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Introduction.

We present a rather general study of certain "quasi topologicaF
concepts associated with a capacity C on a topological space X, that
is, an increasing, countably subadditive set function, defined on the
set % (X) of all subsets of X, and such that C(0) = 0.

A set A C X is called quasi closed if there exist closed sets F
with C(AAF) as small as we please, A denoting symmetric difference.
Any finite union or countable intersection of quasi closed sets is quasi
closed. A key result (Theorem 2.7) asserts that if X has a countable
base, and if C is sequentially order continuous from below, then
every non-void class 96 of quasi closed subsets of X which is stable
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under countable intersection has a quasi minimal element, that is, a
set Ho E 9e such that C(HQ\H) = 0 for all H E 96.

As corollaries we obtain the existence of a ^quasi closure^ of
any set A C X, and a l<'quasi support^ for any outer measure on X
which does not chaige the sets E C X with C(E) = 0. Also there are
similar results (§ 3.4) for quasi semicontinuous functions instead of
quasi closed sets.

The method employed has been extracted from a proof given
by Choquet [11] for a theorem of Getoor [18] concerning the fine
topology in potential theory.

In § 4 we introduce a notion of compatibility between the quasi
topology (associated with a given capacity C on the topological space
X) and an actual new topology on X, termed the "fine" topology
(though not always required to be finer than the original topology
on X). For this compatibility it is required

1) that quasi closed sets be precisely the sets equivalent to finely
closed sets,

2) that any set E whose points x are finely isolated in E and of
capacity C({.y}) = 0 should be finely closed, and

3) that these sets E be precisely the sets with C(E) = 0.
After having derived a number of consequences of such a compa-

tibility, we characterize the topologies (if any), compatible with the
given quasi topology, by means of the so-called base operation
(essentially that of forming the finely derived set), which is shown
to determine a kind of "lifting" of the equivalence classes of quasi
closed sets. The question remains open, however, whether such a
lifting always exists under the present very general circumstances.

The final § 5 is intended as a general framework for the study
of various capacities and fine topologies of potential theory, cf.
Brelot [2], [6]. In addition to the capacity C is given a convex cone
U of lower semicontinuous functions u : X ——> [0 , + o0]. Copying
Cartan's definition from the classical case (where ^ is the cone of
superharmonic functions), the fine topology is defined as the coarsest
topology, finer than the original topology on X, such that every u € 'U
becomes continuous. Sufficient conditions are obtained under which
this fine topology be compatible with the quasi topology associated
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with C. Applications, notably to the capacity and fine topology with
respect to a kernel, are sketched (with reference to [15] and a forth-
coming detailed exposition).

1. Capacity as a countably aubadditive set function.

We denote throughout by %(X) the lattice of all subsets of a
set X. In the present introductory section X denotes an arbitrary set
(without topology), exept for § 1.5.

1.1. DEFINITION. — By a capacity on X we understand, in this
paper, an increasing, countably subadditive set function C on %(X)
into [0 , + o°] such that C(0) = 0. Thus we should have, for all
sets A^ , A^ ,. . . C X :

(C^) A, C A, ==> C(A,) < C(A,) ,

^) CCUNA-)<^C<A" )•

(€3) C(0) = 0 .

Throughout this paper C will denote a fixed capacity on X in
the above sense.

1.2. A property P[x] involving the generic point x G X is said
to hold quasi everywhere (q.e.) in a set A C X if

C({xGA|non P[x]}) = 0 .

In the case A = X we may write simply q.e. (in place of q.e. in X).

1.3. A pre-order relation -< is defined on the lattice [— °° , + oo^
of all functions X ——> [ — 0 0 ^ 4 - 0 0 ] by

l / i^ fz\ <====> [/iCcXAOO q.e.] .

The associated equivalence relation (C-equivalence) is denoted by ^ :

[A -Al <==> [W = W q-e.l .
Identifying sets A C X with their indicater function, we may view
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%(X) as a sublattice of I"-00,-^00^, and the relations ^ and ~
induce corresponding relations (of pre-order and equivalence, respec-
tively) on %(X), for which we use the same notations. Thus we have
for sets AI , A^ C X

[A, < AJ <———> [C(A^\A,) == 0] ,

and we read this as follows : A^ is quasi contained in A^ (or A^ quasi
contains A^ , or A^ contains quasi every point of A^). Similarly,
[AI ^ A^] < > [C(A^ A A^) = O], A denoting symmetric difference.

1.4. Quasi uniform convergence, — Let Y denote a uniform space,
e.g. [— °° , + oo]. We say that a sequence of functions/,, : X ———> Y
converges quasi uniformly to a function / : X ——> Y if there cor-
responds to every £ > 0 a set a; C X with C(co) < £ such that /„
converges uniformly to / on X\co.

In the affirmative case we clearly have fn(x) ——> f(x) point-
wise quasi everywhere. The quasi uniform convergence of (fn)n<:n ^°
f depends (like conveigence q.e.) only on the equivalence classes of
/ A , A . • • . .

1.5. Outer capacity, - A capacity on a topological space X will
be called an outer capacity if, for every set A C X,

(€4) C(A) = inf{C(G) | G open , G D A} .

Note that, in case of an outer capacity C on a topological space
X, the set ^ occurring in the definition of quasi uniform convergence
may be taken to be open. A similar remark applies to the set G; occur-
ring in the definitions of certain "quasi topological" concepts in the
subsequent sections.

1.6. Remark — All the definitions and results of the present
paper could be carried over with the appropriate modifications in the
proofs to capacities with values in a certain type of complete lattice
with a suitable notion of addition. This lattice should have the pro-
perty that every family of elements of the lattice should contain a
countable subfamily with the same infimum. Disregarding its largest
element, the lattice should, moreover, be a semigroup under the
addition. We shall not specify here the relevant order properties of
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this addition, but only mention one interesting example from potential
theory of such a complete "lattice semigroup" which may replace
[0 ,4- oo], viz. the lattice of all hyperharmonic functions > 0 (on a
harmonic space) with the natural pointwise notions of order and
addition (cf. § 5.6, in particular note 11).

2. Quasi open, quasi closed and quasi compact sets.

Throughout the rest of this paper, X will always denote a topo
logical space. In contexts involving compact subsets of X it is tacitly
assumed that X is separated, i.e., a Hausdorff space. The closure of a
set A C X is denoted by A. We continue the study of a capacity C on
X in the sense of Definition 1.1.

2.1. DEFINITION. — A set A C X is called quasi open (quasi closed,
quasi compact) with respect to C if

inf{C(AAE)|E open (closed, compact)} = 0 .

Equivalently, there should exist sets a; C X with C(a;) as small
as we please and such that A\co may be extended to an open (closed,
compact) subset of X by adding points of a?. In other words (leaving
out the quasi compact case), A\o? should be open (resp. closed) rela-
tively to X\o?.

Clearly, A is quasi open if and only if X\A is quasi closed. Each
of the 3 notions depends only on the equivalence class of the set A.

2.2. The case of an outer capacity. — In that case the set a; in the
above definitions may be taken to be open.

LEMMA. — If C is an outer capacity then

[A quasi open] < > [inf{C(E\A) |E open, E D A} = 0] , (1)
[A quasi closed] < > [inf{C(A\E)|E closed, E C A} = 0] , (2)
[A quasi compact] < > [inf{C(A\E)|E compact, EC A} =0]. (3)

Proof. — The quasi open case is reduced to the quasi closed case
by duality. If A is quasi closed (quasi compact) there exists an open



128 BENT FUGLEDE

set o? with C(co) as small as we please such that A\co may be extended
to a closed (compact) subset of X by adding points of a?. Since X\Q}
is now closed, the set E : = A\co is itself closed (compact), and
A\E C c*; has arbitrary small capacity. B

2.3. LEMMA. — Any countable union or finite intersection of
quasi open sets is quasi open. Any countable intersection or finite
union of quasi closed (quasi compact) sets is quasi closed (quasi
compact).

Proof. — Follows easily by use of the countable subadditivity
of C under observation of the inclusions

(UAJA(UE^)CU(A^AE^) ,

(nA^A(nE^)CU(A^AE^) ,

valid for arbitrary subsets of X. D

Remark. — The intersection of a quasi compact set and a quasi
closed set is quasi compact. In particular, any quasi closed subset of
a quasi compact set is quasi compact.

2.4. Quasi stable capacity. — The capacity C on the topological
space X is called quasi stable if every set A C X is contained in some
quasi closed set H such that C(H) = C(A).

On account of the preceding lemma, C is quasi stable if and
only if, for every A C X,

C(A) == inf{C(H) | H quasi closed, H > A} . (4)

2.5. THEOREM(1). — Each of the following conditions is necessary
and sufficient for a capacity C to be quasi stable :

(1) This result is inspired by Choquet [10] who proved (using properties of the
fine topology) that the classical newtonian outer capacity has the property a).
Choquet also noted that a) implies b), and that one may add, in a), the further
requirement that Ai be "stable" in the sense that C(A^) = C(A^, and simi-
larly that, in b), all the sets A^ may be required to be stable. He further es-
tablished that, under certain additional assumptions, one may replace E by 0
in b), but in that case the sets A^ cannot always be chosen to be stable sets,
not even in case of newtonian outer capacity.
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a) Every set A C X admits, for every £ > 0, a partition A = A^ U E
such that

C(Ai)<C(A) , C(E)<£ .

b) Every set AC X admits, for every e > 0, a partition

A = U A., U E
wcN "

such that

S C(A^) < C(A) + e , C(E) = 0 .
weN

Proof. — It suffices to consider the case C(A) < + oo. Suppose
first that C is quasi stable according to the definition above. Choose
closed sets F^ C X so that C(HAF^) < £/2", and put F = HF^ ,
AI = A OF, E = A\F. Then Ai C F C F^ for each n, and hence

C(Ai )<C(F^)<C(H)+£/2" ,

showing that C(A^) < C(H) == C(A). On the other hand,

E C H \ F C U ( H \ F ^ ) ,

and so C(E) < £. This establishes a).
The implication a) > b) is obtained by repeated application

of a) :
A = = A ^ U E i , C(Ai)<C(A) , C(Ei)<£/2 ,

E, == A^ U E, , C(A^) < C(Ei) , C(E,) < £/22 ,

etc. This leads to b) with E = H E.. .
»eN n

Finally, suppose b) holds for some set A. Writing Bo = 0 and

B ^ = A i U . . . U A ^ , ^^^ '

we have H ?- A because C(E) = 0 and

H D U B. = U A. = A\E .
neN " weN n

To show that H is quasi closed we consider, for p = 0 , l , 2 , . . . ,

H\B, = ̂  (B^)C ̂  B,, -B,C ̂  (A^,U...UA^)

U A_ ,
»>p "
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C(H\B^)< S C(A^)——>0 as p ——> oo
n>p

because S C(A^) < C(A) + £ < oo . Since B« is a closed subset of
ncN

H, we have proved that H is quasi closed. Taking instead p = 0, we
find

C(H) < S C(A^) < C(A) + £ .
weN

Having thus established (4), we conclude that C is quasi stable. D

2.6. LEMMA. — A quasi closed set A^ is quasi contained in a
quasi closed set A^ ;/ and only if

C(A^ H a?) < C(A^ H a?) /or every open set a?.

