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A FAMILY OF INTEGRABLE TRANSFORMATIONS OF
CENTROAFFINE POLYGONS: GEOMETRICAL
ASPECTS

by Maxim ARNOLD,
Dmitry FUCHS & Serge TABACHNIKOV (*)

ABSTRACT. — Two polygons, (Pi,...,Py) and (Q1,...,Qn) in R? are c-related
if det(P;, Pi4+1) = det(Qi, Qi+1) and det(P;, Q;) = c for all i. This relation extends
to twisted polygons (polygons with monodromy), and it descends to the moduli
space of SL(2,R)-equivalent polygons. This relation is an equiaffine analog of the
discrete bicycle correspondence studied by a number of authors. We study the
geometry of this relations, present its integrals, and show that, in an appropriate
sense, these relations, considered for different values of the constants ¢, commute.
We relate this topic with the dressing chain of Veselov and Shabat. The case of
small-gons is investigated in detail.

RESUME. — On appelle deux polygones planaires (P, ..., Py) et (Q1,...,Qn) c-
correspondants si leurs déterminants det(P;, Pi1+1) =det(Q;, Qi+1) et det(P;, Q;) =
¢ sont satisfaits pour tous i.

Cette relation est un analogue équiaffine de la correspondance de bicyclette
discréte étudiée par un certain nombre d’auteurs. Nous étudions la géométrie de
ces relations, présentons ses intégrales, et montrons que — dans un sens approprié —
ces relations commutent quand considérées pour différentes valeurs des constantes
c. Nous relions ce sujet a la chaine de pansement de Veselov et Shabat.

1. Introduction

The motivation for this paper is two-fold.

The first one is the study of the discrete bicycle correspondence on poly-
gons in the Euclidean plane [15], a discretization of the bicycle correspon-
dence on smooth curves that was studied in [6, 13]. See also [7, 12] for the
discrete and [18] for the continuous versions of this correspondence.

Keywords: Liouville integrability, Integrable Systems, Centroaffine geometry, Dressing
chain.
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Py

Figure 1.1. Left: folding the parallelogram P,Q1Q P> to the trapezoid
P1Q1P>,Q2. Right: the pentagons P and Q are in the discrete bicycle
correspondence.

Two n-gons, P = (P1,...,P,) and Q = (Q1,...,Qn), are in the discrete
bicycle correspondence if every quadrilateral P;Q;Q;+1P;11 is obtained by
folding a parallelogram along a diagonal as shown in Figure 1.1:

(11) |PiPi+1| = ‘QiQ’H’l', |P’L7Q’L| =, 1= 17' N,

where c is a fixed parameter. In other words, P;Q; P;+1Q;+1 is an equilateral
trapezoid, perhaps self-intersecting.

The discrete bicycle correspondence is completely integrable. Specifically,
in [15] a Lax presentation with a spectral parameter of the discrete bicycle
correspondence is described, providing integrals of this correspondence.

It is also shown there that the discrete bicycle correspondence commutes
and shares its integrals with the polygon recutting, another integrable
transformation of polygons, introduced and studied in [1, 2], see Figure 1.2.

P

P
Py

Figure 1.2. Polygon recutting on vertex P : point P is the reflection of
Py in the perpendicular bisector of the diagonal P, P5. The recutting of
the polygon is the result of five such transformations performed cycli-
cally.
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INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 3

The present paper concerns an analog of the discrete bicycle correspon-
dence in the centroaffine geometry, associated with the group SL(2,R) —
or SL(2,C), if one works with complex coefficients. That is, we consider
two polygons in R? congruent if they are related by a linear transformation
with determinant 1. We denote the determinant by bracket.

Let ¢ € R be a non-zero number. Two n-gons, P and Q, are c-related if

(12) [Pi;‘Pz!H} = [QhQH»l]y [PI,QZ] =C, 1= 1, Loy,
see Figure 1.3. We write P ~ Q.

Figure 1.3. Two c-related pentagons.

Equations (1.2) are centroaffine analogs of equations (1.1): the role of the
length is played by the area (i.e., the determinant). The space of centroaffine
polygons is foliated by the c-relation invariant subspaces consisting of the
polygons whose “side areas” [P;, P;11] depend only on i.

Along with closed polygons (P, = P; for all i), we consider twisted n-
gons. A twisted n-gon P is an infinite collection of points P; € R? such that
P, = Mp(F;) for all ¢; this map Mp € SL(2,R) is called the monodromy
of the twisted polygon P. Twisted polygons P and Q are c-related if, in
addition to (1.2), they share their monodromies.

The c-relation is a discretization of a relation on centroaffine curves,
which is a geometrical realization of the Béacklund transformation of the
KdV equation studied in [5, 14].

Two consecutive pairs of vertices of c-related polygons form a quadrilat-
eral satisfying

[P, Piv1] = [Qi, Qiva]s [P, Qil = [Pig1, Qisa]-
We call such quadrilaterals centroaffine butterflies, see Figure 1.4 (the term

is adopted from [15]). They are centroaffine analogs of the folded parallel-
ograms in Figure 1.1.

TOME 0 (0), FASCICULE 0
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Py Ql

oF P

Figure 1.4. A centroaffine butterfly: an affine reflection interchanges
Pl with QQ and P2 with Ql-

We also consider centroaffine version of polygon recutting. An elementary
centroaffine recutting is depicted in Figure 1.4: it is a linear involution that
swaps the triangles P;Q1Q2 and P; P>Q>. The centroaffine recutting of a
n-gon is the composition of n elementary recuttings performed cyclically.

Let 7 : R2\ {O} — RP' be the natural projection. Abusing notation, we
use the same symbol for the projections of centroaffine polygons to polygons
in RP'. This projection commutes with the natural actions of SL(2,R) on
R? and RP'.

Let P and Q be c-related centroaffine polygons, and p and q be their
projections to RP'. Then

[Pi, Piya][Qi, Qiv1]
[P, Qil[Pit1, Q]

where the bracket on the left hand side denotes the cross-ratio (there are six

(1.3) [Pi, Pit1, iy Gi1] =

different choices of cross-ratio to make; the right hand side of the formula
specifies our choice). If [P;, P;y1] is the same for all 4, then the polygons p
and q are in the cross-ratio relation: [p;, piy1, ¢, ¢i+1] = « for all 4.

The cross-ratio relation on projective polygons was thoroughly studied,
starting with [11] and, more recently, in [3] and [4]. This is the second
source of our motivation: many results in this paper have analogs in [4].

The cross-ratio relation can be generalized: n-gons p and q are related if
[Pis Dit1s Qs Gi+1) = @i, where a; is an n-periodic sequence (not necessarily
constant). Formulas (1.2) and (1.3) imply that the projection 7 conjugates
the c-relation with this generalized cross-ratio relation.

Let us present the main results of the paper.

In Section 2 we introduce coordinates in the moduli space of twisted
centroaffine polygons and calculate the monodromy of a twisted polygon:
the result is given in terms of continuants (3-diagonal determinants). We

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 5

also describe the algebraic relations satisfied by the coordinates of closed
polygons.

Let P = (Py,...,P,) be a centroaffine n-gon. Choose a test vector Q1
with [P, Q1] = ¢, and consecutively construct vectors Qa, ..., Qn, Qni1
according to (1.2). We call the map @1 — Q.41 the Lax transformation
associated with the polygon P and denote it by Lp ;. Then P ~ Q if and
only if @ is a fixed point of Lp .. Similarly one defines the Lax transfor-
mation associated with a twisted polygon.

We show that Lp . is a M6bius map. This makes it possible to consider
the c-relation on generic polygons as a 2-2 map.

Theorem 2.11 states that the c-relation satisfies the Bianchi permutabil-
ity. Informally speaking, it says that the c-relations with different values of
the constant ¢ commute (see Section 2.6 for the precise formulation).

Theorem 3.1 states that if P and Q are c-related twisted n-gons, then
the Lax transformations Lp » and Lq ) are conjugated for every value of
the spectral parameter A. This is the source of integrals of the c-relation.
The moduli space of twisted centroaffine n-gons with fixed “side areas” has
dimension n; we obtain |24 ] integrals therein.

In Section 3.2 we study how the c-relation interacts with the centroaffine
polygon recutting. We prove that the Lax transformation is preserved by
the recutting and that the recutting commutes with the c-relations (Theo-
rem 3.8).

In Section 3.4 we calculate the integrals provided by the conjugacy in-
variance of the Lax transformations and show that they coincide with the
integrals of the dressing chain of Veselov and Shabat [17]. In Section 3.5 we
describe two relations between these integrals that hold for closed polygons.

Section 4 concerns the space of closed centroaffine polygons before its
factorization by the group SL(2,RR). We construct presymplectic forms on
the subspaces of polygons whose “side areas” [P;, P;11] depend on i only.
These forms are SL(2, R)-invariant, but they do not descend on the quotient
spaces by the group. The forms are invariant under the c-relation and under
the polygon recutting.

The reason to introduce these 2-forms is that they provide three addi-
tional integrals of the c-relation, quadratic in the coordinates; one polyno-
mial function of these three integrals is invariant under SL(2,R) and is a
pull-back of an integral defined on the moduli space. These integrals are
interpreted as the moment map of the Hamiltonian action of sl(2,R) on
the spaces of polygons with fixed “side areas”.

