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A MORSE-BOTT TYPE COMPLEX AND THE
BISMUT–ZHANG TORSION FOR INTERSECTION

COHOMOLOGY

by Ursula LUDWIG (*)

Abstract. — In the first part of this article we establish, for a compact pseudo-
manifold and a given perversity in the sense of Goresky and MacPherson a Morse
theoretical cochain complex, which computes the intersection cohomology of the
space. In the second part we use this cochain complex as well as the model Witten
Laplacian to define the Bismut–Zhang torsion of a pseudomanifold. Conjecturally
the Bismut–Zhang torsion will serve as the “topological” side in a Cheeger–Müller
theorem for spaces with iterated conical singularities.

Résumé. — Dans la première partie de cet article on construit, en utilisant la
théorie de Morse, pour une pseudovariété stratifiée et une perversité au sens de
la théorie de Goresky et MacPherson un complexe cohomologique. Ce complexe
calcule la cohomologie d’intersection de la pseudovariété. Dans la deuxième partie
on utilise ce complexe ainsi que le Laplacien de Witten pour définir la torsion de
Bismut–Zhang, qui, conjecturellement, va servir dans un théorème de Cheeger–
Müller pour des pseudovariétés à singularités coniques.

1. Introduction

The famous Morse inequalities establish a relation between the singular
cohomology of a smooth compact manifold M and the number of critical
points of a smooth Morse function f : M → R. A way of proving the Morse
inequalities is to show the existence of a combinatorial complex, which is
generated by the critical points of f and whose cohomology is isomorphic
to the singular cohomology of M . Such a complex has first been established
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by Thom [79] and Smale [78], using the unstable cell decomposition of M
for the negative gradient flow of f with respect to a generic Riemannian
metric. An analytic counterpart of the Morse–Thom–Smale complex has
been suggested in [84]. Rigorous proofs of Witten’s ideas have been given
by Helffer and Sjöstrand [38] using semi-classical analysis. The Morse–
Thom–Smale complex has seen a revival in the 1990s, starting with the
work of Floer [22], where the idea of counting trajectories between critical
points, has been exploited in an infinite dimensional setting.

An important generalisation of the Morse–Thom–Smale complex is to
smooth Morse–Bott functions on a smooth compact manifold. Several ap-
proaches to the Morse–Bott complex can be found in the literature, most
of them having Floer theoretical applications in mind [6, 7, 24, 29, 39, 41]
(see [7, Section 1.2] for a comparison of the different approaches). In this
paper we use the Morse–Bott cochain complex of Austin and Braam [6],
defined in terms of the de Rham complexes of the critical submanifolds of
the Morse–Bott function and the trajectory spaces between them.

The first aim of this article is to generalise the Morse–Thom–Smale com-
plex to compact stratified pseudomanifolds and their intersection cohomol-
ogy. First we introduce the notion of a stratified anti-radial gradient-like
vector field on a compact abstract stratified space X. An important prop-
erty of a stratified anti-radial gradient-like vector field ξ is that it can be
lifted to a smooth vector field ξ̃ on the smooth unfolding X̃ of X. Singu-
larities of a stratified anti-radial gradient-like vector field ξ are isolated,
but the smooth vector field ξ̃ on X̃ has Morse–Bott singularities. This will
allow us to adapt the construction in [6] and to construct, for any given
perversity p in the sense of Goresky and MacPherson [30, 31], a Morse–Bott
type cochain complex (C•

p (X, ξ), ∂•) associated to the stratified anti-radial
gradient-like vector field ξ on X, and which computes the intersection co-
homology of X with perversity p. The main idea of the construction is to
replace the de Rham complex of critical submanifolds of ξ̃ in the construc-
tion of the smooth Morse–Bott cochain complex of Austin and Braam [6]
with the truncated complex of liftable intersection differential forms. The
latter has been introduced by Brasselet, Hector and Saralegi in [11] and is a
subcomplex of the more notorious complex of intersection differential forms
of Brylinski, Goresky and MacPherson [14]. The main result regarding the
Morse–Bott type complex, constructed in the first part of this article, is
the following
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Main Theorem 1. — The Morse–Bott type complex (C•
p (X, ξ), ∂•)

computes the intersection cohomology of X with perversity p,

H•(C•
p (X, ξ), ∂•) ≃ IH•

p (X).

The Morse–Bott type complex, constructed in this article, generalises
the constructions in [48] and in [49, 50]: In [48] a (homological) Morse–
Thom–Smale complex computing singular homology (i.e., for a topologi-
cally normal space, intersection homology for the top perversity t) has been
constructed for compact abstract stratified spaces. In [49, 50] a (homolog-
ical) Morse–Thom–Smale complex computing intersection homology has
been constructed for spaces with isolated singularities and any perversity
p. This latter complex (for the middle perversity) is an essential ingredient
in the generalisation of the Cheeger–Müller theorem to singular spaces with
isolated conical singularities achieved in [51].

While the Morse–Bott type complex constructed in the first part of this
article may be interesting in itself, as already hinted above, our main mo-
tivation is its application to the comparison between analytic and topo-
logical torsion, aka Cheeger–Müller theorem, for spaces with conical sin-
gularities. The Cheeger–Müller theorem for a smooth compact manifold,
proved independently by Cheeger [16] and Müller [60], is one of the most
important comparison theorems in global analysis. It states the equality
between topological and analytic torsion of a smooth compact manifold
equipped with a unitary flat vector bundle. In [61] Müller extended the
result to the case of odd dimensional manifolds and unimodular flat vec-
tor bundles. In the same time, in [9], Bismut and Zhang combined the
Witten deformation and local index techniques to generalise the result of
Cheeger and Müller to arbitrary flat vector bundles with arbitrary Hermit-
ian metrics, thus giving the most general version of the theorem on smooth
compact manifolds. A crucial role in Bismut and Zhang’s proof is played
by the duality between the Morse–Thom–Smale complex and the Witten
complex.

The Cheeger–Müller theorem has also been extended to the equivariant
setting ([10, 45, 46]) and for manifolds with boundary ([12, 13, 46, 83]).
In recent years the study of analytic torsion and of the Cheeger–Müller
theorem for spaces with cuspidal singularities and locally symmetric spaces
has seen a lot of activity (see e.g. [2, 3, 15, 55, 56, 62, 63, 64, 65, 68, 69,
70, 72]), development which has been in part motivated by the study of
the torsion of the cohomology of locally symmetric spaces associated to
arithmetic groups [8].
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658 Ursula LUDWIG

Let us now review in more detail the history of the study of analytic
and topological torsion for spaces with conical singularities: It started with
work of Dar [19], who proved that the analytic torsion is well-defined for
spaces with isolated conical singularities. Dar also defined the (topological)
Reidemeister torsion in the context of intersection homology. In case of an
oriented even dimensional space, by Poincaré duality, both the analytic tor-
sion as well as the intersection Reidemeister torsion with middle perversity
are trivial.

Apart from the easy even dimensional case, the Cheeger–Müller theorem
has resisted attempts of generalisation to spaces with conical singularities
for a while. Note that, since the analytic torsion of a singular space is not a
topological invariant in general, while, by a result of Dar, the intersection
Reidemeister torsion is, an equality between the two cannot be expected
in general.

An approach to the Cheeger–Müller theorem for spaces with isolated
conical singularities suggested by Lesch [43, Problem 5.3] (see also [44],
where this strategy has been explained in more generality) is to reduce the
problem via the gluing formula for analytic torsion (see [12, 13, 44, 83])
to a comparison of torsions on a truncated cone. The analytic torsion of a
truncated cone has been studied in [35, 36, 66, 82]. The recent preprint [37]
seems to complete Lesch’s programme, without however giving an inter-
pretation of the analytic correction terms coming from the singularities.

The well-definedness of analytic torsion for spaces with wedge singulari-
ties, i.e. conical spaces with a single singular stratum of dimension ⩾ 1, is
due to Mazzeo and Vertman [57]. In [4], Albin, Rochon and Sher establish
an extension of the Cheeger–Müller theorem to spaces with wedge singular-
ities with even codimensional singular stratum and unimodular flat vector
bundles satisfying a strong acyclicity condition at infinity; this excludes the
trivial bundle. The strategy in [4] is to study the analytic torsion via de-
generation of smooth metrics into conical metrics. This strategy has been
applied previously with success by the three authors for singular spaces
with cuspidal singularities [2, 3].

In [51] the author has followed yet a third strategy for extending the
Cheeger–Müller theorem to singular spaces with conical singularities,
namely by adapting the approach of Bismut and Zhang to the singular
situation. The main result in [51] is a comparison between the analytic
torsion of a singular space with isolated conical singularities and a torsion,
which, in the present article, will be called the Bismut–Zhang torsion.
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The present article is part of the author’s programme to extend the
approach in [51] to general stratified spaces with iterated conical singulari-
ties. In the second part of this article we define the Bismut–Zhang torsion,
which conjecturally will serve as the “topological side” in a Cheeger–Müller
theorem for stratified spaces. There are two ingredients entering the defi-
nition of the Bismut–Zhang torsion: the Morse–Bott type cochain complex
for the lower middle perversity m constructed in the first part of this ar-
ticle and the model Witten Laplacian appearing in the generalisation of
the Witten deformation to stratified spaces in [49]. For clarity of the pre-
sentation, we only define the Bismut–Zhang torsion for spaces with two
strata here. However, since both ingredients entering the definition of the
Bismut–Zhang torsion are available in general, this definition can be ex-
tended directly to stratified pseudomanifolds of arbitrary depth (see Re-
mark 6.4(b)).

The Bismut–Zhang torsion is not a topological invariant in general. How-
ever, we can prove the following

Main Theorem 2. — Let X be an oriented compact pseudomanifold
with two strata Y < Z such that codimX Y is even. Then the Bismut–
Zhang torsion is a topological invariant. Moreover, the Bismut–Zhang tor-
sion equals the intersection Reidemeister torsion defined by Aparna Dar [19].

The Main Theorem 2 can be seen as the topological counterpart of a
result in [57], which states that the analytic torsion on a wedge space with
both strata of odd dimension is independent of the choice of a conical
metric.

The article is organised as follows: In Section 2, to keep the article self-
contained, we collect those basics on abstract stratified spaces, aka Thom–
Mather stratified spaces, and on the intersection (co-)homology of pseudo-
manifolds as introduced by Goresky and MacPherson, which are used in
the course of the article. In Section 3 we introduce the notion of a stratified
anti-radial gradient-like vector field on an abstract stratified space. In Sec-
tion 4 we define, for a stratified pseudomanifold X, a stratified anti-radial
gradient-like vector field and a given perversity p in the sense of Goresky
and MacPherson, the Morse–Bott type cochain complex advertised in the
title, and prove the Main Theorem 1. In Section 5, adapting ideas from
smooth Morse and Morse–Bott theory, we construct a perturbation of the
Morse–Bott complex for a space with two strata. In the last section, Sec-
tion 6, we define the Bismut–Zhang torsion for a stratified pseudomanifold
with two strata, we recall the definition of intersection Reidemeister torsion
from [19], and prove the Main Theorem 2.
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2. Preliminaries and Notation

In this article we use the language of abstract stratified spaces and control
data as introduced by Thom [80] and Mather [53] (see also the reprint [54]
of Mather’s notes). A useful notion for carrying out analysis on singular
spaces is that of a manifold with corners and iterated fibration structures
as introduced by Melrose. For a dictionary between the two languages we
refer the reader to [1, Section 6] and [21, Section 1].

Section 2 is organised as follows: In Section 2.1, for convenience of the
reader, we recall some basic definitions from the theory of abstract stratified
spaces. We also recall the notion of “déplissage élémentaire” (translated
here as “unfolding”) of a stratified space as introduced in [11, Section A.II].

In Section 2.2 we recall the definition and the local calculation for the
intersection (co-)homology of a stratified pseudomanifold as introduced by
Goresky and MacPherson [30, 31]. We also recall the complex of intersection
differential forms introduced by Brylinksi in [14, Section 1.2], where it is
attributed to Goresky and MacPherson. In this article we use the subcom-
plex of liftable intersection differential forms, which has been introduced
in [11, Section B.IV] and which we also recall.

2.1. Stratified spaces and unfoldings

2.1.1. Abstract stratified spaces (aka Thom–Mather stratified spaces).
Controlled maps

Let X be a topological space, Hausdorff, locally compact and with count-
able basis for its topology. A stratification S of the topological space X is
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a locally finite family of pairwise disjoint locally closed subsets Z ⊂ X,
called strata, such that X =

⋃
Z∈S Z. The strata Z are smooth manifolds

without boundary in the induced topology. We assume that the frontier
condition is satisfied: For each pair of strata (Z,R), Z ∩R ̸= ∅ implies that
Z ⩽ R, i.e. Z ⊂ R.

A tubular system for the stratification S is a family of tuples
{(TZ , πZ , ρZ)}Z∈S , where TZ is an open neighbourhood of Z in X, πZ :
TZ → Z is a continuous retraction and ρZ : TZ → R⩾0 is continuous and
satisfies ρ−1

Z (0) = Z. We call a tubular system {(TZ , πZ , ρZ)}Z∈S control
data for the stratification S if the following conditions hold:

(a) For each pair of strata (Z,R), TZ ∩R ̸= ∅ implies that Z ⩽ R.
(b) For each pair of strata (Z,R) with Z < R (i.e. Z ⩽ R, Z ̸= R) the

map

(2.1) (πZ , ρZ) : R ∩ TZ −→ Z × R>0

is smooth and submersive.
(c) The tubular system is controlled, i.e. for each pair of strata (Z,R)

with Z < R and for all x ∈ TZ ∩ TR the following conditions are
satisfied: πR(x) ∈ TZ and

πZ(πR(x)) = πZ(x),(C1)
ρZ(πR(x)) = ρZ(x).(C2)

Definition 2.1. — An abstract stratified space is a topological space
X as above with a stratification S and control data {(TZ , πZ , ρZ)}Z∈S .

Let X, Y be abstract stratified spaces with stratifications S resp. S ′. A
continuous map g : X → Y is called a stratified map, if for every Z ∈ S
there exists W ∈ S ′ such that g(Z) ⊂ W and moreover g(TZ) ⊂ TW . We
consider the following control conditions:

πW (g(x)) = g(πZ(x)), x ∈ TZ ,(C3)
ρZ(x) = ρW (g(x)), x ∈ TZ .(C4)

A stratified map g : X → Y is called weakly controlled (resp. controlled)
if for every Z ∈ S the restriction g|Z is smooth and the control condi-
tion (C3) (resp. the control conditions (C3) and (C4)) hold. A bijective
controlled map g : X → Y is an isomorphism of stratified spaces if g sends
each stratum Z of X diffeomorphically to a stratum of Y and moreover
g(TZ) = Tg(Z). A controlled map g : X → M into a smooth manifold
M is called a controlled submersion, if the restriction to each stratum is
submersive.

TOME 75 (2025), FASCICULE 2
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The depth of a stratum Z, denoted by depth(Z), is the integer

(2.2) depth(Z) := sup{l | ∃ a sequence of strata Z = R0 < · · · < Rl}.

The depth of the stratified space X is defined as

(2.3) depth(X) := sup{depth(Z) | Z ∈ S}.

The reader is warned that, for the notion of depth, there are different
conventions in the literature.

Let X be a stratified space with depth(X) = d. By shrinking the tubes
{TZ}Z∈S , we can assume that two strata of the same depth have disjoint
tubular neighbourhoods (see [54, page 492]). For inductive arguments it is
convenient to work with the stratification of X by depth (associated to S):
The strata are given by Zi :=

⋃
depth(Z)=d−i Z, i = 0, . . . , d. By taking the

union of tubes, we get control data {(Ti, πi, ρi)}i=0,...,d−1.
In the following we assume that X is connected. Hence Z0 < · · · < Zd

and X = Zd.

2.1.2. Local triviality of the tubular neighbourhood Ti

Let i ∈ {0, . . . , d − 1}. For x ∈ Zi and ϵ > 0 small enough, the spaces
T ϵ

i := {w ∈ Ti | ρi(w) < ϵ}, Si := ρ−1
i (ϵ) and Lx := π−1

i (x) ∩ ρ−1
i (ϵ) are

abstract stratified spaces, inheriting stratification and control data from
those of X, and not depending (up to isomorphism of stratified spaces)
on the choice of ϵ. The space Lx is called the link of X at x, it only
depends on the connected component of Zi containing x. We denote by
cLx := (Lx × [0,∞))/(y,0)∼(w,0) the cone over Lx, it is also a stratified
space.

The maps πi : T ϵ
i → Zi and πi|Si

: Si → Zi are proper controlled
submersions and therefore, by Thom’s First Isotopy Lemma (see e.g. [81,
Theorem 2.6]), locally trivial stratified fibre bundles. We denote by

(2.4) cϵ(Si, πi) :=
(
(Si × [0, ϵ)) ⊔ (Zi × {0})

)
/(c,0)∼(πi(c),0),

the topological mapping cylinder of πi. The mapping cylinder cϵ(Si, πi)
inherits the structure of an abstract stratified space (see [81, Section 5.3.6]
for more details) and there is an isomorphism of stratified spaces

(2.5) αi : cϵ(Si, πi) −→ T ϵ
i .

By composition of αi with the canonical quotient map Si × (−ϵ, ϵ) →
cϵ(Si, πi), (c, r) 7→ [c, |r|], we get a map

(2.6) βi : Si × ( − ϵ, ϵ) −→ T ϵ
i .
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We denote by (−ϵ, ϵ)∗ := (−ϵ, ϵ) \ {0}. The restriction βi|Si×(−ϵ,ϵ)∗ : Si ×
(−ϵ, ϵ)∗ → T ϵ

i \ Zi is a twofold covering of stratified spaces.

2.1.3. Unfolding of X

In this section we recall the notions of déplissage élémentaire and dé-
plissage as introduced in [11, Section A.II], and which are closely related
to the notions of decomposition and total decomposition introduced by
Verona (see [81, Sections 6.1.1 and 6.6.1]). Following [20] we translate dé-
plissage élémentaire by unfolding in this article; other common translations
in the literature are “doubling construction”, “resolution” or “blow-up”.

We assume that X as well as all links are connected.
To a fixed isomorphism of stratified spaces α0 : cϵ(S0, π0) → T ϵ

0 as in (2.5)
(and the associated map β0 : S0 × ( − ϵ, ϵ) → T ϵ

0 as in (2.6)) we define the
unfolding X̃0 of X along its minimal stratum Z0 as follows: X̃0 is the
quotient of

(2.7)
(
(X \ Z0) × {−1, 1}

)
⊔ (S0 × (−ϵ, ϵ))

by the equivalence relation:

(2.8) (x, j) ∼ (c, r) if |r| = jr and x = β0(c, r).

There is a natural folding map θ0 : X̃0 → X. The space X̃0 inherits
the structure of an abstract stratified space of depth(X̃0) = depth(X) − 1
(see [11, Proposition 3.1]). The restriction of the map θ0 to X̃0 \ θ−1

0 (Z0)
is a twofold stratified covering of X \ Z0. Moreover, we have a natural
isomorphism of stratified spaces θ−1

0 (Z0) ≃ S0.
Iterating the above unfolding procedure we get a sequence of unfoldings:

(2.9) X̃ := X̃d−1 θd−1,d−2−−−−−−→ X̃d−2 θd−2,d−3−−−−−−→ · · · θ1,0−−→ X̃0 θ0−→ X.

We denote by Sl := {Zl
l+1 < · · · < Zl

d} the stratification by depth of X̃ l,
l = 0, . . . , d− 1.

