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SOME REMARKS ON THE SCHWEITZER COMPLEX

by Jonas STELZIG

Dedicated to the memory of J.-P. Demailly

Abstract. — We prove that the Schweitzer complex is elliptic and its coho-
mologies define cohomological functors. As applications, we obtain finite dimen-
sionality, a version of Serre duality, restrictions of the behaviour of cohomology in
small deformations, and an index formula which turns out to be equivalent to the
Hirzebruch–Riemann–Roch relations.

Résumé. — Nous prouvons que le complexe de Schweitzer est elliptique et que
ses cohomologies définissent des foncteurs cohomologiques. Comme applications,
nous obtenons la dimensionnalité finie, une version de la dualité de Serre, des
restrictions du comportement de la cohomologie dans les petites déformations,
et une formule d’index qui s’avère être équivalente aux relations de Hirzebruch–
Riemann–Roch.

1. Introduction

The Bott–Chern and Aeppli cohomology are classical and well-established
invariants of complex manifolds [1, 5]. Given a complex manifold X, with
double complex of forms (AX(X), ∂, ∂) they are defined as

Hp,q
BC(X) :=

(
ker ∂ ∩ ker ∂

im ∂∂

)p,q

and Hp,q
A (X) :=

(
ker ∂∂

im ∂ + im ∂

)p,q

.

M. Schweitzer and J. P. Demailly [7, 14] have shown that they arise as the
cohomology groups in certain degrees of a differential complex (L·p,q(X), dL),
the definition of which we recall below. The other cohomologies of this
complex appear naturally in the classification of holomorphic string alge-
broids [9] or higher-length Aeppli–Bott–Chern Massey products [12], but
have received relatively little attention otherwise. In this short note, we will
establish some basic properties of the Schweitzer complex. More precisely,
we show:
Keywords: Complex manifolds, Cohomology, Index theory, Deformations.
2020 Mathematics Subject Classification: 32Qxx, 32G05.



36 Jonas STELZIG

Theorem A. — Let X be a complex manifold and (L·p,q(X), dL) its
Schweitzer complex.

(1) The complex (L·p,q(X), dL) is elliptic.
(2) For every p, q, k ∈ Z, the assignement X 7→ Hk(L·p,q(X), dL) defines

a cohomological functor in the sense of [15, 16].

From now on, let us assume X to be compact and of dimension n. Then
we obtain:

Corollary B. — The dimensions sk
p,q(X) := dim Hk(L·p,q(X), dL) are

finite.

This has also been shown by Demailly [7, Theorem 12.4], using a different
argument. Further, we have

Corollary C. — For X connected, wedge product and integration in-
duce a perfect pairing

Hk(L·p,q(X), dL) × H2n−k−1(L·n−p+1,n−q+1(X), dL) −→ C.

Corollary D. — The numbers sk
p,q(X) vary upper semi-continuously

in families. I.e. given a differentiable family (cf. [11]) of compact complex
manifolds {Xt}t∈B with B ⊆ Rm, for any t ∈ B sufficiently close to a given
point 0 ∈ B, there is an inequality sk

p,q(X0) ⩾ sk
p,q(Xt).

We will illustrate that this last result gives new restrictions on the be-
haviour of multiplicities of indecomposable subcomplexes in of the double
complex of smooth C-valued forms on X under small deformations. In par-
ticular, one obtains semi-continuity results even for classical objects such
as certain differentials in the Frölicher spectral sequence.

By ellipticity, we may apply the Atiyah–Singer index theorem and obtain
equalities between the Euler-characteristics χp,q(X) :=

∑
k(−1)ksk

p,q and
certain expressions tdp,q(X) in characteristic numbers (recalled below).

Theorem E. — The relations χp,q(X) = tdp,q(X) are equivalent to the
Hirzebruch–Riemann–Roch relations.

