK
n−1−l

)
,

and so

[(K − 1)K · · · (K + n− 2) + n!]2

= [(K − 1)K · · · (K + n− 2)]2 + (n!)2

+ 2n!(K − 1)K(K + 1) · · · (K + n− 2)

= K2

(
n−1∑
l=0

σlK
n−1−l

)2

+ (n!)2 + 2n!K
n−1∑
l=0

σlK
n−1−l

= K2 (σ0K
n−1 + σ1K

n−2 + · · · + σn−2K + σn−1
)2

+ 2n!K
n−1∑
l=0

σlK
n−1−l + (n!)2.
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Note that if 0 ⩽ i < j ⩽ n− 1, then 1 ⩽ i+ j ⩽ 2n− 3. Hence,

[(K − 1)K · · · (K + n− 2) + n!]2

= K2

σ2
0K

2(n−1) + σ2
1K

2(n−2) + · · · + σ2
n−2K

2 + σ2
n−1

+2
n−1∑
j=0

j−1∑
i=0

σiK
n−i−1σjK

n−j−1


+ 2n!K

n−1∑
l=0

σlK
n−1−l + (n!)2

= K2n + σ2
1K

2n−2 + σ2
2K

2n−4 + · · · + σ2
n−2K

4

+ σ2
n−1K

2 + 2
n−1∑
j=0

j−1∑
i=0

σiσjK
2n−(i+j)

+ 2n!(Kn + σ1K
n−1 + · · · + σn−2K

2 + σn−1K) + (n!)2

= K2n +
n−1∑
s=1

σ2
sK

2n−2s +
2n−3∑
l=1

 ∑
0⩽i<j⩽n−1

i+j=l

2σiσj

K2n−l

+ 2n!(Kn + σ1K
n−1 + · · · + σn−1K) + (n!)2.

Therefore, (3.3) holds if and only if

Qn(K) =
n∑

l=1

(
n

l

)
(n− 1)lK2n−l −

n−1∑
s=1

σ2
sK

2n−2s

−
2n−3∑
l=1

 ∑
0⩽i<j⩽n−1

i+j=l

2σiσj

K2n−l

− 2n!(Kn + σ1K
n−1 + · · · + σn−2K

2 + σn−1K) − (n!)2

⩾ 0.

Using that σ1(1, 2, . . . , n−2) = s1(n−2) (see (2.9), (2.10)) and Appendix B
we have

σ1(−1, 1, 2, . . . , n− 2) = −1 + σ1(1, 2, . . . , n− 2)

= −1 + (n− 1)(n− 2)
2 = n(n− 3)

2 .
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Hence, the polynomial Qn(K) is of degree 2n− 1 with principal coefficient
given by (

n

1

)
(n− 1) − 2σ0σ1 = n(n− 1) − n(n− 3) = 2n,

and the lemma follows. □

The next result is a consequence of Theorem A (3), but we shall now
give a direct proof.

Corollary 3.2. — The lowest order eigenvalue of the 2-chain satisfies
Pólya’s inequality if and only if n ⩽ 8.

Proof. — For any n ⩾ 2 if we make K = 2 inequality (3.3) becomes
equivalent to

ϕ(n) := (2n!)2 − (n+ 1)n2n ⩽ 0.
For n ⩽ 8 we have ϕ(n) < 0, but ϕ(9) > 0. We will prove by induction
that ϕ(n) > 0 holds for all n greater than 9. By the induction hypothesis
we have

((n+ 1)!)2 = (n!)2(n+ 1)2 > (n+ 1)n2n−2(n+ 1)2 = (n+ 1)n+22n−2.

If we show that ξ(n) ⩾ 2, where ξ(n) = (n+ 1)n+2/(n+ 2)n+1, we finish
the proof, and we see this holds since ξ′(n) > 0 and ξ(9) > 3. □

4. Pólya’s inequality for eigenvalue averages on Sn
+

In the Euclidean case the point of departure for the Li and Yau estimates
for single eigenvalues are their results for the sum of the first n eigenvalues
given by (1.4). Here we may also derive estimates of a similar type, and
we shall do so for both the first n eigenvalues and also within each chain
of eigenvalues. If n = 2, by Theorem A (1) all eigenvalues satisfy Pólya.
Hence we will assume n ⩾ 3, except where specific values are indicated.

Theorem 4.1. — For the Dirichlet eigenvalues of the Laplace–Beltrami
operator on the n-dimensional hemisphere Sn

+ we have the following:
(1) for all n there exists K ′

n ⩾ 2 such that for all K ⩾ K ′
n the eigenvalue

of the corresponding K-chain satisfies

λK >
CW,n

m

q+m−1∑
k=q

k2/n.

In particular K ′
n = 2, for n = 3, 4, 5, K ′

6 = 3 and K ′
10 = 10.
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(2) for all n the total average sequence satisfies

lim
k→+∞

1
k

k∑
j=1

(λj − CW,nj
2/n) = +∞.

Remark 4.2. — For n = 2 item (1) reduces to K(K + 1) > m(K) + 1 =
K + 1, which holds for all K ⩾ 2, while for K = 1 we have equality.
Moerover, choosing the largest order of the K-chain, k = k+(K) = σ(K) =
K(K + 1)/2, K ⩾ 1, we can compute the full sum explicitly to obtain

1
k

k∑
j=1

(λj − CW,nj
2/n) = 2

3(K − 1),
k∑

j=1
λj = k2 + k

√
8k + 1

3 .

For a generic order k in the (K+1)-chain, this sum equals a more involved
expression of a similar form, namely,

∑k
j=1 λj = k2 + kQ(k), where Q(k)

is greater than or equal to one.

Remark 4.3. — From item (2) it follows that there exists a positive value
L such that

k∑
j=1

λj ⩾
n

n+ 2CW,nk
2
n +1 + Lk

holds for k sufficiently large – compare with the Li and Yau inequality∑k
j=1 λj ⩾ n

n+2CW,nk
2
n +1 (cf. [16]) for Dirichlet eigenvalues on bounded

domains in Rn.

Let k ∈ [k−, k+] be an integer of a K-chain, that is, k = kj = σ(K−1)+j
where j = 1, 2, . . . ,m(K). For each positive integer (or positive real, when
appropriate) j we define

(4.1) Υj(K) := (K − 1)n + jn!,

and consider the following quantities defined by the elementary symmetric
functions (2.10)

(4.2) ŝl := sl(n− 1), if 0 ⩽ l ⩽ n− 1, ŝn := n!,

where the value for ŝn is defined to be n! for the sake of simplicity. Let

(4.3) yj(K) = ŝ1

K−1 + ŝ2

(K−1)2 +· · ·+ ŝn−1

(K−1)n−1 + jŝn

(K − 1)n
, ∀K ⩾ 2.
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The following identities hold (see (2.11))

Υj(K) = (K − 1)n + ŝ1(K − 1)n−1 + · · · + ŝn−1(K − 1) + jŝn

= (K − 1)n(1 + yj(K)).

Then, for K ⩾ 2

(4.4) CW,nk
2/n
j = (Υj(K))2/n = (K − 1)2 (1 + yj(K))2/n

.

We will consider a mean-value function defined on each K-chain by

Pm(K) := 1
m(K)

k+(K)∑
k=k−(K)

(
λk − CW,nk

2/n
)

= K(K + n− 1) − 1
m(K)

m(K)∑
j=1

CW,nk
2/n
j ,

and the following polynomial function

Q(x) :=
n−3∑
l=1

(
2
n
ŝl+2 + ŝl+1

)
xl + 2(n− 1)!xn−2,

where in case n = 3 the summation term is assumed to be zero.

Proposition 4.4. — There exists K ′
n ⩾ 2 such that

k+(K)∑
k=k−(K)

(λk − CW,nk
2/n) ⩾ 0

for all K ⩾ K ′
n. Moreover, for all K ⩾ 2, Pm(K) ⩾ (K − 1) + T ′

n, where
T ′

n = (n− 2
n ŝ2 − ŝ1)−Q(1). We may take K ′

n ⩾ 2 satisfying K ′
n ⩾ −T ′

n +1.

Proof. — We must have K ′
n ⩾ 2, since Pólya’s inequality is not satisfied

for K = 1. Let

Polj(K) := K(K + n− 1) − CW,n k
2/n
j .
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Using (4.4) and the upper bound in Lemma A.3, (1 + y)2/n ⩽ 1 + 2
ny, we

get for K ⩾ 2

Polj(K) ⩾ (K − 1)2 + (n+ 1)(K − 1) + n

− (K − 1)2

(
1 + 2

n

[
n−1∑
l=1

ŝl

(K − 1)l
+ jn!

(K − 1)n

])

=
[
n+ 1 − 2

n
ŝ1

]
(K − 1) +

[
n− 2

n
ŝ2

]
− 2
n

(
n−1∑
l=3

ŝl

(K − 1)l−2

)
− 2
n

jn!
(K − 1)n−2

= 2(K − 1) +
[
n− 2

n
ŝ2

]
− 2
n

(
n−1∑
l=3

ŝl

(K − 1)l−2

)

− 2
n

jn!
(K − 1)n−2 ,

where if n = 3 the summation term is zero. Since Kn−1 = (K−1)n/(K−1),
from (2.11) we have m(K) = 1

(n−1)!
∑n−1

i=0 ŝi(K − 1)n−(i+1). Therefore,

1
m(K)

m(K)∑
j=1

j = m(K) + 1
2 = 1

2 + 1
2(n− 1)!

n−1∑
i=0

ŝi(K − 1)n−(i+1),

and using that ŝn−1 = (n − 1)! we thus obtain the following estimate for
the average

1
m(K)

m(K)∑
j=1

Polj(K)

⩾ (K − 1) +
[
n− 2

n
ŝ2 − ŝ1

]
−

n−3∑
l=1

2
n ŝl+2 + ŝl+1

(K − 1)l
− 2(n− 1)!

(K − 1)n−2 .

Then, for K ⩾ 2, Pm(K) ⩾ K − 1 + [n− 2
n ŝ2 − ŝ1] −Q((K − 1)−1). Let

x0 ∈ (0, 1] such that for all 0 < x ⩽ x0, Q(x) ⩽ x−1 + n− 2
n ŝ2 − ŝ1. Then

T ′
n = n− 2

n ŝ2 − ŝ1 −Q(1), and for (K − 1) ⩾ x−1
0 , Pm(K) ⩾ 0. The lower

bound for K ′
n is obtained by taking K ′

n ⩾ 1 − T ′
n. □

For small n we can improve the choice of K ′
n by direct inspection, in-

stead of using the rough upper bound for (1 + y)2/n as was done above.
This allows us to obtain K ′

n = 2 for n = 3, 4, 5, K ′
6 = 3, and K ′

10 = 10.
These considerations together with the above proposition prove item (1) of
Theorem 4.1.
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If K = 1, Pm(K) = n− (n!)2/n < 0. Given K ⩾ 2, let j‡(K) ∈ [1,m(K)]
such that Polj‡(K)(K) = 0. Then Polj(K) < 0 for all j‡(K) < j ⩽ m(K)
and Polj(K) ⩾ 0, ∀j ⩽ j‡(K). This j‡(K) exists by Lemmas A.1 and 3.1,
and it is smooth for K ∈ (1,+∞) by the implicit function theorem. In
Proposition 4.6 we will approximate j‡(K) by a polynomial function j†(K)
with rational coefficients. For each n ⩾ 2 we define

j∗(K) = j∗
n−1(K) := Hn−1(K − 1) =

n−1∑
l=0

b∗
l (n− 1)(K − 1)l = m(K),

where b∗
l (n−1) := ŝn−l−1

(n−1)! , l = 0, ...n−1, and take j(K) :=
∑n−1

l=0 bl(K−1)l

to be any polynomial of degree at most n − 1 (not necessarily integer-
valued), such that 1 ⩽ j(K) ⩽ j∗

n−1(K) for K large. Therefore, either
bn−1 < b∗

n−1(n− 1) = 1
(n−1)! , or bn−1 = b∗

n−1(n− 1), and bn−2 < b∗
n−2(n−

1) = ŝ1
(n−1)! = n

2(n−2)! , and so on.

Lemma 4.5. — We have

Polj(K)(K) = K(K + n− 1) −
(
(K − 1)n + n!j(K)

)2/n

= F1(K − 1) + F0 + F−1

(K − 1) + o
(

1
K − 1

)
,

where
F1 := (n+ 1) − 2

n (ŝ1 + n! bn−1)
F0 := n− 2

n (ŝ2 + n! bn−2) + (n−2)
n2 (ŝ1 + n! bn−1)2

F−1 := − 2
n (ŝ3 + n! bn−3) + n−2

n2 2(ŝ1 + n! bn−1)(ŝ2 + n! bn−2)
− 2(n−1)(n−2)

3n3 (ŝ1 + n! bn−1)3,

and ŝ3 = 0 if n = 3. The following holds.
(1) F1 = 0 if and only if bn−1 = 1

(n−1)! , that is, j∗(K) − j(K) is of
degree at most n − 2. Moreover, either F1 = 0 or F1 > 0 and so
Polj(K) (K) > 0 for K sufficiently large.

(2) If F1 = 0, then F0 = 0 if and only if bn−2 = 5n+2
12(n−2)! . Moreover, if

F0 > 0, we have bn−2 <
5n+2

12(n−2)! < b∗
n−2(n− 1), and Polj(K) (K) ⩾

0 for K sufficiently large; if F0 < 0, we have 5n+2
12(n−2)! < bn−2 ⩽

b∗
n−2(n− 1) and Polj(K) (K) < 0 for K sufficiently large; if F0 = 0,

we have bn−2 < b∗
n−2(n− 1) and the sign of Polj(K)(K) will be

given by the sign of F−1 if not zero, proceeding as above taking a
higher order Taylor expansion.

