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ON THE DISTRIBUTION OF SUDLER PRODUCTS
AND BIRKHOFF SUMS FOR THE IRRATIONAL

ROTATION

by Bence BORDA (*)

Abstract. — In this paper, we study the value distribution of the Sudler prod-
uct
∏N

n=1 |2 sin(πnα)| and the Diophantine product
∏N

n=1(2e∥nα∥) for various
irrational α, as N ranges in a long interval of integers. At badly approximable
irrationals these products exhibit strong concentration around N1/2, and at cer-
tain quadratic irrationals they even satisfy a central limit theorem. In contrast, at
almost every α we observe an interesting anticoncentration phenomenon when the
typical and the extreme values are of the same order of magnitude. Our methods
are equally suited for the value distribution of Birkhoff sums

∑N

n=1 f(nα) for circle
rotations. Using Diophantine approximation and Fourier analysis, we find the first
and second moment for an arbitrary periodic f of bounded variation, and (almost)
prove a conjecture of Bromberg and Ulcigrai on the appropriate scaling factor in a
so-called temporal limit theorem. Birkhoff sums also satisfy a central limit theorem
at certain quadratic irrationals.

Résumé. — Dans cet article, nous étudions la répartition des valeurs du pro-
duit de Sudler

∏N

n=1 |2 sin(πnα)| et du produit diophantien
∏N

n=1(2e∥nα∥) pour
plusieurs types de nombres irrationnels de α, avec N variant dans un long inter-
valle d’entiers. Pour les irrationnels mal approchables par des nombres rationnels,
ces produits ont une forte concentration autour de N1/2, et pour certains irra-
tionnels quadratiques, ils vérifient même un théorème central limite. En revanche,
pour presque tout α, nous observons un phénomène d’anti-concentration intéres-
sant où les valeurs typiques et extrêmes sont du même ordre de grandeur. Nos
méthodes conviennent également à l’étude de la répartition des sommes de Bir-
khoff

∑N

n=1 f(nα) pour les rotations du cercle. En utilisant l’approximation dio-
phantienne et l’analyse de Fourier, nous déterminons la moyenne et le moment
d’ordre deux pour une fonction périodique quelconque f à variation bornée, et dé-
montrons (presque) une conjecture de Bromberg et Ulcigrai quant au facteur de
normalisation approprié dans un certain théorème limite temporel. Les sommes de

Keywords: Toral translation, Diophantine approximation, quadratic irrational, Fourier
series, central limit theorem, temporal limit theorem.
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5510, which is part of the Special Research Program (SFB) “Quasi-Monte Carlo Meth-
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2 Bence BORDA

Birkhoff vérifient également un théorème central limite pour certains irrationnels
quadratiques.

1. Introduction

The so-called Sudler product

PN (α) :=
N∏

n=1
|2 sin(πnα)|, α ∈ R

was first studied by Erdős, Szekeres [24] and Sudler [37] in the context
of restricted partition functions. Sudler products later appeared in several
areas of mathematics including q-series [32], dynamical systems and KAM
theory [30], Zagier’s quantum modular forms [38] and hyperbolic knots in
algebraic topology [12]. They also play an important role in a counterex-
ample to the Baker–Gammel–Wills conjecture on Padé approximants [33]
and the solution of the Ten Martini Problem [5]. The ubiquity of the Sudler
product is explained by the large number of its different representations.
While defined as a trigonometric product, PN (α) is also the modulus of
the q-product (1− q)(1− q2) · · · (1− qN ) with q = e2πiα on the unit circle.
In addition, its logarithm logPN (α) =

∑N
n=1 f(nα) is a Birkhoff sum for

the irrational rotation with f(x) = log |2 sin(πx)|. For a general overview
of Birkhoff sums for toral translations we refer to the survey [19]. In partic-
ular, our results fit into the category of Birkhoff sums with a logarithmic
singularity. The main goal of this paper is to study the value distribution
of PN (α) as N ranges over a long interval of integers.

It is not surprising that the asymptotics of PN (α) as N → ∞ depends
sensitively on the Diophantine properties of the irrational α. Refining re-
sults of Lubinsky [32], in a series of recent papers Aistleitner, Grepstad
et al. [1, 2, 3, 25, 26, 27] gave precise estimates for the extreme values
of PN (α) in terms of the continued fraction of α. Solving a long-standing
open problem of Erdős and Szekeres, in [25] the golden ratio was shown to
satisfy

(1.1) 1≪ PN

(
1 +
√

5
2

)
≪ N.

The same holds for some (but not all) quadratic irrationals. Both the upper
and the lower bound in (1.1) are sharp; in fact, for an arbitrary irrational
α there exist positive constants C1(α), C2(α) such that PN (α) ⩽ C1(α)
and PN (α) ⩾ C2(α)N for infinitely many N . The range of oscillations of
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ON THE DISTRIBUTION OF SUDLER PRODUCTS 3

PN (α) thus span at least a factor of N , with the golden ratio (and certain
other irrationals with small partial quotients) minimizing this range. In
contrast, our first result shows that PN (α) concentrates around N1/2 for
the majority of integers N .

Theorem 1.1. — Let α be a badly approximable irrational. For any
M ⩾ 1 and t > 0,

1
M

∣∣∣{1 ⩽ N ⩽M : N1/2e−t
√

log 2N ⩽ PN (α) ⩽ N1/2et
√

log 2N
}∣∣∣

= 1−O
(
t−2)

with an implied constant depending only on α. In particular, for any se-
quence tN →∞, the set{

N ∈ N : N1/2e−tN

√
log N ⩽ PN (α) ⩽ N1/2etN

√
log N

}
has asymptotic density 1.

Recall that an irrational α is called badly approximable if infq⩾1 q∥qα∥ >
0, where ∥ · ∥ denotes the distance from the nearest integer. What we ac-
tually show is that for any badly approximable α,

(1.2) 1
M

M∑
N=1

logPN (α) = 1
2 logM +O(log logM)

and

(1.3) logM ≪ 1
M

M∑
N=1

(
logPN (α)− 1

2 logM
)2
≪ logM

with implied constants depending only on α. From a probabilistic point
of view the previous two formulas represent the expected value and the
variance of logPN (α) when N is chosen randomly from [1,M ], and Theo-
rem 1.1 follows from the Chebyshev inequality. Lubinsky [32] proved that
for a badly approximable α the extreme values are

logM ≪ max
1⩽N⩽M

|logPN (α)| ≪ logM.

Thus the square root of the variance is negligible compared to the ex-
treme values, explaining the higher concentration in Theorem 1.1 compared
to (1.1).

The estimates for the variance and the extreme values in the previous
two formulas are optimal in the sense that both quantities can oscillate
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4 Bence BORDA

between two different positive constants times logM for a suitable badly
approximable α. For quadratic irrational α, however, we can say more:

(1.4) 1
M

M∑
N=1

(
logPN (α)− 1

2 logM
)2

= σ(α)2 logM +O((log logM)4)

with an explicitly computable constant σ(α) > 0, and [1]
max

1⩽N⩽M
logPN (α) = c(α) logM +O(1),

min
1⩽N⩽M

logPN (α) = (1− c(α)) logM +O(1)

with some constant c(α) ⩾ 1 and implied constants depending only on α.
Here e.g. c((1+

√
5)/2) = 1 (cf. formula (1.1)), but the precise value of c(α)

is not known in general. For certain simple quadratic irrationals including
the golden ratio and

√
2, we also prove a central limit theorem with an

estimate for the rate of convergence in the Kolmogorov metric.

Theorem 1.2. — Let a ⩾ 1 be an integer, and consider the quadratic
irrational

α = [0; a, a, a, . . .] =
√
a2 + 4− a

2 .

For any M ⩾ 3 and t ∈ R,

1
M

∣∣∣∣{1 ⩽ N ⩽M :
logPN (α)− 1

2 logN
σ(α)

√
logN

⩽ t

}∣∣∣∣
=
∫ t

−∞

e−x2/2
√

2π
dx+O

(
(log logM)2

(logM)1/6

)
with an implied constant depending only on α.

Our approach is to consider logPN (α) =
∑N

n=1 f(nα) as a Birkhoff sum
for the irrational rotation with f(x) = log |2 sin(πx)|, and to exploit the
fact that f(x) has the particularly simple Fourier series expansion

(1.5) log |2 sin(πx)| = −
∞∑

m=1

cos(2πmx)
m

.

The similar Birkhoff sum

SN (α) :=
N∑

n=1
({nα} − 1/2) ,

where { · } denotes fractional part, was studied in detail by Beck [7, 8, 9].
Note that log |2 sin(πx)| and π({x} − 1/2) are harmonic conjugates: they
are the real and imaginary parts of log(1 − z) (holomorphic on C\[1,∞)
and defined using the principal branch of the logarithm) on the unit circle

ANNALES DE L’INSTITUT FOURIER



ON THE DISTRIBUTION OF SUDLER PRODUCTS 5

z = e2πix. Beck proved that for a quadratic irrational α the expected value
and the variance(1) of SN (α) are

1
M

M∑
N=1

SN (α) = E(α) logM +O(1),

1
M

M∑
N=1

(SN (α)− E(α) logM)2 = σ(α)2

π2 logM +O
(
(log logM)4) ,

and SN (α) satisfies the central limit theorem.

Theorem 1.3 (Beck [7, 8, 9]). — Let α be a quadratic irrational. For
any M ⩾ 3 and t ∈ R,

1
M

∣∣∣∣{1 ⩽ N ⩽M : SN (α)− E(α) logN
(σ(α)/π)

√
logN

⩽ t

}∣∣∣∣
=
∫ t

−∞

e−x2/2
√

2π
dx+O

(
log logM

(logM)1/10

)
with an implied constant depending only on α.

Here E(α) is defined the following way: given the continued fraction ex-
pansion α = [a0; a1, a2, . . . ] with convergents pk/qk = [a0; a1, . . . , ak], we let

E(α) = lim
k→∞

1
12 log qk

k∑
ℓ=1

(−1)ℓaℓ.

Note that the limit exists by the periodicity of the partial quotients. For in-
stance, E((1+

√
5)/2) = 0 (since (1+

√
5)/2 = [1; 1, 1, . . . ] so there is perfect

cancellation in the alternating sum), but E(
√

3) = 1/(12 log(2+
√

3)) (since√
3 = [1; 1, 2, 1, 2, . . . ] and qk ≈ (2+

√
3)k/2). In contrast, the corresponding

constant factor in the expected value of logPN (α) is always 1/2, see (1.2).
The variances of SN (α) and logPN (α), on the other hand, involve the

same constant σ(α). The extra factor of π2 is explained by the harmonic
conjugate property mentioned above. The constant σ(α) also appears in
the variance of certain lattice point counting problems [9] and in the L2-
discrepancy of irrational lattices [14]. We refer to Beck [9, Chapter 3] for
a way to compute σ(α) for general quadratic irrationals, based on deep
arithmetic properties of the real quadratic field Q(α). For instance, we

(1) In fact, Beck proved the formula for the variance with error term
O(

√
log M log log M). Following the methods of Section 4.1 of the present paper, this

can be improved to O((log log M)4).
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6 Bence BORDA

have

σ

(
1 +
√

5
2

)2
= π2

60
√

5 log 1+
√

5
2

and σ(
√

3)2 = π2

24
√

3 log(2 +
√

3)
.

Using the harmonic conjugate property, Theorems 1.2 and 1.3 can ac-
tually be combined into a 2-dimensional central limit theorem, where the
limit distribution is a mean zero Gaussian with the 2 × 2 identity matrix
as covariance matrix.

Theorem 1.4. — Let a ⩾ 1 be an integer, and consider the quadratic
irrational

α = [0; a, a, a, . . .] =
√
a2 + 4− a

2 .

For any M ⩾ 3 and any convex set C ⊆ R2,

1
M

∣∣∣∣{1⩽N ⩽M :
( logPN (α)− 1

2 logN
σ(α)

√
logN

,
SN (α)−E(α) logN

(σ(α)/π)
√

logN

)
∈C
}∣∣∣∣

=
∫

C

e−|x|2/2

2π dx+O

(
(log logM)2

(logM)1/6

)
with an implied constant depending only on α.

Our proof of Theorems 1.2 and 1.4 follows closely the rather long proof
of Theorem 1.3 due to Beck. We decided to focus on the special irrationals
α = [0; a, a, a, . . .] because for these some of the technical complications
can be avoided, resulting in a proof of reasonable length. Nevertheless, we
believe that Beck’s methods are fully applicable to Sudler products, and in
particular that Theorems 1.2 and 1.4 hold for all quadratic irrationals. Note
that we kept the centering term E(α) logN in Theorem 1.4 to emphasize
this generality, even though for α = [0; a, a, a, . . .] we actually have E(α) =
0. We conjecture that the sharp rate of convergence in all three theorems
is O((logM)−1/2).

Beck [9, p. 247] also announced a more general form of Theorem 1.3,
stating that the central limit theorem remains true (with suitable centering
and scaling, and without an explicit error term) provided that the continued
fraction α = [a0; a1, a2, . . . ] satisfies ak/(a2

1 + · · · + a2
k)1/2 → 0 as k → ∞;

he calls this an analogue of the classical Lindeberg condition for the central
limit theorem in probability theory. A detailed proof has not been published
yet. For this reason we conjecture that our Theorems 1.2 and 1.4 in fact
hold (with suitable centering and scaling, and without an explicit error
term) under the same condition.

ANNALES DE L’INSTITUT FOURIER



ON THE DISTRIBUTION OF SUDLER PRODUCTS 7

The distribution of the Birkhoff sum

SN (α, f) :=
N∑

n=1
f(nα)

has also been studied with more general 1-periodic functions f . Beck [7, 8, 9]
considered a quadratic irrational α and f(x) = I[a,b]({x})− (b− a), where
I[a,b] is the indicator of an interval [a, b] ⊂ [0, 1] with rational endpoints,
and proved a central limit theorem analogous to Theorem 1.3 with E(α)
and σ(α) replaced by explicitly computable constants depending on α and
the interval [a, b]. More recently Dolgopyat et al. [4, 16, 19, 20, 21, 22]
proved similar temporal limit theorems for the irrational rotation as well
as Anosov flows and horocycle flows. Here “temporal” refers to the fact
that the time parameter N is chosen randomly. The centering and scaling
terms, however, were not explicitly computed in some of these results. In
particular, generalizing Beck’s result Bromberg and Ulcigrai [16] considered
a badly approximable α and f(x) = I[a,b]({x}) − (b − a) with an interval
[a, b] ⊂ [0, 1] whose length 0 < b−a < 1 is badly approximable with respect
to α in the sense that infq∈Z\{0} |q| · ∥qα− (b− a)∥ > 0. They proved that
(SN (α, f)−AM )/BM converges to the standard Gaussian distribution with
the natural centering and scaling terms

(1.6) AM = 1
M

M∑
N=1

SN (α, f) and B2
M = 1

M

M∑
N=1

(SN (α, f)−AM )2,

and conjectured that logM ≪ B2
M ≪ logM . In this paper, we basically

settle their conjecture.

Theorem 1.5. — Let α be a badly approximable irrational, and let
f(x) = I[a,b]({x}) − (b − a) with an interval [a, b] ⊂ [0, 1] of length 0 <

b−a < 1 such that infq∈Z\{0} |q|·∥qα−k(b−a)∥ > 0 for all k ∈ {1, 3, 5, 7, 9}.
Then

logM ≪ B2
M ≪ logM

with implied constants depending only on α and (b− a).

Note that some condition on the length (b−a) is necessary. Indeed, by a
classical result on bounded remainder intervals [28], we have |SN (α, f)| ≪ 1
if and only if b− a ∈ Zα+ Z; in this case BM ≪ 1.

In fact, we prove much more: we find the expected value and the variance
of SN (α, f) for all 1-periodic functions of bounded variation, see Proposi-
tion 4.1. As we will see, the upper bound B2

M ≪ logM remains true for all
f and badly approximable α. In contrast, the lower bound for B2

M depends

TOME 0 (0), FASCICULE 0



8 Bence BORDA

on a delicate interplay between the Fourier coefficients of f and the Dio-
phantine properties of α. For certain simple quadratic irrationals, we also
prove a central limit theorem under the assumption that BM → ∞ fast
enough.

Theorem 1.6. — Let a ⩾ 1 be an integer, and consider the quadratic
irrational

α = [0; a, a, a, . . .] =
√
a2 + 4− a

2 .

Let f : R → R be a 1-periodic function that is of bounded variation on
[0, 1] and satisfies

∫ 1
0 f(x) dx = 0, and let V (f) denote its total variation

on [0, 1]. Let AM , BM be as in (1.6). For any M ⩾ 3 and t ∈ R,

1
M

∣∣∣∣{1 ⩽ N ⩽M : SN (α, f)−AM

BM
⩽ t

}∣∣∣∣
=
∫ t

−∞

e−x2/2
√

2π
dx+O

(
V (f)(logM)1/3(log logM)2

BM

)
with an implied constant depending only on α.

We conjecture that the same holds for all quadratic irrationals, per-
haps for even more general α, and that the sharp rate of convergence is
O(V (f)/BM ). In particular, we expect a central limit theorem to hold as
soon as BM →∞.

