
Université Grenoble Alpes

ANNALES DE
L’INSTITUT FOURIER

Masataka Iwai

On the structure of a log smooth pair in the equality case
of the Bogomolov–Gieseker inequality
Tome 75, n

o
1 (2025), p. 49-65.

https://doi.org/10.5802/aif.3651

Article mis à disposition par son auteur selon les termes de la licence

Creative Commons attribution – pas de modification 3.0 France

http://creativecommons.org/licenses/by-nd/3.0/fr/

C EN T R E
MER S ENN E

Les Annales de l’Institut Fourier sont membres du

Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org e-ISSN : 1777-5310

https://doi.org/10.5802/aif.3651
http://creativecommons.org/licenses/by-nd/3.0/fr/
https://www.centre-mersenne.org/


Ann. Inst. Fourier, Grenoble
75, 1 (2025) 49-65

ON THE STRUCTURE OF A LOG SMOOTH PAIR IN
THE EQUALITY CASE OF THE

BOGOMOLOV–GIESEKER INEQUALITY

by Masataka IWAI (*)

Abstract. — We study the structure of a log smooth pair when the equality
holds in the Bogomolov–Gieseker inequality for the logarithmic tangent bundle and
this bundle is semistable with respect to some ample divisor. We also study the
case of the canonical extension sheaf.

Résumé. — Nous étudions la structure d’une paire lisse logarithmique lorsque
l’égalité tient dans l’inégalité de Bogomolov–Gieseker pour le faisceau tangent lo-
garithmique et que ce faisceau est semistable par rapport à un certain diviseur
ample. Nous étudions également le cas du sheaf d’extension canonique.

1. Introduction

Let E be a vector bundle on a smooth projective variety X. If E is
semistable with respect to some ample divisor H, then the Bogolomov–
Gieseker inequality holds:(

c2(E) − r − 1
2r

c1(E)2
)

Hn−2 ⩾ 0.
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If the equality holds, then E is projectively flat. Therefore, in the equality
case of the Bogomolov–Gieseker inequality, the structure of a vector bundle
is restricted. Moreover, in [17] and [16], we already know the structure of
X when the equality holds in the Bogomolov–Gieseker inequality for the
tangent bundle TX or the canonical extension sheaf E (see Definition 1.3
below) under the some assumptions.

Theorem 1.1 ([17, Theorem 1.3]). — Let X be a projective klt variety.
Assume that −KX is nef. Then the following are equivalent.

(1) There exists an ample Cartier divisor H on X such that the canon-
ical extension sheaf E is H-semistable and the equality holds in the
Bogomolov–Gieseker inequality for E :(

ĉ2(E)− n

2(n+1) ĉ1(E)2
)

[H]n−2 =
(

ĉ2(Ω[1]
X )− n

2(n+1) ĉ1(Ω[1]
X )2

)
[H]n−2

= 0.

(2) X is a quotient of a projective space or an Abelian variety by the
action of a finite group of automorphisms without fixed points in
codimension one.

Theorem 1.2 ([16, Theorem 1.2]). — Let X be a projective klt variety
of dimension n ⩾ 2 and H be an ample divisor on X. If Ω[1]

X is H-semistable
and (

ĉ2(Ω[1]
X ) − n − 1

2n
ĉ1(Ω[1]

X )2
)

[H]n−2 = 0,

then X is a quasi-Abelian variety, that is, there exists a quasi-étale cover
X̃ → X from an Abelian variety X̃ to X.

We point out that c1(Ω1
X)2 = c1(TX)2 = c1(E)2 and c2(Ω1

X) = c2(TX) =
c2(E) for any smooth projective variety X and the canonical extension sheaf
E . By Theorem 1.1 and 1.2, we have the structure theorem of a klt variety
X when the equality holds in the Bogomolov–Gieseker inequality for the
tangent sheaf TX (or the canonical extension sheaf E) and this sheaf is
H-semistable.

In this paper, we study a generalization of Theorem 1.1 and 1.2 to a log
smooth pair (X, D). Before the main theorems, we recall the definition of
the canonical extension sheaf.

Definition 1.3 ([27, Proposition 2.10], [17, Chapter 4]). — Let X be a
smooth projective variety, D be a simple normal crossing divisor on X, and
L be a line bundle on X. By the natural homomorphism of cohomology
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groups

H1(X, O∗
X) c1−→ H1(X, Ω1

X) Φ−→ H1(X, Ω1
X(log D)) = Ext1(OX , Ω1

X(log D)),

there exist a vector bundle WL induced by Φ(c1(L)) and the following exact
sequence

0 → Ω1
X(log D) → WL → OX → 0.

Let EL be a dual bundle of WL. Then we have

(1.1) 0 → OX → EL → TX(− log D) → 0.