(3) Given j ∈ N, Polj(K) > 0 and Polm(K)−j(K) < 0 hold for all K
sufficiently large.
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Proof. — Using the third order Taylor expansion of (1 + y)2/n for small
y we obtain

Polj(K)(K) = (K − 1)2 + (n+ 1)(K − 1) + n

− (K − 1)2

(
1 +

n−1∑
l=1

ŝl + n!bn−l

(K − 1)l
+ n!b0

(K − 1)n

)2/n

= (K − 1)2 + (n+ 1)(K − 1)

+ n− (K − 1)2

{
1 + 2

n

(
n−1∑
l=1

ŝl + n!bn−l

(K − 1)l
+ n!b0

(K − 1)n

)

−n− 2
n2

(
n−1∑
l=1

ŝl + n!bn−l

(K − 1)l
+ n!b0

(K − 1)n

)2

+2(n− 1)(n− 2)
3n3

(
n−1∑
l=1

ŝl + n!bn−l

(K − 1)l
+ n!b0

(K − 1)n

)3

+ o
(

1
(K − 1)3

)}2/n

= F1(K − 1) + F0 + F−1

(K − 1) + o
(

1
K − 1

)
.

The statements now follow trivially. Note that in (1) F1 < 0 cannot hold
since j(K) ⩽ j∗(K). In (2) the inequality 5n+2

12(n−2)! < b∗
n−2(n− 1) holds for

all n ⩾ 3. Given j, the constant polynomial j(K) = j satisfies j(K) <
m(K) for K sufficiently large, and bn−1 = 0 implying F1 = 2 and so
Polj(K) > 0 proving the first inequality of (3). The second inequality is a
trivial application of (1). □

Proposition 4.6. — Let G = n−2
12 ∈ Q and consider the element of

Q[K] of degree (n − 1) given by j†(K) = j∗
n−1(K) − Gj∗

n−2(K). For any
j(K) ∈ R[K] satisfying 1 ⩽ j(K) ⩽ j∗(K) for K large, the following holds.

(1) If j(K) > j†(K) for all K sufficiently large, then j(K) > j‡(K) for
all K sufficiently large.

(2) If j(K) < j†(K) for all K sufficiently large, then j(K) < j‡(K) for
all K sufficiently large.

In particular, given ϵ > 0, there exist Kϵ such that

sup
K⩾Kϵ

|j‡(K) − j†(K)| ⩽ ϵ.
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Remark 4.7. — If j(K) = j†(K), in order to determine the sign of
Polj(K)(K) we need to use a Taylor expansion of higher order in Lemma 4.5.

Proof. — Denote the coefficients of j∗
n−1(K), j∗

n−2(K), and j(K) by b∗
l ,

b̃∗
l and bl, respectively.

(1). — By the conditions on j(K), we must have bn−1 = b∗
n−1 and so,

F1 = 0 from (1) of the previous Lemma. Moreover, since ŝ1/(n− 1) −G =
(5n+ 2)/12, then

bn−2 > b∗
n−2 −Gb̃∗

n−2 = ŝ1

(n− 1)! − G

(n− 2)! = 5n+ 2
12(n− 2)! .

This means F0 < 0 and so (1) follows from Lemma 4.5(2).

(2). — From the conditions on j(K), bn−1 < b∗
n−1 and so F1 > 0, and

the result follows from Lemma 4.5(1). Taking j(K) = j†(K) ± ϵ (note that
1 ⩽ j(K) ⩽ j∗(K) for K large) we obtain j†(K) − ϵ ⩽ j‡(K) ⩽ j†(K) + ϵ,
for all K ⩾ Kϵ proving the last statement. □

Using Proposition 4.4, given L > 0 we can take Kn,L ⩾ K ′
n +1 such that

Pm(K) ⩾ L for all K ⩾ Kn,L. Then for K ⩾ Kn,L we have

(4.5)

PM(K) := 1
σ(K)

k+(K)∑
k=1

(
λk − CW,nk

2/n
)

=
K′

n−1∑
K′=1

m(K ′)Pm(K ′)
σ(K) +

Kn,L−1∑
K′=K′

n

m(K ′)Pm(K ′)
σ(K)

+
K∑

K′=Kn,L

m(K ′)Pm(K ′)
σ(K)

⩾ Tn + (σ(K) − σ(Kn,L − 1))
σ(K) L

where Tn =
∑K′

n−1
K′=1 m(K ′)Pm(K ′)/σ(K). The expression in (4.5) converges

to L when K → +∞. Therefore, since L is arbitrary, PM(K) may be made
as large as we want, proving the following lemma.

Lemma 4.8. — limK→+∞PM(K) = +∞.
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Proof of item (2) of Theorem 4.1. — Let k ⩾ 2 belong to a K-chain,
k = σ(K − 1) + j(K), where 1 ⩽ j(K) ⩽ m(K). Then

1
k

k∑
s=1

(λs − CW,ns
2/n) = σ(K − 1)

σ(K − 1) + j(K)PM(K − 1)

+ 1
σ(K − 1) + j(K)

j(K)∑
j=1

Polj(K).

Moreover, since j(K) ⩽ m(K),

j(K)
σ(K − 1) + j(K) ⩽

m(K)
σ(K − 1) +m(K) = m(K)

σ(K) = n

K + n− 1 −→ 0,

when K → +∞. Therefore, σ(K−1)
σ(K−1)+j(K) → 1, and the first term of the

above equality converges to +∞ as a consequence of previous lemma. If
j(K) ⩽ j‡(K), the second term is positive, and we are done. If j(K) >
j‡(K), we note that,

1
σ(K − 1) + j(K)

j(K)∑
j=1

Polj(K) ⩾ 1
σ(K − 1) + j(K)

m(K)∑
j=1

Polj(K) ⩾ 0,

where the last inequality follows from item (1). This completes the
proof. □

5. Proof of Theorem B

The proof of Theorem B is based on the fact that the function Φ defined
in Section 2.2 converges to (n − 1)(n − 2)/6 as K goes to infinity, and
never goes above this value. While the first part is essentially based on
an expansion of this function at infinity, the second part is more involved,
relying on the sharp upper bound provided by Lemma A.1.

Lemma 5.1. — The expansion[
Γ(n+K)

Γ(K)

]2/n

= K2 + (n− 1)K + (n− 1)(n− 2)
6 + o(1)

holds as K → ∞.
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Proof. — We have[
Γ(n+K)

Γ(K)

]2/n

= [K(K + 1) · · · (K + n− 1)]2/n

=
[
Kn

(
1 + 1

K

)(
1 + 2

K

)
. . .

(
1 + n− 1

K

)]2/n

= K2
[
1 + ŝ1

1
K

+ ŝ2
1
K2 + o

(
1
K2

)]2/n

= K2
[
1 + n(n− 1)

2K + (n− 1)(n− 2)n(3n− 1)
24K2 + o

(
1
K2

)]2/n

,

where ŝ1 and ŝ2 are as in (4.2). The lemma now follows from the binomial
expansion. □

Lemma 5.2.

lim
K→∞

Φ(K) = (n− 1)(n− 2)
6 =: c(n).

Proof. — From Lemma 5.1,

Φ(K) =
(
K2 + (n− 1)K + (n− 1)(n− 2)

6 + o(1)
)

−K(K + n− 1)

= (n− 1)(n− 2)
6 + o(1),

as K → +∞, and the limit follows. □

Proof of Theorem B. If n = 2 then Φ(K) = 0. We may thus assume
n ⩾ 3. By Lemma A.1, Φ(K) remains below c(n) for all K and so

(5.1) λK >

(
Γ(n+K)

Γ(K)

)2/n

− c(n).

Hence, if λk is in the K-chain, then k ⩽ k+ and using (5.1) we obtain

λk = λK > CW,n σ(K)2/n − c(n) = CW,n k
2/n
+ − c(n) ⩾ CW,nk

2/n − c(n).

Equality is only possible if n = 2, when CW,2 = 1 and c(2) = Φ(K) = 0. By
Lemma 5.2 above, Φ(K) converges to c(n) as K goes to infinity, proving the
sharpness of the statement with respect to the sequence of highest order
on each chain. □
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6. Proof of Theorem C

We now describe the K-chains of a hemisphere in a precise way. By
writing explicitly the lower and higher orders k±(K) in terms of Kn, and
using a simple but fundamental inequality between K(K + n − 1) and a
fractional power of the rising factorial, it is possible to obtain a proof of
Theorem C.

Proof of Theorem C. The inequality in the theorem holds for k = 1. Now
we take k ⩾ 2 in a (K + 1)-chain, where K ⩾ 1. The corresponding lowest
order eigenvalue is given by k− = σ(K) + 1 = Kn/n! + 1. By Lemma A.1
the following inequality holds

K(K + n− 1) ⩽
(
Kn
)2/n = (k− − 1)2/n(n!)2/n.

In particular we obtain

K ⩽ (k− − 1)1/n(n!)1/n.

Therefore,

λk = λK+1 = (K + 1)(K + n)
= K(K + n− 1) + 2K + n

⩽ (k− − 1)2/n(n!)2/n + 2(k− − 1)1/n(n!)1/n + n

⩽ (k − 1)2/n(n!)2/n + 2(k − 1)1/n(n!)1/n + n

= CW,n(k − 1)2/n + 2
√
CW,n(k − 1)1/n + n,

and we are done. Next we prove the claimed limit at infinity. Consider the
function defined for all K ⩾ 2, Θ(K) := (λK − Υ(K)2/n − n)/(2Υ(K)1/n),
where Υ(K) = σ(K − 1) = k− − 1 is given in (4.1) for j = 0, and k−
is the lower order index the K-chain. From the inequality this function is
bounded from above by one. Consider the quantities ŝl defined by (4.2) and
x̂(K) = y0(K) given in (4.3) for j = 0. Using Lemma A.3 when x̂(K) → 0,
we have ((K − 1)n)1/n = (K − 1) + O (1) when K → +∞ and

((K − 1)n)2/n = (K − 1)2
[
1 + 2

n
x̂(K) − (n− 2)

n2 x̂(K)2 + o (x̂(K))2
]

= (K − 1)2 + 2
n
ŝ1(K − 1) +

[
2
n
ŝ2 − (n− 2)

n2 ŝ2
1

]
+ O

(
1
K

)
.
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Moreover, K(K + n− 1) = (K − 1)2 + (n+ 1)(K − 1) + n, and we get

lim
K→+∞

Θ(K) = lim
K→+∞

(n+ 1 − n+ 1)K − 2
n ŝ2 + (n−2)ŝ2

1
n2

2K = 1. □

7. Sharp two- and three-term upper bounds for S2
+,S3

+ and
S4

+

Recall from Section 2.2 that σ(K) = Kn̄

n! . Hence, σ : [1,+∞) → [1,+∞)
is the smooth increasing function

σ(x) = 1
n!x(x+ 1) · · · (x+ n− 1),

that can be extended to x ∈ [0, 1] by the same formula, giving σ(0) = 0.
We can define its inverse, σ−1 : [0,+∞) → [0,+∞), with σ−1(0) = 0, that
is increasing for k ⩾ 1. Since k− − 1 = σ(K − 1) and k+ = σ(K), then
σ−1(k+) = K = σ−1(k− − 1) + 1. In particular, for any λk of the K-chain,
we have k− ⩽ k ⩽ k+, and so

(7.1) λk = λK = K(K + n− 1)

=
(
σ−1(k− − 1) + 1

) (
σ−1(k− − 1) + n

)
⩽
(
σ−1(k − 1) + 1

) (
σ−1(k − 1) + n

)
=: U(k)

with equality if and only if k = k−, while

λk = K(K + n− 1) = σ−1(k+)(σ−1(k+) + n− 1)

⩾ σ−1(k)(σ−1(k) + n− 1).

If k = K = 1, λ1 = n = U(1).
Given z ∈ [0,+∞), σ−1(z) is a non-negative root of a polynomial func-

tion of degree n, that provides formulas to describe each K in terms of the
lowest order index k− or the largest order index k+ of the chain. Rewrit-
ing the expression of U(k) in the form CW,nk

2/n + c′k1/n + · · · a remainder
bounded term, R−(k), will appear allowing us to derive the sharp estimates
for the eigenvalues given in the next propositions. For simplicity, and due to
the nature of the polynomial equations involved, we will restrict ourselves
to dimensions two to four.

TOME 75 (2025), FASCICULE 3



1008 Pedro FREITAS, Jing MAO & Isabel SALAVESSA

7.1. S2
+

If n = 2 we have CW,2 = 2 and, from the above formulas,

σ−1(x) = −1
2 + 1

2
√

8x+ 1

and

2k+ = λK = K(K + 1) = 1 + 2(k− − 1) +
√

8(k− − 1) + 1.

Thus, the two- and three-term upper bounds in the next proposition follow
immediately. The lower bound is Pólya’s inequality from Theorem A, while
the last statement was proved in Theorem C.

