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COHOMOLOGICAL SUPPORT LOCI AND
PLURICANONICAL SYSTEMS ON IRREGULAR

VARIETIES

by Zhi JIANG (*)

Abstract. — Given an irregular variety X of general type, we show that if a
general fiber F of the Albanese morphism of X satisfies certain Hodge theoretic
conditions, the 0-th cohomological support locus of KX generates Pic0(X). We then
show that the condition that the 0-th cohomological support locus of KX generates
Pic0(X) can often be applied to prove the birationality of certain pluricanonical
maps of X.

Résumé. — Étant donné une variété irrégulière X de type général, nous mon-
trons que si une fibre générale du morphisme d’Albanese de X satisfait certaines
conditions de la théorie de Hodge, le lieu V 0(KX) engendre Pic0(X). Nous mon-
trons ensuite que la condition que V 0(KX) engendre Pic0(X) peut souvent être
appliquée pour prouver la birationalité de certaines applications pluricanoniques
de X.

1. Introduction

We work over complex number field C throughout this paper.
We study the pluricanonical systems of irregular varieties. This topic was

initiated in a series of article of Jungkai Chen and Hacon [5, 6, 7] and has
been studied by many other authors (see for instance [2, 4, 13, 24]).

Let X be a smooth projective variety of general type with q(X) =
h1(X, OX) > 0. Fix the Albanese morphism aX : X → AX from X to
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2 Zhi JIANG

its Albanese variety AX . We denote by F a connected component of a
general fiber of aX . We say that X is of Albanese fiber dimension m if
dim F = m. When X is of Albanese fiber dimension 0, we say that X is of
maximal Albanese dimension. The properties of the pluricanonical maps of
X are closely related to the properties of the pluricanonical systems of F .
When F or X is of low dimensions, the general picture is well-understood.

The following theorem was due to Chen and Hacon [5] and Lahoz,
Tirabassi and the author [13].

Theorem 1.1. — Let X be a smooth projective variety of general type,
of maximal Albanese dimension. The linear system |mKX + P | induces a
birational map of X for any integer m ⩾ 3 and P ∈ Pic0(X).

This is an optimal result, which can be easily seen from the properties
of pluricanonical systems of smooth projective curves of genus 2. A similar
result was proved by the author and Hao Sun in [14] when F is a curve.

Theorem 1.2. — Let X be a smooth projective variety of general type,
of Albanese fiber dimension 1. The linear system |mKX + P | induces a
birational map of X for any integer m ⩾ 4 and P ∈ Pic0(X).

The structure of

V 0(KX) := {P ∈ Pic0(X) | H0(X, KX ⊗ P ) ̸= 0}

plays an important role in the proof of Theorem 1.1 and Theorem 1.2. We
know from generic vanishing theory (see [10] and [23]) that

V j(KX) := {P ∈ Pic0(X) | Hj(X, KX ⊗ P ) ̸= 0},

for j ⩾ 0, is a union of torsion translates of abelian subvarieties of Pic0(X).
We say that V j(KX) generates Pic0(X) if the irreducible components of
V j(KX) generate Pic0(X) as a group. One of the main points of the proof
of Theorem 1.1 and 1.2 is the following (see [5] and [14]).

Theorem 1.3. — Let X be a smooth projective variety of general type.
Assume that X is of maximal Albanese dimension or is of Albanese fiber
dimension 1, V 0(KX) generates Pic0(X).

The first main result of this paper is a general criterion for the property
that V 0(KX) generates Pic0(X).

We say a smooth projective variety V satisfies the infinitesimal Torelli
condition if the natural cup product

H1(V, TV ) −→ Hom(H0(V, KV ), H1(V, Ωdim V −1
V ))

ANNALES DE L’INSTITUT FOURIER
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is injective. The infinitesimal Torelli condition is of course closely related
with the variation of Hodge structures of V .

Given a smooth projective variety of general type V , the birational trans-
formation group Bir(V ) is a finite group which acts naturally on H0(V, KV ).

Theorem 1.4. — Assume that X is of general type and F satisfies the
following conditions:

(C1) the canonical model of F is a smooth projective variety V which
satisfies the infinitesimal Torelli condition;

(C2) Bir(F ) acts faithfully on H0(F, KF ),
V 0(KX) generates Pic0(X).

This is a generalization of Theorem 1.3. Indeed, let C be a non-hy-
perelliptic smooth projective curve of genus ⩾ 3. We know that KC is
very ample, i.e. the canonical map φKC

: C → P(H0(KC)) is an embed-
ding. Since C is of dimension 1, Bir(C) = Aut(C). It is also clear that the
canonical map φKC

is Aut(C)-equivariant. Thus Aut(C) acts faithfully on
H0(C, KC). Moreover, by taking Serre duality, it is easy to see that the
infinitesimal Torelli condition for C is equivalent to the statement that the
natural product H0(C, KC)⊗H0(C, KC) → H0(C, 2KC) is surjective. This
holds when C is non-hyperelliptic by a classical theorem of Max Noether
(see [1, p. 117]). Thus Theorem 1.4 implies that if X is a smooth projective
variety of general type and a connected component of a general fiber of aX

is a non-hyperelliptic curve, V 0(KX) generates Pic0(X).
The proof of Theorem 1.4 is quite different from the proof of Theorem 1.3.

One of the main ingredients of the proof of Theorem 1.4 is a decomposition
theorem of Hodge modules on abelian varieties due to Pareschi, Popa, and
Schnell in [20]. Our proof also works for higher cohomological support locus
V 0(Rjf∗KX) (see Theorem 4.1).

We also explore the relation between the structure of V 0(KX) and the
properties of the pluricanonical systems of X.