Proof. — The necessity is obvious. As to the sufficiency, the
stated inequality extends to quasi open sets c*;. In fact, let G be
open, and C(GA(x;) < £. Then

C(Ai n cj) < c(Ai n G) + £ < CCA^ n G) + £ < C(A^ n ex;) + 2£ ,
and hence C(A^ 0 a;) < C(A^ 0 a;). It remains only to apply this to
^ = X\A^ . [|

2.7. Existence of quasi minimal sets. — In compensation for the
fact that the intersection of a non-countable family of quasi closed
sets need not be quasi closed (even in the classical newtonian case),
we have the following main result (cf. [15]).

THEOREM. — Suppose that the topological space X has a coun-
table base of open sets, and that the capacity C is sequentially order
continuous from below in the sense that

^N A") = ̂  ̂  (5)

for any increasing sequence of sets A^ C X. Then every non-void
class 3€ of quasi closed subsets of X which is stable under countable
intersection has a quasi minimal element H^ , that is, a set H^ E 3C
which is quasi contained in any other set H e 9C .
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//, in addition, 96 is saturated wth respect to C-equivalence,
that is, if 96 is a union of equivalence classes of subsets of X, then
the set of all quasi minimal elements of 96 is an equivalence class
of subsets of X.

There is of course a dual version of the theorem asserting the
existence of a quasi maximal element of every class of quasi open
sets which is stable under countable union.

Proof. — (inspired by Choquet [11]). Let {(^n^ne^ denote a
countable base of open subsets of X. We may assume without loss of
generality that any finite union of sets from this base belongs to the
base.

For every set A C X there exists a set H C 96 such that

C(A H H) < C(A 0 E) for every E €36 .

In fact, we may take H = H £„ , where the sets E,, E 96 are so
wcN

chosen that
inf C(A H E.) = inf C(A n E) .
weN Eex

Applying this construction to A =€< ;„ , we obtain sets Hy, G 96 such
that

C(^nH^)<C(^nE)

for w G N , EG 96. It follows that H^ : = H H,,e96, and that
weN

C(c^ n Ho) < C(<^ r^ H^) < C(<^ n E)
for w G N , EG 96. Since every open set Cx; C X is the union of an
increasing sequence of sets from our base {^n^ne^ » ^d since C is
supposed to be sequentially order continuous from below, it follows
that C(Q;nHo)<C(c<;nE)

for every open set a; and every E€36. Since 96 consists of quasi
closed sets, this means, according to the above lemma, that HQ is
quasi contained in each E G 36 . D

2.8. Quasi closure. Quasi interior. — By a quasi closure of a set
A C X we understand a quasi minimal element in the class of all
quasi closed sets which quasi contain A.
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THEOREM. — Under the hypotheses of Theorem 2.7 every set
A C X has a quasi closure. The set of all quasi closures of A is an
equivalence class depending only on the equivalence class of A.

Proof. - Follows at once from the above theorem and the remark
to it when applied to the class of all quasi closed sets quasi containing
A. This class is, in fact, saturated and stable under countable inter-
section, and it depends only on the equivalence class of A. [

By duality we obtain similarly the existence of an equivalence
class of quasi interiors of a set A, that is, quasi maximal elements in
the saturated class of all quasi open sets quasi contained in A.

Remark — Still under the hypotheses of Theorem 2.7, C is quasi
stable if and only if C(A*) = C(A) for every set AC X and every
quasi closure A* of A.

2.9. Quasi support. — As a further application of Theorem 2.7 we
consider, in addition to the given capacity C, another such capacity ^
on X (e.g. an outer measure on X). We suppose that

[C(E) = 0] ==> [^(E) = 0]

for E C X. Denote by 3€(p.) the class of all sets H which are quasi closed
(with respect to C) and which carry ^ in the sense that ;i(X\H) = 0.
Clearly 9€(p.) is saturated and stable under countable intersection.
Under the hypotheses of Theorem 2.7 there corresponds to ^ an
equivalence class of quasi supports, that is, quasi minimal elements in
96(^1). This result is the quasi topological analogue to Getoofs theorem
[18] in the fine topology of potential theory (cf. Choquet [II], and
Cor. 2 to Theorem 4.4 below).

2.10. Capacity for decreasing sequences. — Let X be ^Hausdorff
space, and denote by 9C = 3C(X) the class of all compact subsets ofX.
Any outer capacity C on X is order continuous from above on 9C,
that is,

C^K^=infC(KJ (6)

for any downward directed family (K^y) of compact sets. (In fact, any
open neighbourhood of 0 K^ contains some K^). This property, when
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applied just to decreasing sequences of compact sets, carries over to
the case of quasi compact sets :

THEOREM. — Let C denote an outer capacity on a Hausdorff
space X. For any decreasing sequence (H^y,^ of quasi compact sets
H^ C X "we have

C( H H\ = inf C(H^) .
V w e N n) neN "

Proof (2). — Given £ > 0 choose compact sets !€„ C H^ so that
C(H^\K^) < e|2n (cf. Lemma 2.2), and put

K;. = ^ K. , K = 0 K;. = n K^ .
" p=l p weN n m?N n

The sequence (K^)^^N ls decreasing, and K C n H^ . Since (Hy,)y,^
weN

is decreasing, we have for every n G N

H»\K, C ̂  (Hp\Kp) ,

and hence
C(H,,) < C(K») + C(H^\K») < C(K») + £ .

It follows that

Cf n H\ >C(K) = inf C(K,)> inf C(H^) -e . B
\ neN / neN weN

Remark — The property (6) remains valid for any downward
directed family of closed sets contained in a quasi compact set (cf.
the proof of [13, th. 7.2]). For a refinement see Cor. 4 b) to Theorem
4.4 below.

At this point we recall a capacitability theorem of Choquet [9]
according to which every SC-Souslin set A C X is (C , iK^-capacitable
in the sense that

C(A)= sup{C(K)|KG3C , K C A } ,

(2) This result was stated incorrectly in Fuglede [15, Lemma 2], where "quasi
closed sets of finite capacity" should be read as "quasi compact sets" (as above).
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provided that the outer capacity C has the property (5), § 2.7, of
sequential order continuity from below (on arbitrary sets)(3).

2.11. Relation to capacities subadditive on compact sets. —
Consider an increasing mapping c of the class 3C = 3C(X) of all
compact subsets of a Hausdorff space X into [— °° , + °°], and define
increasing set functions c^ , c* : % (X) ———> [ — 0 0 ^ + 0 0 ] by

c^(A) = sup {c(K) | K compact, K C A} ,
c*(A) = inf{c^(0)|0 open, 0 C A} ,

for arbitrary sets A C X. Clearly c^(A) < c*(A) for every set A. We
call a set A capacitable (with respect to c, or c-capacitable) if
c*(A) = c^(A), and we may then write c(A) for this common value.
This is justified since c^(K) = c(K) for every compact set. Every
open set is capacitable. For any upward directed family of open sets
0^ it follows from the Borel-Lebesgue theorem that

c(UO^)= supc(OJ . (7)

If every compact set is capacitable, that is, if c is a capacity in
the original sense of Choquet [8, § 15], then dually

c (nK^)=infc (K^) (8)

for any downward directed family of compact sets K^ (cf. (6) above).
Suppose now, in addition, that c(0) = 0 and that c is subadditive

on3C :
c(KiUK2)<c(Ki)+c(K2)

for arbitrary compact sets Ki , K^ . Then c^ is subadditive on open
sets, and in fact countably subadditive on such sets in view of (7).
Consequently c* is countably subadditive on arbitrary sets. Note also
that c*(0) = c^(0) == c(0). Thus c* : %(X) ——> [0 , + oo] is an
outer capacity, that is, c* satisfies the requirements (C^), (C^), (€3),
(C^) (§ 1.1, § 1.5). Moreover, a set A CX is (c* ,30-capacitable
(§ 2.10) if and only if A is c-capacitable, c*(A) = c^(A).

The capacities which have the form c* with c as above are pre-
cisely those outer capacities C for which all open sets are (C , 9C)-

(3) The same holds with SC replaced by the class 3^ * of all quasi compact sets
(use Theorem 3.7). Actually, this leads only apparently to an extension of the
above result because every quasi compact set is equivalent to a set of class
SCff, and hence every '̂"-Souslin set is equivalent to a S^C-Souslin set.
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capacitable. In particular, if every open subset of X is of class 9Cy
(e.g. if X is a locally compact space with a countable base of open
sets) then every outer capacity C which is sequentially order conti-
nuous from below (cf. (5), § 2.7) has the form c*.

3. Quasi continuity and quasi semicontinuity.

We consider again a capacity C on a topological space X (separated
in contexts involving compact sets). We use the abbreviations l.s.c.
(resp. u.s.c.) for lower (resp. upper) semicontinuous.

3.1. DEFINITION. — A function f : X ——> |— oo ^ + oo] is called
quasi continuous (resp. quasi l.s.c., quasi u.s.c.) if there corresponds
to every e > 0 a subset o^ofX with C(o?) < e such that the restric-
tion off to X\G; is continuous^) (resp. l.s.c., u.s.c.). — Note that a?
may be taken to be open if C is outer.

It is evident that / is quasi continuous if and only if / is both
quasi l.s.c. and quasi u.s.c. Moreover, / is quasi l.s.c. if and only if
— / is quasi u.s.c. Each of the 3 classes of functions is a sub lattice of
[— oo , + oo^ ^ stable under addition (when defined) and under multi-
plication by constants > 0, and furthermore saturated with respect
to the equivalence relation defined in § 1.3. The class of quasi l.s.c.
(resp. quasi u.s.c.) functions is easily shown to be stable under coun-
table supremum (resp. countable infimum).