It would also be interesting to estimate higher moments of logPN (α) and
SN (α, f). Such results could improve the error term O(t−2) in Theorem 1.1,
and possibly the rate of convergence in Theorems 1.2, 1.3, 1.4 and 1.6.

In [1, 2] we studied the asymptotics of
∑M

N=1 PN (α)t with t > 0. The
original motivation came from the fact that at t = 2 this sum is related to
quantum modular forms in number theory [38] and to quantum invariants
of hyperbolic knots in algebraic topology [12]. From a probabilistic point
of view the same sum corresponds to the moment-generating function of
logPN (α) at the point t, which is closely related to temporal large devia-
tions. It would be interesting to see if the methods recently developed for
the Sudler product can be adapted to more general Birkhoff sums SN (α, f).

The rest of the paper is organized as follows. In Sections 2.1 and 2.2,
we discuss non-badly approximable irrationals such as Euler’s number e
and almost every α. In Section 2.3, we consider the Diophantine product∏N

n=1 ∥nα∥, and show that its behavior can be reduced to that of PN (α). In
Section 3, we prove our results on Sudler products: Theorem 1.1 and formu-
las (1.2)–(1.4) are proved in Section 3.2, Theorems 1.2 and 1.4 are proved
in Section 3.3, the results on Euler’s number e are proved in Section 3.4,

ANNALES DE L’INSTITUT FOURIER



ON THE DISTRIBUTION OF SUDLER PRODUCTS 9

and the results on almost every α are proved in Sections 3.5 and 3.6. In
Section 4, we prove results on Birkhoff sums with functions of bounded
variation, including Theorems 1.5 and 1.6.

Acknowledgment

I would like to thank the referee for a careful reading of the manuscript
and valuable comments.

2. Further results

2.1. Euler’s number

Our methods generalize to other types of irrationals. As an illustration,
consider Euler’s number e. It has been known since Euler himself that its
continued fraction is e = [2; 1, 2, 1, 1, 4, 1, . . . , 1, 2n, 1, . . . ]. In particular, e is
only logarithmic factors away from being badly approximable in the sense
that infq⩾3

q log q
log log q∥qe∥ > 0. We have a concentration result similar to the

case of badly approximable irrationals.

Theorem 2.1. — For any M ⩾ 1 and t > 0,
1
M

∣∣∣∣{1 ⩽ N ⩽M : 1
FN (t) ⩽ PN (e) ⩽ FN (t)

}∣∣∣∣ = 1−O
(
t−2)

with a universal implied constant, where FN (t) = exp
(
t
( log 3N

log log 3N

)3/2). In
particular, for any sequence tN →∞, the set{

N ∈ N : 1
FN (tN ) ⩽ PN (e) ⩽ FN (tN )

}
has asymptotic density 1.

What we actually prove is that

(2.1)

∣∣∣∣∣ 1
M

M∑
N=1

logPN (e)

∣∣∣∣∣≪ logM

and

(2.2) 1
M

M∑
N=1

(logPN (e))2 = π2

540

(
logM

log logM

)3(
1+O

(
log log logM

log logM

))
.

Observe that now the expected value is negligible compared to the square
root of the variance, which explains why PN (e) oscillates around 1 instead

TOME 0 (0), FASCICULE 0



10 Bence BORDA

of N1/2. Since the continued fraction satisfies the Lindeberg-type condition
ak/(a2

1 + · · · + a2
k)1/2 → 0 of Beck, we conjecture that logPN (e) satisfies

the central limit theorem.

Conjecture 2.2. — For any t ∈ R,

lim
M→∞

1
M

∣∣∣∣{1 ⩽ N ⩽M : logPN (e)
π√
540

(
log N

log log N

)3/2 ⩽ t

}∣∣∣∣ =
∫ t

−∞

e−x2/2
√

2π
dx.

From general results in [1] it follows that once again the extreme values
are of larger order of magnitude than the square root of the variance:

(2.3)
max

1⩽N⩽M
logPN (e) = V

(
logM

log logM

)2(
1 +O

(
log log logM

log logM

))
,

min
1⩽N⩽M

logPN (e) = −V
(

logM
log logM

)2(
1 +O

(
log log logM

log logM

))
with

(2.4) V =
∫ 5/6

0
log |2 sin(πx)|dx ≈ 0.1615.

The constant V originally appeared in asymptotic results on Sudler prod-
ucts in [1, 12] via a connection to algebraic topology: 4πV is the hyperbolic
volume of the complement of the figure-eight knot. A more elementary,
arithmetic interpretation of V was given in [2].

Euler’s number is of course just an illustration, and the results of this
section apply (with suitable constant factors) to any irrational whose par-
tial quotients are given by a linear pseudopolynomial; that is, there exist
finitely many polynomials p1(x), . . . , pm(x) of degree at most 1, with at
least one of them of degree equal to 1, and a positive integer k0 such that
ak = pk (mod m)(k) for all k ⩾ k0. Such irrationals include an infinite family
of numbers related to e.

2.2. Almost every irrational

It is an unfortunate fact that the only “concrete” irrationals whose con-
tinued fraction expansion is explicitly known are the quadratic irrationals
and the infinite family of irrationals related to e mentioned in the previous
section. Very little is known about the continued fraction of other classical
irrationals such as π, 3

√
2 or log 2, although numerical experiments suggest

they exhibit random behavior. We do know, however, the precise statis-
tics of the partial quotients ak of almost every real α in the sense of the
Lebesgue measure.

ANNALES DE L’INSTITUT FOURIER
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The extreme values of logPN (α) for a.e. α are as follows. Let φ(x) be a
nondecreasing, positive real-valued function on (0,∞). If

∑∞
k=1 1/φ(k) <

∞, then for a.e. α,

(2.5) |logPN (α)| ⩽ φ(logN) +O(logN log logN)

with an implied constant depending only on α and φ. If
∑∞

k=1 1/φ(k) =∞,
then for a.e. α,

(2.6) logPN (α) ⩾ φ(logN) and logPN (α) ⩽ −φ(logN)

for infinitely many N . Thus e.g. for any ε > 0, for a.e. α, there exists a
constant C = C(α, ε) > 0 such that |logPN (α)| ⩽ C logN(log logN)1+ε,
but this fails with ε = 0. Such a convergence/divergence criterion was first
proved by Lubinsky [32], who in fact explicitly constructed an exponentially
increasing sequence of N ’s (each having a single nonzero digit in its Os-
trowski expansion) satisfying the second inequality in (2.6). For the sake of
completeness, we explain in Section 3.4 how to derive (2.5) and (2.6) from
general results in [1, 12]. In this paper, we improve the lower bound (2.6):
we show that both inequalities hold on a set of positive upper asymptotic
density.

Theorem 2.3. — Let φ(x) be a nondecreasing, positive real-valued
function on (0,∞). If

∑∞
k=1 1/φ(k) =∞, then for a.e. α, the sets

{N ∈ N : logPN (α) ⩾ φ(logN)}

and
{N ∈ N : logPN (α) ⩽ −φ(logN)}

have upper asymptotic density at least π2/(1440V 2) ≈ 0.2627, where V is
as in (2.4).

What we actually prove is that for a.e. α, there is a sequence ψα(M)→ 0
such that

(2.7)

√√√√ 1
M

M∑
N=1

(logPN (α))2 =
(

π√
720V

+ ψα(M)
)

max
1⩽N⩽M

|logPN (α)|

for infinitely many M . This means that the typical and the extreme os-
cillations of logPN (α) are of the same order of magnitude; we call it an
anticoncentration result. We believe that the value π/(

√
720V ) is sharp,

i.e. for a.e. α,

lim sup
M→∞

√√√√ 1
M

M∑
N=1

(logPN (α))2
(

max
1⩽N⩽M

|logPN (α)|
)−1

= π√
720V

,

TOME 0 (0), FASCICULE 0
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but this remains open. On the other hand, π2/(1440V 2) in Theorem 2.3
is likely not optimal; perhaps {N ∈ N : |logPN (α)| ⩾ φ(logN)} even
has upper asymptotic density 1. Note that (2.7) immediately implies that
logPN (α) does not satisfy the central limit theorem (with any centering
and scaling) for a.e. α. See Dolgopyat and Sarig [21, 22] for why the central
limit theorem fails also for SN (α, f) with certain functions of bounded
variation for a.e. α.

The convergence/divergence criterion (2.5), (2.6) can be restated as fol-
lows. Under a suitable regularity condition on φ(x) in the case of conver-
gence (e.g. φ(x)/(x log x)→∞), for a.e. α,

lim sup
M→∞

max
1⩽N⩽M

logPN (α)

φ(logM) =
{

0 if
∑∞

k=1 1/φ(k) <∞,
∞ if

∑∞
k=1 1/φ(k) =∞,

and the same holds with max replaced by −min. Our next result establishes
the liminf behavior of the same sequences.

Theorem 2.4. — For a.e. α,

lim inf
M→∞

max
1⩽N⩽M

logPN (α)

logM log logM = 12V
π2 .

The same holds with max replaced by −min.

It easily follows that for a.e. α, the set{
N ∈ N : |logPN (α)| ⩾

(
12V
π2 + ε

)
logN log logN

}
, ε > 0

has zero lower asymptotic density. In particular, in Theorem 2.3 upper
asymptotic density cannot be replaced by lower asymptotic density.

In addition to the a.e. asymptotics, we also find the extreme values and
the variance of logPN (α) in a distributional sense. Since PN (α) is 1-periodic
in the variable α, we will choose α randomly from [0, 1]. The main message
of the next two results is that typically max1⩽N⩽M |logPN (α)| is greater
than (M−1∑M

N=1(logPN (α))2)1/2 by a factor of log logM . In particular,
in (2.7) “for infinitely many M” cannot be replaced by “for all M”.

Theorem 2.5. — We have
max

1⩽N⩽M
logPN (α)

logM log logM → 12V
π2 in measure, as M →∞.

The same holds with max replaced by −min.
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Convergence in measure follows with respect to any probability measure µ
on [0, 1] that is absolutely continuous with respect to the Lebesgue mea-
sure. In contrast to the extreme values, the suitably normalized variance
converges to the standard Lévy distribution.

Theorem 2.6. — We have

1
M

M∑
N=1

logPN (α) = 1
2 logM + o

(√
logM(log logM)2

)
in measure,

as M → ∞. Further, let µ be a probability measure on [0, 1] that is abso-
lutely continuous with respect to the Lebesgue measure. For any t ⩾ 0,

lim
M→∞

µ

({
α ∈ [0, 1] : 10π

M(logM)2

M∑
N=1

(
logPN (α)− 1

2 logM
)2

⩽ t

})

=
∫ t

0

e−1/(2x)
√

2πx3/2
dx.

The different behavior of a.e. α compared to badly approximable irra-
tionals and Euler’s number — anticoncentration instead of concentration,
the failure of the central limit theorem and the difference between lim-
sup and liminf — might come as a surprise, considering that a.e. α is
only logarithmic factors away from being badly approximable: we have
infq⩾1 φ(q)∥qα∥ > 0 if and only if

∑∞
k=1 1/φ(k) <∞. The explanation lies

in the continued fraction α = [a0; a1, a2, . . . ]. As we will see, the extreme
value max1⩽N<qk

logPN (α) is comparable to a1 + · · ·+ ak, while the vari-
ance is comparable to a2

1 + · · · + a2
k. For badly approximable irrationals

and Euler’s number, each term in these sums is negligible compared to the
whole sum; in contrast, for a.e. α, the maximal term can dominate. Our
proofs rely on asymptotic results on (trimmed) sums of partial quotients,
see [6, 18, 34, 36] and references therein.

2.3. A Diophantine product

The reader might wonder what happens if in the definition of the Sudler
product we replace |sin(πx)| by a similar function such as the distance from
the nearest integer function ∥x∥. The behavior of the Diophantine product∏N

n=1 ∥nα∥ can actually be reduced to that of the Sudler product.

TOME 0 (0), FASCICULE 0
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Proposition 2.7. — Assume that infq⩾1 q
c∥qα∥ > 0 with some con-

stant 1 ⩽ c < 2. Then

PN (α)≪
N∏

n=1
(2e∥nα∥)≪ PN (α)

with implied constants depending only on α.

The Diophantine condition is satisfied by all irrationals mentioned above:
with c = 1 by a badly approximable α, and with c = 1+ε by Euler’s number
e and by a.e. α. All results for PN (α) stated above including the concen-
tration inequalities and the central limit theorems thus have analogues for
the Diophantine product. For instance, (1.1) reads

1≪
N∏

n=1

(
2e
∥∥∥∥n1 +

√
5

2

∥∥∥∥)≪ N,

where both the upper and the lower bound are sharp.

Proof of Proposition 2.7. — Consider the even and 1-periodic functions
f(x) = log |2 sin(πx)| and g(x) = log ∥x∥+ 1 + log 2. Note that g has zero
mean, and its Fourier coefficients are easily computable using integration
by parts:

∫ 1

0
g(x) cos(2πmx) dx = 2

∫ 1/2

0
(log x) cos(2πmx) dx

= −2
∫ 1/2

0

sin(2πmx)
2πmx dx

= − 1
πm

∫ πm

0

sin x
x

dx

= − 1
2m + cm

with cm = 1/(πm)
∫∞

πm
(sin x)/xdx ≪ 1/m2. In the last step we used∫∞

0 (sin x)/xdx = π/2. By sufficient smoothness, the Fourier series of f(x)
and g(x) converge pointwise at nonintegral reals, hence

g(x) =
∞∑

m=1

(
− 1
m

+ 2cm

)
cos(2πmx) = f(x) +

∞∑
m=1

2cm cos(2πmx).
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Therefore∣∣∣∣∣
N∑

n=1
g(nα)−

N∑
n=1

f(nα)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

m=1
cm

(
1− sin(π(2N + 1)mα)

sin(πmα)

)∣∣∣∣∣
≪

∞∑
m=1

1
m2∥mα∥

.

The last series converges under the assumption infq⩾1 |q|c∥qα∥ > 0, c < 2
(cf. [31, Chapter 2.3] and Lemma 3.2 below), which proves the claim. □

3. Distribution of Sudler products

3.1. Expected value and variance

Our results on the expected value and the variance of Sudler products
will be based on the explicit formulas

(3.1) logPN (α) =
∞∑

m=1

1
2m

(
1− sin(π(2N + 1)mα)

sin(πmα)

)
and

(3.2) 1
M

M−1∑
N=0

logPN (α) =
∞∑

m=1

1
2m

(
1− sin2(πMmα)

M sin2(πmα)

)
,

which follow directly from the Fourier series expansion (1.5) for all irra-
tional α. We sum over 0 ⩽ N ⩽ M − 1 instead of 1 ⩽ N ⩽ M purely for
aesthetic reasons, and to emphasize the connection to the Dirichlet kernel
sin(π(2N+1)x)

sin(πx) and the Fejér kernel sin2(πMx)
M sin2(πx) .

Let α = [a0; a1, a2, . . . ] be irrational, and let pk/qk = [a0; a1, . . . , ak]
denote the convergents. For the sake of simplicity, we will assume that the
partial quotients increase at most polynomially fast, i.e. ak ≪ kd with
some constant d ⩾ 0. This covers all types of irrationals mentioned before:
badly approximable irrationals with d = 0, Euler’s number with d = 1
and a.e. irrational with d = 1 + ε. This condition is closely related to the
irrationality measure of α. For instance, we have the implications

ak ≪ kd =⇒ inf
q⩾2

q(log q)d∥qα∥ > 0 =⇒ ak ≪ kd(log k)d.

Obvious modifications of the proof yield similar results for more general
irrationals.

TOME 0 (0), FASCICULE 0
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Proposition 3.1. — Assume that ak ⩽ ckd for all k ⩾ 1 with some
constants c, d ⩾ 0. For any qk ⩽M < qk+1, we have

(3.3) 1
M

M−1∑
N=0

logPN (α) = 1
2 logM +O

(
max

|ℓ−k|≪log k
aℓ · log logM

)
and

(3.4) 1
M

M−1∑
N=0

(
logPN (α)− 1

2 logM
)2

=
M∑

m=1

1
8π2m2∥mα∥2 +O

(
max

|ℓ−k|≪log k
a2

ℓ · (log logM)4
)

with implied constants depending only on c and d.

It remains to analyze the Diophantine sum on the right hand side of (3.4),
which we do for various types of irrationals in Sections 3.2 and 3.4. Follow-
ing the methods of Beck [9, Proposition 3.1, p. 171], we first prove several
simple Diophantine sum estimates, and then give the proof of Proposi-
tion 3.1.

Lemma 3.2. — Assume that ak ⩽ ckd for all k ⩾ 1 with some constants
c, d ⩾ 0. For any qk ⩽M < qk+1, ∑

1⩽m⩽M

1
∥mα∥

≪M(logM)d+1,

∑
1⩽m⩽M(log M)2d+2

1
m

min
{

1
M∥mα∥2 ,M

}
≪ max

|ℓ−k|≪log k
aℓ · log logM,

∑
1⩽m⩽M(log M)2d+2

1
m2∥mα∥2 min

{
1

M∥2mα∥ , 1
}
≪ max

|ℓ−k|≪log k
a2

ℓ · log logM,

∑
M<m⩽M(log M)2d+2

1
m2∥mα∥2 ≪ max

|ℓ−k|≪log k
a2

ℓ · log logM.