Theorem E is in accord with a conjecture made in [16], stating that any
universal linear relation between cohomological invariants and Chern num-
bers of compact complex manifolds of a given dimension is a consequence
of the Hirzebruch–Riemann–Roch relations.
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2. Proofs of the main results

2.1. The Schweitzer complex

Throughout, we fix an n-dimensional complex manifold X and we denote
by Ap,q

X the sheaf of smooth complex valued (p, q)-forms. Given any fixed
pair of integers p, q ∈ Z, Schweitzer and Demailly [7, 14], define a simple
complex L·p,q of locally free sheaves as follows:

Lk
p,q :=

⊕
r+s=k

r<p,s<q

Ar,s
X if k ⩽ p + q − 2

Lk
p,q :=

⊕
r+s=k+1
r⩾p,s⩾q

Ar,s
X if k ⩾ p + q − 1

with differential dL given by:

· · · pr◦d−→ Lp+q−3
p,q

pr◦d−→ Lp+q−2
p,q

∂∂−→ Lp+q−1
p,q

d−→ Lp+q
p,q

d−→ · · · ,

where pr denotes projection from the sheaf of all forms in a given degree
to the direct summand Lk

p,q.
We illustrate which components of AX contribute to L·p,q for n = 3,

(p, q) = (2, 1):
A2,3

X A3,3
X

A2,2
X A3,2

X

A2,1
X A3,1

X

A0,0
X A1,0

X

By construction, one has

Hp,q
BC(X) = Hp+q−1(L·p,q(X), dL) = Hp+q−1(L·p,q)

and
Hp,q

A (X) = Hp+q(L·p+1,q+1(X), dL) := Hp+q(L·p+1,q+1)

TOME 75 (2025), FASCICULE 1



38 Jonas STELZIG

We will mainly be interested in the differential complex of global sections
Lp,q(X) := (L·p,q(X), dL).(1)

Remark 2.1. — If X is compact Kähler (or more generally a ∂∂-manifold),
the natural maps Hp,q

BC(X) ∼= Hp,q

∂
(X) and Hp,q

∂
(X) ∼= Hp,q

A (X) are isomor-
phisms. More generally, in that case all cohomology groups Hk(Lp,q(X))
are isomorphic to direct sums of the Dolbeault cohomology groups in the
relevant bidegrees, e.g. Hp+q(Lp,q(X)) ∼= Hp+1,q

∂
(X) ⊕ Hp,q+1

∂
(X) etc, as

may be verified using the ∂∂-Lemma.

2.2. Cohomological functors

We recall (cf. [15, 16]) that a cohomological functor on the category of
complex manifolds is a functor to the category of C-vector spaces, which
factors as H ◦ A, where A : X 7→ AX := (AX(X), ∂, ∂) is the Dolbeault
double complex functor and H is a linear functor which vanishes on direct
sums of “squares”, i.e. double complexes of the form

C C

C C

∼

∼

∼

∼ .

Remark 2.2. — In [16], the definition was made only for compact mani-
folds, and is was further demanded that H takes values in the category of
finite dimensional vector spaces. We can extend this finite-dimensionality
condition to the non-compact situation by requiring H(C) to be finite di-
mensional for finite-dimensional complexes. This recovers the condition in
the compact case since for any compact complex manifold X, there exists
a decomposition AX

∼= Asq
X ⊕Azig

X where Asq
X is a direct sum of squares and

Azig
X is finite-dimensional [15].

It is clear from the construction that Lp,q(X) depends only on AX . For
any double complex A, denote by Lp,q(A) the Schweitzer complex formed
using A instead of AX(X) and denote Hk

Sp,q
(A) := Hk(Lp,q(A)). It is then

clear that Hk
Sp,q

(A) is a linear functor and that it commutes with arbitrary
direct sums of double complexes. Further, note that Hk

Sp,q
(C), being a

subquotient of C, is certainly finite dimensional for any finite dimensional
double complex C. Thus, what remains to show is the following:

(1) Up to a shift in total degree, this complex is denoted Sp,q(X) in [12]. Here we follow
the indexing convention used in [7, 14].

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.3. — For any square □ as above, we have Hk
Sp,q

(□) = 0 for
all p, q, k ∈ Z.

Proof. — Any square □ is concentrated in four bidegrees:

S := supp□ := {(r, s), (r + 1, s), (r, s + 1), (r + 1, s + 1)}.