Theorem 1.5. — Assume that V 0(KX) generates Pic0(X) and |KF |
induces a birational map of F . The linear system |3KX + P | induces a
birational map of X for P ∈ Pic0(X) general.

2. Notation and preliminaries

A variety is a separated integral scheme of finite type over C. Let X be a
smooth projective variety. We denote by KX the canonical bundle of X and
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4 Zhi JIANG

we write ωX = OX(KX) the canonical sheaf of X. We denote by pg(X) :=
dim H0(X, KX) the geometric genus of X, pm(X) := dim H0(X, mKX)
the m-th plurigenus of X for m ⩾ 2, and q(X) = dim H1(X, OX) the
irregularity of X.

Let f : X → A be a morphism from X to an abelian variety A. We say
that f is primitive if f∗ : Pic0(A) → Pic0(X) is injective. Note that f is
primitive iff f does not factor through a non-trivial étale cover of A. We
say that A is simple if there does not exist a positive dimensional proper
abelian subvariety of A.

Let F be a coherent sheaf on X. The i-th cohomological support locus
of F with respect to f is the closed subset

V i(F , f) := {P ∈ Pic0(A) | Hi(X, F ⊗ f∗P ) ̸= 0} ⊂ Pic0(A).

Similarly, we write

V i(F , f)m := {P ∈ Pic0(A) | dim Hi(X, F ⊗ f∗P ) ⩾ m} ⊂ Pic0(A),

for each m ⩾ 2. When f is the Albanese morphism of X, we often write
V i(F) (resp. V i(F)m) instead of V i(F , f) (resp. V i(F , f)m). Given a mor-
phism f : X → A from a smooth projective variety to an abelian variety,
Green and Lazarsfeld proved in [10] that V i(KX , f) or V i(KX , f)m is a
union of translates of abelian subvarieties of Pic0(A) for each i ⩾ 0. Simp-
son later showed in [23] that each component of V i(KX , f)m is a torsion
translate of an abelian subvariety of Pic0(A).

Let F be a coherent sheaf on an abelian variety A. We say that F is
an IT sheaf of index 0 if V i(F) = ∅ for each i > 0. We say that F is
M-regular if codimPic0(A) V i(F) > i for each i > 0 and we say that F is
GV if codimPic0(A) V i(F) ⩾ i for each i > 0.

GV sheaves and M-regular sheaves were introduced respectively in [11]
and [19]. The following properties of GV and M-regular sheaves are very
useful and will be applied frequently in this paper. If F is GV, V 0(F) ̸= ∅
(see [11]) and if F is M-regular, F is continuously globally generated, i.e.
for any Zariski open subset U ⊂ Pic0(A), the natural evaluation map⊕

P ∈U

H0(A, F ⊗ P −1) ⊗ P −→ F

is surjective, and in particular, V 0(F) = Pic0(A) (see [19]). We then con-
clude that if F is M-regular, its holomorphic Euler characteristic χ(A, F)
is positive. Indeed, let P ∈ Pic0(A) be general, χ(A, F) = χ(A, F ⊗ P ) =
h0(A, F ⊗ P ) > 0. Similarly, if F is GV, χ(A, F) ⩾ 0 and equality holds
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iff V 0(F) is a proper subset of Pic0(A). Moreover, we know that M-regular
sheaves are ample (see [9]).

Given a morphism f : X → A from a smooth projective variety to an
abelian variety, Hacon proved in [11] that Rjf∗ωX is GV for each j ⩾ 0.
This result was strengthened by Chen and the author when f is generically
finite onto its image (see [8]) and by Pareschi, Popa, and Schnell in general
(see [20]). More precisely, let f : X → A be a morphism from a smooth
projective variety to an abelian variety, for each j ⩾ 0, there exist surjective
morphisms between abelian varieties pi : A → Ai with connected fibers,
M-regular sheaves Fi on Ai, and torsion line bundles Pi on X such that

Rjf∗ωX =
⊕

i

p∗
i Fi ⊗ Pi.

This result is usually called the Chen-Jiang decomposition. If a coherent
sheaf F on A satisfies this decomposition form, we shall say that F has the
Chen-Jiang decomposition property. If F has the Chen-Jiang decomposi-
tion property and there exist two coherent sheaves Q1 and Q2 on A such
that F = Q1 ⊕ Q2, Q1 and Q2 also have the Chen-Jiang decomposition
property (see [18, Proposition 4.6]). If X is of general type and f∗ω⊗m

X is
non-zero for some integer m ⩾ 2, Lombardi, Popa, and Schnell proved that
f∗ω⊗m

X is an IT sheaf of index 0 in [18]. Thus, pm(X) = h0(X, mKX +f∗P )
for any P ∈ Pic0(A).

3. Hodge modules

The proof of Theorem 1.4 relies heavily on the language of Hodge mod-
ules. We recall some results about Hodge modules on abelian varieties which
will be applied later. All results can be found in [20], where Pareschi, Popa,
and Schnell applied the machinery of Hodge modules to prove the Chen-
Jiang decomposition. A decomposition theorem of polarizable Hodge mod-
ules on abelian varieties proved by Pareschi, Popa, and Schnell is crucial
for our purpose.

Let X be a complex manifold. We denote HMR(X, w) be the cate-
gory of real Hodge modules on X of weight w, which is a semi-simple
R-linear abelian category, endowed with a faithful functor to the category
of real perverse sheaves. An object M of HMR(X, w) consists of a regu-
lar holonomic left D-module M, a good filtration F·M by coherent OX -
modules, a perverse sheaf MR with coefficients in R and an isomorphism
MR ⊗R C ≃ DR(M). The support of M is defined to be the support of the
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6 Zhi JIANG

perverse sheaf MR. One can also define polarizable Hodge modules. One
can check [20] or [22] for more details about this category.

