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CONVERGENCE OF CSCK METRICS ON SMOOTH
MINIMAL MODELS OF GENERAL TYPE

by Wanxing LIU

Abstract. — We consider constant scalar curvature Kähler metrics on a smooth
minimal model of general type in a neighborhood of the canonical class, which is
the perturbation of the canonical class by a fixed Kähler metric. We show that
sequences of such metrics converge smoothly on compact subsets away from a sub-
variety to the singular Kähler–Einstein metric in the canonical class. This confirms
partially a conjecture of Jian–Shi–Song about the convergence behavior of such
sequences.

Résumé. — On considère des métriques de Kähler à courbure scalaire constante
sur une surface lissemodèle minimal de type général dans un voisinage de la classe
canonique, qui estla perturbation de la classe canonique par une métrique de Kähler
fixe. Nous montrons queles séquences de ces métriques convergent en douceur sur
des sous-ensembles compacts loin d’un sous-ensemble. variété à la métrique singu-
liére de Kähler Einstein dans la classe canonique. Cela confirme partiellement une
conjecture de Jian–Shi–Song sur le comportement de convergence detels séquences.

1. Introduction

Since the work of Calabi [5, 6] there has been much interest in the ex-
istence of constant scalar curvature Kähler (cscK) metrics. For the Kähler
Einstein metric which is a special type of the cscK metric, Yau [53] and
Aubin [2] established independently the existence of such a metric on Käh-
ler manifolds of negative first Chern class, and Yau [53] also showed it for
manifolds of zero first Chern class. For manifolds of positive first Chern
class, the Yau–Tian–Donaldson conjecture predicted that the existence of
a Kähler Einstein metric is equivalent to the K-stability. Chen–Donaldson–
Sun [11, 12, 13] proved that the K-stability is sufficient for the existence
of a Kähler Einstein metric (see also Tian [48]), while the necessity was
shown by Tian [46], Donaldson [19], Stoppa [42] and Berman [3].

Keywords: Kähler geometry, Constant Scalar Curvature Kähler metric.
2020 Mathematics Subject Classification: 32W20.



2 Wanxing LIU

For the cscK metric, Donaldson [20] considered the existence of cscK met-
rics on toric surfaces. Chen–Cheng [10] proved that the properness of the
Mabuchi functional is sufficient for the existence of a cscK metric building
on the work of [8, 14, 15]. The necessity was proven by Berman–Darvas–
Lu [4]. We refer the interested reader to [16, 31, 32, 34] for surveys and
related developments of this area. Following the breakthrough made by
Chen–Cheng, Jian–Shi–Song [27] showed the following theorem.

Theorem 1.1 ([27, Theorem 1.1]). — Let (M,ω0) be a compact Käh-
ler manifold. If the canonical bundle KM is semi-ample, then for any
ε > 0 small enough, there exists a unique cscK metric in the Kähler class
−c1(M) + ε[ω0] = c1(KM ) + ε[ω0].

Recently, using different tools, Sjöstrom Dyrefelt [36] and Song [37]
strengthened this result to all compact Kähler manifolds with nef canonical
bundle. We define the first Chern class c1(M) to be

(1.1) c1(M) = [Ric(ω0)] = −[
√

−1∂∂ log det(g0)],

where g0 is the metric tensor of ω0. Notice that this differs from the usual
definition of c1(M) by a factor of 2π. Theorem 1.1 is a generalization of
Arezzo–Pacard’s [1] result on minimal surfaces of general type. The proof
of this result is based on Chen–Cheng [10] and the properness criterions
developed by Weinkove [52], Song–Weinkove [40] and Li–Shi–Yao [30], and
Jian–Shi–Song also made the following conjecture.

Conjecture 1.2. — Let (M,ω0) be a compact Kähler manifold with
semi-ample canonical bundle KM . Then for any sequence εn going to zero,
the corresponding sequence of cscK metrics in −c1(M) + εn[ω0] converges
to the twisted Kähler–Einstein metric gcan on the canonical model Mcan of
M . The convergence should be both global in Gromov–Hausdorff topology
and local in smooth topology away from the singular fibres of the canonical
map Φ : M → Mcan.