Further, ∑
1⩽m1,m2⩽M(log M)2d+2

m1 ̸=m2

1
m1∥m1α∥m2∥m2α∥

min
{

1
M∥(m1 −m2)α∥ , 1

}

≪ max
|ℓ−k|≪log k

a2
ℓ · (log logM)4,

and the same holds with m1 −m2 replaced by m1 +m2.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Since qk increases at least as fast as the sequence of Fibonacci
numbers, we have k ≪ log qk ≪ logM . We will also use the simple fact
q0 + q1 + · · · + qℓ ⩽ 3qℓ for all ℓ ⩾ 0. This follows e.g. from the recursion
satisfied by qℓ via

q1+q2+· · ·+qℓ−1 ⩽ a2q1+a3q2+· · ·+aℓqℓ−1 = qℓ+qℓ−1−q1−q0 ⩽ 2qℓ−q0.

All five claims follow from a classical method based on the pigeonhole
principle, see [31, Chapter 2.3]. More specifically, let ℓ ⩾ 0, and consider
the points mα (mod 1), qℓ ⩽ m < qℓ+1. By the best rational approxima-
tion property, ∥mα∥ ⩾ ∥qℓα∥ ⩾ 1/(2qℓ+1). In particular, none of these
points lie in the open interval (−1/(2qℓ+1), 1/(2qℓ+1)), and each interval
(j/(2qℓ+1), (j + 1)/(2qℓ+1)), j ̸= −1, 0 contains at most one point.

To see the first claim of the lemma, observe that for any 0 ⩽ ℓ ⩽ k,

∑
qℓ⩽m<min{qℓ+1,M+1}

1
∥mα∥

≪
M∑

j=1

1
j/qℓ+1

≪ qℓ+1 logM.

Summing over 0 ⩽ ℓ ⩽ k leads to

M∑
m=1

1
∥mα∥

≪ qk+1 logM ≪ kdqk logM ≪M(logM)d+1.

We now prove the second claim of the lemma. For any ℓ ⩾ 0 with qℓ ⩽
M/(logM)2d,

∑
qℓ⩽m<qℓ+1

1
m

min
{

1
M∥mα∥2 ,M

}
⩽

1
qℓM

∑
qℓ⩽m<qℓ+1

1
∥mα∥2

≪ 1
qℓM

∞∑
j=1

1
j2/q2

ℓ+1

≪
a2

ℓ+1qℓ

M
.

By the growth assumption on the partial quotients, this upper estimate
is ≪ qℓ(logM)2d/M . Next, note that there are ≪ log logM indices ℓ with
M/(logM)2d < qℓ ⩽M(logM)2d+2, and all of these indices satisfy |ℓ−k| ≪
log logM ≪ log k. For any such ℓ, we have

∑
qℓ⩽m<qℓ+1

1
m

min
{

1
M∥mα∥2 ,M

}
≪ 1
qℓ

∞∑
j=1

min
{

1
Mj2/q2

ℓ+1
,M

}
≪ qℓ+1

qℓ
.
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Therefore∑
1⩽m⩽M(log M)2d+2

1
m

min
{

1
M∥mα∥2 ,M

}

⩽
∑
ℓ⩾0

qℓ⩽M/(log M)2d

∑
qℓ⩽m<qℓ+1

1
m

min
{

1
M∥mα∥2 ,M

}

+
∑
ℓ⩾0

M/(log M)2d<qℓ⩽M(log M)2d+2

∑
qℓ⩽m<qℓ+1

1
m

min
{

1
M∥mα∥2 ,M

}

≪
∑
ℓ⩾0

qℓ⩽M/(log M)2d

qℓ(logM)2d

M
+

∑
ℓ⩾0

M/(log M)2d<qℓ⩽M(log M)2d+2

qℓ+1

qℓ

≪ 1 + max
|ℓ−k|≪log k

aℓ · log logM,

as claimed.
Let us now prove the third claim of the lemma. By the subadditivity of

the function ∥ · ∥, we have ∥mα∥ ⩾ 1
2∥2mα∥. Hence

∑
1⩽m⩽M(log M)2d+2

1
m2∥mα∥2 min

{
1

M∥2mα∥ , 1
}

≪
∑

1⩽m⩽M(log M)2d+2

1
(2m)2∥2mα∥2 min

{
1

M∥2mα∥ , 1
}

≪
∑

1⩽m⩽2M(log M)2d+2

1
m2∥mα∥2 min

{
1

M∥mα∥
, 1
}
,

and it will be enough to estimate the last line of the previous formula. For
any ℓ ⩾ 0 with qℓ ⩽M/(logM)3d,∑

qℓ⩽m<qℓ+1

1
m2∥mα∥2 min

{
1

M∥mα∥
, 1
}

⩽
1

q2
ℓM

∑
qℓ⩽m<qℓ+1

1
∥mα∥3

≪ 1
q2

ℓM

∞∑
j=1

1
j3/q3

ℓ+1
≪

a3
ℓ+1qℓ

M
.

By the growth assumption on the partial quotients, this upper estimate
is ≪ qℓ(logM)3d/M . Next, note that there are ≪ log logM indices ℓ
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with M/(logM)3d < qℓ ⩽ 2M(logM)2d+2, and all of these indices sat-
isfy |ℓ− k| ≪ log logM ≪ log k. For any such ℓ, we have∑

qℓ⩽m<qℓ+1

1
m2∥mα∥2 min

{
1

M∥mα∥
, 1
}
≪ 1

q2
ℓ

∞∑
j=1

1
j2/q2

ℓ+1
≪

q2
ℓ+1
q2

ℓ

.

Therefore∑
1⩽m⩽2M(log M)2d+2

1
m2∥mα∥2 min

{
1

M∥mα∥
, 1
}

⩽
∑
ℓ⩾0

qℓ⩽M/(log M)3d

1
m2∥mα∥2 min

{
1

M∥mα∥
, 1
}

+
∑
ℓ⩾0

M/(log M)3d<qℓ⩽2M(log M)2d+2

1
m2∥mα∥2 min

{
1

M∥mα∥
, 1
}

≪
∑
ℓ⩾0

qℓ⩽M/(log M)3d

qℓ(logM)3d

M
+

∑
ℓ⩾0

M/(log M)3d<qℓ⩽2M(log M)2d+2

q2
ℓ+1
q2

ℓ

≪ 1 + max
|ℓ−k|≪log k

a2
ℓ · log logM,

as claimed.
To see the fourth claim of the lemma, observe that for any ℓ ⩾ 0,∑

qℓ⩽m<qℓ+1

1
m2∥mα∥2 ≪

1
q2

ℓ

∞∑
j=1

1
j2/q2

ℓ+1
≪

q2
ℓ+1
q2

ℓ

≪ a2
ℓ+1.

There are ≪ log logM indices ℓ for which the intervals [qℓ, qℓ+1) and
[M,M(logM)2d+2] intersect, and all of these indices satisfy |ℓ − k| ≪
log logM ≪ log k. Summing over all such indices ℓ leads to∑

M⩽m⩽M(log M)2d+2

1
m2∥mα∥2 ≪

∑
ℓ⩾0

[qℓ,qℓ+1)∩[M,M(log M)2d+2] ̸=∅

a2
ℓ+1

≪ max
|ℓ−k|≪log k

a2
ℓ · log logM.

We now prove the final claim. Here the cases m1 −m2 and m1 +m2 are
analogous, and we will only consider the m1 −m2 case. Let

RM =
∑

1⩽m1,m2⩽M(log M)2d+2

m1 ̸=m2

min
{

1
M∥(m1−m2)α∥ , 1

}
m1∥m1α∥m2∥m2α∥
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denote the sum to be estimated. Using similar methods as before, we deduce∑
1⩽m⩽M(log M)2d+2

1
m∥mα∥

≪
∑
ℓ⩾0

qℓ⩽M(log M)2d+2

1
qℓ

∑
1⩽j⩽M(log M)2d+2

1
j/qℓ+1

≪ (logM)d+2.

We will also need the fact that ∥mα∥ ≫ 1/(m(logm)d) for all m > 1, which
follows from the assumption on the growth rate of the partial quotients.

Let S = {m ⩾ 1 : m∥mα∥ ⩾ (logM)4d+5}. We first observe that the
terms with m1 ∈ S are negligible:∑

1⩽m1,m2⩽M(log M)2d+2

m1 ̸=m2
m1∈S

1
m1∥m1α∥m2∥m2α∥

min
{

1
M∥(m1 −m2)α∥ , 1

}

≪ 1
(logM)4d+5

∑
1⩽m2⩽M(log M)2d+2

1
m2∥m2α∥

∑
1⩽m′⩽M(log M)2d+2

1
M∥m′α∥

≪ 1.

Note that instead of m1 and m2, we summed over m′ := |m1−m2| and m2.
By symmetry, the same holds for the terms with m2 ∈ S. We similarly see
that the terms with ∥(m1 −m2)α∥ ⩾ (logM)2d+4/M are also negligible:∑

1⩽m1,m2⩽M(log M)2d+2

∥(m1−m2)α∥⩾(log M)2d+4/M

1
m1∥m1α∥m2∥m2α∥

min
{

1
M∥(m1 −m2)α∥ , 1

}

≪ 1
(logM)2d+4

∑
1⩽m1⩽M(log M)2d+2

1
m1∥m1α∥

∑
1⩽m2⩽M(log M)2d+2

1
m2∥m2α∥

≪ 1.

By the previous two formulas,

RM ≪ 1 +
∑

1⩽m1,m2⩽M(log M)2d+2

0<∥(m1−m2)α∥⩽(log M)2d+4/M
m1,m2 ̸∈S

1
m1∥m1α∥m2∥m2α∥

.

We now claim that in the remaining sum there is no term such that
1 ⩽ m1 ⩽ M/(logM)8d+10. Indeed, such an m1 would satisfy ∥m1α∥ ≫
(logM)7d+10/M . On the other hand, the condition 0 < ∥(m1 −m2)α∥ ⩽
(logM)2d+4/M forces |m1 −m2| ≫ M/(logM)3d+4. This in turn implies
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m2 ≫M/(logM)3d+4 and, since m2 ̸∈ S,

∥m2α∥ ⩽
(logM)4d+5

m2
≪ (logM)7d+9

M
.

In particular, for large enough M we have, say, ∥m1α∥ ⩾ 2∥m2α∥ and
hence

∥(m1 −m2)α∥ ⩾ ∥m1α∥ − ∥m2α∥ ⩾
1
2∥m1α∥ ≫

(logM)7d+10

M
,

giving a contradiction. By symmetry, there are no terms such that 1 ⩽
m2 ⩽M/(logM)8d+10 either, therefore

RM ≪ 1 +

 ∑
M/(log M)8d+10⩽m⩽M(log M)2d+2

m̸∈S

1
m∥mα∥


2

.

To estimate the remaining sum, let ℓ ⩾ 0 be an index such that the intervals
[qℓ, qℓ+1) and [M/(logM)8d+10,M(logM)2d+2] intersect. Note that there
are ≪ log logM such indices ℓ, each of which satisfies |ℓ− k| ≪ log k. For
any such ℓ,∑

qℓ⩽m<qℓ+1
m ̸∈S

1
m∥mα∥

⩽
1
qℓ

∑
1⩽j≪(log M)5d+5

1
j/qℓ+1

≪ aℓ+1 log logM.

Note that m ̸∈ S implies that

∥mα∥ ⩽ (logM)4d+5

m
⩽

(logM)4d+5

qℓ
,

explaining why we only sum over j for which j/qℓ+1 ⩽ (logM)4d+5/qℓ, that
is, for which j ≪ (qℓ+1/qℓ)(logM)4d+5 ≪ (logM)5d+5. Hence∑

M/(log M)8d+10⩽m⩽M(log M)2d+2

m ̸∈S

1
m∥mα∥

≪
∑
ℓ⩾0

[qℓ,qℓ+1)∩[M/(log M)8d+10,M(log M)2d+2 ]̸=∅

aℓ+1 log logM

≪ max
|ℓ−k|≪log k

aℓ · (log logM)2,

and the claim follows. □

Proof of Proposition 3.1. — Fix qk ⩽M < qk+1, and let 0 ⩽ N ⩽M−1.
We start by estimating the tails in the explicit formulas (3.1) and (3.2).
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Summation by parts gives that the tails of the Fourier series expansion (1.5)
decay at the rate

(3.5)

∣∣∣∣∣
∞∑

m=H

cos(2πmx)
m

∣∣∣∣∣ ⩽ 1
2H∥x∥ , H ⩾ 1.

Choosing H = ⌈M(logM)2d+2⌉ we deduce

(3.6)

logPN (α) =
N∑

n=1

∑
1⩽m⩽M(log M)2d+2

− cos(2πmnα)
m

+O

(
1

M(logM)2d+2

N∑
n=1

1
∥nα∥

)

=
∑

1⩽m⩽M(log M)2d+2

1
2m

(
1− sin(π(2N + 1)mα)

sin(πmα)

)

+O

(
1

(logM)d+1

)
,

and by averaging over 0 ⩽ N ⩽M − 1,

(3.7) 1
M

M−1∑
N=0

logPN (α) =
∑

1⩽m⩽M(log M)2d+2

1
2m

(
1− sin2(πMmα)

M sin2(πmα)

)

+O

(
1

(logM)d+1

)
.

Note that in (3.6) we used the first Diophantine sum estimate from
Lemma 3.2.

Using the estimate

sin2(πMmα)
M sin2(πmα)

⩽ min
{

1
M∥mα∥2 ,M

}
in (3.7), we deduce

1
M

M−1∑
N=0

logPN (α)

= 1
2 logM +O

log logM +
∑

1⩽m⩽M(log M)2d+2

1
m

min
{

1
M∥mα∥2 ,M

} .

Claim (3.3) thus follows from the second Diophantine sum estimate in
Lemma 3.2.
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Next, we prove (3.4). Formula (3.6) yields

(3.8) 1
M

M−1∑
N=0

(logPN (α)−HM )2 =VM +O

( √
VM

(logM)d+1 + 1
(logM)2d+2

)
with

HM :=
∑

1⩽m⩽M(log M)2d+2

1
2m = 1

2 logM +O(log logM)

and

VM := 1
M

M−1∑
N=0

 ∑
1⩽m⩽M(log M)2d+2

sin(π(2N + 1)mα)
2m sin(πmα)

2

.

Let us now expand the square in the previous formula. The diagonal terms
satisfy

1
M

M−1∑
N=0

∑
1⩽m⩽M(log M)2d+2

sin2(π(2N + 1)mα)
4m2 sin2(πmα)

=
∑

1⩽m⩽M(log M)2d+2

1
4m2 sin2(πmα)

(
1
2 +O

(
min

{
1

M∥2mα∥ , 1
}))

=
M∑

m=1

1
8π2m2∥mα∥2 +O

(
max

|ℓ−k|≪log k
a2

ℓ · log logM
)
,

where we used the third claim in Lemma 3.2 and the fact that 1/ sin2(πx) =
1/(π2∥x∥2) +O(1). The last claim in Lemma 3.2 also shows that the con-
tribution of the off-diagonal terms is negligible:∣∣∣∣∣∣∣∣

1
M

M−1∑
N=0

∑
1⩽m1,m2⩽M(log M)2d+2

m1 ̸=m2

sin(π(2N+1)m1α) sin(π(2N+1)m2α)
2m1 sin(πm1α)2m2 sin(πm2α)

∣∣∣∣∣∣∣∣
≪

∑
1⩽m1,m2⩽M(log M)2d+2

m1 ̸=m2

1
m1∥m1α∥m2∥m2α∥

min
{

1
M∥(m1−m2)α∥ , 1

}

+
∑

1⩽m1,m2⩽M(log M)2d+2

m1 ̸=m2

1
m1∥m1α∥m2∥m2α∥

min
{

1
M∥(m1 +m2)α∥ , 1

}

≪ max
|ℓ−k|≪log k

a2
ℓ · (log logM)4.
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By the previous two formulas,

VM =
M∑

m=1

1
8π2m2∥mα∥2 +O

(
max

|ℓ−k|≪log k
a2

ℓ · (log logM)4
)
.

In particular, VM ≪ (logM)2d+1 (cf. formula (3.24) below), hence the error
term on the right hand side of (3.8) is O(1). The first claim (3.3) shows
that the error of replacing HM by (1/2) logM in (3.8) is also negligible,
and the claim (3.4) follows. □

3.2. Badly approximable irrationals

Fix a badly approximable α. We first note that (1.2) and (1.3) follow
easily from Proposition 3.1. Indeed, the only missing piece is the observation

(3.9) logM ≪
M∑

m=1

1
8π2m2∥mα∥2 ≪ logM.

Here the upper bound follows from the pigeonhole principle as in Lemma 3.2
(cf. formula (3.24) below and [14, Theorem 3]). To see the lower bound,
simply keep the convergent denominators m = qk ⩽ M : each such term
contributes ≫ 1, and there are ≫ logM denominators qk ⩽M .