(A) Every object M ∈ HMR(X, w) admits a locally finite decomposi-
tion by strict support:

M ≃
n⊕

i=1
Mi,

where each Mi ∈ HMR(X, w) has strict support equal to an irre-
ducible analytic subvariety Zi ⊂ X.

(B) The category of polarizable real Hodge modules of weight w with
strict support Z ⊂ X is equivalent to the category of generically
defined polarizable real variations of Hodge structure of weight w −
dim Z on Z.

(C) Denote by RX [dim X] ∈ HMR(X, dim X) the polarizable real
Hodge module corresponding to the constant real variation of Hodge
structure on X. For any morphism f : X → A from X to an abelian
variety and an integer j ⩾ 0, Hjf∗RX [dim X] is a polarizable real
Hodge module of weight j+dim X on A. Let M = (M, F·M, MR) be
the direct summand of Hjf∗RX [dim X] with strict support f(X).
Then the first non-trivial piece of the Hodge filtration of M is
Rjf∗ωX .

(D) Let M be as in (C) above. Then we associate it with a complex
polarizable Hodge module (M ⊕M, JM ) as in [20], whose underlying
perverse sheaf is simply M ⊗R C. Then by [20, Theorem 7.1 and
Corollary 7.3], we know that

(M ⊕ M, JM ) ≃
n⊕

i=1
p−1

i (Ni, Ji) ⊗C Cρi
,

where pi : A → Ai is a surjective morphism with connected fibers
between abelian varieties, ρi ∈ Char(A) is a unitary character, and
(Ni, Ji) ∈ HMC(Ai, dim X−dim pi) is a simple polarizable complex
Hodge module with χ(Ai, Ni, Ji) > 0.

(E) Under the assumption of (D), by [20, Theorem D], for any k ∈ Z,

grF
k M ≃

n⊕
i=1

p∗
i Fi ⊗ Pi,

where Fi is an M-regular sheaf on Ai and Pi is a torsion line bundle
on A. Pareschi, Popa, and Schnell indeed proved the Chen-Jiang
decomposition for each graded quotient of a polarizable real Hodge
module.

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGICAL SUPPORT LOCI AND PLURICANONICAL SYSTEMS 7

4. The proof of Theorem 1.4

We prove a more general version of Theorem 1.4.

Theorem 4.1. — Assume that X is a smooth projective variety of gen-
eral type. Let f : X → A be a morphism from X to an abelian variety
and let F be a connected component of a general fiber of f . Fix a positive
integer j ⩾ 0. Assume that F satisfies the following conditions:
(C1′) the canonical model of F is a smooth projective variety V satisfying

the following infinitesimal Torelli condition: the cup product

H1(V, TV ) −→ Hom(Hj(V, KV ), Hj+1(V, Ωdim V −1
V ))

is injective;
(C2′) Bir(F ) acts faithfully on Hj(F, KF ),

then V 0(Rjf∗ωX) generates Pic0(X).

Proof. — We argue by contradiction. The proof consists of several steps.
Step 1. We may assume that dim V 0(Rjf∗ωX) = 0. — By the assump-

tion (C2′), Hj(F, KF ) ̸= 0. Thus, Rjf∗ωX is non-zero. By Kollár’s theorem
(see [16]), Rjf∗ωX is a torsion-free sheaf supported on f(X). Assume that
V 0(Rjf∗ωX) generates a proper abelian subvariety B̂ of Pic0(A). Consider
the dual B of B̂, let q : A → B be the natural quotient with connected
fibers and denote g = p ◦ f . Let K be the fiber of q : A → B over a general
point b ∈ g(X) and Xb the corresponding fiber of g. Let fb : Xb → K

be the restriction of f on Xb. Note that Xb may not be connected. We
write Xb =

⊔m
k=1 Yk, where each Yk is a connected component of Xb and

let fk : Yk → K be the restriction of f on Yk. We have the following
commutative diagram:

(4.1)

X

��

f

||

g

��

Y1?
_oo

f1

��
f(X)

��

� � // A

q

��

K? _oo

g(X) �
� // B.

Since b ∈ g(X) is general, Rjf∗ωX |K ≃ Rjfb∗ωXb
=

⊕m
k=1 Rjfk∗ωYk

(see for instance [18, Proposition 5.1]). Note that Rjfk∗ωYk
are also non-

zero GV sheaves on K. Hence V 0(Rjfk∗ωYk
) ̸= ∅ for each 1 ⩽ k ⩽ m. We

then consider the natural restriction π : Pic0(A) → Pic0(K). We claim that

(4.2) dim V 0(Rjf1∗ωY1) = 0.

TOME 0 (0), FASCICULE 0
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Indeed, for Q ∈ V 0(Rjf1∗ωY1), we choose P ∈ Pic0(A) such that P |K = Q.
Then

q∗(Rjf∗ωX ⊗ P )
is non-trivial, since its stalk at b is exactly H0(K, Rjfb∗ωXb

⊗ Q) ̸= 0. On
the other hand, it is known that q∗(Rjf∗ωX ⊗P ) is GV by Hacon’s theorem
(see [11]). Thus there exists P ′ ∈ Pic0(B) such that

H0(A, Rjf∗ωX ⊗ P ⊗ q∗P ′) = H0(B, q∗(Rjf∗ωX ⊗ P ) ⊗ P ′) ̸= 0.