Jian–Shi–Song further noted that this conjecture can be understood from
the perspective of slope stability introduced by Ross–Thomas [33] and
is related to the result of Gross–Wilson [24] from the standpoint of the
Strominger–Yau–Zaslow [43] conjecture in mirror symmetry. If the canon-
ical model of M is smooth and the canonical morphism Φ : M → Mcan
has no singular fibers, Conjecture 1.2 was shown to be true by Fine [23]
(Theorem 8.1 and its proof), and the main purpose of the current paper is
to show that the local smooth convergence of Conjecture 1.2 holds when
−c1(M) is big and nef.

ANNALES DE L’INSTITUT FOURIER



CONVERGENCE OF CSCK METRICS 3

We call a compact Kähler manifoldM a smooth minimal model if −c1(M)
is nef, and a manifold of general type if −c1(M) is big. Recall that −c1(M)
is said to be nef if for all ε > 0, −c1(M) > −ε[ω0] and big and nef if it is
nef and (−c1(M))n > 0. One immediate benefit of assuming that −c1(M)
is big and nef is the existence of a semi-positive representative in −c1(M).
Since −c1(M) is big and nef, M is Moishezon which implies that M is
projective. By Kawamata’s base point free theorem, KM is semi-ample.
Hence there exists η ∈ −c1(M), which is some multiple of the pullback
of the Fubini–Study metric through the canonical map Φ : M → PN . In
particular, η is semi-positive, and we consider the sequence of reference
Kähler metrics ωε = η+ εω0 > 0. Also notice that we can choose a volume
form Ω such that Ric(Ω) = −η, then by Yau’s theorem [53] we can always
choose ω0 to be such that Ric(ω0) = −η.

Theorem 1.3. — Suppose that (M,ω0) is a compact Kähler manifold of
dimension n with its canonical bundle being big and nef, and Ric(ω0) = −η.
There exists an effective divisor E such that for any εn converging to zero
the corresponding sequence of cscK metrics ωφεn ∈ −c1(M)+εn[ω0], given
by Theorem 1.1, converges in C∞

loc(M\E) to the unique singular Kähler
Einstein metric in −c1(M).

The singular Kähler Einstein metric was first constructed by
Kobayashi [28] in complex dimension 2, and then it was constructed in
all dimensions as the limit of the normalized Kähler Ricci flow. Consider
the normalized Kähler–Ricci flow:

(1.2) ∂

∂t
ωt = − Ric(ωt) − ωt, ω|t=0 = ω0, ωt > 0.

The following theorem first appeared in the work of Tsuji [51], but later
Tian–Zhang [49] extended it and clarified some parts of the proof (see also
Song–Weinkove [41] or Tosatti [50] for nice expositions of this result).

Theorem 1.4 ([49, Theorem 0.1]). — Let M be a smooth minimal
model of general type. Then

(1) The solution ω = ω(t) of the normalized Kähler–Ricci flow starting
at any Kähler metric ω0 on M exists for all time.

(2) There exists an effective divisor E of M such that ω(t) converges
in C∞

loc(M\E) to a smooth Kähler metric on M\E.
Furthermore, the Kähler metric obtained above is the unique metric

satisfying
(1) Ric(ωKE) = −ωKE on M\E.

TOME 0 (0), FASCICULE 0



4 Wanxing LIU

(2) There exists a constant C such that

(1.3) Cωn0 ⩽ ωnKE ⩽
1
C
ωn0 .

ωKE was also constructed by Eyssidieux–Guedj–Zeriahi [22] using pluri-
potential theory.

As a consequence of Theorem 1.1, we can pick a unique sequence of cscK
metrics ωφε ∈ [ωε]. The Kähler potentials of these metrics φε ∈ Hωε satisfy
the following coupled equations:

(1.4)
ωnφε
ωn0

= eFε ,

∆ωφε
Fϵ = −Rε − trωφε η

where Rϵ = n c1(M)·[ωϵ]n−1

[ωε]n , Rϵ → −n as ϵ → 0, and

(1.5) Hωε =
{
v ∈ C∞(M)

∣∣∣∣ωε +
√

−1∂∂v > 0, sup
M

v = 0
}
.