The structure of Lp,q(□) (and hence HSp,q (□)) depends on the relative
position of S and T = TA ∪ TB where

TA := {(a, b) ∈ Z2 | a < p, b < q}

TB := {(a, b) ∈ Z2 | a ⩾ p, b ⩾ q}.

There are three possibilities: #(S ∩T ) ∈ {0, 2, 4}, surveyed in the following
table:

Case 1: S ∩ T = ∅ Case 2: #(S ∩ T ) = 2 Case 3: #(S ∩ T ) = 4

or

Lp,q(□) = 0 Lp,q(□) = C ≃→ C Lp,q(□) = C ↪→ C2 ↠ C

In each case, clearly Hk
Sp,q

(□) = Hk(Lp,q(□)) = 0 for all p, q, k. □

Proof of Corollary B. — This is now a direct consequence of Lemma 2.3
and Remark 2.2. □

Proof of Corollary C. — We recall from [15, Corollary 20] that for any
cohomological functor H and compact complex manifold X, the integra-
tion pairing induces an isomorphism H(AX) ∼= H(DAX), where DAX

denotes the dual double complex as in [15]. The bigraded components of
the dual complex are given by (DAX)p,q = (Ap,q

X )∨ and the differentials
(up to sign) by pullback with the differentials of AX . Therefore, we have
Lk

p,q(DAX) = (L2n−k−1
n−p+1,n−q+1(AX))∨. But cohomology of a complex of vec-

tor spaces commutes with dualization, so

Hk(Lp,q(AX)) ∼= Hk(Lp,q(DAX)) = H2n−k−1(Ln−p+1,n−q+1(X))∨. □

2.3. Ellipticity

Let x ∈ X be some fixed point in a complex manifold X. Denote by
π : TX∨ → X the projection map of the cotangent bundle and for any

TOME 75 (2025), FASCICULE 1



40 Jonas STELZIG

ξ = ξx ∈ TX∨
x , denote by (L·, σ) := (π∗L·p,q(X)ξ, σ(dLp,q

)(ξ)) the symbol
complex (cf. [2]). To show ellipticity, we have to prove:

Lemma 2.4. — For any ξ ̸= 0, the symbol complex (L·, σ) is exact.

Proof. — As is well-known, we have σ(∂)(ξ) = ξ1,0 ∧ _ and σ(∂)(ξ) =
ξ0,1 ∧_, where the superscripts mean projection to the corresponding bide-
gree. Without loss of generality, we may pick a local coordinate system
z1, ..., zn around x such that ξ = dz1 + dz1.

Let us check exactness of the following part of the complex. Exactness
at stages of lower or higher degree is only notationally more cumbersome.

Ap−3,q−1
X,x

⊕
Ap−2,q−2

X,x

⊕
Ap−1,q−3

X,x

−→
Ap−2,q−1

X,x

⊕
Ap−1,q−2

X,x

−→ Ap−1,q−1
X,x −→ Ap,q

X,x −→
Ap,q+1

X,x

⊕
Ap+1,q

X,x

−→

Ap,q+2
X,x

⊕
Ap+1,q+1

X,x

⊕
Ap,q+2

X,x

.

The first map is given by

σp+q−4 : ωp−3,q−1 +ωp−2,q−2 +ωp−1,q−3 7−→ ξ1,0ωp−3,q−1 + ξ0,1ωp−2,q−2

+ξ1,0ωp−2,q−2 + ξ0,1ωp−1,q−3.

The second map is given by

σp+q−3 : ωp−2,q−1 + ωp−1,q−2 7−→ ξ1,0ωp−2,q−1 + ξ0,1ωp−1,q−2.

The third map is given by

σp+q−2 : ω 7−→ ξ1,0ξ0,1ω.

The fourth and fifth maps are given by ω 7−→ ξω.
Now assume ω = ωp−2,q−1 + ωp−1,q−2 ∈ ker σp+q−3. Write

ωp−2,q−1 = ξ1,0ξ0,1ωA + ξ1,0ωB + ξ0,1ωC + ωD

ωp−1,q−2 = ξ1,0ξ0,1ω′
A + ξ1,0ω′

B + ξ0,1ω′
C + ω′

D,

with ωA, ω′
A, ... having no summand which contains a factor of ξ1,0 or ξ0,1.