3.2. THEOREM. — Each of the 3 classes of functions (quasi conti-
nuous, quasi l.s.c., quasi u.s.c.) is closed under quasi uniform conver-
gence of sequences.

Proof. - Choose 0:0 C X with C(c^) < £/2 so that /„ ——> /
uniformly on X\O;Q . For every n = 1 , 2 , . . . choose a;̂  C X with
C(c^) < ^/2n+l so that /„ is continuous, l.s.c., or u.s.c., respectively,
relatively to X\o?^ . Then a? : = a;o U a?i U co^ U . .. has C(o?) <£,

(4) Continuity is not understood to imply finiteness.
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and the restriction of/ to X\cj is the uniform limit of the continuous,
Ls.c., or u.s.c. restrictions of/,, to X\o;. [|

Remark — With the obvious extension of the notion of quasi
continuity to mappings ofX into a topological space Y, we note that
the class of all quasi continuous mappings ofX into Y is closed under
quasi uniform convergence of sequences whenever this makes sense,
that is, when Y is a uniform space.

3.3. LEMMA. - In order that a function f : X ——> [ — 0 0 ^ 4 - 0 0 ]
be quasi l.s.c., resp. quasi u.s.c., it is necessary and sufficient that the
set

{jcex|/0c)< r} , resp.{xex|/(;c)> 1} ,

be quasi closed for every real t.
In its equivalent dual form the condition states that the sets

where f(x) > t, resp. f(x) < t, should be quasi open. Note that, on
account of Lemma 2.3, it suffices to verify the condition in question
for all t belonging to some dense set of reals.

Proof. — The necessity of the condition is obvious. As to the
sufficiency, say in the quasi u.s.c. case, let (t^ne^ d011^ a dense
sequence of reals such that H^ : = {x € X \f(x) > t^} is quasi closed
for every n E N. There exist sets Cx;^ C X with C (€<;„) < £/2" such that
H^\o?^ is closed relatively to X\c^ . For the set a? : = U a?^ we find
C(o}) <e, and/is u.s.c. relatively to X\co because the sets H^\o; are
closed relatively to X\co. B

Remark — Let Y denote a topological space with a countable
base of open sets. In order that a mapping /: X ———> Y be quasi
continuous it is necessary and sufficient that /^(ft) be quasi open
for every open set S2 C Y. It suffices to verify this condition for sets
Sl from a base for Y. Proof as above.

3.4. THEOREM. — Suppose that the topological space X has a
countable base of open sets, and that the capacity C is sequentially
order continuous from below (cf. Theorem 2.7.). Then every non-void
set $ of quasi u.s.c. functions on X which is stable under countable
infimum has a quasi minimal element /o, that is, a function /o G $
such that /o ^ / for every /€ $ .
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//, in addition, $ is saturated with respect to ^.-equivalence
(§ 1.3), that is, if 4> is a union of equivalence classes of functions,
then the quasi minimal elements of $ constitute an equivalence class
of functions.

There is a dual version of the theorem asserting the existence
of a quasi maximal element of every set of quasi Ls.c. functions stable
under countable supremum.

Proof. — We merely utilize the conclusion of the analogous
Theorem 2.7 concerning quasi closed sets. For every ^ € [— oo , + oo]
put for brevity

Ef,={x^X\f(x)>t}

for functions / : X ——> [— oo ^ -j- oo]^ and write

^=={E^|/e$}.
According to Lemma 3.3, 9^ is a class of quasi closed sets. Clearly,
30^ is stable under countable intersection. It follows from Theorem 2.7
that there exists a quasi minimal element Hy of 3^ . Denote by Ay a
function from $ such that E/ = H y . Then the function/o defined by

/o00 = mf{hy(x)\r rational}

belongs to $. For every /€ $ and every t we have E^E ggy and hence
E^ > H y . Consequently,

E^ = H {Ef I r rational, r < t}

> 0 {HJ r rational, r < t}3 E^° .

As to the last inclusion note that, for every x € Ey° and every rational
r < t, we have hy(x) > f^(x) > t > r, and hence x e E^ = H^ . It
now follows that f>fo because the set

{x^X\f(x)<f^(x)}= U {x€X\f(x)<t<f^x)}
t rat.

is a countable union of sets Ey°\E^ of capacity 0. fl

3.5. Q^flsz M.5.c. envelope. — For any function

/ : X ——> [- oo , + oo]
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let <&(/) denote the class of all quasi u.s.c. functions

h : X ——> [- oo , + oo]

such that h> /, that is h >/q.e. Then $(/) is saturated and stable
under countable infimum, and it depends only on the equivalence
class of /

By a quasi u.s.c. envelope o f /we understand a quasi minimal
element of $(/). As a corollary of the above theorem we have the
following result.

THEOREM. — Under the hypotheses of Theorem 3.4 every func-
tion f : X ———> [— °° , + °°] has a quasi u.s.c. envelope. The set of
all such envelopes of f is an equivalence class depending only on the
equivalence class off.

3.6. Quasi limit at infinity. — In view of certain applications
elsewhere we introduce the following definition :

Let C denote an outer capacity on a Hausdorff space X. A func-
tion / : X ———> [~ °°, 4- 00] is said to have the quasi limit 0 at
infinity if there are open sets a? C X with C(c*;) as small as we please
such that the restriction of/to Co; vanishes at infinity in the closed
(hence locally compact) subspace Cco of X. (If X is compact, any
function on X is said to have the quasi limit 0 at infinity).

The class of all functions /: X ———> [ — 0 0 ^ + 0 0 ] having the
quasi limit 0 at infinity is closed under quasi uniform convergence
(cf. proof of Theorem 3.2).

LEMMA. - In order that a function f : X ———> [0 , + oo] be
quasi u.s.c. and have the quasi limit 0 at infinity, it is necessary and
sufficient that {x € X 1/Qc) > t} be quasi compact for every t > 0.

Proof — Necessity : Clearly there corresponds to any £ > 0 an
open set a? C X such that the restriction o f / t o Co; is u.s.c. and
vanishes at infinity. Writing H : ={xGX| / (x )> t}, we infer that
H\CJ is compact. — Sufficiency : Suppose just that

H.. :={xCX\f(x)>t}
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is quasi compact for every ^ from some dense sequence of reals > 0.
Proceeding as in the proof of the analogous Lemma 3.3, we find for
any s > 0 an open set G) = U a;^ with C(o?) < £ such that/is u.s.c.
and vanishes at infinity relatively to C a? because each of the sets
Hy,\co C Hy,\c^ is compact. B

4. Quasi topology and ^fine" topology.

4.1. The base of a set. — Let X denote a set endowed with a
topology. With a view at the applications below (where this topology
is not the initially given topology on X), we denote the closure of a
set A by A. A set E C X will be called discrete if every point of x is
isolated in E (that is, if the topological subspace E is discrete).

Let there be given a certain subset XQ of X. In view of the
potential theoretic applications, (cf. §§ 5.6 and 5.7), the points of
XQ will be called the polar points of X. (In classical potential theory
in R", the only non polar point is the point at infinity, which it is
sometimes convenient to adjoin to R", n > 3).

DEFINITION. - The base b(A) of a set AC X is the set of all
points of A \\^hich are not both polar and isolated in A.

Equivalently,

(x€(A\{x})" for jcGXo ,
x G A for xE CXo .

xeb(A)

In the case XQ = X where all points of X are polar, b (A) reduces
to the derived set (the set of all "limit points" for A).

Immediate consequences. — For any set A C X we have :

b(A)CA. (9)
b(A)\A = A\A . (10)
A = A U 6 ( A ) . (11)
[A closed] <=====> [b (A) C A] . (12)
b(A)=A\(A\b(A)) . (13)
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Thus A\b(A) is the discrete set of all isolated, polar points of A.
Conversely, any discrete set E of polar points, that is, any set E
such that E H&(E) = 0, has the form E = A\b(A) (e.g. with A = E).

The base mapping b : %(X) ——> %(X) is additive (in particular
increasing) :

b(A,UA^)=b(A,)Ub(A^) . (14)

Let us now assume that every polar point forms a closed set :
{x}" = {x} fo^ any x G X^ . Then it is an elementary fact from topology
that A and A have the same isolated polar points and hence also the
same base. Thus

b(A) = b(A) , A\6(A) = A\&(A) . (15)

4.2. The base of a function. — The above notions extend to
functions / : X———> [0 , + oo] in the obvious way. The M.&C. en-
velope f and the base b(f) of/are defined as functions on X to
[0 , + oo] by

f(x) == lim sup/00 (16)
y->x

I lim sup f(y) for x e X^ ,
i^f f\ f \ 1 y-^-x , y F xb(f)(x) = ^ ^ (17)

( 7(x) for x G CXo .

It is understood that b(f) (x) = 0 for any isolated polar point x G Xo .
The base mapping b : [0 , + oo^ ———> [Q ^ + oo^ is clearly an

extension of the base mapping of sets when these are identified with
their indicator functions :

^l^ l.(A).

The relations (9)-(12) may be generalized to the case of functions
/ •' x ——^ [0 » + °°]. Thus b(f) < /, with equality at any point x
such that J ( x ) > f(x). In other terms,

?= /v6 ( / ) ,

showing that / is u.s.c. (that is, J ==/) if and only if b(f)<f.
Moreover,

b(f, v/,) =&(/,) vfc(/,) .
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If every polar point of X forms a closed set, it is easily verified that /
and / have the same base :

b(f) = b(f) .

We now impose a much stronger condition.

THEOREM(5). — Suppose that any countable union of discrete
sets of polar points is discrete and closed. Then

a) b(b(f)) = b(f) = b(f) for any f : X ——> [0 , + oo] .
b) Any convergent sequence of polar points is constant from a

certain step.
c) Any compact subset of X contains at most a finite number

of polar points.
d) // X is locally compact, the set XQ of all polar points is

discrete.
e) // X satisfies the first axiom of countability, XQ is discrete.

Proof. — Note first that any polar point x forms a discrete and
hence closed set x . More generally, any countable set of polar points
is discrete and closed. (The properties b)—e) depend only on this
latter consequence of the hypothesis of the theorem).

Ad a). For t > 0 write

E, ={x C X | b(f) (x) < t < J(x)} .