Hence
P ⊗ q∗P ′ ∈ V 0(Rjf∗ωX)

and (P ⊗ q∗P ′)|K = Q. This shows that V 0(Rjf1∗ωY1) ⊂ π(V 0(Rjf∗ωX)).
Since V 0(Rjf∗ωX) consists of a finite union of torsion translates of abelian
subvarieties contained in B̂, we conclude that V 0(Rjf1∗ωY1) consists of
finitely many torsion points.

Note that Y1 is a smooth projective variety of general type and a general
fiber of f1 is a also a general fiber of f . Thus after replacing f : X → A by
f1 : Y1 → K, we may assume that dim V 0(Rjf∗ωX) = 0.

Step 2. We may assume that dim V 0(Rjf∗ωX) = 0 and A is simple. —
We repeat the same argument in Step 1. If A is not simple, we may take a
quotient q : A → B such that its kernel K is simple. We then go back to
the setting in the commutative diagram (4.1). Since dim V 0(Rjf∗ωX) = 0,
we again have dim V 0(Rjf1∗ωY1) = 0 by the same proof of Claim (4.2).
After replacing f : X → A by f1 : Y1 → K, we may assume that
dim V 0(Rjf∗ωX) = 0 and A is simple.

Step 3. f : X → A is birationally isotrivial. — Let m = dim X. Since
dim V 0(Rjf∗ωX) = 0, we conclude by the Chen-Jiang decomposition and
the assumption that A is simple that Rjf∗ωX is a direct sum of torsion
line bundles on A. In particular, f : X → A is surjective.

Let M be the direct summand of Hjf∗R[m] with strict support f(X).
Note that the first non-trivial piece of the Hodge filtration of M of M is
Rjf∗ωX .

Since A is simple, by Subsection 3(D), we know that

(M ⊕ M, JM ) = H′
⊕

H′′

=

⊕
j

q−1Vj ⊗ Cρj

 ⊕
H′′,

where q : A → SpecC is the constant morphism, Vj are Hodge structures of
weights dim F + j, ρj ∈ Char(K) are unitary characters, and H′′ is a direct
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sum of simple complex polarizable Hodge modules with positive holomor-
phic Euler characteristic. The fact that dim V 0(Rjf∗ωX) = 0 implies that
Rjf∗ωX ⊕ Rjf∗ωX is indeed the first non-trivial piece of the underlying
D-module of H′. Indeed, since the holomorphic Euler characteristic of H′′

is positive, each graded quotient Q of H′′ has positive holomorphic Euler
characteristic (see [20, Lemma 15.1]) and thus by the Chen-Jiang decom-
position for Q (see Section 3(B)), V 0(Q) = Pic0(A).

By Section 3(B), Hjf∗R[m] corresponds to the variation of Hodge struc-
ture of Hj+dim F (Xt), where t belongs to the smooth locus U ⊂ A of f and
Xt is the corresponding fiber of f . Thus, H′|U is a polarizable variation of
complex Hodge structure, whose fiber over t is a sub-Hodge structure of
Hj+dim F (Xt,C) containing Hj(Xt, KXt). Note that H′ is trivial up to an
étale cover of A.

Since F is a connected component of Xt and H′ is flat, the composition
of the Kodaira-Spencer map with the cup product of variation of Hodge
structures:

TA,t −→ H1(F, TF ) −→ Hom(Hj(F, KF ), Hj+1(F, Ωdim F −1
F ))

is zero.
We now consider the relative canonical model of f :

f̃ : X̃ −→ A.

A connected component of the fiber f̃ over t is the canonical model V

of F . By assumption, V is a smooth projective variety which satisfies the
infinitesimal Torelli condition (C1′). Note that Hj(F, KF ) = Hj(V, KV ).
and Hj+dim V (V,C) ⊂ Hj+dim F (F,C) is a direct summand, we have the
commutative diagram:

TA,t
// H1(F, TF )

��

// Hom(Hj(F, KF ), Hj+1(F, Ωdim F −1
F ))

��
TA,t

// H1(V, TV ) // Hom(Hj(V, KV ), Hj+1(V, Ωdim V −1
V )).

Thus the composition of maps

TA,t −→ H1(V, TV ) −→ Hom(Hj(V, KV ), Hj+1(V, Ωdim V −1
V ))

is also zero.
By the assumption that V satisfies the infinitesimal Torelli condition, the

Kodaira-Spencer map TA,t → H1(V, TV ) induced by the family f̃ is thus
zero. Hence f̃ is locally isotrivial around t ∈ A and thus the morphism
f : X → A is birationally isotrivial.

TOME 0 (0), FASCICULE 0



10 Zhi JIANG

Step 4. The contradiction. — In this step, we show that given a bi-
rationally isotrivial morphism f : X → A whose general fiber satisfies
condition (C2′), it is absurd that dim V 0(Rjf∗ωX) = 0.

We assume without loss of generalities that f : X → A is primitive, i.e.
f does not factor through a non-trivial étale cover of A. We consider the
Stein factorization

f : X
h1−→ N

h2−→ A

of f . After birational modifications, we may and will assume that N is
smooth, h1 is a fibration and h2 is generically finite and surjective.

Note that h1 is a birationally isotrivial fibration. Since F is of general
type, its birational automorphism group is finite, there exists a Galois cover
ρ : M → N with Galois group G such that the flat base change M ×N X

is birational to M × F . In other words, X is birational to the diagonal
quotient (M × F )/G, where G acts rationally on F via a homomorphism
G → Bir(F ). We may take G minimal so that G → Bir(F ) is injective.
After birational modifications of F , we may assume that G acts regularly
on F and the corresponding homomorphism G → Aut(F ) is injective.