Proof of Theorem 1.1. — From (1.2), (1.3) and the Chebyshev inequality
we obtain

1
M

∣∣∣∣{1 ⩽ N ⩽M :
∣∣∣∣logPN (α)− 1

2 logM
∣∣∣∣ ⩾ t

√
logM

}∣∣∣∣≪ 1
t2

with an implied constant depending only on α. It remains to replace logM
by logN in the previous formula. For any M/(logM)2 ⩽ N ⩽M we have
logN = logM +O(log logM), and so one readily checks that
1
M

∣∣∣∣{1 ⩽ N ⩽M :
∣∣∣∣logPN (α)− 1

2 logN
∣∣∣∣ ⩾ t

√
logN

}∣∣∣∣≪ 1
(logM)2 + 1

t2
.

Note that 1/(logM)2 is the “probability” of 1 ⩽ N ⩽ M/(logM)2. The
claim thus follows once t≪ logM . However, the claim also trivially holds
for t ≫ logM , since by the result of Lubinsky, |logPN (α)| ≪ logN
for all N . □

Next, assume in addition that α is a quadratic irrational. Using deep
arithmetic properties of the real quadratic field Q(α), Beck [9, Proposi-
tion 3.2, p. 176] proved that in this case

(3.10)
M∑

m=1

1
8π2m2∥mα∥2 = σ(α)2 logM +O(1)
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with some constant σ(α) > 0 and an implied constant depending only on
α. Formula (1.4) thus follows from Proposition 3.1.

3.3. Central limit theorem for quadratic irrationals

Theorem 1.2 is obviously a special case of Theorem 1.4, so it will be
enough to prove the latter. We will actually work with 0 ⩽ N < M instead
of 1 ⩽ N ⩽ M , but this of course does not affect the result. The reason
is simply notational convenience, as the former interval is better suited for
Ostrowski expansions.

We follow the “Fourier series approach” of Beck [9, Chapter 4.4]. There
it is shown that for a quadratic irrational α and 0 ⩽ N < M , the Birkhoff
sum SN (α) =

∑N
n=1({nα} − 1/2) can be written in the form

SN (α)− E(α) logM =
∑

1⩽m⩽M log M

cos(π(2N + 1)mα)
2πm sin(πmα) +O(log logM).

Using the tail estimate (3.5) with H = ⌈M logM⌉ and following the steps
in (3.6), for 0 ⩽ N < M we obtain the similar formula

logPN (α)− 1
2 logM =

∑
1⩽m⩽M log M

− sin(π(2N + 1)mα)
2m sin(πmα) +O(log logM).

For the sake of readability, let us use the natural identification (x, y) ↔
x+ iy between R2 and C. Then, for 0 ⩽ N < M ,

(3.11)
(

logPN (α)− 1
2 logM,π(SN (α)− E(α) logM)

)
←→

∑
1⩽m⩽M log M

ie2πi(N+1/2)mα

2m sin(πmα) +O(log logM).

Now let α = [0; a, a, a, . . .]. We will prove that given any ξ ∈ R, with
M = qK a convergent denominator and any qK ≪ QK ≪ qK with implied
constants depending only on α,

TN :=
∑

1⩽m⩽QK log QK

e2πi(N+ξ)mα

2m sin(πmα) , 0 ⩽ N < qK

TOME 0 (0), FASCICULE 0



26 Bence BORDA

satisfies the central limit theorem: for any convex set C ⊆ C,

(3.12) 1
qK

∣∣∣∣{0 ⩽ N < qK : TN

σ(α)
√

log qK
∈ C

}∣∣∣∣
=
∫

C

e−|y|2/2

2π dy +O

(
(logK)2

K1/6

)
with an implied constant depending only on α.

We prove (3.12) in Sections 3.3.1–3.3.5. Throughout the proof, constants
and implied constants depend only on α; in particular, every estimate is
uniform in ξ and QK . We show how (3.12) implies Theorem 1.4 in Sec-
tion 3.3.6. We mention in advance that the parameters ξ and QK will
play a technical role in extending the result from M = qK (a convergent
denominator) to general M .

3.3.1. Ostrowski expansion and α-expansion

Fix an integer a ⩾ 1, and let α = [0; a, a, a, . . .]. We have

α =
√
a2 + 4− a

2 ∈ (0, 1) and 1
α

=
√
a2 + 4 + a

2 ∈ (a, a+ 1).

The minimal polynomial of α gives the useful relation α2 + aα− 1 = 0. By
solving the recursions, we deduce that the convergents pk/qk to α are

pk = α

α2 + 1

(
1
αk
− (−α)k

)
and qk = α

α2 + 1

(
1

αk+1 − (−α)k+1
)
.

Hence qkα− pk = (−1)kαk+1.
The so-called Ostrowski expansion of an integer 0 ⩽ N < qK is the

unique representation of the form N =
∑K−1

k=0 bkqk, where 0 ⩽ b0 ⩽ a − 1
and 0 ⩽ bk ⩽ a (1 ⩽ k ⩽ K−1) are integers that satisfy the extra rule that
bk = a implies bk−1 = 0. The Ostrowski expansion can be found with a
greedy algorithm: define bK−1 as the largest integer b such that N ⩾ bqK−1;
this is obviously an integer in [0, a]. Then 0 ⩽ N − bK−1qK−1 < qK−1,
and we iterate the same procedure. Note that if bK−1 = a, then 0 ⩽
N − bK−1qK−1 < qK − aqK−1 = qK−2, hence bK−2 = 0, explaining the
extra rule.

The so-called α-expansion of a real number 0 ⩽ x < α−K is entirely anal-
ogous: it is the (almost) unique representation x =

∑K−1
k=−∞ ckα

−k, where
0 ⩽ ck ⩽ a are integers that satisfy the extra rule that ck = a implies
ck−1 = 0. The α-expansion can also be found with a greedy algorithm: de-
fine cK−1 as the largest integer c such that x ⩾ cα−(K−1); this is obviously
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an integer in [0, a]. Then 0 ⩽ x− cK−1α
−(K−1) < α−(K−1), and we iterate

the same procedure. Note that if cK−1 = a, then 0 ⩽ x− cK−1α
−(K−1) <

α−K−aα−(K−1) = α−(K−2), hence cK−2 = 0, explaining the extra rule. Ex-
ponentially fast convergence ensures that the infinite series

∑K−1
k=−∞ ckα

−k

indeed represents x.
The α-expansion can be visualized by partitioning [0, α−K) into a + 1

intervals corresponding to the possible values of cK−1: the first a intervals
are [cα−(K−1), (c+ 1)α−(K−1)), 0 ⩽ c ⩽ a−1, each of length α−(K−1), and
the last interval is [aα−(K−1), α−K), which is of length α−K −aα−(K−1) =
α−(K−2). The special length of the last interval represents self-similarity,
and is related to the fact that the continued fraction of α has period 1.
Iterating the procedure thus corresponds to a partitioning system of nested
intervals. Note that the α-expansion is not unique at the endpoints of these
nested intervals, but it is in fact unique everywhere else. Since we will
eventually work with a real number chosen from an interval uniformly at
random, we can ignore this effect.

The following lemma constructs a simple coupling between these two
expansions.

Lemma 3.3. — For any real x ∈ [0, α−K), consider the α-expansion x =∑K−1
k=−∞ ckα

−k and the Ostrowski expansion ⌊x/(1 + α2)⌋ =
∑K−1

k=0 bkqk.
There exists a set E ⊂ R of Lebesgue measure λ(E)≪ K−10α−K such that
for any x ∈ [0, α−K)\E, we have bk = ck for all ⌊ 10 log K

log(1/α)⌋ ⩽ k ⩽ K − 1.

Remark 3.4. — Note that 0 ⩽ x < α−K implies 0 ⩽ x/(1 + α2) <

α−K/(1 +α2) = qK +O(αK). By adding an interval of length ≪ αK to E,
we may assume that 0 ⩽ ⌊x/(1 + α2)⌋ < qK .

Proof of Lemma 3.3. — Set k0 = ⌊ 10 log K
log(1/α)⌋. Let A be the set of all

integers N ∈ [0, qK) whose Ostrowski expansion is of the form N =∑K−1
k=k0

dkqk, i.e. the first k0 digits are all zero. We will show that

E = (1 + α2)
⋃

N∈A

(N − 1, N + 1) ∪ (N + qk0−1 − 1, N + qk0−1 + 1)

satisfies the claim of the lemma, where (1 + α2)H = {(1 + α2)y : y ∈
H}. The cardinality of A is the number of legitimate Ostrowski sequences
(dK−1, dK−2, . . . , dk0) of length K − k0, hence |A| ≪ qK−k0 ≪ αk0−K ≪
K−10α−K . Consequently, λ(E)≪ K−10α−K .
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Now let x ∈ [0, α−K)\E. Assume first that 0 ⩽ ck0 < a. By the construc-
tion of the α-expansion,

K−1∑
k=k0

ck
α−k

1 + α2 ⩽
x

1 + α2 < (ck0 + 1) α
−k0

1 + α2 +
K−1∑

k=k0+1
ck

α−k

1 + α2 .

Replacing α−k

1+α2 by qk = α−k

1+α2 +O(αk) introduces an error O(αk0), therefore
very roughly,

K−1∑
k=k0

ckqk −
1

100 ⩽
x

1 + α2 < (ck0 + 1)qk0 +
K−1∑

k=k0+1
ckqk + 1

100 .

By the assumption x ̸∈ E, this can be improved to
K−1∑
k=k0

ckqk ⩽
x

1 + α2 < (ck0 + 1)qk0 +
K−1∑

k=k0+1
ckqk.

The integer part thus also satisfies
K−1∑
k=k0

ckqk ⩽

⌊
x

1 + α2

⌋
< (ck0 + 1)qk0 +

K−1∑
k=k0+1

ckqk,

showing that its Ostrowski expansion is of the form⌊
x

1 + α2

⌋
=

k0−1∑
k=0

bkqk +
K−1∑
k=k0

ckqk,

as claimed.
Assume next that ck0 = a. By the construction of the α-expansion, we

now have
K−1∑
k=k0

ck
α−k

1 + α2 ⩽
x

1 + α2 <
α−k0+1

1 + α2 +
K−1∑
k=k0

ck
α−k

1 + α2 .

We similarly deduce that
K−1∑
k=k0

ckqk −
1

100 ⩽
x

1 + α2 < qk0−1 +
K−1∑
k=k0

ckqk + 1
100 ,

and by the assumption x ̸∈ E, that
K−1∑
k=k0

ckqk ⩽

⌊
x

1 + α2

⌋
< qk0−1 +

K−1∑
k=k0

ckqk.

Therefore the Ostrowski expansion is again of the form ⌊x/(1 + α2)⌋ =∑k0−2
k=0 bkqk +

∑K−1
k=k0

ckqk, as claimed. □
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The main advantage of the α-expansion over the Ostrowski expansion is
that the sequence of digits forms a Markov chain, which in turn leads to
independence; a crucial property in the proof of the central limit theorem.
More precisely, let us choose a real number x from the interval [0, α−K)
uniformly at random, and consider the α-expansion x =

∑K−1
k=−∞ ckα

−k.
The digits ck are thus random variables. Using the geometric interpretation
of the α-expansion in terms of a partitioning system of nested intervals, it
is not difficult to see that the sequence ck is in fact a Markov chain: the
state space is the finite set {0, 1, . . . , a}, and the chain is in the state cK−t

at time t ∈ N. The distribution of the initial state, corresponding to the
lengths of the partitioning intervals, is

αKλ
({

0 ⩽ x < α−K : cK−1 = c
})

=
{
α if 0 ⩽ c < a,

α2 if c = a.

The transition probabilities are described by the (a+ 1)× (a+ 1) matrix
α α · · · α α2

α α · · · α α2

...
...

...
...

...
α α · · · α α2

1 0 · · · 0 0

 .

In other words, given any 0 ⩽ c < a, the probability of transitioning
to a state c′ is α if 0 ⩽ c′ < a, and α2 if c′ = a. The last line of the
matrix corresponds to the extra rule of α-expansions: after the state a, we
transition to the state 0 with probability 1. One readily checks that this
Markov chain is irreducible and aperiodic, and that its (unique) stationary
distribution vector is ( α+α2

1+α2 ,
α

1+α2 , . . . ,
α

1+α2 ,
α2

1+α2 ).

3.3.2. The covariance matrix

The covariance matrix of a complex-valued random variable X = Y + iZ

is defined as

Cov(X) =
(
E(Y 2) E(Y Z)
E(Y Z) E(Z2)

)
−
(

(EY )2 EY EZ
EY EZ (EZ)2

)
.

Given two matrices A and B, the notation A = B + O(f(K)) means that
Amn = Bmn +O(f(K)) for all entries.

Lemma 3.5. — For any 1 ⩽M ′ ⩽M ,
M∑

m=1

1
m∥mα∥

min
{

1
M ′∥mα∥

, 1
}
≪
(

1 + log M

M ′

)2
.
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Proof. — This is a slight modification of the third claim in Lemma 3.2.
We have ∑

qℓ⩽m<qℓ+1

1
m∥mα∥

· 1
M ′∥mα∥

≪ 1
qℓM ′

∞∑
j=1

1
j2/q2

ℓ+1
≪ qℓ

M ′ ,

and by summing over all ℓ such that qℓ ⩽ M ′, we obtain
∑M ′

m=1
1

m∥mα∥ ·
1

M ′∥mα∥ ≪ 1. There are ≪ 1 + log(M/M ′) convergent denominators M ′ <

qℓ ⩽M , and they all satisfy∑
qℓ⩽m<qℓ+1

1
m∥mα∥

min
{

1
M ′∥mα∥

, 1
}

≪ 1
qℓ

∞∑
j=1

1
j/qℓ+1

min
{

1
M ′j/qℓ+1

, 1
}
≪ log qℓ+1

M ′ .

Hence
M∑

m=M ′+1

1
m∥mα∥

min
{

1
M ′∥mα∥

, 1
}
≪
(

1 + log M

M ′

)2
,

and the claim follows. □

Lemma 3.6. — If the integer N is chosen from [0, qK) uniformly at
random, then ETN = O((logK)2), and

Cov(TN ) =
(
σ(α)2 log qK 0

0 σ(α)2 log qK

)
+O((logK)4).

Proof. — An application of Lemma 3.5 shows that the expected value is

|ETN | =

∣∣∣∣∣∣ 1
qK

qK−1∑
N=0

∑
1⩽m⩽QK log QK

e2πi(N+ξ)mα

2m sin(πmα)

∣∣∣∣∣∣
≪

∑
1⩽m⩽QK log QK

1
m∥mα∥

min
{

1
qK∥mα∥

, 1
}

≪ (logK)2,

as claimed.
Repeating the steps in the estimate of VM in the proof of Proposition 3.1

with obvious modifications, we deduce that E(ReTN )2 and E(ImTN )2 are
both

qK∑
m=1

1
8π2m2∥mα∥2 +O((logK)4).
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Formula (3.10) shows that this is σ(α)2 log qK + O((logK)4). Therefore
the diagonal entries of Cov(TN ) are σ(α)2 log qK +O((logK)4), as claimed.
Next, consider

E(ReTN ImTN )

= 1
qK

qK−1∑
N=0

∑
1⩽m1,m2⩽QK log QK

sin(2π(N + ξ)m1α) cos(2π(N + ξ)m2α)
4m1m2 sin(πm1α) sin(πm2α) .

The contribution of the terms m1 = m2 is

1
qK

qK −1∑
N=0

∑
1⩽m⩽QK log QK

sin(4π(N + ξ)mα)
8m2 sin2(πmα)

≪
∑

1⩽m⩽QK log QK

1
m2∥mα∥2 min

{
1

qK∥2mα∥
, 1
}
≪ logK,

where we used the third claim in Lemma 3.2. The contribution of the terms
m1 ̸= m2 is

1
qK

qK −1∑
N=0

∑
1⩽m1,m2⩽QK log QK

m1 ̸=m2

sin(2π(N + ξ)(m1 −m2)α)
8m1m2 sin(πm1α) sin(πm2α)

+ 1
qK

qK −1∑
N=0

∑
1⩽m1,m2⩽QK log QK

m1 ̸=m2

sin(2π(N + ξ)(m1 +m2)α)
8m1m2 sin(πm1α) sin(πm2α)

≪
∑

1⩽m1,m2⩽QK log QK

m1 ̸=m2

1
m1∥m1α∥m2∥m2α∥

min
{

1
qK∥(m1−m2)α∥ , 1

}

+
∑

1⩽m1,m2⩽QK log QK

m1 ̸=m2

1
m1∥m1α∥m2∥m2α∥

min
{

1
qK∥(m1 +m2)α∥ , 1

}

≪ (logK)4,

where we used the last claim in Lemma 3.2. The off-diagonal entries of
Cov(TN ) are thus O((logK)4), as claimed. □

3.3.3. Approximation in L2

Any 1 ⩽ m ⩽ QK logQK has a unique Ostrowski expansion of the form
m =

∑H
k=h dkqk, where 0 ⩽ h = h(m) ⩽ H = H(m) are integers, and

dh, dH ̸= 0.
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Lemma 3.7. — We have αh(m)−H(m) ≪ m∥mα∥ ≪ αh(m)−H(m).