Then σ(ω) = 0 translates into the three equations

ξ1,0ξ0,1ωC + ξ0,1ξ1,0ω′
B = 0

ξ1,0ωD = ξ0,1ω′
D = 0.

ANNALES DE L’INSTITUT FOURIER
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The second and third equation imply ωD = ω′
D = 0 and the first implies

ωC = ω′
B . Hence, defining η ∈ Lp+q−4

x as follows

ηp−3,q−1 := ξ0,1ωA + ωB

ηp−2,q−2 := ωC

ηp−1,q−3 := −ξ1,0ω′
A + ω′

C ,

one obtains σ(η) = ω.
Now, let ω ∈ Lp+q−2

x = Ap−1,q−1
X,x . Write ω = ξ1,0ξ0,1ωA + ξ1,0ωB +

ξ0,1ωC + ωD as before. Then 0 = σ(ω) = ξ1,0ξ0,1ω implies ωD = 0. Hence,
defining η ∈ Lp+q−3

x by

ηp−2,q−1 := ωB + 1
2ξ0,1ωA

ηp−1,q−2 := ωC − 1
2ξ1,0ωA,

we get σ(η) = ω.
Next, let ω ∈ Lp+q−1

x = Ap,q
X,x. Write ω = ξ1,0ξ0,1ωA + ξ1,0ωB + ξ0,1ωC +

ωD as above. Then sorting 0 = σ(ω) = ξ1,0ω + ξ0,1ω by bidegree yields

ξ1,0ξ0,1ωC + ξ1,0ωD = 0

ξ0,1ξ1,0ωB + ξ0,1ωD = 0.

In particular, ωD = −ξ0,1ωC and therefore 0 = ωD = ωC = ωB . Thus,
ω = σ(ωA). Finally, let ω = ωp,q+1 + ωp+1,q ∈ Ap,q+1

X,x ⊕ Ap+1,q
X,x = Lp+q

x s.t.
0 = σ(ω) = ξ ∧ ω. Again, write

ωp,q+1 = ξ1,0ξ0,1ωA + ξ1,0ωB + ξ0,1ωC + ωD

ωp+1,q = ξ1,0ξ0,1ω′
A + ξ1,0ω′

B + ξ0,1ω′
C + ω′

D.

Then σ(ω) = 0 translates into

0 = ξ0,1ξ1,0ωB + ξ0,1ωD

0 = ξ1,0ξ0,1ωC + ξ1,0ωD + ξ0,1ξ1,0ω′
B + ξ0,1ω′

D

0 = ξ1,0ξ0,1ω′
C + ξ1,0ω′

D.

This implies ωD = ωB = ω′
C = ω′

D = 0 and ωC = ω′
B . Defining

η := −ξ1,0ωA + ωC + ξ0,1ω′
A ∈ Lp+q−1 = Ap,q

X,x,

we have σ(η) = ω. □

Remark 2.5. — Ellipticity immediately gives a second proof of Corol-
lary B, see [2, Proposition 6.5.]

TOME 75 (2025), FASCICULE 1



42 Jonas STELZIG

2.4. Small deformations

Let us prove Corollary D:
Proof. — Pick a hermitian metric. For any k ̸= p + q, the order of dk

Lp,q

is 1 and thus for k ̸= p + q, p + q − 1, the operators ∆k
p,q := (dk

Lp,q
)∗dk

Lp,q
+

dk−1
Lp,q

(dk−1
Lp,q

)∗ are elliptic and their kernel is isomorphic to Hk(L·p,q(X)).
They vary smoothly in families and hence the result follows, cf. [11]. For
k = p + q, p + q − 1, i.e. for Bott–Chern and Aeppli cohomology, the Corol-
lary is known. (In that case, ∆k

p,q as defined above is not elliptic, but an
appropriate modification of it is, see [2, Section 6] for a general statement
or [7, 14] for an explicit construction in this case.) □

As an example we use this result to obtain semicontinuity properties
for a classical object: the Frölicher spectral sequence [8]. We denote by
ep,q

r := dim Ep,q
r the dimensions of the bigraded pieces on the r-th page

of this spectral sequence. The dimensions on the first page ep,q
1 = hp,q

∂
are

known to behave upper semi-continuously, but for later pages this is false
in general (cf. [6, Corollary 4.9]). However, denoting by FDp,q := ep,q

1 −ep,q
∞ ,

we may show:

Corollary 2.6. — Let Xt be a differentiable family of complex mani-
folds (cf. [11]) with X0 = X compact of dimension n. Then for t sufficiently
close to zero, there are inequalities

FD0,1(X0) ⩾ FD0,1(Xt) and FD0,n−1(X0) ⩾ FD0,n−1(Xt).