EL is called the extension sheaf of TX(− log D) by OX with the extension
class c1(L). In particular, EOX (−(KX +D)) is called the canonical extension
sheaf of TX(− log D) by OX .

By [31, Theorem 0.1], if D = 0 and a Fano variety X has a Kähler–
Einstein metric, then the canonical extension sheaf EOX (−KX ) is −KX -
semistable, thus the Miyaoka–Yau inequality holds by the Bogomolov–
Gieseker inequality for EOX (−KX ). In the case of a log smooth pair, by [27,
Theorem 1.4], if (X, D) is a log smooth log-Calabi–Yau pair, then the
extension sheaf EH is H-semistable for any ample line bundle H, thus
c2

(
TX(− log D)

)
Hn−2 ⩾ 0 holds by the Bogomolov–Gieseker inequality

for EH . It is easily seen that c1(EL) = c1
(
TX(− log D)

)
and c2(EL) =

c2
(
TX(− log D)

)
.

Now we state the main results.

Theorem 1.4. — Let X be a smooth projective variety of dimension
n ⩾ 2, D be a simple normal crossing divisor on X, and H be an ample
divisor on X. Assume that −(KX + D) is nef.

If the extension sheaf EL is H-semistable for some line bundle L and

(1.2)
(

c2
(
TX(− log D)

)
− n

2(n + 1)c1
(
TX(− log D)

)2
)

Hn−2 = 0,

then one of the following statements holds.
(1) (X, D) is a toric fiber bundle over a finite étale quotient of an

Abelian variety. Strictly speaking, there exists a smooth morphism
f : X → Y such that Y is a finite étale quotient of an Abelian
variety (i.e. there exists a finite étale cover A → Y from an Abelian
variety A to Y ), f : (X, D) → Y is locally trivial for the analytic
topology, and any fiber F of f is a smooth toric variety with a
boundary divisor D|F .

(2) (X, D) is isomorphic to (Pn, 0).
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52 Masataka IWAI

Theorem 1.5. — Let X be a smooth projective variety of dimension
n ⩾ 2, D be a simple normal crossing divisor on X, and H be an ample
divisor on X. Assume that −(KX + D) is nef.

If TX(− log D) is H-semistable and

(1.3)
(

c2
(
TX(− log D)

)
− n − 1

2n
c1

(
TX(− log D)

)2
)

Hn−2 = 0,

then one of the following statements holds.
(1) (X, D) is a toric fiber bundle over a finite étale quotient of an

Abelian variety.
(2) X is rationally connected, KX + D ̸≡ 0, and there exists a Cartier

divisior B on X such that TX(− log D) ∼= OX(B)⊕n.
Moreover, if (2) holds and (X, D) is a Mori fiber space, then (X, D) is
isomorphic to (Pn, HPn), where HPn is a hyperplane of Pn.

By Theorem 1.4 and [27, Theorem 1.4], we obtain the following corollary.

Corollary 1.6 (A characterization of a toric fiber bundle). — Let
(X, D) and H be as in Theorem 1.4. If

c1
(
TX(− log D)

)
= 0 and c2

(
TX(− log D)

)
Hn−2 = 0,

then (X, D) is a toric fiber bundle over a finite étale quotient of an Abelian
variety.

We emphasize that Corollary 1.6 is also an easy consequence of [11,
Corollary 1.7] and [27, Theorem 1.4]. In Remark 3.2, we give an another
short proof of [11, Corollary 1.7].

As a difference from Theorem 1.2, even if TX(− log D) is H-semistable
and Equality (1.3) holds, (X, D) is not necessarily a toric fiber bundle over
a finite étale quotient of an Abelian variety. In fact, we obtain the following
examples which are different from toric fiber bundles.

Proposition 1.7 (= Subsection 4.1 and Subsection 4.2).
(1) Let HPn be a hyperplane of Pn. Then −(KPn + HPn) is nef,

TPn(− log HPn) is HPn -semistable, and Equality (1.3) holds
(2) Let m be a positive integer and Fm := P(OP1 ⊕OP1(−m)) be the m-

th Hirzebruch surface. Then there exists a simple normal crossing
divisor D on Fm such that −(KFm

+ D) is nef, TFm
(− log D) is H-

semistable, Equality (1.3) holds, and (Fm, D) is not a Mori fiber
space. Moreover, if m ⩾ 2, then a minimal model of (Fm, D) is not
isomorphic to (P2, HP2).
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We recall some earlier works related to the structure theorem of a log
smooth pair (X, D). In [33, Theorem 1] and [32, Theorem 3.1], under the
assumption that KX + D is nef, big, and ample modulo D, if the equality
holds in the Miyaoka–Yau inequality, then the universal cover of X \ D

is a unit ball in Cn. In [9, Theorem A], if the natural log Higgs bun-
dle (Ω1

X(log D) ⊕ OX , θ) is H-polystable and the equality holds in the
Bogomolov–Gieseker inequality, then X \ D ∼= Bn/Γ, where Bn is a unit
ball in Cn and Γ is a lattice of PU(n, 1). In the above works, they studied
the structure of (X, D) when Ω1

X(log D) is positive. In [11, Corollary 1.7],
if TX(− log D) is numerically flat, then (X, D) is a toric fiber bundle over
a finite étale quotient of an Abelian variety. In this work, they studied the
structure of (X, D) when TX(− log D) is flat.