Proof. — Note that qH ⩽ m < qH+1, in particular, α−H ≪ m ≪ α−H .
It remains to show that αh ≪ ∥mα∥ ≪ αh. Observe that

mα =
H∑

k=h

dkqkα ≡
H∑

k=h

dk(qkα− pk) =
H∑

k=h

(−1)kdkα
k+1 (mod 1).

Since 0 < dh ⩽ a and 0 ⩽ dk ⩽ a for all k, we have

dhα
h+1 − dh+1α

h+2 + dh+2α
h+3 − · · · ⩾ αh+1 − aαh+2 − aαh+4 − · · ·

= αh+1
(

1− aα

1 + α2

)
,

and similarly,

dhα
h+1 − dh+1α

h+2 + dh+2α
h+3 − · · · ⩽ aαh+1 + aαh+3 + aαh+5 + · · ·

= aαh+1

1 + α2 .

Therefore

αh ≪ αh+1
(

1− aα

1 + α2

)
⩽ ∥mα∥ ⩽ aαh+1

1 + α2 ≪ αh,

as claimed. □

For the rest of the proof, let

k0 :=
⌊

10 logK
log(1/α)

⌋
and S := {1 ⩽ m ⩽ QK logQK : H(m)− h(m) ⩽ k0} .

Lemma 3.7 yields the implication m ̸∈ S ⇒ m∥mα∥ ≫ K10. We start by
showing that the terms in TN with m ̸∈ S have a negligible contribution.

Lemma 3.8. — We have

1
qK

qK−1∑
N=0

∣∣∣∣∣∣∣∣
∑

1⩽m⩽QK log QK

m ̸∈S

e2πi(N+ξ)mα

2m sin(πmα)

∣∣∣∣∣∣∣∣
2

≪ 1.
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Proof. — Expanding the square and considering the diagonal and off-
diagonal terms separately leads to

1
qK

qK −1∑
N=0

∣∣∣∣∣∣∣∣
∑

1⩽m⩽QK log QK

m̸∈S

e2πi(N+ξ)mα

2m sin(πmα)

∣∣∣∣∣∣∣∣
2

=
∑

1⩽m⩽QK log QK

m̸∈S

1
4m2 sin2(πmα)

+ 1
qK

qK−1∑
N=0

∑
1⩽m1,m2⩽QK log QK

m1,m2 ̸∈S
m1 ̸=m2

e2πi(N+ξ)(m1−m2)α

4m1m2 sin(πm1α) sin(πm2α)

≪
∑

1⩽m⩽QK log QK

m ̸∈S

1
m2∥mα∥2

+
∑

1⩽m1,m2⩽QK log QK

m1,m2 ̸∈S
m1 ̸=m2

1
m1∥m1α∥m2∥m2α∥

min
{

1
qK∥(m1−m2)α∥ , 1

}

≪ 1
K10

∑
1⩽m⩽QK log QK

1
m∥mα∥

+ 1
K10

∑
1⩽m1⩽QK log QK

1
m1∥m1α∥

∑
1⩽m′⩽QK log QK

1
qK∥m′α∥

≪ 1.

Note that instead of m1 and m2, we summed over m1 and m′ := |m1 −
m2|, and used the first claim in Lemma 3.2 combined with summation by
parts. □

We now show that the dependence of TN on the first k0 Ostrowski digits
of N is very weak.

Lemma 3.9. — For any integer 0 ⩽ N < qK with Ostrowski expansion
N =

∑K−1
k=0 bkqk, let g(N) =

∑K−1
k=k0

bkqk. We have

TN =
∑
m∈S

e2πi(g(N)+ξ)mα

2m sin(πmα) + ZN , 0 ⩽ N < qK

with some ZN that satisfies q−1
K

∑qK −1
N=0 |ZN |2 ≪ (logK)4.
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Proof. — The error term ZN in the lemma can be written in the form

ZN := TN −
∑
m∈S

e2πi(g(N)+ξ)mα

2m sin(πmα)

=
∑

1⩽m⩽QK log QK

m ̸∈S

e2πi(N+ξ)mα

2m sin(πmα) +
∑
m∈S

(e2πir(N)mα − 1)e2πi(g(N)+ξ)mα

2m sin(πmα) ,

where r(N) := N − g(N). By the triangle inequality for the L2 norm and
Lemma 3.8, it will be enough to estimate the second moment of the second
term, that is,

1
qK

qK−1∑
N=0

∣∣∣∣∣∑
m∈S

(e2πir(N)mα − 1)e2πi(g(N)+ξ)mα

2m sin(πmα)

∣∣∣∣∣
2

= Rdiag +Roff-diag,

where

Rdiag = 1
qK

qK−1∑
N=0

∑
m∈S

|e2πir(N)mα − 1|2

4m2 sin2(πmα)

and

Roff-diag = 1
qK

qK −1∑
N=0

∑
m1,m2∈S
m1 ̸=m2

(e2πir(N)m1α − 1)(e−2πir(N)m2α − 1)
4m1m2 sin(πm1α) sin(πm2α)

× e2πi(g(N)+ξ)(m1−m2)α.

We thus need to show that Rdiag + Roff-diag ≪ (logK)4. Clearly, r(N) =∑k0−1
k=0 bkqk < qk0 ≪ K10. Therefore

∑
m∈S

|e2πir(N)mα − 1|2

4m2 sin2(πmα)
≪

∑
1⩽m⩽K20

1
m2∥mα∥2 +

∑
K20<m⩽QK log QK

r(N)2

m2

≪ logK

uniformly in 0 ⩽ N < qK , where we used formula (3.9). This shows that
Rdiag ≪ logK.

We now estimate Roff-diag. Let A(N0) = {0 ⩽ N < qK : r(N) = N0}.
Note that g(N) = N−N0 for all N ∈ A(N0). For the sake of readability, set

W (N0,m1,m2) := (e2πiN0m1α − 1)(e−2πiN0m2α − 1)e2πi(−N0+ξ)(m1−m2)α.
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Then Roff-diag can be written in the form

Roff-diag = 1
qK

∑
0⩽N0≪K10

∑
m1,m2∈S
m1 ̸=m2

W (N0,m1,m2)
4m1m2 sin(πm1α) sin(πm2α)

×
∑

N∈A(N0)

e2πiN(m1−m2)α.

Clearly |W (N0,m1,m2)| ⩽ 4, and |W (N0,m1,m2)| ≪ ∥m1α∥∥m2α∥N2
0 .

Let

D(N0) =

1 ⩽ d ⩽ QK logQK :

∣∣∣∣∣∣
∑

N∈A(N0)

e2πiNdα

∣∣∣∣∣∣ ⩾ qK

K14

 .

The contribution of the terms for which |m1 −m2| ̸∈ D(N0) is negligible:∣∣∣∣∣∣∣∣
∑

m1,m2∈S
0<|m1−m2|̸∈D(N0)

W (N0,m1,m2)
4m1m2 sin(πm1α) sin(πm2α)

∑
N∈A(N0)

e2πiN(m1−m2)α

∣∣∣∣∣∣∣∣
≪

∑
1⩽m1,m2⩽QK log QK

1
m1∥m1α∥m2∥m2α∥

· qK

K14 ≪
qK

K10 .

The contribution of the terms for which |m1 −m2| = d ∈ D(N0) is∣∣∣∣∣∣∣∣
∑

m1,m2∈S
|m1−m2|=d

W (N0,m1,m2)
4m1m2 sin(πm1α) sin(πm2α)

∑
N∈A(N0)

e2πiN(m1−m2)α

∣∣∣∣∣∣∣∣
≪ |A(N0)|

∑
1⩽m1,m2⩽QK log QK

|m1−m2|=d

|W (N0,m1,m2)|
m1∥m1α∥m2∥m2α∥

.

By symmetry it is enough to sum over m1 < m2, in which case m2 = m1+d.
Hence

Roff-diag ≪
1
qK

∑
0⩽N0≪K10

qK

K10

+ 1
qK

∑
0⩽N0≪K10

|A(N0)|
∑

d∈D(N0)

∑
1⩽m⩽QK logQK

|W (N0,m,m+ d)|
m∥mα∥(m+d)∥(m+d)α∥ .

Here ∑
1⩽m⩽QK log QK

|W (N0,m,m+ d)|
m∥mα∥(m+ d)∥(m+ d)α∥ ≪

∞∑
m=1

N2
0

m(m+ d) ≪ K20 log d
d

,
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which is negligible if, say, d > K50. For smaller d, the contribution of all
m > K50 is also negligible:

∑
K50<m⩽QK log QK

|W (N0,m,m+ d)|
m∥mα∥(m+ d)∥(m+ d)α∥

≪
∑

K50<m⩽QK log QK

N2
0

m(m+ d) ≪
1
K30 .

Therefore our estimate for Roff-diag simplifies to

Roff-diag ≪ 1 + 1
qK

∑
0⩽N0≪K10

|A(N0)| logK
K30 |D(N0)|

+ 1
qK

∑
0⩽N0≪K10

|A(N0)|
∑

1⩽m,d⩽K50

1
m∥mα∥(m+ d)∥(m+ d)α∥

≪ 1 + 1
qK

∑
0⩽N0≪K10

|A(N0)|
(

logK
K30 |D(N0)|+ (logK)4

)
≪ logK

K30 max
0⩽N0≪K10

|D(N0)|+ (logK)4.

In the last step we used
∑

N0⩾0 |A(N0)| = qK .
It remains to estimate |D(N0)|. For any N0 ⩾ 0,

∑
1⩽d⩽QK log QK

∣∣∣∣∣∣
∑

N∈A(N0)

e2πiNdα

∣∣∣∣∣∣
2

=
∑

1⩽d⩽QK log QK

|A(N0)|+
∑

N,N ′∈A(N0)
N ̸=N ′

e2πi(N−N ′)dα


≪ |A(N0)|qK log qK +

∑
N,N ′∈A(N0)

N ̸=N ′

1
∥(N −N ′)α∥

≪ q2
KK + qK

qK−1∑
ℓ=1

1
∥ℓα∥

≪ q2
KK.

An application of the Chebyshev inequality thus yields |D(N0)| ≪ K29.
Therefore Roff-diag ≪ (logK)4, as claimed. □
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3.3.4. Approximation by a Markov chain

The main goal of this section is to approximate TN in terms of the
Markov chain formed by the digits in the α-expansion of a real number.
Throughout, the integer N is chosen from [0, qK) uniformly at random,
whereas the real x is chosen from [0, α−K) uniformly at random and has
α-expansion x =

∑K−1
k=−∞ ckα

−k.
The Ostrowski expansion of any 1 ⩽ m ⩽ QK logQK is of the form m =∑H
k=h dkqk with some integers 0 ⩽ h = h(m) ⩽ H = H(m) and some digits

dk = dk(m), where dh, dH ̸= 0. We use the convention dk = dk(m) = 0
whenever k ̸∈ [h,H]. Let

G(x,m) = α

1 + α2

×

K−1∑
k=k0

(−1)kckdk +
k0∑

j=1
αj

K−1∑
k=k0

(−1)k+jckdk+j +
k0∑

j=1
αj

K−1∑
k=k0

(−1)kckdk−j

,
and define

U(x) =
∑
m∈S

e2πi(G(x,m)+ξmα)

2m sin(πmα) .

The point is that for a given m ∈ S, the function G(x,m) depends only on
ck, k ∈ [h− k0, H + k0], that is, only on ≪ k0 ≪ logK of all the variables
ck, k0 ⩽ k ⩽ K − 1.

For the sake of readability, from now on we use fully probabilistic nota-
tion. We thus write

Pr (TN ∈ A) = 1
qK
|{0 ⩽ N < qK : TN ∈ A}| ,

Pr (U(x) ∈ A) = αKλ
({

0 ⩽ x < α−K : U(x) ∈ A
})

for a Lebesgue measurable set A ⊆ C. Further, let

ΣK =
(
σ(α)2 log qK 0

0 σ(α)2 log qK

)
.

The following lemma reduces the central limit theorem for TN to that
for U(x).
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Lemma 3.10. — We have EU(x) = O((logK)2) and Cov(U(x)) = ΣK +
O(K1/2(logK)2). Further,

sup
C⊆C

∣∣∣∣Pr
(

TN

σ(α)
√

log qK
∈ C

)
− Φ(C)

∣∣∣∣
= sup

C⊆C

∣∣∣∣Pr
(

U(x)
σ(α)

√
log qK

∈ C
)
− Φ(C)

∣∣∣∣+O

(
(logK)4/3

K1/3

)
,

where Φ(C) =
∫

C
e−|y|2/2

2π dy, and the supremum is over all convex sets
C ⊆ C.

Proof. — Let Nx = ⌊x/(1+α2)⌋. Since 0 ⩽ x/(1+α2) < α−K/(1+α2) =
qK + O(αK), the random variable Nx is supported on either [0, qK) or
[0, qK ]. For any 0 ⩽ n ⩽ qK − 2, we have

Pr(Nx = n) = αK(1 + α2) = q−1
K +O(α3K) = Pr(N = n) +O(α3K),

and for n ∈ {qK −1, qK} we still have Pr(Nx = n) = Pr(N = n) +O(α2K).
Therefore the distributions of Nx and N have exponentially small distance
in total variation:

(3.13)
∞∑

n=0
|Pr(Nx = n)− Pr(N = n)| ≪ α2K .

Using the pointwise bound

(3.14) |TN | ≪
∑

1⩽m⩽QK log QK

1
m∥mα∥

≪ (logQK)2 ≪ K2

and the estimate (3.13), we deduce that ETNx = ETN + O(K2α2K) and
Cov(TNx

) = Cov(TN )+O(K4α2K). Hence by Lemma 3.6, we have ETNx
=

O((logK)2) and Cov(TNx
) = ΣK +O((logK)4).

Recall the definition of g and ZN from Lemma 3.9. We similarly deduce
E|ZNx

|2 = E|ZN |2 +O(K4α2K) = O((logK)4). Therefore

U1(x) :=
∑
m∈S

exp (2πi (g(Nx) + ξ)mα)
2m sin(πmα) = TNx

− ZNx

satisfies EU1(x) = O((logK)2) and Cov(U1(x)) = ΣK + O(K1/2(logK)2).
Using the coupling between the Ostrowski expansion and the α-expansion
constructed in Lemma 3.3, here g(Nx) =

∑K−1
k=k0

ckqk with probability ⩾
1 − O(K−10). This together with a pointwise bound of the form (3.14)
yields that

U2(x) :=
∑
m∈S

exp
(

2πi
(∑K−1

k=k0
ckqk + ξ

)
mα
)

2m sin(πmα)
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satisfies EU2(x) = O((logK)2) and Cov(U2(x)) = ΣK +O(K1/2(logK)2).
Observe that

K−1∑
k=k0

ckqkmα =
K−1∑
k=k0

∞∑
ℓ=0

ckqkdℓqℓα

=
K−1∑
k=k0

ck

dkq
2
kα+

∞∑
j=1

dk+jqkqk+jα+
k∑

j=1
dk−jqkqk−jα

 .

Working modulo 1, here

q2
kα ≡ qk(−1)kαk+1 = α

1 + α2 (−1)k +O(α2k) (mod 1),

qkqk+jα ≡ qk(−1)k+jαk+j+1 = α

1 + α2 (−1)k+jαj +O(α2k+j) (mod 1),

qkqk−jα ≡ qk−j(−1)kαk+1 = α

1 + α2 (−1)kαj +O(α2k−j) (mod 1),

hence

K−1∑
k=k0

ckqkmα ≡
α

1+α2

K−1∑
k=k0

(−1)kck

dk +
∞∑

j=1
(−α)jdk+j +

k∑
j=1

αjdk−j


+O(αk0) (mod 1).

Discarding the terms j > k0 from both sums in the previous formula intro-
duces an error

∑K−1
k=k0

∑∞
j=k0+1 α

j ≪ Kαk0 ≪ K−9, thus
∑K−1

k=k0
ckqkmα ≡

G(x,m) +O(K−9) (mod 1). In particular,

(3.15) |U2(x)− U(x)| ≪
∑

1⩽m⩽QK log QK

K−9

m∥mα∥
≪ K−7.

Therefore EU(x) = O((logK)2) and Cov(U(x)) = ΣK +O(K1/2(logK)2),
as claimed.

An application of the Chebyshev inequality yields

Pr
(

|ZNx
|

σ(α)
√

log qK
⩾

(logK)4/3

K1/3

)
≪ (logK)4/3

K1/3 .