TOME 0 (0), FASCICULE 0



6 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

These integrals define a certain center C'(P) of a centroaffine polygon,
that takes values in quadratic forms on R2. This center is invariant under
the c-relation and the recutting, and equivariant with respect to the action
of SL(2,R). It has interesting properties: it is additive with respect to
cutting polygons into two, and it coincides with the origin for centroaffine
butterflies.

Section 5 is devoted to a study of “small-gons”, triangles, quadrilaterals,
and pentagons.

Let us emphasize that we do not prove Liouville integrability of the
c-relations here: this would involve the existence of an invariant Poisson
structure with respect to which our integrals commute. This, along with the
relation with the theory of cluster algebras, will be studied by A. Izosimov
in the forthcoming paper [8].

Acknowledgements

We are very grateful to Anton Izosimov for his insights and useful sug-
gestions. It is a pleasure to thank the author of the detailed referee report;
the suggestions therein greatly helped to improve the exposition.

2. Spaces and maps
2.1. Spaces and coordinates

In this paper we consider polygons P = (... P;P;y;...) in R? that sat-
isfy [P;, P;+1] # 0 for all ¢ (when appropriate, the indices are understood
cyclically). Denote by JNin and fn the spaces of twisted and closed n-gons,
and by Y, and X, their quotient spaces by SL(2,R).

Let us introduce coordinates in V,,:

(2.1) s9j-1 = [Pj_1, P, vaj = [Pj_1, Pj11].

That is, sp;_1 are the areas subtended by the sides, and vy; are the areas
subtended by the short diagonals of the polygon.
One has a linear recursion

j 52541
(2.2) Py = ——Pj - =P,
5251 5251

()= (L2 =) ()
Pjy1 rellierd AV

ANNALES DE L’INSTITUT FOURIER
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INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 7

It follows that the (conjugacy class of the) monodromy is given by

0 1 0 1 0 1
oo e 0 ) (L D L)
S2n—1 S2n—1 S3 S3 S1 S1

Note that det Mp = 1.

Let S = (s1,83,85,...,52,—1); denote by jn,s the space of twisted n-
gons with [P;, P;y1] = sg2;41 for all 4, and let fn,s be the corresponding
space for closed polygons.

Remark 2.1. — The spaces ')?n,S and X, g are centroaffine analogs of the
spaces of polygons with fixed side lengths, studied in [9].

When is /'En’s a smooth n-dimensional manifold? One has a map )?n —
R™ that sends P to S = (..., [P, Pit1],...). The next lemma describes the
regular values S of this map.

LEMMA 2.2. — Ifn is odd and s; # 0 for all j, then 2?,175 is smooth. If
n is even and 515589 - - - # £8357511 - - -, then X, g is smooth.

Proof. — If P, = (x;,y;) then sg; 11 = %;yit1 — Titr1vi- We need to know
when the 1-forms dss;41 are linearly dependent.

We may assume that the coordinates are chosen so that all x; and y; are
distinct from zero. Assume that > a; ds; = 0. This expands out as

Z i (@i dyit1 + Yip1 da; — i1 dy; — yidwiya) =0,

7

where not all a; vanish, hence

> (aiyipr — aicayi1) dw — (@iip1 — ai1ai-1) dy; = 0.
i
Therefore
a1 Yi+1 Tit1 .
= = y 1 = 1
a; Yi—1 Ti—1
(and hence all a; are different from zero).
This implies that P;_; and P;;; are collinear for all . If n is odd, then
all vertices of P are collinear, and sg;41 = 0 for all <.
If n is even, then the odd vertices of P are collinear, and so are the even

vertices. Without loss of generality, assume that

Pl :(xlvo)aPQZ(an2)7P3:(x3a0)ap4:(0ay4)a"'

Then
83 = T1Y2,S5 = —Y2X3,87 = T3Y4,59 = —YaTs5...

and s3s7--- = £8185--- This completes the proof. O

TOME 0 (0), FASCICULE 0



8 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

2.2. Monodromy of a twisted polygon

Set o .
a; = —L- p; = 2L
8251 8251
Then
0 1 0 1 0 1
Mn = (_bnl an1> (—b1 a1> (—bo ao) ’
as in (2.3).
For 0 < ¢ < 7, consider the continuants
a; 1 0 e 0
biy1 a1 1 0
0 biy2 a2 1
(2.4) Dijy1 = det . . .
0 - - . 0
0 bj—l aj—1 1
0 0 b aj
We describe the monodromy of a twisted polygon in terms of these contin-
uants.
Expanding by the last two rows, we see that
(25) Di7j+1 = ajDi’j — bjDi’jfl,

the same recursion as (2.2). Let us add the boundary conditions D;; =
1, Di;—1 = 0.

PROPOSITION 2.3. — One has

_ (~boD1n-1 Don-1
Mn = ( —boD1,n Doy )

Proof. — Induction on n. For n = 1, the claim holds due to the boundary
conditions Dl’() = 0, D()yo = Dl,l = ].7 D(]’l = ag-.

Next,
0 1
My = <_bn an) M.,

and the result follows from the recurrence (2.5). O

If P is a twisted n-gon, then the sequences a; and b; are n-periodic and
I, bi = 1. Proposition 2.3 implies the following statement.

COROLLARY 2.4. — For a closed n-gon, the coordinates (s2;—-1,V2;) sat-
isfy Dj pyi—1 =0 for all 1.

In fact, any three of these identities imply the rest (the codimension of
the space of closed polygons is three).

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 9

Example 2.5. — Consider the case n = 3. Corollary 2.4 implies
VpV2 = 5355, V2V4 = 8551, V4Vg = 5183,
hence v3 = s3. We have two solutions;
Vg = —S83, Vg = —S85, V4 = —81, and Vo = 83, Vg3 = S5, Vg4 = S71.

The first one corresponds to a closed triangle (the monodromy is Id), and
the second one to a centrally symmetric hexagon (the monodromy is —Id).
Next, consider the case n = 4. Corollary 2.4 implies

VoU2V4 = S3S7V4 + S1S5V0

and its three cyclic permutations. Rewrite it as
S3S7 S185 -1
vovy | vavs

and its cyclic permutations. This is a system of four linear equations on

the variables
1 1 1 1

vova Va4’ V4V Vglo
with coefficients s3s7 and s1s5. This system implies
1 1 1 1

Vo2 V4vs  VaU4 vy
and hence v? = v3. As before, one has two choices of signs, one correspond-
ing to the monodromy Id, and another to — Id. In the former case of closed

quadrilaterals, one has
V4 = —Vp, Vg = —VUg and vgvUy = S7S83 — $1S5,

the latter being the Ptolemy—Pliicker relation.

2.3. Lax transformation is fractional-linear

Given a non-zero vector P;, the ith vertex of a polygon P, the vectors Q
with [P;, Q] = ¢ comprise a line Lp, parallel to P;. Identify Lp, with R by

parameterizing it as
cPiq1

[Pi; Pit]

Let P = (P1,...,P,) be a closed n-gon. As described in Introduction,

choose a test vector @1 with [P;,Q1] = ¢, and consecutively construct
vectors Qa, . .., Qn, Qnt1 according to (1.2), which we recall here:

[Pi7Pi+1} = [Qi)Qi-i-l]a [P“Ql] =, 1= 17 cee, T

+tP;, teR.

TOME 0 (0), FASCICULE 0



10 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

For this to work, that is, for each next point ;41 to be defined, we need
the lines given by the equations [Q;, Qi+1] = [P, Pi+1] and [Pit1, Qi+1] = ¢
to intersect. This is the case if the vectors P;y; and @; are not parallel.
This is a general position condition that we assume to hold for all 4.

We use the notation

Lp p,c(@Q1) =Q2, Lp,py,c(Q2) =Qs,...

(we omit ¢ from the notation when it does not lead to confusion). The Lax
transformation Lp . : Lp, — Lp, is the composition of these maps. The
polygonal line Q closes up, that is, Q,+1 = @1, if and only if @ is a fixed
point of Lp . : R — R. Then we have P ~ Q.

Likewise, if P is a twisted n-gon with monodromy Mp, then Mp sends
Lp, to Lp,,, and, as a map R — R, it is the identity. Hence it is still
true that the fixed points of Lp . give rise to twisted polygons Q such that
P~ Q.

LEMMA 2.6. — The Lax transformations are fractional-linear.

Proof. — Denote by Rq, p, the centroaffine reflection that interchanges
@1 and P,. This map is given by the formula
(Q1, X]Q1 + [X, Py Py
2.6 R X)= ,

(2:6) 2.7, (X) o
and one has Q2 = Rg, p,(P1), that is, Lp, p,(Q1) = Rg,.p,(P1).

Using the identifications of Lp, and Lp, with R, the map Lp p, : Q1 —

Q2 becomes

c|Py, P P, P)? —¢? cv 52 —c?
PN 5 UF | M £ 2]2:_ [ kg
[Pl,Pg][PQ,Pg] t[Pl,PQ} S$3S5 t83
a fractional-linear transformation. Hence Lp . is fractional-linear as
well. 0
The above fractional-linear transformation is represented by the matrix
cvs c?
(27) 5355 8% )
1 0

2
its determinant equals Z—Q -1

If the ground field is (CB, a fractional-linear transformation has two fixed
points, perhaps, coinciding (unless it is the identity). Over the reals, this
number is 0, 1, 2, or co.

Over C, Lemma 2.6 makes it possible to consider c-relation as a map
(defined in a Zariski open set of polygons): start with P and choose one

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 11

of the two c-related polygons, say Q;. This polygon also has two c-related
ones, one of which is —P, the polygon that is centrally symmetric to P.
Choose the other polygon c-related to Q; and continue in a similar way. If
at the beginning we choose Qa instead of Q; then —Q, ~ P, that is, up
to central symmetry, we obtain the inverse of the same map.