If ρ factors through an abelian étale cover of N induced by an isogeny
Ã → A, we replace f : X → A by f̃ : X̃ := X ×A Ã → Ã. It is easy to verify
that V 0(f̃∗ω

X̃
) still consists of finitely many points. Therefore, without loss

of generalities, we may assume that ρ : M → N does not factor through
abelian étale covers of N induced by isogenies of A.

Taking an G-equivariant resolution of singularities, we may assume that
M is smooth. Note that G acts naturally on ρ∗ωM and over a general point
x ∈ N , the representation of G on (ρ∗ωM )x is isomorphic to the regular
representation of G. We then consider the canonical decomposition

ρ∗ωM =
⊕

χ∈Irr(G)

Vχ

with respect to the G-action, where Irr(G) denotes the set of charac-
ters of irreducible representations of G and Vχ is the image of πχ :=

1
|G|

∑
g∈G χ(g)g∗ : ρ∗ωX → ρ∗ωX . Note that V1G

= (ρ∗ωM )G = ωN and Vχ

is non-zero for each χ ∈ Irr(G).
We claim that h2∗Vχ is M-regular on A for any 1G ̸= χ ∈ Irr(G). If

not, by the Chen-Jiang decomposition theorem, h2∗Vχ has a numerically
trivial line bundle P as a direct summand. Since hdim M (A, h2∗ρ∗ωM ) =
hdim M (A, h2∗ωN ) = 1, P is a non-trivial torsion line bundle on A. Since
f is primitive, h∗

2P is also a non-trivial torsion line bundle on N . But
hdim M (M, ωM ⊗ ρ∗h∗

2P −1) ̸= 0, thus ρ∗h∗
2P = OM . This implies that ρ

ANNALES DE L’INSTITUT FOURIER
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factors through an abelian étale cover of N induced by an isogeny of A,
which is a contradiction.

We are now ready to deduce the final contradiction. After birational mod-
ifications of X, we have a birational morphism τ : X → (M × F )/G. Note
that (M ×F )/G has quotient singularities and hence, (M ×F )/G has ratio-
nal singularities or log terminal singularities (see for instance [17, Proposi-
tion 5.15 and Proposition 5.20]). Therefore, Rτ∗ωX = τ∗ωX = ω(M×F )/G.
Moreover, the fibers of τ are rationally chain connected (see [12]) and
thus f : X → A factors as f : X

τ−→ (M × F )/G
h−→ A. We also have

Rjf∗ωX = Rjh∗τ∗ωX = Rjh∗ω(M×F )/G. We then identify X = (M ×F )/G

in the following.
Since G acts naturally on the vector space Hj(F, KF ), we decompose

the G-representation to direct sum of irreducible representations:

Hj(F, KF ) =
⊕

χ∈Irr(G)

V ⊕mχ
χ ,

where Vχ is the irreducible G-representation whose character is χ and
mχ ⩾ 0 are non-negative integers. By the condition (C2′), G ⊂ Bir(F )
acts faithfully on Hj(F, KF ). Hence, for some χ0 ̸= 1G, mχ0 > 0.

Let γ : M × F → (M × F )/G = X be the diagonal quotient and let p :
M×F → M be the first projection. Note that ω(M×F )/G = (γ∗ωM×F )G and
since γ is flat, Rj(h1 ◦γ)∗ωM×F = Rjh1∗(γ∗ωM×F ). From the commutative
diagram:

M × F

p

��

γ // (M × F )/G

h1

��

f

$$
M

ρ // M/G = N
h2

// A,

we see that
Rjf∗ωX = h2∗Rjh1∗ω(M×F )/G

= h2∗Rjh1∗(γ∗ωM×F )G

= h2∗
(
Rj(h1 ◦ γ)∗ωM×F

)G

= h2∗
(
Rj(ρ ◦ p)∗ωM×F

)G

= h2∗(ρ∗ωM ⊗ Hj(F, KF ))G

=
⊕

χ,χ′∈Irr(G)

h2∗(Vχ ⊗C V
⊕mχ′

χ′ )G.
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By the character theory of representation of finite groups, for χ0 ̸= 1G,
there exists 1G ̸= χ1 ∈ Irr(G) such that (Vχ1 ⊗C V

⊕mχ0
χ0 )G is a non-

trivial direct summand of Vχ1 ⊗C V
⊕mχ0

χ0 . Since h2∗Vχ1 is M-regular, so
is h2∗(Vχ1 ⊗C V

⊕mχ0
χ0 ). Thus, h2∗(Vχ1 ⊗C V

⊕mχ0
χ0 )G is also M-regular. Thus

Rjf∗ωX has an M-regular sheaf as a direct summand. This contradicts the
assumption that dim V 0(Rjf∗ωX) = 0. □

Remark 4.2. — Perhaps the most useful case of Theorem 4.1 is when
j = 0, because the conditions (C1) and (C2) have been extensively studied
in the literature.

All smooth complete intersections of general type in projective spaces
satisfy (C1) (see [21] or [25]). Moreover, a fairly general criterion for va-
rieties of general type satisfying (C1) was proved in [15]: assume that
KF = L⊗m for some m ⩾ 1, the base locus of |L| is of codimension ⩾ 2,
and h0(F, Ωdim F −1

F ⊗ L) ⩽ h0(L) − 2, then

H1(F, TF ) −→ Hom(H0(F, KF ), H1(F, Ωdim F −1
F ))

is injective.
For (C2), assuming that a finite subgroup G ⊂ Bir(F ) acting trivially

on H0(F, KF ), the canonical map of F factors through the quotient map
by G. This is of course impossible if the canonical system |KF | defines a
birational map of F . Moreover, if |KF | defines a generically finite map of
F , then the condition that the canonical map of F factors through the
quotient map by G implies that pg(F ) = pg(F/G) (see [3, Théorème 3.1]),
which is a very restrictive condition.