Formulas (3.13) and (3.15) together with Pr(U1(x) ̸= U2(x))≪ K−10 show
that for any of the random variables Y ∈ {TN , TNx

, U1(x), U2(x), U(x)},

sup
C⊆C

∣∣∣∣Pr
(

Y

σ(α)
√

log qK
∈ C

)
− Φ(C)

∣∣∣∣
is the same up to an error O(K−1/3(logK)4/3). Note that we tacitly used
the fact that with the notation Cε := {y ∈ R2 : dist(y, ∂C) ⩽ ε}, we have
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Φ(Cε) ≪ ε uniformly in convex sets C ⊆ C [13, p. 24]. This finishes the
proof of the second claim of the lemma. □

From now on, we can thus work with the random variable U(x), which is
expressed in terms of the Markov chain cK−1, cK−2, . . ., discussed in Sec-
tion 3.3.1. By classical results on finite state space irreducible, aperiodic
Markov chains, cK−j converges to the stationary distribution exponentially
fast as j →∞. It is also not difficult to see that the sequence cK−1, cK−2, . . .

is ψ-mixing with exponential rate. That is, for any integers j, ℓ ⩾ 1, let-
ting Bj denote the σ-algebra generated by cK−1, cK−2, . . . , cK−j and Fj+ℓ

the σ-algebra generated by cK−j−ℓ, cK−j−ℓ−1, . . ., the ψ-mixing coefficients
satisfy

(3.16) ψ(ℓ) := sup
j⩾1

sup
B∈Bj , Pr(B)>0

F ∈Fj+ℓ, Pr(F )>0

∣∣∣∣ Pr(B ∩ F )
Pr(B) Pr(F ) − 1

∣∣∣∣≪ e−τℓ

with some constant τ > 0. In particular (cf. ρ-mixing), if f(x) is a Bj-
measurable and g(x) is an Fj+ℓ-measurable complex-valued function, then
(3.17)

E(f(x)g(x)) = Ef(x)Eg(x) +O
((

E|f(x)|2
)1/2 (E|g(x)|2

)1/2
e−τℓ

)
.

We refer to [15] for a survey on mixing properties of Markov chains.
Since ψ-mixing is usually stated only for stationary Markov chains, but

our chain cK−1, cK−2, . . . is not started from the stationary distribution, we
include a short proof of (3.16). Fix j, ℓ ⩾ 1, and assume first that B ∈ Bj

and F ∈ Fj+ℓ are the events

B = {cK−1 = xK−1, cK−2 = xK−2, . . . , cK−j = xK−j},
F = {cK−j−ℓ = xK−j−ℓ, cK−j−ℓ−1 = xK−j−ℓ−1, . . .}

with some xK−1, xK−2, . . . ∈ {0, 1, . . . , a}. Using the Markov property,

Pr(B ∩ F ) = Pr(F | cK−j = xK−j) Pr(B)
= Pr(F | cK−j−ℓ = xK−j−ℓ)

× Pr(cK−j−ℓ = xK−j−ℓ | cK−j = xK−j) Pr(B)

= Pr(F )
Pr(cK−j−ℓ = xK−j−ℓ)

× Pr(cK−j−ℓ = xK−j−ℓ | cK−j = xK−j) Pr(B).

Hence∣∣∣∣ Pr(B ∩ F )
Pr(B) Pr(F ) − 1

∣∣∣∣ =
∣∣∣∣Pr(cK−j−ℓ = xK−j−ℓ | cK−j = xK−j)

Pr(cK−j−ℓ = xK−j−ℓ)
− 1
∣∣∣∣ .
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Here Pr(cK−j−ℓ = xK−j−ℓ | cK−j = xK−j) and Pr(cK−j−ℓ = xK−j−ℓ) are
both exponentially close in ℓ to the stationary distribution at xK−j−ℓ, thus

|Pr(B ∩ F )− Pr(B) Pr(F )| ≪ e−τℓ Pr(B) Pr(F )

uniformly in j ⩾ 1, with some constant τ > 0. The same holds for any
B ∈ Bj and F ∈ Fj+ℓ by σ-additivity. This finishes the proof of (3.16).

3.3.5. Approximation by independent variables

In this section, we approximate U(x) by a sum of independent random
variables, and thus establish (3.12).

Let 1 ⩽ R ⩽ K0.99 be an integer, to be chosen, and let us divide [0,K]
into R subintervals Ij = [(j − 1)K/R, jK/R], 1 ⩽ j ⩽ R of equal length
K/R ⩾ K1/100. Set also I0 = (−∞, 0] and IR+1 = [K,∞). Let b > 1 be a
large constant, to be chosen, and for any 1 ⩽ j ⩽ R+ 1, define

Sj = {m ∈ S : h(m)− bk0 ∈ Ij , H(m) + bk0 ∈ Ij} ,
S′

j = {m ∈ S : h(m)− bk0 ∈ Ij−1, H(m) + bk0 ∈ Ij} .

Note that the length of the interval [h(m)− bk0, H(m) + bk0] is negligible
compared to K/R, therefore the sets Sj , S

′
j partition S. Since h(m) ⩽

K + O(logK) for all 1 ⩽ m ⩽ QK logQK , we actually have SR+1 = ∅
provided that b > 1 is chosen large enough. Consequently, we can express
U(x) as U(x) =

∑R
j=1 Xj(x) +

∑R+1
j=1 Yj(x), and in particular,

U(x)− EU(x) =
R∑

j=1
(Xj(x)− EXj(x)) +

R+1∑
j=1

(Yj(x)− EYj(x)),

with the random variables

Xj(x) :=
∑

m∈Sj

e2πi(G(x,m)+ξmα)

2m sin(πmα) and Yj(x) :=
∑

m∈S′
j

e2πi(G(x,m)+ξmα)

2m sin(πmα) .

We first show that for all j,

(3.18) |Xj(x)| ≪ K logK
R

and |Yj(x)| ≪ (logK)2.

Observe that for any given 0 ⩽ h ⩽ H,∣∣∣∣∣∣∣∣
∑
m∈S

h(m)=h, H(m)=H

e2πi(G(x,m)+ξmα)

2m sin(πmα)

∣∣∣∣∣∣∣∣≪
∑
m∈S

h(m)=h, H(m)=H

1
m∥mα∥

≪ 1.
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Indeed, by Lemma 3.7 here each term is≪ αH−h, and the number of terms
is equal to the number of legitimate Ostrowski sequences (dh, dh+1, . . . , dH),
which is ≪ qH−h ≪ αh−H . Summing over h,H in the appropriate range
leads to (3.18).

The main observation is that Xj(x) depends only on ck, min Ij +
(b − 1)k0 ⩽ k ⩽ max Ij − (b − 1)k0. Similarly, Yj(x) depends only on
ck, min Ij − (b+ 2)k0 ⩽ k ⩽ min Ij + (b+ 2)k0.

For any 1 ⩽ j < j′ ⩽ R + 1, the functions Yj(x) resp. Yj′(x) depend
on sets of variables ck with the indices k separated by at least K/R −
2(b+ 2)k0 ⩾ K1/100/2. By (3.17) and (3.18), we have

E (Yj(x)− EYj(x))
(
Yj′(x)− EYj′(x)

)
≪ (logK)4e−τK1/100/2 ≪ K−2.

Hence

(3.19)
E

∣∣∣∣∣∣
R+1∑
j=1

(Yj(x)− EYj(x))

∣∣∣∣∣∣
2

≪
R+1∑
j=1

E|Yj(x)− EYj(x)|2 + 1

≪ R(logK)4,

and by Lemma 3.10,

(3.20) Cov

 R∑
j=1

(Xj(x)− EXj(x))


= Cov(U(x)) +O

(
K1/2R1/2(logK)2

)
= ΣK +O

(
K1/2R1/2(logK)2

)
.

The main contribution to U(x) is the sum of Xj(x). For any 2 ⩽ j ⩽ R,
the vector (X1(x), X2(x), . . . , Xj−1(x)) resp. the variable Xj(x) depend on
sets of variables ck with the indices k separated by at least (2b− 2)k0. By
an approximation theorem of Berkes and Philipp [11, Theorem 2], on a
suitable probability space there exist complex-valued random variables X∗

j

and ζj , 1 ⩽ j ⩽ R, with ζj , 1 ⩽ j ⩽ R independent, such that the vec-
tors (X1(x), X2(x), . . . , XR(x)) and (X∗

1 , X
∗
2 , . . . , X

∗
R) are identically dis-

tributed, X∗
j and ζj are also identically distributed for any given 1 ⩽ j ⩽ R,

and Pr(|X∗
j − ζj | ⩾ 6ψ((2b− 2)k0)) ⩽ 6ψ((2b− 2)k0), where ψ denotes the

ψ-mixing coefficients from (3.16). Here ψ((2b − 2)k0) ≪ K−100 provided
that b > 1 is chosen large enough, thus

Pr

 R∑
j=1
|X∗

j − ζj | ⩾ K−99

≪ K−99.
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By (3.18), we have |X∗
j |, |ζj | ≪ (K logK)/R, and the previous formula

yields in particular that E|
∑R

j=1(X∗
j − ζj)|2 ≪ K−96. Formula (3.20) thus

leads to

Cov

 R∑
j=1

(ζj − Eζj)

 = ΣK +O(K1/2R1/2(logK)2).

The random variables (ζj − Eζj)/(σ(α)
√

log qK), 1 ⩽ j ⩽ R are thus inde-
pendent, mean zero, and

Σ∗ := Cov
(∑R

j=1(ζj − Eζj)
σ(α)

√
log qK

)
=
(

1 0
0 1

)
+O

(
K−1/2R1/2(logK)2

)
.

Further,

R∑
j=1

E
∣∣∣∣ ζj − Eζj

σ(α)
√

log qK

∣∣∣∣3 ≪ K1/2 logK
R

R∑
j=1

E
∣∣∣∣ ζj − Eζj

σ(α)
√

log qK

∣∣∣∣2 ≪ K1/2 logK
R

.

The multidimensional central limit theorem with explicit rate [13, p. 166]
thus gives

sup
C⊆C

∣∣∣∣∣Pr
(∑R

j=1(ζj − Eζj)
σ(α)

√
log qK

∈ C

)
− ΦΣ∗(C)

∣∣∣∣∣≪
R∑

j=1
E
∣∣∣∣ ζj − Eζj

σ(α)
√

log qK

∣∣∣∣3
≪ K1/2 logK

R
,

where ΦΣ∗(C) =
∫

C
e−⟨y,Σ−1

∗ y⟩/2/(2π det(Σ∗)1/2) dy denotes the mean zero
Gaussian with covariance matrix Σ∗. It is easy to see that ΦΣ∗(C) = Φ(C)+
O(K−1/2R1/2(logK)2) uniformly in convex sets C ⊆ C, hence

sup
C⊆C

∣∣∣∣∣Pr
(∑R

j=1(Xj(x)− EXj(x))
σ(α)

√
log qK

∈ C

)
− Φ(C)

∣∣∣∣∣
≪ K1/2 logK

R
+ R1/2(logK)2

K1/2 .

Similarly, Yj(x), 1 ⩽ j ⩽ R + 1 can be extremely well approximated by
independent random variables ζ ′

j , 1 ⩽ j ⩽ R + 1 that, by (3.18), satisfy
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|ζ ′
j | ≪ (logK)2. Applying an exponential bound (e.g. Hoeffding’s inequal-

ity) to ζ ′
j with a large enough constant ρ > 1 leads to

Pr

∣∣∣∣∣∣
R+1∑
j=1

(Yj(x)− EYj(x))

∣∣∣∣∣∣ ⩾ ρR1/2(logK)5/2


≪ Pr

∣∣∣∣∣∣
R+1∑
j=1

(ζ ′
j − Eζ ′

j)

∣∣∣∣∣∣ ⩾ ρ

2R
1/2(logK)5/2

+K−100 ≪ K−100.

The previous two formulas, together with the fact that the expected value
EU(x) = O((logK)2) is negligible, give

sup
C⊆C

∣∣∣∣Pr
(

U(x)
σ(α)

√
log qK

∈ C
)
− Φ(C)

∣∣∣∣≪ K1/2 logK
R

+ R1/2(logK)5/2

K1/2 .

The optimal choice is R = ⌊K2/3/ logK⌋, in which case the error term is
K−1/6(logK)2. This finishes the proof of (3.12).

3.3.6. Completing the proof

Proof of Theorem 1.4. — Let M ⩾ 3 be an integer with Ostrowski
expansion M =

∑K−1
k=0 bkqk, bK−1 ̸= 0, and let M∗ =

∑K−1
k=K−k0

bkqk, where
k0 = ⌊ 10 log K

log(1/α)⌋, as before. Consider a partition of the interval [0,M∗) =⋃K−1
ℓ=K−k0

⋃bℓ−1
b=0 [Mℓ,b,Mℓ,b + qℓ) with integers 0 ⩽ Mℓ,b ≪ qℓ. The central

limit theorem (3.12) applied to TN , 0 ⩽ N < qℓ defined with ξ = Mℓ,b +1/2
and Qℓ = Mℓ,b + qℓ gives that for any convex set C ⊆ C,

1
qℓ

∣∣∣∣{0 ⩽ N < qℓ : TN

σ(α)
√

log qℓ
∈ C

}∣∣∣∣ = Φ(C) +O

(
(logK)2

K1/6

)
.

Setting ΓN = (logPN (α), πSN (α)) and EN = ( 1
2 logN, πE(α) logN), for-

mula (3.11) states that ΓMℓ,b+N −EMℓ,b+qℓ
is identified with iTN , 0 ⩽ N <

qℓ up to a negligible error O(logK). Note that the standard Gaussian is
invariant under the rotation corresponding to multiplication by i. Hence
for any convex set C ⊆ R2,∣∣∣∣{0 ⩽ N < qℓ :

ΓMℓ,b+N − EMℓ,b+qℓ

σ(α)
√

log qℓ
∈ C

}∣∣∣∣ = Φ(C)qℓ +O

(
qℓ

(logK)2

K1/6

)
.

Here EMℓ,b+qℓ
resp.

√
log qℓ can be replaced by the values EMℓ,b+N resp.√

log(Mℓ,b +N) up to a negligible error O(qℓ(logK)/K). We tacitly used
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the fact that Φ((1 + ε)C) = Φ(C) + O(|ε|) uniformly in convex sets C.
Hence summing over ℓ, b leads to∣∣∣∣{0 ⩽ N < M∗ : ΓN − EN

σ(α)
√

logN
∈ C

}∣∣∣∣ = Φ(C)M∗ +O

(
M∗ (logK)2

K1/6

)
.

Since M −M∗ ≪ qK−k0 ≪M/K10, we finally deduce
1
M

∣∣∣∣{0 ⩽ N < M : ΓN − EN

σ(α)
√

logN
∈ C

}∣∣∣∣ = Φ(C) +O

(
(log logM)2

(logM)1/6

)
. □

3.4. Non-badly approximable irrationals

Fix an arbitrary irrational α = [a0; a1, a2, . . . ] with convergents pk/qk =
[a0; a1, . . . , ak]. Using a reciprocity formula of Bettin and Drappeau [12],
in our recent paper [1, Equation (14) and Proposition 3] we observed that

(3.21) max
0⩽N<qk

logPN (α) = V (a1 + · · ·+ ak) +O(Ak + (logAk)k)

with V as in (2.4), Ak = max1⩽ℓ⩽k aℓ and a universal implied constant.
We also record a variant for future reference, see [1, Equation (5) and
Proposition 3]:

(3.22) max
0⩽N<qk

logPN (α) = (V + o(1))(a1 + · · ·+ ak) +O

(
logAk

ak+1

)
as k → ∞, provided that (a1 + · · · + ak)/k → ∞. We also proved [1,
Proposition 2] that for any 0 ⩽ N < qk,

(3.23) logPN (α) + logPqk−N−1(α) = log qk +O

(
logAk

ak+1

)
with a universal implied constant. In particular, this means that the dis-
tribution of logPN (α), when N is chosen randomly from [0, qk), is approx-
imately symmetric about the center 1

2 log qk. Concerning the variance, the
Diophantine sum in (3.4) has the evaluation [14]

(3.24)
√ ∑

1⩽m<qk

1
8π2m2∥mα∥2 = π√

720

√
a2

1 + · · ·+ a2
k +O(

√
k)

with a universal implied constant. Although formulas (3.21)–(3.24) hold
for arbitrary irrationals, all but (3.23) are useless for badly approximable
ones; indeed, in that case the main terms and the error terms are of the
same order of magnitude. Note also that (3.24) gives a wrong value of σ(α)
for quadratic irrationals. They give precise results, however, for certain
non-badly approximable irrationals.
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Consider first Euler’s number e. Then (3.21) and (3.24) read

max
0⩽N<qk

logPN (e) = V

9 k
2 +O(k log k),∑

1⩽m<qk

1
8π2m2∥me∥2 = π2

14580k
3 +O(k2).

Since qk increases at the rate
∏k

ℓ=1 aℓ ⩽ qk ⩽
∏k

ℓ=1(aℓ+1), we have log qk =
1
3k log k+O(k). Relations (2.1), (2.2) and (2.3) now follow easily from the
previous three formulas and Proposition 3.1; for min1⩽N⩽M logPN (e), use
also (3.23).

Proof of Theorem 2.1. — Using (2.2) and the Chebyshev inequality, the
proof is entirely analogous to that of Theorem 1.1. □

3.5. Asymptotics almost everywhere

Let us recall the precise statistics of the partial quotients of almost every
irrational. Fix a nondecreasing positive real-valued function φ(x) on (0,∞).
The two most fundamental properties are that for a.e. α,

(i) the inequality ak ⩾ φ(k) has finitely many solutions k ∈ N if and
only if

∑∞
k=1 1/φ(k) <∞;

(ii) log qk ∼ π2

12 log 2k as k →∞.
As for the sum of the partial quotients, a classical result of Khinchin [29]
states that

a1 + · · ·+ ak

k log k → 1
log 2 in measure.