We call X̃ := X̃d−1 the total unfolding of X (déplissage in [11]), it is a
smooth manifold.

We also get unfoldings of Ti, i = 0, . . . , d − 1, as well as of all links Lx,
x ∈ Zd−1, which are compatible with the unfoldings of X, i.e. the inclusion
Ti ⊂ X induces an inclusion T̃i ⊂ X̃, etc.

For l ∈ {1, . . . , d − 1}, we denote by θl,l−1 : X̃ l → X̃ l−1 the l-th step in
the sequence of unfoldings (2.9) and by

(2.10) θl : X̃ l −→ X the composition θl = θl,l−1 ◦ . . . ◦ θ1,0 ◦ θ0.

TOME 75 (2025), FASCICULE 2
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For i, j ∈ {0, . . . , d− 1}, i < j, we denote by

(2.11) θj,i : X̃j −→ X̃i the composition θj,i := θj,j−1 ◦ · · · ◦ θi+1,i.

We denote by θ = θd−1 : X̃ → X the map from the total unfolding X̃
to X. By construction X̃ \ θ−1(Zd−1) has 2d connected components and
θ|X̃\θ−1(Zd−1) : X̃ \ θ−1(Zd−1) → X \ Zd−1 = Zd is a covering map. We
fix one of these connected components and denote its closure in X̃ by X̂.
We call X̂ the marked leaf of X̃, it is a smooth manifold with corners and
iterated fibration structure (see [21, Section 1]).

Let i ∈ {0, . . . , d}, l ∈ {0, . . . , d− 1} and x ∈ Zi. The fibre θ−1
l (x) is one

of the following:
• a discrete set of 2l+1 points, if l < i,
• a disjoint union of 2l connected components isomorphic to Lx, if
l = i,

• a disjoint union of 2i connected components isomorphic to the
(l − i− 1)-th unfolding of Lx, if l > i.

2.1.4. Distinguished neighbourhoods

For each point x ∈ Zi, i = 0, . . . , d− 1, there is an open neighbourhood
Ux and a homeomorphism of stratified spaces

(2.12) ψx : Ux ≃ Rdim Zi × cLx,

which is compatible with the isomorphisms (2.5), (2.6); here dimZi denotes
the dimension of the connected component of Zi containing x. We call Ux a
distinguished neighbourhood and denote by (z, φ, r) the local coordinates
in Ux. The coordinate change between two distinguished charts is of the
form (z, φ, r) 7→ (z, h(z)(φ), r), where h(z) is a stratified automorphism of
the link Lx (see [11, Remark A.I.3]).

2.2. Intersection (co-)homology and intersection differential
forms

In this article the intersection (co-)homology introduced by Goresky and
MacPherson [30, 31] plays an important role. To be able to define it, we
will assume in Sections 4-6, that the stratified space X is moreover a pseu-
domanifold of dimension n, i.e. if we denote by Xi :=

⋃
dim Z⩽i Z, then

X = Xn, Xn−1 = Xn−2 and Xsm := X \Xn−2 is open and dense in X. We
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call Σ := Xn−2 the singular set of X. Note that for X connected, Xsm = Zd

and Σ = Zd−1.
When speaking of a stratified pseudomanifold X, in this article, we will

always mean an abstract stratified space in the sense of Definition 2.1, which
we assume in addition to be an orientable, compact, connected pseudoman-
ifold. We moreover assume that all links are connected.

If X has only two strata and the singular set Σ is a manifold of dimension
0, we call X a space with isolated singularities.

2.2.1. Intersection (co-)homology

Let p = (p2, . . . , pn) be a perversity function in the sense of Goresky and
MacPherson, i.e. pi are integers with p2 = 0 and pj ⩽ pj+1 ⩽ pj + 1 for
all 2 ⩽ j ⩽ n− 1. A subspace Y ⊂ X is (p, i)-allowable if dim(Y ) ⩽ i and
dim(Y ∩Xn−k) ⩽ i− k + pk for k ⩾ 2.

Let (ICp
• (X,Z), ∂•) be the subcomplex of the complex of PL geomet-

ric chains of X consisting of intersection chains of perversity p, i.e. σ ∈
ICp

i (X,Z) iff |σ| is (p, i)-allowable and |∂σ| is (p, i− 1)-allowable. The in-
tersection homology of X with perversity p is defined as the homology of
the intersection chain complex (ICp

• (X,Z), ∂•),

(2.13) IHp
• (X,Z) := H•(ICp

• (X,Z), ∂•).

The intersection cohomology IH•
p (X,Z) is defined as the cohomology of the

dual complex. The intersection homology IHp
• (X) (resp. the intersection

cohomology IH•
p (X)) with real coefficients is defined in the same way,

working with intersection chains with real coefficients instead. For U ⊂ X

open, one can also define the relative intersection homology IH•(X,U) (see
e.g. [40, Section 4.6] for more details). For a stratified pseudomanifold X

with boundary ∂X, IH•(X, ∂X) denotes the intersection homology of the
interior of X modulo a collared neighbourhood of ∂X (see [32, Section 1.4]).

Let L be a stratified pseudomanifold of dimL = n−1. For convenience of
the reader we recall the local calculation for the intersection homology resp.
for the relative intersection homology of a cone cL (see [31, Section 2.2] and
also [40, Proposition 4.7.2]):

(2.14) IHp
i (cL) =

{
IHp

i (L) for i ⩽ n− pn − 2,
0 for i > n− pn − 2,

resp.

(2.15) IHp
i (cL, L) := IHp

i (cL, cL \ {0}) =
{
IHp

i−1(L) for i ⩾ n− pn,

0 for i < n− pn.
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The formulas (2.14) and (2.15) also hold with coefficients in Z.
Two perversities p, q are called complementary if

(2.16) p+ q = t := (0, 1, 2, . . . , n− 2).

In Section 6 of this article we will mainly focus on the lower middle perver-
sity m, mk = ⌊k/2⌋ − 1. Its complementary perversity is the upper middle
perversity n, nk = ⌊(k − 1)/2⌋.

2.2.2. Intersection differential forms

Let M and N be smooth manifolds with dimM = m, dimN = n and
let π : M → N be a smooth submersion. A smooth j-form ω ∈ Ωj(M) has
perversity q ∈ {0, . . . ,m − n} with respect to π if for every (q + 1)-tuple
of smooth vector fields v0, . . . , vq tangent to the fibres of π (i.e. smooth
sections of ker dπ), we have

(2.17) ιv0 · · · ιvq
ω = 0.

In other words, if the submersion π : M → N is represented locally as
the projection (z1, . . . , zn, φ1, . . . , φm−n) 7→ (z1, . . . , zn), then a form of
perversity q is a linear combination of forms dzI ∧ dφJ , where I and J are
multi-indices with |J | ⩽ q.

Let now X be a stratified pseudomanifold of dimension n according to
our convention at the beginning of Section 2.2. We denote by (Ω•(X), d)
the de Rham complex of smooth forms on Xsm = X \ Σ. Let p, q be two
complementary perversities.

Definition 2.2.
(a) A smooth differential j-form ω ∈ Ωj(X) has perversity q if for all

strata Z the form ω|TZ \Σ has perversity qcodim Z with respect to the
submersion πZ : TZ \ Σ → Z.

(b) A form ω ∈ Ωj(X) is an intersection differential form of perversity
q if both ω and dω have perversity q. We denote by (Ω•

q(X), d) the
complex of intersection differential forms of perversity q.

The complex (Ω•
q(X), d) computes the intersection cohomology of X with

perversity p (see [14, Section 1.2]), H•(Ω•
q(X), d) ≃ IH•

p (X).

2.2.3. Intersection differential forms admitting a lift

We denote by (Ω•(X̃), d) the de Rham complex of smooth differential
forms on the smooth manifold X̃. We denote by (Ω•

lift(X), d) ⊂ (Ω•(X), d)
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the subcomplex of smooth forms ω on the regular stratum Xsm admitting
a lift ω̃ ∈ Ω•(X̃), i.e. (θ|θ−1(Xsm))∗ω = ω̃|θ−1(Xsm), where by ω̃|θ−1(Xsm)

we denote the pull back of ω̃ via the inclusion map θ−1(Xsm) ⊂ X̃. Note
that, by continuity of ω̃ and density of θ−1(Xsm) in X̃, the lift ω̃ of a form
ω ∈ Ω•

lift(X) is unique.

Definition 2.3. — We denote by (K•
q(X), d) ⊂ (Ω•

q(X), d) the subcom-
plex of intersection differential forms ω of perversity q which admit a lift,
i.e. ω ∈ Ω•

lift(X).

By associating to each form ω ∈ K•
q(X) its lift ω̃ ∈ Ω•(X̃), the com-

plex (K•
q(X), d) can be seen as a subcomplex of the de Rham complex

(Ω•(X̃), d). The complex (K•
q(X), d) computes the intersection cohomol-

ogy of X with perversity p (see [11, page 212]),

(2.18) H•(K•
q(X), d) ≃ IH•

p (X).

Let L be a stratified pseudomanifold of dimension n − 1. We denote by
(K•

q,tr(L), d) the following subcomplex of (K•
q(L), d):

(2.19) Ki
q,tr(L) =


Ki

q(L) if i < qn,

ker d if i = qn,

0 if i > qn.

By [11, Proposition C.IV.2.3 and page 212],

(2.20) H•(K•
q,tr(L), d) ≃ IH•

p (cL).

Lemma 2.4. — Let ω ∈ Ω•(X) be a differential form admitting a lift
ω0 ∈ Ω•(X̃0) to X̃0, i.e. ω0|θ−1

0 (Xsm) = (θ0|θ−1
0 (Xsm))∗ω.

(a) If ω has perversity q, then ω0 also has perversity q.
(b) If ω0 has perversity q, then ω satisfies the perversity condition for

the perversity q and all non-minimal strata of X.

Proof. — To prove that a form α ∈ Ω•(X̃0) has perversity q, by conti-
nuity, it is enough to check the perversity condition (2.17) on the dense
subset X̃0 \ θ−1(Z0) of X̃0. The claim of the proposition follows from the
fact that the restriction of the folding map θ0 to a connected component
of X̃0 \ θ−1

0 (Z0) is an isomorphism of stratified spaces. □

3. Stratified anti-radial gradient-like vector fields

In this section we introduce the notion of a stratified anti-radial gradient-
like vector field on an abstract stratified space X with unfolding X̃. We
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assume in this section, that the abstract stratified space X is compact and
connected.

Section 3 is organised as follows: In Section 3.1 we first recall some stan-
dard notions on stratified vector fields: the notion of a controlled stratified
vector field is an important tool in Thom and Mather’s theory; the notion
of a totally anti-radial vector field is inspired from the radial vector fields as
introduced by Marie-Hélène Schwartz [75] (for Whitney stratified spaces) in
her study of characteristic classes for singular spaces. In Section 3.2 we in-
troduce the notion of unfolding of a stratified vector field. In Section 3.3 we
introduce the notion of a stratified anti-radial gradient-like vector field and
study its main properties. The weaker notion of a stratified gradient-like
vector field has been introduced and studied in [48]. The main additional
feature of a stratified anti-radial gradient-like vector field is that it can be
unfolded to a Morse–Bott vector field on the unfolding X̃. This unfolding
property will be crucial for the construction of the “singular” Morse–Bott
type cochain complex figuring in the title of this article.

3.1. Controlled and totally anti-radial stratified vector fields

A stratified vector field ξ on an abstract stratified space X is a family
{ξZ : Z → TZ}Z∈S of smooth vector fields.

Definition 3.1.
(a) A stratified vector field on X is called controlled if for all pairs of

strata (Z,R) with Z < R and all x ∈ TZ ∩ R the following control
conditions are satisfied:

dπZξR(x) = ξZ(πZ(x)),(C5)
dρZξR(x) = 0.(C6)

A stratified vector field satisfying only the control condition (C5)
is called weakly controlled.

(b) A stratified vector field is called totally anti-radial if for each stra-
tum Z there exists a bounded non-negative function AZ : Z →
[0,∞), such that for all pairs of strata (Z,R) with Z < R and all
x ∈ TZ ,

(3.1) |dρZξR(x)| ⩽ AZ(πZ(x))ρZ(x) and dρZξR(x) ⩽ 0.

There is no canonical notion of continuity for stratified vector fields on
an abstract stratified space. However using the control conditions (C5)
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and (C6) one can show that a controlled stratified vector field is locally
integrable and its (local) flow is continuous, strata-wise smooth and con-
trolled (see [81, Lemma 2.3], [54, Proposition 10.1]). Weakly controlled,
totally anti-radial vector fields are locally integrable to a (local) weakly
controlled flow (see [71, Proposition 2.5.1]). Moreover total anti-radiality
ensures that trajectories do not leave a stratum in finite time, and more-
over, in positive infinite time flow lines can only go from a larger into a
smaller stratum.

3.2. Stratified vector fields admitting a sequence of unfoldings

From now on, we fix a sequence of unfoldings (2.9). We denote by E0 :=
θ−1

0 (Z0) ≃ S0 the exceptional set of the folding map θ0 : X̃0 → X.
Let ξ = {ξi}i=0,...,d be a stratified vector field on X. A stratified vector

field ξ̃0 = {ξ̃0
i }i=1,...,d on X̃0 is called an unfolding of the vector field ξ

under the folding map θ0 if

• For i = 1, . . . , d, ξ̃0
i is a smooth vector field on the stratum Z0

i ,
tangent to the exceptional set E0 ∩Z0

i and satisfying dθ0ξ̃
0
i = ξi ◦θ0

over Z0
i \ E0.

• ξ̃0
|E0

is a controlled lift of ξ0 under the proper controlled submersion
θ0|E0 : E0 → Z0, i.e. ξ̃0

|E0
is a controlled vector field on the stratified

space E0 and, for each stratum W of E0, dθ0|W ξ̃0
W = ξ0 ◦ θ0|W .

Not every stratified vector field on X admits an unfolding. However in
case it exists, by density, the unfolding is unique. Moreover, if ξ satisfies
the control condition (C5) (resp. (C6), resp. (3.1)) so does the unfolding ξ̃0.

Definition 3.2. — We say that a stratified vector field ξ admits a
sequence of unfoldings if there exist stratified vector fields ξ̃l over X̃ l, l =
0, . . . , d − 1, such that ξ̃l is an unfolding of ξ̃l−1 under the folding map
θl,l−1 : X̃ l → X̃ l−1.

Remark 3.3. — Let λ : X → R be a controlled cut-off function. By [11,
C.II.Lemma 2.1], for l = 0 . . . , d − 1, the composition λ ◦ θl : X̃ l → R is
also controlled. Let ξ be a weakly controlled vector field on X admitting a
sequence of unfoldings {ξ̃l}l. Then λ·ξ is also a weakly controlled vector field
admitting a sequence of weakly controlled unfoldings, namely {(λ◦θl) · ξ̃l}l.
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3.3. Stratified anti-radial gradient-like vector fields

Let ξ = {ξZ}Z∈S be a stratified vector field on an abstract stratified
space X. A point x ∈ Z with ξZ(x) = 0 is called a singularity (or singular
point) of ξ. We denote by Crit(ξ) the set of singular points of ξ.

Definition 3.4. — Let ξ be a stratified vector field and x ∈ Z∩Crit(ξ).
The point x is called a singularity of strong standard form of ξ if there exists
an open distinguished neighbourhood Ux of x in X and local coordinates
z1, . . . , zdim Z of Z such that the vector field ξ has normal form

(3.2) ξ|Ux
= −r ∂

∂r
+

m∑
i=1

zi
∂

∂zi
−

dim Z∑
i=m+1

zi
∂

∂zi

in the coordinates (z, φ, r). We call m = ind(x) = ind(x, ξ) the index of the
singular point x ∈ X.

Let ξ be a stratified weakly controlled, totally anti-radial vector field with
singularities of strong standard form. We denote by Critm(ξ), m = 0, . . . , n,
the set of singular points of ξ of index m. Since X is compact and since
singularities of strong standard form are isolated, the vector field ξ has
only finitely many singularities. Using the results mentioned in Section 3.1
and the compactness of X, one can show that by integrating the vector
field ξ one gets even a globally defined, continuous, strata-wise smooth
and weakly controlled flow Φ : X × R → X.

A point of X is called a wandering point of the flow Φ if there exists an
open neighbourhood V of the point as well as t0 ∈ R such that Φ(t, V )∩V =
∅ for |t| > t0.We denote by ΩΦ the set of non-wandering points of Φ. Clearly
Crit(ξ) ⊂ ΩΦ, but the converse does not hold in general.

Let us assume that Crit(ξ) = ΩΦ. Then, for x ∈ Z∩Crit(ξ), the unstable
set

(3.3) Wu(x) :=
{
y ∈ X

∣∣∣ lim
t→−∞

Φ(y, t) = x
}

⊂ Z

is an embedded submanifold (see [48, Proposition 5.1]). The stable set

(3.4) W s(x) :=
{
y ∈ X

∣∣∣ lim
t→∞

Φ(y, t) = x
}

⊂
⋃

Z⩽R

R

is an abstract stratified space with stratification and control data inherited
from those of X (see [48, Proposition 5.2]).

It follows from the total anti-radiality of the vector field ξ that the strata
of X are invariant for the flow Φ and that moreover in positive infinite time
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flow lines can only go from a larger into a smaller stratum. Therefore, for
x, y ∈ Crit(ξ), x ∈ Z, y ∈ R,

(3.5) Wu(x) ∩W s(y) ̸= ∅ =⇒ R ⩽ Z and Wu(x) ∩W s(y) ⊂ Z.

In view of (3.5) it is possible to define the Morse–Smale transversality
condition, also in this stratified context: We say that ξ satisfies the Morse–
Smale condition, if for all singular points x ∈ Z∩Crit(ξ) and y ∈ R∩Crit(ξ)
(R ⩽ Z) the manifolds Wu(x) and W s(y) ∩ Z intersect transversally, i.e.
we have

TwW
u(x)+Tw (W s(y) ∩ Z) = TwZ for all points w ∈ Wu(x)∩W s(y) ⊂ Z.

We denote by M(x, y) := (Wu(x) ∩W s(y)) /R the set of unparame-
terised trajectories starting in x and ending in y. The Morse–Smale
transversality condition implies that M(x, y) is a smooth manifold of di-
mension ind(x) − ind(y) − 1. In particular M(x, y) = ∅ if ind(x) ⩽ ind(y).

Definition 3.5. — A stratified vector field ξ on the abstract stratified
space X is called anti-radial gradient-like if it is weakly controlled, totally
anti-radial, with singularities of strong standard form and moreover the
following three conditions hold:

(a) ΩΦ = Crit(ξ).
(b) ξ satisfies the Morse–Smale condition.
(c) ξ admits a sequence of unfoldings {ξ̃l}l∈{0,...,d−1}.

Proposition 3.6. — Let ξ be a stratified anti-radial gradient-like vec-
tor field. We denote by {ξ̃l}l∈{0,...,d−1} the sequence of unfoldings of ξ.
Then

(a) For l ∈ {0, . . . , d−1} the weakly controlled, totally anti-radial vector
field ξ̃l induces a weakly controlled flow Φ̃l : X̃ l×R → X̃ l, satisfying

(3.6) θl(Φ̃l(x, t)) = Φ(θl(x), t)) for all x ∈ X̃ l and all t ∈ R.

Moreover for i, j ∈ {0, . . . , d− 1}, i < j,

(3.7) θj,i(Φ̃j(x, t)) = Φ̃i(θj,i(x), t)) for all x ∈ X̃j and all t ∈ R.