Over R, a polygon may have no c-related ones. To have a map, one needs
to assume that a c-related polygon exists. We shall see in Section 3.1 that
the c-related polygons have conjugated Lax transformations. This makes it
possible to continue in the same way as in the complex case.

2.4. Centroaffine butterflies

We show that centroaffine butterflies have trivial Lax transformations
for all ¢ and classify all such quadrilaterals. Here and in what follows we
say that two vertices are not collinear if they do not lie on the same line
through the origin.

LEMMA 2.7. — The Lax transformation for a quadrilateral is the iden-
tity for every c if and only if the quadrilateral is a centroaftine butterfly,
or it is obtained from a centroaffine butterfly by reflecting one of the ver-
tices in the origin (an “anti-butterfly”), or its two opposite vertices are
symmetric with respect to the origin.

Proof. — Assume first that a pair of opposite vertices of a quadrilateral
P is not collinear. Applying a linear transformation, assume that

Pl = (1?0)? P2 = (a>b)7 P3 = (071)3 P4 = (u,v), Ql = (xay)v
so y = ¢. Applying equation (2.6) twice, we find

1 —y (a2 —|—b2) + abx + 33
bx — ay ab — xy '

Q2 = (ab—zy,b* —y?), Qs = (y

Going in the opposite direction, that is, replacing (a,b) with (u,v), we

obtain point
< —y (u2+v2)+uvx+y3>
Y, .

uv — Y
This point coincides with Q3 for all z, which implies
ab = uv, a®+b* = u? + 2.

Hence either u = b, v = a, a butterfly, or u = —b, v = —a, an anti-butterfly,
or u = —a,v = —b, symmetric opposite vertices.

TOME 0 (0), FASCICULE 0



12 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

It remains to consider the case when both pairs of opposite vertices of P
are collinear. Then one may assume that

Py :(1’0)7 PZZ(Oal)v P3:(CL,O), P4:(Ovb)7 Q1 :(xay)'

Using equation (2.6) consecutively, one calculates

[ x(a® =) (0 —y?)
@5 = ((a%z — ) (1 y2>’y> '

Equating it to )1 yields

(a® =) (b = y?) = (@®0* = y*)(1 —y°),
hence (a> —1)(b*—1)=0.Ifa=1or b= 1, then P, = Py or P, = P, and
if a = —1 or b = —1, we have the already considered symmetric case. [

Thus if P is a centroaffine butterfly, then for every choice of the seed
vertex 1, the quadrilateral Q closes up. In fact, it is a centroaffine butterfly
as well.

LemMA 2.8. — If P is a centroaffine butterfly and Q is c-related to it,
then Q is also a butterfly, see Figure 2.1.

@3

Figure 2.1. Two centroaffine butterflies are c-related.

Proof. — We need to show that
[Q1,Q2] = [Q4,Q3], [Q1,Q4] = [Q2,Q3].

By definition of c-relation,

(Q1,Q2] = [P1, P, [Qu4, Q3] = [Py, P3],

and [Py, Py] = [Py, P5] because P is a butterfly. This implies the first of the
claimed equalities. The second follows in the same way. O

ANNALES DE L’INSTITUT FOURIER
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2.5. Constructing c-related polygons

In this section we describe a construction that yields a pair of c-related
n-gons. This is a centroaffine analog of a construction that yields pairs of
polygons in the discrete bicycle correspondence that is described in [15].

Assume first that n is odd. Start with an n-gon (pentagon A in Fig-
ure 2.2). Connect the midpoints of its sides with the origin. Consider the
affine reflections in these lines that interchange the vertices of the respec-
tive sides of A. Let R be the composition of these reflections taken around
the polygon.

Py

Figure 2.2. Constructing a c-related pair of n-gons, odd n.

LEMMA 2.9. — The map R is an affine reflection.

Proof. — Since n is odd, R is orientation reversing and its determinant
equals —1. Hence it has two eigendirections. Also R has a fixed point, a
vertex of A. Therefore the eigenvalues of R are 1 and —1, and it is an affine
reflection. O

It follows that R? = Id. The construction of a c-related pair follows.
Start with an arbitrary point P; and apply consecutive affine reflections
around the polygon A twice. This produces 2n points

Pi=Qy—= Py Qa1 Qp,

TOME 0 (0), FASCICULE 0



14 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

see Figure 2.2. Each quadrilateral P, P;1Q;Q;+1 is a centroaffine butterfly,
therefore P ~ Q.

One has ¢ = [P,Q1] = [P1, R(P1)]. The locus of points P; for which
[P, R(Py)] is fixed is a hyperbola (indeed, R is conjugated to the map
(z,y) — (—z,y), in which case this claim is obvious).

Now assume that n is even. We repeat the above construction, but this
time the transformation R has determinant 1. It still has an eigendirection
with eigenvalue 1 (a vertex of A is a fixed point), but it is not necessarily
the identity. We need to assume that R = Id, see below.

Qﬂ

Figure 2.3. Constructing a c-related pair of n-gons, even n.

With this assumption, we choose two starting points, P; and @ and
apply consecutive affine reflections to obtain polygons P ~ Q with ¢ =
[P1, Q1] as before, see Figure 2.3.

We describe when the transformation R is the identity. Recall that we
consider the case of an even-gon.

LEMMA 2.10. — One has R = 1Id if and only if

. V2,
Z(_l)z - =0,
i1 52i—-152i+1

where the coordinates va;, So;41 are associated with the polygon A.

Proof. — Since R has a fixed point, a vertex of polygon A, the trans-
formation R is the identity if and only if it has another fixed point not

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 15

collinear with the first one. Thus we need to learn when a polygon B ex-
ists, not homothetic to A, whose sides are parallel to those of A and the
midpoints of whose sides are collinear to those of A.

These conditions are written as

[Ai+1 + Ai, B7;+1 + Bl] = 0 and [Ai+1 — Ai, Bi+1 — BJ = 0,
or
(2.8) [Ai, Bi] + [Ait1, Bit1] = 0, [Ai, Biya] + [Aiy1, Bi] = 0.

We will look for points Bz written as Bi = aiAi_l + biA'L'~ Then Bi+1 =
a;+14; + biy14;+1. Taking cross-products with A; and A;11, we also find
that B; = bi+1Ai + CL7;+1AH_1. Since

[Ai—1, Aj] = s2i—1, [Ai, Aiga] = s2i41, [Aim1, Ait1] = vay,
we also have
Aiy152i41 = —QiS2i—1, (bit1 — bi)s241 = a;v2;.

It follows that a; = (—1)%/s2;_1 for some non-zero constant ¢ (non-zero
since B is not homothetic to A), and

—1)% s,
bit1 —b; = ti( Sz .
5§2i—152i+1

This system of linear equations on b; has a solution if and only if the sum
of the right hand sides vanishes, as needed. O

We add that the above described construction is a general method of
constructing c-related pairs. Indeed, a pair of c-related n-gons with odd n
gives rise to an affine reflection R, as described above and illustrated in
Figure 2.2. Then one can chose a fixed point of R as a vertex of n-gon A
and obtain the other vertices by consecutive affine reflections. A similar
remark applies to the case of even n as well.

2.6. Bianchi permutability

In the following theorem, the polygons are either closed or twisted.

THEOREM 2.11. — Assume that P ~ Q and P A R. Then there exists
a polygon S such that Q 4SandR < S.
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16 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

Figure 2.4. Bianchi permutability: one can see four butterflies in a
coordinated “flight”.

Proof. — Recall that L is the Lax transformation. The idea of the proof
is to define polygon S such that P;Q;S;R; is a centroaffine butterfly for all
1 and to show that this polygon is a Lax c-orbit with respect to R and a
Lax d-orbit with respect to Q.

Thus we define point S; by requiring P;@Q151R; to be a centoraffine
butterfly. Then [R1,51] = ¢, [Q1,51] = d. Let Lg,q,,a(S1) = Sz and
LR Ry,c(S1) = S5 We claim that Sy = S5 and that P,Q2S2Ry is a cen-
toaffine butterfly.

Indeed, one has

[':SIRI (Sé) = Ry, £R1P1 (RQ) = Py, ‘CP1Q1 (PQ) = Qq, ‘CQ151 (QQ) = Ss.

Since P;@151R; is a centoraffine butterfly, Lemma 2.7 implies that the
quadrilateral S5 RoPaQ2S2 closes up and that it is a centoaffine butterfly.

This shows that one can define the polygon S so that P,@Q;S;R; is a
centoraffine butterfly for all 4. O

We leave it to the reader to make sure that Theorem 2.11 can be inter-
preted as a configuration theorem depicted in Figure 2.4.

3. Integrals
3.1. Invariance of the Lax transformations

The next result provide a Lax presentation of the c-relation.
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THEOREM 3.1. — If P and Q are c-related twisted n-gons, then the
Lax transformations Lp x and Lq ) are conjugated for every value of the
parameter A.

Proof. — We know that P;P;410Q;11Q; is a centroaffine butterfly.
Lemma 2.7 shows that the product of the Lax transformations along its

sides is trivial. This can be rearranged to show that Lp,p,,, and Lg,q,,,
are conjugate:
-1
‘CQiQi+17/\ = ‘CPL'+1Q1+17/\ ‘cPiPH»h)\ LPiQi,)\'
Taking composition over ¢ = 1,...,n yields the result. O

Since Lp ) is a fractional-linear transformation, one can realize it as a
2 x 2 matrix that, abusing notation, we also call £. Then (Tr £)?/det £ is a
well-defined conjugacy invariant function. It depends on A, and expanding
in a Taylor series in A, one obtains integrals of the c-relation.