We stress that it is important to assume bigness of −c1(M) in order for
the limit of Rε to be −n, otherwise it is not true. Also notice that the
equations (1.4) are slightly different from the coupled equations considered
in [9]:

(1.6)
ωnφε
ωnε

= eFε ,

∆ωφε
Fϵ = −Rε + trωφεRic(ωε).

Specifically, we replace ωε in the denominator of the first equation by ω0 and
adapt the second equation accordingly because ωε is degenerating. We will
see later that we will have to adjust the definition of the Mabuchi Energy
to accommodate this change. The strategy of the proof of Theorem 1.3
consists of the following steps:

(1) We establish through Sections 2-4 a degenerate version of the
estimates in [9]. More specifically, we show that φε is bounded
in C∞

loc(M\E) and the bound depends only on
∫
M

logω
n
φε

ωn0

ωnφε
n! =∫

M
eFε Fε ω

n
0
n! and (M,ω0). We will call

∫
M

logω
n
φε

ωn0

ωnφε
n! the entropy.

(2) We show in Section 5 using a method of Dervan [18] that
∫
M

eFεFεω
n
0
n!

is uniformly bounded independent of ε, thus φε is uniformly
bounded in C∞

loc(M\E) based on (1).
(3) In Section 6 we use the estimates and an integration by part ar-

gument to conclude that ωφε has to converge in C∞
loc(M\E) to the

unique singular Kähler Einstein metric in −c1(M).

ANNALES DE L’INSTITUT FOURIER



CONVERGENCE OF CSCK METRICS 5

We remark that Zheng [55] considered the problem of the L1 convergence
of a sequence of smooth cscK metrics in a neighborhood of an arbitrary
big class. There he also had to generalize Chen–Cheng’s [9] original esti-
mates. Our estimates are different in the sense that we are able to get full
non-degenerate 0-th order estimates on Fε. Furthermore, the estimates in
Zheng [55] are proved with respect to a sequence of specially constructed
reference metrics. Also, one critical element of his proof is a version of alpha
invariant for any big class using machinery from pluripotential theory, but
we do not need it here.

We conclude this section by mentioning that there are also generaliza-
tions of Chen–Cheng’s estimates in other directions. For instance, Shen [35]
generalizes them to the Hermitian setting, and He generalizes them to
Sasaki manifolds [25], and extremal metrics [26].

Acknowledgement

The author is grateful to his thesis advisor Ben Weinkove for his con-
tinued support, encouragement, countless discussions around these results
as well as many valuable comments on the manuscript. The author would
also like to thank Jian Song for pointing out an error in the original proof
of Theorem 2.5. Finally, the author would like to thank the referee for
carefully reading the manuscript and made numerous useful suggestions.

2. C0 estimates

In this section we produce C0 estimates for φε and Fε solving the fol-
lowing coupled equations:

(2.1)
ωnφε
ωn0

= eFε ,

∆ωφε
Fε = −Rε − trωφε η.

We start with the C0 estimate on φε.

Theorem 2.1. — There exists a constant C > 0 such that ∥φε∥C0(M) ⩽

C where C is dependent on
∫
M

logω
n
φε

ωn0

ωnφε
n! .

Before we prove this, we should make it clear that the techniques we
use here follow exactly the same route laid out in the proof of theorem 5.2
in [9]. However the estimates in [9] depend on Ric(ωε), but the metric is

TOME 0 (0), FASCICULE 0
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degenerating as ε → 0, so we have to make essential modifications which
involves clarifying that the α−invariants can be controlled uniformly as
shown in Lemma 2.3, specifying different choices of constants in Lemma 2.4,
and checking everything still works as expected. It is during the course of
this computation where we use the assumption that Ric(ω0) = −η and the
fact that Rε → −n as ε → 0, neither of which is needed in [9].