(b) For l ∈ {0, . . . , d−1} and x ∈ Crit(ξ), set Bl(x) := θ−1
l (x). We have

(3.8) Crit(ξ̃l) =
⋃

x∈Crit(ξ)

Bl(x).
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(c) For l ∈ {0, . . . , d− 1} and x ∈ Crit(ξ) the stable resp. unstable set
for Bl(x),

(3.9) W̃
s/u
l (x) :=

{
w ∈ X̃ l

∣∣∣ lim
t→±∞

Φ̃l(w, t) ∈ Bl(x)
}
,

are abstract stratified spaces.

Proof.

(a). — The unfolding ξ̃0 is weakly controlled and totally anti-radial with
respect to the induced control data on X̃0, hence ξ̃0 is locally integrable
to a weakly controlled, strata-wise smooth flow. Since the restriction of θ0
to the complement of the exceptional set E0 is a stratified covering and
the flow Φ is globally defined, the flow Φ̃0 induced from ξ̃0 is also globally
defined on X̃0 \ E0. On E0 the vector field ξ̃0 is the controlled lift under
a proper controlled submersion of a smooth vector field with global flow.
By [81, Lemma 2.4] the flow of Φ̃0 on E0 then also exists for all time t ∈ R.
Thus ξ̃0 induces a globally defined stratified flow Φ̃0 : X̃ × R → X̃ and
E0 is invariant under the flow Φ̃0. The argument above can be iterated
to show global existence of the flow Φ̃l : X̃ l × R → X̃ l induced from ξ̃l,
l = 0, . . . , d − 1. By definition of the unfolding of a stratified vector field,
the vector fields ξ, ξ̃i, ξ̃j for i, j ∈ {0, . . . , d − 1} are related, hence (3.6)
and (3.7) hold.

(b). — Singular points of ξ̃l are precisely the fixed points of the flow Φ̃l.
Therefore, using the commutativity (3.6), Crit(ξ̃l) ⊂ ∪x∈Crit(ξ)Bl(x). Let
x ∈ Crit(ξ) ∩Zi, i > l. For a small enough open neighbourhood Ux ⊂ X of
x the preimage θ−1

l (Ux) consists of 2l+1 disjoint copies of Ux, θl|θ−1
l

(Ux) is
a covering map, and dθlξ̃

l = ξ ◦ θl on θ−1
l (Ux). Therefore Bl(x) ⊂ Crit(ξ̃l).

In case x ∈ Crit(ξ) ∩ Zi, i < l (resp. i = l), we have that for a dis-
tinguished neighbourhood Ux the preimage θ−1

l (Ux) is a disjoint union of
2i connected components, which are isomorphic (as stratified spaces) to
Rdim Zi × (−ϵ, ϵ) × L̃l−i−1

x (resp. to Rdim Zi × (−ϵ, ϵ) × Lx). It follows from
the definition of a singularity of strong standard form that the restric-
tion of ξ̃l to these connected components can be written as in the normal
form (3.2). Hence we deduce Bl(x) ⊂ Crit(ξ̃l).

(c). — The claim follows using the normal form (3.2) of a singularity of
strong standard form and arguing as in the proof of [48, Propositions 5.1
and 5.2]. □

Let ξ be a stratified anti-radial gradient-like vector field. For x, y ∈
Crit(ξ) we denote by M̃l(x, y) :=

(
W̃u

l (x)∩W̃ s
l (y)

)
/R the trajectory space
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of unparameterised trajectories of Φ̃l starting in Bl(x) and ending in Bl(y).
Following the flow as t → ±∞, we get endpoint maps

π̃s
x,y,l : M̃l(x, y) −→ Bl(y),

π̃u
x,y,l : M̃l(x, y) −→ Bl(x).

(3.10)

Similarly we have natural maps

(3.11) π̃
s/u
x,l : W̃ s/u

l (x) −→ Bl(x).

Proposition 3.7. — Let ξ be a stratified anti-radial gradient-like vec-
tor field on a compact abstract stratified space X. For x, y ∈ Crit(ξ) and
all w ∈ Bl(x), the intersection of W̃ s

l (y) and (π̃u
x,l)−1(w) is transverse (in

the stratum, where it takes place).

Proof. — Since the flow preserves transverse intersections, it is enough
to check the transversality condition in a neighbourhood of Bl(x), where
the vector field can be written in normal form (3.2). The latter follows
easily using the Morse–Smale property for ξ. □

Similarly to the smooth situation (see [6, page 140]), the transversality
condition in Proposition 3.7 together with the properties of the unfolding
process, has the following important consequences

Corollary 3.8. — The trajectory spaces M̃l(x, y) are stratified spaces
with stratification and control data inherited from those of X̃ l. Moreover,
the endpoint maps π̃u

x,y,l are locally trivial stratified fibre bundles.

3.4. Existence of stratified anti-radial gradient-like vector fields.
Morse and Morse–Bott function

An important tool in the theory of abstract stratified spaces is the exis-
tence of controlled lifts of smooth vector fields under controlled submersions
(see [81, Lemma 2.4]). One can easily prove a stronger version of this lifting
property, namely the existence of controlled lifts which in addition admit a
sequence of unfoldings. Using this stronger lifting property and Remark 3.3
one can modify the inductive proof of the existence of stratified gradient-
like vector fields [48, Proposition 6.4] to get

Proposition 3.9. — Let X be a compact abstract stratified space.
Then there exists a stratified anti-radial gradient-like vector field on X.
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For a strata-wise smooth function f : X → R and x ∈ Z, we denote by
dfx := d(f|Z)x. Generalising [78, Theorem B] one can prove the existence of
a self-indexing “Morse function” f : X → R with negative pseudo-gradient
vector field ξ:

Proposition 3.10. — There exists a continuous strata-wise smooth
function f : X → R with the following properties:

(a) Let x ∈ Z. Then

(3.12) dfx(ξZ) < 0 if x ̸∈ Crit(ξZ),
dfx = 0 if x ∈ Crit(ξZ).

(b) f is self-indexing, i.e. f(x) = k for x ∈ Critk(ξ).
(c) f̃ := f ◦ θ : X̃ → R is a smooth Morse–Bott function.

4. The Morse–Bott type cochain complex computing
intersection cohomology

In this section X denotes an n-dimensional compact stratified pseudo-
manifold according to our conventions at the beginning of Section 2.2; ξ is
a stratified anti-radial gradient-like vector field on X as in Definition 3.5.
Moreover p and q denote complementary perversities.

The aim of this section is to construct the Morse–Bott type cochain
complex (C•

p (X, ξ), ∂•) associated to ξ and the perversity p, and which
computes the intersection cohomology of X.

Section 4 is organised as follows: In view of the results in Sections 3.3
and 3.4 the unfolding vector field ξ̃ := ξ̃d−1 on X̃ is a smooth Morse–
Bott vector field satisfying the Morse–Bott transversality condition of [6].
In Section 4.1 we recall the definition of the Morse–Bott cochain complex
(C•(X̃, ξ̃), ∂•) of Austin and Braam [6]: the complex (C•(X̃, ξ̃), ∂•) is gen-
erated by the de Rham complexes of the critical submanifolds of ξ̃.

In Section 4.2, we construct the Morse–Bott type cochain complex
(C•

p (X, ξ), ∂•). The main idea is to replace the de Rham complex of the
critical submanifolds in Austin and Braam’s construction with the com-
plex of liftable intersection differential forms (K•

q,tr(Lx), d), x ∈ Crit(ξ).
The main technical difficulty is to show the well-definedness of the bound-
ary operator ∂•. For this we need to show that the boundary operator maps
liftable intersection differential forms of perversity q to liftable intersection
differential forms of perversity q.

In Section 4.3 we prove the Main Theorem 1, i.e. that the Morse–Bott
type cochain complex (C•

p (X, ξ), ∂•) computes the intersection cohomology
IH•

p (X).
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4.1. The smooth Morse–Bott cochain complex
associated to (X̃, ξ̃)

The vector field ξ̃ := ξ̃d−1 is a smooth vector field on the smooth manifold
X̃. We denote by Φ̃ := Φ̃d−1 : X̃ × R → X̃ the smooth flow induced
from ξ̃. For x ∈ Crit(ξ) we write shortly B(x) := Bd−1(x). We denote
by W̃u/s(x) := W̃

u/s
d−1(x) the unstable/stable manifold of B(x). For x, y ∈

Crit(ξ) we denote by M̃(x, y) := M̃d−1(x, y) = (W̃u(x) ∩ W̃ s(y))/R the
space of unparameterised trajectories of the flow Φ̃ starting in B(x) and
ending in B(y) and by π̃u/s

x,y the endpoint maps:

π̃u
x,y := π̃u

x,y,d−1 : M̃(x, y) −→ B(x),

π̃s
x,y := π̃s

x,y,d−1 : M̃(x, y) −→ B(y).
(4.1)

In view of the results in Sections 3.3 and 3.4, all assumptions needed
in [6] for the construction of the Morse–Bott cochain complex are satisfied
(see [6, pages 140-141]), more precisely:

Proposition 4.1. — The following holds for the flow Φ̃ : X̃ × R → X̃

induced from ξ̃:
(a) The set of singular points of ξ̃ is given by

(4.2) Crit(ξ̃) :=
{
w ∈ X̃

∣∣∣ ξ̃(w) = 0
}

=
⋃

x∈Crit(ξ)

B(x).

For x ∈ Crit(ξ), the critical submanifold B(x) is of Morse–Bott
type with trivial unstable normal bundle of rank ind(x). The critical
submanifolds B(x), x ∈ Crit(ξ), and their unstable normal bundles
are orientable.

(b) For x, y ∈ Crit(ξ) with ind(x) ⩽ ind(y), we have M̃(x, y) = ∅.
(c) For all x, y ∈ Crit(ξ) and all w ∈ B(x), (π̃u

x)−1(w) and W̃ s(y)
intersect tranversally.

As a consequence of the transversality condition in Proposition 4.1(c)
the trajectory space M̃(x, y), x, y ∈ Crit(ξ), is a smooth manifold ad-
mitting a compactification (in the topology of convergence up to broken
trajectories) to a manifold with corners (see [6, Lemma 3.3]) and moreover,
the endpoint map π̃u

x,y : M̃(x, y) → B(x) is a locally trivial fibre bundle
(see [6, page 140]). We fix orientations on all B(x)’s and their unstable
normal bundles. Together with the flow, this induces orientations on the
trajectory manifolds M̃(x, y). Integration of smooth forms along the fibres
of π̃u

x,y is well-defined and will be denoted by (π̃u
x,y)∗.
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We now recall the construction of Austin and Braam [6]: For x ∈ Crit(ξ),
we denote by (Ω•(B(x)), d) the de Rham complex of the smooth compact
manifold B(x). Let x, y ∈ Crit(ξ). Let σ̃xy be the linear map defined by

(4.3)
σ̃xy : Ω•(B(y)) −→ Ω•(B(x))

ω 7−→ σ̃xy(ω) := (π̃u
x,y)∗(π̃s

x,y)∗ω.

For ω ∈ Ωj(B(y)), we have that σ̃xy(ω) ∈ Ωj−ind(x)+ind(y)+1(B(x)).

Definition 4.2. — The Morse–Bott cochain complex (C•(X̃, ξ̃), ∂•) as-
sociated to ξ̃ is defined by

(4.4) Ck(X̃, ξ̃) :=
⊕

i+j=k

Ci,j(X̃, ξ̃) :=
⊕

i+j=k

⊕
ind(x)=i

Ωj(B(x)).

The boundary operator ∂• =
⊕
∂•

t is defined by

(4.5) ∂t : Ci,j(X̃, ξ̃) −→ Ci+t,j−t+1(X̃, ξ̃),

where for y ∈ Criti(ξ), ω ∈ Ωj(B(y)),

(4.6) ∂tω =


dω for t = 0,
(−1)j

∑
ind(x)=i+t

σ̃xy(ω) for t > 0.

To prove that (C•(X̃, ξ̃), ∂•) is indeed a complex, one has to show that
∂2 = 0, see [6, Proposition 3.5]. More precisely using the compactification
of the spaces of gradient lines, one can show that for k ⩾ 0,

(4.7)
k∑

t=0
∂k−t∂t = 0.

Remark 4.3. — In case that all critical submanifolds of a smooth Morse–
Bott vector field are just isolated singular points, i.e. the vector field is
gradient-like, the Morse–Bott cochain complex is just the usual Morse–
Thom–Smale cochain complex. In particular, in our situation, we have that,
for x, y ∈ Crit(ξ) ∩ Zd the map (4.3) is the trivial map unless ind(x) =
ind(y) + 1. In the latter case, σ̃xy is just given by counting with signs
trajectories of ξ starting in x and ending in y. More precisely, let us denote
by B̂(x) ≃ {x} (resp. by B̂(y) ≃ {y}) the connected component of B(x)
(resp. of B(y)) included in X̂. Then

(4.8)
σxy := σ̃

xy|Ω•(B̂(y)) : Ω•(B̂(y)) ≃ R −→ Ω•(B̂(x)) ≃ R

1 7−→ σ̃xy(1) = ±n(x, y),

where n(x, y) is the number of trajectories between x and y counted with
signs (see e.g. [42, Section c] for more details).
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The Morse–Bott cochain complex (C•(X̃, ξ̃), ∂•) is filtered by the index
of singular points of ξ,

(4.9) 0 ⊂ FkC
k(X̃, ξ̃) ⊂ · · · ⊂ F0C

k(X̃, ξ̃) = Ck(X̃, ξ̃),

where

(4.10) FmC
k(X̃, ξ̃) :=

⊕
i+j=k,i⩾m

Ci,j(X̃, ξ̃).

Let f : X → R be a self-indexing function, s.th. f̃ = f ◦ θ : X̃ → R
is a smooth self-indexing Morse–Bott function as in Proposition 3.10. For
m ∈ N0, set Ỹm := f̃−1((m − 1/2,∞)) ⊂ X̃. We denote by (Ω•

c(Ỹm), d)
the de Rham complex of smooth compactly supported forms on Ỹm. The
de Rham complex (Ω•(X̃), d) computes the de Rham cohomology H•

dR(X̃)
and is filtered by

(4.11) 0 ⊂ Ω•
c(Ỹn) ⊂ Ω•

c(Ỹn−1) ⊂ · · · ⊂ Ω•
c(Ỹ0) = Ω•(X̃).

For x ∈ Crit(ξ), the endpoint map π̃u
x := π̃u

x,d−1 : W̃u(x) → B(x),
π̃u

x(w) = limt→−∞ Φ̃(w, t), is a locally trivial fibre bundle. Actually in our
situation it follows from the normal form (3.2) of a singularity of strong
standard form and the unfolding process that the unstable fibre bundle
is a trivial bundle. By [6, Lemma 3.3] the unstable manifold W̃u(x) can
be compactified to a manifold with corners. Integration of smooth forms
along the fibres of the fibre bundle π̃u

x is well-defined and will be denoted
by (π̃u

x)∗. For ω ∈ Ωk(X̃), we denote by ω|W̃ u(x) the pullback of ω via the
inclusion map W̃u(x) ⊂ X̃. We define the linear map Ψ̃i by

(4.12)
Ψ̃i : Ωk(X̃) −→ C̃i,k−i(X̃, ξ̃)

ω 7−→ Ψ̃i(ω) =
∑

x∈Criti(ξ)

(π̃u
x)∗(ω|W̃ u(x)).

Note that for ω ∈ Ω•
c(Ỹm) and i < m, we have Ψ̃i(ω) = 0. Hence

(⊕iΨ̃i)(ω) ∈ FmC
•(X̃, ξ̃).

Theorem 4.4 ([6, Theorems 3.1 and 3.8, Lemma 3.6]). — The map

(4.13) Ψ̃ =
⊕

i

Ψ̃i : (Ω•(X̃), d) −→ (C•(X̃, ξ̃), ∂•)

is a map of filtered cochain complexes inducing an isomorphism

(4.14) H•
dR(X̃) = H•(Ω•(X̃), d) ≃ H•(C•(X̃, ξ̃), ∂•).
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4.2. The Morse–Bott type cochain complex (C•
p (X, ξ), ∂•)

4.2.1. Definition of the Morse–Bott type cochain complex (C•
p (X, ξ), ∂•)

Before defining the complex (C•
p (X, ξ), ∂•) in Definition 4.8, we need

several preparatory results (Lemmas 4.5 and 4.6, Proposition 4.7) to tackle
the well-definedness of the boundary operator ∂•.

Let x, y ∈ Crit(ξ), with x ̸= y, x ∈ Zl and y ∈ Zk and such that
M(x, y) ̸= ∅. By total anti-radiality of the vector field ξ, we have k ⩽ l.
We assume that l < d.

We consider the l-th unfolding X̃ l of X. Recall that by definition of un-
foldings, Bl(x) is a disjoint union of copies of Lx (see end of Section 2.1.3).
If k = l, then Bl(y) is a disjoint union of copies of Ly. If k < l, then Bl(y)
is a disjoint union of copies of the (l − k − 1)-th unfolding of Ly. Let us
denote by X̂ l := θd−1,l(X̂) the marked leaf of X̃ l. We denote by B̂l(x) ≃ Lx

(resp. by B̂l(y)) the connected component of Bl(x) (resp. of Bl(y)) with
B̂l(x) ⊂ X̂ l (resp. with B̂l(y) ∩ X̂ l ̸= ∅). We have used the notation B̂(x),
B̂(y) for the corresponding connected components of B(x), B(y) in X̂.

Recall that for a link L, we have an injective map of cochain complexes
(Ω•

lift(L), d) → (Ω•(L̃), d) (resp. (K•
q(L), d) → (Ω•(L̃), d)) by sending a

liftable form ω to its unique lift ω̃. In the following, we will often tac-
itly identify (Ω•

lift(L), d) (resp. (K•
q(L), d)) with the image subcomplex in

(Ω•(L̃), d). In particular, (Ω•
lift(B̂l(x)), d) = (Ω•

lift(Lx), d) ⊂ (Ω•(B̂(x)), d) =
(Ω•(L̃x), d). Note also that, by uniqueness of lifts, we can identify liftable
forms on a link L with liftable forms on some unfolding of L. Hence
(Ω•

lift(B̂l(y)), d) = (Ω•
lift(Ly), d).

Lemma 4.5. — The map σ̃xy defined in (4.3) restricts to a linear map

σ̂xy : Ω•
lift(Ly) = Ω•

lift(B̂l(y)) −→ Ω•
lift(Lx) = Ω•

lift(B̂l(x)).(4.15)

Proof. — The result is essentially a consequence of the construction of
the unfolding (see Section 2.1.3) and of the commutativity of flows (3.7):
The stratified spaces X̃ l, M̃l(x, y), Bl(x), Bl(y) all carry stratifications
and control data which are induced from the stratification of X and are
therefore compatible. Denoting by El the exceptional set of the folding map
θl,l−1 : X̃ l → X̃ l−1, we have Bl(x) ⊂ El. We can also identify M̃l(x, y)
with a stratified subset of El ∩ X̃ l, namely M̃l(x, y) ≃ W̃u

l (x) ∩ W̃ s
l (y) ∩

(θl ◦ f)−1(a), where f is a Morse function as in Section 3.4 and a ∈
(f(y), f(x)) is a regular level. The exceptional set El is flow invariant,
the flow on El is controlled (not only weakly controlled). The endpoint

ANNALES DE L’INSTITUT FOURIER



MORSE–BOTT COMPLEX AND BISMUT–ZHANG TORSION 679

maps π̃s/u
x,y,l defined in (3.10) are strata-preserving and strata-wise smooth.

Moreover, by Corollary 3.8, π̃u
x,y,l is a locally trivial stratified fibre bundle.