In conclusion, the assumptions (C1) and (C2) are satisfied by a large
number of varieties of general type, including all smooth complete inter-
sections of general type in projective spaces.

The proof of Theorem 4.1 provides more information.

Corollary 4.3. — Under the assumption of Theorem 4.1. Assume the
sub-Hodge structure of Hj+dim F (F,C) containing Hj(F, KF ), i.e. the tran-
scendental part of Hj+dim F (F,C), is simple and f is a fibration onto its
image, Rjf∗ωX is M-regular.

Proof. — By Theorem 4.1, V 0(Rjf∗ωX) generates Pic0(A). If Rjf∗ωX

is not M-regular, the Chen-Jiang decomposition for Rjf∗ωX has at least
2 direct summands, whose 0-th cohomological support loci are translates
of different positive dimensional abelian subvarieties of Pic0(A). Let M

be the direct summand of Hjf∗RX [dim X] with strict support f(X) as in
Section 3(C) and let M ′ be the direct summand of M corresponding to the
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transcendental part of the Hodge structure Hj+dim F (F ). Then the first
non-trivial piece of the Hodge filtration of M ′ is Rjf∗ωX . Moreover, by
Section 3(D), we have the decomposition for the complex Hodge module

(4.3) (M ′ ⊕ M ′, JM ) ≃
n⊕

i=1
p−1

i (Ni, Ji) ⊗C Cρi
,

where pi : A → Ai is a surjective morphism with connected fibers be-
tween abelian varieties, ρi ∈ Char(A) is a unitary character, and (Ni, Ji) ∈
HMC(Ai, dim X − dim pi) is a simple polarizable complex Hodge module
with χ(Ai, Ni, Ji) > 0. Since V 0(Rif∗ωX) has at least 2 irreducible compo-
nents, these components generate Pic0(A), and each component is exactly
a translate of Pic0(Ai), we have n ⩾ 2. Restricting (4.3) to a general fiber
of f , we see that the sub-Hodge structure of Hj+dim F (F,C) containing
Hj(F, KF ) is not simple, which is a contradiction. □

5. Tricanonical maps of X with KF sufficiently positive

Theorem 5.1. — Let f : X → A be a morphism from a smooth pro-
jective variety to an abelian variety. Let F be a connected component of
a general fiber of f . Assume that V 0(f∗ωX) generates Pic0(A), and |KF |
induces a birational map of F ,

(1) the linear system |3KX + f∗P | induces a birational map of X for
P ∈ Pic0(A) general;

(2) the linear system |mKX +f∗P | induces a birational map for m ⩾ 4
and all P ∈ Pic0(A).

Proof. — By the Chen-Jiang decomposition, we write

(5.1) f∗ωX =
n⊕

i=1
p∗

i
Fi ⊗ P −1

i ,

where pi : A → Bi are surjective morphisms with connected fibers be-
tween abelian varieties, Fi are M-regular sheaves on Bi, Pi are torsion line
bundles. Then

V 0(f∗ωX) =
n⋃

i=1

(
Pi + Pic0(Bi)

)
.

Since M -regular sheaves are continuously globally generated, the natural
evaluation map

(5.2)
⊕
Ui

⊕
Q∈Ui

H0(A, f∗ωX ⊗ Q) ⊗ Q−1 −→ f∗ωX

is surjective, where Ui ⊂ Pi + Pic0(Bi) are non-empty open subsets.
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Let a ∈ f(X) be general and let Xa be the corresponding fiber of f .
By assumption, the canonical map of a connected component of Xa is
birational. Thus |kKXa

| also induces a birational map of Xa, for each k ⩾ 1.
We claim that X is of general type. By the Chen-Jiang decomposition

and the fact that M-regular sheaves are ample, the Iitaka model of X

dominates Bi for each i. In other words, for some ample divisor Hi on Bi,
KX − tf∗p∗

i H is Q-equivalent to an effective Q-divisor for 0 < t ≪ 1. Since⋃n
i=1 Pic0(Bi) generates Pic0(A), the Iitaka model of X also dominates A.

On the other hand, the connected components of f are of general type.
Thus X is of general type.

Since V 0(f∗ωX) contains positive dimensional components and f∗ω⊗k
X is

an IT sheaf of index 0 for k ⩾ 2, h0(X, kKX + f∗Q) = pk(X) ⩾ 2 for any
Q ∈ Pic0(A).

We first remark that (2) is easy. By the assumption that V 0(f∗ωX) gen-
erates Pic0(A) and Tirabassi’s argument in [24], we know that f∗(ω⊗2

X ⊗Ix)
is M-regular for a general point x ∈ X. For readers’ convenience, we recall
Tirabassi’s argument. Consider the short exact sequence

0 −→ f∗(ω⊗2
X ⊗ Ix) −→ f∗ω⊗2

X −→ Cf(x) −→ 0,

where Cf(x) is the skyscraper sheaf at f(x). Since f∗ω⊗2
X is an IT sheaf of

index 0, V i(f∗(ω⊗2
X ⊗ Ix)) = ∅ for i ⩾ 2. Hence it suffices to show that

codimPic0(A) V 1(f∗(ω⊗2
X ⊗ Ix)) ⩾ 2.

We also deduce from the above short exact sequence that

V 1(f∗(ω⊗2
X ⊗ Ix)) = {P ∈ Pic0(A) | x ∈ Bs(|2KX + P |)}.