Any point x E E^ is polar, hence closed. It follows that x is isolated
m{y G.X\ f(y)> t},2i fortiori in E^ . This shows that Ey is a discrete
set of polar points, and consequently the union E = U{E^ 1 1 rational}
is a discrete and closed set of polar points, by our hypothesis. It is
clear, however, that any two functions f^ , f^ : X ——> [0 , + °°]
which differ only in some discrete and closed set E C XQ , have the
same base. Since, in particular, b(f) = f except in the above discrete

(5) In classical potential theory the fine topology, introduced by Cartan [7], sa-
tisfies the hypothesis of this theorem. In the absence of non polar points,
the base b(A) coincides here with the finely derived set (the set of all fine
limit points for A). It consists of all points of X at which A is not thin (effile)
in the sense of Brelot, cf. e.g. Brelot [1] or [6] (See also Theorem 5.2 below). -
For an extensive and more general study of topologies such as the fine topo-
logy, see Doob [12].
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and closed set E C Xg , we conclude that b(b(f)) =&(/), which in
turn equals b(f) as remarked above.

Ad b). For any sequence (x^) of polar points x^ converging to
some point x G X, the countable set of all x^ =^= x is closed and hence
finite since it does not contain the limit x.

Ad c). Any countable set C K H XQ (K compact) is discrete and
closed, hence compact and consequently finite.

Ad d). Any polar point x €: XQ has a compact neighbourhood K.
Since K HX^ is finite, {x} is open relatively to K FiXg and hence
also relatively to XQ because K HX^ is a neighbourhood o f x i n X o .

Ad e). If X (or just Xo) satisfies the first axiom of countability,
and if x G XQ were not isolated in XQ , then there would exist a
sequence of points of Xg , different from x and converging to x,
which contradicts b). B

4.3. Topology compatible with the quasi topology. — In the
sequel X denotes a topological space and C : %(X) ——> [0 , + °°]
a capacity on X in the sense of Def. 1.1.

In addition to the given (or "initial") topology on X we shall
consider another topology on X, termed the "fine" topology (although
we do not require here that it be finer than the initial topology).
Topological notions pertaining to this new topology on X will be dis-
tinguished by the qualification "fineOy)". We denote by A the fine
closure of a set A C X, and by A the closure of A in the initial topo-
logy on X.

We shall appeal to the content of §§ 4.1. and 4.2., taking from
now on as polar points those points x €E X for which C({x}) = 0. Thus
we put

Xo={xeX|C(W)=0} ,

and we define the base b (A) of a set A C X according to Def. 4.1 as
the set of all points of A which are not both polar and finely isolated
(in A). Similarly, the finely u.s.c. envelope /and the base b(f) of a
function / : X ——> [0 , + °°] are given by (16), (17) :

/ (x) = fine lim sup f(y) ,y->x
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/ fine lim sup f(y) if C({x}) = 0 ,
\ y->x , yfx

b(f)W= ^
( f(x) i fC({x})>0 .

DEFINITION. — A new topology (termed "fine") on X is said to
be compatible with the quasi topology determined by the capacity
C on X if the following two conditions are fulfilled :

(T\) A set A C X is quasi closed if and only if it is C-equivalent
to some finely closed set.

(T^) For any set EC X we have the implications

[E 0 b(E) = 0] =====> [C(E) = 0] ==> [b(E) = 0] .

The property (T^) states that a set E has capacity 0 if and only
if E is a finely discrete set of polar points (points of capacity 0), and
further that any such set is finely closed. (It follows then that
b(E) = 0).

In particular, the hypothesis of Theorem 4.2 is a consequence of
(T^). - We mention in passing that the fine topology of Cartan in
classical newtonian potential theory is compatible with the quasi topo-
logy determined by the newtonian capacity (see § 5.6 or § 5.7 below).

LEMMA. — CI\) implies the following statements :
a) A mapping f of X into a topological space Y with a countable

base of open sets is quasi continuous if and only iffis finely conti-
nuous(6) relatively to some set X\E with C(E) = 0.

b) A function f : X ———> [ — 0 0 ^ + 0 0 ] is quasi u.s.c. (resp.
quasi Isx.) if and only if f is finely u.s.c. (resp. finely IsxJ relatively
to some set X\E with C(E) = 0.

Proof — Ad a). Let (i2^) denote a countable base of open
subsets of Y. If / : X ——> Y is finely continuous relatively to
X\E, where C(E) = 0, then the sets /"^ft^AE are finely open re-
latively to X\E, hence of the form G^\E with G^ finely open. It follows
from CI\) applied to X\Gy, that G^ is quasi open, and so is therefore

(6) The fine continuity refers to the (induced) fine topology on (subsets of) X,
and the given topology on Y.
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/"^ft^), being equivalent to G^ since C(E) = 0. Consequently /is
quasi continuous by the remark to Lemma 3.3. — Conversely, suppose
that / : X ——>Y is quasi continuous. Then /"^ft^) is quasi
open, hence equivalent to some finely open set G^ , again by comple-
mentation of (Ti). Writing E^ :==/^(ft^A G,, and E == U E^ , we
thus have C(E^) = 0 and hence C(E) = 0. We show that the restriction
of / to X\E is finely continuous at any point xGX\E. For any n
such that f(x) G Sl^ the set /~1 (S2y,)\E = G^\E contains x and is open
in the induced fine topology on X\E.

Ad b). Proceed as above, but with Sl^ replaced by [— °°, ty\
(in the case of upper semicontinuity), where t^ ranges over the ra-
tional reals, and apply Lemma 3.3. Next replace/by—/, fl Conversely,
(Ti) is a particular case of b).

REMARK. — Since we have allowed infinite values for / in sta-
tement b), the fine semicontinuity of / relatively to some set C-
equivalent to X amounts (even without the hypothesis (T^)) to the
apparently stronger property that / is C-equivalent to some finely
(upper, resp. lower) semicontinuous function h on X (that is, / = h
quasi everywhere). In fact, we may take for h (say in the case of
upper semicontinuity) the finely u.s.c. envelope of the function
which equals / in X\E and — oo in E. — Note however that a quasi
continuous function / : X ——> [— oo , + oo] need not be equivalent
to any finely continuous function. In the newtonian case this appears
e.g. from the example f(x) := sin(l/|jc|) for x =^= 0 (the value at
x = 0 being immaterial).

THEOREM. — Suppose that a new topology on X (called the "fine"
topology) is compatible with the quasi topology determined by the
capacity C. Then the following statements hold :

a) A mapping f of X into a topological space Y with a countable
base of open sets is quasi continuous if and only iff is finely conti-
nuous quasi everywhere.

b) The following are equivalent for any function

f : X —————> [- CO , + 00] :

1) / is quasi u.s.c., 2) f is finely u.s.c. quasi everywhere, 3) / is C-
equivalent to some finely u.s.c. function, 4)/^ /.
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c) For any function f : X ——> [0 ,4- oo], we have b(f) ̂  /.
The base b(f) is the smallest finely u.s.c. function majorizing f quasi
everywhere. Hence b(f) and f are both quasi u.s.c. envelopes off.
In particular, b(f) ̂  f ^ f if f is quasi u.s.c.

d) For any functions f^, f^ : X ——> [0 , -I- °°] we have the
implications

[A</2 q.e.] ==>[b(f,)<b(f^] ,
[/i =/2 q.e.] ====> [b(f,) = 6(/2)] .

The converse implications hold if f^, and in the latter case also f^,
is quasi u.s.c.

Proof. — Ad a). According to the above lemma it remains only
to establish the "only if" part. For this we merely use the "only if"
part of (T^) together with the implication

[C(E) = 0] => [C(E) = 0] ,

which is a consequence of (T^) (and actually needed at this point,
like CI\), as shown by taking /= Ig). Thus let /: X ——> Y be
quasi continuous. By the lemma, / is then finely continuous relatively
to X\E for some set E C X with C(E) = 0. It follows that/is actually
finely continuous in the finely open set X\E, and hence quasi every-
where since C(E) = 0.

Ad b). Without any hypothesis, 2) and 4) are equivalent and
imply 3). According to the above lemma and remark we have equi-
valence between 1) and 3) under the sole hypothesis (T\). Finally,
3) implies 2) by the above consequence of (T^) (which again is also
a necessary condition).

We proceed to establish the former part of c) and of d), now
under full use of (T^) as well as (T\). According to the proof of
Theorem 4.2 a), &(/) equals / except in some finely discrete set E
of polar points, that is, by (T^), a set E such that C(E) = 0. It was
also noted that changing a function / in a finely discrete and finely
closed set E of polar points (that is, a set E such that b (E) = 0)
does not affect the base b(f). In view of (T^), this implies the former
part of d).

As to the remaining assertions of c), let h : X ——> [0 , 4- oo]
be quasi u.s.c., and suppose that h > f q.e. It follows from the former



146 BENT FUGLEDE

part of d) that b(h) > b(f) everywhere. Since h ^ h ^ b(h) by b)
and the former part of c), we conclude that h > b(f) q.e., and so
b(f) is a quasi u.s.c. envelope of/. Taking h to be even finely u.s.c.,
that is, h > b(h), our argument shows moreover that b(f) is the
smallest finely u.s.c. function > / q.e.

Finally, let us prove the latter part of d). Thus let &(/i) < b(f^)
everywhere (or just quasi everywhere), and suppose that f^ is quasi
u.s.c., hence /^ ^ A • Then

/ l<7i-&(A)^(/2X/2-/2- B

COROLLARY. — (The Choquet Property, cf. Choquet [\0}). In ad-
dition to the hypothesis of the above theorem, suppose that C is an
outer capacity (§ 1.5). For any set A C X and any e > 0 there exists
a closed set F C b(A) such that C(A\F) < e .

In fact, b (A) is finely closed, hence quasi closed, by (T\), and
quasi contains A by Theorem 4.3 c). According to Lemma 2.2 there
exists a closed set F C b(A) such that C(&(A)\F) < £. It follows that
C(A\F) <£ because C(A\&(A)) = 0.

4.4. The lattice of bases (cf. Doob [12]). - We continue the
study of a "fine" topology compatible with the quasi topology asso-
ciated with a capacity C on X. According to § 4.2 the mapping
/ ——> b(f) of [0 , 4- o^ into itself has the following properties

&(/i v/2)=&(/ i )v&(/2) ,

7=/v6(/) ,

b(b(f))=b(f)=b(f) .