We denote by M̂l(x, y) := M̃l(x, y) ∩ X̂ l, i.e. the space of trajectories
between B̂l(x) and B̂l(y). We denote by M̂l(x, y)sm ⊂ M̂l(x, y) the top
stratum of the stratified space M̂l(x, y); M̂l(x, y)sm parameterises the tra-
jectories between B̂l(x) and B̂l(y) which also lie in X̃ l,sm. We denote by

(4.16) π̂s
x,y,l : M̂l(x, y)sm −→ B̂l(y) ∩ X̃ l,sm

resp. by

(4.17) π̂u
x,y,l : M̂l(x, y)sm −→ B̂l(x) ∩ X̃ l,sm

the restriction of the endpoint maps π̃s/u
x,y,l.

Similarly, we denote by M̂(x, y) the subset of M̃(x, y) parameterising
trajectories between B̂(x) and B̂(y); these trajectories lie in X̂. We denote
by π̂u

x,y : M̂(x, y) → B̂(x), π̂s
x,y : M̂(x, y) → B̂(y) the restriction of the

smooth endpoint maps π̃u/s
x,y . From (3.7), we get a commutative diagram

(4.18)

π̂u
x,y : M̂(x, y) −→ B̂(x)yθd−1,l

yθd−1,l

π̃u

x,y,l|M̂l(x,y)
: M̂l(x, y) −→ B̂l(x),

and similarly for the stable endpoint maps. From the commutativity of the
diagram (4.18) and by the well-definedness of integration along fibres of
π̂u

x,y, integration along fibres of π̂u
x,y,l is well-defined on forms on M̂l(x, y)sm

admitting a smooth lift to M̂(x, y).
Let α ∈ Ω•

lift(B̂l(y)) = Ω•
lift(Ly) and denote by α̃ ∈ Ω•(B̂(y)) its unique

lift. By the commutativity of the diagram (4.18) and its stable counterpart,
the form (π̂u

x,y)∗(π̂s
x,y)∗α̃ ∈ Ω•(B̂(x)) is the lift of the form σ̂xy(α) :=

(π̂u
x,y,l)∗(π̂s

x,y,l)∗α ∈ Ω•(B̂l(x)) = Ω•(Lx). □

LetW be a stratum of X̃ l with tubular neighbourhood TW and projection
πW : TW → W . Set T sm

W := TW ∩ X̃ l,sm. Since, the restriction of the flow
to El is controlled, the sets El ∩ TW and El ∩ T sm

W are also preserved by
the flow. Hence, again using the identification explained in the proof of
Lemma 4.5 above, we have commutative diagrams

(4.19)
T sm

W ∩ M̂l(x, y) πW−−→ W ∩ M̂l(x, y)yπ̂s
x,y,l

yπ̃s
x,y,l

T sm
W ∩ B̂l(y) πW−−→ W ∩ B̂l(y)
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and

(4.20)
T sm

W ∩ M̂l(x, y) πW−−→ W ∩ M̂l(x, y)yπ̂u
x,y,l

yπ̃u
x,y,l

T sm
W ∩ B̂l(x) πW−−→ W ∩ B̂l(x).

All maps in the unstable diagram (4.20) are locally trivial fibre bundles.

Lemma 4.6. — Let q ∈ {0, . . . , codimW} and let α ∈ Ω•
lift(B̂l(y)) =

Ω•
lift(Ly) be a form of perversity q with respect to the smooth submersion

πW
|B̂l(y)∩T sm

W

. Then σ̂xy(α) ∈ Ω•
lift(B̂l(x)) = Ω•

lift(Lx) is a form of perversity

q with respect to the smooth submersion πW
|B̂l(x)∩T sm

W

.

Proof. — We denote by Γ(ker(dπW )) the vector space of smooth sections
of the vector bundle ker(dπW ). By commutativity of the diagram (4.19),
we have πW ◦ π̂s

x,y,l = π̃s
x,y,l ◦ πW . Therefore for v0, . . . , vq ∈ Γ(ker dπW ),

also dπ̂s
x,y,l(v0), . . . dπ̂s

x,y,l(vq) ∈ Γ(ker(dπW )). By definition of the pullback
of forms, and since the form α ∈ Ω•(B̂l(y)) has perversity q with respect
to πW

|B̂l(y)∩T sm
W

we get

(4.21) ιv0 . . . ιvq
(π̂s

x,y,l)∗α = ι
dπ̂s

x,y,l
(v0) . . . ιdπ̂s

x,y,l
(vq)α = 0.

Hence (π̂s
x,y,l)∗α ∈ Ω•

lift(M̂l(x, y)) is a form of perversity q with respect to
the submersion πW

|M̂l(x,y)∩T sm
W

. By commutativity of the diagram (4.20),

integration along the fibres of π̂u
x,y,l preserves the perversity of a form.

Hence (π̂u
x,y,l)∗(π̂s

x,y,l)∗α ∈ Ω•
lift(B̂l(x)) is a form of perversity q with respect

to the submersion πW
|B̂l(x)∩T sm

W

. □

Proposition 4.7. — The map (4.15) restricts to linear maps

(4.22) σxy : K•
q(Ly) −→ K•

q(Lx)

resp.

(4.23) σxy : K•
q,tr(Ly) −→ K•

q,tr(Lx).

Proof. — The first claim follows from Lemmas 2.4 and 4.6, [6, Proposi-
tion 3.5] (more precisely using (4.7)) and the anti-radiality of ξ.

We now prove the second claim: We can assume w.l.o.g. that the strata
Zk and Zl are connected. We have to distinguish two cases.
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Case 1. — k = l, i.e. the critical points x and y lie in the same (con-
nected) stratum. Therefore Lx ≃ Ly. Let 0 ̸= α ∈ K•

q,tr(Ly). By defini-
tion (2.19) of K•

q,tr(Ly) we have that

(4.24) deg(α)⩽qdimLy+1 and moreover dα=0 in case deg(α)=qdimLy+1.

From (4.22) we know already that σxy(α) ∈ K•
q(Lx). In case ind(x) −

ind(y) = 1, by [6, Proposition 3.5], the map σxy is a cochain map. Therefore
condition (4.24) for the form α does imply that the same condition holds
for σxy(α) as well, hence σxy(α) ∈ K•

q,tr(Lx). In case ind(x) − ind(y) > 1,
deg(σxy(α)) < deg(α), and hence again σxy(α) ∈ K•

q,tr(Lx).

Case 2. — k < l. Let X̃k be the k-th unfolding of X and let B̂k(y) ≃ Ly

be the marked connected component of Bk(y). We denote by Ŵ s/u
k (y) the

stable resp. unstable set of B̂k(y) w.r.t. the flow Φ̃k. Since y ∈ Crit(ξ) is
a singularity of strong standard form, there exists an open neighbourhood
U ≃ Rind(y) ×Rdim Zk−ind(y) ×Ly ×R of B̂k(y) in X̃k such that Ŵ s

k (y)∩U ≃
{0} ×Rdim Zk−ind(y) ×Ly ×R and B̂k(y) ≃ {0} × {0} ×Ly × {0}. Let W :=
Ly ∩ Zl be the stratum of Ly corresponding to the stratum Zl of X. For a
point in W there exists a distinguished neighbourhood V ⊂ Ly, with V ≃
Rdim Zl−dim Zk−1 × cLx. We denote by (zu, zs, φ, r) the local coordinates in
U ′ ⊂ U , U ′ ≃ Rind(y) × Rdim Zk−ind(y) × V × R, where z = (zu, zs) are the
coordinates in Rind(y) × Rdim Zk−ind(y), r is the distance from the stratum
Zk and φ = (zl, φl, rl) are the local coordinates in V . A form of perversity
q on the top stratum of Ŵ s

k (y) can be written (locally in U ′ ∩ Ŵ s
k (y)) as a

linear combination of forms dzs
I ∧dφJ ∧dr and dzs

I ∧dφJ ; where dφJ is of the
form dzl

J1
∧dφl

J2
∧drl (resp. dzl

J1
∧dφl

J2
) and I, J , J1, J2 are multi-indices.

The perversity condition imposes restrictions on the multi-indices J , J1, J2.
In particular, the fact that the form dzs

I ∧dφJ with dφJ = dzl
J1

∧dφl
J2

∧drl

(resp. dφJ = dzl
J1

∧ dφl
J2

) has perversity qcodim Zk
l

= qcodim W = qdim Lx+1

with respect to the projection TZk
l

∩Ŵ s
k (y)∩ X̃k,sm → Zk

l ∩Ŵ s
k (y), implies

that

(4.25) |J2|+1 ⩽ qcodim W = qdim Lx+1 (resp. |J2| ⩽ qcodim W = qdim Lx+1).

Note that under integration of dzs
I ∧ dφJ ∧ dr (resp. of dzs

I ∧ dφJ) along
the fibres of π̂u

x,y,l, only the (lift of the) form dφl
J2

survives.
Let now α ∈ K•

q(Ly); we still denote by the same letter its lift to
B̂l(y). As in the proof of Lemma 4.6, one can show that (π̂s

x,y,l)∗(α),
(π̂s

x,y,l)∗(dα), σxy(α) and σxy(dα) also have perversity q. From the above
discussion (in particular from (4.25)) and the definition of σxy, we deduce
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that deg σxy(α) ⩽ qdim Lx+1 and deg dσxy(α) = deg σxy(dα) ⩽ qdim Lx+1,
which implies σxy(α) ∈ K•

q,tr(Lx). □

For x ∈ Crit(ξ)∩Zd we have used the notation B̂(x) := θ−1(x)∩X̂ ≃ {x}.
We set K•

q,tr(Lx) = K0
q,tr(Lx) := Ω0(B̂(x)) = R. For x, y ∈ Crit(ξ) ∩ Zd we

have defined σxy : K•
q,tr(Ly) = Ω•(B̂(y)) → K•

q,tr(Lx) = Ω•(B̂(x)) as the
restriction of the map σ̃xy (see (4.8)). By Remark 4.3, σxy is just given by
counting trajectories of Φ̃ between x and y with sign.

Definition 4.8. — To the stratified anti-radial gradient-like vector field
ξ on X and the perversity p we associate the well-defined complex
(C•

p (X, ξ), ∂•), defined by

(4.26) Ck
p (X, ξ) :=

⊕
i+j=k

Ci,j
p (X, ξ) :=

⊕
i+j=k

⊕
ind(x)=i

Kj
q,tr(Lx),

for k = 0, . . . , n. The boundary operator ∂• = ⊕∂•
t is defined by

(4.27) ∂t : Ci,j
p (X, ξ) −→ Ci+t,j−t+1

p (X, ξ),

where for α ∈ Kj
q,tr(Ly), ind(y) = i,

(4.28) ∂tα =


dα for t = 0,
(−1)j

∑
ind(x)=i+t

σxy(α) for t > 0.

Proof. — Let us denote by (C̃•
p , ∂

•) the subcomplex of (C•(X̃, ξ̃), ∂•)
generated by K•

q,tr(Lx) ⊂ Ω•(B′(x)), where x ∈ Crit(ξ) and B′(x) runs over
all connected components of B(x). The fact, that (C̃•

p , ∂
•) is a subcomplex,

follows arguing as in Lemmas 4.5 and 4.6 and Proposition 4.7. By total anti-
radiality of ξ, there is a subcomplex (D•, ∂•) of (C̃•

p , ∂
•), which is generated

by K•
q,tr(Lx) ⊂ Ω•(B′(x)), where x ∈ Crit(ξ), and B′(x) now only runs over

all connected components of B(x) in X̃ \ X̂. The complex (C•
p (X, ξ), ∂•)

can be identified with the quotient complex C̃•
p/D

•. □

Remark 4.9. — As mentioned in the introduction, for spaces with iso-
lated singularities, a (homological) complex (Cq

•(X,−ξ), ∂•) associated to
the radial gradient-like vector field −ξ and a perversity q has already been
defined in [49, 50]. The complex (Cq

•(X,−ξ), ∂•) defined in [49, 50] is a
finite dimensional subcomplex of the complex constructed here,
(Cq

•(X,−ξ), ∂•) ⊂ (Cn−•
p (X, ξ), ∂n−•).
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4.2.2. Filtration of the complex (C•
p (X, ξ), ∂•)

The complex (C•
p (X, ξ), ∂•) inherits a filtration by the index of singular

points of ξ,

(4.29) 0 ⊂ FkC
k
p (X, ξ) ⊂ · · · ⊂ F0C

k
p (X, ξ) = Ck

p (X, ξ),

where

(4.30) FmC
k(X, ξ) :=

⊕
i+j=k,i⩾m

Ci,j
p (X, ξ).

The graded complex associated to the filtered complex (C•
p (X, ξ), ∂•) is

Gk
m := FmC

k
p (X, ξ)/Fm+1C

k
p (X, ξ) = Cm,k−m

p (X, ξ)

=
⊕

x∈Critm(ξ)

Kk−m
q,tr (Lx),(4.31)

with boundary given by the de Rham differential. From (2.20) and (4.31),
we get for the E1-term of the spectral sequence associated to the filtered
chain complex (C•

p (X, ξ), ∂•)

(4.32)

Em,k
1 = Hm+k(G•

m, d) =

 ⊕
x∈Critm(ξ)

Hk(K•
q,tr(Lx), d)


≃

 ⊕
x∈Critm(ξ)∩Σ

IHk
p (cLx)

⊕

 ⊕
x∈Critm(ξ)∩Xsm

Hk({x})

 .

4.3. The Morse–Bott type cochain complex (C•
p (X, ξ), ∂•)

computes intersection cohomology

In this section, by adapting the proof of [6, Theorems 3.8] to the singular
situation and taking into account the properties of intersection cohomol-
ogy, we prove the Main Theorem 1, i.e. that the Morse–Bott type cochain
complex (C•

p (X, ξ), ∂•) computes the intersection cohomology IH•
p (X).

4.3.1. Filtration of the complex (K•
q(X), d)

For m ∈ N0, we denote by Nm := f−1((−∞,m − 1/2)) and by Ym :=
f−1((m − 1/2,∞)) = X \ Nm. The complex of liftable intersection forms
(K•

q(X), d) is filtered by

(4.33) 0 ⊂ Kk
q,c(Yn) ⊂ Kk

q,c(Yn−1) ⊂ · · · ⊂ Kk
q,c(Y0) = Kk

q (X),
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where (K•
q,c(Ym), d) ⊂ (K•

q(X), d) denotes the subcomplex of the complex
of intersection forms, whose lifts are compactly supported in θ−1(Ym). We
denote byG′•

m = K•
q,c(Ym)/K•

q,c(Ym+1),m ∈ N0, the graded complex associ-
ated to the filtration (4.33). The short exact sequence of cochain complexes

(4.34) 0 −→ (K•
q,c(Ym+1), d) −→ (K•

q,c(Ym), d) −→ (G′•
m, d) −→ 0

induces a long exact sequence in cohomology related to the exact sequence
in intersection cohomology of the triple (X,Nm+1, Nm) as follows

(4.35)
. . . Hi(K•

q,c(Ym+1), d) −→Hi(K•
q,c(Ym), d) −→ Hi(G′•

m, d) . . .

↓ ↓ ↓
. . . IHi

p(X,Nm+1) −→ IHi
p(X,Nm) −→ IHi

p(Nm+1, Nm) . . .

The first two vertical maps in (4.35) are isomorphisms and hence, by Five
Lemma, Hi(G′•

m, d) ≃ IHi
p(Nm+1, Nm).

Let x ∈ Crit(ξ) and Z be the stratum containing x. Let Dx ⊂ Z be
a small open ball in Z centred around x, such that πZ|π−1

Z
(Dx) is trivial,

i.e. we have an isomorphism of stratified spaces π−1
Z (Dx) ≃ Dx × cLx and

ξ|π−1
Z

(Dx) has normal form (3.2). We denote by Du
x := Wu(x) ∩ Dx ⊂ Z

the local unstable disc of x. Using the stratified flow Φ we get a stratified
deformation retract of the pair (Nm+1, Nm) into the pair

(4.36) (Nm ∪Hm, Nm) ,

where

(4.37) Hm ≃

 ⋃
x∈Critm(ξ)∩Σ

(Du
x × cLx)

 ∪

 ⋃
x∈Critm(ξ)∩Xsm

Du
x

 .

Hence, by the excision formula for intersection cohomology (see [32, Sec-
tion 1.5]),

(4.38) H•(G′•
m, d) ≃ IH•

p (Nm+1, Nm)

≃

 ⊕
x∈Critm(ξ)∩Σ

IH•
p (Du

x × cLx, ∂D
u
x × cLx)


⊕

 ⊕
x∈Critm(ξ)∩Xsm

H•(Du
x , ∂D

u
x)

 .
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4.3.2. The map of filtered complexes Ψ : (K•
q(X), d) → (C•

p (X, ξ), ∂•)

Let x ∈ Crit(ξ). Denote by Ŵu(x) the unstable set of B̂(x) ⊂ X̂. The
endpoint map π̂u : Ŵu(x) → B̂(x), π̂u(w) := limt→−∞ Φ(w, t), is a locally
trivial fibration. Actually in our situation this fibration is even trivial, due
to the normal form (3.2), compatible with the unfolding process.

Lemma 4.10. — Let x ∈ Crit(ξ). Let ω ∈ K•
q(X) with lift ω̃ ∈ Ω•(X̃).

Then

(4.39) (π̂u
x)∗ω̃|Ŵ u(x) ∈ K•

q,tr(Lx).

Proof. — The claim follows with similar arguments as in the proof of
Proposition 4.7. □

Proposition 4.11. — The map of filtered complexes Ψ̃ defined in (4.12),
(4.13) induces a map of filtered complexes

(4.40) Ψ := ⊕iΨi : (K•
q(X), d) −→ (C•

p (X, ξ), ∂•),

where

(4.41)
Ψi : Kk

q (X) −→ Ci,k−i
p (X, ξ)

ω 7−→ Ψi(ω) =
∑

x∈Criti(ξ)

(π̂u
x)∗ω̃|Ŵ u(x).

Proof. — The well-definedness of the map follows from Lemma 4.10. □

4.3.3. Proof of Main Theorem 1

Proof of Main Theorem 1. — We follow closely the proof of [6, The-
orem 3.8], whose statement has been recalled in Theorem 4.4. We will
prove that the map induced from the map of filtered cochain complexes
Ψ : (K•

q(X), d) → (C•
p (X, ξ), ∂•) on the E1-terms of the spectral sequences

associated to the two filtered complexes is an isomorphism. Then, by [58,
Theorem 3.2], the induced morphism of cohomologies is an isomorphism,
H•(K•

q(X), d) ≃ H•(C•
p (X, ξ), ∂•). The claim then follows using the iso-

morphism (2.18).
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The map induced from the map of filtered cochain complexes Ψ on the
E1-terms of the associated spectral sequences, factors as

(4.42)

E′m,k
1 ≃ Hm+k(G′•

m, d)

−→

 ⊕
x∈Critm(ξ)

x∈Σ

Hm+k(K•
q(Du

x × cLx, ∂D
u
x × cLx), d)



⊕

 ⊕
x∈Critm(ξ)

x∈Xsm

Hm+k(Du
x , ∂D

u
x)


−→ Em,k

1 ≃

 ⊕
x∈Critm(ξ)

Hk(K•
q,tr(Lx), d)



≃

 ⊕
x∈Critm(ξ)

x∈Σ

IHk
p (cLx)

⊕

 ⊕
x∈Critm(ξ)

x∈Xsm

Hk({x})

 .