Proposition 7.1. — If n = 2, CW,2 = 2 and the Dirichlet eigenvalues
of S2

+ satisfy the following inequalities for all k = 1, 2, . . .,

CW,2k ⩽ λk ⩽ CW,2(k − 1) + 2
√
CW,2

√
(k − 1) + 1

8 + 1

= CW,2 k + 2
√
CW,2

√
k − 7

8 − 1

< CW,2 k + 2
√
CW,2

√
k,

with equality in the first right-hand side inequality if and only if k =
k−. The last inequality is strict for any k ⩾ 1 but it is asymptotically
sharp for the lowest order eigenvalues of each chain in the sense that (λk −
CW,2k)/(2

√
CW,2

√
k) → 1 when k = k− → ∞.

7.2. S3
+

Now we consider the case n = 3. We have CW,3 = 62/3, λK = K(K + 2),
and from σ(K) = K(K + 1)(K + 2)/6 we obtain

σ−1(x) = 3−2/3L(x)1/3 + 3−1/3L(x)−1/3 − 1,

with L(x) = 33x+
√

36x2 − 3, ∀x ⩾ 1.
Note that σ(0) = 0 by the above expression, and this is the only non-

negative value of K for which σ vanishes, so we set σ−1(0) = 0.

Proposition 7.2. — If n = 3, CW,3 = 62/3 and the Dirichlet eigenval-
ues of S3

+, λk, k = 1, 2, . . . satisfy the following inequality

(7.2) λk ⩽ CW,3 (k − 1)2/3 + 2
√
CW,3 (k − 1)1/3 + R̃−(3, k),
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where R̃−(3, k) is a function that at k = 1 takes on the value 3 = n = λ1,
and for k ⩾ 2 it is a decreasing function, with R̃−(3, 2) ≈ 1.06383 and
converging to 2/3 as k → +∞. Equality in (7.2) holds if and only if k = k−.
An equivalent upper bound for λk is given by

(7.3) λk ⩽ CW,3 k
2/3 + 2

√
CW,3 k

1/3 + R̂−(3, k),

with equality at k = k− of each chain, where R̂−(3, k) at k = 1 evalutes
to −CW,3 − 2

√
CW,3 + 3 ≈ −3.936168, and it is bounded for k ⩾ 2, with

R̂−(3, 2) ≈ −2.4870064, increasing up to 2/3 as k → ∞. It is given by

R̂−(3, k) = R̃−(3, k) − CW,3

(
k2/3 − (k − 1)2/3

)
− 2
√
CW,3

(
k1/3 − (k − 1)1/3

)
.

Proof. — Applying the above formula for σ−1 to x = k−−1 and inserting
it into (7.1) we obtain the following expression for U(k),

U(k) =
(

3−2/3L(k − 1)1/3 + 3−1/3L(k − 1)−1/3
)2

+ 2
(

3−1/3L(k − 1)1/3 + 3−1/3L(k − 1)−1/3 + 2
)

= CW,3(k − 1)2/3

(
1
2 + 1

2

√
1 − 3

(27(k − 1))2

)2/3

+ 2
√
CW,3(k − 1)1/3

(
1
2 + 1

2

√
1 − 3

(27(k − 1))2

)1/3

+ 2
3

+ 2

31/3
(

27(k − 1) +
√

(27(k − 1))2 − 3
)1/3

+ 1

32/3
(

27(k − 1) +
√

(27(k − 1))2 − 3
)2/3 .

From this, we obtain that the remainder term R̃−(3, k) as defined in the
introduction to this section satisfies R̃−(3, 1) = 3 and, for k larger than
one, it may be written as

R̃−(3, k) = A(k) +B(k) + 2
3 + C(k) +D(k),
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where

A(k) = −CW,3(k − 1)2/3
{

1 −
(

1
2 + 1

2

√
1 − 3

(27(k−1))2

)2/3
}

B(k) = −2
√
CW,3(k − 1)1/3

{
1 −

(
1
2 + 1

2

√
1 − 3

(27(k−1))2

)1/3
}

D(k) = 1
32/3
(

27(k−1)+
√

(27(k−1))2−3
)2/3

C(k) = 2
√
D(k).

It follows that R̃−(3, k) is a positive function decreasing to 2/3 when
k → ∞, see proof in Section C.1.1 of Appendix C. We note first that
R̂−(3, k) converges at infinity to the same limit as R̃−(3, k), since 0 <

ka/3 − (k − 1)a/3 ⩽ a
3 (k − 1)−(3−a)/3 for a = 1, 2. On the other hand after

some straightforward simplifications we may rewrite R̂−(3, k) as

(7.4) R̂−(3, k) = −CW,nk
2/3 − 2

√
CW,nk

1/3 + 2
3

+
(
D(k) + D(k)−1

32

)
+ 2

√D(k) +

(√
D(k)

)−1

3

 .

From this expression we obtain a negative value at k = 2, implying R̂−(3, k)
changes sign. In Section C.1.1 of Appendix C we prove that R̂−(3, k) is an
increasing function for k sufficiently large. □

7.3. S4
+

Now we consider the case n = 4. We have CW,4 = (24)1/2, λK =
K(K + 3). From σ(K) = K(K + 1)(K + 2)(K + 3)/24 we obtain

σ−1(x) = 1
2

(
−3 +

(
5 + 4

√
24x+ 1

)1/2)
.

Proposition 7.3. — For n = 4, CW,4 =
√

24 and the Dirichlet eigen-
values of S4

+, k = 1, 2, . . ., satisfy the following inequality

λk ⩽ CW,4(k − 1)1/2 + 2
√
CW,4(k − 1)1/2 + R̃−(4, k),

where R̃−(4, k) is a decreasing function with R̃−(4, 1) = 4 and converging
to zero as k → ∞. Equality holds in the above inequality if and only if
k = k−, that is, at eigenvalues of lowest order of each chain. Equivalently,
we have

λk ⩽ CW,4 k
1/2 + 2

√
CW,4 k

1/4 + R̂−(4, k),
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where

R̂−(4, k) = R̃−(4, k) − CW,4

(
k1/2 − (k − 1)1/2

)
− 2
√
CW,4

(
k1/4 − (k − 1)1/4

)
,

and equality holds if and only if k = k− as well. The remainder R̂−(4, k)
is not monotonic and changes sign. It evaluates to −CW,4 − 2

√
CW,4 + 4 ≈

−5.326 at k = 1, then vanishes somewhere on the interval [400, 500], it has
a local positive maximum of approximately 0.0322267 around k = 6452,
and converges to zero at infinity.

Proof. — From (7.1) and the expression of σ−1 we obtain U(k) and de-
velop it as follows.

U(k) =
√

1 + 24(k − 1) +
√

5 + 4
√

1 + 24(k − 1)

= CW,4

(
k − 1 + 1

24

)1/2
+ 2
√
CW,4

((
k − 1 + 1

24

)1/2
+ 5

4CW,4

)1/2

= CW,4(k − 1)1/2

√
1 + 1

24(k − 1)

+ 2
√
CW,4(k − 1)1/4

√√√√√1 + 1
24(k − 1) + 5

4
√

24(k − 1)

= CW,4(k − 1)1/2 + 2
√
CW,4(k − 1)1/4 + R̃−(4, k),

where R̃−(4, 1) = 4 = n = λ1 and, for k ⩾ 2,

R̃−(4, k) = CW,4(k − 1)1/2

(√
1 + 1

24(k − 1) − 1
)

+ 2
√
CW,4(k − 1)1/4


√√√√√1 + 1

24(k − 1) + 5
4
√

24(k − 1)
− 1

 .

Clearly R̃−(4, k) > 0, and a straightforward calculation yields
limk→∞R̃−(4, k) = 0. The proof that R̃−(4, k) is a decreasing function of
k is given in Section C.1.2 of Appendix C. The expression using R̂−(4, k)
follows by a direct computation, or by rewriting U(k) as

U(k) = CW,4k
1/2 + 2

√
CW,4k

1/4 + R̂−(4, k),
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with

R̂−(4, k) =
√

5 + 4
√

24k − 23 +
√

24k − 23 −
√

24k − 2(24k)1/4.

From this expression we see that the limit at infinity is zero, and derive the
remaining properties of R̂−(4, k). □

7.4. Single term lower bound

The main purpose of this section is to prove the following one-term lower
bound without an additive constant and valid for all k ⩾ 1.

Proposition 7.4. — On Sn
+, n ⩾ 2, the following inequality is valid for

all eigenvalues λk,

(7.5) λk ⩾

(
n

(n!)2/n

)
· CW,nk

2/n = nk2/n = λ1k
2/n,

with equality holding for the first eigenvalue. For n = 2 this is Póya’s
inequality (1.3).

This one-term inequality should be compared with the main inequality
in [16] for Euclidean domains, where a lighter correction constant n/(n+2)
is multiplied. Furthermore, our result on the hemisphere implies λk+1 ⩾
λ1k

2/n, an opposite inequality compared with Euclidean domains [8]. In [8,
Corollary 1.1] it is shown that spherical domains satisfy an inequality with
two correction constants. The multiplicative constant, n/

√
(n+ 2)(n+ 4),

converges to one when n → ∞, while our correction constant n/(n!)2/n

converges to zero when n → ∞. Their additive correction constant, n2/4,
is comparable to our c(n) = (n − 1)(n − 2)/6 in Theorem B, but with no
need of an extra multiplicative correction constant. These multiplicative
constants turn out to be a compromise in order to make the inequality hold
for lower eigenvalues also. The proof of Proposition 7.4 relies on properties
of R(K). This function may be extended to all real K > 0 and is smaller
than one, by Lemma A.1.

Lemma 7.5. — Let ψ(t) be the digamma function [1, p. 253]. For all
real K > 0

R′(K) = R(K)
(

2
n

(ψ(n+K) − ψ(K)) − 2K + n− 1
K(n+K − 1)

)
.
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Proof. — Denoting the derivative with respect to K by ′, for any real
K ⩾ 1 we have

R′(K) =
((

Γ(n+K)
Γ(K)

)2/n

× (K(n+K − 1))−1

)′

=
(

Γ(n+K)
Γ(K)

)2/n

 2
n

(
Γ(n+K)

Γ(K)

)′

(
Γ(n+K)

Γ(K)

) K(n+K − 1) − (2K + n− 1)


× (K(n+K − 1))−2

=
(

Γ(n+K)
Γ(K)

)2/n(2 (ln(Γ(n+K))− ln(Γ(K)))′

nK(n+K − 1) − (2K+n−1)
(K(n+K−1))2

)
=
(

Γ(n+K)
Γ(K)

)2/n(2 (ψ(n+K) − ψ(K))
nK(n+K − 1) − (2K + n− 1)

(K(n+K − 1))2

)
= 2
nK(n+K − 1)

(
Γ(n+K)

Γ(K)

)2/n

×
(
ψ(n+K) − ψ(K) − n(2K + n− 1)

2K(n+K − 1)

)
,

and the expression for the derivative follows. □

Lemma 7.6. — If n ⩾ 3 we have R′(K) < 0 for any real K > 0.

Proof. — From the above expression of R′(K), we need to show that for
any real K > 0, the following inequality

ψ(n+K) − ψ(K) = 1
K

+ · · · + 1
K + n− 1 <

n(2K + n− 1)
2K(n+K − 1)

holds for all integer n ⩾ 3. We fix K and prove by induction on n. It
holds for n = 3 since the above inequality is equivalent to the polinomial
inequality K(K+ 2) < (K+ 1)2. Assume now that the inequality holds for
n. We have(

1
K

+ · · · + 1
K + n

)
⩽

n(2K + n− 1)
2K(K + n− 1) + 1

K + n

= n(2K + n− 1)(K + n) + 2K(n+K − 1)
2K(n+K − 1)(K + n) .

The induction is proved if we show that
n(2K + n− 1)(K + n) + 2K(n+K − 1)

2K(n+K − 1)(K + n) <
(n+ 1)(2K + n)

2K(K + n)
or, equivalently, (2K + n− 1)(K + n) < (K + n− 1)(2K + n+ 1), that is,
−1 + n > 0. □
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Proof of Proposition 7.4. — If n ⩾ 3, By Lemma 7.6 we have R′(K) < 0.
In particular R(L) < R(K) for L > K ⩾ 1. Therefore,

λL

λK

>

[
Γ(K)Γ(n+ L)
Γ(L)Γ(n+K)

]2/n

and λK

λ1
⩾ CW,n

[
σ(K)
(n!)

]2/n

.

Finally, λ1 = n, and if λk is in the K-chain, from the last inequality we
have

λk = λK ⩾ n(n!)−2/nCW,n(σ(K))2/n ⩾ n(n!)−2/nCW,n k
2/n,

and Proposition 7.4 is proved. □

8. The Neumann case: proof of Theorem D

The proof proceeds in a way similar to those of Theorems B and C.
If k is in the K-chain, i.e. µk = K(K + n− 1) and k′

−(K) ⩽ k ⩽ k′
+(K),

we have

CW,nk
2/n − µk ⩾ CW,nk

′
−(K)2/n − µk

=
(
Kn
)2/n −K(K + n− 1)

= Φ(K)

where the function Φ(K) (defined in Section 2.2) was shown in Section 5
to converge to c(n) and, by Lemma A.1, is always below this value. Also
by that lemma, Φ(K) ⩾ 0, and we conclude that CW,nk

2/n ⩾ µk. When
n = 2, Φ(K) = 0, and thus CW,nk

2/n −µk vanishes for all k = k′
−(K), that

is k = K2/2 = K(K + 1)/2.
To prove the lower bound we start from

K + 1 ⩽
√

(K + 1)(K + n) ⩽
(
(K + 1)n

)1/n =
√
CW,n

[
k′

+(K) + 1
]1/n

to obtain

CW,nk
2/n − µk ⩽ CW,nk

′
+(K)2/n −K(K + n− 1)

⩽ CW,n(k′
+(K) + 1)2/n −K(K + n− 1)

= ((K + 1)n)2/n −K(K + n− 1)
= Φ(K + 1) + (K + 1)(K + n) −K(K + n− 1)
= Φ(K + 1) + 2K + n

= Φ(K + 1) + 2(K + 1) + (n− 2)

⩽ c(n) + (n− 2) + 2
√
CW,n

[
k′

+(K) + 1
]1/n

.
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Hence CW,n

[
k′

+(K) + 1
]2/n −µk ⩽ [c(n)+n−2]+2

√
CW,n(k′

+(K)+1)1/n,
and

µk +(c(n)+n−2) ⩾
√
CW,n(k′

+(K) + 1)1/n
(√

CW,n(k′
+(K) + 1)1/n − 2

)
⩾
√
CW,n(k + 1)1/n

(√
CW,n(k + 1)1/n − 2

)
.