The same asymptotics only holds a.e. if the sum is “trimmed”, i.e. the
largest term is removed. More precisely, Diamond and Vaaler [18] proved
that for a.e. α,

(3.25) a1 + · · ·+ ak − ϑ(α, k)Ak

k log k → 1
log 2 as k →∞

with some(2) 0 ⩽ ϑ(α, k) ⩽ 1, where Ak = max1⩽ℓ⩽k aℓ as before. In partic-
ular, the arithmetic mean of the partial quotients diverges, and from (3.22)
we immediately obtain that for a.e. α,

(3.26) max
0⩽N<qk

logPN (α) = (V + o(1))Ak +O(k log k) as k →∞

(2) Their proof actually gives that the same holds with ϑ(α, k) = 1, but we will not need
this fact.
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with an implied constant depending on α. By (3.23) we also have

(3.27) min
0⩽N<qk

logPN (α) = −(V + o(1))Ak +O(k log k) as k →∞,

and formulas (2.5), (2.6) follow.
Proof of Theorem 2.3. — We shall need a further result of Diamond

and Vaaler [18, Lemma 2]. As a simple corollary of the mixing property of
the partial quotients, they observed that given any ε > 0, for a.e. α, for
all but finitely many k ∈ N, there is at most one integer 1 ⩽ ℓ ⩽ k with
aℓ ⩾ k(log k)1/2+ε.

Assume first that φ(k) ⩾ k log k log log k for all k. By property (i) above,
for a.e. α, there are infinitely many k0 ∈ N such that

ak0 ⩾ φ(k0) ⩾ k0 log k0 log log k0.

For all but finitely many of these k0, we now choose an integer k ∈ [k0, 2k0]
as follows. First of all note that by the lemma of Diamond and Vaaler, for
all 1 ⩽ ℓ ⩽ 2k0, ℓ ̸= k0 we have aℓ ≪ k0(log k0)1/2+ε. In particular, A2k0 =
max1⩽ℓ⩽2k0 aℓ = ak0 . Let us now partition [k0 + 1, 2k0] into ∼ k0/(log k0)2

subintervals I1, I2, . . . , each of size ∼ (log k0)2. If maxℓ∈Ij
aℓ ⩾ (log k0)4 for

all j, then clearly

a1 + · · ·+ a2k0 ⩾ ak0 +
∑

j

(log k0)4 ∼ A2k0 + k0(log k0)2,

which contradicts (3.25). Therefore there exists a subinterval Ij ⊂ [k0 + 1,
2k0] of size ∼ (log k0)2 such that maxℓ∈Ij aℓ ⩽ (log k0)4. Choose k in the
middle of Ij . Note that the error term in Proposition 3.1 then satisfies

max
|ℓ−k|≪log k

aℓ ⩽ max
ℓ∈Ij

aℓ ≪ (log k)4,

therefore

1
qk

qk−1∑
N=0

(
logPN (α)− 1

2 log qk

)2
=

qk−1∑
m=1

1
8π2m2∥mα∥2 +O((log k)12).

Using (3.25) once again, we obtain

Ak ⩽
√
a2

1 + · · ·+ a2
k ⩽ a1 + · · ·+ ak ⩽ Ak +O(k log k),

hence (3.24) yields

1
qk

qk−1∑
N=0

(logPN (α))2 = 1
qk

qk−1∑
N=0

(
logPN (α)− 1

2 log qk

)2
+O((log qk)2)

= π2

720A
2
k +O(Akk log k).
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Since Ak = Ak0 ≫ k log k log log k, the previous formula together
with (3.26) and (3.27) show that for infinitely many k (cf. (2.7)),√√√√ 1

qk

qk−1∑
N=0

(logPN (α))2 =
(

π√
720V

+ o(1)
)

max
0⩽N<qk

|logPN (α)|.

Fix ε > 0, and let Tk = max0⩽N<qk
|logPN (α)|. Splitting the sum ac-

cording to whether |logPN (α)| ⩽ εTk or not, we get

1
qk

qk−1∑
N=0

(logPN (α))2 ⩽ ε2T 2
k + 1

qk
|{0 ⩽ N < qk : |logPN (α)| ⩾ εTk}|T 2

k .

The previous two formulas immediately yield that for infinitely many k,
1
qk
|{0 ⩽ N < qk : |logPN (α)| ⩾ εTk}| ⩾

π2

720V 2 − ε
2 − o(1).

Recall from (3.23) that the distribution of logPN (α) is approximately
symmetric about the negligible center 1

2 log qk ≪ k = o(Ak). By con-
struction, we also have k0 ⩽ k ⩽ 2k0, and hence 0 ⩽ N < qk implies
logN ⩽ (π2/(6 log 2) + o(1))k0. Therefore

Tk = (V + o(1))Ak ⩾ (V + o(1))φ(k0) ⩾ 1
100φ

(
logN
100

)
,

and we obtain that for infinitely many k,
1
qk

∣∣∣∣{0 ⩽ N < qk : logPN (α) ⩾ ε

100φ
(

logN
100

)}∣∣∣∣ ⩾ π2

1440V 2 −
ε2

2 − o(1)

and
1
qk

∣∣∣∣{0 ⩽ N < qk : logPN (α) ⩽ − ε

100φ
(

logN
100

)}∣∣∣∣ ⩾ π2

1440V 2−
ε2

2 −o(1).

Note that φ∗(x) = 100
ε φ(100x) also satisfies

∑∞
k=1 1/φ∗(k) = ∞ and

φ∗(k) ⩾ k log k log log k. Hence by repeating the argument with φ∗, we
get that for a.e. α, the sets

{N ∈ N : logPN (α) ⩾ φ(logN)}

and
{N ∈ N : logPN (α) ⩽ −φ(logN)}

both have upper asymptotic density at least π2/(1440V 2) − ε2/2. Here
ε > 0 is arbitrary, and the claim follows under the initial assumption
φ(k) ⩾ k log k log log k. This assumption is easily removed: simply note that
φ∗∗(x) = φ(x) + x log(x + 3) log log(x + 3) satisfies

∑∞
k=1 1/φ∗∗(k) = ∞

and φ∗∗(k) ⩾ k log k log log k, and that the claim with φ∗∗ implies the claim
with φ. □
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Proof of Theorem 2.4. — Given M ⩾ 1, let kM (α) be such that qkM (α) ⩽
M < qkM (α)+1. From (3.22) and (3.25) we immediately deduce that for
a.e. α,

max
1⩽N⩽M

logPN (α) ⩾ V + o(1)
log 2 kM (α) log kM (α).

By log qk ∼ π2

12 log 2k, here kM (α) ∼ 12 log 2
π2 logM , and we get that for a.e. α,

lim inf
M→∞

max
1⩽N⩽M

logPN (α)

logM log logM ⩾
12V
π2 .

Using (3.23), we similarly obtain that the same holds with max replaced by
−min. On the other hand, convergence in measure in Theorem 2.5 shows
that the a.e. limit along a suitably sparse subsequence equals 12V/π2. □

3.6. Asymptotics in measure

Recall that the Gauss measure ν(A) := 1
log 2

∫
A

1
1+x dx (A ⊆ [0, 1] Borel)

is an invariant measure under the shift x 7→ {1/x}. The partial quotients
are thus identically distributed:

ν ({α ∈ [0, 1] : ak = j}) = 1
log 2 log

(
1 + 1

j(j + 2)

)
, k, j ⩾ 1.

The terms “a.e.” and “convergence in measure” are of course equivalent for
the Gauss and the Lebesgue measures, and we will use them in this sense.

Proof of Theorem 2.5. — Given M ⩾ 1, let kM (α) be such that qkM (α) ⩽
M < qkM (α)+1. By (3.22), for a.e. α,

max
1⩽N⩽M

logPN (α) = (V + o(1)) (a1 + · · ·+ akM (α) + ξM (α))

with some |ξM (α)| ⩽ akM (α)+1. Formula (3.25) and logM ∼ π2

12 log 2kM (α)
show that for a.e. α,

max
1⩽N⩽M

logPN (α)

logM log logM = (V + o(1))
(

12
π2 + o(1) + ξ∗

M (α)
logM log logM

)
with some |ξ∗

M (α)| ⩽ 2 max1⩽ℓ⩽kM (α)+1 aℓ. In particular, the o(1) error
terms converge to zero also in measure, and it remains to prove that

(3.28)
max1⩽ℓ⩽kM (α)+1 aℓ

logM log logM → 0 in measure.

Since logM ∼ π2

12 log 2kM (α) holds also in measure, we have

ν ({α ∈ [0, 1] : kM (α) + 1 ⩾ 100 logM})→ 0 as M →∞.
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On the other hand, for any ε > 0 and any ℓ ∈ N,

ν({α ∈ [0, 1] : aℓ ⩾ ε logM log logM})

= 1
log 2

∑
j⩾ε log M log log M

log
(

1 + 1
j(j + 2)

)
≪ 1

ε logM log logM .

The union bound yields

ν

({
α ∈ [0, 1] : max

1⩽ℓ⩽100 log M
aℓ ⩾ ε logM log logM

})
≪ 1

ε log logM → 0

as M → ∞, and (3.28) follows. By (3.23), the claim also holds with max
replaced by −min. □

The proof of Theorem 2.6 is based on results of Samur [36] on the asymp-
totics of sums of the form

∑k
ℓ=1 f(aℓ). Let µ be a probability measure on

[0, 1] that is absolutely continuous with respect to the Lebesgue measure.
A special case of [36, Corollary 2.13] states that for any t ⩾ 0,

lim
k→∞

µ

({
α ∈ [0, 1] : a

2
1 + · · ·+ a2

k

k2 ⩽ t

})
= F (t),

where Samur defines the limit distribution via the Lévy–Khinchin repre-
sentation of its characteristic function as∫

R
eitx dF (t)

= exp
(
i
x

log 2 + 1
2 log 2

∫ ∞

0

(
eixy − 1− ixyI(0,1](y)

)
y−3/2 dy

)
.

Elementary calculations and the values of the Fresnel-type integrals∫ ∞

0

1− cos y
y3/2 dy =

∫ ∞

0

sin y
y3/2 dy =

√
2π

lead to the simplified form∫
R
eitx dF (t) = exp

(
−
√

2π
2 log 2 |x|

1/2 (1− i sgn x)
)
,

which is the characteristic function of a Lévy distribution supported on
[0,∞). Using the appropriate normalization, in the special case of sums of
squares of the partial quotients the theorem of Samur thus states that for
any t ⩾ 0,
(3.29)

lim
k→∞

µ

({
α ∈ [0, 1] : 2(log 2)2

π
· a

2
1 + · · ·+ a2

k

k2 ⩽ t

})
=
∫ t

0

e−1/(2x)
√

2πx3/2
dx.
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We shall also need a more sophisticated form of log qk ∼ π2

12 log 2k, such as
the central limit theorem [34, 35]

(3.30) lim
k→∞

µ

({
α ∈ [0, 1] :

log qk − π2

12 log 2k

τ
√
k

⩽ t

})
=
∫ t

−∞

e−x2/2
√

2π
dx,

where τ > 0 is a universal constant.
Proof of Theorem 2.6. — Given M ⩾ 1, let kM (α) be such that qkM (α) ⩽

M < qkM (α)+1. By Proposition 3.1, for a.e. α, there exists a constant
K(α) > 0 such that

1
M

M∑
N=1

logPN (α) = 1
2 logM + ζM (α),

1
M

M∑
N=1

(
logPN (α)− 1

2 logM
)2

=
M∑

m=1

1
8π2m2∥mα∥2 + ζ∗

M (α)

with some
|ζM (α)| ⩽ K(α) max

|ℓ−kM (α)|⩽K(α) log kM (α)
aℓ · log logM,

|ζ∗
M (α)| ⩽ K(α) max

|ℓ−kM (α)|⩽K(α) log kM (α)
a2

ℓ · (log logM)4.

First, we estimate ζM (α) in Gauss measure. Fix ε > 0. Then ν({α ∈
[0, 1] : K(α) ⩽ K}) > 1 − ε with a large enough K > 0. Letting k0 :=
⌈ 12 log 2

π2 logM⌉, the central limit theorem (3.30) immediately gives

ν
({
α ∈ [0, 1] : |log qk0 − logM | ⩽ C

√
logM

})
> 1− ε

with a large enough C > 0 and all M ⩾ M0(ε). Since the convergent
denominators increase at least exponentially fast (recall e.g. the general fact
qℓ+2/qℓ ⩾ 2), for all α in the previous set, we have |kM (α)−k0| ⩽ C

√
logM .

Therefore for all α outside a set of ν-measure < 2ε and all large enough M ,

{ℓ : |ℓ− kM (α)| ⩽ K(α) log kM (α)} ⊂ [k0 − C
√

logM,k0 + C
√

logM ],

and in particular

|ζM (α)| ⩽ K max
ℓ∈[k0−C

√
log M,k0+C

√
log M ]

aℓ · log logM.

For any ℓ,

ν

({
α ∈ [0, 1] : aℓ ⩾

C

ε

√
logM

})
≪ ε

C
√

logM
,
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therefore the union bound yields

ν

({
α ∈ [0, 1] : max

ℓ∈[k0−C
√

log M,k0+C
√

log M ]
aℓ ⩾

C

ε

√
logM

})
≪ ε.

Hence outside a set of ν-measure ≪ ε, we have the estimate |ζM (α)| ⩽
(CK/ε)

√
logM log logM . In particular, ζM (α) = o(

√
logM(log logM)2)

in measure, which proves the first claim of the theorem.
We similarly deduce ζ∗

M (α) = o(logM(log logM)5) in measure. The same
arguments also show that

a2
1 + · · ·+ a2

kM (α) = a2
1 + · · ·+ a2

k0
+O

(
max

|ℓ−k0|⩽C
√

log M

a2
ℓ · C

√
logM

)
= a2

1 + · · ·+ a2
k0

+ o
(

(logM)3/2 log logM
)

in measure.

Using e.g. (3.29), we observe that√
(a2

1 + · · ·+ a2
kM (α))kM (α) = o

(
(logM)3/2 log logM

)
in measure

is also negligible, hence (3.24) yields

1
M

M∑
N=1

(
logPN (α)− 1

2 logM
)2

= π2

720(a2
1 + · · ·+ a2

k0
) + o

(
(logM)3/2 log logM

)
in measure.

In particular,

10π
M(logM)2

M∑
N=1

(
logPN (α)− 1

2 logM
)2

= 2(log 2)2

π
·
a2

1 + · · ·+ a2
k0

k2
0

+o(1)

in measure. Since µ is absolutely continuous with respect to the Gauss
measure, the o(1) error term converges to zero also in µ-measure. The
second claim of the theorem is thus reduced to the result (3.29) of
Samur. □

4. Distribution of Birkhoff sums

Throughout this section, f : R → R is a 1-periodic function that is of
bounded variation on [0, 1], such that

∫ 1
0 f(x) dx = 0. Let V (f) denote

its total variation on [0, 1], and f̂(m) =
∫ 1

0 f(x)e−2πimx dx, m ∈ Z its
Fourier coefficients. Let α = [a0; a1, a2, . . . ] be irrational with convergents
pk/qk = [a0; a1, . . . , ak]. Finally, let SN (α, f) =

∑N
n=1 f(nα), and let AM =

AM (α, f) and BM = BM (α, f) be as in (1.6).
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4.1. General functions of bounded variation

Proposition 4.1. — Assume that ak ⩽ ckd for all k ⩾ 1 with some
constants c, d ⩾ 0. For any qk ⩽M < qk+1, we have

(4.1) AM =
∑
m∈Z

0<|m|<M(log M)2d+1

(
1− |m|
⌊M(logM)2d+1⌋

)
f̂(m) e2πimα

1−e2πimα

+O

(
V (f) max

|ℓ−k|≪log k
aℓ · (log logM)2

)
and

(4.2) B2
M =

M∑
m=1

|f̂(m)|2

2π2∥mα∥2

+O

V (f)

√√√√ M∑
m=1

|f̂(m)|2
∥mα∥2 + V (f)2 max

|ℓ−k|≪log k
a2

ℓ · (log logM)4


with implied constants depending only on c and d.

The result applies also to orbits with an arbitrary starting point x0,
since

∑N
n=1 f(x0 + nα) =

∑N
n=1 f̃(nα) with the shifted function f̃(x) =

f(x + x0). The variance B2
M does not depend on the starting point, as

|f̂(m)| is invariant under shifts.
Recall that |f̂(m)| ⩽ V (f)/|m| for all m ̸= 0. In particular, by (3.9) for

all badly approximable α, we have B2
M ≪ V (f)2 logM with an implied

constant depending only on α. If in addition |f̂(m)| ⩾ C/|m| for all m ̸= 0
with some constant C > 0, then we have the matching lower bound B2

M ≫
C2 logM . For more general α, we have B2

M ≪ V (f)2(a2
1 + · · ·+ a2

k) with a
matching lower bound if |f̂(m)| ⩾ C/|m|, see (3.24).