According to Theorem 4.3, this base mapping induces a mapping
with the same properties of the lattice of all equivalence classes of
functions in [0 , + oo^ ^ the image of such an equivalence class being
the common base b(f) of all / in the class. We denote by (B the
range of the base mapping b : [0 , + oo^ ——> [Q , + oo^ (or of the
induced mapping of equivalence classes in [0 , + oo^ into [0 , + ^l^.
Thus (B consists of all bases in [0 , + Q®^ , a base being here defined
as a "^-perfect function", that is a function / : X ——> [0 , + oo]
such that b(f) ==/.
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The restriction of the (induced) base mapping b to the lattice
Sof all equivalence classes of quasi u.s.c. functions

f : X ——> [0, + oo]

carries any such equivalence class into the unique base in the class
(because b(f) ^ f when / is quasi u.s.c. by Theorem 4.3 c)). This
mapping is an order isomorphism of S onto (B in view of d) of that
theorem, being onto because any base is quasi u.s.c.

Via this order isomorphism b : S ——> (B the results on 3^
obtained in §§ 3.4-3.5 carry over to the lattice 63 of all bases, and
so do the results in §§ 2.7-2.10 concerning quasi closed sets. Thus
we have

THEOREM. — Suppose that X has a countable base (in the initial
topology), and that the capacity C is sequentially order continuous
from below (in the sense of ( 5 ) , § 2.7A Further let there be given
another topology (termed "fine") on X, compatible with the quasi
topology associated with C. The set(K of all bases f: X ——> [0, + oo]
(that is, b(f) = f) is then a complete lattice under the order relation
< (pointwise). The supremum in (B of any finite family of bases is
the pointwise supremum of these. The supremum, resp. infimum, in
(B of any family of bases is the base of the pointwise supremum,
resp. infimum, and there is always a countable subfamily with the
same infimum in (B.

Proof — (Cf. Doob [12]). The pointwise supremum /i v/^ of
two bases is a base because

b(f, v /,) = b(f,) v b(f^) = A v A ,

and hence is the supremum of (/i ,./^) in (B. Denoting by / the
pointwise supremum, resp. infimum, of an arbitrary family (/^) of
bases, it is clear that b(f) is a majorant, resp. a minorant, for (/^)
in (B because the base mapping b is increasing. And for any majorant,
resp. minorant, h E (B for (/^) we have h > /, resp. h < /, and hence
h=b(h)> &(/), resp. < &(/).

Every function <p representable as the pointwise infimum of some
countable subfamily (/^ ) of the given family of bases, or just of any
family (f^) of finely u.s.c. functions/^ > 0, is finely u.s.c. and hence
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quasi u.s.c. The class $ of all such countable infima ^p is stable under
countable pointwise infimum. According to Theorem 3.4, $ has a
quasi minimal element A, say

h(x) = inf f^ (x) for every x E X .
n w

For any a we have h < /^ q.e., hence 6 (A) < b(f^) < /^. by Theorem
4.3 d). Thus &(A) </< A, where /denotes the pointwise infimum of
(/^). In particular, A = / q.e. (which leads to Cor. 3 below), and
consequently b (h ) = b(f). B

COROLLARY 1. — Under the hypotheses of Theorem 4.4, the col-
lection of all bases (as sets) A C X is a complete lattice under in-
clusion. The supremum of any finite family of such bases is the
union thereof. The infimum of any family of bases is the base of
their intersection, and there is always a countable subfamily with the
same infimum.

COROLLARY 2. - (cf. Getoor [18], Choquet [11]). Let ^ :

«(X) ——> [0 , + oo]

denote a further capacity on X, and such that C(E) = 0 implies
p,(E) = 0. Under the hypotheses of Theorem 4.4 there exists a smallest
finely closed set A such that ^(X\A) = 0. This smallest set is abase
(called the fine support of ^).

Proof. — For any finely closed set A carrying p. in the sense
that ^(X\A)=0, the base b (A) likewise carries ̂  because C(A\6(A))=0
and hence

^(X\6(A)) < ̂ A(X\A) + Vi(A\b(A) = 0 .

It suffices, therefore, to find a smallest base in the class (B(/i) of all
bases carrying ^, or equivalently to prove that

B : = inf (8(̂ 1) =b (0(0(^0)

carries ^. By the preceding corollary there exists a sequence of bases
A^ e (Q(p) such that B = inf A^ = &(nAA Being countably subad-

n \n /
ditive and carried by each A^ , ^ is carried by A : = OAy, , and conse-
quently by B = b (A) as remarked above. D
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COROLLARY 3. - (The quasi Lindelof principle, cf. Doob [12]).
Under the hypotheses of Theorem 4.4, any family of finely open sets
contains a countable subfamily whose union is C-equivalent to the
union of the given family. — More generally, any family of finely
l.s.c. functions on X to [— °° , + °°] contains a countable subfamily
"whose pointwise supremum is equal quasi everywhere to that of the
given family. This subsequence may be taken to be increasing if the
given family is upward directed.

Except for the last assertion, which is straightforward, this corol-
lary was established in the latter part of the proof of Theorem 4.4
(in dual form : infimum of finely u.s.c. functions > 0, this latter
restriction being immaterial).

COROLLARY 4. - (Cf. Brelot [4]). a) Under the hypotheses of
Theorem 4.4, we have

C(^) =supC(AJ

for any upward directed family of finely open sets A^ C X. b) Under
the additional hypotheses that X is a Hausdorff space (in the initial
topology) and that C is an outer capacity, we have

C(^A^ =mfC(A^)

for any downward directed family of finely closed sets A^ contained
in a quasi compact set.

In view of the quasi Lindelof principle above, these assertions
reduce to the case of an increasing, resp. decreasing, sequence ; and
here the result follows a) from the assumed sequential order conti-
nuity of C from below, and b) from Theorem 2.10 since the sets
A^ are quasi compact by CI\) together with the remark to Lemma 2.3.

4.5. While the above results on the fine topology were derived
from corresponding, more elementary results concerning the quasi
topology, the following is an example in the opposite direction :

THEOREM. — In addition to the hypotheses of Theorem 4.4 sup-
pose that the fine topology (compatible with the quasi topology) is
uniformizable. Then every quasi u.s.c. function f: X ——> [—00,4- oo]
is representable as the pointwise inflmum of a decreasing sequence of
quasi continuous functions /„ .



150 BENT FUGLEDE

Proof. — Since the fine topology is uniformizable, any finely
u.s.c. function / : X •——> [— °° , + oo] is the pointwise infimum of
its finely continuous majorants. By the quasi Lindelof principle, / is
equal q.e. to the pointwise infimum of some decreasing sequence of
such majorants g ^ . This latter assertion remains valid for any quasi
u.s.c. function/on account of Remark 4.3. Thus there is a set E C X
with C(E) = 0 such that f(x) = mfg^(x) for every x€X\E. Theft
functions /„ defined by

W =
f(x) for x e E ,
g^x) for J C G X \ E ,

are quasi continuous by Lemma 4.3 (being equivalent to ^), and
f(x) = inf f^(x) for every x ex. B

Tt

4.6. Reformulation of compatibility with the quasi topology in
terms of the base mapping of quasi closed sets. - We have found
above that if a new topology (termed "fine") on X is compatible
with the quasi topology determined by the given capacity C, then the
associated base mapping b, now considered for sets, is a kind of
"lifting" in the measure theoretic sense. It assigns to each equivalence
class of quasi closed sets a unique representative for the class, and
this assignment is additive (and hence increasing), and &(0) = 0. —
Conversely, we have the following result :

LEMMA. — Suppose that one can select from each equivalence
class of quasi closed sets a certain set b (A) from the class, the same
for all sets A in the class, in such a way that b (0) = 0 and that
&(Ai U A^) = b(A^) U6(A^) for any two quasi closed sets A^ , A^.
Suppose further^) that every set AC X has an equivalence class of
quasi closures A*. The extension of the mapping b to arbitrary sets
A C X defined by

b (A) =b (A*)

is then an additive and idempotent mapping o/%(X) into %(X). The

(7) Recall that this is the case if X has a countable base of open sets (in the initial
topology) and if moreover C is sequentially order continuous from below
(Theorem 2.8).
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sets A C X such that 6(A)CA are the closed sets of a topology
(termed "fine") on X, compatible mth the quasi topology determined
by the capacity C on X. For any set ACX the set b (A) = b (A*) is
the base of A relative to this topology in the sense of Def. 4.1, taking
for XQ the set of all points x e X such that C({x}) = 0.

Proof. — The equivalence class of quasi closures A* of a set A
depends only on the equivalence class of A. For any set A C X ,
b (A) = b(A*) is by definition equivalent to A* and is hence itself a
quasi closure of A. This implies that b (b (A)) = b (A*) = b (A). For
any two sets A^ , A^ C X with quasi closures A^ , A^, the union
A^ U A^ is clearly a quasi closure of A^ U A^ , and

b(A, U A^) = &(A? U A!) = &(A?) U 6(A?) = b(A,) Ub(A^) .

Thus the extended mapping b : %(X) ——> %(X) is additive (in
particular increasing) and idempotent. It is then clear that the sets
A C X such that 6(A)CA are indeed the closed sets in a certain
topology on X which we now call the fine topology.

For any set A C X the set A : = A U b (A) is the fine closure of
A. In fact, A is finely closed since

b(A) = b(A) U b(b(A)) = b(A) C A ;

and for any finely closed set F D A we have F D &(F) D b (A), hence
F D A U b(A) = A. Since b(A) is a quasi closure of A, so is A (because
A\b(A) = A\6(A), and C(A\&(A)) = 0). This implies (T^).

For any set E C X such that E 0 b(E) = 0 we have

C(E) == C(E\&(E)) = 0 .

On the other hand, C(E) = 0, that is, E - 0, implies b (E) = b (0) = 0,
and so we have established (T^).

It remains to establish that b (A) is the base of A in the sense
of Def. 4.1. Suppose first that x G A\Xo . The quasi closure b (A) of A
quasi contains A and hence also{jc}C A ; and since C({x}) > 0, b (A)
must actually contain x. Next suppose that, on the contrary, either
x G CA or else Cdx}) = 0. In either case, A\{x} is equivalent to A,
hence b(A\{x}) = b(A), and consequently

(A\{x}V = b(A\{x}) U (A\{x}) = 6 (A) U (A\{x}) .
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Since x^A\{x\ we conclude (in the present case x $ A\Xg) that
x C (A\{x}V if and only if x e &(A). [

4.7. The above lemma, combined with Theorem 4.3, exhibits a
1-1 correspondence between the topologies compatible with our quasi
topology and the (additive) "liftings" for the lattice of all quasi closed
sets. Those topologies which are finer than the initial topology on X
correspond hereby to those liftings for which b (A) C A.