The first map in (4.42) is induced from the restriction of forms, the second
map is induced from integration along the fibres of the unstable fibration.
More precisely, for x ∈ Crit(ξ) ∩ Σ it is given by the composition

(4.43) ω 7−→ ω̃ 7−→ ω̃|Ŵ u(x) 7−→ (π̂u
x)∗ω̃|Ŵ u(x),

where ω̃ denotes the lift of ω to the total unfolding Du
x ×L̃x×R of Du

x ×cLx.
It is not difficult to prove by mimicking the smooth proofs, that

(4.44) H•(K•
q(Du

x × cLx, ∂D
u
x × cLx), d) ≃ IH•

p (Du
x × cLx, ∂D

u
x × cLx).

Hence, from (4.38) and (4.44) we conclude that the first map in the fac-
torisation (4.42) is an isomorphism. By (4.44) and the Künneth formula
for intersection cohomology (see [32, Section 1.6]),

IHm+k
p (Du

x × cLx, ∂D
u
x × cLx) ≃ Hm(Du

x , ∂D
u
x) ⊗ IHk

p (cLx)

≃ IHk
p (cLx),

(4.45)

the second map in (4.42) is also an isomorphism. □
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5. Perturbation of the local Morse–Bott type cochain
complex

In this section, let X be an n-dimensional oriented pseudomanifold with
2 strata {Y, Z := Xsm}, Y < Z. For simplicity we assume that the singular
stratum Y is connected. We denote by L its link and by T := {x ∈ TY |
ρY (x) ⩽ ϵ} its (closed) tubular neighbourhood with boundary SY = {x ∈
TY | ρY (x) = ϵ} and projection π = πY : T → Y . We denote by T̃ ≃
SY ×[−ϵ, ϵ] the unfolding of the tubular neighbourhood T and by θ : T̃ → T

the folding map. Set c := codimX Y .
Let ξ = {ξY , ξZ} be a stratified anti-radial gradient-like vector field on

X. Let p and q be complementary perversities.
Since here the link L is a smooth manifold of dimension c−1, the complex

(K•
q,tr(L), ∂•) defined in (2.19) and used in the definition of the Morse–

Bott type cochain complex (C•
p (X, ξ), ∂•), is just the truncated de Rham

complex (Ω•
q,tr(L), d) ⊂ (Ω•(L), d),

(5.1) Ωk
q,tr(L) :=


Ωk(L) if k < qc,

ker d if k = qc,

0 if k > qc.

Let (C•(Z, ξZ), ∂•) be the subcomplex of (C•
p (X, ξ), ∂•) generated by the

singular points of ξZ . We denote by (C•
p,loc(T, ξ), ∂•) the quotient complex,

(5.2) Ck
p,loc(T, ξ) =

∑
i+j=k

∑
x∈Criti(ξY )

Ωj
q,tr(Lx), for k = 0, . . . , n,

and call it the local Morse–Bott type cochain complex. The complex
(C•

p,loc(T, ξ), ∂•) is filtered by the index of critical points of ξY .
In this section, by adapting a construction in smooth Morse and Morse–

Bott theory, we construct a perturbation of the local Morse–Bott type
cochain complex (C•

p,loc(T, ξ), ∂•). We can assume w.l.o.g. that in the tubu-
lar neighbourhood T of Y the stratified anti-radial gradient-like vector field
ξ is of the form −r∂r + ξY . The idea of the construction presented in this
section, is to produce a perturbation ξ̃η of the unfolded vector field ξ̃ on T̃ ,
which has isolated singularities only. The perturbed complex is a subcom-
plex of the Morse–Thom–Smale complex associated to ξ̃η, quasi-isomorphic
to (C•

p,loc(T, ξ), ∂•).
The results of this section will be used in the proof of the Main Theorem 2

(in particular in Sections 6.3.2 and 6.4.2). A further application of the
construction in this section, handled in a sequel paper, is to the comparison
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between the Morse–Bott type complex (C•
m(X, ξ), ∂•) and the “singular”

Witten complex established in [49].
Section 5 is organised as follows: In Section 5.1 we explain the construc-

tion for spaces with isolated singularities, in Section 5.2 we extend the
construction to the case dimY ⩾ 1. In Section 5.3 we prove that the per-
turbed complex and the local Morse–Bott cochain complex (C•

p,loc(T, ξ), ∂•)
are quasi-isomorphic; both complexes compute the intersection cohomology
IH•

p (T ). Note that the argument given in Section 5.3 can be used to give
an alternative proof of the Main Theorem 1 in the case of a pseudomanifold
with two strata.

5.1. Perturbation of the local Morse–Bott type complex:
Isolated singularities

In this section we explain the construction of the perturbed complex
for a space X with isolated singularities. Let L be the smooth compact
connected oriented link manifold of dimension dimL = c− 1 = n− 1. Here
T ≃ L× [0, ϵ]/(y,0)∼(w,0) and ξ = −r∂r.

Let η be a smooth gradient-like vector field on L. We define the smooth
gradient-like vector field

(5.3) ξ̃η := −r∂r + η

on the manifold with boundary T̃ ≃ L × [−ϵ, ϵ]. The singularities of the
vector field ξ̃η on L × [−ϵ, ϵ] are in one-to-one correspondence with the
singularities of the vector field η on L. We orient all unstable manifolds
of ξ̃η. Using the orientations of L × [−ϵ, ϵ] and of the unstable manifolds
of ξ̃η, we get induced orientations on all stable manifolds of ξ̃η; note that
the stable manifolds of ξ̃η are the unstable manifolds of −ξ̃η. We denote
by (C•(L × [−ϵ, ϵ],−ξ̃η,Z), ∂•) the homological Morse–Thom–Smale com-
plex with integer coefficients, associated to the manifold with boundary
L× [−ϵ, ϵ] and the vector field −ξ̃η, generated by the unstable manifolds of
the singular points of the vector field −ξ̃η (see e.g. [67, Section 3.4]); it com-
putes the relative homology H•(L× [−ϵ, ϵ], ∂(L× [−ϵ, ϵ]),Z). We denote by
(Cq,pert

• (cL,−ξ,−η,Z), ∂•) ⊂ (C•(L × [−ϵ, ϵ],−ξ̃η,Z), ∂•) the subcomplex
defined by

Cq,pert
k (cL,−ξ,−η,Z) := {σ | θ(σ) ∈ ICq

k(cL, L,Z)}.(5.4)

In the following we tacitly identify σ ∈ Cq,pert
k (cL,−ξ,−η,Z) with the cone

θ(σ).
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Proposition 5.1. — The complex (Cq,pert
• (cL,−ξ,−η,Z), ∂•) computes

the relative intersection homology of the cone cL with integer coefficients,

(5.5) H•(Cq,pert
• (cL,−ξ,−η,Z), ∂•) ≃ IHq

•(cL, L,Z).

Moreover

(5.6) H•(Cq,pert
• (cL,−ξ,−η,Z) ⊗Z R, ∂•) ≃ IHq

•(cL, L).

Proof. — We denote by (C•(L,−η,Z), ∂•) the homological Morse–
Thom–Smale complex with integer coefficients associated to the smooth
manifold L and the vector field −η, generated by the unstable manifolds of
singular points of −η (see e.g. [42, Section (c)]). Recall, that the complex
(C•(L,−η,Z), ∂•) computes the (singular) homology of L,

(5.7) H•(C•(L,−η,Z), ∂•) ≃ H•(L,Z).

We denote by (Cq,tr
• (L,−η,Z), ∂•) ⊂ (C•(L,−η,Z), ∂•) the subcomplex

defined by

(5.8) Cq,tr
k (L,−η,Z) :=


Ck(L,−η,Z) for k ⩾ c− qc,

ker ∂k for k = c− qc − 1,
0 else.

There is an isomorphism of chain complexes

(5.9) (Cq,tr
• (L,−η,Z), ∂•) −→ (Cq,pert

•+1 (cL,−ξ,−η,Z), ∂•+1), τ 7−→ cτ ,

where for τ ⊂ L we denote by cτ ⊂ cL the cone over τ .
From (5.7), (5.8), (5.9) and the local calculation for relative intersection

homology (recalled in (2.15)), we have

H•(Cq,pert
• (cL,−ξ,−η,Z), ∂•) ≃ H•(Cq,tr

•−1(L,−η,Z), ∂•−1)

≃ IHq
•(cL, L,Z).

(5.10)

Since R is a field, the isomorphism (5.6) follows from (5.5) and the uni-
versal coefficient theorem. □

Set (C•
p,pert(cL, ξ, η), ∂•) := (Cq,pert

c−• (cL,−ξ,−η,Z) ⊗Z R, (−1)•+1∂c−•).
By Poincaré duality for intersection (co-)homology (see [30, Section 3.3])
and Proposition 5.1,

(5.11) H•(C•
p,pert(cL, ξ, η), ∂•) ≃ IH•

p (cL).
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5.2. Perturbation of the local Morse–Bott type complex:
General case

Let now dimY ⩾ 1. We start by constructing a perturbation of the
unfolded vector field ξ̃ on T̃ . We essentially follow the construction in [67,
Section 3]: We choose pairwise disjoint, open neighbourhoods Vx ⊂ Y ,
x ∈ Crit(ξY ). The sets Ũx := θ−1(π−1(Vx)) ⊂ T̃ are pairwise disjoint
with Ũx ≃ Vx × Lx × [−ϵ, ϵ]. We denote by πLx

: Ũx → Lx the canonical
projection into the second factor. Let λx : Y → R⩾0 be a bump-function
with compact support in Vx which is equal to 1 in a neighbourhood of x. Let
η be a gradient-like vector field on L, and denote by ηx the corresponding
vector field on θ−1(x) ≃ Lx ≃ L. We define a smooth vector field ξ̃η on T̃

as follows

(5.12) ξ̃η(w) := ξ̃(w) +
∑

x∈Crit(ξY )

λx(π(θ(w)))ηx(πLx(w)), w ∈ T̃ .

We have

(5.13) θ∗ξ̃η = ξ;

therefore flow lines for ξ̃η project to flow lines for ξ (under the folding map
θ). The singular points of ξ̃η are precisely the singular points of η in the
fibres of θ lying over the singular points x ∈ Crit(ξY ):

(5.14) Crit(ξ̃η) = {α ∈ T̃ | θ(α) = x ∈ Crit(ξY ) and πLx(α) ∈ Crit(ηx)}.

All singular points of the smooth vector field ξ̃η on T̃ are of standard form.
By genericity of the Morse–Smale condition, after possibly perturbing the
pair (ξ̃, η) we can achieve that the vector field ξ̃η is gradient-like.

We choose orientations of the unstable manifolds of ηx, x ∈ Crit(ξY ).
Together with the orientations on the unstable normal bundles of Lx, x ∈
Crit(ξY ), we get orientations on all unstable manifolds of ξ̃η. Using the
orientations of T̃ and of the unstable manifolds, we get induced orientations
on all stable manifolds of ξ̃η as well.

For a singular point α ∈ Crit(ξ̃η) with θ(α) = x, we denote by
Wu(α,−ξ̃η) ⊂ T̃ the unstable manifold of α w.r.t. the flow induced from
−ξ̃η. We denote by Wu(α,±ηx) ⊂ Lx the unstable manifold of πLx

(α)
w.r.t. the flow induced from ±ηx on Lx.

We denote by (C•(T̃ ,−ξ̃η,Z), ∂•) the homological Morse–Thom–Smale
complex with integer coefficients associated to the manifold with boundary
T̃ and the vector field −ξ̃η, generated by the unstable manifolds of −ξ̃η

on T̃ (see e.g. [67, Section 3.4]). The complex (C•(T̃ ,−ξ̃η,Z), ∂•) computes
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the relative homology H•(T̃ , ∂T̃ ,Z). It is filtered by the index of critical
points of −ξY , more precisely

(5.15) Fm(C•(T̃ ,−ξ̃η,Z), ∂•) =
⊕

ind(θ(α),−ξY )⩽m

Z · [Wu(α,−ξ̃η)].

Let α ∈ Critk(−ξ̃η) with θ(α) ∈ Critm(−ξY ), and let β ∈ Critk−1(−ξ̃η).
By Morse–Smale transversality for the vector field ξ̃η there is only a fi-
nite number of trajectories γ for the flow induced from the vector field
−ξ̃η, which start in α and end in β. Set n(α, β) :=

∑
γ nγ(α, β), where

nγ(α, β) ∈ {±1} is the sign obtained by comparison of orientations (see
e.g. [42, Section (c)] for more details). Note that, if ind(θ(β),−ξY ) ⩾ m,
by (5.13) and Morse–Smale transversality for ξ, there are no trajectories
between α and β unless θ(α) = θ(β) = x. In the latter case, all trajecto-
ries between α and β lie in the fibre θ−1(x). From the above discussion
we get the following formula for the boundary operator of the complex
(C•(T̃ ,−ξ̃η,Z), ∂•) (see e.g. [67, Section 3.3.3]):

(5.16)

∂[Wu(α,−ξ̃η)] =
∑

ind(β,−ξ̃η)=k−1

n(α, β)[Wu(β,−ξ̃η)]

=
∑
i⩽m

∑
ind(β,−ξ̃η)=k−1
ind(θ(β),−ξY )=i

n(α, β)[Wu(β,−ξ̃η)]

=
∑

ind(β,−ξ̃η)=k−1
θ(β)=θ(α)

n(α, β)[Wu(β,−ξ̃η)]

+
∑
i<m

∑
ind(β,−ξ̃η)=k−1
ind(θ(β),−ξY )=i

n(α, β)[Wu(β,−ξ̃η)].

From (5.16) we get, that the graded complex associated to the filtered
chain complex (C•(T̃ ,−ξ̃η,Z), ∂•) (together with its boundary) can be iden-
tified with the sum of the Morse–Thom–Smale complexes “in the fibre”
(C•−m(Lx × [−ϵ, ϵ], r∂r − ηx,Z), ∂•−m), x ∈ Critm(−ξY ).

We denote by (Cq,pert
• (T,−ξ,−η,Z), ∂•) the subcomplex of the complex

(C•(T̃ ,−ξ̃η,Z), ∂•) defined by

(5.17) Cq,pert
k (T,−ξ,−η,Z)

:= {σ ∈ Ck(T̃ ,−ξ̃η,Z) | θ(σ) ∈ ICq
k(T, ∂T,Z)}.
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Note that, for α ∈ Critk(−ξ̃η) with θ(α) = x ∈ Crit(ξY ),

(5.18) θ(Wu(α,−ξ̃η)) is (q, k)-allowable ⇐⇒ ind(πLx(α), ηx) ⩽ qc.

Let σ =
∑

α,ind(θ(α),−ξY )=m aα[Wu(α,−ξ̃η)] ∈ Cq,pert
m+c−qc

(T,−ξ,−η,Z). De-
note by (∂σ)m the part of ∂σ lying in

⊕
ind(θ(β),−ξY )=m Z · [Wu(β,−ξ̃η)].

Using (5.16) and (5.18) we get that

(5.19) Y ∩ θ((∂σ)m) = ∅

is equivalent to

(5.20)

for all x∈ Critm(−ξY) : {x}∩θ

 ∑
α,β∈θ−1(x)

aαn(α, β)[Wu(β,−ξ̃η)]

= ∅

⇐⇒ for all x ∈ Critm(−ξY ) : ∂

 ∑
θ(α)=x

aα[Wu(α,−ηx)]

= 0.

Let us now consider the subcomplex

(5.21) (Cq,pert
• (T,−ξ,−η,Z), ∂•) ⊂ (C•(T̃ ,−ξ̃η,Z), ∂•)

with its filtration induced from the filtration (5.15). Using (5.8), (5.9),
(5.16), (5.18), (5.19), (5.20), we conclude for the associated graded complex,

(5.22) Fm(Cq,pert
• (T,−ξ,−η,Z), ∂•)/Fm−1(Cq,pert

• (T,−ξ,−η,Z), ∂•)

≃
⊕

x∈Critm(−ξY )

Cq,pert
•−m (cLx, r∂r,−ηx,Z);

i.e. it is the sum of the complexes “in the fibre” studied in Section 5.1,
(Cq,pert

• (cLx, r∂r,−ηx,Z), ∂•).

Proposition 5.2. — The complex (Cq,pert
• (T,−ξ,−η,Z), ∂•) computes

the relative intersection homology of the tubular neighbourhood T with
integer coefficients,

(5.23) H•(Cq,pert
• (T,−ξ,−η,Z), ∂•) ≃ IHq

•(T, ∂T,Z).

Moreover

(5.24) H•(Cq,pert
• (T,−ξ,−η,Z) ⊗Z R, ∂•) ≃ IHq

•(T, ∂T ).

Proof. — The idea of the proof is to adapt the Leray–Serre spectral se-
quence in smooth Morse homology (see e.g. [29, 39, 67]) to the singular
situation; here we rely on the version in [67]. The second ingredient in
this proof is the Leray–Serre spectral sequence for singular fibrations in
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intersection homology due to Friedman (see [26, 27, 28]). Here we use the
version in [26, Section 5.8], which we now recall: Let us fix a triangula-
tion K of Y , which is sufficiently fine, such that each simplex is contained
in a neighbourhood, where the fibre bundle T → Y is trivial. We denote
by Y m ⊂ Y the open regular neighbourhood (in the barycentric subdi-
vision of K) of the simplicial m-skeleton of Y . This provides a filtration
of the space Y as well as an induced filtration of the space T by Tm :=
π−1(Y m). The complex of PL intersection chains (ICq

•(T, ∂T,Z), ∂•) is fil-
tered by Fm(ICq

•(T, ∂T,Z), ∂•) := im(ICq
•(Tm, ∂Tm,Z) → ICq

•(T, ∂T,Z)).
The spectral sequence associated to the filtration described above abuts to
IHq

•(T, ∂T,Z). We denote by IHq
•(cL, L,Z) the local system on Y with fibre

IHq
•(cL, L,Z)x = IHq

•(cLx, Lx,Z). The E1-term of the filtered complex de-
scribed above can be identified with the cellular complex
(C•(Y, IHq

•(cL, L,Z)), ∂•), E1
m,k ≃ Cm(Y, IHq

k(cL, L,Z)). For the E2-term
we get E2

m,k ≃ Hm(Y, IHq
k(cL, L,Z)), where H•(Y, IHq

k(cL, L,Z)) denotes
the singular homology of Y with values in the local system IHq

k(cL, L,Z).
We denote by (C•(Y,−ξY , IHq

•(cL, L,Z)), ∂•) the homological Morse–
Thom–Smale complex on Y associated to the vector field −ξY with val-
ues in the local system IHq

•(cL, L,Z) (see e.g. [67, Section 3.2.3], [9, Sec-
tion I(c)]). Using (5.22) and following the arguments in [67, Sections 3.3
and 3.4] we can prove that the E1-term in the spectral sequence asso-
ciated to the filtered complex (Cq,pert

• (T,−ξ,−η,Z), ∂•) can be identified
with (C•(Y,−ξY , IHq

•(cL, L,Z)), ∂•), E1
m,k ≃ Cm(Y,−ξY , IHq

k(cL, L,Z)).
For the E2-term we get again E2

m,k ≃ Hm(Y, IHq
k(cL, L,Z)).

We now choose the triangulation K of Y such that in addition it is
compatible with the stratification of Y by the unstable manifolds of the
gradient-like vector field −ξY . This is possible by the triangulability of
abstract stratified spaces (see [81]) and since, by [42, Proposition 2], the
manifold Y with the unstable cell decomposition is an abstract stratified
space. We then have a natural map of filtered chain complexes

(5.25) (Cq,pert
• (T,−ξ,−η,Z), ∂•) −→ (ICq

•(T, ∂T,Z), ∂•).