Let us start the proof with some preparations. Denote Vol(ωε) =
∫
M
ωnε ,

and as in [9] we define a smooth real-valued function ρε to be the unique
solution to the following equation using Yau’s theorem [53]:

(2.2)
(ωε +

√
−1∂∂ρε)n = Vol(ωε) eFε Φ(Fε)ωn0∫

M
eFε Φ(Fε)ωn0

,

sup
M

ρε = 0

where Φ(Fε) =
√
F 2
ε + 1. Let us then recall the definition of Tian’s α-

invariant [45].

Proposition 2.2 (Tian’s α-invariant). — For any Kähler class [ω] on
M , there exists an invariant α(M, [ω]) > 0 such that for any α < α(M, [ω]),
we have

(2.3)
∫
M

e−αv ωn ⩽ C

for all v ∈ Hω.

Lemma 2.3. — Given α > 0 with α < α(M, [η+ω0]), there is a uniform
constant C > 0 such that for all ε > 0 with ε ⩽ 1 we have

(2.4)
∫
M

e−αv ωn0 ⩽ C

for all v ∈ Hη+εω0 .

Proof. — The key observation is that when ε > 0 and ε ⩽ 1, η + εω0 ⩽
η + ω0 implies that Hη+εω0 ⊂ Hη+ω0 . Thus, for any v ∈ Hη+εω0 , we have
for the fixed α > 0 and α < α(M, [η + ω0])

□(2.5)
∫
M

e−αv ωn0 ⩽
∫
M

e−αv(η + ω0)n ⩽ C.

The most important estimate we need is the following Lemma analogous
to [9, Theorem 5.2].

Lemma 2.4. — There exists a constant C such that for all ε > 0 suffi-
ciently small

(2.6) Fε + ερε − (1 + ε)φε ⩽ C

ANNALES DE L’INSTITUT FOURIER
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where C only depends on
∫
M

logω
n
φε

ωn0

ωnφε
n! .

Proof. — Given a point p0 ∈ M , 0 < d0 < 1, we start by choosing a
smooth cut-off function f such that

(2.7)

1 − θ ⩽ f ⩽ 1,
f(p0) = 1, f ≡ 1 − θ outside B d0

2
(p0),

|∂f |2ω0
⩽

4θ2

d2
0
, |∂2f |2ω0

⩽
4θ
d2

0

where p0 and θ > 0 are going to be specified later, and d0 is fixed to be
a constant strictly larger than 0 and strictly less than 1. Let α > 0 be a
fixed constant strictly less than α(M, [η+ω0]), and choose δ = α

4n . We will
denote the metric tensor of ωφε by gφε , and suppress ε for simplicity of
notation while carrying out calculations. Calculate

(2.8) ∆ωφ(eδ(F+ερ−(1+ε)φ) f)

= ∆ωφ(eδ(F+ερ−(1+ε)φ))f + eδ(F+ερ−(1+ε)φ) ∆ωφ(f)

+ 2 eδ(F+ερ−(1+ε)φ) δRe(gijφ ∂i(F + ερ− (1 + ε)φ)∂jf)

= eδ(F+ερ−(1+ε)φ) f(δ2|∂(F + ερ− (1 + ε)φ)|2ωφ
+ δ∆ωφ(F + ερ− (1 + ε)φ)) + eδ(F+ερ−(1+ε)φ) ∆ωφf

+ 2 eδ(F+ερ−(1+ε)φ) δRe(gijφ ∂i(F + ερ− (1 + ε)φ)∂jf).

We estimate the terms involved in the above calculation as follows

(2.9) 2δRe(gijφ ∂i(F + ερ− (1 + ε)φ)∂jf)

⩾ −δ2f |∂(F + ερ− (1 + ε)φ)|2ωφ −
|∂f |2ωφ
f

⩾ −δ2f |∂(F + ερ− (1 + ε)φ)|2ωφ −
|∂f |2ω0

trωφω0

f

⩾ −δ2f |∂(F + ερ− (1 + ε)φ)|2ωφ − 4θ2

d2
0(1 − θ) trωφω0,

(2.10) eδ(F+ερ−(1+ε)φ) ∆ωφf ⩾ − eδ(F+ερ−(1+ε)φ) 4θ
d2

0(1 − θ)ftrωφω0.