Under the assumptions in Theorem 1.4 or 1.5, we know that TX(− log D)
is nef. Therefore, in this paper, we study the structure of (X, D) when
TX(− log D) is (semi)positive.

Remark 1.8. — After the author submitted this paper, Druel established
the structure theorem of a reduced log smooth pair (X, D) such that the
logarithmic tangent bundle TX(− log D) is H-semistable and(

c2
(
TX(− log D)

)
− n − 1

2n
c1

(
TX(− log D)

)2
)

Hn−2 = 0

for some ample line bundle H. For more details, we refer the reader to [10].
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2. Preliminaries

Throughout this paper, we work over the field C of complex numbers.
We denote by N>0 the set of positive integers and denote Hom(F , OX) by
F∗ for any torsion-free coherent sheaf F on any variety X. A pair (X, D)
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54 Masataka IWAI

is log smooth if X is a smooth projective variety and D is a simple normal
crossing divisor on X.

First, we recall some notions of algebraic positivities of vector bundles
and torsion-free coherent sheaves.

Definition 2.1. — Let X be a smooth projective variety.

(1) [8, Definition 1.9] A vector bundle E is nef if OP(E)(1) is nef on
P(E).

(2) [8, Definition 1.17] A vector bundle E is numerically flat if E is nef
and c1(E) = 0.

(3) [25, Chapter 1. Proposition 4.22] A vector bundle E is projectively
Hermitian flat if E admits a smooth Hermitian metric h such that
the Chern curvature tensor ΘE,h satisfies ΘE,h = αIdE for some
2-form α;

(4) [25, Chapter 1. Corollary 2.7] A vector bundle E is projectively flat
if E admits a connection ∇ such that ∇2 = αIdE for some 2-form
α, equivalently, there exists a representation

ρ : π1(X) → PGL(r,C)

such that P(E) ∼= Xuniv ×ρ Pr−1, where Xuniv is the universal cover
of X.

(5) [30, Definition 3.20] [1, Definition 7.1] [13, Definition 3.1.1] A torsion-
free coherent sheaf E is pseudo-effective (weakly positive in the
sense of Nakayama) if for any a ∈ N>0 and for any ample line bun-
dle A on X, there exists b ∈ N>0 such that Symab(E)∗∗ ⊗ Ab is
generically generated by global sections.

Our definition of pseudo-effective vector bundles is stronger than this
definition as in [26, Example 6.1.23]. In fact, our definition requires that
the image of the non-nef locus of OP(E)(1) is properly contained in X in
addition to this condition (cf. [20, Proposition 2.2]).

Second, we recall the definition of numerically projectively flat.

Theorem-Definition 2.2 ([30, Chapter 4. Theorem 4.1] [28, Defini-
tion 4.1]). — Let X be a smooth projective variety of dimension n ⩾ 2
and E be a rank r reflexive coherent sheaf on X. E is said to be numerically
projectively flat if it satisfies one of the equivalent following conditions:

(1) E is locally free and the Q-twisted vector bundle E⟨ det E∗

r ⟩ is nef (for
the definition of a Q-twisted coherent sheaf, see [26, Section 6.2.A]).
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(2) E is H-semistable and(
c2(E) − r − 1

2r
c1(E)2

)
Hn−2 = 0

holds for some ample line bundle H.
(3) E is locally free and there exists a filtration of subbundles:

0 =: E0 ⊂ E1 ⊂ · · · ⊂ El := E

such that Gi := Ei/Ei−1 is a projectively Hermitian flat vector
bundle and c1(Gi)/rankGi = c1(E)/r ∈ H1,1(X,R) holds for any
i = 1, . . . , l.

By [28, Lemma 4.3], if E is numerically projectively flat, then E∗ is so.
We use the following lemma in the proof of Theorem 1.4.

Lemma 2.3. — If X is simply connected and E is numerically projec-
tively flat, then there exists a line bundle L such that E ∼= L⊕r, where r is
a rank of E.