Now, proceeding as in the proof of Theorem C, using the identity K(K +
n − 1) = (K + 1)2 + (n − 3)K − 1, recalling that ŝ1 and ŝ2 are as defined
in (4.2) and using the explicit expressions in Appendix B with m = n− 1,
we have

CW,n(k+(K) + 1)2/n − µk

2
√
CW,n(k+(K) + 1)1/n

= ((K + 1)n)2/n −K(K + n− 1)
2 [(K − 1)n]1/n

=
(K + 1)2 + 2

n ŝ1(K + 1) +
[

2
n ŝ2 − (n−2)

n2 ŝ2
1

]
+ O

( 1
K

)
2 [(K − 1)n]1/n

− (K + 1)2 + (n− 3)K + 1
2 [(K − 1)n]1/n

=
2K + n+

[
2
n ŝ2 − (n−2)

n2 ŝ2
1

]
+ O

( 1
K

)
2(K + 1) + O

( 1
K

) −→ 1

when K → +∞, concluding the proof of Theorem D.

9. The case of wedges Wn
π/p

We recall the concept of a tiling domain of a manifold M in Euclidean
space. If a domain M ′ ⊂ M ⊂ RN contains p non-overlapping subdomains
congruent with a model domain M ′′ ⊂ M , we write M ′ ⊃ pM ′′; if these
p subdomains cover M ′ without gaps, we write M ′ = pM ′′. Pólya [18,
Lemma 1] proved the following result in the case of domains in the plane,
but a similar proof holds in this more general situation.

Lemma 9.1. — If M ′ ⊃ pM ′′, then λ′
kp ⩽ λ′′

k for k ∈ N, where λ′
kp, λ′′

k

are the (kp)-th and k-th Dirichlet eigenvalues of the Laplacians on M ′ and
M ′′, respectively.
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An example of tiling domains on the n-dimensional sphere Sn is given
by the wedges defined by (1.5), for which we have that p copies of Wn

π/p

cover a hemisphere Sn
+ = Wn

π = pWn
π/p.

Theorem E on W2
π/p follows immediately by applying Lemma 9.1 and

part 1. of Theorem A for the Dirichlet eigenvalues of the Laplacian on the
2-dimensional hemisphere S2

+. Applying Theorem B and Lemma 9.1, we
obtain the following.

Theorem 9.2. — Let M ′ and M ′′ be two domains in Sn
+. If M ′′ tiles

M ′ with M ′ = pM ′′, and n ⩾ 2, then for any k ⩾ 1 we have

λ′′
k + (n− 1)(n− 2)

6 ⩾ (pk n!)2/n
,

where λ′′
k is the k-th Dirichlet eigenvalue of the Laplacian on M ′′. Further-

more, in case M ′ = Sn
+, then

λ′′
k + (n− 1)(n− 2)

6 ⩾ CW,n(M ′′)k2/n.

An immediate consequence of the above result is the following.

Corollary 9.3. — The eigenvalues λ′′
k of the wedge Wn

π/p with p ∈ N,
satisfy the inequality

(9.1) λ′′
k + (n− 1)(n− 2)

6 ⩾ CW,n(Wn
π/p)k2/n = (pk n!)2/n

.

Moreover, when n = 2, equality holds in (9.1) if and only if k = m(m+1)
2 ,

m ∈ N.

Proof of Theorem 9.2. Let λ′′
k , λ′

k and λk be the Dirichlet eigenvalues
of M ′′, M ′ and Sn

+, respectively. Let c(n) = (n − 1)(n − 2)/6. By (2.6),
(ωn|Sn

+|)2/n = 4π2/(n!)2/n. In fact, if M ′′ tiles M ′ with M ′ = pM ′′ for
some p ∈ N, then |M ′| = p|M ′′| and by Theorem B and Lemma 9.1, we
have

λ′′
k ⩾ λ′

pk ⩾ λpk ⩾
4π2(pk)2/n(
ωn|Sn

+|
)2/n

− c(n) = (pkΓ(n+ 1))2/n − c(n)

for all positive integer k. If M ′ = Sn
+, then |Sn

+| = p|M | and so

λ′′
k ⩾

4π2(pk)2/n

(ωnp|M |)2/n
− c(n), ∀k ∈ N.

Theorem 9.2 (and Corollary 9.3) now follows by taking M ′′ = Wn
π/p. □
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Combining Lemma 9.1 with Proposition 7.4 yields the following result
for wedges tiling M ′ = Sn

+ with p tiles.

Corollary 9.4. — The Dirichlet eigenvalues λ′′
k of Wn

π/p satisfy

λ′′
k ⩾

(
n

(n!)2/n

)
CW,n(Wn

π/p) k2/n = np2/n k2/n, ∀k ⩾ 1.

10. Spheres

We recall the notation given in Section 2.1. for the closed eigenvalues of
Sn, namely CW,n = (n!/2)2/n, λK = K(K+n−1) for K = 0, 1, . . ., σ(K) =
(K + 1)n−1(n+ 2K)/n!, and the lowest and highest orders k− = σ(K − 1),
k+ = σ(K) − 1 of a K-chain, and we define σ(0) = 1, corresponding to
letting k− = k+ = 0 if K = 0. We may further extend σ−1 continuously
down to 0 by σ−1(0) = −1, to obtain σ−1 : [0,∞) → [−1,∞) (possibly
complex valued).

The next lemma follows immediately from the expressions of k± and λK .

Lemma 10.1. — For each K ∈ N ∪ {0}, the eigenvalues of Sn in the
K-chain, and its orders given by the integers k− ⩽ k ⩽ k+, satisfy the
inequalities

σ−1(k + 1) ⩽ σ−1(k+ + 1) = K = σ−1(k−) + 1 ⩽ σ−1(k) + 1,

L(k) ⩽ L(k+) = λK = U(k−) ⩽ U(k),

where U(k) :=
[
σ−1(k) + 1

] [
σ−1(k) + n

]
,

L(k) := σ−1(k + 1)
[
σ−1(k + 1) + n− 1

]
.

Equality holds in both right hand-sides if and only if k = k−, and in both
left hand-sides if and only if k = k+.

10.1. S2

When n = 2, the eigenvalues are given by λK = K(K + 1), K =
0, 1, 2, . . . , with sum of multiplicities σ(K) = (K + 1)2. The eigenvalues
of the K-chain are given by

λK2 = λK2+1 = · · · = λK2+2K−1 = λ(K+1)2−1 = K(K + 1).
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The next proposition now follows directly from Lemma 10.1 and the fact
that for S2 we have σ−1(x) =

√
x− 1.

Proposition 10.2. — We have CW,2(S2) = 1 and the eigenvalues λk of
the 2-sphere, satisfy

k + 1 −
√
k + 1 ⩽ λk ⩽ k +

√
k

for any k ⩾ 0. Moreover, for each K = 0, 1, . . ., upper bounds are attained
at k = K2, that is, at the lowest order eigenvalue of a distinct eigen-
value K(K + 1), while lower bounds are attained at the largest order k =
(K + 1)2 − 1 of the same chain.

10.2. S3

When n = 3 the sum of multiplicities of the eigenvalues λK = K(K+2),
K = 0, 1, 2, . . . , equals σ(K) = (K + 1)(K + 2)(2K + 3)/6. If K = σ−1(x),
then K is the only real root of

σ(K) = 1
3(K + 1)(K + 2)

(
K + 3

2

)
= x.

Solving this third order polynomial equation allows us to determine σ−1(x)
as described in the next lemma.

Lemma 10.3. — If n = 3 then

σ−1(x) = 3−2/3

2 G(x)1/3 + 3−1/3

2 G(x)−1/3 − 3
2 ,

where G is defined by

G(x) = 108x+
√

(108x)2 − 3, ∀x ⩾ 0.

This function is univocally defined, smooth, positive and increasing for x ⩾√
3

108 , and complex valued for x ∈ (0,
√

3
108 ), where we choose the branch with

G(0) = i
√

3. From σ−1(0) = −1 we must have U(0) = 0 and 3−2/3

2 G(0)1/3+
3−1/3

2 G(0)−1/3 = 1
2 .

From this and Lemma 10.1, we may now derive the formulas of U(k) and
L(k).
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Lemma 10.4. — We have U(0) = L(0) = 0 and for k ⩾ 1,

U(k) := CW,3 k
2/3

(
1
2

[
1 +

√
1 − 3

(108 k)2

])2/3

+
√
CW,3 k

1/3

(
1
2

[
1 +

√
1 − 3

(108 k)2

])1/3

− 7
12 + 2−5/33−4/3k−1/3

[
1 +

√
1 − 3

(108 k)2

]−1/3

+ 2−10/33−8/3k−2/3

[
1 +

√
1 − 3

(108 k)2

]−2/3

and

L(k) := − 7
12 + CW,3 (k + 1)2/3

(
1
2

[
1 +

√
1 − 3

(108(1 + k))2

])2/3

−
√
CW,3 (k + 1)1/3

(
1
2

[
1 +

√
1 − 3

(108(1 + k))2

])1/3

− 2−5/3 · 3−4/3(k + 1)−1/3

[
1 +

√
1 − 3

(108(1 + k))2

]−1/3

+ 2−10/3 · 3−8/3(k + 1)−2/3

[
1 +

√
1 − 3

(108(1 + k))2

]−2/3

.

The inequalities obtained in the next proposition are an immediate con-
sequence of Lemma 10.1, using the expression for G(x).

Proposition 10.5. — If n = 3, we have CW,3 = 32/3 and the eigenval-
ues for the 3-sphere, λk, k = 0, 1, . . ., satisfy the following inequalities

CW,3 (k + 1)2/3 −
√
CW,3 (k + 1)1/3 +R+(3, k)

⩽ λk

⩽ CW,3 k
2/3 +

√
CW,3 k

1/3 +R−(3, k),

where both functions R±(3, k) are negative and bounded with values on a
small interval. They are given by R−(3, 0) = 0, R+(3, 0) = −CW,3+

√
CW,3,

TOME 75 (2025), FASCICULE 3



1020 Pedro FREITAS, Jing MAO & Isabel SALAVESSA

and for k ⩾ 1,

R−(3, k) = −CW,3

{
k2/3 − 2−2/3

(
k +

√
k2 − 2−43−5

)2/3
}

−
√
CW,3

{
k1/3 − 2−1/3

(
k +

√
k2 − 2−43−5

)1/3
}

− 7
12 + 2−10/33−8/3(k +

√
k2 − 2−43−5)−2/3

+ 2−5/33−4/3(k +
√
k2 − 2−43−5)−1/3,

R+(3, k) = −CW,3

{
(k+1)2/3 − 2−2/3

(
(k+1) +

√
(k+1)2 −2−43−5

)2/3
}

+
√
CW,3

{
(k+1)1/3 −2−1/3

(
(k+1)+

√
(k+1)2 −2−43−5

)1/3
}

− 7
12 + 2−10/33−8/3

(
(k + 1) +

√
(k + 1)2 − 2−43−5

)−2/3

− 2−5/33−4/3
(

(k + 1) +
√

(k + 1)2 − 2−43−5
)−1/3

.

Moreover, R−(3, k) is a decreasing negative function for k ⩾ 1, and con-
verges to −7/12 when k → ∞. Function R+(3, k) is a negative increasing
function for all k ⩾ 0, values −CW,3 +

√
CW,3 at k = 0, and converges

to −7/12 when k → ∞. Furthermore, in the inequality, lower bounds
can be achieved at the largest order eigenvalue of each K-chain, that is
k = k+ = σ−1(K) − 1, and upper bounds can be achieved at the lowest
order eigenvalue of the same chain, k = k− = σ−1(K − 1).

More details on the remainder functions R±(3, k) are given in next
Lemma 10.6.

Lemma 10.6. — The following functions R±(3, k) are negative and
bounded with values on a small interval. They are given by R−(3, 0) = 0,
R+(3, 0) = −CW,3 +

√
CW,3, and for k ⩾ 1

R−(3, k) := A2(k) +A1(k) − 7
12 +B1(k) +B2(k),

R+(3, k) := D2(k) +D1(k) − 7
12 + E1(k) + E2(k),
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where

A2(k) = −CW,3

{
k2/3 − 2−2/3

(
k +

√
k2 − 2−43−5

)2/3
}
,

A1(k) = −
√
CW,3

{
k1/3 − 2−1/3

(
k +

√
k2 − 2−43−5

)1/3
}
,

B1(k) = 2−5/33−4/3
(
k +

√
k2 − 2−43−5

)−1/3
,

B2(k) = 2−10/33−8/3
(
k +

√
k2 − 2−43−5

)−2/3
,

and

D2(k) = A2(k + 1), D1(k) = −A1(k + 1),
E1(k) = −B1(k + 1), E2(k) = B2(k + 1).