Note that the determinant of the Lax transformation, det £, depends only
on the variables s9;_1 (and, of course, ), see formula 2.7. This determinant
is itself an integral, therefore we may — and will — use Tr £, rather than
(Tr £)?/ det L, to obtain integrals of the c-relation.

Example 3.2. — Consider the case of twisted triangles. Let v, v4, v6 and
s1, 83,85 be the respective coordinates in the moduli space. Consider the
space Vs s.

Multiply the three matrices (2.7) (replacing ¢ by A) to find the Lax
matrix £ depending on this spectral parameter A. One has

TeL = A3 < —————— > + A(vass + v4s1 + vgs3),

and
det £ = (\? — s7)(\* — s3)(\? — s2).

The determinant does not depend on the w-variables, and since the s-
variables are preserved by the c-relation, the trace is invariant. We obtain
two integrals:

VoUg v v V)

7o V2vavs (2 LU 6)
518385 S5 S1 53

and
U2 V4 Ve

e L
5183 5355 5551

Thus Y5 g is foliated by the common level curves of the functions I and J.
For comparison, let M be the monodromy of the twisted triangle. Using
formula (2.3), we find that Tr M = I.
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Example 3.3. — Similarly, in the case of twisted quadrilaterals, we have
variables vq,v4,vg,vs and parameters si, S3, S5, S7. The trace of the Lax
matrix is a biquadratic polynomial in A, and its three coefficients are in-
tegrals. The free term is 251535557, a constant on Y, g, and the other two
terms give two integrals

V2V4VgUS Vo4 V4 Vg VU (X%}
I= - + + +
51538557 5387 5551 5753 5155
and
J VU4 V4Vg Ve Ug (Y%}
s183s5  S3s2s7  s5sPsy  S7s9s3

(omitting the terms that do not depend on the v-variables). Thus Vs g is
foliated by the common level surfaces of the functions I and .J. Note that
again one has Tr M = I.

If the quadrilateral is closed, according to Example 2.5, we have

Vg = —U2,V8 = —V4,V2V4 = 8155 — 5387,
and both integrals, I and J, become functions of the parameters s; only.

Example 3.4. — Consider the case of twisted pentagons. As before, we
calculate Tr £ and decompose it in homogeneous components in the spec-
tral parameter \. There are three terms, of degrees 1,3, and 5. This gives
three integrals:

V2V4V6V8V10 V2U4V6 V4V6 Vg VeVgV10 VgV10V2 V10V2V4
I'= - + + + +

§153855759 535589 S55751 575983 595155 515387

V287 V459 V6S1 U853 V1055
+ + +
S589 S7851 5983 S1S85 S3S7

(this also comes from the trace of the monodromy),

J= V2U4V6 V4V6Us VgU8V10 VgU10V2 V10V204
818§S§S7 SgS%S%Sg 85835351 87535%53 895%5355
Vo 1 1 Uy 1 1 Vg 1 1
a2t 2) s\l te) s\l 2
S$183 Sy S9 S3S85 S7 57 S5S87 S9 S3
Vg 1 1 V10 1 1
e\t ) Lo\t
8789 S1 S5 S9S81 S3 S7
and

V2 V4 Ve Ug V10

K= + + + + .
S5183 5385 S5S7 S789 S981

The common level surfaces of these integrals foliate the 5-dimensional
space Vs s.
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In the case of closed pentagons, we have the Ptolemy—Pliicker relations
VU4 = 8185 — S30Us8

and its cyclic permutations. This makes the integrals functionally depen-
dent, and leaves a single integral K on the 2-dimensional space X5 s.

The formulas of Examples 3.2, 3.3, and 3.4 are extended to arbitrary
values of n in Sections 3.4 and 3.5 below.

3.2. Centroaffine polygon recutting

As mentioned in Introduction, by the elementary recutting of a closed
polygon P we mean the linear transformation that changes only one vertex:
P; = Rp, ,p,,,(P;). Denote this transformation by R;. Elementary recut-
ings are involutions. The recutting R of the polygon P is the composition
R, o---oRj.

The next lemma is a centroaffine analog of [1, Corollary 2].

LEMMA 3.5. — Let R; be the elementary recutting at the vertex j. Then
(RjR;+1)% = 1d, R? =1Id and RjR; = RgR; for [k — j| > 2.

Proof. — The only non-trivial fact is the (R;R;4+1)% = Id. We have two
approaches to the proof. The first approach consists in normalizing two
vertices involved to be the standard basis in R?, to denote the other vertices
using variables, such as (a,b), (¢,d), etc., and to work out the necessary
calculations in Mathematica (or another CAS). The calculations are not
too complicated.

The alternative, hand calculation based, approach is presented below.

Consider Figure 3.1 that depicts the configuration theorem described
by this identity. One fixes the frame made of the vectors P;_; and P;is.

Figure 3.1. To Lemma 3.5.
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Then we have six points P;, P}, P}, Pji1, P}, P/’ 1 that should satisfy 12
relations (cf. (1.2)):

[Pj—1, Pj] = [P}, Pj41], [Pj—1, Pj] = [P}, Pj+1]

[Pj—1, P]] = [P;/aPJIH] [Pj—1, P]'] = [P}, Pj,4],

[ Jj— 17P”]:[PJ PJ/I—H] [ijlvpj]:[P]//vpg{l-s-l]v
[P 1, Pjy2] = [Pj, Pjy1], [Pjt1, Pyy2] = [Py, Pj'4],
[ ]+1a 2] [lev ]+1] [le-i-lv PJ+2] [P]/’ Pj-‘rl]’
[ 1o ]+2] = [P]H PJNJrl] [PJNJthJJr?] [PJ{/’PJ{+1]

This system is equivalent to the system of 9 relations

[Pj—1, Pj] = [P}, Pja] = [P}, P/1] = [Pj11, Pjga] = a,
(3.1) [Pj—1, Pj] = [P}, Pi;1] = [P}, Pjs1] = [Py, P2l =y,
[Pj—1, P}] = [P}, P{\1] = [P}, Pj 1] = [Pjs1, Pjya] = 2.

Assume, without loss of generality, that [Pj_1, Pj+2] = 1 and express the
remaining points as linear combinations of P;_; and P;.:

Pj :)\Pj_1+1‘Pj+2, P,{Z)\1Pj_1—|—yP-+2,

PJ/»/ =X Pj_1 4+ 2Pj0, P = pPjyo+ 2P

Py =mPj2+ 2P, P/ = paPjy2 + ij71-
Then the rest of the equations (3.1) become the following six equations on
the nine variables z,y, z, A\;, pi,0 = 1,2, 3:
Mp =T+ Yz = Agpo, Aopn = Y + 22 = A, Mo = 2 + Y = A fq.

These equations are not independent: the product of the three left hand
sides equals the product of the three right hand sides.

Overall, one has nine variables satisfying five relations. The resulting four
degrees of freedom make it possible to choose point P; and P;; arbitrarily,
proving the existence of the configuration of the lemma. 0

Remark 3.6. — The relations of Lemma 3.5 show that one has a repre-
sentation of the group of permutations S, 41 on the space of centroaffine n-
gons, similar to the situation with the Euclidean polygon recutting, see [1].

The next lemma states that elementary recuttings commute with the
c-relations (an analog of one of the statements of Theorem 4 in [15]).

LEMMA 3.7. — IfP < Q then R;(P) ~ R;(Q) for all j.
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Proof. — The situation with the proof of this lemma is similar to that
of the preceding lemma: one can delegate the calculation to CAS, or can
do it by hand. We did both, and the latter approach is presented below.

One only has to check that [P}, Q}] = c. From (2.2) it follows that

s2+1(P) s2;-1(P)
p=22t)p U p
J Uzj(P) Jj—1 va; (P) J+1
Since [P]{,P_H-l] = [Pj—lan] and [ - 1’P]] [P P } one has
. (P (P
(3.2) pro52=1P) 52 (P)

7T g (P) TN TPy M

Likewise, for Q one has

L 32j+1(Q) ] 52j—1(Q) )
Q= v2;(Q) Qi t v2;(Q) Qi1
d
. g = 21Q) 5 52n(Q)
7T g (Q) T Tugy(Q) T

Since Q ~ P we have

s2+1(P) 52j41(Q) | 52j-1(P) 82j1(Q)> .

v (P)  v2;(Q) v2;(P)  v2;(Q)
s2j+1(P) s2;-1(Q)
ve;(P)  v2;(Q)

=m0 = (

[Pj—1,Qj11]
52j-1(P) 82+1(Q)

v2;(P)  v2;(Q) By @yl
For [P}, Q}], we have
o = (32+1(P) 52541(Q) | 52i-1(P) 52;-1(Q) ) |
[Pj’Q‘}< v2;(P)  2;(Q) - v2;(P) 'U2j(Q)>
s2j-1(P) 8241(Q) 1, ,
'U2j(P) U?J(Q) [ ! 1’QJ+1]
s2j+1(P) s2j-1(Q)
@) @
But
52j-1(P) 5211(Q) _  [Pj—1, Pi][Q;, Qj11]
v2;(P)  2;(Q) [Pj—1, Pj1][Q,—- 1,Qg+1]
_ Qi1 QP Pi] 241 (P) 52;-1(Q)
[Pj-1, J+1HQ] 1,Q3+1] v2;(P)  v25(Q)
Hence the result. O
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Lemma 3.7 also can be interpreted as a configuration theorem, see Fig-
ure 3.2. As before, we leave it to the reader to make sure of it.