The key computation is the following:

(2.11) ∆ωφ(F + ερ− (1 + ε)φ)
= −(R+ (1 + ε)n) − trωφη + (1 + ε)trωφω + ε∆ωφρ.

TOME 0 (0), FASCICULE 0



8 Wanxing LIU

Let AΦ(F ) =
∫
M

eF Φ(F )ωn0 , and notice by (2.2)

(2.12)

∆ωφρ = trωφ(ω +
√

−1∂∂ρ) − trωφω

⩾ n(e−F eF Vol(ω)Φ(F )AΦ(F )−1) 1
n − trωφω

= n(Vol(ω)Φ(F )AΦ(F )−1) 1
n − trωφω.

Then we have

(2.13) ∆ωφ(F + ερ− (1 + ε)φ)

⩾
(

−R− (1 + ε)n+ εnVol(ω) 1
nAΦ(F )− 1

nΦ(F ) 1
n

)
+ (1 + ε)trωφω

− εtrωφω − trωφη

=
(

−R− (1 + ε)n+ εnVol(ω) 1
nAΦ(F )− 1

nΦ(F ) 1
n

)
+ εtrωφω0.

Combining all these calculations, we conclude that

(2.14) ∆ωφ(eδ(F+ερ−(1+ε)φ) f)

⩾ δf eδ(F+ερ−(1+ϵ)φ)(−R− (1 + ε)n+ εnVol(ω) 1
nAΦ(F )− 1

nΦ(F ) 1
n )

+ eδ(F+ερ−(1+ε)φ)
(
δfε− 4θ

d2
0(1 − θ)f − 4θ2

d2
0(1 − θ)2

)
trωφω0.

Choosing

θ = δε

64d
2
0 = αε

256nd
2
0,

ANNALES DE L’INSTITUT FOURIER
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notice that when ε is small enough we have θ < 1
2 and δε

64 ⩽
√

δε
128 , so

that because f ⩽ 1 we estimate

(2.15) δfϵ− 4θ
d2

0(1 − θ)f − 4θ2

d2
0(1 − θ)2

⩾ δ(1 − θ)ϵ− 4θ
d2

0(1 − θ) − 4θ2

d2
0(1 − θ)2

⩾
δϵ

2 − 8θ
d2

0
− 16θ2

d2
0

⩾
δε

2 − δε

8 − δε

8 > 0.

So the coefficient of trωφω0 in (2.14) is positive, and we throw it away and
conclude

(2.16) ∆ωφ(eδ(F+ερ−(1+ε)φ) f)

⩾ δf eδ(F+ερ−(1+ε)φ)(−R− (1 + ε)n+ εnVol(ω) 1
nAΦ(F )− 1

nΦ(F ) 1
n ).

Let u = eδ(F+ερ−(1+ε)φ), and choose p0 to be the maximum point of u.
Applying the Alexandrov–Bakelman–Pucci maximum principle in Bd0(p0)
we get

(2.17) sup
Bd0 (p0)

uf ⩽ sup
∂Bd0 (p0)

uf

+C

∫
Bd0 (p0)

u2n
(
(−R−(1+ε)n+εnVol(ω) 1

nAΦ(F)− 1
nΦ(F) 1

n)−
)2n

e−2F ωn0


1

2n

where C is a constant dependent on the dimension of the manifold n, d0
and δ. Notice that the integral is only nonzero on the region where

(2.18) −R− (1 + ε)n+ εnVol(ω) 1
nAΦ(F )− 1

nΦ(F ) 1
n < 0.

Observe that for ε sufficiently small,

(2.19)
−R− (1 + ϵ)n =

n[η] ·
∑n−1
k=0

(
n−1
k

)
εk[ω0]k · [η]n−1−k∑n

k=0
(
n
k

)
εk[ω0]k · [η]n−k − (1 + ϵ)

⩾ −Cε.