All functions converge to zero when k → +∞, Ai +Bi are positive decreas-
ing functions, E1 + E2 and D1 +D2 are both negative and increasing.

Proof of Proposition 10.5 and Lemma 10.6. — The construction of the
remainder function R±(3, k) follows from Lemma 10.4, and similarly for
the initial values at k = 0. We see that each of these four terms converges
to zero. In Section C.2.1 of Appendix C, we prove Ai(k) +Bi(K) are pos-
itive functions decreasing to zero. Consequently, R−(3, k) is a decreasing
negative function for k ⩾

√
3/108, decreasing to −7/12 when k → ∞. It

follows immediately that R+(3, k) also converges to −7/12 when k → ∞.
It is clear that E1 +E2 < 0. In the Appendix we compute the derivative of
D2 + D1 and using some Taylor estimations we conclude that it must be
positive for all k ⩾ 1. Since D2 + D1 is negative at k = 1 and increasing
to zero, we obtain that it must be negative for all k ⩾ 1. Then R+(3, k) is
also negative. In a similar way, it is possible to prove that E1 + E2 is an
increasing function and conclude that R+(3, k) is also increasing. □

10.3. S4

Now we consider the eigenvalues of S4, λK = K(K + 3), K = 0, 1, . . .,
with σ(K) = (K+1)(K+2)2(K+3)/12, k− = σ(K−1) and k+ = σ(K)−1.

Lemma 10.7. — When n equals 4 the inverse map of σ is given by

σ−1(x) = 1
2

(
−4 +

√
2
√

1 +
√

1 + 48x
)
.
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Proposition 10.8. — If n = 4, we have CW,4 =
√

12 and the eigen-
values λk, k = 0, 1, . . ., of the 4-dimensional sphere S4 satisfy the following
inequalities

CW,4(k + 1)1/2 −
√
CW,4(k + 1)1/4 +R+(4, k)

⩽ λk

⩽ CW,4 k
1/2 +

√
CW,4 k

1/4 +R−(4, k),

where both R±(4, k) are negative bounded functions given by R−(4, 0) = 0,
R+(4, 0) = −CW,4 +

√
CW,4 and for k ⩾ 1

R−(4, k) = −3
2 + CW,4

{√
k + 1

48 − k1/2

}

+
√
CW,4


√√

k + 1
48 + 1

2CW,4
− k1/4

 ,

R+(4, k) = −3
2 + CW,4

{√
(k + 1) + 1

48 − (k + 1)1/2

}

−
√
CW,4


√√

(k + 1) + 1
48 + 1

2CW,4
− (k + 1)1/4

 .

These functions satisfy R−(4, 0) = 0, R+(4, 0) = −CW,4 +
√
CW,4, and

limk→+∞R±(4, k) = − 3
2 . Moreover, we have R+(4, k) ⩽ R−(4, k+ 1), with

R−(4, ·) and R+(4, ·) being decreasing and increasing functions, respec-
tively. Furthermore, lower bounds in the inequality can be achieved at the
largest order eigenvalue of each K-chain and upper bounds can be achieved
at the lowest order eigenvalue of the same chain.

Proof. — From Lemma 10.1 and previous lemma,

U(k) := −3
2 + 1

2
√

1 + 48k +
√

2
√

1 +
√

1 + 48k,(10.1)

L(k) := −3
2 + 1

2
√

1 + 48(k + 1) − 1√
2

√
1 +

√
1 + 48(k + 1).(10.2)
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Then U(0) = L(0) = 0 and, for k ⩾ 1, we may write U and L as

U(k) = −3
2 + CW,4 k

1/2
√

1 + 1
48k

+
√
CW,4 k

1/4

√
1

2CW,4k1/2 +
√

1 + 1
48k

= CW,4k
1/2 +

√
CW,4 k

1/4 +R−(4, k),

L(k) = −3
2 + CW,4(k + 1)1/2

√
1 + 1

48(k + 1)

−
√
CW,4(k + 1)1/4

√√√√ 1
2CW,4(k + 1)1/2 +

√
1 + 1

48(k + 1)

= CW,4(k + 1)1/2 −
√
CW,4(k + 1)1/4 +R+(4, k),

where R±(4, k) are given by

R−(4, k) = −3
2 + CW,4k

1/2

{√
1 + 1

48k − 1
}

+
√
CW,4k

1/4


√√

1 + 1
48k + 1

2CW,4k1/2 − 1


and

R+(4, k) = −3
2 + CW,4(k + 1)1/2

{√
1 + 1

48(k + 1) − 1
}

−
√
CW,4(k + 1)1/4


√√√√√1 + 1

48(k + 1) + 1
2CW,4(k + 1)1/2 − 1

 .

From (10.1) U(0) = 0, and we must have R−(4, 0) = 0. Similarly, from (10.2)
L(0) = 0, and so R+(4, 0) = −CW,4 +

√
CW,4. Computing the correspond-

ing limits we obtain limk→+∞R±(4, k) = − 3
2 . The sign and monotonic

properties of R±(4, k) are described in Appendix C, Section C.1.2. □

10.4. Sn: proof of Theorem F

In this section we will prove Theorem F valid for n ⩾ 2. We start with
the upper bound.
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Lemma 10.9. — For all n ⩾ 2 and K ⩾ 0 we have

K(K + n− 1) ⩽ CW,n σ(K − 1)2/n +
√
CW,n σ(K − 1)1/n

with equality only for K = 0. Furthermore if we set for K ⩾ 1,

Ω(K) := λK − CW,n σ(K − 1)2/n√
CW,n σ(K − 1)1/n

=
K(K + n− 1) −

(
Kn−1 (n

2 +K − 1
))2/n

(
Kn−1

(
n
2 +K − 1

))1/n
,

then limK→+∞Ω(K) = 1.

Proof. — Recall that σ(−1) = 0, and so equality holds for K = 0. Now
assume K ⩾ 1. We want to show that

K(K+n− 1)⩽
(
Kn−1

(
K+ (n−2)

2

))2/n

+
(
Kn−1

(
K + (n− 2)

2

))1/n

.

Using Lemma A.1(
Kn−1

(
K + (n− 2)

2

))1/n

=
(
Kn−1

)1/n
(
K + (n− 2)

2

)1/n

⩾
(√

K(K+n−2)
)(n−1)/n

(
K+ (n−2)

2

)1/n

=
√
K(K + n− 2)(φ(K))1/2n,

where

φ(K) :=

(
K + (n−2)

2

)2

K(K + n− 2) > 1 (= 1 if n = 2).

Hence(
Kn−1

(
K + (n− 2)

2

))2/n

+
(
Kn−1

(
K + (n− 2)

2

))1/n

⩾ K(K + n− 2)(φ(K))1/n +
√
K(K + n− 2)(φ(K))1/2n

⩾ K(K + n− 2) +K = K(K + n− 1).
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We have just proved that Ω(K) ⩽ 1, that is, the inequality in the Lemma
holds. Now we prove it converges to one at infinity. Note that

Kn−1
(n

2 +K − 1
)

= Kn

( n
2 +K − 1
K + n− 1

)
.

From (2.11), Kn = Kn
(

1 +
∑n−1

i=0 ŝi/K
i
)

, where ŝi is as in (4.2), and by
the following Taylor expansion, (1+y)a/n = 1+ a

ny+ 1
2

a
n

(
a
n − 1

)
y2 +o(y2),

we get for n ⩾ 3,

(
Kn

( n
2 +K − 1
K + n− 1

))a/n

=
(
Kn

[
1 + ŝ1

K
+ ŝ2

K2 + o
(

1
K2

)](
1 −

n
2

K + n− 1

))a/n

= Ka

(
1+
[
ŝ1

K
−

n
2

K+n−1

]
+
[
ŝ2

K2 −
n
2 ŝ1

K(K+n−1)

]
+o
(

1
K2

))a/n

= Ka

(
1 + a

n

[
ŝ1

K
−

n
2

K + n− 1

]
+ O

(
1
K2

))
.

Since ŝ1 = n(n− 1)/2 (see Appendix B)

lim
K→+∞

Ω(K)

= lim
K→+∞

K2 + (n− 1)K −K2
(

1 + 2
n

[
ŝ1
K −

n
2

K+n−1

]
+ O

( 1
K2

))
K
(

1 + 1
n

[
ŝ1
K −

n
2

K+n−1

]
+ O

( 1
K2

))
= 1. □

Proof of the upper bound of Theorem F. — If λk is in the K-chain, then
k ⩾ σ(K − 1) = k− and from the previous lemma

λk = K(K+n−1) ⩽ CW,n k
2/n
− +

√
CW,n k

1/n
− ⩽ CW,n k

2/n +
√
CW,n k

1/n.

Equality holds for k = 0 but not for any other k ⩾ 1 when n ⩾ 3, because
φ(K) > 1 (see proof of previous lemma). The inequality is asymptotically
sharp as a consequence of limK→+∞Ω(K) = 1. The case n = 2 is stated in
Proposition 10.2. □

In next proposition we derive three lower bound estimates for the eigen-
values of the n-sphere, where the last one is the lower bound stated in
Theorem F.
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Proposition 10.10. — The eigenvalues λk of Sn satisfy the following
estimates:

(1) For any k ⩾ 0, we have

λk ⩾ CW,n (k + 1)2/n − 2
√
CW,n (k + 1)1/n − (n2 + 2n− 7)

4 .

(2) For any K ⩾ 1, if k is in the K-chain, then

λk ⩾ CW,n(k + 1)2/n

(
1 − 1

K

)
−
(
n− 1

2

)2
.

(3) For k ⩾ 2nn/n! − 1 we have

λk ⩾ CW,n(k+ 1)2/n −C
1/2
W,n(k+ 1)1/n −

(
n+ 1

2

)2
− n2

C
1/2
W,n(k + 1)1/n − n

.

Proof.

(1). — The inequality for k = 0 translates into

(n!/2)2/n − 2(n!/2)1/n − (n2 + 2n− 7)/4 ⩽ 0,

that decreases on n and means −1, 25 ⩽ 0 for n = 2, that is true. Now we
take k ⩾ 1 in a K-chain, where K ⩾ 1. The corresponding higher-order
eigenvalue is given by k+ = σ(K)−1, where σ(K) = (n+2K)(K+1)n−1/n!.
Applying Lemma A.1 we obtain the following inequality

(10.3)

(k+ + 1)n!
2 =

(
K + n

2

)
(K + 1) · · · (K + n− 1)

⩽ (K + n)(K + 1) · · · (K + n− 1) = (K + 1)n

⩽

[(
(K + 1) + n− 1

2

)2
]n

=
(

(K + 1)(K + n) +
(
n− 1

2

)2
)n/2

.

Therefore,

(K + 1)(K + n) ⩾ (k+ + 1)2/n

(
n!
2

)2/n

−
(
n− 1

2

)2
.
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From the first identity in (10.3) we have (K + 1)n ⩽ (k+ + 1)n!/2, and,
consequently,

K + 1 ⩽ (k+ + 1)1/n

(
n!
2

)1/n

.

Since K(K + n − 1) + 2K + n = (K + 1)(K + n) and applying the above
inequalities we obtain

λk = λK = (K + 1)(K + n) − 2K − n

⩾ CW,n(k+ + 1)2/n −
(
n− 1

2

)2
− 2(K + 1) + 2 − n

⩾ CW,n(k+ + 1)2/n − 2
√
CW,n(k+ + 1)1/n − n2 + 2n− 7

4

⩾ CW,n(k + 1)2/n − 2
√
CW,n(k + 1)1/n − n2 + 2n− 7

4 ,

where we used in the last inequality the fact that k ⩽ k+ and ζ(x) =
CW,nx

2 − 2
√
CW,nx is an increasing function for x such that

√
CW,nx ⩾ 2,

that is true for x = k + 1 ⩾ 2 and n ⩾ 2.
(2). — From (10.3) we derive an alternative estimate

(k+ + 1)n!
2 =

(
K + n

2

)
(K + 1) · · · (K + n− 1)

=
(

1 + n

2K

)
K(K + 1) · · · (K + n− 1)(10.4)

=
(

1 + n

2K

)
Kn

⩽
(

1 + n

2K

)[
K(K + n− 1) +

(
n− 1

2

)2
]n/2

,(10.5)

where we used in the last inequality Lemma A.1. Therefore, we have

K(K + n− 1) ⩾
(

1 + n

2K

)−2/n

(k+ + 1)2/n

(
n!
2

)2/n

−
(
n− 1

2

)2
.

Since (1 + t/K)1/t is decreasing in t (for positive t and K), (1 − 1/K)(1 +
n/2K)2/n < (1 − 1/K2) < 1, we get for k in the K-chain,

λk ⩾ CW,n(k + 1)2/n
(

1 + n

2K

)−2/n

−
(
n− 1

2

)2

⩾ CW,n(k + 1)2/n

(
1 − 1

K

)
−
(
n− 1

2

)2
.
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(3). — Now inequality (10.5) yields

(k+ + 1)n!
2 ⩽

(
1 + n

2K

)(
K + n− 1

2

)n

,

leading to

K + n− 1
2 ⩾ (k+ + 1)1/n

(
n!
2

)1/n( 2K
2K + n

)1/n

,

and so

K ⩾
√
CW,n(k + 1)1/n

(
2

2 + n

)1/n

− n− 1
2 .