Proof. — By [28, Theorem 1.7], E is projectively flat, and thus P(E) ∼=
X × Pr−1 from [25, Chapter 1. Corollary 2.7] and simply connectedness
of X, which completes the proof. □

3. Proofs

Proof of Theorem 1.4. — By Theorem-Definition 2.2, EL⟨ det E∗
L

n+1 ⟩ is nef.
Hence TX(− log D)⟨ KX +D

n+1 ⟩ is also nef by (1.1). Since −(KX + D) is nef,
TX(− log D) is nef by [28, Lemma 4.3]. Since the inclusion map
TX(− log D) → TX is generically surjective, by [13, Lemma 3.1.12 (ii)],
TX is pseudo-effective. By [20, Theorem 1.1], there exists a smooth mor-
phism f : X → Y such that Y is a finite étale quotient of an Abelian
variety and any fiber F of f is rationally connected.

Claim 3.1. — f : X → Y , as well as the restriction of f to D, is
isomorphic to a projection from a product space, i.e. for any x ∈ X, there
exist an open neighborhood U of x and an isomorphism ϕ : U → V × W ,
where V := f(U) and W := U ∩f−1(f(x)), such that the following diagram

U

f !!

ϕ // V × W

projectionzz
V

TOME 75 (2025), FASCICULE 1



56 Masataka IWAI

is commutative and ϕ(U ∩D) = V ×(W ∩D). In particular, f : (X, D) → Y

is a logarithmic deformation in the sense of [23, Definition 3].

Proof of Claim 3.1. — From the differential map f∗Ω1
Y → Ω1

X of f , we
obtain an injective morphism s : f∗Ω1

Y → Ω1
X(log D). Hence we obtain a

morphism
∧dim Y s : f∗ det Ω1

Y → ∧dim Y Ω1
X(log D).

Since ∧dim Y s belongs to H0(X, ∧dim Y Ω1
X(log D) ⊗ f∗ det TY ) and

∧dim Y TX(− log D)⊗f∗ det Ω1
Y is nef, ∧dim Y s has no zero point on X by [5,

Proposition 1.2 (12)].
Fix x ∈ X. Let U be a neighborhood of x, (z1, . . . , zn) be a local coordi-

nate on U , and ∆ be a unit disk of C. We may regard U as ∆n and regard
x ∈ U as an origin. We may assume that D ∩ U = {zn−r+1 · · · zn = 0}. Set
m := dim Y and V := f(U). Let (w1, . . . , wm) be a local coordinate on V .
Then f is written in U as follows:

f : U → V

(z1, . . . , zn) 7→ (f1(z), . . . , fm(z)),

where f1(z), . . . , fm(z) are holomorphic functions on U . Now we define the
m × n matrix J of holomorphic functions as follows:

J :=


∂f1
∂z1

· · · ∂f1
∂zn−r

∂f1
∂zn−r+1

zn−r+1 · · · ∂f1
∂zn

zn

...
...

...
...

∂fm

∂z1
· · · ∂fm

∂zn−r

∂fm

∂zn−r+1
zn−r+1 · · · ∂fm

∂zn
zn

 .

Set I := {(i1, i2, . . . , im) ∈ Nm | 1 ⩽ i1 < i2 < · · · < im ⩽ n}. For any
I = (i1, . . . , im) ∈ I, we define JI := (Jk,il

)1⩽k,l⩽m, where JI is an m × m

matrix of holomorphic functions. Then we have

f∗(dw1 ∧ · · · ∧ dwm) =
∑

I=(i1,...,im)∈I

det(JI) δi1 ∧ · · · ∧ δim

on U , where δi is defined by

δi :=
{

dzi (1 ⩽ i ⩽ n − r)
dzi

zi
(n − r + 1 ⩽ i ⩽ n).

Since ∧dim Y s has no zero point, f∗(dw1∧· · ·∧dwm) also has no zero point at
x = (0, . . . , 0). Therefore m ⩽ n−r and there exists I0 = (i1, i2, . . . , im) ∈ I
such that JI0(x) ̸= 0 and 1 ⩽ i1 < i2 < · · · < im ⩽ n − r. We may assume
that I0 = (1, 2, . . . , m) and JI0 has no zero point on U . Hence we define a
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morphism ϕ as follows:

ϕ : U → V × ∆n−m

(z1, . . . , zn) 7→ (f1(z), . . . , fm(z), zm+1, . . . , zn),

then ϕ is isomorphism and ϕ(U ∩ D) = V × (∆n−m ∩ D). □

Hence any fiber F of f intersects D transversally. Set DF := D|F , then
(KX/Y + D)|F = KF + DF . By the argument of [24, Lemma 2.13 (2.13.1)]
(cf. [12, Properties 2.3 (a)]),

(3.1) 0 → TF (− log DF ) → TX(− log D)|F → NF/X
∼= O⊕ dim Y

F → 0.