From the above discussion, the induced map on the E1-terms of the asso-
ciated spectral sequences is the natural quasi-isomorphism

(5.26) (C•(Y,−ξY , IHq
k(cL, L,Z)), ∂•) −→ (C•(Y, IHq

k(cL, L,Z)), ∂•),

and the induced map on the E2-term is an isomorphism.
The isomorphism (5.23) now follows using [58, Theorem 3.2]. The isomor-

phism (5.24) follows from (5.23) and the universal coefficient theorem. □
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We denote by

(5.27) (C•
p,pert(T, ξ, η), ∂•) := (Cq,pert

n−• (T,−ξ,−η,Z) ⊗Z R, (−1)•+1∂n−•).

By Poincaré duality for intersection (co-)homology (see [30, Section 3.3])
and Proposition 5.2,

(5.28) H•(C•
p,pert(T, ξ, η), ∂•) ≃ IH•

p (T ).

5.3. The cohomology of the local Morse–Bott type cochain
complex

The situation is as in the beginning of Section 5. We denote by
(C•(T̃ , ξ̃), ∂•) the smooth Morse–Bott complex associated to the Morse–
Bott vector field ξ̃ on T̃ ; it is generated by the de Rham complexes
(Ω•(Lx), d), x ∈ Crit(ξY ). By [6, Proposition 3.10] we have a quasi-isomor-
phism of chain complexes

(5.29) F : (C•(T̃ , ξ̃), ∂•) −→ (C•(T̃ , ξ̃η), ∂•)

defined as follows: For x ∈ Criti(ξY ) and ω ∈ Ωj(Lx) ⊂ Ci,j(T̃ , ξ̃) ⊂
Ci+j(T̃ , ξ̃) we define (5.29) by

(5.30) F (ω) =
∑

α∈Criti+j(ξ̃η)
θ(α)=x

(∫
W u(α,ηx)

ω

)
[Wu(α, ξ̃η)]∗.

Proposition 5.3. — The map (5.29) restricts to a map, still denoted
by F ,

(5.31) F : (C•
p,loc(T, ξ), ∂•) −→ (C•

p,pert(T, ξ, η), ∂•).

Proof. — Let x ∈ Criti(ξY ) and ω ∈ Ωj(Lx). We denote by F (ω)s ∈
Cn−(i+j)(T̃ ,−ξ̃η,Z)⊗R the element in Cn−(i+j)(T̃ ,−ξ̃η,Z)⊗R correspond-
ing to F (ω) ∈ Ci+j(T̃ , ξ̃η).

For deg(ω) = j ⩽ qc we have

(5.32) dim(θ(F (ω)s) ∩ Y ) ⩽ (n− c) − i ⩽ n− (i+ j) − c+ qc.

Hence θ(F (ω)s) is (q, n−(i+j))-allowable. This shows that, for deg(ω) < qc,
F (ω) ∈ C•

p,pert(T, ξ, η).
Let now deg(ω) = j = qc and dω = 0 (see (5.1), (5.2)). We have, using

the definition of the boundary operator in the various complexes involved,
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as well as Stokes’ theorem,

(5.33)

∂•F (ω) = ±
∑

α∈Criti+j(ξ̃η)
θ(α)=x

(∫
W u(α,ηx)

ω

)

∑
β∈Criti+j+1(ξ̃η)

n(α, β)[Wu(β, ξ̃η)]∗

= ±
∑

β,θ(β)=x

(∫∑
α

n(α,β)W u(α,ηx)
ω

)
[Wu(β, ξ̃η)]∗

±
∑
α,β

θ(β)̸=x

n(α, β)
(∫

W u(α,ηx)
ω

)
[Wu(β, ξ̃η)]∗

= ±
∑

β,θ(β)=x

(∫
∂•W u(β,ηx)

ω

)
[Wu(β, ξ̃η)]∗

±
∑
α,β

θ(β)̸=x

n(α, β)
(∫

W u(α,ηx)
ω

)
[Wu(β, ξ̃η)]∗

= ±
∑

β,θ(β)=x

(∫
W u(β,ηx)

dω

)
[Wu(β, ξ̃η)]∗

±
∑
α,β

θ(β)̸=x

n(α, β)
(∫

W u(α,ηx)
ω

)
[Wu(β, ξ̃η)]∗

= ±
∑
α,β

θ(β)̸=x

n(α, β)
(∫

W u(α,ηx)
ω

)
[Wu(β, ξ̃η)]∗.

Note that for all β in the above sum, by Morse–Smale transversality, we
have ind(θ(β), ξY ) ⩾ i+ 1. Therefore from (5.33)

(5.34) dim(∂θ(F (ω)s) ∩ Y ) ⩽ (n− c) − (i+ 1) = n− (i+ j + 1) − c+ qc.

This shows that ∂θ(F (ω)s) is (q, n − (i + j + 1))-allowable, hence F (ω) ∈
C•

p,pert(T, ξ, η). □

Corollary 5.4. — The map of filtered cochain complexes (5.31) in-
duces an isomorphism on the E1-terms of the spectral sequences associated
to the two filtered complexes. Hence F is a quasi-isomorphism and

(5.35) H•(C•
p,loc(T, ξ), ∂•) ≃ H•(C•

p,pert(T, ξ, η), ∂•) ≃ IH•
p (T ).
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Proof. — The map induced from F on the graded complexes is essentially
given by the sum of the “truncated” de Rham maps in smooth Morse theory
for the gradient-like vector field ηx on the link Lx, x ∈ Crit(ξY ),

(5.36)

(Ω•
q,tr(Lx), d) −→ (C•

p,pert(cLx,−r∂r, ηx), ∂•)

ω 7−→
∑

α∈Crit(ηx)

(∫
W u(α,ηx)

ω

)
[Wu(α, ηx)]∗.

It is easy to check using smooth Morse theory (see e.g. [9, Theorem 2.9]),
that (5.36) is a quasi-isomorphism. Hence the map induced from F on
the E1-term of the spectral sequences associated to the two filtered com-
plexes is an isomorphism. The isomorphism (5.35) follows from the first
claim, (5.11), (5.28) and [58, Theorem 3.2]. □

6. Bismut–Zhang Torsion

The aim of this section is to define the Bismut–Zhang torsion of a com-
pact stratified pseudomanifold for the lower middle perversity m. The defi-
nition of the Bismut–Zhang torsion uses the Morse–Bott type cochain com-
plex (C•

m(X, ξ), ∂•) for the lower middle perversity m defined in Section 4.2.
The second ingredient is the model Witten Laplacian appearing in the gen-
eralisation of the Witten deformation to stratified spaces in [49]. Conjec-
turally the Bismut–Zhang torsion will serve as the “topological” side in a
Cheeger–Müller theorem for singular spaces with iterated conical singulari-
ties. Indeed, for Witt spaces with isolated conical singularities, the identity
between analytic and Bismut–Zhang torsion has been established in [51].

The Bismut–Zhang torsion for the upper middle perversity n can be de-
fined analogously (see Remarks 6.2 and 6.4(a)). In case of a Witt space
(see [77, Definition 2.1]), hence in particular for a space having strata of
even codimension only, the Bismut–Zhang torsion for upper and lower mid-
dle perversity coincide.

Section 6 is organised as follows: In Section 6.1, for convenience of the
reader, we recall some preliminaries on torsion. In Section 6.2 we define the
Bismut–Zhang torsion for a stratified pseudomanifold with two strata. The
Bismut–Zhang torsion is not a topological invariant in general. The aim of
Sections 6.3 and 6.4 is the proof of Main Theorem 2, i.e. we prove that, in
case of even-codimensional singular stratum, the Bismut–Zhang torsion is
a topological invariant of the pseudomanifold X and moreover is equal to
the intersection Reidemeister torsion defined by Aparna Dar [19].

ANNALES DE L’INSTITUT FOURIER



MORSE–BOTT COMPLEX AND BISMUT–ZHANG TORSION 697

Here, for the clarity of presentation, we give the definition of the Bismut–
Zhang torsion only for pseudomanifolds with two strata. However, as men-
tioned in the introduction, the Bismut–Zhang torsion can be defined in a
completely analogous way for stratified pseudomanifolds of arbitrary depth
(see Remark 6.4(b)). The results in Sections 6.3 and 6.4 can not be extended
beyond the case of two strata at the present: they rely on the Cheeger–
Müller theorem for the smooth links.

6.1. Preliminaries on Torsion

In this section for convenience of the reader, we recall some basics about
torsion: In Section 6.1.1 we recall the definition of the torsion of a finite
Hilbert cochain complex, i.e. a cochain complex (C•, ∂•) of finite dimen-
sional Hilbert spaces, such that Ci = 0 for |i| ⩾ N for some N ∈ N.
We also recall the definition of the Milnor- and Reidemeister torsion of a
smooth manifold. Moreover, we recall the concept of a simple structure on
an infinite dimensional cochain complex as introduced by Lück, Schick and
Thielmann in [47, Section 2]. In Section 6.1.2 we recall results of [47] on
the torsion of a filtered complex; they will be used in the definition of the
Bismut–Zhang torsion in Section 6.2 and for the proof of its topological
invariance in Sections 6.3 and 6.4.

6.1.1. The torsion of a cochain complex

For f : V → W a linear isomorphism of real finite-dimensional Hilbert
spaces, set

(6.1) JfK := 1
2 ln(|det(f∗f)|) ∈ R.

For an acyclic finite Hilbert cochain complex (C•, ∂•), define

(6.2) ρ(C•, ∂•) := J(∂• + Υ•) : Cev −→ CoddK ∈ R,

where Υ• is a cochain contraction. Definition (6.2) is independent of the
choice of the cochain contraction Υ•. For a cochain homotopy equivalence
of finite Hilbert complexes f : C• → D•, the cone (Cone(f)•, ∂•) is the
acyclic cochain complex with n-th differential

(6.3)
(
∂n

C• 0
fn −∂n−1

D•

)
: Cn ⊕Dn−1 −→ Cn+1 ⊕Dn.
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Let (C•, ∂•) be a finite Hilbert cochain complex such that its cohomology
H•(C•, ∂•) carries a Hilbert structure. We can consider H•(C•, ∂•) as a
cochain complex with trivial differential. There is up to homotopy precisely
one cochain map i : H•(C•, ∂•) → (C•, ∂•) with H•(i) = id. Define

(6.4) ρ(C•, ∂•) := −ρ(Cone(i)•, ∂•) ∈ R.

The minus sign in (6.4) ensures that the definitions (6.2) and (6.4) coincide
for acyclic complexes. If we fix an orthonormal basis of (C•, ∂•) and of
H•(C•, ∂•), then the logarithm of the torsion defined in [59, page 365] is
equal to (6.4).

The Milnor and Reidemeister torsion of a smooth compact manifold Y

are defined as follows: Let (F ,∇F , gF ) be a flat unimodular vector bundle,
i.e. F is a flat vector bundle, ∇F is the canonical flat connection and gF is a
Hermitian metric on F , such that the induced metric on the flat line bundle
det F is flat. Let ξY be a smooth gradient-like vector field on Y . We denote
by (C•(Y, ξY ,F), ∂•) the Morse–Thom–Smale cochain complex (associated
to the manifold Y and the vector field ξY ) with values in the flat vector
bundle F (see e.g. [9, Section I (c)]). The Hermitian metric gF induces a
Hilbert structure on the Morse–Thom–Smale complex (C•(Y, ξY ,F), ∂•)
(see [9, Section I (d)]). We equip the cohomology H•(C•(Y, ξY ,F), ∂•) ≃
H•(Y,F) with a metric h. The Milnor torsion of the manifold Y with
coefficients in F (see [59, Section 8]) is defined as

(6.5) ρM (Y,F , h) := ρ(C•(Y, ξY ,F), ∂•).

The Reidemeister torsion ρR(Y,F , h) (see [23, 74]) can be defined anal-
ogously to the Milnor torsion, using the complex of simplicial cochains
w.r.t. a triangulation of Y instead of the Morse–Thom–Smale complex.
For a flat unimodular vector bundle (F ,∇F , gF ), the Reidemeister torsion
ρR(Y,F , h) is a combinatorial invariant of Y (see [59, Theorem 7.1 and Sec-
tion 8] and [9, Remark 1.10]). Moreover, Milnor and Reidemeister torsion
are equal (see [59, Theorem 9.3] and [9, Remark 1.10]). Hence, the Mil-
nor torsion ρM (Y,F , h) is a combinatorial invariant of Y and in particular
does not dependent on the choice of the gradient-like vector field ξY (see
also [9, Theorem 16.1]). In case F = R, i.e. F is the trivial vector bundle
of rank 1 equipped with the trivial connection and the canonical metric,
we write simply ρM (Y, h) (resp. ρR(Y, h)) for the Milnor torsion (resp. the
Reidemeister torsion).

The concept of torsion of a cochain complex has been extended to infinite
dimensional cochain complexes by Lück, Schick and Thielmann [47, Sec-
tion 2] as follows: A simple structure on a cochain complex (C•, ∂•) is an
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equivalence class of cochain homotopy equivalences u : (C•, ∂•) → (C•, ∂•)
with a finite Hilbert cochain complex as source. Hereby two cochain homo-
topy equivalences u : (C•, ∂•) → (C•, ∂•) and v :

(
C•, ∂•) → (C•, ∂•) are

equivalent if ρ(Cone•(v−1 ◦ u), ∂•) = 0.
Let (C•, ∂•) be a cochain complex with a simple structure and such that

H•(C•, ∂•) carries a Hilbert structure. Define

(6.6) ρ(C•, ∂•) := ρ(C•, ∂•),

for any representative of the simple structure u : (C•, ∂•) → (C•, ∂•),
where we use the Hilbert structure on H•(C•, ∂•) for which H•(u) is an
isometry.

Let 0 → (C•, ∂•) → (D•, ∂•) → (E•, ∂•) → 0 be an exact sequence of
finite Hilbert cochain complexes. Then Cn → Dn → En, n ∈ Z, can be
seen as an acyclic finite Hilbert cochain complex and we define

(6.7) ρ(C• −→ D• −→ E•) :=
∑
n∈Z

(−1)nρ(Cn −→ Dn −→ En).

The definition (6.7) can be extended to an exact sequence of cochain com-
plexes with simple structures in the obvious way (see [47, (2.5)]).

6.1.2. Torsion and spectral sequences

The study of torsion for filtered complexes is due to Freed [25] and to
Lück, Schick and Thielmann [47]; here we follow [47, Section 4]. In The-
orem 6.1 below we recall a result of [47, Section 4] on the torsion of a
filtered cochain complex, which will be useful in the sequel, more precisely
in Proposition 6.8 and Section 6.4.2.

Let (C•, ∂•) be a cochain complex with filtration

(6.8) 0 = F •
N ⊂ · · · ⊂ F •

0 = C•.

The associated spectral cohomology sequence (E•,•
• , d•,•

• ) converges to the
cohomology H•(C•, ∂•).

Assume that the following data are given
(a) Simple structures on the graded complexes F •

m/F
•
m+1, m ∈ N0,

(b) a Hilbert structure on the cohomology H•(C•, ∂•).
Using the data (a), we can define inductively simple structures on the

complexes (F •
m, ∂

•), m ∈ N0, by requiring that

(6.9) ρ(F •
m+1 −→ F •

m −→ F •
m/F

•
m+1) = 0,
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(see [47, Section 4.1]). Hence we get in particular a simple structure on
(C•, ∂•) induced from the data (a). Using (a) and (b) we can therefore
define ρ(C•, ∂•).

Set Km,k := im(Hm+k(F •
m, ∂

•) → Hm+k(C•, ∂•)). There is a natural
isomorphism

(6.10) Ψm,k : Km,k/Km+1,k−1 −→ Em,k
∞ .

We equip Km,k ⊂ Hm+k(C•, ∂•) with the Hilbert substructure and the
quotient Km,k/Km+1,k−1 with the Hilbert quotient structure. The same
can be done iteratively for Em,k

r and H•(Em+r•,k−(r−1)•
r ).

Theorem 6.1. — In the situation described above, we have

(6.11) ρ(C•, ∂•) =
∑
m

ρ(F •
m/F

•
m+1) +

∑
k

(−1)kρ(E•,k
1 ) + ρ⩾2(C•, ∂•),

where

ρ⩾2(C•, ∂•) :=
∑
r⩾2

r−1∑
m=0

∑
k

(−1)m+kρ(Em+r•,k−(r−1)•
r )

−
∑
m,k

(−1)m+kJΨm,kK.
(6.12)

6.2. Definition of the Bismut–Zhang torsion

6.2.1. The model Witten Laplacian

Next to the Morse–Bott type cochain complex constructed in Section 4.2,
the second ingredient needed for the definition of the Bismut–Zhang torsion
is the model Witten Laplacian, which we recall in this subsection.

The smooth model Witten Laplacian appears as model operator in the
Witten deformation of the de Rham complex of a smooth compact manifold
using a smooth Morse function (see [38] and [84]).

The generalisation of the “easy” part of Witten’s programme, i.e. the
analytic proof of the Morse inequalities, to spaces with iterated conical
singularities and radial/anti-radial Morse functions has been studied in [5]
and [49]; the main idea is to deform the complex of L2-forms (instead of the
de Rham complex). In [49] also the “hard” part of Witten’s programme, i.e.
the comparison between the Witten complex and an appropriate singular
Morse–Thom–Smale complex, has been addressed for spaces with isolated
conical singularities.
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The model Witten Laplacian and its torsion zeta function. The smooth
case. We start by recalling the well known model Witten Laplacian ∆W,d,m

for a smooth Morse critical point of index m on Rd (see [84], [9, Proposi-
tion 8.2]). We equip the Euclidean space Rd with the Morse function

(6.13) fd,m = 1
2(−z2

1 − · · · − z2
m + z2

m+1 + · · · + z2
d)

and the Euclidean metric dz2
1 + · · ·+dz2

d. We denote by T ∗Rd the cotangent
bundle of Rd. The Euclidean metric induces an L2-metric on sections of
Λ•(T ∗Rd); we denote by L2(Λ•(T ∗Rd)) the vector space of L2-sections of
Λ•(T ∗Rd).

Let 0 ⩽ l ⩽ d and let I = (i1, . . . , il) ∈ {1, . . . , d}l be a multi-index of
length l. Set dzI := dzi1 ∧ · · · ∧ dzil

. We denote by N+ resp. by N− the
number operators defined by

(6.14) N+dzI := #{s | m+ 1 ⩽ is ⩽ d} · dzI , N−dzI := (l −N+) · dzI .

We denote by ∆Rd = −
∑d

j=1
∂2

∂z2
j

the (geometric) Laplacian acting on
smooth compactly supported sections of Λ•(T ∗Rd). For z ∈ Rd, set |z| :=
(z2

1 + · · · + z2
d)1/2. The model Witten Laplacian ∆W,d,m is defined as the

closure in L2(Λ•(T ∗Rd)) of the following operator acting on smooth com-
pactly supported sections of Λ•(T ∗Rd):

(6.15) ∆Rd + |z|2 − d+ 2(m+N+ −N−)

=
d∑

j=1

(
− ∂2

∂z2
j

+ z2
j

)
− d+ 2(m+N+ −N−).

We denote by ∆(k)
W,d,m the restriction of ∆W,d,m to k-forms, k = 0, . . . , d.

By [84] (see also [9, Proposition 8.2]), spec(∆W,d,m) = 2N0 and

(6.16) ker(∆(k)
W,d,m) ≃ Hk(Dm, Sm−1), k = 0, . . . , d,

where Dm denotes an m-dimensional closed ball and Sm−1 denotes its
boundary. We explain the isomorphism (6.16) in more detail: Both sides
of (6.16) are non-trivial in degree m only. An orthonormal basis of
ker(∆(m)

W,d,m) w.r.t. the L2-metric (induced from the Euclidean metric on
Rd) is given by

(6.17) αd,m := π−d/4e−|z|2/2dz1 ∧ · · · ∧ dzm.