Using Koksma’s inequality [31, p. 143] and the fact that the sequence
{nα}, 1 ⩽ n ⩽ N has discrepancy ≪ (logN)d+1 [23, p. 52], we get
|SN (α, f)| ≪ V (f)(logN)d+1. In particular, |AM | ≪ V (f)(logM)d+1. If f
is even, then the expected value AM is zero up to the error in (4.1). This
follows from combining the m and −m terms in the main term of (4.1),
and noting that∣∣∣∣∣∣

∑
0<m<M(log M)d+1

(
1− m

⌊M(logM)d+1⌋

)
f̂(m)

∣∣∣∣∣∣≪ V (f).

In fact, the series
∑∞

m=1 f̂(m) converges since f is of bounded variation.
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We mention that the first error term V (f)
√∑M

m=1 |f̂(m)|2/∥mα∥2 can
be removed in (4.2) for certain f , such as f(x) = {x} − 1/2, or f(x) =
I[a,b]({x}) − (b − a) provided that infq∈Z\{0} |q| · ∥qα − β∥ > 0 for both
endpoints β = a, b. This can be seen by following the steps in the proof of
Proposition 3.1, and noting that the Fourier series of these functions satisfy
a suitable tail estimate, such as∣∣∣∣∣∣∣∣

∑
m∈Z

|m|>M(log M)2d+2

f̂(m)e2πimx

∣∣∣∣∣∣∣∣
≪ 1

M(logM)2d+2∥x− a∥
+ 1
M(logM)2d+2∥x− b∥

in the case of f(x) = I[a,b]({x})−(b−a). For general f of bounded variation,
we use an approximation formula for sums of the form

∑N
n=1 f(xn) instead:

if the points x1, x2, . . . , xN ∈ R satisfy ∥xn−xℓ∥ ⩾ r > 0 for all n ̸= ℓ with
some r > 0, then for any integer H > 1,

(4.3)
N∑

n=1
f(xn)

=
∑
m∈Z

0<|m|<H

(
1− |m|

H

)
f̂(m)

N∑
n=1

e2πimxn +O

(
V (f)

(
logH
rH

+ 1
))

with a universal implied constant. The proof is based on smoothing with
the Fejér kernel of order H and Koksma’s inequality, see [10, Lemma 3].

Proof of Proposition 4.1. — We may assume that V (f) = 1. Fix 1 ⩽
N ⩽M , and note that the points xn = nα, 1 ⩽ n ⩽ N satisfy ∥nα− ℓα∥ ⩾
∥qkα∥ ⩾ 1/(2qk+1) ≫ 1/(M(logM)d) for all n ̸= ℓ by the assumption
ak ⩽ ckd. Applying (4.3) with a suitable r ≫ 1/(M(logM)d) and H =
⌊M(logM)2d+1⌋, we thus get

SN (α, f) =
∑
m∈Z

0<|m|<H

(
1− |m|

H

)
f̂(m)e

2πimα − e2πiNmα

1− e2πimα
+O(1).

Taking the average over N ∈ [1,M ] and introducing

EM :=
∑
m∈Z

0<|m|<H

(
1− |m|

H

)
f̂(m) e2πimα

1− e2πimα
,
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we obtain

AM = EM −
∑
m∈Z

0<|m|<H

(
1− |m|

H

)
f̂(m)e

2πimα − e2πim(M+1)α

M(1− e2πimα)2 +O(1)

= EM +O

(
1 +

H−1∑
m=1

1
m

min
{

1
M∥mα∥2 ,

1
∥mα∥

})

= EM +O

(
max

|ℓ−k|≪log k
aℓ · (log logM)2

)
,

where the last step follows from an obvious modification of the second claim
in Lemma 3.2. This proves (4.1).

Next, we prove (4.2). By the previous three formulas,

SN (α, f)− EM = −
∑
m∈Z

0<|m|<H

(
1− |m|

H

)
f̂(m) e2πiNmα

1− e2πimα
+O(1).

Squaring both sides, and then taking the average over N ∈ [1,M ] yields

1
M

M∑
N=1

(SN (α, f)− EM )2 = VM +O
(√

VM + 1
)
,

where

VM := 1
M

M∑
N=1

∣∣∣∣∣∣∣∣
∑
m∈Z

0<|m|<H

(
1− |m|

H

)
f̂(m) e2πiNmα

1− e2πimα

∣∣∣∣∣∣∣∣
2

.

Following the steps in the proof of Proposition 3.1 shows that the contri-
bution of the off-diagonal terms is negligible, hence

VM =
∑
m∈Z

0<|m|<H

(
1− |m|

H

)2 |f̂(m)|2

|1− e2πimα|2
+O

(
max

|ℓ−k|≪log k
a2

ℓ · (log logM)4
)
.

We can clean up the main term by noting that the contribution of the
terms M < |m| < H is negligible, and that for all 0 < |m| ⩽ M the error
of replacing (1− |m|/H)2 by 1 is also negligible:∑

m∈Z
M<|m|<H

1
m2∥mα∥2 ≪ max

|ℓ−k|≪log k
a2

ℓ · log logM,

∑
m∈Z

0<|m|⩽M

|m|
H
· 1
m2∥mα∥2 ≪

M

H
(logM)2d+1 ≪ 1,
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see the fourth claim in Lemma 3.2. Therefore

VM =
M∑

m=1

|f̂(m)|2

2 sin2(πmα)
+O

(
max

|ℓ−k|≪log k
a2

ℓ · (log logM)4
)
,

and using 1/ sin2(πmα) = 1/(π2∥mα∥2) +O(1) we deduce

1
M

M∑
N=1

(SN (α, f)− EM )2

=
M∑

m=1

|f̂(m)|2

2π2∥mα∥2 +O


√√√√ M∑

m=1

|f̂(m)|2
∥mα∥2 + max

|ℓ−k|≪log k
a2

ℓ · (log logM)4

.
Finally, the first claim (4.1) shows that the error of replacing EM by AM

on the left-hand side is negligible, and (4.2) follows. □

4.2. Indicators of intervals

In the special case f(x) = I[a,b]({x}) − (b − a) with some [a, b] ⊂ [0, 1]
and a badly approximable α, Proposition 4.1 gives

B2
M =

M∑
m=1

sin2(πm(b− a))
2π4m2∥mα∥2 +O

(√
logM

)
with an implied constant depending only on α. The order of magnitude
of B2

M thus depends on the Diophantine approximation properties of the
vector (α, b−a). As we observed in the previous section, B2

M ≪ logM holds
for any [a, b] ⊂ [0, 1]. To establish a lower bound, we need to find positive
integers m for which ∥mα∥ is small, but ∥m(b− a)∥ is bounded away from
zero. In other words, we want the sequence (mα,m(b−a)) (mod 1) to visit
a narrow but long rectangle in R2/Z2 many times. Our proof of Theorem 1.5
is based on a quantitative form of Kronecker’s theorem due to Cassels [17,
p. 97–99].

Lemma 4.2 (Cassels). — Let α1, . . . , αn, β1, . . . , βn and C1, . . . , Cn, Q >

0 be reals. Assume that for any integral vector (m1, . . . ,mn) ∈ Zn,

∥m1β1 + · · ·+mnβn∥

⩽
2n

((n+ 1)!)2 max {C1|m1|, . . . , Cn|mn|, Q∥m1α1 + · · ·+mnαn∥} .
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Then the system of n+ 1 inequalities
∥qαk − βk∥ ⩽ Ck (1 ⩽ k ⩽ n),

|q| ⩽ Q

has an integral solution q ∈ Z.

Proof of Theorem 1.5. — We give separate proofs for rational and irra-
tional values of b− a. First, assume that b− a is irrational. Fix a constant
K > 0 such that

∥qα∥ ⩾ K

|q|
, ∥k(b− a)∥ ⩾ K, ∥qα− k(b− a)∥ ⩾ K/|q|

for all integers q ̸= 0 and all k ∈ {1, 3, 5, 7, 9}. Let us apply Lemma 4.2
with n = 2 and

α1 = α, α2 = b− a, β1 = 0, β2 = 1
2 , C1 = 100

KQ
, C2 = 0.49,

and a large real number Q > 5/K. We need to check that for all (m1,m2) ∈
Z2,

(4.4) ∥m2/2∥ ⩽
1
9 max

{
100|m1|
KQ

, 0.49|m2|, Q∥m1α+m2(b− a)∥
}
.

This trivially holds if m2 is even, and also if |m2| ⩾ 11. We may thus assume
that |m2| ∈ {1, 3, 5, 7, 9}, in which case the left hand side is 1/2. If m1 = 0,
then the last term in the maximum satisfies Q∥m2(b − a)∥ ⩾ QK > 5,
and (4.4) follows. If m1 ̸= 0, then

max
{

100|m1|
KQ

,Q∥m1α+m2(b− a)∥
}

⩾ max
{

100|m1|
KQ

,
KQ

|m1|

}
⩾ 10,

and (4.4) follows once again.
Hence for any Q > 5/K there exists an integer |q| ⩽ Q with ∥qα∥ ⩽

100/(KQ) and ∥q(b − a) − 1/2∥ ⩽ 0.49; the latter inequality is equivalent
to ∥q(b − a)∥ ⩾ 1/100. Since ∥qα∥ ⩾ K/|q|, the integer solution q also
satisfies |q| ⩾ (K2/100)Q. Note that −q is a solution if and only if q is. In
particular, there exist≫ logM integers m ∈ [1,M ] such that ∥mα∥ ≪ 1/m
and ∥m(b− a)∥ ⩾ 1/100. Therefore

M∑
m=1

sin2(πm(b− a))
2π4m2∥mα∥2 ≫ logM,

and the claim follows.
Next, assume that 0 < b − a < 1 is rational, say b − a = s/r with

relatively prime positive integers s, r. Then sin2(πm(b − a)) ≫ 1 for any
integer m not divisible by r. Applying Lemma 4.2 with n = 1; α1 = rα;
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β1 = −α and a large real Q > 0, we similarly deduce that there exists an
integer Q ≪ |q| ⩽ Q such that ∥(qr + 1)α∥ ≪ 1/Q. In particular, there
exist ≫ logM integers m ∈ [1,M ] such that ∥mα∥ ≪ 1/m and m ≡ ±1
(mod r), and the claim follows. □

Finally, we give an alternative proof of Theorem 1.5 for rational b− a =
s/r. As observed, it is enough to show that there exist ≫ logM integers
m ∈ [1,M ] such that ∥mα∥ ≪ 1/m, and m is not divisible by r. The
convergents to α satisfy the identity qℓpℓ−1 − qℓ−1pℓ = (−1)ℓ. Therefore
among any two consecutive convergent denominators, at least one is not
divisible by r. This yields ≫ logM integers m with the desired properties.

4.3. Central limit theorem for functions of bounded variation

Proof of Theorem 1.6. — This is very similar to the proof of Theo-
rem 1.4, so we only indicate the necessary changes. Throughout, constants
and implied constants depend only on α.

We may assume that V (f) = 1, and that BM ≫ (logM)1/3(log logM)2.
We saw in the proof of Proposition 4.1 (cf. (3.11)) that, for 1 ⩽ N ⩽M ,

SN (α, f)−AM = −
∑
m∈Z

0<|m|<M log M

(
1− |m|
⌊M logM⌋

)
f̂(m) e2πiNmα

1− e2πimα
(4.5)

+O((log logM)2).

We will prove that given any ξ ∈ R, withM = qK a convergent denominator
and any qK ≪ QK ≪ qK ,

TN (f) :=
∑
m∈Z

0<|m|<QK log QK

(
1− |m|
⌊QK logQK⌋

)
f̂(m)e

2πi(N+ξ)mα

1− e2πimα

satisfies the central limit theorem: for any t ∈ R,

(4.6) 1
qK

∣∣∣∣{0 ⩽ N < qK : TN (f)
BqK

⩽ t

}∣∣∣∣
=
∫ t

−∞

e−y2/2
√

2π
dy +O

(
K1/3(logK)2

BqK

)
.

The main difference compared to the proof of Theorem 1.4 is that TN (f)
is real-valued, as can be seen by combining the m and −m terms, thus the
limit distribution is now a 1-dimensional standard Gaussian.
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Observe that the coefficients in TN (f) satisfy the same decay as those
in TN : ∣∣∣∣(1− |m|

⌊QK logQK⌋

)
f̂(m) 1

1− e2πimα

∣∣∣∣≪ 1
|m| · ∥mα∥

.

Hence if N is chosen from [0, qK) uniformly at random, then ETN (f) =
O((logK)2) and E|TN (f)|2 = B2

qK
+O(BqK

(logK)2), see VM in the proof
of Proposition 4.1; an analogue of Lemma 3.6. Let

k0 =
⌊

10 logK
log(1/α)

⌋
, S = {0 < |m| < QK logQK : H(|m|)− h(|m|) ⩽ k0} .

As an analogue of Lemma 3.9, we deduce that for 0 ⩽ N < qK ,

TN (f) =
∑
m∈S

(
1− |m|
⌊QK logQK⌋

)
f̂(m)e

2πi(g(N)+ξ)mα

1− e2πimα
+ ZN (f)

with some ZN (f), 0 ⩽ N < qK that satisfies q−1
K

∑qK −1
N=0 |ZN (f)|2 ≪

(logK)4.
Let us choose x from the interval [0, α−K) uniformly at random, and

define

U(x, f) =
∑
m∈S

(
1− |m|
⌊QK logQK⌋

)
f̂(m)e

2πi(G(x,m)+ξmα)

1− e2πimα
,

where G(x,m), m > 0 is as in Section 3.3.4, extended via G(x,−m) :=
−G(x,m) for negative integers. Similarly to Lemma 3.10, we reduce the
central limit theorem for TN (f) to that for U(x, f): we have EU(x, f) =
O((logK)2) and E|U(x, f)|2 = B2

qK
+O(BqK

(logK)2). Further,

sup
t∈R

∣∣∣∣Pr
(
TN (f)
BqK

⩽ t

)
− Φ(t)

∣∣∣∣
= sup

t∈R

∣∣∣∣Pr
(
U(x, f)
BqK

⩽ t

)
− Φ(t)

∣∣∣∣+O

(
(logK)4/3

B
2/3
qK

)
,

where Φ(t) =
∫ t

−∞ e−y2/2/
√

2π dy.
Following the steps in Section 3.3.5, we can approximate U(x, f) by a

sum of independent random variables, leading to

sup
t∈R

∣∣∣∣Pr
(
U(x, f)
BqK

⩽ t

)
− Φ(t)

∣∣∣∣≪ K logK
RBqK

+ R1/2(logK)5/2

BqK

.

The optimal choice is once again R = ⌊K2/3/ logK⌋, in which case the er-
ror term is O(K1/3(logK)2/BqK

). This establishes (4.6), and in particular
Theorem 1.6 for M = qK a convergent denominator.
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Taking the average in (4.5) over N ∈ [1,M ′] and applying Lemma 3.5,
we deduce that for any 3 ⩽M ′ ⩽M ,

|AM −AM ′ | =

∣∣∣∣∣∣∣∣
1
M ′

M ′∑
N=1

∑
m∈Z

0<|m|<M log M

(
1− |m|
⌊M logM⌋

)
f̂(m) e2πiNmα

1− e2πimα

∣∣∣∣∣∣∣∣
+O((log logM)2)

≪
∑

1⩽m<M log M

1
m∥mα∥

min
{

1
M ′∥mα∥

, 1
}

+ (log logM)2

≪
(

1 + log M

M ′

)2
+ (log logM)2.

By (4.2) and the fourth claim in Lemma 3.2, for any 3 ⩽M ′ ⩽M ,

|B2
M −B2

M ′ | =
M∑

m=M ′+1

|f̂(m)|2

2π2∥mα∥2 +O(BM )

≪
M∑

m=M ′+1

1
m2∥mα∥2 +BM ≪ log M

M ′ +BM .

We follow the steps in Section 3.3.6 to extend the result from M = qK (a
convergent denominator) to general M . With the notation of that section,
formula (4.6) gives

1
qℓ

∣∣∣∣{0 ⩽ N < qℓ :
SMℓ,b+N (α, f)−AMℓ,b+qℓ

Bqℓ

⩽ t

}∣∣∣∣
= Φ(t) +O

(
(logM)1/3(log logM)2

Bqℓ

)
.

Here

|AMℓ,b+qℓ
−AM | ≪

(
1 + log qK

qK−k0

)2
+ (log logM)2 ≪ (log logM)2,

and

Bqℓ

BM
= 1 +O

(
log qK

qK−k0

B2
M

+ 1
BM

)
= 1 +O

(
1
BM

)
,
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hence AMℓ,b+qℓ
resp. Bqℓ

can be replaced by AM resp. BM up to a negligible
error O((log logM)2/BM ). Summing over ℓ, b leads to

1
M∗

∣∣∣∣{0 ⩽ N < M∗ : SN (α, f)−AM

BM
⩽ t

}∣∣∣∣
= Φ(t) +O

(
(logM)1/3(log logM)2

BM

)
.

Here M −M∗ ≪ M/(logM)10, therefore we can replace M∗ by M . This
finishes the proof of Theorem 1.6 for general M ⩾ 3. □
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