Since x ∈ X is general, x /∈ Bs |KX + P | for P ∈ Pi + Pic0(Bi) general.
Thus x /∈ Bs |2KX + Q| for any Q ∈ 2Pi + Pic0(Bi), because

|2KX + Q| ⊃ |KX + P | + |KX + Q − P |

for P ∈ Pi + Pic0(Bi) general. Therefore

V 1(f∗(ω⊗2
X ⊗ Ix)) ∩ (2Pi + Pic0(Bi)) = ∅

for 1 ⩽ i ⩽ n. Since
⋃

1⩽i⩽n Pic0(Bi) generates Pic0(A), the intersection
of an effective divisor of Pic0(A) with

⋃
1⩽i⩽n(2Pi + Pic0(Bi)) is always

non-empty. We conclude that

codimPic0(A) V 1(f∗(ω⊗2
X ⊗ Ix)) ⩾ 2.
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Since f∗(ω⊗2
X ⊗ Ix) is M-regular, for any non-empty open subset U ⊂

Pic0(A), the evaluation map⊕
P ∈U

H0(A, f∗(ω⊗2
X ⊗ Ix) ⊗ P ) ⊗ P −1 −→ f∗(ω⊗2

X ⊗ Ix)

is surjective. Since |2KXa | induces a birational map of Xa, for any gen-
eral point y ̸= x and for Q ∈ U general, there exists a section s ∈
H0(A, f∗(ω⊗2

X ⊗ Ix) ⊗ Q) not vanishing at y. Let s̃ be the corresponding
section in H0(X, Ix(2KX +f∗Q)) ⊂ H0(X, 2KX +f∗Q). Then, s̃ separates
x and y. Note that when m ⩾ 4, pm−2(X) ⩾ 2. Let t ∈ H0(X, (m−2)KX +
f∗P − f∗Q) be general such that t does not vanish at both x and y. Then,
s̃ · t ∈ H0(X, mKX +f∗P ) separates x and y. Hence, |mKX +f∗P | induces
a birational map of X for m ⩾ 4.

The proof of (1) consists of several steps. Without loss of generalities, we
may assume that f is primitive and f(X) generates A.

Let p :=
∏n

i=1 pi : A →
∏n

i=1 Bi. By the assumption that V 0(f∗ωX)
generates Pic0(A), we know that p is finite onto its image. Let K be the
image of p. Then p : A → K ↪→

∏n
i=1 Bi is an isogeny between A and K.

Step 1. |3KX + f∗P | for any P ∈ Pic0(A), separates two general points
on the same general fiber of f . — Fix P ∈ Pic0(X). Let x, y ∈ X be two
general points in the same general fiber Xa of f for a ∈ f(X) ⊂ A.

If for some Bi and Pi in (5.1) and Q ∈ Pi + B̂i general, the linear system

|2KX + f∗P − f∗Q|

separates x and y, then there exists a divisor D1 ∈ |2KX + f∗P − f∗Q|
such that x ∈ D1 and y /∈ D1. Since Q ∈ Pi + B̂i general, there exists D2 ∈
|KX +f∗Q| containing neither x nor y. We see that D1 +D2 ∈ |3KX +f∗P |
separates x and y.

We then assume that for all Bi and Pi and Q ∈ Pi + Pic0(Bi), the
corresponding linear system

|2KX + f∗P − f∗Q|

cannot separate x and y. Since |KXa | induces a birational map of Xa, we
conclude from (5.2) that there exist positive integers N , Qik ∈ Pi+Pic0(Bi)
general for 1 ⩽ k ⩽ N , sections sik ∈ H0(X, KX + f∗Qik) such that the
section

s :=
n∑

i=1

N∑
k=1

sik |Xa
∈ H0(Xa, KXa

)

separates x and y, i.e. x ∈ Ds and y /∈ Ds, where Ds is the corresponding
divisor of s on Xa. We choose s′

ik ∈ H0(X, 2KX +f∗P −f∗Qik) which take
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the same nonzero value at both x and y in an affine charts of Xa containing
both x and y. Note that s′

ik exists since φik(x) = φik(y), where φik is the
rational map induced by |2KX + f∗P − f∗Qik|.

Then
n∑

i=1

N∑
k=1

sik · s′
ik ∈ H0(X, 3KX + f∗P )

separates x and y. Hence, the twisted tricanonical map induced by |3KX +
f∗P | separates two general points on the same general fiber of f .

Step 2. |3KX + f∗P | induces a generically finite map from X onto its
image for all P ∈ Pic0(A). — Assume the contrary, there exists a curve C

through a general point of X contracted by the map |3KX + f∗P |. Then
the rank of the restriction map

H0(X, 3KX + f∗P ) −→ H0(C, (3KX + f∗P )|C)

is 1. By Step 1, f |C : C → A is generically finite onto its image. By
the assumption, there exists a quotient pB : A → B appearing in the
decomposition formula (5.1) such that pB ◦ f |C : C → B is generically
finite onto its image. Let T = P + Pic0(B) be the corresponding subset of
V 0(f∗ωX). For Q ∈ T general, the image VQ of the restriction map

H0(X, KX + f∗Q) −→ H0(C, (KX + f∗Q)|C)

is not zero. We denote by V ′
Q the non-zero image of the restriction map

H0(X, 2KX + f∗P − f∗Q) −→ H0(C, (2KX + f∗P − f∗Q)|C).

Observe that the image of the natural pull-back Pic0(B) → Pic0(C) is
positive dimensional, since pB ◦ f |C is generically finite from C onto its
image.

The image of the restriction map

H0(X, 3KX + f∗P ) −→ H0(C, (3KX + f∗P )|C)

contains the map of natural multiplication map⋃
Q∈T

VQ ⊗ V ′
−Q −→ H0(C, (3KX + f∗P )|C).