It is an open problem whether such a lifting always exists, cor-
responding, say, to a given outer capacity C on a locally compact
space X with a countable base of open sets, C being moreover sequen-
tially order continuous from below.

In the final section of the present paper we shall consider a case
(adapted to applications in potential theory) in which there exists an
additive lifting b of quasi closed sets, or, equivalently, a topology
compatible with the quasi topology. This new topology will be finer
than the initial topology on X, and it will be completely regular
(that is, separated and uniformizable) provided the initial topology is
completely regular.

We close the present section by a discussion of the well known
case of liftings associated with an outer Radon measure, in particular
the case of Lebesgue measure.

4.8. The case of an outer measure. — Let ^ denote a positive
Radon measure on a locally compact space X with a countable base
of open sets. The outer measure /x* : %(X) ——> [0 , + o°] is an
outer capacity on X, and sequentially order continuous from below.
From Lusin's theorem (used, by Bourbaki, essentially as definition of
measurability) follows that a function /: X ——> [ — 0 0 ^ + 0 0 ] is
quasi continuous with respect to ^i* if and only if/isju-measurable.
Any quasi semicontinuous function is quasi continuous, being equi-
valent to the limit of a sequence of semicontinuous, hence Fi-measurable
functions. In particular, the quasi closed (or quasi open) sets are
precisely the [^measurable sets. (The quasi compact sets are the ^"
integrable sets, that is, the ^-measurable sets of finite outer measure).

Every set A C X has an equivalence class of quasi closures, viz.
those ^-measurable sets A* for which /A*(A\A*) = 0 and ^(A*\A)== 0,
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where ^ denotes the inner measure (cf. § 2.11). If M*(A) < + oo,
the latter condition may be replaced by ^(A*) = ^*(A), a condition
which is necessary in any case. In particular /A* is quasi stable in the
sense of § 2.4.

According to the existence theory for liftings on measure spaces
(see Tulcea and Tulcea [22]) there always exists, in the present case,
a lifting b assigning to each equivalence class of ^-measurable sets a
unique representative of "the class in such a way that b (A) C A,
b(A, U A^) = b(A,) U b{^\ b(A, H A^) = b(A,) H &(A^. (The lat-
ter "multiplicative" property is, however, irrelevant from our point
of view). Consequently, Lemma 4.6 is applicable.

4.9. Density topology and approximately continuous functions.—
In order to dispose of a density theorem let us restrict the attention
to the case of Lebesgue measure fi on X = R". The (outer) upper
density of a set A C R" at a point x G R" is defined by

^.A^limsup^0^
^(Q)

as Q ranges over all open "intervals" in R" containing x, the lim sup
referring to the diameter of Q tending to 0. Here an open interval in
R" is understood as the product of n open intervals on R. The lower
density c[(x , A) is defined similarly with lim inf in place of lim sup.
Whenever d(x , A) = d_(x , A), the common value is called the density
of A at x, and may be denoted by d(x , A).

What we have defined here are, more precisely, the strong upper
or lower density and the strong density, the qualification strong
referring to the use of arbitrary intervals Q. If instead we allow cubes
only (products of intervals on R of equal length) we obtain the
ordinary upper and lower density, d^x , A) and d^(x , A), and (when
these are equal) the ordinary density d^ (x , A).

The density theorem (cf. Saks [21]) asserts that d(x , A) (hence
do (x , A)) exists and equals 1 almost everywhere in A for any set
A C R", and that d(x , A) (hence d^(x , A)) exists and equals 0 almost
everywhere in C A if A is measurable.

We now define the (strong) base b (A) of a set A C R" by

6 ( A ) = { x G R " | d ( j c , A ) > 0 } .
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Clearly, b (A) C A, and b(A^ U A^) = b(A^) Ub(A^) for any sets A,
AI , A^ C R". Moreover, b(A) = b(A*) for any quasi closure A* of A
with respect to p.*. (This follows from the identity

^(Anc^^A^nQ) ,
which in turn follows from /i^(A*\A) = 0). Thus Lemma 4.6 is again
applicable. The corresponding topology on R" (with the sets A such
that b(A) C A as closed sets) is called the (strong) density topology.
It is strictly finer than the euclidean topology on R". Since the
density topology is compatible with the quasi topology associated
with outer Lebesgue measure on R", the closed sets in the density
topology are quasi closed, that is (§ 4.8) measurable. The open sets
in the density topology are accordingly those measurable sets A C R"
for which d(x , A) == 1 for every x G A.

It is also well known that the (strongly) approximately continuous
(real valued) functions on R" introduced by Denjoy (for n = 1) are
precisely those functions which are continuous in the (strong) density
topology. Referring to Saks [21, p. 131] we recall that a function /
on R" is called approximately continuous if for every XQ E R" there
exists a measurable set A C R" with d(x^ , A) = 1 such that

f(x) ——>f(Xo)
as x ——> XQ on A.

Replacing throughout the strong density d(x , A), etc., by the
ordinary density d^(x ,A), we obtain the ordinary base

& o ( A ) = { ^ € = R " | ^ O c , A ) > 0 }

of sets A C R", and the corresponding ordinary density topology on
R", again compatible with the quasi topology associated with ^*. All
that was said above carries over mutatis mutandis. In particular,
the continuous functions in the ordinary density topology are the
"ordinary" approximately continuous functions.

The ordinary density topology on R" is strictly finer than the
strong density topology (except of course for n = 1 where d^ = d\
A rather deep result of Goffman, Neugebauer, and Nishiura [19]
asserts that the ordinary density topology on R" is completely regular,
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but not normal, whereas the strong density topology is not even
regular for n > 1. It is also known (contained implicitly in Ridder
[20]) that every connected open subset of R" is connected in the
ordinary density topology, hence also in the strong density topology.
Of course, neither of the two density topologies is locally compact
or first countable (follows from Theorem 4.2 above). — Finally, let
us remark that Theorem 4.5, or rather the principal step in the proof
of it, was established by Zink [23] in the case of the strong density
topology.

5. The fine topology determined by a cone of lower
semicontinuous functions.

In this section we consider, following Brelot [2], [6], a convex
cone ^ of l.s.c. functions u defined on a topological space X and
with values in [0 , + °°]. Such a cone 'H determines a new topology
on X (finer than the given topology) as defined by Cartan [7] in case
of classical potential theory, where ^ is the cone of superharmonic
functions. Subsequently we shall obtain sufficient conditions for this
new topology, the fine topology on X, to be compatible with the
quasi topology associated with a given capacity C on X in the sense
of Def. 4.3.

5.1. DEFINITION. — The fine topology on X, determined by the
cone 'LI, is the coarsest topology on X, finer than the initial topology,
such that all the functions u e «U are continuous.

THEOREM. — If the initial topology on X is 1) separated, 2 ) regular,
or 3) completely regular, then so is the fine topology. If X is locally
compact in the initial topology, then X is a Baire space also in the
fine topology.

Proof. — The fine topology is defined as the coarsest topology
on X such that the following mappings of the set X are continuous :
The identity mapping of X into the topological space X with the
given (initial) topology, and further each of the mappings u € ^U of
X into [0 , + oo] (with the usual topology). In view of this, the former
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part of the theorem reduces to well known facts from general topo-
logy. And moreover, if X is locally compact (in the initial topology),
then each point x G X has a fundamental system of fine neighbour-
hoods each of which is compact in the initial topology. From this
latter property (together with the fact that, by hypothesis, X is sepa-
rated in the initial topology) follows, however, easily that X is a Baire
space in the fine topology (by use of the well known method of proof
that any locally compact space is a Baire space (8). D

5.2. In addition to the cone ̂  let a subset XQ of X be given.
As in §§4.1 and 4.2 the points ofX^ are called polar points(9). We
then dispose of the concepts introduced there. In particular, the base of
a set A C X, and more generally of a function / : X ———> [0 , + oo]
is defined by

jcE6(A)

b(f)(x) =

jxG(A\{x})" i f x G X o ,
{ x C A i f j c G C X o ,

( fine lim sup f(y) if x E XQ ,
y->x , yfx

fine lim sup f(y) if x G C X^ ,
y->x

Here A denotes the fine closure of a set A C X. Similarly we denote by
/ the finely u.s.c. envelope of/, defined by f(x) = fine lim sup f(y)
as y ——> x.

5.3. The reduced functions R^and R^. - Following Brelot [2],
[6], we associate with any function/ : X ——> [0 , 4- oo] the reduced
function R^ : X ——> [0, + oo] defined by

R^(x)=mf{u(x)\u^U ,u>f} ,

interpreted as + oo if no such u exists. And for any set A C X we
write R^ = R^ , that is

(8) The author owes this latter observation to C. Berg. Also the former part of
the theorem is known (even in a slightly amplified form), see Brelot [6, ch. 1,3].

(9) From § 5.5, XQ will denote the set of all points x such that C({x}) = 0, just
as in § 4.3 - § 4.6. In most applications (cf. § 5.6 and § 5.7) the polar points
are likewise those forming a polar set, that is a set E such that there exists
u € ̂  with u = + oo everywhere in E.



COUNTABLY SUBADDITIVE SET FUNCTION 157

R^(x) = in f^OOI^e^ , ^ > / i n A}.

Clearly R .̂ >/. For ev^ry x GX the mapping / ——> RyOO is in-
creasing and sublinear.

Since the functions u G ^U are finely continuous, R. is finely
u.s.c., and we have R^r = R^.. Iff is finely l.s.c. then R^ = R^ for
any set A.

5.4. Thinness of a set. — According to Brelot [2], [6] a set
A C X is said to be thin (or effile) at a point x E CA if there exists
u € ^U such that

u(x) < lim inf ^(^) as y ———> x, y G A .

Thus A is thin at x G C A if and only if there exists a neighbourhood
V of x (in the initial topology on X) with the property that

R^y(x)<l ,

or equivalently that there exists u G ̂  such that u > 1 on A Fl V,
and u(x) < 1. In the affirmative case such a neighbourhood V can
always be chosen from a given base of neighbourhoods of X.

A set A C X is called thin at a point x G A if A\{x} is thin at x
according to the above definition, and if moreover x is a polar point,
that is x E Xo .