In particular, TF (− log DF ) is nef by [5, Proposition 1.2 (8)].
First, we consider the case where KF + DF ≡ 0 for any fiber F of f . In

this case, TF (− log DF ) is numerically flat. Since F is rationally connected,
F is simply connected by [7, Corollary 4.18 (c)]. Hence TF (− log DF ) is
trivial. Hence F is a smooth toric variety with a boundary divisor D|F
by [34, Corollary 1] and [11, Chapter 1] (cf. [2, Theorem 1.2] and [29,
Theorem 4.5]). From H1(F, TF (− log DF )) = 0 by [7, Chapter 4. Corol-
lary 4.18], f : (X, D) → Y is locally trivial for the analytic topology by [23,
Corollary 2].

Second, we consider the case where there exists a fiber F of f with
KF +DF ̸≡ 0. Since TX(− log D)⟨ KX +D

n+1 ⟩ is nef, TX(− log D)|F ⟨ KF +DF

n+1 ⟩ is
also nef by [26, Theorem 6.2.12. (i)]. If dim Y ̸= 0, then O⊕ dim Y

F ⟨ KF +DF

n+1 ⟩
is nef by (3.1) and [26, Theorem 6.2.12. (i)], hence KF + DF ≡ 0 since
TF (− log DF ) is nef, which is contrary to the assumption. Therefore
dim Y = 0 and X is rationally connected. By Lemma 2.3, there exists a
Cartier divisor B on X such that EL

∼= OX(B)⊕(n+1). Thus −(KX + D) ∼
(n + 1)B. Since KX + D is not nef, by [14, Theorem 2.1], X ∼= Pn and
D = 0. □

Proof of Theorem 1.5. — By the proof of Theorem 1.4, if TX(− log D)
is numerically projectively flat, then (1) or (2) of Theorem 1.5 holds. We
show that, if (2) of Theorem 1.5 holds and (X, D) is a Mori fiber space,
then (X, D) is isomorphic to (Pn, HPn).

We take (X, D) and B as in (2) of Theorem 1.5 and we assume that
ϕ : (X, D) → Z is a Mori fiber space. We show that dim Z = 0. To obtain a
contradiction, assume that dim Z ̸= 0. Let F be a general fiber of ϕ. Notice
that dim F ⩽ n − 1. Set DF := D|F , then

−(KF + DF ) = −(KX/Z + D)|F ∼ nB|F .

Since B|F is ample, we obtain F ∼= Pn−1, OF (B|F ) = OPn−1(1), and DF =
0 by [14, Theorem 2.1]. By the argument of [24, Lemma 2.13 (2.13.1)]
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58 Masataka IWAI

(cf. [12, Properties 2.3 (a)]), we obtain the following exact sequence:

0 → O⊕ dim Z
F → Ω1

X(log D)|F → Ω1
F (log DF ) = Ω1

F → 0.

Hence we obtain a group homomorphism

H1(F, Ω1
X(log D)|F ) → H1(F, Ω1

F ) → H2(F, OF )⊕ dim Z .

From n ⩾ 2,
H1(F, Ω1

X(log D)|F ) = H1(F, OX(−B)⊕n|F )

= H1(Pn−1, OPn−1(−1))⊕n = 0

and H2(F, OF )⊕ dim Z = H2(Pn−1, OPn−1)⊕ dim Z = 0. Hence H1(F, Ω1
F ) =

0, which is impossible since the Picard number of F is one.
Hence (X, D) is log Fano. If D = 0, then we obtain

H1(X, Ω1
X) = H1(X, OX(−B))⊕n = H1(X, OX(KX + (n − 1)B))⊕n = 0,

which is impossible since the Picard number of X is non zero. Hence D ̸= 0.
Since the log Fano index of (X, D) is more than or equal to n, by [15,
Proposition 4.1], (X, D) ∼= (Pn, HPn). □

Remark 3.2. — We give an another proof of [11, Corollary 1.7]. If
TX(− log D) is numerically flat, then by Claim 3.1, (X, D) is a logarithmic
deformation over Y such that Y is a finite étale quotient of an Abelian va-
riety. By (3.1), TF (− log DF ) is numerically flat for any fiber F . Therefore,
by the same argument of Theorem 1.4, (F, DF ) is a toric pair and (X, D)
is a toric fiber bundle over Y .

4. Examples

We recall the first Chern class and the second Chern class of a loga-
rithmic tangent bundle. Let X be a smooth variety and D =

∑l
i=1 Di

be a simple normal crossing divisor on X. By [18, Example 3.5], we have
c1

(
TX(− log D)

)
= −(KX + D) and

c2
(
TX(− log D)

)
= c2(TX) + KXD + D2 −

∑
i<j

DiDj .

4.1. Projective spaces

In Subsection 4.1, let n be a positive integer with n ⩾ 2 and H be a
hyperplane of Pn.
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Lemma 4.1. — −(KPn + H) is nef and the equality holds in the
Bogomolov–Gieseker inequality for TPn(− log H):

(4.1)
(

c2
(
TPn(− log H)

)
− n − 1

2n
c1

(
TPn(− log H)

)2
)

Hn−2 = 0.