TOME 0 (0), FASCICULE 0
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So (2.18) is only possible if F ⩽ C where C depends only on AΦ(F ), n and
AΦ(F ) depends only on the entropy. So we get

(2.20)

∫
Bd0 (p0)

u2n
(

−R− (1 + ε)n+ εnAΦ(F )− 1
nΦ(F ) 1

n )−
)2n

e−2F ωn0


1

2n

=

∫
Bd0 (p0)∩{F⩽C}

u2n
(
−R−(1+ε)n+εnAΦ(F )− 1

nΦ(F ) 1
n )−
)2n

e−2F ωn0


1

2n

⩽

(∫
Bd0 (p0)

u2n((−R− (1 + ε)n)−)2n

e−2F ωn0

) 1
2n

⩽ C

(∫
Bd0 (p0)∩{F⩽C}

e2nδ(F+ερ−(1+ϵ)φ) e2F ε2nωn0

) 1
2n

⩽ Cε

(∫
Bd0 (p0)

e−(2nδ(1+ε))φ ωn0

) 1
2n

⩽ Cε

(∫
Bd0 (p0)

e−α
2 φ ωn0

) 1
2n

⩽ Cε.

where for the last inequality we used Lemma 2.3. So

(2.21) u(p0) = sup
M

u ⩽ (1 − θ) sup
M

u+ Cε,

and

(2.22) u(p0) ⩽ Cε

θ
= Cε

δεd2
0

64

⩽ C.

Thus we are able to conclude that for any ε sufficiently small,

□(2.23) F + ερ− (1 + ε)φ ⩽ C.

With this estimate at our disposal, we now proceed to prove Theorem 2.1.
Proof of Theorem 2.1. — Let α be a positive constant strictly less than

α(M, [η+ω0]), the α-invariant associated with [η+ω0], and ε < α
2 , we have

(2.24) F + α

2 ρ− (1 + ε)φ ⩽ F + ερ− (1 + ε)φ ⩽ C

ANNALES DE L’INSTITUT FOURIER
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because ρ ⩽ 0. Thus for ε < α
2 ,

(2.25)
C ⩾

∫
M

e−αρ ωn0 ⩾
∫
M

exp(2(F − (1 + ε)φ− C))ωn0

⩾
∫
M

exp(2(F − C))ωn0

where for the last inequality we used the fact that φ ⩽ 0. So we conclude
that eF ∈ L2(M,ωn0 ) when ε is small enough. Then the proof is done by
applying a theorem first announced in Tian–Zhang [49] and later proved
in Zhang [54] which asserts that if for some p > 1, eF ∈ Lp(M,ωn0 ), then
the C0 estimate on φ only depends on the ∥ eF ∥Lp(M,ωn0 ). This is a gener-
alization of Kolodziej’s [29] fundamental result to the degenerate setting.
One can find more general versions of their result in Eyssidieux–Guedj–
Zeriahi [21, 22] and Demailly–Pali [17] as well. □

To show that Fε is uniformly bounded from below we recall a trick due
to Song–Tian [38] which was pointed out to the author by Jian Song. We
consider the following auxiliary complex Monge–Ampère equations:

(2.26) (ωε +
√

−1∂∂hε)n = ehε ω
n
ε

ωn0
ωn0 .

Again, for each ε there exists a unique smooth real-valued hε solving (2.26)
by Yau’s theorem. At a maximum p0 of hε we have

(2.27) ehε = (ωε +
√

−1∂∂hε)n

ωn0
⩽
ωnε
ωn0

⩽ C.

Thus, hε is uniformly bounded from above. Then by the theorem of
Zhang [54] again, we have that ∥hε∥C0(M) is uniformly bounded.

Theorem 2.5. — There exists a constant C depending only on
∥φε∥C0(M) and ∥hε∥C0(M) such that

(2.28) Fε ⩾ C

for ε sufficiently small.

Proof. — Compute at a minimum p0 of F + φ− h, we get

(2.29)

0 ⩽ ∆ωφ(F + φ− h) = −R+ n− trωφ(ω + η +
√

−1∂∂h)

⩽ C − trωφ(ω +
√

−1∂∂h)

⩽ C − n e
h−F
n .

It implies that

(2.30) F (p0) ⩾ C.

TOME 0 (0), FASCICULE 0
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So for any p ∈ M ,

□(2.31) F (p) + φ(p) − h(p) ⩾ F (p0) + φ(p0) + h(p0) ⩾ C + φ(p0).