Figure 3.2. Elementary recutting commutes with c-relation.

THEOREM 3.8.

(1) The Lax transformation is preserved by recutting;
(2) Recutting commutes with c-relations.

Proof. — The first statement follows from Lemma 2.7:
‘CP'LPH»I‘CPi—lPi = EP{PH»l‘CPi—lPi/

for all i. The second statement follows from Lemma 3.7: if P ~ Q then
Rl(P) ~ Rl(Q), therefore RQRl(P) ~ RQRl(Q), etc. O

3.3. Odd-gons, infinitesimal map

If the constant ¢ is infinitesimal, we obtain an SL(2,R)-invariant vector
field on the space of twisted polygons, that is, a vector field on the moduli
space V,. In this section we calculate this field.

Let P be a twisted n-gon with odd n. Let the field be given by vectors &;
with foot points P;, ¢ = 1,...,n. The conditions [P;, Q;] = ¢, [P, Piy1] =
[Qi, Qit1] become

(3.3) [Py, &) =1, [Py, &qa] + [&, Piga] =0

(we normalize the field so the constant in the first equation is 1).
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THEOREM 3.9. — In terms of the (v, s)-coordinates, the field £ is given by

n—1
. k—1 V2i+2k S52i4+1 $2i—1
Vg = V; (Z(—l) ) + -

1 S2i+4+2k—152i42k+1 52i—1 S2i+1

Proof. — Let & = a;P; + b; P;+1. Then (3.3) implies
bisgit1 = 1, (a; + @it1)s2i41 + bip1v2i42 = 0.

Since n is odd, there is a unique solution

1 o ; 1
(34) a; = — Z(_l)k V2i+2k bz _

) .
2= 89i42k—152i+2k+1 59i4+1

Since vo; = [P;—1, P;41], we have
Vo = [Pi—1,&i1] + [im1, Piyal
(3.5) = [Pi—1,ai11Piv1 + bip1 Pryo] + [ai 1 Py + b1 Py, Piya]
= (@j—1 + aig1)v2; + bip1[Pi1, Pigo] + bi—182i41-
By the Prolemy—Pliicker relation,
[P 1, Prio] = V24VU2i42 — 32i7132i+37
52i4+1

and the values of a; and b; are found in (3.4). Substitute in (3.5) to obtain
the result. 0

It follows from Theorems 2.11 and 3.8 that the flow of the field £ com-
mutes with the c-relations and with the polygon recutting.

Remark 3.10. — If n is even, then a necessary condition for a; to exist is

>t =0,

52i—-152i+1

the equation that appeared in Lemma 2.10. If this necessary condition
holds, the vector field is defined modulo a 1-dimensional space, the kernel
of the matrix that gives the linear equations on the variables a;.

Set
Vo; 1
gi=—"", Bi= -
$2i—152i4+1 89,1

Then, after scaling, the vector field £ is given by

9i = —9i(gi+1 — Git2 + Gi+3 — = Gitn—1) + Bi — Bit1.
This is the dressing chain of Veselov—Shabat, formula (12) in [17].
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3.4. Integrals for twisted polygons

In view of Theorem 3.1, we calculate the trace of the Lax matrix £ of an
n-gon, the product of n matrices (2.7). Notice that

CHENEY 6D

That is, the Lax matrices are conjugated to the monodromy matrires, and
we can use the calculations of the latter from Section 2.2.
Set
)\'UQZ' )\2

(36) a; = ,bi: P) 71,2120,...,7171,
52i—152i+1 $%i—1

and consider the continuants (2.4). Then Proposition 2.3 implies that
Tr L = DO,n - boDl’nfl.

The homogeneous in A components are integrals of the c-relations for all
values of c.
A combinatorial rule for calculation of the general continuants

aq C1 0 e 0 0
bl az C2 ... 0 0
0 bQ as ... 0 0
0 0 0 ... ap-1 cCp—1
0 0 0 ... bpo1  an

is as follows: one term of the continuant is ayas ... a,, and the other terms
are obtained from it by replacing any number of disjoint pairs (a;a;+1) by
(=bic;), see [10]. That is, this continuant can be written as

(3.7) ﬁl <E - bici62> (aray---ay),

iy aaiaaiﬂ
1=

where FE is the identity operator. Note that the differential operators in-
volved in this formula commute with each other.

As in [4], a subset of the set {0,1,...,n — 1} is called cyclically sparse if
it contains no pairs of consecutive indices, and the indices are understood
cyclically mod n (the empty set is also sparse).

The above rule implies

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 25

LEMMA 3.11. — One has

o= 3 e T ()T (5 1)

§92i-18 S5
I sparse Gj+1el 2j—1925+1 2i—1

n 11
=2 Z H (82] 132j+1) g <>‘2 3%1’1).

I sparse j,j+1¢1

(3.8)

Thus, for t = A72,
1
(3.9) ( ) <— ) t*Fy,
I:ap%bej Jl_t,_Tlgj 82j— 182J+1 H )\2 S%z 1 Z

is a generating function of the integrals Fj of the c-relation on twisted
n-gons.

Note that, as a polynomial in the variables vs;, one has deg Fj, = n — 2k.
In particular, if n = 2¢ + 1, then

Fi=d e
and one has ¢ 4 1 integrals in this case. If n = 2¢, then

F,_ = V2iV2i42
4 §9i_182, 1 15%i+3
P 2i—1992441°2i+3

52i— 1321+1

and one has ¢ integrals in this case. Compare with the examples in Sec-
tion 3.1.

To summarize, we obtain L”THJ integrals on the moduli space of twisted
n-gons. We do not dwell on the independence and completeness of this set
of integrals here; see [8] and the remark below.

Remark 3.12. — If one has s9;_1 = 1 for all ¢, corresponding — as ex-
plained in Introduction — to the case studied in [4], then formula (3.8)
simplifies. The integrals in [4] are given by the formulas

Iy, = Z HCi,

I sparse,|I|=k i€l

where, in our notation, ¢; = 1/(va;v2i42). Multiplying by (] ¢;)~'/? (which
is also an integral), this becomes

> 1 v

I sparse,|I|=k j,j+1¢I

precisely what (3.8) yields when sg;_1 =1 for all 4.
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As before, we write
V25 1

9i=—— s Pi= 35—
52i—152i+1 S3i—1
Modifying formula (3.7) to account for the cyclic symmetry, we write the

generating function of the integrals Fj as

n—1 82 n—1
B+t o—| (T o
g [ 09109 ].1;[0 !
Comparing this formula with formula (22) in [17], we conclude that our
integrals coincide with the integrals of the dressing chain obtained in [17].
This is not unexpected, given the appearance of the dressing chain as the
infinitesimal version of the c-relation in the preceding Section 3.3. Note
that the independence of the integrals is asserted in [17].

3.5. Integrals for closed polygons

When restricted to the moduli space of closed polygons, the integrals
from Section 3.4 become dependent. This follows from the next general
observation.

Let X be a manifold, M; : X — SL(2,R) be a 1-parameter family of
smooth maps, analytically depending on parameter t. Assume that the
identity matrix E € SL(2, R) is a regular value of My, and let Y = My ' (E).
Consider a 1-parameter family of smooth functions Gy = Tr M; : X — R.
Let prime denote d/dt.

LEMMA 3.13. — One has:

Proof. — Since My sends Y to the unit matrix, Gy equals 2 on Y.

Fix y € Y and consider the curve M;(y) in SL(2,R). The tangent vector
M](y) at t = 0 lies in sl(2,R), and this matrix has zero trace. This proves
the second equality.

For the third equality, let the eigenvalues of M;(z) be e*#(*t) Then
Gi(x) = et®b f e~ 1@t hence dGy = (eM®!) —e=m(@1)) dy(x,t). Since
p(x,0) =0 for z € Y, one has dGy |y =0, as claimed. O

We shall apply this lemma to a modified Lax matrix of an n-gon. Recall
that t = A\ 72, Let

L _ (Dimsa-) £
I1 (82’\2 - 1) Ay JTT(L—ts3;_y)

2i—1

(3.10) L=
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Then, according to (2.7), £ € SL(2,R). We write £; to emphasize the
dependence on t. In what folows we consider the limit ¢ — 0, that is,
A — 0.

LEMMA 3.14. — One has Ly = E on closed polygons.

Proof. — We will show that the Lax matrix £; is a deformation of the
monodromy M.

The monodromy was calculated in Proposition (2.3), where the variables
in the continuants were

V2i b — 52i+1

a; = y 4 .
59;i1 52i—1

One can rewrite these continuants as follows:

D; j1 = (S2i4152i+3 - - 52541)Di j+1,

where

Y2 1 .

824 —182i41 0 0
1 V2442
52 o 27+2‘ 1 0
2i41 2i4+152i+3
Di,jJrl = det 0 .. .. .. 0
0 1 V25 —2 1
sgj,3 825-3825—1
- 1 Y25
0 0 ng_l 525152541

Since M = FE for closed n-gons, we have

T-L, S92 — n — — —
(3.11) — (H—;“) Din1= (H szi_1> Don=1, Din=Dgn-1=0.