Proof. — From c1(TPn) = (n + 1)H and c2(TPn) = n(n+1)
2 H2, we have

c1
(
TPn(− log H)

)
= nH and

c2
(
TPn(− log H)

)
=

(
n(n + 1)

2 − (n + 1) + 1
)

H2 = n(n − 1)
2 H2.

Hence −(KPn + H) is nef and Equality (4.1) holds. □

Proposition 4.2.
(1) For any 1⩽ r⩽n, if −r < x, then H0(Pn,Ωr

Pn(log H)⊗OPn(−x)) = 0.
(2) TPn(− log H) is numerically projectively flat. In particular,

TPn(− log H) ∼= OPn(H)⊕n holds.

Proof. — The proof is the same as [6, Lemma 2.1 and Proposition 5.2].
(1). — Fix 1 ⩽ r ⩽ n. For any torsion-free coherent sheaf F on Pn, the

slope µH(F) with respect to H is defined by µH(F) := c1(F)Hn−1

rankF . By [12,
Properties 2.3 (b)],

(4.2) 0 → Ωr
Pn → Ωr

Pn(log H) → Ωr−1
H → 0.

Since Ωr
Pn is H-semistable and µH(Ωr

Pn) = −r(n+1)
n , if −r(n+1)

n < x, then
H0(Pn, Ωr

Pn ⊗ OPn(−x)) = 0. By the same argument, if −(r−1)n
n−1 < x,

then H0(H, Ωr−1
H ⊗ OH(−x)) = 0. Therefore by (4.2), if −r < x, then

H0(Pn, Ωr
Pn(log H) ⊗ OPn(−x)) = 0.

(2). — By Theorem-Definition 2.2 and Lemma 4.1, it is enough to show
that Ω1

Pn(log H) is H-semistable. To obtain a contradiction, assume that
there exists a rank r torsion-free coherent sheaf F ⊂ Ω1

Pn(log H) with
µH(F) > µH(Ω1

Pn(log H)) = −1. Let x be a real number with det F ∼=
OPn(x). By the assumption, µH(F) = x

r > −1. From det F ⊂ Ωr
Pn(log H),

we have H0(Pn, Ωr
Pn(log H) ⊗ OPn(−x)) ̸= 0, contrary to (1). □

4.2. Hirzebruch surfaces

In Subsection 4.2, let m be a positive integer, Fm := P(OP1 ⊕ OP1(−m))
be the m-th Hirzebruch surface, and σ : Fm → P1 be the ruling of Fm.
By [19, Chapter V. Proposition 2.8], there exists a section C0 with

TOME 75 (2025), FASCICULE 1



60 Masataka IWAI

OFm
(C0) ∼= OFm

(1). Let f be a fiber of σ. By [19, Chapter V. Theo-
rem 2.17], there exists a section C∞ with C∞ ∼ C0+mf . Set D := C0+C∞.
Notice that D is a simple normal crossing divisor on Fm.

Lemma 4.3. — −(KFm
+ D) is nef and the equality holds in the

Bogomolov–Gieseker inequality for TFm
(− log D):

(4.3) c2
(
TFm

(− log D)
)

− 1
4c1

(
TFm

(− log D)
)2 = 0.

Proof. — We have (C0)2 = −m, C0f = 1, and f2 = 0. From

(4.4) −(KFm
+ D) ∼ (2C0 + (m + 2)f) − (2C0 + mf) = 2f,

−(KFm + D) is nef and c1
(
TFm(− log D)

)2 = (2f)2 = 0. From

c2(TFm) = c1(TFm/P1)c1(σ∗TP1) = (2C0 + mf)2f = 4,

we obtain
c2

(
TFm

(− log D)
)

= c2(TFm
) + KFm

D + D2 − C0C∞

= 4 − (2C0 + (m + 2)f)(2C0 + mf)

+ (2C0 + mf)2 − C0(C0 + mf)
= 4 − 4 + 0 − 0 = 0.

Therefore Equality (4.3) holds. □

Proposition 4.4.
Ω1

Fm
(log D) ⊗ σ∗(OP1(1)) ∼= O⊕2

Fm

holds. In particular, TFm(− log D) is numerically projectively flat.

Proof. — From Fm = {([x1 : x2], [y0 : y1 : y2]) ∈ P1 ×P2 | y1xm
2 = y2xm

1 },
we obtain

C0 = {([x1 : x2], [1 : 0 : 0]) ∈ Fm | [x1 : x2] ∈ P1}

and
C∞ = {([x1 : x2], [0 : xm

1 : xm
2 ]) ∈ Fm | [x1 : x2] ∈ P1}.