For k ⩾ ([(n−1)/2]n(n+2)/n!)−1 the right hand-side of previous inequality
is positive and we obtain

(10.6) −K−1 ⩾ − 1

C
1/n
W,n(k + 1)1/n

(
2

2+n

)1/n

− n−1
2

.

Moreover, from (10.4) we have

(k− + 1)n!
2 =

(
K + n

2

)
(K + 1) · · · (K + n− 1) ⩽ (K + n)n.

Then K + n ⩾ (k− + 1)1/n
(

n!
2
)1/n, and

K ⩾
√
CW,n(k− + 1)1/n − n.

The right hand-side is positive for k > 2nn/n! − 1 (which is larger than
([(n− 1)/2]n(n+ 2)/n!) − 1), and thus

(10.7) − 1
K

⩾ − 1
C

1/n
W,n(k + 1)1/n − n

.

ANNALES DE L’INSTITUT FOURIER



PÓLYA-TYPE INEQUALITIES 1029

In this case, from the second alternative estimate (2) we derive

λk ⩾ CW,n(k + 1)2/n − 1
K
CW,n(k + 1)2/n −

(
n− 1

2

)2

⩾ CW,n(k + 1)2/n − CW,n(k + 1)2/n

C
1/2
W,n(k + 1)1/n − n

−
(
n− 1

2

)2

⩾ CW,n(k + 1)2/n − CW,n(k + 1)2/n − n2

C
1/2
W,n(k + 1)1/n − n

− n2

C
1/2
W,n(k + 1)1/n − n

−
(
n− 1

2

)2

= CW,n(k + 1)2/n −
(
C

1/2
W,n(k + 1)1/n + n

)
−
(
n− 1

2

)2

− n2

C
1/2
W,n(k + 1)1/n − n

= CW,n(k + 1)2/n − C
1/2
W,n(k + 1)1/n −

(
n+ 1

2

)2

− n2

C
1/2
W,n(k + 1)1/n − n

. □

Next we prove the lower bound (3) is sharp, completing the proof of
Theorem F.

Proof of the limit with respect to the lower bound in Theorem F. —
Consider the function

Ψ(K) := CW,n σ(K)2/n − λK√
CW,n σ(K)1/n

=

(
(K + 1)n−1 (n

2 +K
))2/n

−K(K + n− 1)(
(K + 1)n−1

(
n
2 +K

))1/n
.

The equality of the two quotients comes from the value CW,n and (2.4) in
Section 2.1. From k+ + 1 = σ(K), by showing that limK→+∞Ψ(K) = 1,
we prove the limit in Theorem F.
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We now use identiity (K + 1)n−1 = Kn/K, Lemma A.1, and (5.1) to
obtain(

(K + 1)n−1
(n

2 +K
))2/n

−K(K + n− 1)

=
(
Kn

( n

2K + 1
))2/n

−K(K + n− 1)

⩾ K(K + n− 1)
(( n

2K + 1
)2/n

− 1
)

and(
Kn

( n

2K + 1
))2/n

−K(K + n− 1)

⩽

(( n

2K + 1
)2/n

− 1
)
K(K + n− 1) +

( n

2K + 1
)2/n

c(n),

where c(n) = (n− 1)(n− 2)/6. Setting

τ(K) :=

[
(K + 1)n−1 (n

2 +K
)]2/n

−K(K + n+ 1)

(K + n− 1) ,

we get

lim
K→+∞

τ(K) ⩾ lim
K→+∞

K

[( n

2K + 1
)2/n

− 1
]

= 1

and

lim
K→+∞

τ(K) ⩽ lim
K→+∞

K

[( n

2K + 1
)2/n

− 1
]

+ c(n)
K + n+ 1

( n

2K + 1
)2/n

= 1.

Hence limK→+∞τ(K) = 1. Now,

Ψ(K) = τ(K) · (K + n− 1)(
Kn

(
n

2K + 1
))1/n

,

and using the expression of Kn as in the proof of Lemma 10.9, we have

(K + n− 1)(
Kn

(
n

2K + 1
))1/n

= (K + n− 1)

K
((

1 +
∑n−1

i=0
ŝi

Ki

) (
n

2K + 1
))1/n

.

Therefore, limK→+∞Ψ(K) = 1. □
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10.5. Converse Pólya’s inequality for averages on Sn: proof of
Theorem G

We consider any element k ∈ [k−, k+] of the K-chain,

k = kj = σ(K − 1) + j

where j = 0, 1, . . . ,m(K) − 1. Let ŝi be given as in (4.2). From (2.11) we
have Kn = Kn (1 + z(K)) with z(K) =

∑n−1
i=1 ŝi/K

i. Furthermore,

1
m(K)

m(K)−1∑
j=0

j = m(K) − 1
2

and

1
m(K)

m(K)−1∑
j=0

j2 = (2m(K) − 1)(m(K) − 1)
6 .

We define
Polj(K) := λK − CW,nk

2/n
j .

Pólya’s inequality is given by the inequality Polj(K) ⩾ 0. We have
Pol0(0) = 0, but for K = 1 Polj(1) ⩾ 0 is equivalent to n ⩾ (n!(1+j)/2)2/n,
j = 0, 1, . . . n, that only holds if n = 2 and j = 0, 1, or n = 3, 4 and j = 0.
We have the following conclusion on the Pólya average on n-spheres.

Proposition 10.11.

(1) If n = 2, then

k+(K)∑
k=k−(K)

(λk − CW,nk
2/n) = 0 for all K ⩾ 0.

(2) If n ⩾ 3, there exists Kn ⩾ 1 such that for all K ⩾ Kn,

k+(K)∑
k=k−(K)

(λk − CW,nk
2/n) < 0.

Proof. — If n = 2 then, Pol0(K) = K(K + 1) and for K ⩾ 1 and
j = 0, . . . ,m(K) − 1 = 2K we have

Polj(K) = K(K + 1) − (σ(K − 1) + j) = K(K + 1) −K2 − j = K − j,
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and the average is given by

1
m(K)

m(K)−1∑
j=0

Polj(K) = K − 1
2K + 1

 2K∑
j=0

j

 = K − 2K(2K + 1)
(2K + 1)2 = 0.

Now assume n ⩾ 3. Let

φ(K) :=
( n

2 +K − 1
K + n− 1

)2/n

=
(

1 −
n
2

K + n− 1

)2/n

.

We have

CW,nk
2/n
j =

[( n
2 +K − 1
K + n− 1

)
Kn + n!

2 j
]2/n

= φ(K)K2(1 + wj(K))2/n,

where

wj(K) = z(K) +
(
K + n− 1
n
2 +K − 1

)
n!j

2Kn
= z(K) + jG(K),

with

G(K) =
(
K + n− 1
n
2 +K − 1

)
n!

2Kn
.

Now we assume n ⩾ 3. Using Lemma A.3, we have (1+wj)2/n ⩾ 1+ 2
nwj −

(n−2)
n2 w2

j . Hence,

Polj(K) := K(K + n− 1) − CW,n k
2/n
j

= K2 + (n− 1)K − φ(K)K2 (1 + wj(K))2/n

⩽ (1 − φ(K))K2 + (n− 1)K − φ(K)K2
(

2
n
wj − (n− 2)

n2 w2
j

)
= (1 − φ(K))K2 + (n− 1)K − φ(K)K2

(
2
n
z − (n− 2)

n2 z2
)

+ 2jφ(K)K2
(

− 1
n

+ (n− 2)
n2 z

)
G+ j2φ(K)K2 (n− 2)

n2 G2.
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Now we estimate the average

1
m(K)

m(K)−1∑
j=0

Polj(K)

⩽ (1 − φ(K))K2 + (n− 1)K − φ(K)K2
(

2
n
z − (n− 2)

n2 z2
)

+ φ(K)K2
(

− 1
n

+ (n− 2)
n2 z

)
G(m(K) − 1)

+ φ(K)K2 (n− 2)
n2 G2 (m(K) − 1)(2m(K) − 1)

6
= (1 − φ(K))K2 + (n− 1)K

− φ(K)K2

 2
n

(
n−1∑
i=1

ŝi

Ki

)
− (n− 2)

n2

(
n−1∑
i=1

ŝi

Ki

)2
+ φ(K)K2

(
− 1
n

+ (n− 2)
n2

(
n−1∑
i=1

ŝi

Ki

))

×
(
K + n− 1
K − 1 + n

2

)
n!

2Kn
(m(K) − 1)

+ φ(K)K2 (n− 2)
n2

×
[(

K + n− 1
K − 1 + n

2

)
n!

2Kn

]2( (m(K) − 1)(2m(K) − 1)
6(m(K) − 1)

)
.

Note that (1 − φ(K))K → 1 when K → +∞. Hence

(1 − φ(K))K2 ∼ K.

Moreover, KnG(K) → n/2 when K → +∞. Then we rearrange the w.h.s.
to get an inequality as follows (we are assuming n ⩾ 3)

1
m(K)

m(K)−1∑
j=0

Polj(K) ⩽ A(K)K +B(K) + C(K)
K

+ o
(

1
K

)
,
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where A(K), B(K), and C(K) are bounded functions, namely,

A(K) =
[
(1 − φ(K))(K + (n− 1))

−φ(K)
(

2
n
ŝ1 + 1

n

(
K + n− 1
K + n−2

2

)
(m(K) − 1)n!

2Kn−1

)]
,

B(K) = φ(K)
[
− 2
n
ŝ2 + (n−2)

n2 ŝ2
1 − (n−2)

n2 ŝ1

(
K+n−1
K+ n−2

2

)(
(m(K)−1)n!

2Kn−1

)
+(2m(K)−1)(m(K)−1)

6
(n!)2

4K2(n−1)

(
(n−2)
n2

)(
K + n− 1
K + n−2

2

)2
]
,

C(K) = φ(K)
[
− 2
n
ŝ3 + 2(n− 2)

n2 ŝ1ŝ2

+(n− 2)
n2 ŝ2

(
K + n− 1
K + n−2

2

)(
(m(K) − 1)n!

2Kn−1

)
+ o

(
1
K

)]
.

Now B(K) and C(K) are bounded, while

lim
K→+∞

A(K) = 2 − n.

Hence, for n ⩾ 3 we have

1
m(K)

m(K)−1∑
j=0

Polj(K) < 0

for K suficiently large. □

The above results for averages over chains of eigenvalues allow us to prove
Theorem G by writing the desired inequalities as the positivity of certain
polynomials in two variables.

Proof of Theorem G. — In the particular case of S2, and as shown in
the previous proposition, the following sum up to a higher order index

k = k+(K) = σ(K − 1) +m(K) − 1 = σ(K) − 1

satisfies
k∑

j=0
(λj − j) =

K∑
i=0

m(i)−1∑
j=0

Polj(i) = 0.
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Therefore, the total average up to an arbitrary index of a K-chain, k =
σ(K − 1) + r, K ⩾ 1, where r = 0, . . . ,m(K) − 1 = 2K, is given by

1
k + 1

k∑
j=0

(λj − j) = 1
k + 1

k+(K−1)∑
j=0

(λj − j) +
r∑

j=0
Polj(K)


= 1
k + 1

r∑
j=0

Polj(K)

= 1
k + 1

(r + 1)K −
r∑

j=0
j


= (r + 1)(2K − r)

2(K2 + r + 1) .

Considering this as a function of the r variable, it is straightforward to see
that it has a global maximum equal to 1/2 for positive K and r (attained
when r = K − 1), and so

1
k + 1

k∑
j=0

λj ⩽
1

k + 1

k∑
j=0

j + 1
2 = 1

2CW,nk + 1
2 ,

thus proving the upper bound in the first part of Theorem G.
For the lower bound, we need to prove that

(r + 1)(2K − r)
2(K2 + r + 1) ⩾

k

2(k + 1)

∣∣∣sin(π√
k + 1

)∣∣∣ ,
for 1 ⩽ K, 0 ⩽ r ⩽ 2K and where k = K2 + r. Note that if r = 2K
then both sides vanish and we have equality. We also see that the two
denominators cancel out and we need to show that

K2 + r

(r + 1)(2K − r)

∣∣∣sin(π√K2 + r + 1
)∣∣∣ ⩽ 1.

First note that∣∣∣sin(π√K2 + r + 1
)∣∣∣ =

∣∣∣sin(π√K2 + r + 1 − πK
)∣∣∣ ,

and since 0 ⩽ r ⩽ 2K we have 0 ⩽
√
K2 + r + 1 − K ⩽ 1. We may thus

use the inequality

sin(πx) ⩽ πx(1 − x) + 4(4 − π)x2(1 − x)2
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valid for x in [0, 1] to obtain

K2 + r

(r + 1)(2K − r)

∣∣∣sin(π√K2 + r + 1
)∣∣∣

⩽
K2 + r

(r + 1)(2K − r) (
√
K2 + r + 1 −K)(K + 1 −

√
K2 + r + 1)

×
[
π + 4(4 − π)(

√
K2 + r + 1 −K)(K + 1 −

√
K2 + r + 1)

]
=

(K2 + r)
[
π + 4(4 − π)(

√
K2 + r + 1 −K)(K + 1 −

√
K2 + r + 1)

]
(
√
K2 + r + 1 +K)(K + 1 +

√
K2 + r + 1)

⩽
πK(K + 2)

(
√
K2 + 1 +K)(K + 1 +

√
K2 + 1)

,

where in the last step we replaced r by 2K and 0 in the numerator and
denominator, respectively. It is possible to see that the resulting function
is smaller than one for K larger than or equal to five, while the remaining
(finite) number of cases may be checked individually to see that, for integers
K and r such that 1 ⩽ K ⩽ 4 and 0 ⩽ r ⩽ 2K the expression before the
last inequality takes on its maximum value for K = r = 4 which is given by

3π
(

987
√

21 − 4523
)

− 11808
√

21 + 54112 ≈ 0.967.