The isomorphism ker(∆(m)
W,d,m) ≃ Hm(Dm, Sm−1) ≃ R is given by multi-

plication with efd,m followed by integration (along the unstable manifold
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of the critical point 0 w.r.t. the flow induced from the negative gradient
vector field −∇fd,m):

(6.18) αd,m 7−→ efd,mαd,m 7−→
∫
Rm

efd,mαd,m = π(2m−d)/4.

We denote by ∆⊥
W,d,m the restriction of ∆W,d,m to the orthogonal com-

plement of ker(∆W,d,m). We denote by N := N++N− the number operator
acting on sections of Λ•(T ∗Rd) by multiplication by the form degree. For
ℜ(s) > d/2, the zeta function

(6.19) s 7−→ ζd,m(s) := −Trs

[
N
(
∆⊥

W,d,m

)−s
]

is a well-defined holomorphic function (see [9], [76, Section 2]). Moreover
ζd,m extends to a meromorphic function on the whole complex plane, which
is holomorphic at s = 0. We have (see [9], [76, Section 2])

(6.20) ζ ′
d,m(0) = (−1)m

(
m− d

2

)
ln π.

The model Witten Laplacian and its torsion zeta function. The case
of isolated singularities. In this paragraph we explain the model Witten
Laplacian for an infinite cone cL over a smooth compact connected manifold
L of dimension dimL = c − 1. We equip (cL)sm with the radial Morse
function fcL = 1

2r
2 and the conical Riemannian metric

(6.21) dr2 + r2gT L,

where gT L is a Riemannian metric on the smooth link manifold L not
depending on r. We denote by T ∗cL the cotangent bundle of (cL)sm and
by L2(Λ•(T ∗cL)) the vector space of L2-sections of Λ•(T ∗cL) w.r.t. the
L2-metric induced from the Riemannian metric (6.21).

Let ∆cL be the Laplacian acting on smooth compactly supported sec-
tions of Λ•(T ∗cL). Recall that, unlike in the smooth situation, ∆cL admits
several closed self adjoint extensions in L2(Λ•(T ∗cL)). We denote by d

(resp. by δ) the outer differential (resp. its adjoint w.r.t. the L2-metric
induced from the conical metric (6.21)) acting on smooth compactly sup-
ported sections of Λ•(T ∗cL). Their minimal resp. maximal extensions are
denoted by dmin / max, δmin / max. We denote by N the number operator
acting on sections of Λ•(T ∗cL) by multiplication by the form degree. The
model Witten Laplacian on cL is defined as

(6.22) ∆W,cL := ∆cL − (c− 2N) + r2,

ANNALES DE L’INSTITUT FOURIER



MORSE–BOTT COMPLEX AND BISMUT–ZHANG TORSION 703

with domain the following subspace of L2(Λ•(T ∗cL))
(6.23)

dom(∆W,cL) =
{
ω

∣∣∣∣∣ω ∈ dom(dmax) ∩ dom(δmin), dmaxω ∈ dom δmin,

δminω ∈ dom dmax locally near the cone point

}
.

(The reader is encouraged to compare the definition of the singular model
Witten Laplacian (6.22) with the definition of the smooth model Witten
Laplacian (6.15) in case m = 0.)

By [52, Section 4] the model Witten Laplacian has discrete spectrum.
We denote by ∆(k)

W,cL the restriction of ∆W,cL to k-forms. We denote by
Harm•(L) the vector space of harmonic forms on (L, gT L). By [49, The-
orem 4.2], the local calculation for intersection (co-)homology with lower
middle perversity (recalled in (2.14)) and the Hodge theorem for the smooth
manifold (L, gT L),

(6.24)

ker(∆(k)
W,cL) ≃ IHk

m(cLx) ≃

{
Hk(L) for k < c

2 ,

0 else,

≃

{
Harmk(L) for k < c

2 ,

0 else.

For later use (see the proof of Proposition 6.6), we explain the isomor-
phism (6.24) in more detail: Let {βk

i }i be an ON-basis (w.r.t. the L2-
metric induced from gT L) of Harmk(L). For 0 ⩽ k < c/2, an ON-basis of
ker(∆(k)

W,cL) w.r.t. the L2-metric induced from the conical metric (6.21) is
given by

(6.25)
{
γk

i := (Γ(c/2 − k)/2)−1/2
e−r2/2βk

i

∣∣∣ i = 1, . . . ,dimHk(L)
}
.

For 0 ⩽ k < c/2, the isomorphism (6.24) is given by multiplication with
efcL followed by evaluation at r = 0,

(6.26) γk
i 7−→ efcLγk

i 7−→ (Γ(c/2 − k)/2)−1/2
βk

i .

We denote by ∆⊥
W,cL the restriction of ∆W,cL to the orthogonal comple-

ment of ker(∆W,cL). By [52, Theorem I], for ℜ(s) ≫ 0, the torsion zeta
function

(6.27) s 7−→ ζcL(s) := −Trs

[
N
(
∆⊥

W,cL

)−s
]

is a well-defined holomorphic function, which can be described explicitly
in terms of the spectrum of the Laplacian on L. Moreover ζcL extends to a
meromorphic function on the whole complex plane, which is holomorphic
at s = 0.
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(In [52] the Witt condition and a spectral Witt condition are assumed,
however the cited results also hold without these assumptions.)

Remark 6.2. — To define the Bismut–Zhang torsion for the upper mid-
dle perversity n we have to use a different self-adjoint extension ∆′

W,cL

of (6.22), namely the operator with domain the following subset of
L2(T ∗cL):

(6.28) dom(∆′
W,cL)

=
{
ω

∣∣∣∣∣ω ∈ dom(dmin) ∩ dom(δmax), dminω ∈ dom δmax,

δmaxω ∈ dom dmin locally near the cone point

}
.

The model Witten Laplacian and its torsion zeta function. The general
case. Let L be a smooth compact connected manifold of dimension dimL =
c−1. In this paragraph, we explain the model Witten Laplacian for a critical
point of index m of a radial Morse function on Rn−c × cL, i.e. we equip
Rn−c × cL with the Morse function

floc(z, φ, r) = 1
2(r2 − z2

1 − · · · − z2
m + z2

m+1 + · · · + z2
n−c)

= fcL(r) + fn−c,m(z)
(6.29)

and with a wedge metric dz2
1 + · · · + dz2

n−c + dr2 + r2gT L. Note that the
negative gradient vector field −∇floc of the function floc with respect to
the wedge metric is a vector field with a singularity of strong standard form
at 0 in the sense of Definition 3.4.

The model Witten Laplacian is the self-adjoint operator

(6.30) ∆W := IdL2(T ∗Rn−c) ⊗ ∆W,cL + ∆W,n−c,m ⊗ IdL2(T ∗cL),

with domain

(6.31) dom(∆W,n−c,m) ⊗ dom(∆W,cL)

⊂ L2(Λ•(T ∗Rn−c)) ⊗ L2(Λ•(T ∗cL))

= L2(Λ•(T ∗(Rn−c × cL))).

Again, we denote by ∆(k)
W the restriction of the model Witten Lapla-

cian to k-forms. By [49, Section 4.4], the local calculation for intersection
(co-)homology (recalled in (2.14)) and the Hodge theorem for the smooth
manifold (L, gT L),

(6.32) ker(∆(k+m)
W ) ≃ IHk(cL) ≃

{
Harmk(L) for 0 ⩽ k < c

2 ,

0 else.

ANNALES DE L’INSTITUT FOURIER



MORSE–BOTT COMPLEX AND BISMUT–ZHANG TORSION 705

For later use (see the proof of Proposition 6.8), we explain the isomor-
phism (6.32) in more detail. Let αn−c,m ∈ ker(∆W,n−c,m) denote the gen-
erator of ker(∆W,n−c,m) defined in (6.17). Let {βk

i }i (resp. {γk
i }i) be the

ON-basis of Harmk(L) (resp. of ker(∆(k)
W,cL)) described in the previous

paragraph (see in particular (6.25)). For 0 ⩽ k < c/2, an ON-basis of
ker(∆(k+m)

W ) is given by

(6.33)
{
ωk+m

i := αn−c,m ⊗ γk
i | i = 1, . . . ,dimHk(L)

}
i
.

For 0 ⩽ k < c/2, the isomorphism (6.32) is given by multiplication with
efloc followed by integration along the fibres of the unstable endpoint map
for −∇floc,

(6.34) ωk+m
i 7−→ eflocωk+m

i 7−→
(∫

Rm

efn−c,mαn−c,m

)(
efcLγk

i

)
r=0

= π(2m+c−n)/4 (Γ(c/2 − k)/2)−1/2
βk

i .

We denote by ∆⊥
W the restriction of ∆W to the orthogonal complement

of ker(∆W ). We denote by N the number operator acting on sections of
Λ•(T ∗(Rn−c × cL)) by multiplication by the form degree. By the results of
the previous two paragraphs, for ℜ(s) >> 0, the zeta function

(6.35) s 7−→ ζ(s) := −Trs

[
N
(
∆⊥

W

)−s
]
,

is a well-defined holomorphic function. Moreover ζ extends to a meromor-
phic function on the whole complex plane, which is holomorphic at s = 0.
Using (6.16), (6.20), (6.24) and the product formula for the analytic tor-
sion [73, Theorem 2.5], we have

(6.36) ζ ′(0) = (−1)mζ ′
cL(0) + (−1)mIχm(cL)

(
m− n− c

2

)
ln π,

where Iχm(cL) :=
∑c

k=0(−1)k dim IHk
m(cL) denotes the intersection Euler

characteristic of cL.

6.2.2. Definition of the Bismut–Zhang torsion ρBZ(X, ξ, gT L, hX)

From now on, let X be an n-dimensional compact pseudomanifold with
two strata {Y, Z := Xsm}, Y < Z. For simplicity we assume that the
singular stratum Y is connected. We denote by L its link and by T its
closed tubular neighbourhood. Set c := codimX Y .

Let ξ = {ξY , ξZ} be a stratified anti-radial gradient-like vector field on
X. For all x ∈ Crit(ξY ), we fix a Riemannian metric gT Lx on the smooth
link manifold Lx. For x ∈ Crit(ξY ), we denote by ∆W,x (resp. by ζx) the
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model Witten Laplacian (resp. its torsion zeta function) defined in the last
paragraph of Subsection 6.2.1. For x ∈ Critm(ξZ), we denote by ∆W,x

(resp. by ζx) the smooth model Witten Laplacian for a smooth Morse
critical point of index m on Rn (resp. its torsion zeta function).

(a) Let (C•
m(X, ξ), ∂•) be the filtered Morse–Bott type cochain complex

associated to the stratified anti-radial gradient-like vector field ξ

and the lower middle perversity (see Definition 4.8) with associated
graded complex G•

m, m ∈ N0 (see Section 4.2.2). For m ∈ N0, we
define a finite dimensional cochain complex

(6.37)

G•
m := H•(G•

m)

≃

 ⊕
x∈Critm(ξY )

IH•−m
m (cLx)

⊕

 ⊕
x∈Critm(ξZ)

H•(Du
x , ∂D

u
x)

,
with trivial coboundary operator. We equip the cohomology of the
complex G•

m with the Hilbert structure induced from the L2-metric
on ⊕x∈Critm(ξ) ker(∆W,x) via (6.16) resp. the first isomorphism
in (6.32). We equip the finite complex G•

m with a Hilbert struc-
ture, such that

(6.38) ρ(G•
m) = −

∑
x∈Critm(ξ)

1
2ζ

′
x(0).

We have an up to homotopy unique cochain homotopy equivalence
u : G•

m → G•
m with H•(u) = id. This equips the graded complexes

G•
m, m ∈ N0, with simple structures.

(b) We equip the cohomology H•(C•
m(X, ξ), ∂•) ≃ IH•

m(X) with a
Hilbert structure hX .

As explained in Section 6.1.2, from the above data, we get a preferred
simple structure (C•, ∂•) on (C•

m(X, ξ), ∂•).

Definition 6.3. — Let hX be a Hilbert structure onH•(C•
m(X,ξ),∂•) ≃

IH•
m(X). Moreover, let (C•

m(X, ξ), ∂•) be equipped with the preferred sim-
ple structure (C•, ∂•) as explained above. The Bismut–Zhang torsion of X
is defined by

(6.39) ρBZ(X, gT L, ξ, hX) := ρ(C•
m(X, ξ), ∂•) = ρ(C•, ∂•).

Remarks 6.4.
(a) The Bismut–Zhang torsion for the upper middle perversity n is de-

fined analogously, using the complex (C•
n(X, ξ), ∂•) and the model

Witten Laplacian from Remark 6.2. In case of a Witt space, the
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Bismut–Zhang torsion for lower middle and upper middle perver-
sity coincide, since the two ingredients used for their definition do
coincide.

(b) Let L be a stratified pseudomanifold equipped with an iterated
conical Riemannian metric gT L. The model Witten Laplacian on
cL resp. on Rn−c × cL has also been studied in this more general
situation [49, Sections 4.3 and 4.4]. One can study the associated
zeta function, compute it (in terms of the spectrum of the trans-
verse Laplacian) and prove holomorphicity in 0. In Section 4, the
Morse–Bott type complex (C•

m(X, ξ), ∂•) has been constructed for
stratified pseudomanifolds of arbitrary depth. Hence both ingredi-
ents in the definition of the Bismut–Zhang torsion are available for
stratified pseudomanifolds of arbitrary depth. The above definition
of the Bismut–Zhang torsion can be generalised directly to the case
of stratified pseudomanifolds of arbitrary depth.

(c) By definition, the Bismut–Zhang torsion depends on the anti-radial
gradient-like vector field ξ and on the metrics gT Lx , x ∈ Crit(ξY ).
However, using the homotopy principle in smooth Morse theory as
in [9, Section XIV], one can prove that

(6.40) ρBZ(X, gT L, ξ, hX) = ρBZ(X, gT L, ξ′, hX),

for a stratified anti-radial gradient-like vector field ξ′ with ξ′ = ξ

on T . Moreover (6.40) also holds, if we perturb ξ to ξ′ = −r∂r + ξY

in the tubular neighbourhood T .
(d) The definition of the Bismut–Zhang torsion bears some similarity

to the definition of the smooth Milnor torsion. Using (6.18), (6.20)
one can prove that the singular points of ξZ do contribute to ρBZ

as in the classical definition of the Milnor torsion. However, the
contribution of the singular points of ξY is given by the analytic
torsion of the model Witten Laplacian.

(e) Let (X, gT X) be a singular space with isolated conical singularities,
i.e. Xsm carries a Riemannian metric gT X which, near the singu-
larities, is of the form (6.21). By work of Cheeger [17, Section 1
and Theorem 5.1] and of Cheeger–Goresky–MacPherson [18, Sec-
tion 3.4], we have the following Hodge-de Rham theorem:

(6.41) IH•
m(X) ≃ H•

(2)(X) ≃ Harm•
(2)(X),

where H•
(2)(X) denotes the L2-cohomology of X and Harm•

(2)(X)
denotes the vector space of L2-harmonic forms on X. Let hX be
the metric on H•

(2)(X) induced from the L2-metric on Harm•
(2)(X)
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via the isomorphism (6.41). We denote by | |RS
det H•

(2)(X) the Ray–
Singer metric induced on the determinant line detH•

(2)(X) from
hX . The Bismut–Zhang metric ∥ ∥ξ,g

det H•
(2)(X) defined in [51] relates

as follows to the Bismut–Zhang torsion defined here:

(6.42) ρBZ(X, gT L, ξ, hX) = ± ln

∥ ∥ξ,g
det H•

(2)(X)

| |RS
det H•

(2)(X)

 .

Note that the general assumption in [51] is that X satisfies the Witt
and a spectral Witt condition (see [51, Section 2.3]).

6.2.3. Gluing formula for the Bismut–Zhang torsion

The complexes (C•(Z, ξZ), ∂•) and (C•
m,loc(T, ξ), ∂•) have been intro-

duced at the beginning of Section 5. Adapting the construction of Sec-
tion 6.2.2, we can equip the complex (C•

m,loc(T, ξ), ∂•) with a simple struc-
ture. We equip H•(C•

m,loc(T, ξ), ∂•) ≃ IH•
m(T ) (see Corollary 5.4) with a

Hilbert structure hT and define the torsion ρ(C•
m,loc(T, ξ), ∂•) proceeding

as in Section 6.2.2.
We have a short exact sequence of complexes

(6.43)
0 −→ (C•(Z, ξZ), ∂•) −→ (C•

m(X, ξ), ∂•) −→ (C•
m,loc(T, ξ), ∂•) −→ 0.

Set M := X \ T , which is a smooth manifold with boundary ∂M = ∂T .
By smooth Morse theory, the Main Theorem 1 and Corollary 5.4 the long
exact sequence in cohomology induced from (6.43) is isomorphic to

(6.44) (L•, ∂•) : · · · −→ H•(M,∂M) −→ IH•
m(X) −→ IH•

m(T ) −→ · · · .

We equip IH•
m(X) (resp. H•(M,∂M)) with a metric hX (resp. h(M,∂M)).

We denote by ρ(L•, ∂•) the torsion of the long exact sequence (6.44).

Proposition 6.5.

(6.45) ρBZ(X, gT L, ξ, hX)
= ρ(C•

m,loc(T, ξ), ∂•) + ρR(M,∂M, h(M,∂M)) + ρ(L•, ∂•).

Proof. — The claim follows by applying the gluing formula for torsion to
the exact sequence (6.43) and using Remark 6.4(d). The gluing formula for
torsion is due to Milnor [59, Theorem 3.2] for finite Hilbert cochain com-
plexes; here we use the extension of Milnor’s result to cochain complexes
with simple structures in [47, Section 2.6]). □
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6.3. The Bismut–Zhang torsion for pseudomanifolds with
singular stratum of even codimension

Topological invariance of the Bismut–Zhang metric for oriented spaces
with isolated conical singularities of even dimension has been proved al-
ready in [51, Section 8]. In Section 6.3.1 we recall some of the arguments
of the proof for convenience of the reader–the arguments in the proof of
Proposition 6.6 reappear in the proof of Proposition 6.8. In Section 6.3.2
we give a spectral sequence formula for the Bismut–Zhang torsion, for the
case dimY ⩾ 1. The results of this section will be used in the proof of the
Main Theorem 2 in Section 6.4.2.

6.3.1. Vanishing of the Bismut–Zhang torsion for even dimensional spaces
with isolated singularities

Let (L, gT L) be a smooth compact connected oriented Riemannian man-
ifold of dimension c− 1. From Corollary 5.4, the local calculation for inter-
section (co-)homology (recalled in (2.14)) and the Hodge theorem for the
link manifold (L, gT L),

Hk(C•
m,loc(cL,−r∂r), ∂•) ≃ IHk

m(cL) ≃

{
Hk(L) for k < c/2,
0 else,

≃

{
Harmk(L) for k < c/2,
0 else.

(6.46)

We equip H•(C•
m,loc(cL,−r∂r), ∂•) with the metric hHarm(L)

induced from the L2-metric on harmonic forms on (L, gT L) via the
isomorphism (6.46).

Proposition 6.6. — Let (L, gT L) be a smooth compact connected ori-
ented odd dimensional Riemannian manifold. Then,

(6.47) ρ(C•
m,loc(cL,−r∂r), ∂•) = 1

2ρR(L, hHarm(L)).