Thus the rank of the restriction map

H0(X, 3KX + f∗P ) −→ H0(C, (3KX + f∗P )|C)

is > 1, which is a contradiction.

ANNALES DE L’INSTITUT FOURIER



COHOMOLOGICAL SUPPORT LOCI AND PLURICANONICAL SYSTEMS 17

Step 3. For P ∈ Pic0(A) general, let x, y ∈ X be two general points such
that p ◦ f(x) ̸= p ◦ f(y) ∈ K. The linear system |3KX + f∗P | separates
x and y. — For a general point x ∈ X, for each component Pi + B̂i

appearing in (5.1), x /∈ Bs(|KX + f∗Q|) for Q ∈ Pi + B̂i general. Then
x /∈ Bs(|2KX + f∗Q|) for all Q ∈ T̂i := 2Pi + B̂i. Considering gi := pi ◦ f :
X → Bi, we know that gi∗(ω⊗2

X ⊗ f∗Q) is an IT sheaf of index 0 for all
Q ∈ Pic0(A). From the short exact sequence

0 −→ gi∗(ω⊗2
X ⊗ f∗Q ⊗ Ix) −→ gi∗(ω⊗2

X ⊗ f∗Q) −→ Cx −→ 0,

we deduce that gi∗(ω⊗2
X ⊗f∗Q⊗Ix) is also an IT sheaf of index 0 on Bi, for

all Q ∈ T̂i. There exists an open subset Ui ⊂ X × Pic0(X) parametrizing a
flat family of sheaves gi∗(ω⊗2

X ⊗ f∗Q ⊗ Ix) on Bi for (x, Q) ∈ U . Being an
IT sheaf of index 0 is an open condition. Hence, there exists a non empty
open subset U ′

i of Ui such that for (x, Q) ∈ U ′
i , gi∗(ω⊗2

X ⊗ f∗Q ⊗ Ix) is an
IT sheaf of index 0.

Let V be the intersection of all U ′
i for 1 ⩽ i ⩽ n. Then V is again a

non-empty open subset of X × Pic0(A). For a general P ∈ Pic0(A), there
exists an open subset W of X such that gi∗(ω⊗2

X ⊗ f∗P ⊗ Ix) is an IT sheaf
of index 0 for 1 ⩽ i ⩽ n and all x ∈ W . Hence, for P ∈ Pic0(A) general,
there exists an open subset W ′ of X such that

gi∗(ω⊗2
X ⊗ f∗P ⊗ f∗P −1

i ⊗ Ix)

is an IT sheaf of index 0 for 1 ⩽ i ⩽ n and all x ∈ W ′.
We now take W ′′ to be the open subset of W ′ such that for any x ∈ W ′′,

x /∈ Bs(|KX + f∗Pi + f∗Q|) for each 1 ⩽ i ⩽ n and Q ∈ B̂i general.
Then for x, y ∈ W ′′ and p(x) ̸= p(y), there exists pi : A → Bi such
that gi(x) ̸= gi(y). Since gi∗(ω⊗2

X ⊗ f∗P ⊗ f∗P −1
i ⊗ Ix) is an IT sheaf of

index 0, it is continuously globally generated. Thus, there exists a divisor
D ∈ |2KX +f∗P −f∗Pi −f∗Q| separating x and y for Q ∈ Pic0(Bi) general
and as before, the linear system |3KX + f∗P | also separates x and y.

Step 4. Conclusion. — We now argue that for P ∈ Pic0(A) general,
|3KX + f∗P | induces a birational map of X. Assume the contrary. Let
φ : X 99K Y ⊂ PN be the map induced by |3KX + f∗P |, where Y is the
image of φ. We claim that there exists a map fY : Y 99K K such that we
have the commutative diagram:

X
φ //

f

��

Y

fY

��
A

p // K.
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Indeed, for y ∈ Y general, φ−1(y) consists of finitely many points by Step 2
and by Step 3, p ◦ f(φ−1(y)) is a single point of K. Hence we can define
the map Y 99K K by y → p ◦ f(φ−1(y)).

After birational modifications of X and Y , we may assume that Y is
smooth, φ is an morphism and Y → K is also a morphism. After replacing
K by a suitable étale cover of it, we may also assume that Y → K is primi-
tive. Since φ maps a general fiber of f birationally onto its image by Step 1,
we conclude that φ : X → Y is birationally equivalent to the étale mor-
phism Y ×K A → Y induced by base change of p : A → K. But then

φ∗ω⊗3
X =

⊕
Q∈ker p∗

ω⊗3
Y ⊗ Q.

We then take P ′ ∈ Pic0(K) such that p∗P ′ = P . Then

H0(X, 3KX + f∗P ) =
⊕

Q∈ker p∗

H0(Y, 3KY + f∗
Y P ′ + f∗

Y Q).

Note that H0(Y, 3KY + f∗
Y P ′ + f∗

Y Q) ̸= 0 for all Q. Hence it is absurd that
φ is birationally equivalent to the base change of p. □

Combining Theorem 1.4 and Theorem 5.1, we have

Corollary 5.2. — Let f : X → A be a morphism from a smooth
projective variety to an abelian variety. Let F be a connected component
of a general fiber of f . If F satisfies the birationally infinitesimal Torelli
condition (C1) and |KF | induces a birational map of F , then

(1) the linear system |3KX + f∗P | induces a birational map of X for
P ∈ Pic0(A) general;

(2) the linear system |mKX +f∗P | induces a birational map for m ⩾ 4
and all P ∈ Pic0(A).
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