For any set A C X we denote by e(A) the set of all points
x G X at which A is thin.

THEOREM (Cartan). — For any set AC X the base of A consists
of all points ofX at which A is not thin : b (A) = Ce(A). In particular
the fine neighbourhoods of a point x G X are precisely the complements
of those sets A C X which are thin at x and do not contain that point.

Proof — As to the latter assertion see Cartan [7, § 26] (formu-
lated for the classical newtonian case), or Brelot [2, th. 4.5], [6, th. 1.3].
As to the former assertion, let first x € CA. Then [x G b(A)] <
[x EA] < > [CA is not a fine neighbourhood of x] <
[A is not thin at x]. Next let xGA.If .vis polar, then [x G b (A)]
[x G (A\ x ) ' < > [A\{x} not thin at x] < > [A not thin at
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x]. Finally a non polar point x £ A is, by definition, in &(A), but not
in <?(A). |I

5.5. Sufficient conditions for compatibility between the fine to-
pology and the quasi topology, — In addition to the convex cone '11
of Ls.c. functions u : X ——> [0 , + oo] we now consider a capacity
C on X (in the sense of Def. 1.1). As in §§ 4.3 and 4.4, we take foi
polar points the points .x: € X of capacity 0 :

jcGXo <===> C({x}) =0 .

According to Def. 4.3, the fine topology on X, determined by the
cone 'U, is compatible with the quasi topology determined by C if
and only if the following 4 conditions are satisfied :

i) Every quasi closed set A C X is equivalent to some finely
closed set.

ii) Every set E C X of capacity 0 is everywhere thin :

[C(E)=0] ==>[6(E)=0] .
iii) Every set E C X, thin at each of its points, has capacity 0 :

[E n b(E) = 0] ==> [C(E) = 0].

iv) Every finely closed set A C X is quasi closed.
We shall now obtain sufficient conditions. For any function

/: X ——> [0 , + oo] denote by / the Ls.c. envelope o f / i n the
initial topology (the largest Ls.c. function </). In particular, R^.
denotes the Ls.c. envelope of Ry, cf. § 5.3.

THEOREM. — Suppose that X has a countable base of open sets
(in the initial topology), and that C is sequentially order continuous
from below in the sense of ( 5 ) , § 2.7. The fine topology determined
by the cone ^1 is compatible with the quasi topology determined by
the capacity C provided that the following 4 axioms are fulfilled :

I) C is finely stable : C(A) = C(A) for every A C X.
II) Every set E C X of capacity 0 is finely closed :

[C(E)=0] ==>[fr(E)CE] .

Ill) For any function/: X ——> [0 , 4- oo], R^. = R^ quasi every-
where in XQ .
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IV) Every function u G 'U is quasi continuous.

Remarks. — 1) The axiom I is fulfilled, e.g., if C(A) depends on
{u^^Vi \u(x) > 1 for every xGA} only. (The relations u > 1 in A^/
and u > 1 in A arc, in fact, equivalent on account of the fine conti-
nuity of ^G^).

2) The axiom II is fulfilled, e.g., if C(E) = 0 implies Rf < 1
everywhere in C E. (For then E = {x G X | RfOc) > 1} is finely closed
because Rf is finely u.s.c.). In our applications, C(E) = 0 even implies
R ^ ^ O i n C E .

3) When applied to the pointwise infimum / of an arbitrary
family (u^) of functions u^ G^, the axiom III implies that

(inf u^ = inf ^ q.e. in Xo . (19)\ a / a

Conversely, this property implies III when applied to the family of
all functions u e ^L such that u > /. When X has a countable base of
open sets, it suffices to verify (19) for arbitrary countable families of
functions from ^U. This follows from a topological lemma due to
Choquet (cf. Brelot [1, p. 6]).

3') For some applications it is important that the axiom III can
be replaced by the following weaker axiom III' without affecting the
validity of the above theorem :

III') There exists a constant k > 1 with the following 2 properties
(a) and (j3) :

(a) For any sequence (u^) of functions u^ G ̂

k ' nnf u^ ) > inf u^ q.e. in X^ .\ n / fi

(j3) For any set A C X, thin at a polar point x G C A, there
exists u € ^U such that

k - u (x) < lim inf u (y) as y ——> x, y €= A .

Note that, for k = 1, the property (<3) becomes redundant by the
definition of thinness (§ 5.4), while (a) reduces to the axiom III
provided that X has a countable base (cf. the preceding remark).
Actually, in our applications, (j3) holds for any finite k, the thinness
at a polar point being "strong" in the sense of Brelot [2, p. 79].
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Proof of the above theorem in the sharper from indicated in the
last remark. — We divide the proof into 4 steps, one for each of the
properties i)-iv) to be established. In each step the hypotheses used
are specified.

Ad i). The axiom I alone implies il Suppose that A C X is quasi
closed. For any c > 0 there exists a closed set F C X such that
C ( A A F ) < £ . Since the fine topology determined by the cone U
is finer than the initial topology on X, F is finely closed. Writing
E : = A A F, hence A C F U E, we obtain

A C ( F U E ) " C F U E = A U E ,

C ( A \ A ) < C ( E ) = C ( E ) < £ ,

and so A is equivalent to its fine closure A.(10)

Ad ii). The axiom II alone is equivalent to U). Suppose that
C(E) = 0. Then every point x of E is polar (that is, C({x}) = 0) and
finely isolated because E\{x} is finely closed in view of II applied to
the set E\{.x}. The converse is obvious.

Ad iii). When X has a countable base (^n\€N » the axiom H I '
implies in). Suppose that E C X is thin at each of its points, that is,
E H b(E) = 0. In particular, every point ofE is polar, that is, E C X^ .
Writing E^ = {x G E n ̂  | (k + l/p) R^ n ̂  M (x) < 1}, we have
E = u E^p on account of (j8) in the axiom III' (cf. Remark 3' above).
In order to prove that C(E) = 0 it suffices, therefore, to prove that
^^p) = ° for ^y pair of natural numbers n, p. Let S denote a
countable, dense subset of such a set E^ . For each s G S there
exists u, G U such that (k + l / p ) u,(s) < 1,'and u, > 1 in E n ̂ \{s},
a fortiori in E^p\S. Writing / : = inf{^ | s E S} (pointwise), we thus
have (k + l/p) /< 1 in S, and/> 1 in E^p\S. On account of (a) in
the axiom III', this latter inequality implies that kf> 1 q.e. in E^ \S.
On the other hand, (k + l/p) /< (k + l/p)/< 1 in S implies

(lo) The fine stability of C (axiom I) alone implies, more generally that any quasi
continuous function /: X ——> Y is finely continuous quasi everywhere,
see Brelot [6, th. IV, 3]. This should be compared with Theorem 4.3 a) above,
where Y was supposed to have a countable base, but where the remaining
hypotheses used were weaker, viz. condition i) above together with the im-
plication [C(E) = 0] ==> [C(E) = 0] which is likewise a consequence of
the axiom I.
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(k + l/p)/< 1 in the closure S D £„ p because / is l.s.c. This leads
to a contradiction unless C(E^p\S) = 0 and hence C(E^ p) = 0. We
have used here that C(S) = 0 because S is a countable subset of E,
and every point s^-E is polar, C({s}) = 0.

Ad iv). Suppose that X has a countable base, and that C is sequen-
tially order continuous from below. Then 11,111 and IV (or just II,
iii), IV) together imply iv). We begin by proving that R.. is quasi u.s.c.
for every function / : X ——> [0 , + oo]. According to Lemma 3.3,
this amounts to showing that the set

A : ={xCX\R^(x)> 1}

is quasi closed for every real t. Let 3€ denote the class of all sets

H^ ={xCX\u(x)>t},

where u E ̂  and u > /. According to the axiom IV these sets Hy are
quasi closed, and it follows therefore from Theorem 2.7 that there
exists a set H E 9^ (that is, the intersection of a sequence of sets of
class 3€) such that H is quasi contained in each set from S€^ , in
particular in each set H^ G^ : C(H\H^) = 0. In view of ii) (which
was shown above to be equivalent to II), this implies that ^(H\Hy) = 0,
and hence 6(H)C&(Hy) by the additivity of the base operation.
Since each Hy is finely closed, &(Hy)C Hy , and consequently

6(H)Cn{HJ«e< ; l l , u>f}= A C H .

The set E = H\&(H) is thin at each of its points, hence C(E) = 0
according to iii), and we conclude that A is quasi closed, being equi-
valent to the quasi closed set H.

Finally we show that the quasi upper semicontinuity of Ry. for
all functions / : X ——> [0 , + o°] (or just for indicator functions)
implies iv) when X has a countable base (c^). Thus let A denote a
finely closed set, that is, b (A) C A, or in other terms, A is thin at
every point of CA. It follows that

CA = U^n^EXIR^^OcX 1}) ,

Being thus a countable union of quasi open sets, CA is quasi open,
that is, A is quasi closed. D
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5.6. Example. — (Classical potential theory. Superharmonic func-
tions). For X we take a connected open subset of R", n > 3 (or more
generally a Green space in the sense ofBrelot and Choquet). For ̂  take
the convex cone of all superharmonic functions u : X ——> [0 , -+- °°].
A set E C X is called polar if it has one of the following properties,
which are known to be equivalent for any choice of a function / :
X ——> ]0 , + oo] :

a) There exists u € 'U such that u = + °° everywhere in E.
b) R?(.x) = 0 for some, and hence for any x E CE.
c) R^Qc) = 0 for some, and hence for any ;cGX.

Any countable union of polar sets is polar.
Adjoining to 'U the constant function + oo we obtain the class

U^ = ^U U{oo} of all hyperharmonic functions > 0. With the natural
(pointwise) order ^^ is known to be a complete lattice in which any
family contains a countable subfamily with the same infimum. The
infimum inf u^ of any family (u^) in the lattice "U^ is the l.s.c.

d

envelope (and also the base, cf. § 4.4) of the pointwise infimum
inf u^ , from which it differs at most on some polar set. For any

a
function / : X ——> [0 , + °°] we thus have Ry = R .̂ except in some
polar set (contained in {x €X \f(x)> 0}). It is easily shown that
Ry = / v Ry. Moreover,

Rf = sup Rf , Rf = sup Rf
' n n n )n

for any increasing sequence of functions /„ : X ——> [0 , 4- oo] with
the pointwise supremum /.