8277,71 i=1

On the other hand, Ly is also given by Proposition (2.3), where the
variables in the continuants are as in (3.6). This matrix equals

o [~ (E= =) D), 300000

n

s2
A 1) Dial®, Doalt)

where
s 1 0 . 0
§27—182i41
1 V242 1 0
3§i+1 52i4152i+3
Di j1(t) =det 0 . . - 0
V24i—
0 e 1
83_3 82j-352j-1
V24
0 PR O )21 _ t . 23 .
8551 825152541
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Since Blm = 0, one has Blm(t) = O(t), and hence lim;_, )\Blm(t) =0.
This, along with equations (3.11), implies that £y = F, as claimed. O

We apply Lemma 3.13 to £;. Recall that TrL; = \"(Fy+tF; +...) where
F; are integrals of the c-relation on twisted n-gons.

PRrROPOSITION 3.15. — Restricted to the space &, of closed n-gons, one
has the following relations:

n —1/2 n
1
Folx =2 (H 322‘1) s Fila =— (2 282i1> Fylx, dFo|x =0.

i=1 i=1

Proof. — One has

n

_ 1«
H (1 — t82i,1) 1/2 =1+ (2 ;82i1> t+ O(tQ),

i=1

and then, according to (3.10),

_ n 1
TI’Et = <H 827;1) 1+ (2 2821‘1) t+ O(tQ)
i=1 i=1
n 1 n
= <H52¢—1> o+ <F1+ (2252i—1) Fo) t+O(t?)
i=1

i=1
Now Lemma 3.13 implies the result. U

[Fo +tF +O(t%)]

As before, we do not dwell here on the question whether the relations
from Proposition 3.15 are the only ones satisfied by the integrals when
restricted to the moduli space of closed polygons (similarly to [4], we do
expect this to be the case).

4. Closed centroaffine polygons, before factorizing by
SL(2,R)

4.1. Presymplectic forms

Recall that )?n,s is the space of closed n-gons with fixed “side areas”
S2i—1, 1= 1,.. ., n.

Choose a coordinate system in R?, and let P; = (z;,y;) be the vertices
of an n-gon. Consider the differential 2-form

(41) w = Z 82i+1(d$i AN dyi+1 + dxH_l A dyz)
i=1
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in )?n The restriction of w to )?mSv which we denote by the same letter, is
closed, that is, a presymplectic form in X}, s.
The generators of the Lie algebra si(2,R) are the vector fields

xd/0y, ©0/0x — yd/dy, yd/ox,
and the generators of its diagonal action on polygons are the vector fields

e= ina/ayi, h = Z(Iva/aftv —¥i0/0y:), [ = Zyia/axi.

These vector fields are tangent to the submanifolds )?n,s-
Let

1= sonwmiv, J =Y s (@yirr +Titayi), K= soii1yivis1-

The restrictions of these functions on /’?n,S are the Hamiltonian functions
of the above vector fields:

(4.2) tew = —dI, ipw=dJ, ijw=dK,
as shown by a straightforward calculation.

THEOREM 4.1.

(1) The restriction of w to /'Fn,s is SL(2, R)-invariant, but it is not basic:
it does not descend on the moduli space &, s.

(2) The form w is invariant under the c-relations for all values of ¢ and
under the polygon recutting.

Proof. — Equations (4.2) and the Cartan formula imply that L.(w) =
Lp(w) = Lf(w) = 0, where L denotes the Lie derivative. Therefore w is
SL(2,R)-invariant, but it is not basic, that is, it is not a pull-back of a
differential form defined on the quotient space, since it is not annihilated
by sl(2,R).

To prove the invariance of w under the c-relations, let Q be an n-gon
such that Q ~ P, and let Q; = (u;, v;). In the calculations below we tacitly
consider Q to be a function of P, so when we write a differential form,
such as du; or dv;, we mean their pull back to P, that is, differential forms
that are linear combinations of dz; and dy;, with j =1,...,n. Now, to the
calculations.

One has

52i41Qi = cPiy1 + [Qi, Pit1| Py, s2i41Pip1 = cQi + [Qi, Pit1]Qit1.

TOME 0 (0), FASCICULE 0



30 Maxim ARNOLD, Dmitry FUCHS & Serge TABACHNIKOV

Take the bracket (i.e., the determinant) of the first equality with d@Q;11,
bracket of the second equality with dP;, subtract the second from the first,
and sum up over %:

(43) > $2i41((Qi,dQiy1] — [Py, dP))
=Y ([Piy1,dQip1] — [Qs,dP))
+> ([Qi» Pra]([Ps, dQira] — [Qis1, AR)).

The differential of the left hand side of (4.3) is the difference of w evaluated
at Q and P. Therefore it suffices to show that the right hand side is an
exact 1-form on /'Fn’s.

Indeed,

Y ([Pr41,dQia] = [Qs,dP]) = D ([P, dQi] — (@i, dP))
= Z d(zivi + yiwi).

Next, [P;,dQi+1] — [Qit1,dP;] = d[P;, Qi+1]. Equation (2.6) implies

§2. . — 2
P Qi) = 22—
| +1] (Qi, Piy1]

It follows that, up to a constant,

Qi Poal(1P dQu] = [Qisr, AP) = Qi Py ]d(Qs, Prya] ™)
= —dIn([Q;, Pi+1]),

therefore the second sum on the right hand side of (4.3) is also an exact
1-form.

To show that the form w is invariant under the polygon recutting, con-
sider the difference of the form evaluated at P and at Ry(P). Let P| =
(z,y) = R1(P)1. Then

_ TpS1+ T253 y = YnS1 + Y253
-, =

V2 V2
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We get

w(P) = w(Ry(P))
= s3(daqy Adys + dzg Ady; — da, Ady — da A dys,)
+ s1(dxy Adyy + dzy Ady, — de A dys — das Ady)
= (sgdzq1 — s1dx) Adys + dza A (s3dyr — s1dy)
+ (s1dxy — szdz) A dy, + da, A (s1dyr — s3dy)

5 2
- Zi(dxn Adysz + das Ady,) — Zi(dxn A dyz + daz A dyn)
5 2
= (),
as needed. =

Remark 4.2. — It was pointed out by A. Izosimov that the 2-form w
is also well defined on the space X, g a¢ of twisted n-gons with mon-
odromy M.

4.2. Additional integrals

The next theorem, providing two additional integrals of the c-relation, is
a discrete version of Proposition 3.4 in [14], concerning a continuous version
of the c-relation on centroaffine curves. It is also an analog of Theorem 16
in [4].

THEOREM 4.3.

(1) The functions I, J, K are integrals of the c-relations for all values
of ¢ and of the polygon recutting.
(2) The integral 41K — J? descends to the moduli space Xos-

Proof. — We use the notations from the proof of Theorem 4.1.
One has

TV — Yils = €, TiYit1 — Yili41 = S2i41 = UiVi41 — Vilhj41
for all i. Hence v; = (¢ + y;u;)/x; and

ui(c+ yip1tit1)  wiri(c+ yiw)
Tit1 T

= 52i+1-
It follows that

c(xiu; — Tig1uipr) + Uiui+1(l‘iyi+1 - yi$i+1) = 82i41%;Ti41
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or
clriu; — Tig1wig1] + S2i41UUi11 = S2i 11T Tiq1-
Taking sum over 4 eliminates the first summand on the left hand side and
shows that I is an integral.
Next we show that I is also an integral for the polygon recutting. Indeed,

I(P) — I(R1(P)) = (z12283 + xpnx151) — (xx281 + T S3)
= 29(x183 — x81) + Tp(z151 — 83) = 0.
Therefore I(P) = I(R1(P)) = I(Ra2R1(P)) = --- = R(P).
One also has
e(I)=0,e(J)=21e(K)=J, h(I)=2Ih(J)=0h(K)=-2K,
Y FI) = J.£(J) = 2K, F(K) = 0.

Since the c-relations and the recutting commute with SL(2,R), it follows
that J and K are also integrals.

Finally, (4.4) imply that 41K — J? is an sl(2, R)-invariant function. This
proves the last claim. O

The space spanned by I, J, K is the irreducible 3-dimensional represen-
tation of the Lie algebra sl(2,R), the symmetric square of its standard
2-dimensional representation, or the coadjoint representation. The map
Xos — R3, whose components are the functions I,.J, K, is the moment
map of the Hamiltonian action of sl(2,R) on X, s.

Remark 4.4. — One has

ATK — 7% = = sory15201([Pes P[Pey1Piya] = [Pr, Pl [Peta, PL).
k,l

4.3. Center of a polygon

Define the center of a polygon P as the quadratic form on R?
C(P) = I(P)2* — J(P)zy + K (P)y>.

The center is invariant under the c-relation and the polygon recutting, and
it conjugates the diagonal action of SL(2,R) on polygons and on its action
on quadratic forms. In more detail, the group SL(2,R) naturally acts on
quadratic forms, that is, on S?(R?), and it acts diagonally on centroaffine
polygons in R?. The map C that assigns the center to a polygon conjugates
these two actions.

In this section we present some properties of the center, somewhat anal-
ogous to those of the circumcenter of mass, see [16].
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The center is additive in the following sense.

LEMMA 4.5. — Let P = (Py,..., Py, ..., P,). Cut P into two polygons
P1 = (Pl,...,Pk) and PQ = (Pl,Pk,...,Pn). Then C(P) = C(Pl) +
C(Py).