Proof. — In order to avoid heavy notation which obscures the idea of
the proof, we do the proof in the case of 3-folds, where it is easier to draw
all necessary diagrams. We use [10, 15] that AX may be decomposed into
a direct sum of indecomposable double complexes. In any such decomposi-
tion there appear finitely many zigzags (indecomposable double complexes
concentrated in at most two neighboring total degrees) and (unless X has
dimension 0) infinitely many squares (as in Lemma 2.3). The multiplicities
multZ(AX) =: #Z(AX) of these summands are an isomorphism invariant
of AX , [15]. Furthermore, for each zigzag, its images under the involutions
τ : (p, q) 7→ (q, p) “flipping along the diagonal” and σ : (p, q) 7→ (n−p, n−q)
“flipping along the main antidiagonal” appear with the same multiplicity,
so, denoting by Z ′ the sum of the elements in the ⟨σ, τ⟩-orbit of Z we may
write #Z ′ = #Z. Finally, no zigzag with nonzero multiplicity can have
a nonzero component in degrees (0, 0), (n, 0), (0, n), (n, n), unless it is one-
dimensional and entirely concentrated in that bidegree (“only dots in the
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corners”), see [15, Chapter 4]. With this understood we compute:

b1(X) := 2 · # (AX) + # (AX)

and

h0,1
BC(X) = # (AX),

whereas

e0,1
∞ (X) = # (AX) + # (AX).

Therefore e0,1
∞ = b1 − h0,1

BC . Since b1 stays constant in families and h0,1
BC be-

haves upper semi-continuously, the first inequality, FD0,1(X)⩾ FD0,1(Xt),
follows. For the second one, we compute

b3(X) = 2 · # (AX) + 2 · # (AX) + 2 · # (AX)

and, writing as before sk
p,q(X) := dim Hk(Lp,q(X)),

s2
1,0(X) = # (AX) + 2 · # (AX) + 2 · # (AX) +

# (AX) + # (AX).

On the other hand, FD0,2(X) = h0,2(X) − e0,2
∞ (X) counts the dimensions

of all differentials in the Frölicher spectral sequence starting at (0, 2), i.e.

FD0,2(X) = # (AX) + # (AX).

Therefore,
FD0,2 = h0,3

BC + s2
1,0 − b3,

which is upper semi-continuous since the first two terms are and b3 is
constant. □

TOME 75 (2025), FASCICULE 1



44 Jonas STELZIG

Remark 2.7. — The proof also shows that the quantity e0,1
∞ behaves lower

semi-continuously. The result should be compared to the fact that ek
∞ =⊕

p+q=k ep,q
∞ = bk is constant along deformations and the total Frölicher

defect FDk =
⊕

p+q=k FDp,q = hk
∂

− bk is upper semi-continuous.

2.5. Index formulae

Denote by χp(X) :=
∑

q(−1)qhp,q

∂
(X) the analytical index of (Ap,·

X , ∂)
and its topological index by

tdp(X) :=
∫

X

Td(X) ch(Ωp
X) =

∫
X

∑
k(−1)k Td(TX ⊗ C) ch(Ap,k

X )
cn(X) ,

where Td(X) = Td(TX1,0) denotes the Todd class, ch the Chern character
and Ωp

X the holomorphic p-forms. The quotient on the right hand can be
computed from the universal expression on the classifying space of U(n),
even if cn(X) = 0, see [3, Section 3], [13, Chapter 3]. The Hirzebruch–
Riemann–Roch relations can be expressed as χp(X) = tdp(X) for all p ∈ Z,
see [3].