We define the Zariski open sets Wk
∼= C2 in Fm for k = 1, 2, 3, 4 as follows:

τ1 : W1 → Fm τ2 : W2 → Fm

(x, y) 7→ ([1 : x], [1 : y : xmy]) (u, v) 7→ ([1 : u], [v : 1 : um])
τ3 : W3 → Fm τ4 : W4 → Fm

(ξ, η) 7→ ([ξ : 1], [1 : ξmη : η]) (z, w) 7→ ([z : 1], [w : zm : 1]).
By computations, we have

x = u = 1
ξ

= 1
z

and y = 1
v

= ξmη = zm

w
.

ANNALES DE L’INSTITUT FOURIER



LOG SMOOTH PAIRS IN EQUALITY CASE OF BG-INEQUALITY 61

on W1 on W2 on W3 on W4

local basis of Ω1
Fm

(log D) dx, dy
y du, dv

v dξ, dη
η dz, dw

w

Hence the local basis of Ω1
Fm

(log D) are as shown in the following table:
Set

hW1W2 := 1, hW1W3 := x, hW1W4 := x, hW2W3 := u, hW2W4 := u, hW3W4 := 1,

and hWjWi
:= h−1

WiWj
for any i, j ∈ N with 1 ⩽ i < j ⩽ 4. Then

{hWiWj
}1⩽i,j⩽4 are transition functions of σ∗(OP1(1)).

We would like to find two nowhere vanishing global sections in
Ω1

Fm
(log D) ⊗ σ∗(OP1(1)). To find a global section, it is enough to find

a 4-tuple (t1, t2, t3, t4) of local holomorphic logarithmic differential forms
such that ti ∈ H0(Wi, Ω1

Fm
(log D)) and ti = hWiWj

tj for any 1 ⩽ i, j ⩽ 4.
The first section S1 is given by

S1 :=
(

dy

y
, −dv

v
, m dξ + ξdη

η
, m dz − zdw

w

)
,

and the second section S2 is given by

S2 :=
(

m dx + x dy

y
, m du − u dv

v
,

dη

η
, −dw

w

)
.

S1 and S2 are nowhere vanishing global sections in Ω1
Fm

(log D)⊗σ∗(OP1(1)).
Moreover, S1 and S2 are linearly independent. Hence

Ω1
Fm

(log D) ⊗ σ∗(OP1(1)) ∼= O⊕2
Fm

.

From Ω1
Fm

(log D) ∼= σ∗(OP1(−1))⊕2, Ω1
Fm

(log D) is semistable with re-
spect to some ample divisor. By Theorem-Definition 2.2 and Lemma 4.3,
TFm

(− log D) is numerically projectively flat. □

By (4.4), we have (KFm
+ D)C0 = −2 < 0 and (KFm

+ D)f = 0.
From NE(Fm) = R+[f ] + R+[C0], only R+[C0] is a (KFm + D)-negative
extremal ray. If m = 1, then a blow-down (F1, D) → (P2, HP2) along C0
is a (KF1 + D)-negative extremal contraction induced by R+[C0]. Hence
(F1, D) is not a Mori fiber space.

We consider the case of m ⩾ 2. Let R be the image of the m-th Veronese
embedding P1 → Pm and Y be the projective cone over R. By [19, Chap-
ter V. Example 2.11.4], there exists a (KFm

+ D)-negative extremal con-
traction τ : (Fm, D) → (Y, R) induced by R+[C0] such that τ contracts C0
to the vertex of Y . Hence (Fm, D) is not a Mori fiber space and a minimal
model of (Fm, D) is not isomorphic to (P2, HP2).

TOME 75 (2025), FASCICULE 1



62 Masataka IWAI

4.3. On slope rationally connected varieties

This study is motivated by the following conjecture.

Conjecture 4.5 ([4, Conjecture 1.5]). — Let X be a smooth projective
variety and D be an effective Q-divisor on X. Assume that (X, D) is klt and
−(KX + D) is nef. Then there exists an orbifold morphism ρ : (X, D) →
(R, DR) with the following properties:

(1) (R, DR) is a klt pair and c1(KR + DR) = 0.
(2) For general point r ∈ R, the general fiber (Xr, Dr) is slope ratio-

nally connected (for the definition of slope rationally connectedness,
see [3, Definition 1.2]).

(3) ρ is locally trivial with respect to pairs.

An orbifold morphism ρ : (X, D) 99K (R, DR) is called slope rationally
connected quotient (in short sRC-quotient) if a general fiber (Xr, Dr) is
slope rationally connected and KR + DR is pseudo-effective. By [3, The-
orem 1.5], an sRC-quotient exists and is unique up to orbifold birational
equivalence. Notice that an sRC-quotient is a generalization of an MRC-
fibration to an orbifold pair. From Conjecture 4.5, it is expected that we
can take an sRC-quotient as a smooth morphism for any klt pair (X, D)
such that −(KX + D) is nef. If X is a smooth surface, then Conjecture 4.5
holds by [4, Theorem 1.6].