Following Brelot [4], [5] we now consider the following set
functions in which / denotes a fixed, strictly positive, finite and con-
tinuous (to simplify) function on X, XQ a fixed point of X, and m a
positive Radon measure (=?^ 0) on X :

1) C(A) = R^(11) .

2) C(A) = R^Oco) .

(n) Thus, in case 1, the set function C has its values in the lattice'Uo, of hyper-
harmonic functions >0 on X (cf. § 1.6).



COUNTABLY SUBADDITIVE SET FUNCTION 163

3) C(A) = / R^dm .

4) C(A) = the outer greenian capacity of A(12).
Each of these set functions is a capacity in the sense of Def. 1.1,

sequentially order continuous from below, finely stable (C(A) = C(A)),
vanishing precisely on the polar sets (not containing XQ in case 2).

The important property discovered by Choquet [10] for the
greenian capacity (cf. the corollary to Theorem 4.3 above) was extended
by Brelot [5] to the remaining cases 1, 2, 3 which serve to replace the
greenian capacity in the axiomatic theory of harmonic functions (l3).
The Choquet property is the crucial point in establishing the compa-
tibility (in the sense of Def. 4.3 above) between the fine topology
(associated with the cone ^U of superharmonic functions > 0) and the
quasi topology determined by any one of the above 4 capacities. The
axioms I, II, III, IV of Theorem 5.5 are likewise satisfied here, but
IV plays a secondary role in the present situation (14).

In the cases 1, 2, and 4, C is an outer capacity (Def. 1.5), more
precisely C equals the outer capacity c* associated with the restriction
c of C to compact sets (cf. § 2.11). The same holds in case 3 if m
does not charge the polar sets and if j Ry dm < + oo.

(12) This capacity is the total mass of the positive measure X on X whose greenian
potential GX (defined in terms of the Green kernel G on X by

G\(y)= f G(x,y)d\(x))

equals R^. (If the latter is not a potential we put C(A) = 4- oo).
(13) In case 3 it is assumed in [5] that m does not charge the polar sets. This

restriction can be removed on account of a theory of finely harmonic func-
tions which we shall develop elsewhere. — Note that, in case 2, the set{;Co}
has capacity > 0, and hence XQ should be considered as a non polar point in
the definition of the associated base operation and notion of thinness (§ 4.3),
even if XQ is polar in the usual sense.

(14) In case 2 the relation R/ = Ry in the axiom III, though valid except in some
polar set, need not hold quasi everywhere in all of X with respect to the
present C because it may fail to hold at the point XQ if this point is polar in
the usual sense (cf. the preceding note). But it does hold q.e. in XQ (as
required in III) because Xg = {x ex |C({;c}) = 0} does not contain XQ in
this case. In the cases 1,3, and 4 we have Ry = Ry q.e. in X.
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If R .̂ is a potential, the whole space X is q^ayf compact (Def. 2.1),
and so is therefore any quasi closed set (in particular any finely closed
set)(15).

If/is superharmonic, each of the four capacities is alternating of
infinite order, in particular strongly subadditive (cf. Choquet [8]) :

C(A U B) + C(A 0 B) < C(A) + C(B) , A, B C X .

With the fine topology determined by the cone ^ of all super-
harmonic functions X ——> [0, -h °°], the space X is known to be
a completely regular Baire space (follows from Theorem 5.1), but
neither locally compact nor first countable (follows from Theorem 4.2).
Furthermore, X is connected and locally connected in the fine topo-
logy. The complement of any polar set is finely connected ; in other
words, any set A C X whose fine boundary is polar, is either polar or
the complement of a polar set. For these and other properties of
connectivity of the fine topology in the present case seeFuglede [17].

In view of the compatibility between the fine topology and the
quasi topology associated with any one of the above capacities, the
latter result amounts to saying that the space X is quasi connected
in the sense that any set A C X which is both quasi open and quasi
closed must be of capacity 0 or the complement of a set of capacity
0(16).

Referring to Brelot [5] we observe that, in the cases 1, 2, and 3
with / finite and continuous, the Green space X may be replaced
more generally by any harmonic space in the sense of Brelot [3],
having a countable base of open sets, satisfying the axioms 1, 2, 3,
and D, and further admitting a strictly positive potential. The Green
capacity (case 4) may be generalized in another direction (at least for
X without irregular boundary points), see Example 5.7 below.

(15) In case 3 we suppose at this point that m has compact support (or just that
j Ry dm < + oo). In case 4 the Green space X should be without irregular
boundary points.

(16) In this respect the quasi topologies of potential theory are quite different
from the quasi topology associated with an outer Radon measure ^n*, in which
case the quasi open and the quasi closed sets are the same, viz., the ^-measurable
sets, as noted in § 4.8. (We assume that the space X is locally compact with
a countable base).
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It can be shown, e.g. by application of the Wiener criterion, that
the fine topology of classical potential theory, say in the case where
X denotes an open subset of R" (of non polar complement if n = 2),
is strictly coarser than the ordinary density topology on R" (§ 4.9),
see [17]. This implies that every finely continuous function is "ordinary"
approximately continuous and hence of Baire class 1 in the euclidean
topology. It follows that the fine topology is not normal(1'7).

5.7. Example. — (Potentials and capacity with respect to a kernel).
Let X be a locally compact Hausdorff space, and G a kernel on X,
that is, a l.s.c. mapping o f X x X into [0 , + oo]. Denoting by W^ the
set of all positive Radon measures on X, and by ^Lf the set of all
bounded measures in W^, we define the potential G^i of ^iG^lt'1'
and the adjoint potential 6x (where (^(y , x) = G(x, y)) of XGOTT^o
by

G/x(x)= f G ( x ^ y ) d ^ ( y ) , 6\(y) = f G(x^y)d\(x) ,

for all x G X, resp. y G X. The G-capacity of a compact set K C X is
defined by

c(K) : = sup^X)!^^ , G^LI< 1 , ^(C K) = 0}
= inf {X(X) |XG^t , 6\> 1 in K},

the equality between the 2 expressions for c(K) resulting from a well
known extension of v. Neumann's minimax theorem. The associated
inner, resp. outer, G-capacity of an arbitrary set A C X is denoted by
c^(A), resp. c*(A) (cf. § 2.11).

We now make the following basic assumptions on the kernel G :
1) G(x, y ) should for x =^= y be finite and continuous.
2) G(x, y ) should tend to 0 as one of the variables x or y goes

(17) Proceeding as in the analogous case of the ordinary density topology (Goffman,
Neugebauer and Nishiura [19]), we merely choose 2 disjoint countable (hence
polar, hence finely closed) sets A, B C X each of which is dense in X in the
euclidean topology. A finely continuous function / :X——>[0,1] with
/(A) ={0}, /(B) = {1} would have to be discontinuous everywhere in X in
the euclidian topology, which is impossible since/is of Baire class 1. — It is,
however, easily shown that any finely continuous function defined on a base
can be extended to a finely continuous function in the whole space. As to
the question of normality of the fine topology in more general cases than
here, see a paper by C. Berg to appear in Bull. Sci. Math.



166 BENTFUGLEDE

to infinity in X, uniformly with respect to the other variable on
compact sets.

v
3) G and the adjoint kernel G should satisfy the continuity

principle.
\/

Under these basic hypotheses GX is, for every X € Wit, quasi
continuous and has the quasi limit 0 at infinity in X (cf. § 3.6). For
this result, essentially due to Choquet, see Fuglede [13], where also
the following results were obtained : For any set A C X,

c*(A) = inf{X(X)|XejT6l , GX > 1 q.e. in A} ,

the q.e. referring to c*. If c*(A) < + °°, this infimum is attained.
Furthermore, c* is sequentially order continuous from below. The
quasi compact seis are precisely the quasi closed sets of finite outer
capacity.

In the sequel we suppose, moreover, that the locally compact
space X has a countable base of open sets. It can then be shown that
the restriction "q.e." in the above expression for c*(A) can be
dropped for any set A at the expense that the infimum is no longer
attained in general. The sets E C X such that c*(E) = 0 are precisely
the polar sets, that is, the sets E such that there exists XG^t with
GX = 4- oo everywhere in E. And the polar points x G X are charac-
terized by G(x , jc) = + oo.

For ^ we now take the convex cone of all functions represen-
v ^

table as the (adjoint) potential GX of a bounded measure XGOTCoo,
and for C the outer G-capacity c*. It is well known that R^ = 0 in
C E for any polar set E, and that the thinness is always strong at any
polar point (in the sense that (j3), Remark 3', § 5.5, holds for any
finite fe), see Brelot [2]. In view of Remarks 1 and 2, § 5.5, it now
follows that the axioms I, II and IV are fulfilled under our basic
hypotheses 1, 2, and 3 on G (provided that X has a countable base of
open sets).

The remaining axiom III (resp. Ill') will be fulfilled (even with
X in place of Xo) if we further assume that G satisfies the domination
principle (resp. the ^-dilated domination principle for some constant
A r € [ l , + oo[ ^ which may then be used in (a) of III'), and if, in
addition, G satisfies the ^'-dilated maximum principle for some
k9 € [ 1 , 4- oo[. in the former case (of the actual domination principle),
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R^. is, for any function / \ X ——> [0 ,4- oo] such that R.. ̂  + oo ,/ /Y
of class <;U, and in fact the smallest among all potentials GX (with
X GOTTt) such that G\>f q.e.

These results (for k = 1) are due to Brelot [2, § 14] under more
restrictive conditions than here, see also Fuglede [13] for the case
fc> 1. As a specific example recall that the (symmetric) Riesz kernel
G^ of order a, 0 < a < n, on X = R", defined by

G ^ x ^ y ) = \ x - y \ a - n

(interpreted as + oo for x = y), satisfies the domination principle and
the maximum principle (and hence all the axioms I, II, III, IV) for
0 < a < 2, but only the dilated forms of these 2 principles (hence
the axioms I, II, III', IV) if 2 < a < n.

Returning to the case of a general kernel G (satisfying our basic
hypotheses 1, 2, 3 on a locally compact space X with a countable
base), we finally remark that if we merely want to ensure that the
property iii), § 5.5, holds — and hence that the fine topology deter-
mined by our cone ^U is compatible with the quasi topology deter-
mined by the outer G-capacity c* — then it suffices to assume that
quasi every point x € X has a compact neighbourhood V^ such that
the restriction of G to V^ x V^ satisfies the ^-dilated domination
principle for some k which may depend on x,(18) cf. Fuglede [13]
and a forthcoming detailed exposition.
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