Similarly, let us denote by χp,q(X) :=
∑

k(−1)k dim Hk(L·p,q(X)) the
analytical index of L·p,q and its topological index by

tdp,q(X) :=
∫

X

∑
k(−1)k Td(TX ⊗ C) ch(Lk

p,q)
cn(X) .

The Atiyah–Singer index theorem [3, 4] then yields:

Theorem 2.8 (ABC index formulae). — For any compact complex
manifold X and p, q ∈ Z,

χp,q(X) = tdp,q(X).

Remark 2.9. — Strictly speaking, [3, 4] treat only elliptic complexes
where all operators have order one, which is not the case for Lp,q(X).
However, the validity of Theorem 2.8 also follows a posteriori from Theo-
rem E.

Proof of Theorem E. — Recall from [7, 14] that there are subcomplexes
(S·p , ∂) and (S·q , ∂) of Lp,q defined as follows (if p, q ⩾ 1):

Sk
p :=

{
Ωk

X if 0 ⩽ k ⩽ p − 1
0 else,

Sk
q :=

{
Ωk

X if 0 ⩽ k ⩽ q − 1
0 else.

ANNALES DE L’INSTITUT FOURIER



REMARKS ON THE SCHWEITZER COMPLEX 45

If p = 0 or q = 0, one sets instead S0
p = C, resp. S0

q = C and all other
components equal to 0. Set Sk

p,q := Sk
p + Sk

q , the sum being direct except
for k = 0. It is then known [7, 14] that Sp,q ↪→ Lp,q is a quasi-isomorphism.
Further, there is a short exact sequence of complexes

0 −→ C −→ S·p ⊕ S·q −→ S·p,q −→ 0.

For a complex C of abelian sheaves on X, denote by

χ(C) :=
∑

k

(−1)k dimHk(C)

its hypercohomology Euler characteristic. Then, using χp = (−1)nχn−p,
there is an equality of Euler characteristics:

χp,q(X) = χ(S·p,q)

= χ(S·p ) + χ(S⨿·) − χ(C)

=
p−1∑
k=0

(−1)kχk +
q−1∑
k=0

(−1)kχk −
n∑

k=0
(−1)kχk

=
p−1∑
k=0

(−1)kχk +
n∑

k=n−q

(−1)kχk −
n∑

k=0
(−1)kχk

=
n−q∑
k=p

(−1)k+1χk

To identify the characteristic number expressions, we instead identify the
K-theory classes of the relevant complexes

[Ap,·
X ] :=

∑
k

(−1)k[Ap,k
X ] ∈ K(X) and [L·p,q] :=

∑
k

(−1)k[Lk
p,q] ∈ K(X),

using only the relation (Ap,q
X )∨ ∼= An−q,n−p

X . Assume for simplicity p+q ⩽ n

and p > q, the other cases are similar. The following chain of equalities in
K(X), where we drop the square brackets, might be easier to follow with the
following picture in mind, which illustrates the case n = 3, (p, q) = (2, 1):

+ −
− +
+ −

+ −

⇝

+
−
+ − ⇝

+
−
+
−
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L·p,q =
∑
k∈Z

(−1)kLk
p,q

=
∑

k⩽p+q−2
(−1)k

∑
r+s=k

r<p,s<q

Ar,s
X +

∑
k⩾p+q−1

(−1)k
∑

r+s=k+1
r⩾p,s⩾q

Ar,s
X

=
p−1∑
r=0

q−1∑
s=0

(−1)r+sAr,s
X +

n∑
r=p

n∑
s=q

(−1)r+s−1Ar,s
X

=
n∑

r=n−q+1

n∑
s=n−p+1

(−1)r+sAr,s
X +

n∑
r=p

n∑
s=q

(−1)r+s−1Ar,s
X

=
n−q∑
r=p

n∑
s=q

(−1)r+s−1Ar,s
X +

n∑
r=n−q+1

n−p∑
s=q

(−1)r+s−1Ar,s
X

=
n−q∑
r=p

n∑
s=0

(−1)r+s−1Ar,s
X =

n−q∑
r=p

(−1)r+1Ar,·
X .