At least in the special case of nef logarithmic tangent bundle, one might
be tempted to propose the following conjecture.

Conjecture 4.6. — Let (X, D) be a log smooth pair. If the logarith-
mic tangent bundle TX(− log D) is nef, then we can take a smooth sRC-
quotient.

By [5] and [8] (or by the argument of [20, Theorem 1.1]), if TX is nef, then
we can take a smooth MRC fibration f : X → Y such that Y is a finite
étale quotient of an Abelian variety. Since any fiber F of f is rationally
connected and TF is nef, F is Fano by [8, Proposition 3.10]. Hence if TX is
nef, then X consists of an Abelian variety and a Fano variety, up to a finite
étale cover. Therefore to study Conjecture 4.6 is to study the structure of a
log smooth pair with a nef logarithmic tangent bundle, such as [5] and [8].

However, there exists a counter-example of Conjecture 4.6.

Proposition 4.7. — Let [z0 : z1 : z2] be a coordinate of P2. Set H1 :=
{z1 = 0} and H2 := {z2 = 0}. Then TP2(− log(H1+H2)) is nef but (P2, H1+
H2) is not slope rationally connected. In this example, we can not take an
sRC-quotient as a smooth morphism.
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By [3, Example 10.2], we already know that (P2, H1 + H2) is not slope
rationally connected. We give a proof of this fact for the reader’s conve-
nience.

Proof. — Let π : X → P2 be a blow-up of P2 at [1 : 0 : 0], E be
an exceptional divisor of π, and H̃1 (resp. H̃2) be a strict transform of H1
(resp. H2) by π. Set D := H̃1 +H̃2 +E. From KX +D = π∗(KP2 +H1 +H2)
and π−1(

Supp(H1 + H2)
)

= Supp(D), we obtain

TX(− log D) ∼= π∗TP2(− log(H1 + H2))

by [21, Chapter 11]. It is enough to show that TX(− log D) is nef.
Notice that X ∼= P(OP1 ⊕ OP1(−1)). Let σ : X → P1 be the ruling

of X and [z1 : z2] be a coordinate of P1. Set [0] := {z1 = 0} ⊂ P1 and
[∞] := {z2 = 0} ⊂ P1. Then we have σ∗H̃1 = [0] and σ∗H̃2 = [∞]. Since
σ : (X, D) → (P1, [0] + [∞]) is a log smooth morphism in the sense of [22,
Chapter 3], there exists a line bundle F on X such that

0 → F → TX(− log D) → σ∗TP1(− log([0] + [∞])) → 0

by [22, Proposition 3.12]. From F ∼= OX(−KX − D) ∼= π∗OP2(H1), F is
nef. Since σ∗TP1(− log([0] + [∞])) is nef, TX(− log D) is also nef.

A general fiber of σ : (X, D) → (P1, [0]+[∞]) is isomorphic to (P1, [p]) for
some p ∈ P1. Hence a general fiber of σ is slope rationally connected. Thus
σ ◦ π−1 : (P2, H1 + H2) 99K (P1, [0] + [∞]) is an sRC-quotient, and finally
(P2, H1 +H2) is not slope rationally connected. Since the Picard number of
P2 is one, we can not take an sRC-quotient as a (smooth) morphism. □

4.4. On the assumption of a semistability condition

Without some assumptions such as semistability in Theorem 1.4 or 1.5,
it is difficult to study the structure of a log smooth pair when the equality
holds in the Bogomolov–Gieseker inequality. In fact, there exist many ex-
amples of log smooth pairs such that Equality (1.2) or (1.3) holds. We give
a few examples. In this subsection, Let X be a smooth projective variety
and D =

∑l
i=1 Di be a simple normal crossing divisor on X.

First, we consider the case of X = Pn. Let H be a hyperplane of Pn and
di be a positive integer with Di ∼ diH for any 1 ⩽ i ⩽ l. Then we have
at least 18 examples such that Equality (1.2) or (1.3) holds, D ̸= 0, and
D ̸= H by computations using a computer. For example, if n = 7, l = 3,
and (d1, d2, d3) = (2, 1, 1), then Equality (1.2) holds, and if n = 8, l = 4,
and (d1, d2, d3, d4) = (2, 1, 1, 1), then Equality (1.3) holds.
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Second, we consider the case where X is a degree q hypersurface of Pn+1.
We assume that q ⩾ 2 and any degree of Di is one. Then we have at least
90 examples such that Equality (1.2) or (1.3) holds by computations using
a computer. For example, if (n, q, l) = (7, 2, 3), then Equality (1.2) holds,
and if (n, q, l) = (8, 2, 4), then Equality (1.3) holds.
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