In case of S4, recall that

n

n+ 2CW,n

(
S4) = 4√

3
,m(K) = (2K + 3)(K + 1)(K + 2)

6

and

σ(K) = (K + 1)(K + 2)2(K + 3)
12 .

Given k = σ(K − 1) + r of the K-chain, where K ⩾ 1, 0 ⩽ r ⩽ m(K) − 1,
we have

k∑
j=0

λj =
k+(K−1)∑

j=0
λj +

r∑
j=0

λσ(K−1)+j

=
K−1∑
j=0

m(j)λj +
r∑

j=0
λK

= K(3 +K)
[

1
18(−1 +K)(1 +K)2(2 +K) + (1 + r)

]
.
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To show that a reversed Li–Yau inequality holds for all k ⩾ 1, is equivalent
to showing k∑

j=0
λj

2

⩽

[
4√
3

(k + 1)k1/2
]2

= 16
3 [σ(K − 1) + r + 1]2 [σ(K − 1) + r] .

Replacing the above expression for the sum of the eigenvalues we see that
this last inequality is, in turn, equivalent to the non-negativeness of the
following polynomial

Q(K, r) := 288K − 1488K2 + 392K3 + 1139K4 + 294K5 + 285K6

+ 468K7 + 273K8 + 70K9 + 7K10 + 1728r + 1152Kr

− 2160K2r + 540K3r + 1800K4r + 504K5r

− 72K6r − 36K7r + 3456r2 + 864Kr2 − 756K2r2

− 216K3r2 + 108K4r2 + 1728r3,

for all K ⩾ 1 and 0 ⩽ r ⩽ m(K)−1 – for reference below, we note that Q is
the result of multiplication of the direct substitution by 324. We first note
that the polynomial 1728r + 3456r2 + 1728r3 = 1728r(1 + r)2 appearing
in the expression for Q above is always positive for non-negative r, and it
is thus enough to prove that P (K, r) := Q(K, r) − 1728r(1 + r)2 is always
positive in the region

A =
{

(K, r) ∈ R2 : 1 ⩽ K ∧ 0 ⩽ r ⩽ m(K) − 1
}
.

This has the advantage that now P is a polynomial of the second degree
in r. Differentiating it with respect to r thus gives a linear equation in this
variable which may be solved to obtain

r = K6 + 2K5 − 14K4 − 50K3 − 15K2 + 60K − 32
6 (K3 − 2K2 − 7K + 8) .

Differentiating P with respect to K, and replacing in this derivative the
expression for r found above yields

4(K + 1)3(K + 2)
(K3 − 2K2 − 7K + 8)2 p(K),

where

p(K) = 10K11 + 27K10 − 217K9 − 750K8 + 1146K7 + 6075K6

+ 971K5 − 12924K4 − 2678K3 + 10644K2 − 2112K − 768.

Since p has no real zeros for K greater than or equal to two, we only
need to check the cases of K equal to 1 and 2, and what happens on
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the remaining part of the boundary of the set A defined above. We have
P (1, r) = 1728(1 + r) which is minimal when r is zero. For K = 2 we
obtain P (2, r) = −1296r2 +33696r+216432 which is greater than or equal
to P (2, 0) = 216432 for r ⩽ m(2) − 1 = 13.

We have P (K, 0) = 7K10 + 70K9 + 273K8 + 468K7 + 285K6 + 294K5 +
1139K4 + 392K3 − 1488K2 + 288K, which takes on its minimum on the
interval [1,+∞) at K = 1, where again it equals 1728. Finally, over the
line r = m(K) − 1 we have

P (K,m(K)−1) =K(1+K)2(2+K)2(72+36K+32K2+59K3+34K4+7K5),

which, on the interval [1,+∞), is greater than or equal to P (1,m(1)−1) =
P (1, 4) = 8640. We thus see that P has 1728 as its minimal value on the
set A, attained when K = 1 and r = 0. Since Q(K, r) ⩾ P (K, r) in A and
Q(K, 0) = P (K, 0), we see that the minimal value of Q in A is also 1728.

We have thus shown that

1
324Q(K, r) =

[
4√
3

(k + 1)k1/2
]2

−

 k∑
j=0

λj

2

⩾
16
3 ,

from which the pretended result now follows from the inequality
√

1 − x ⩽
1 − x/2. □

Appendix A. Auxiliary results

In order to derive the Pólya-type inequalities we have made extensive
usage of several results which we now collect here. Except for Lemma A.1
below, these are mostly known, but we include them here for ease of refer-
ence.

We will use the following Stirling bounds for n!. For any positive real
x > 0 there exists some 0 < θ < 1 such that [1, 6.1.38], Γ(x + 1) =√

2πxx+ 1
2 e−x+ θ

12x . Hence, for any n ⩾ 1 we have

(A.1)
√

2πe−nnn+ 1
2 < n! ⩽ e1−nnn+ 1

2 .

The next two lemmas are also crucial tools for our eigenvalues estimates.
The first of these gives sharp upper and lower bounds for the quotients
of two Γ functions, which we were not able to find in the literature –
see [13, Theorem 2] for similar results.
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Lemma A.1. — For any positive real number K we have

(A.2) K(K + n− 1) <
(
Kn
)2/n

< K(K + n− 1) + (n− 1)(n− 2)
6

for all integer n greater than or equal to three, while when n is two we have
identity throughout.

Remark A.2. — Note that

(
Kn
)2/n = K2 + (n− 1)K + (n− 1)(n− 2)

6 + O(K−2),

as K goes to infinity, and so the two inequalities refer to the first two and
three terms in this expansion.

Proof. — We first prove the lower bound. For s ∈ [0, n− 1] the function
θ(s) = (K + s)(K + n − 1 − s) achieves its minimum at the end points of
the interval, namely θ(0) = θ(n − 1) = K(K + n − 1), and its maximum
at s+ = (n − 1)/2 with θ(s+) = (K + s+)2. For odd n write n = 2m + 1.
Then s+ = m ∈ N and

Kn = K(K + 1) · · · (K +m) · · · (K + n− 2)(K + n− 1)
= [K(K + n− 1)][(K + 1)(K + n− 2)]

· · · [(K +m− 1)(K +m+ 1)] · [K +m]
> [K(K + n− 1)]m · [K +m]

⩾ [K(K + n− 1)]m
√
K(K + n− 1)

= [K(K + n− 1)]n/2.

For n even write n = 2m. Then s+ = m− (1/2) and

Kn = K(K + 1) · · · (K +m− 1)(K +m) · · · (K + n− 2)(K + n− 1)
= [K(K + n− 1)][(K + 1)(K + n− 2)] . . . [(K +m− 1)(K +m)]
> [K(K + n− 1)]m

= [K(K + n− 1)]n/2.

In either case we have
(
Kn
)2
> [K(K + n− 1)]n as desired.
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To prove the upper bound. we again consider the cases of even and odd
n separately. For even n = 2m, we start from

Kn =
m−1∏
j=0

[(K + j)(K + n− 1 − j)]

=
m−1∏
j=0

[K(K + n− 1) + j(n− 1 − j)]

<

K(K + n− 1) + 1
m

m−1∑
j=0

j(n− 1 − j)

m

=
[
K(K + n− 1) − 1

6(m− 1)(2m− 3n+ 2)
]m

=
[
K(K + n− 1) + (n− 1)(n− 2)

6

]n/2
,

where the inequality follows from the arithmetic-geometric inequality. For
n = 2m+ 1 we have

Kn =
m−1∏
j=0

[(K + j)(K + n− 1 − j)] × (K +m)

=
m−1∏
j=0

[K(K + n− 1) + j(n− 1 − j)] × (K +m).

We estimate K +m from above by

K +m = K + n− 1
2 <

K(K + n− 1) + (n−1)(n−2)
6 + (n2−1)

24√
K(K + n− 1) + (n−1)(n−2)

6

,

which follows from the identity

[
K(K + n− 1) + (n− 1)(n− 2)

6 + (n2 − 1)
24

]2

−
[
K(K + n− 1) + (n− 1)(n− 2)

6

](
K + n− 1

2

)2
= (n2 − 1)2

576 .
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Again using the arithmetic-geometric inequality, we now obtain

Kn =
m−1∏
j=0

[(K + j)(K + n− 1 − j)] × (K +m)

<

K(K + n− 1) + 1
m+ 1

m−1∑
j=0

j(n− 1 − j)

+ 1
m+ 1

(
(n− 1)(n− 2)

6 + n2 − 1
24

)m+1

× 1√
K(K + n− 1) + (n−1)(n−2)

6

=
[
K(K + n− 1) + (n− 1)(n− 2)

6

](n+1)/2

× 1√
K(K + n− 1) + (n−1)(n−2)

6

=
[
K(K + n− 1) + (n− 1)(n− 2)

6

]n/2
. □

By a standard application of Taylor’s theorem we have the following
bounds for (1 + x)a/n for n ⩾ 2 and a = 1, 2, which we use several times
throughout the paper.

Lemma A.3. — Let a = 1, 2. For any x ∈ [0,+∞), and l ⩾ 2 even, we
have

1 + Λ1x+ Λ2x
2 + · · · + Λlx

l ⩽ (1 + x)a/n ⩽ 1 + Λ1x+ · · · + Λl−1x
l−1,

and for any x ∈ [0, 1), and any l ⩾ 1 we have

(1 − x)a/n ⩽ 1 − Λ1x+ Λ2x
2 − Λ3x

3 + · · · + (−1)lΛlx
l,

where, for l ⩾ 0,

(A.3) Λl+1 = Λl+1(a) := 1
(l + 1)!

a

n

(a
n

− 1
)(a

n
− 2
)
. . .
(a
n

− l
)
.
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Appendix B. Explicit expressions for s1(m), s2(m) and
s3(m)

From σ1(x1, . . . , xm) = x1 + · · · + xm we immediately have

s1(m) = σ1(1, . . . ,m) = m(m+ 1)
2 .

The expressions for σk, k = 2, 3, may now be derived using Newton’s for-
mulas [17, identity (2.11′)]

kσk(x1, . . . , xm) =
k∑

i=1
(−1)i−1pi(x1, . . . , xm)σk−i(x1, . . . , xm),

where the polynomials pk are the kth power sums defined by

pk(x1, . . . , xm) =
m∑

i=1
xk

i .

For s2(m) we have

s2(m) = σ2(1, 2, . . . ,m)

= 1
2

2∑
i=1

(−1)i−1σ2−i(1, 2, . . . ,m)pi(1, 2, . . . ,m)

= 1
2σ1(1, 2, . . . ,m)(1+2+ · · ·+m)− 1

2σ0(1, 2, . . . ,m)p2(1, 2, . . . ,m)

= (m− 1)m(m+ 1)(3m+ 2)
24 .

In a similar way we may obtain

s3(m) = σ3(1, . . . ,m) = (m− 2)(m− 1)m2(m+ 1)2

48 .

Appendix C. Computations using Mathematica

Some of the computations needed in the paper are straightforward but
quite fastidious, involving many algebraic manipulations. They are thus
quite suited to be carried out using a computer package such as Mathe-
matica. Below we collect the main results used in the paper which were
carried out in this way.
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C.1. Sn
+

C.1.1. R̃−(3, k) and R̂−(3, k)

We prove that R̃−(3, k) is positive and decreasing to 2/3 by proving
that B(k) + C(k) is positive and decreasing to zero. Similar reasoning for
A(k) +D(k).

Both C(k) and B(k) converge to zero when k → +∞. Consider the
function z(t) = (1 +

√
1 − 3−5t−2 )1/3 with t ⩾ 1, and H(t) = (3t)1/3z(t).

Note that z(t) is an increasing function and converges to 21/3 when t → ∞.
Hence, z(t) ∈

[
(1 +

√
1 − 3−5)1/3, 21/3). The condition B(k) + C(k) > 0,

with k ⩾ 2, t = k − 1, is equivalent to

Y (t) := B(k) + C(k)
2 = −(6t)1/3 +

(
H(t) + 1

3H(t)

)
> 0,

or equivalently

3 × 31/361/3z(T )
(

1 − 2−1/3z(t)
)
<

1
t2/3 .

Note that t =
(
35z(t)3(2 − z3)

)−1/2, and so, the above inequality is equiv-
alent to

21/3
(

1 − 2−1/3z(t)
)
< (2 − z(t)3)1/3.

For z ∈
[
(1 +

√
1 − 3−5)1/3, 21/3) we have (21/3 − z)3 < (2 − z3), with

equality holding for z = 21/3. Therefore, Y (t) > 0 for t ⩾ 1.
The derivative is given by

Y ′(t) = − 21/3

32/3t2/3 − 1
9 × 31/3(t+

√
−3−5 + t2)1/3

√
−3−5 + t2

+ (t+
√

−3−5 + t2)1/3

32/3
√

−3−5 + t2

= − 21/3

32/3t2/3 + 1
3
√
t2 − 3−5

(
H(t) − 1

3H(t)

)
.

Then, Y ′(t) < 0 if and only if, 1
3t1/3

√
1−3−5t−2

(
3H(t)2 − 1

)
< 21/3

32/3 3H(t).