Proof. — FEach of the three components of the sum C(P;) + C(P3) con-
tains all the terms of the respective component of C'(P) plus the additional
terms (two or four), that appear due to the cut P; Py. Since the “side area”
[Py Py] changes the sign when the orientation of the side is reversed, these
additional terms cancel pairwise. O

According to the preceding lemma, the calculation of the center of a
polygon reduces to that of a triangle. The next result gives a geometrical
interpretation to the center of a triangle.

LEMMA 4.6. — A triangle P = (P, Py P3) admits a unique circumscribed
central conic given by the equation ax? — bxy + cy® = 1, that is, the conic
whose center is at the origin and that passes through the vertices of the
triangle. The center of the triangle P is 2A(ax? — bxy + cy?), where A is
the oriented area of P.

Proof. — Let P; = (x4,y:), @ = 1,2,3. We recall that the sides do not
pass through the origin.
To find the circumscribed central conic one needs to solve the linear
system M (a,—b,c)T = (1,1,1)T where
2 ny Yt
M= |23 w2 u3

2 2
I3 T3Ys Y3

One has det M = s1s355. Denote by N the cofactor matrix of M. Then

1
M= N,
$183S5
and hence
—b,e)T = N(1,1,1)7.
(a7 ’c) 818385 ( ) Y )

Note that sys3s5 is twice the oriented area of the triangle.
On the other hand, one notices that N(1,1,1)7 = (K,—J,I)T. This
implies the result. O

LEMMA 4.7. — The center of a centroafline butterfly is the origin.
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Py

Q2

Py

Figure 4.1. Triangles P, P,Q2 and P;(QQ1Q2 share the circumsribed cen-
tral conic.

Proof. — An affine reflection in a line through the origin interchanges
points P; with @2, and P, with @)1, see Figure 4.1. This reflection preserves
the central conic circumscribed about triangle P; Po@s, therefore triangles
P P,Q5 and P;@Q1Q2 share the circumsribed central conic. Now the result
follows from Lemmas 4.5 and 4.6. O

Lemmas 4.5 and 4.7 provide an alternative proof that the center is in-
variant under polygon recutting.

5. Small-gons
5.1. Triangles

In this section we investigate closed triangles.

THEOREM 5.1.
(1) A triangle admits a c-related triangle if and only if
?(s1+ 53+ 85) (51 + 83 — 55)(53 + 55 — 51) (55 + 51 — 83) < 4(515385)°.

No triangles have infinitely many c-related ones for any ¢ # 0.
(2) Two c-related triangles are SL(2, R)-equivalent.
(3) The linear transformation M that relates them and that defines the
dynamics is elliptic if and only if
(51) (81 + 83 + 85)(81 + 83 — 85)(83 + 85 — 81)(85 + 81 — 83) > 0.

M is parabolic if and only if the origin is located on the lines that
bisect two sides of the triangle, see Figure 5.1.
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(4) Let triangle A’B’C" be the recutting of triangle ABC' done in the
order A — B — C, and let A” B"C" be the second iteration of this
recutting. Then there exists a transformation M € SL(2,R) that
takes ABC to A”B"C".

P,

P3

Py

Figure 5.1. The shaded regions are where the origin should be located
for the linear map M to be elliptic.

We cannot help noticing that the left hand side of (5.1) reminds one of
Heron’s formula that expresses the area of a triangle in terms of its side
lengths. We do not know whether this similarity has a meaning or it is a
pure coincidence.

Proof. — A triangle is uniquely determined, modulo SL(2,R), by the
areas S1, S3, S5. These numbers are preserved by the c-relation, proving the
second claim.

Let Q = MP where M = (/' 1) € SL(2, R), and let P; = (z;,y;). Then
the relation the P ~ Q implies

(m —Daiyr — ka? +ny? =

|
o

(m — D)xoys — kx3 +ny3 = c

(m — Dz3ys — k23 +ny3 = c.
Here is the solution:
1
m—I Ty —ri i 1
k| =claoy. —23 43 1
n T3Y3 —m§ l/§ 1

For M to exist, one needs the relation mi—kn = 1 to hold. Since m—1, k,n
are already determined, this reduces to a quadratic equation on m that has
real roots if and only if

(m —1)? +4kn +4> 0.
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One has a remarkable identity:

(51+83+55)(51+83—55)(53+85 —51)(55+51 —53)
(515355)*

that we verified using Mathematica. This implies the first claim of the

theorem. Furthermore, M is elliptic if and only if

Tr(M)? —4det(M) = (m+1)2 -4 <0

(m—1)%+4kn = —c?

3

or, which is equivalent, (m — [)? + 4kn < 0. This implies the third claim.
The right hand side vanishes when s; = s34+ s5 or its cyclic permutation,
that is, the origin lies on one of the three middle lines of the triangle. These
lines separate the elliptic and hyperbolic regions.
For the last claim, one has [4, B] = [B’,C'] and [B,C] = [A’, B'], see
Figure 5.2. Since the total area is preserved by recutting, one also has

(€, A] = [C", A').

Figure 5.2. Triangle recutting.

Repeating this argument going from A’B’'C’ to A”B"C", we see that
[A,B] =[A",B"], [B,C]=[B",C"], [C,A] =[C", A"].
Therefore the triangles ABC and A” B"C" are SL(2,R)-equivalent. O

Remark 5.2. — The first claim in Theorem 5.1 has the following geomet-
ric interpretation. Given a triangle, there exists a central conic through its
vertices. Assume that this conic is an ellipse and apply a transformation
from SL(2,R) to make this ellipse into a circle of radius R. Then a c-related

triangle is also inscribed in this circle, and one has ¢ < R2.
Thus one expects the following identity to hold:

(5.2) R4(81 +83+S5)(51 + 83 —85)(83 + 5 —81)(S5+81 —53) = 4(818385)2.
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Let «, 8,~ be the (signed) angles under which the sides of the triangle are
seen from the origin. Then o + g + v = 2,
_ P2 D2 P2
s1 = R°sinqa, s3 = R°sin 3, s5 = R“sin~y,
and (5.2) becomes a true trigonometric identity

(sina + sin 8 + sin ) (sin a + sin 8 — siny)(sin o — sin 8 + sin )

X (—sina 4+ sin § + siny) = 4sin” asin? Fsin” 5.

5.2. Quadrilaterals

Let us consider the dynamics of the c-relation on closed quadrilaterals.
Let P be a quadrilateral, and assume that Lp . # Id.

PROPOSITION 5.3.

(1) Let P <~ Q. Then there exist homothetic central conics C; and
Cy such that Py,Q2, P3,Q4 € C1 and Q1, P2, Q3, Py € Co, see Fig-
ure 5.3.

(2) The conics in questions are ellipses if and only if

(81 + 3 +85+S7)(31 + 83— 85 757)(834’55 757781)(S5+S7781 753) < 0.

Figure 5.3. Homothetic concentric conics containing the vertices of c-
related quadrilaterals.
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Proof. — As in Section 2.5, one has four affine reflections R; whose com-
position is the identity map. Consider R; as an orientation reversing isom-
etry of the hyperbolic plane, a reflection in a line ¢;. Then Ry o Ry is an
orientation preserving isometry. One has four cases: this isometry is elliptic,
hyperbolic, parabolic, or the identity.

In the elliptic case, the isometry is a rotation about a point in H?. Hence
R, 0oRj3 is a rotation about the same point, and therefore the four lines ¢; are
concurrent at this point. It follows that R; belong to group G C GL(2,R)
that is conjugated to O(2), that is, the group generated by the rotations

cost sint -1 0
<— sint cost> and by ( 0 1) ’
and preserving the quadratic form x? + y2. Thus G preserves a positive-
definite quadratic form whose circles are the homothetic ellipses preserved
by the reflections R;. Since R; swaps P; with Q;+1 and Q; with Py, we
are done in this case.

In the hyperbolic case, the argument is similar. The isometries R; of
H? are reflections in the lines ¢; that share a common perpendicular (and
the lines are concurrent at a point of the projective plane outside of the
absolute). In this case the argument is similar with the group G being
conjugated to O(1,1) and generated by

cosht sinht -1 0 and b -1 0

sinht cosht/’\ 0 1)’ Y 0o -1/’
preserving the quadratic form 22 — y2. Thus G preserves a non-degenerate
sign-indefinite quadratic form whose level curves are the desired homothetic

hyperbolas (note that one of the level curves is singular: it is a pair of lines
intersecting at the origin).

QMP2
Py Qo

o
on Py

Figure 5.4. The parabolic case.

ANNALES DE L’INSTITUT FOURIER



INTEGRABLE TRANSFORMATIONS OF CENTROAFFINE POLYGONS 39

In the parabolic case, the conics degenerate to pairs of origin-symmetric
parallel lines, see Figure 5.4. Another degenerate case is when two opposite
vertices of P are collinear, this happens in the hyperbolic case when the
zero level curve of the sign-indefinite quadratic form is a pair of intersecting
lines.

Finally, in the case of the identity, one has P, = (R2 o Ry)(P1) = Ps,
contradicting the non-degeneracy of the quadrilateral.

We write the conics in the format (P, M P)=const, where P = (z,y) and
M = (’,’Z ’,;L) The homogeneous equation for the matrix elements

m(x} — x3) + 2n(x1y1 — z3y3) + k(Y7 —y3) =0
m(xs — xF) + 2n(2z2y2 — xays) + k(yi —yi) =0
has a solution
m Y1Y283 + Y2Y3S5 + Y3YaS7 + YaY159
n| = =(1/2)((x7 — 23)(¥5 —yi) — (#3 —23) (7 — v3)) | »
k T1T283 + T2T3S5 + T3T4S7 + T4T1S9

where the square bracket denotes the projective equivalence class. A calcu-
lation shows that
n? —mk
=(s1+83+85+57)(s1+53—85—57)(83+ 85 — 57— 81)(85+ 87— 51— 83),
which implies the second result. O
Arguing as in the preceding section, Proposition 5.3 has the following
corollary.