Proof. — We denote by hker(∆W,cL) the metric induced on IH•
m(cL) from

the L2-metric on forms on the cone cL (restricted to ker(∆W,cL)) via the
first isomorphism in (6.24). By the definition of ρ(C•

m,loc(cL,−r∂r), ∂•) in
Section 6.2.3, we have

ρ(C•
m,loc(cL,−r∂r), ∂•) = −1

2ζ
′
cL(0) −

∑
0⩽k< c

2

(−1)kJidkK,(6.48)
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where we abbreviated

JidkK := Jidk : (IHk
m(cL), hHarm(L)) −→ (IHk

m(cL), hker ∆W,cL
)K,(6.49)

Set bk(L) := dimHk(L), k = 0, . . . , c − 1. Using (6.24), (6.26), for 0 ⩽
k < c/2,

JidkK = 1
2b

k(L) ln
(

Γ(c/2 − k)
2

)
.(6.50)

We denote by θL(s) = −Trs[N(∆⊥
L )−s] the torsion zeta function of the

smooth link manifold L; here ∆L denotes the Laplace–Beltrami operator
on the link manifold L. Comparing the explicit computation of the zeta
function ζcL in [52, Theorem I] with the computation of the analytic torsion
of a truncated cone in [82] and using [36, Theorem 1.1],

(6.51) ζ ′
cL(0) = 1

2θ
′
L(0) −

∑
0⩽k< c

2

(−1)kbk(L) ln
(

Γ(c/2 − k)
2

)
.

By the Cheeger–Müller theorem [16, 60],

(6.52) ρR(L, hHarm(L)) = −1
2θ

′
L(0).

The claim of the proposition follows putting together (6.48)–(6.52). □

Let now X be an even dimensional oriented space with isolated singular-
ities, dimX = n = c. An even dimensional space with isolated singularities
is a Witt space, hence the intersection cohomology with lower middle and
upper middle perversity coincide (see [77, Section 3]) and Poincaré duality
holds for IH•

m(X) (see [30, Section 3.3]).

Corollary 6.7. — Let X be an even dimensional oriented space with
isolated singularities, ξ a stratified anti-radial gradient-like vector field on
X and {gT Lx , x ∈ Σ} Riemannian metrics on the link manifolds. We equip
IH•

m(X) with a Hilbert structure hX compatible with Poincaré duality.
Then

(6.53) ρBZ(X, gT L, ξ, hX) = 0.

Proof. — The claim has been proved in [51, Section 8] and relies on
Propositions 6.5 and 6.6. □

6.3.2. Spectral sequence formula for the Bismut–Zhang torsion in case
dimY ⩾ 1, codimX Y even

In this section we assume that X is a compact oriented pseudomanifold
with two strata {Y,Z = Xsm} with dimY ⩾ 1 and c = codimX Y even.
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The assumptions and notations are as in the beginning of Section 6.2.2.
Let ξ = {ξY , ξZ} be a stratified anti-radial gradient-like vector field on X.
We may moreover assume that ξ is of the form ξ = −r∂r + ξY on T (see
Remark 6.4(c)).

We denote by Hk(L) (resp. by IHk
m(cL)) the flat vector bundle on Y

with fibre Hk(Lx), x ∈ Y (resp. IHk
m(cLx), x ∈ Y ). By [47, Lemma 5.2],

⊗k det(Hk(L))⊗(−1)k is unimodular. Since L is odd dimensional, using
Poincaré duality on the link and the local calculation for intersection ho-
mology (see (6.24)), we have that ⊗k det(IH•

m(cL))⊗(−1)k is unimodu-
lar as well. Hence, we can equip the flat vector bundles IHk(cL) (and
hence Hk

m(L)) with Hermitian metrics h, such that the induced metric on
⊗k det(IHk(cL))⊗(−1)k (resp. on ⊗k det(H•

m(L))⊗(−1)k ) is flat.
The Morse–Thom–Smale complex (C•(Y, ξY , IHk

m(cL)), ∂•) on Y asso-
ciated to the vector field ξY with values in the flat vector bundle IHk

m(cL),
carries a metric induced from the metric on IHk

m(cL). Moreover we fix a
Hilbert structure on H•(C•(Y, ξY , IHk

m(cL)), ∂•) ≃ H•(Y, IHk
m(cL)). For

the E1-term resp. the E2-term of the spectral sequence associated to the
filtered chain complex (C•

m,loc(T, ξ), ∂•) we have, by the results in Section 5,

U•,k
1 : (C•(Y, ξY , IHk

m(cL)), ∂•) ≃ E•,k
1 ,

U•,k
2 : H•(Y, IHk

m(cL)) ≃ E•,k
2 .

(6.54)

Set ρR(L, h) := ρR(L, hx), which does not depend on x ∈ Y , since the
metric induced on ⊗k det(Hk(L))⊗(−1)k from h is flat. We denote by χ(Y )
the Euler characteristic of the manifold Y .

Proposition 6.8. — Let c = codimX Y be even. Then

(6.55) ρ(C•
m,loc(T, ξ), ∂•) = 1

2χ(Y )ρR(L, h)

+
∑

k

(−1)kρ(C•(Y, ξY , IHk
m(cL)), ∂•)

+ ρ⩾2(C•
m,loc(T, ξ), ∂•) +

∑
m,k

(−1)m+kJUm,k
2 K.

Proof. — In the sequel, we write (F •
loc,m/F

•
loc,m+1), m ∈ N0, for the

graded complex associated to the filtered complex (C•
m,loc(T, ξ), ∂•). From

the definition of ρ(C•
m,loc(T, ξ), ∂•) in Section 6.2.3 and the transformation
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formula [47, Section 2.6] we get

(6.56) ρ(F •
loc,m/F

•
loc,m+1)

= −
∑

x∈Critm(ξY )

1
2ζ

′
x(0) +

∑
0⩽k<c/2

(−1)m+kJidk
xK


+
∑

k

(−1)m+kJUm,k
1 K,

where we abbreviated

(6.57) Jidk
xK := Jidk : (IHk

m(cLx), hx) −→ (IHk
m(cLx), hker ∆W,x

)K.

From the proof of Proposition 6.6 (see in particular (6.51) and (6.52))
and the product formula (6.36),

ζ ′
x(0) = (−1)mζ ′

cLx
(0) + (−1)mIχm(cLx)

(
m− dimY

2

)
ln π

= − (−1)mρR(Lx, hHarm(Lx))

− (−1)m
∑

0⩽k<c/2

(−1)kbk(Lx) ln
(

Γ(c/2 − k)
2

)

+ (−1)mIχm(cLx)
(
m− dimY

2

)
ln π.

(6.58)

Using (6.32), (6.34), for x ∈ Critm(ξY ), 0 ⩽ k < c
2 ,

(6.59) Jidk
xK = Jidk : (IHk

m(cLx), hx) −→ (IHk
m(cLx), hHarm(Lx))K

+ bk(Lx)
(

1
2 ln

(
Γ (c/2 − k)

2

)
− 1

2

(
m− dimY

2

)
ln π

)
.

From (6.56)–(6.59) and the Poincaré–Hopf theorem for the vector field
ξY on Y ,

(6.60)
∑
m

ρ(F •
loc,m/F

•
loc,m+1)

=
∑
m

(−1)m
∑

x∈Critm(ξY )

1
2ρR(Lx, hx) +

∑
m,k

(−1)m+kJUm,k
1 K

= 1
2χ(Y ) · ρR(L, h) +

∑
m,k

(−1)m+kJUm,k
1 K.
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From (6.54) and the transformation formula [47, Section 2.6],

(6.61)
∑

k

(−1)kρ(E•,k
1 ) =

∑
k

(−1)kρ(C•(Y, ξY , IHk
m(cL)), ∂•)

−
∑
m,k

(−1)m+kJUm,k
1 K

+
∑
m,k

(−1)m+kJUm,k
2 K.

The claim of the proposition follows applying Theorem 6.1 to the filtered
complex (C•

m,loc(T, ξ), ∂•) and using (6.60) and (6.61). □

Corollary 6.9. — Let c = codimX Y be even. Then the torsion
ρ(C•

m,loc(T, ξ), ∂•) is independent of the choice of the vector field ξY and
the metrics gT Lx , x ∈ Crit(ξY ).

Proof. — Let ξY , ξ′
Y be two smooth Morse–Smale vector fields on Y and

let ξ = −r∂r + ξY , ξ′ = −r∂r + ξ′
Y be the corresponding stratified anti-

radial gradient-like vector fields on T . Denote by Um,k
2 (resp. U ′m,k

2 ) the
isomorphism in (6.54) for the E2-term of the spectral sequence associated to
the filtered complex (C•

m,loc(T, ξ), ∂•) (resp. (C•
m,loc(T, ξ′), ∂•)). Obviously,

the first term in the formula (6.55) does not depend on the choice of the
vector field ξY and the choice of metrics gT Lx , x ∈ Crit(ξY ). Since the
Milnor torsion for a smooth manifold with coefficients in a unimodular flat
vector bundle is a combinatorial invariant (see Section 6.1),

(6.62)
∑

k

(−1)kρ(C•(Y, ξY , IHk(cL)), ∂•)

=
∑

k

(−1)kρ(C•(Y, ξ′
Y , IHk(cL)), ∂•).

From the anomaly formula for the ρ⩾2-term in the formula for the torsion
of a spectral sequence (see [47, Remark 4.3]),

(6.63) ρ⩾2(C•
m,loc(T, ξ), ∂•) +

∑
m,k

(−1)m+kJUm,k
2 K

= ρ⩾2(C•
m,loc(T, ξ′), ∂•) +

∑
m,k

(−1)m+kJU ′m,k
2 K.

The claim follows from (6.55), (6.62) and (6.63). □
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6.4. Comparison between the Bismut–Zhang and the
intersection Reidemeister torsion for pseudomanifolds with

singular stratum of even codimension

In Section 6.4.1 we recall the definition of intersection Reidemeister tor-
sion given in [19], and show that the perturbed complex constructed in
Section 5 computes the intersection Reidemeister torsion of T . We prove
Main Theorem 2 in Section 6.4.2.

6.4.1. Intersection Reidemeister torsion

Let X be a stratified pseudomanifold as defined in Section 2.2, p a per-
versity in the sense of Goresky and MacPherson.

Let K be a triangulation of X compatible with the stratification, i.e.
the closure of the Xk’s are subcomplexes of K. We assume moreover, that
the triangulation is flaglike with respect to the stratification, i.e. for any
simplex σ, the intersection of σ with the closure of an Xk is a single face
of σ. An easy way to achieve a flaglike triangulation is to take the first
barycentric subdivision of a given compatible triangulation.

We consider the complex (ICp,K
• (X,Z), ∂•) of intersection chains of per-

versity p on X, which are simplicial with respect to K. The complex
(ICp,K

• (X,Z), ∂•) is a complex of finitely generated free abelian groups.
Moreover H•(ICp,K

• (X,Z), ∂•) ≃ IHp
• (X,Z) (see [33]), and hence by [34,

Theorem 8.1], H•(ICp,K
• (X,Z) ⊗Z R, ∂• ⊗Z R) ≃ IHp

• (X).
Let us denote by (D•

p,K(X), ∂•) the complex dual to the complex
(ICp,K

• (X,Z) ⊗Z R, ∂• ⊗Z R). Then

(6.64) H•(D•
p,K(X), ∂•) ≃ IH•

p (X).

The complex (D•
p,K(X), ∂•) carries a natural Hilbert structure induced

from its integer structure. Let us fix a Hilbert structure hX on its cohomol-
ogy H•(D•

p,K(X), ∂•) ≃ IH•
p (X). The intersection Reidemeister torsion

with perversity p of X is defined as

(6.65) ρp
IR(X,hX) := ρ(D•

p,K(X), ∂•).

Definition (6.65) is dual to the definition of A. Dar [19, Definition 2.5],
which is formulated in intersection homology.

If the Hilbert structure hX on H•(D•
p,K(X), ∂•) ≃ IH•

p (X) is also in-
duced from the integer structure of intersection cohomology, we have by [16,
Example 1.3] (see also [19, Example 2.1.9]):

(6.66) ρp
IR(X,hX) =

∑
k

(−1)k+1 ln |IHk
p (X,Z)tors|,
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where IH•
p (X,Z)tors denotes the torsion subgroup of IH•

p (X,Z).
Using (6.66) one can show, that the definition (6.65) is independent of
the chosen flaglike triangulation.

Let (C•
p,pert(T, ξ, η), ∂•) be the perturbed complex introduced in Sec-

tion 5 with the Hilbert structure induced from its integer structure. Let hT

be a Hilbert structure on H•(C•
p,pert(T, ξ, η), ∂•) ≃ IH•

p (T ). Using (5.28),
(6.66) (for T instead of X) and applying Cheeger’s result in [16, Exam-
ple 1.3] also to the complex (C•

p,pert(T, ξ, η), ∂•), we conclude

Proposition 6.10. — Under the above assumptions we have

(6.67) ρp
IR(T, hT ) = ρ(C•

p,pert(T, ξ, η), ∂•).

In particular, in case of an isolated singularity,

(6.68) ρp
IR(cL, hcL) = ρ(C•

p,pert(cL,−r∂r, η), ∂•).

In the following we are only interested in the case where p = m is the
lower middle perversity.

Let L be a smooth compact connected oriented manifold. Using the iso-
morphism (6.32), we equip IH•

m(cL) with the metric hHarm(L) induced from
the metric on harmonic forms on the link manifold L. Using the Poincaré
duality for the intersection Reidemeister torsion [19, Theorem 2.8] and the
combinatorial gluing formula (applied to the exact sequence of intersection
chain complexes associated to the pair (cL, L)), one can prove the following

Proposition 6.11. — Let L be a smooth compact connected oriented
odd dimensional manifold. Then

(6.69) ρm
IR(cL, hHarm(L)) = 1

2ρR(L, hHarm(L)).

6.4.2. Proof of Main Theorem 2

Case 1. — Let X be an even dimensional oriented space with isolated
conical singularities. The first claim of Main Theorem 2 follows directly
from Corollary 6.7. Let hX be a Hilbert structure on IH•

m(X) compatible
with Poincaré duality. By the duality for the intersection Reidemeister
torsion (see [19, Theorem 2.8]) and Corollary 6.7, we get

(6.70) ρBZ(X, gT L, ξ, hX) = ρm
IR(X,hX) = 0.

Case 2. — Let now X be a space with two strata, dimY ⩾ 1 and c =
codimX Y even. The fact, that ρBZ(X, gT L, ξ, hX) is independent on the
stratified anti-radial gradient-like vector field ξ and the Riemannian metrics
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gT Lx , x ∈ Crit(ξY ), follows from Corollary 6.9, topological invariance of
the smooth Milnor torsion, and the gluing formula for the Bismut–Zhang
torsion, Proposition 6.5. This shows the first claim of the Main Theorem 2.

Using the gluing formula for torsion [59, Theorem 3.2] one can prove
a gluing formula for the intersection Reidemeister torsion. Using the glu-
ing formula for the Bismut–Zhang torsion in Proposition 6.5 as well as
Proposition 6.10, the proof of the equality of intersection Reidemeister and
Bismut–Zhang torsion is now reduced to the proof of the following propo-
sition:

Proposition 6.12. — In case c = codimX Y even, we have

(6.71) ρ(C•
m,pert(T, ξ, η), ∂•) = ρ(C•

m,loc(T, ξ), ∂•).

Proof. — We proceed similarly to the proof of Proposition 6.8 and es-
tablish a spectral sequence formula for ρ(C•

m,pert(T, ξ, η), ∂•). The complex
(C•

m,pert(T, ξ, η), ∂•) is filtered by the index of critical points of ξY in Y .
For the associated graded complex we have (compare (5.22)),

(6.72)
G•

ξ,η,m := Fm(C•
m,pert(T, ξ, η), ∂•)/Fm+1(C•

m,pert(T, ξ, η), ∂•)

≃
⊕

x∈Critm(ξY )

C•−m
m,pert(cLx,−r∂r, η).

As in Section 6.3.2 we denote by IHk
m(cL) the local system on Y with fi-

bre IHk(cLx), x ∈ Y . We again equip the flat vector bundles IHk(cL) (and
hence Hk

m(L)) with Hermitian metrics h, such that the induced metric on
⊗k det(IHk(cL))⊗(−1)k (resp. on ⊗k det(H•

m(L))⊗(−1)k ) is flat; as already
explained, this is possible since c is even. The Morse–Thom–Smale complex
(C•(Y, ξY , IHk

m(cL)), ∂•) carries the metric induced from h. Moreover we
fix a Hilbert structure on H•(C•(Y, ξY , IHk

m(cL)), ∂•) ≃ H•(Y, IHk
m(cL)).

From (6.72) (see also the proof of Proposition 5.2), we deduce for the
E1- resp. the E2-term in the associated spectral sequence, which we denote
by E′•,k

1 resp. E′•,k
2 ,

V •,k
1 : (C•(Y, ξY , IHk

m(cL)), ∂•) ≃ E′•,k
1 ,

V •,k
2 : H•(Y, IHk

m(cL)) ≃ E′•,k
2 .

(6.73)
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From Proposition 6.11, (6.68), (6.72) and the transformation formula [47,
(2.6)] we get

(6.74)

∑
m

ρ(G•
ξ,η,m) =

∑
m

(−1)m
∑

x∈Critm(ξY )

ρm
IR(cLx, hx)

+
∑
m,k

(−1)m+kJV m,k
1 K

= 1
2χ(Y ) · ρR(L, h) +

∑
m,k

(−1)m+kJV m,k
1 K.

From (6.73) and the transformation formula [47, (2.6)] we get

(6.75)
∑

k

(−1)kρ(E′•,k
1 ) =

∑
k

(−1)kρ(C•(Y, ξY , IHk
m(cL)), ∂•)

−
∑
m,k

(−1)m+kJV m,k
1 K

+
∑
m,k

(−1)m+kJV m,k
2 K.

Applying Theorem 6.1 to the filtered complex (C•
m,pert(T, ξ, η), ∂•) and

using (6.74) and (6.75),

(6.76) ρ(C•
m,pert(T, ξ, η), ∂•)

=
∑
m

ρ(G•
ξ,η,,m) +

∑
k

(−1)kρ(E′•,k
1 )

+ ρ⩾2(C•
m,pert(T, ξ), ∂•)

= 1
2χ(Y ) · ρR(L, h)

+
∑

k

(−1)kρ(C•(Y, ξY , IHk
m(cL)), ∂•)

+ ρ⩾2(C•
m,pert(T, ξ, η), ∂•) +

∑
m,k

(−1)m+kJV m,k
2 K.

From the anomaly formula for the ρ⩾2-term (see [47, Remark 4.3]), we
have

(6.77) ρ⩾2(C•
m,loc(T, ξ), ∂•) +

∑
m,k

(−1)m+kJUm,k
2 K

= ρ⩾2(C•
m,pert(T, ξ), ∂•) +

∑
m,k

(−1)m+kJV m,k
2 K.
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From Proposition 6.8 and (6.76) and (6.77) we get

ρ(C•
m,pert(T, ξ, η), ∂•)(6.78)

= 1
2χ(Y ) · ρR(L, h)

+
∑

k

(−1)kρ(C•(Y, ξY , IHk
m(cL)), ∂•)

+ ρ⩾2(C•
m,loc(T, ξ), ∂•) +

∑
m,k

(−1)m+kJUm,k
2 K

= ρ(C•
m,loc(T, ξ), ∂•). □

Remark 6.13. — By combinatorial invariance of the intersection Reide-
meister torsion, the second statement of the Main Theorem 2 implies the
first. However, here we have also given an independent proof of the first
statement.
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