Theorem 2.6. — There exists a constant C > 0 such that

(2.32) Fε ⩽ C

for all ε sufficiently small.

Proof. — Using the Lp bound on eF , the lower bound on F and the
theorem of Zhang [54] again we can show that ρε is uniformly bounded as
well. Then the theorem follows immediately from Lemma 2.4. □

3. Degenerate bound on |∂φε|2ω0

Let us first recall the following the Kodaira’s lemma, for handling degen-
erate reference metrics.

Lemma 3.1. — There exists an effective divisor E on M , a holomorphic
section s of E which vanishes to order 1 along the divisor E, constants
σ > 0, C > 0 such that for any δ′ ∈ (0, σ], and any Hermitian metric h of
[E], where [E] is the line bundle associated with E, we have

(3.1) η + δ′√−1∂∂log|s|2h > Cδ′ω0.

Moreover, as a special case of the Kodaira lemma, we can and will choose
E to be the exceptional locus of the canonical map Φ : M → Mcan, where
Φ fails to be an isomorphism, so that η is Kähler outside E (see Song–
Tian [39, Proposition 2.1]). The trick of applying Kodaira’s lemma is com-
monly referred to as the Tsuji’s trick in the literature, and the idea of it is
straightforward. ωε is degenerate in the sense that it is tending to η which
might be zero along E. By using the barrier function ψ := log|s|2h which is
−∞ along the singular set, one can carry out the usual maximum princi-
ple away from E. Equipped with this tool, we will show in this section a
degenerate version of Theorem 2.2 in [9].

Theorem 3.2. — There exists constants q > 0 and C > 0 such that

(3.2) |∂φε|2ω0
⩽ C

1
|s|2qh

where the constants depend only on ∥φε∥C0(M), ∥Fε∥C0(M) and (M,ω0).
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Proof. — We will suppress ε for simplicity and apply the maximum prin-
ciple to

(3.3) e−(F+λφ)+ 1
2φ

2+Qδ′ψ(|∂φ|2ω0
+K).

Here λ > 0,K > 0, Q > 0 are constants to be determined later, and δ′ ∈
(0,min{σ, 1}], where σ is the constant given in Lemma 3.1. Let A(F,φ, ψ) =
−(F + λφ) + 1

2φ
2 + Qδ′ψ, and denote the metric tensor of ωφ by gφ,

the metric tensor of ω by g and the metric tensor of ω0 by g0. Unless
otherwise noted, we will always choose a normal holomorphic coordinate
neighborhood for g0 such that gφ is diagonal.

(3.4) ∆ωφ(eA(|∂φ|2ω0
+K))

= ∆ωφ(eA)(|∂φ|2ω0
+K) + eA ∆ωφ(|∂φ|2ω0

) + 2giiφ eA Re(Ai(|∂φ|2ω0
)i).

Let us estimate the three terms involved in the above equation separately

(3.5) ∆ωφ(eA)

= eA giiφ |Ai|2 + eA(−∆ωφ(F + λφ) + φ∆ωφφ+Qδ′∆ωφψ) + eA giiφ |φi|2

= eA(R− λn+ (λ− φ)trωφω + trωφη + nφ+Qδ′∆ωφψ)

+ eA giiφ |φi|2 + eA giiφ |Ai|2,
and

(3.6) ∆ωφ(|∂φ|2ω0
)

= giiφRαβii(g0)φαφβ + giiφ |φαi|2 + giiφ |φαi|
2 + giiφ (φαiiφα + φαiiφα).

Differentiating

(3.7) log
ωnφ
ωn0

= F,

we get

(3.8) giiφ (gii,α + φiiα) = Fα and giiφ (gii,α + φiiα) = Fα.