COROLLARY 5.4. — Let Q be the recutting of the quadrilateral P. Then
the odd vertices of Q lie on the same central conic as the odd vertices of
P, and the even vertices of Q lie on the same homothetic central conic as
the even vertices of P.

Let P be a quadrilateral with coordinates (s1, s3, 85, $7) and (v, v4).
THEOREM 5.5.
(1) A quadrilateral admits a c-related quadrilateral if and only if
(5.3) *(s1+ 53 — 85 — 57)(51 — 83 4+ 55 — 57)(51 — 83 — S5 + 57)
X (81 + 83+ 85+ 57) > 4(5355 — 5157)(5357 — 5155)(5153 — 5557).

This condition is symmetric in {s1, s3, S5, $7}, and it has solution
in ¢ for every S.
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(2) The second iteration of the c-transformation of P s
SL(2,R)-equivalent to P.
(3) The third iteration of the recutting of P is SL(2, R)-equivalent to P.

Proof. — To prove the first statement, note that P is SL(2, R)-equivalent
to the following one:

Py =(1,0), P, = (0,51), P, = (-Sg,w) ,P3 = (—047—87> ,
S1 S1

where vovy = $185 — s357 (the Ptolemy—Pliicker relation).

Let Qo = (b,¢). A calculation using (2.6) shows that Q4 = (¥, ¢), and
we need b = b. This is a quadratic equation b?> + ub 4+ v = 0 on b whose
coefficients are given by the formulas

2 2 2 2

c |87 — 83— 55 — 57 n 2535557
u =

va | 8587 — 5183 51(s587 — $153)
v — (¢ — 57)(s355 — s157)(s357 — 5155).

v3s3 (8557 — $153)

One calculates the discriminant D = u? — 4v, and, after some cancellation,
this results in (5.3) (we used Mathematica to clean-up the formulas).
One also has D = ¢ P + 452Q), where

Q(81,53,55,57) = (8557 — 5153) (8357 — 5185)(8355 — 5157),
P(s1,53,85,57) = s5(s57 — 52 — 52 — 53)% — Q(s1, 83, 55, 57)-
Therefore one cannot have P < 0 and @) < 0 simultaneously, and this

implies that (5.3) always has a solution.

The group of permutations of the "four elements of the set S is generated
by the involutions (13), (35), (57) that leave inequality (5.3) intact.

The second statement of the theorem follows from Proposition 5.3: if
R < Q, then the vertices of the quadrilateral R lie, alternating, on the
same homothetic conics as those of P, and the respective “side areas” of
these quadrilaterals are equal. This implies that R and P are SL(2,R)-
equivalent.

For the third statement, using the Ptolemy—Pliicker relation, one calcu-
lates that after the first recutting the coordinates become

5183 — 8557 8187 — 83S5>

(31755;87753)7 U2 s V4
5185 — 5387 5183 — S597
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Then after the second recutting we have

5183 — 5587 5187 — 8355
(31787,83755), V2 » U4 )

5187 — 8355 5185 — S387
so after the third recutting one obtains (si,ss,ss,s7),(ve,vs4), as

claimed. O

5.3. Pentagons: invariant area form

In this section we consider the moduli space &5 g. This material is parallel
to the one in [4, Section 7.1.3].

The space X5 g is 2-dimensional: the variables vg; satisfy the Ptolemy—
Pliicker relation vovs 4+ vgss = s155 and its cyclic permutations. We break
the cyclic symmetry by setting vy = x,vs = y. Then

8185 — S3Y 8589 — 87T 8187T + 8359y — $18589
(64) yu=—"-""2 v5=—""", VY= .
T Y 1Y
Recall (Example 3.4) that
v v v v v
Koo Y2 4 6 8 10

+ + + +—
8183 8385 8587 8789 8981
the only integral of the c-relation on the moduli space of closed pentagons.
In terms of (z,y)-coordinates, one has

2 2 2 2
x s7T+ s s5+ s x Ss
K — LY +(1 3)+(7 9)_7_&_7.
$183 S789 $183% S7S9Y S5Y S5 Ty
Let
dz A dy
w=——
ry

The origin of the area form w on X g is in the theory of cluster algebras,
and we do not dwell on it here.

THEOREM 5.6. — The c-relation preserves the form w.

Proof. — Recall the vector field £ from Section 3.3. Using the formula
from Theorem 3.9, one has

. V4 Ve Ug Vo 53 S1
a:=x< - + - )—I——,

5385 8587 8789 8981 S1 83

. V) v v v S S
yzy( o Y2 , Ua U )+ S35
S9S81 S183 8385 S5S87 S1 S3
We claim that icw = dK, that is, the integral K is the Hamiltonian

function of the vector field £. This claim is verified by a direct calculation,
after substitution of the formulas (5.4) into (5.5).

(5.5)
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Consider the c-relation as a transformation 7'. By the Bianchi permutabil-
ity, ®;, the t-flow of the field £, commutes with T', and these maps preserve
the level curves of the function K. Since ®; is symplectic, we have

/T (w) = T (w) = T (w),
that is, T*(w) is also invariant under the flow of . Hence T*(w) = Huw,
where the function H is an integral of ®; and of T that has the same level
curves as K. We want to show that H = 1.

Assume that a level curve K = ¢ is closed. Consider an infinitesimally
close level curve K = c¢+¢. Both curves are preserved by T, hence the area
between them remains the same. On the other hand, this area is multiplied
by the value of the function H on the curve K = c. Hence this value
equals 1, as needed.

Figure 5.5. Three level curves K = —10,—-9,—8.2 on X5 g with S =
(1,1,1,1,1).

Thus w is invariant under T near local maxima or minima of I, see
Figure 5.5. The c-relation is an algebraic relation, and we can use analytic
continuation to conclude that c-relation preserves w everywhere. O

This theorem implies a Poncelet-style porism: if a level curve of the
integral K contains a periodic point of the c-relation, then every point of
this curve is periodic with the same period.

5.4. Pentagons: when the c-relation is not defined

Let P = (P, P, ..., Psy) be a pentagon. Using an appropriate SL(2,R)-
transformation, we can make Py = (1,0) and P, = (0, s1). Then

(—53,5102) (s387 — S5V4, 515559 — S15704) (v4, —5189)
N} P3 = ) P4 - .

S1 V2V4 — 5359 S1

Py =
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To find a pentagon Q = (QoQ1,-..,Q4) crelated to P, we first put Qg =
(b, ¢) (with some unknown b) and compute the remaining vertices using the
formulas from Section 2.3.

Our goal is to find a value of b such that Q5 = Qg; but for an arbitrary
b we will have Q5 = (V/,c) with some b which may be different from
b (because [Qs, Ps] = [@s5, Po] must be equal to ¢). This b will depend
on b,c, and all s,v, and it is not hard to see that it will be, actually, a
quadratic polynomial in b with coefficients depending on ¢, s, and v. Then
the equation ¥’ = b is quadratic with respect to b. (For n = 4, a similar
equation was explicitly calculated in the proof of Theorem 5.5.)

We were able to make these calculations, but the result looks depressing,
and we do not present it here. Actually, we are more interested in the
discriminant of this quadratic equation. This discriminant D depends on
¢, 81,83, S5, S7, S9, and va, vy4, but in reality its dependence on ve, v4 may be
reduced to the dependence on

V2 Vg Ve (%) V10
K =

+ + + + .
5153 5385 S587 S$759 S981

Moreover, D turns out to be also a quadratic function of K with coefficients
depending on ¢, and s1, s3, S5, S7, S9. An explicit expression for this function
D = D(K) is less awkward, it can be derived from Propositions 5.7 and 5.8
below.

What we really need is the discriminant of D(K), for which we will use
a weird notation D(D). Indeed, if, for some ¢, s1, 83, 85, $7, 89, D(D) < 0,
then c-related pentagons exist for all pentagons with these s1, s3, S5, S7, Sg;
if D(D) > 0, then the equation D(K) = 0 has two different real roots K
and K- and no c-related pentagons exist for pentagons with K between K3
and K.

Notice that both D and D(D) are defined up to positive factors, which
we ignore in the formulas below.

PROPOSITION 5.7. — One has

5

D(D) = H(C2 - 53;‘71)-

j=1

Thus, if 0 < 51 < ... < sg (this condition is not really restrictive, since all
our results are not sensitive to permutations and sign changes of sy, ... sg)
then the relation may be undefined only if s1 < |c| < s3, or s5 < |¢|] < s7,
or |e| > sg. See Figure 5.6.
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6

Figure 5.6. The zones where the c-relation is not defined; here S =
{1,3,5,7,9}. The horizontal and vertical axes are ¢ and K.

PROPOSITION 5.8. — The solutions of the equation D(K) = 0 are

_ ((ZJ 5%]‘71) —2¢%)c? 2,/D(D)
K= Hj 5251 = CHj S25—1 .

The proofs consist in tedious but explicit calculations.

By the way, to check a reliable formula, after it has been obtained, we
need, as a rule, to prove the equality between two polynomials of the same
degree, and for this it is sufficient to verify the equality for a certain number
of integral variables, which is an easy task for a computer program.
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