And therefore:

tdp,q =
n−q∑
r=p

(−1)r+1tdp,

which implies the theorem since χp,q = tdp,q for all p, q if and only if
χp = tdp for all p. □

Remark 2.10. — In particular, we have shown the following relation be-
tween Dolbeault and Schweitzer cohomologies:

χp,q(X) =
n−q∑
k=p

(−1)k+1χp(X).

BIBLIOGRAPHY

[1] A. Aeppli, “Some exact sequences in cohomology theory for Kähler manifolds”,
Pac. J. Math. 12 (1962), p. 791-799.

[2] M. F. Atiyah & R. Bott, “A Lefschetz fixed point formula for elliptic complexes.
I”, Ann. Math. 86 (1967), p. 374-407.

[3] M. F. Atiyah & I. M. Singer, “The index of elliptic operators on compact mani-
folds”, Bull. Am. Math. Soc. 69 (1963), p. 422-433.

[4] ——— , “The index of elliptic operators. I”, Ann. Math. 87 (1968), p. 484-530.
[5] R. Bott & S.-S. Chern, “Hermitian vector bundles and the equidistribution of the

zeroes of their holomorphic sections”, Acta Math. 114 (1965), p. 71-112.
[6] M. Ceballos, A. Otal, L. Ugarte & R. Villacampa, “Invariant complex struc-

tures on 6-nilmanifolds: classification, Frölicher spectral sequence and special Her-
mitian metrics”, J. Geom. Anal. 26 (2016), no. 1, p. 252-286.

ANNALES DE L’INSTITUT FOURIER



REMARKS ON THE SCHWEITZER COMPLEX 47

[7] J.-P. Demailly, “Complex Analytic and Differential Geometry”, https://
www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf.

[8] A. Frölicher, “Relations between the cohomology groups of Dolbeault and topo-
logical invariants”, Proc. Natl. Acad. Sci. USA 41 (1955), p. 641-644.

[9] M. Garcia-Fernandez, R. Rubio & C. Tipler, “Holomorphic string algebroids”,
Trans. Am. Math. Soc. 373 (2020), no. 10, p. 7347-7382.

[10] M. Khovanov & Y. Qi, “A faithful braid group action on the stable category of
tricomplexes”, SIGMA, Symmetry Integrability Geom. Methods Appl. 16 (2020),
article no. 019 (32 pages).

[11] K. Kodaira, Complex manifolds and deformation of complex structures, reprint of
the 1986 ed., Classics in Mathematics, Springer, 2005, x+465 pages.

[12] A. Milivojević & J. Stelzig, “Bigraded notions of formality and Aeppli–Bott–
Chern–Massey products”, to appear in Comm. Anal. Geom., https://arxiv.org/
abs/2202.08617, 2022.

[13] R. S. Palais, Seminar on the Atiyah–Singer index theorem. With contributions by
M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay, Annals
of Mathematics Studies, vol. 57, Princeton University Press, 1965, x+366 pages.

[14] M. Schweitzer, “Autour de la cohomologie de Bott-Chern”, https://arxiv.org/
abs/0709.3528, 2007.

[15] J. Stelzig, “On the structure of double complexes”, J. Lond. Math. Soc. 104
(2021), no. 2, p. 956-988.

[16] ——— , “On linear combinations of cohomological invariants of compact complex
manifolds”, Adv. Math. 407 (2022), article no. 108560 (52 pages).

Manuscrit reçu le 15 février 2022,
révisé le 19 décembre 2022,
accepté le 16 mai 2023.

Jonas STELZIG
Mathematisches Institut der LMU München,
Theresienstraße 39,
80333 München (Germany)
jonas.stelzig@math.lmu.de

TOME 75 (2025), FASCICULE 1

https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://arxiv.org/abs/2202.08617
https://arxiv.org/abs/2202.08617
https://arxiv.org/abs/0709.3528
https://arxiv.org/abs/0709.3528
mailto:jonas.stelzig@math.lmu.de

	1. Introduction
	Acknowledgments

	2. Proofs of the main results
	2.1. The Schweitzer complex
	2.2. Cohomological functors
	2.3. Ellipticity
	2.4. Small deformations
	2.5. Index formulae

	References