Using the expression of
√

1 − 3−5t−2 and t in terms of z and H(t) in terms
of t we get the equivalent inequality(

3 × 32/3 × z(t)2 − t−2/3
)
< 3

(
z(t)3 − 1

)
× 21/3 × 32/3 × z(t).
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Taking again the expression of t in terms of z we get(
3 × 32/3 × z(t)2 − 35/3z(t)(2 − z(t)3)1/3

)
< 21/3 × 35/3 (z(t)3 − 1

)
× z(t),

that may be simplified to yield z(t) <
[
21/3(z(t)3 − 1) +

(
2 − z(t)3)1/3

]
,

that is,

(2 − z(t)3)1/3 > z(t) − 21/3(z(t)3 − 1).

We can check this is true by considering the polynomial inequality (2−z3) >
(z−21/3(z3 −1))3, and to check to be true for z ∈ [(1+

√
1 − 3−5)1/3, 21/3],

being an equality at z = 21/3. Thus, Y ′(t) < 0 is true for all t ⩾ 1. We have
then proved Y (t) is decreasing and so it is B(k) + C(k). The same holds
for A(k) +D(k).

It follows that R̂−(3, k) converges at infinity to the same limit as R̃−(3, k),
since 0 < ka/3 − (k − 1)a/3 ⩽ a

3 (k − 1)−(3−a)/3 for a = 1, 2.
Now using identity (7.4), we will prove that R̂−(3, k) is increasing by

showing the following functions are increasing

DD(k) := D(k) + 3−2D(k)−1 − (6k)2/3,

CC(k) :=
√
D + 3−1(

√
D )−1 − (6k)1/3.

DD′(k)

= −
2
(

27 + 272(k−1)√
(27(k−1))2−3

)
3 × 32/3

(√
(27(k − 1))2 − 3 + 27(k − 1)

)5/3

+
2
(

27 + 272(k−1)√
(27(k−1))2−3

)
9 × 31/3

(√
(27(k − 1))2 − 3 + 27(k − 1)

)1/3 − 25/3

31/3k1/3

=
2
(

27+ 243(k−1)√
(242/3)−162k+81k2

)[
−3+31/3

(
27(k−1)+

√
(27(k−1))2 −3

)4/3
]

9 × 31/3
(√

(27(k − 1))2 − 3 + 27(k − 1)
)5/3

− 25/3

31/3k1/3 .
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Thus, DD′(k) ⩾ 0 if and only if

2
(

27+ 729(k−1)√
(27(k−1))2−3

)[
−3+31/3

(
27(k−1)+

√
(27(k−1))2 −3

)4/3
]

9 × 32/3
(√

(27(k − 1))2 − 3 + 27(k − 1)
)5/3

− 25/3

31/3k1/3 > 0.

Multiplying the above inequality by

9 × k1/3 × 31/3
(√

(27(k − 1))2 − 3 + 27(k − 1)
)5/3

×
√

−3 + (27(k − 1))2,

we get an equivalent inequality,

3 × k1/3
[(√

(27(k − 1))2 − 3 + 27(k − 1)
)4/3

− 32/3
]

> 22/3
√

(27(k − 1))2 − 3
(√

(27(k − 1))2 − 3 + 27(k − 1)
)2/3

,

that is,

(C.1)

W (k) := 3 × k1/3

22/3
√

(27(k − 1))2 − 3

×

(√(27(k − 1))2 − 3 + 27(k − 1)
)2/3

− 32/3(√
(27(k − 1))2 − 3 + 27(k − 1)

)2/3


> 1.

We prove this inequality is true by showing that W decreases and converges
to 1 at infinity. We have that W ′(k) < 0 is equivalent to

(729(k − 1)2 − 3)
[(√

−3 + 729(k − 1)2 + 27(k − 1)
)4/3

− 32/3
]

+ 54k
√

729(k − 1)2 − 3
[
32/3 +

(√
−3 + 729(k − 1)2 + 27(k − 1)

)4/3
]

− 2187k(k − 1)
[(√

729(k − 1)2 − 3 + 27(k − 1)
)4/3

− 32/3
]
< 0,
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or[(√
272(k − 1)2 − 3 + 27(k − 1)

)4/3
− 32/3

]
× (272(k − 1)2 − 3)

+ 54k
√

272(k − 1)2 − 3
[(√

272(k − 1)2 − 3 + 27(k − 1)
)4/3

+ 32/3
]

< 81 × 27 × k(k − 1) ×
[(√

272(k − 1)2 − 3 + 27(k − 1)
)4/3

− 32/3
]
.

Let X(k) =
√

272(k − 1)2 − 3 + 27(k − 1). Then the previous inequality is
equivalent to(
272(2k2 − k − 1) + 3

)
> 2×27×k×

√
272(k − 1)2 − 3×

(
X(k)4/3 + 32/3)(
X(k)4/3 − 32/3

) .
Note that Z(k) := (X(k)4/3+32/3)

(X(k)4/3−32/3) is decreasing, and so 1 < Z(k) ⩽

Z(2) = 1.02062107 . . ., so we are considering the equivalent inequality

F (k) := (27 × (2k2 − k − 1) + 3)2 − Z(k)2(2k)2 × ((27)2(k − 1)2 − 3) > 0.

The Taylor series for F (k) in powers of (k − 2) is given by

F (k) = 4.487×106+1.1177×107(k−2)+8.77212×106(k−2)2+O((k−2)3).

Hence, for k large enough W (k) is an increasing function, and so W (k) > 1
for k large. It converges to 1 at infinity (using Taylor expansions, for exam-
ple). Hence DD(k) is increasing for k large. Similar for CC, proving that
R̂−(3, k) is increasing for k large enough.

The values of R̃−(3, k) and of R̂−(3, k) given in the proposition may
be obtained from the corresponding expressions. In particular, R̂−(3, k)
vanishes for some k between 35 and 36.

C.1.2. R̃−(4, k), R̂−(4, k)

We may write R̃−(4, k) as

R̃−(4, k) =
√

5 + 4
√

1 + 24(k − 1) +
√

1 + 24(k − 1)

−
√

24(k − 1) − 2 × (24(k − 1))1/4.

Since the functions S(t) :=
√
t+ 1 −

√
t, and Q(t) :=

√
5 + 4

√
1 + t− 2t1/4

are decreasing, it follows that R̃−(4, k) is decreasing.
The behaviour of R̂−(4, k) can be checked using Mathematica. For exam-

ple, it is negative at k = 1, vanishes at some point on the interval [400, 500]
and attains a local maximum approx. 0.0322267 around k = 6452, converg-
ing to zero at infinity (as explained in the case n = 3).
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C.2. Sn

C.2.1. R∓(3, k)

It is straightforward to prove that Ai and Bi converge to zero when
k → ∞. We prove now that Ai +Bi are positive decreasing functions. Let
X(k) = 108 +

√
(108)2 − 3k−2. Then X(1) > 215 and X(k) ↗ 63 when

k → +∞. We have
A′

1(k) + B′
1(k)

=
−18×31/6 ×X(k)×k4/3 +35/6 ×X(k)1/3 +18×31/3(

√
3)−1X(k)4/3(−6+X(k)1/3)k2

3k8/3(X(k))4/3
√

3 × 108 − k−2
.

Note that
(
−6 +X(k)1/3) k2 → 0 when k → +∞. Moreover, (−6 +

X(k)1/3) < 0 and so

A′
1(k) +B′

1(k) < −18 × 31/6 ×X(k) × k4/3 + 35/6 ×X(k)1/3

3k8/3(X(k))4/3
√

3 × 108 − k−2
< 0.

Similarly A′
2(k)+B′

2(k) < 0. Since A1(1)+B1(1) = 0.0577504 and A2(1)+
B2(1) = 0.00324951 and Ai+Bi decrease to zero, we conclude they are pos-
itive for all k ⩾ 1. Moreover, A1(1) +B1(1) +A2(1) +B2(1) = 0.0609999 <
7/12. This proves R−(3, k) is negative decreasing to −7/12.

It follows immediately that Di(k) and Ei(k) are functions converging to
zero. Clearly E1(k) + E2(k) < 0. Let V (t) = D2(t− 1) +D1(t− 1), where
t = k + 1 ⩾ 2. Then

V (t) = −
√
CW,3

[
t1/3 − 2−1/3

(
t+

√
t2 − 2−63−5

)1/3
]

×
{√

CW,3

[
t1/3 + 2−1/3

(
t+

√
t2 − 2−63−5

)1/3
]

− 1
}

from which it follows that V (t) < 0, that is, D1(k) +D2(k) is negative. We
also have

V ′(t) = 1
32/3t2/3 − 2

31/3t1/3 −
1 + t√

t2−2−63−5

21/332/3(t+
√
t2 − 2−63−5)2/3

+
21/3

(
1 + t√

t2−2−63−5

)
31/3(t+

√
t2 − 2−63−5)1/3

.

Now we show that

21/3(3t)2/3
√
t2 − 2−63−5 × V ′(t) > 0,
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that is,(
t+

√
t2 − 2−63−5

)1/3
t2/3

[
121/3

(
t+

√
t2 − 2−63−5

)1/3
− 1
]

> 21/3
√
t2 − 2−63−5[2 × 31/3t1/3 − 1].

Let us define the constant δ = 2−63−5 and the following functions

J(t) =
√

1 − δt−2, ξ(t) =
(
J(t) + 1

2

)1/3
, a(t) = 2 × 31/3t1/3.

Previous inequality is equivalent to the following one,

(C.2) (J(t) + 1)1/3
(

22/331/3t1/3(1 + J(t))1/3 − 1
)

> 21/3J(t)(2 × 31/3t1/3 − 1).
We will prove this inequality holds for all t ⩾ 2, or equivalently,
(C.3) ξ(t) × (a(t)ξ(t) − 1) >

(
2ξ3(t) − 1

)
× (a(t) − 1) ,

where we used in the w.h.s. the identity J(t) = 2ξ(t)3 − 1. Now (C.2) is
equivalent to
(C.4) a(t) ×

(
ξ2(t) − 2ξ(t)3 + 1

)
> ξ(t) − 2ξ(t)3 + 1.

Since 0 < ξ < 1 we have ξ + 1 > ξ2 + 1 > ξ3 + ξ3 = 2ξ3. Hence (C.4) is
equivalent to

(C.5) a(t) × ν(ξ(t)) > 1, where ν(ξ) :=
(
ξ2 − 2ξ3 + 1
ξ − 2ξ3 + 1

)
, ∀ξ ∈ [0, 1).

From the derivative of ν(ξ), given by

ν′(ξ) = 2ξ2 − 1
(2ξ2 + 2ξ + 1)2 ,

we conclude that ν(ξ) attains minimum value m0 = 0.792893 at ξ = 2−1/2

and a(t) is an increasing function with a(1) = 2 × 31/3. Hence, a(t)m0 ⩾
a(1)m0 > 1 implying (C.5) holds.

We have then proved that D1(k)+D2(k) is a negative function increasing
to zero.

Therefore, the sum E1 + E2 + D1 + D2 is negative and converges to
zero. Now we prove that E1 + E2 is also increasing. The functions Ei are
of the form E1(k) = −1/Y (k) where Y (k) increases and is positive with
Y (k) > 2, and E2(k) = 1/(Y (k)2). Hence,

E′
1(k) + E′

2(k) = Y ′(k)(Y (k) − 2)
Y (k)3 > 0.

Therefore, R+(3, k) is negative, increasing and converges to −7/12.
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C.2.2. R∓(4, k)

We have R−(4, k) = R1(k) +R2(k) where

R1(k) =
√

12k
(√

1 + 1
48k − 1

)
=
√

12k + 1
4 −

√
12k,

R2(k) = (12k)1/4

√ 1
2
√

12k
+
√

1 + 1
48k − 1


=
(√

12k + 1
4 + 1

2

)1/2

− (12k)1/4.

The derivative of R1(k) is negative. The same holds for R2 since

t3/4 <

(
t+ 1

4

)1/2
[(

t+ 1
4

)1/2
+ 1

2

]1/2

.

Note that R1(0) = 1/2, R2(0) = 1 and both Ri are decreasing positive
everywhere. For k ⩾ 1 R−(4, k) ⩽ R−(4, 1) = −1.32531. Hence R−(4, k)
is a negative function decreasing to −3/2. Since R+(4, k) < R−(4, k + 1)
then R+(4, k) is also negative. Moreover,

R′
+(4, k) = R′

1(k + 1) −R′
2(k + 1)

= 31/4

23/2(k+1)3/4 −
√

3√
k+1

+
6
(

2
√

1 +
√

1 + 48(k + 1) −
√

2
)

√
1+
√

1+48(k+1)
√

1+48(k+1)
.

Multiplying by
√
k + 1 the above expression and using the fact that

31/4

23/2(k + 1)1/4

+ 6(k+1)1/2

 2√
1+48(k+1)

−
√

2√
1+
√

1+48(k+1)
√

1+48(k+1)

>√
3

we conclude that R′
+(4, k) > 0, that is R+(4, k) increases to −2/3. It re-

mains to prove the above fact or, equivalently,

12(k + 1)1/2√
1 + 48(k + 1)

1 − 1
√

2
√

1 +
√

1 + 48(k + 1)


>

√
3
(

1 − 1
31/423/2(k + 1)1/4

)
.
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From 122(k + 1) > 3(1 + 48(k + 1)) we conclude that

12(k + 1)1/2√
1 + 48(k + 1)

>
√

3,

and from (1 +
√

1 + 48(k + 1)) > 4 × 31/2(k + 1)1/2 we have
1

23/231/4(k + 1)1/4 >
1

√
2
√

1 +
√

1 + 48(k + 1)
,

and the stated fact follows.
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