So

(3.9) ∆ωφ(|∂φ|2ω0
)

= giiφRαβii(g0)φαφβ + giiφ |φαi|2 + giiφ |φαi|
2

+ Fαφα + Fαφα − 2giiφRe(gii,αφα)

⩾ −C1|∂φ|2ω0
trωφω0 + giiφ |φαi|2 + giiφ |φαi|

2 − 2Re(Aαφα)

− 2(λ− φ)|∂φ|2ω0
+ 2Qδ′Re(ψαφα) − 2giiφRe(gii,αφα).
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where C1 depends on a lower bound on the bisectional curvature of ω0.
Then we have

(3.10) e−A ∆ωφ(eA(|∂φ|2ω0
+K))

⩾ (R− λn+ (λ− φ)trωφω +Qδ′∆ωφψ + trωφη + nφ)(|∂φ|2ω0
+K)

+ giiφ |Ai|2(|∂φ|2ω0
+K) + |∂φ|2ωφ(|∂φ|2ω0

+K)

− C1|∂φ|2ω0
trωφω0 + giiφ |φαi|2 + giiφ |φαi|

2 + (−2λ+ 2φ)|∂φ|2ω0

− 2Re(Aαφα) + 2giiφRe(Ai(φαiφα + φαiφα))

+ 2Qδ′Re(ψαφα) − 2giiφRe(gii,αφα).

Notice the following complete square in the above sum

(3.11) giiφ |φiα +Aiφα|2 = giiφ |φiα|2 + 2giiφRe(Aiφαφαi) + giiφ |Ai|2|∂φ|2ω0
.

Also observe that

(3.12)
−Aαφα + giiφAiφαiφα = giiφ (Aiφαiφα − (gφ)αiAiφα)

= −giiφgαiAiφα.

In summary

(3.13) ∆φ(eA(|∂φ|2ω0
+K)) e−A

⩾ Kgiiφ |Ai|2 + giiφ |φi|2(|∂φ|2ω0
+K)

+ (trωφ(λ− φ)ω +Qδ′∆ωφψ + trωφη)(|∂φ|2ω0
+K)

+ (R− λn+ nφ)(|∂φ|2ω0
+K) − C1|∂φ|2ω0

trωφω0 + giiφ |φαi|
2

+ (−2λ+ 2φ)|∂φ|2ω0
− 2giiφRe(gαiAiφα)

+ 2Qδ′Re(ψαφα) − 2Re(giiφgii,αφα).

Furthermore, by Young’s inequality

(3.14) 2Re(giiφgii,αφα) ⩽ C2(trωφω0 + |∂φ|2ω0
trωφω0),

and

(3.15) 2Re(giiφgαiAiφα) ⩽ C3(giiφ |Ai|2 + |∂φ|2ω0
trωφω0).

Let λ = ( 1
δ′ + 1

Cδ′
)(∥φ∥C0(M) + 10 + C1 + C2 + C3), Q = λ− ∥φ∥C0(M) >

max{ 10+C1+C2+C3
Cδ′

, 2
δ′ }, K = C2 + C3, so that Cδ′Q ⩾ 10 + C1 + C2 + C3,

Qδ′ > 1 and recall that ψ is chosen such that

(3.16) ω + δ′√−1∂∂ψ ⩾ η + δ′√−1∂∂ψ > Cδ′ω0.
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So

(3.17) (trωφ(λ− φ)ω +Qδ′∆ωφψ + trωφη)(|∂φ|2ω0
+K)

− C1|∂φ|2ω0
trωφω0 − 2Re(giiφgii,αφα) +Kgiiφ |Ai|2 + 2Re(giiφgαiAiφα)

⩾ Q(trωφω + δ′∆ωφψ)(|∂φ|2ω0
+K) − (C1 + C2 + C3)|∂φ|2ω0

trωφω0

− C2trωφω0 + (K − C3)giiφ |Ai|2

⩾ QCδ′(|∂φ|2ω0
+K)trωφω0 − (C1 + C2 + C3)|∂φ|2ω0

trωφω0 − C2trωφω0

⩾ 10|∂φ|2ω0
trωφω0.

Recall that R → −n, so

(3.18) (R− λn+ nφ)(|∂φ|2ω0
+K) ⩾ −C|∂φ|2ω0

− C,

and

(3.19) (−2λ+ 2φ)|∂φ|2ω0
⩾ −C|∂φ|2ω0

where the constants depend on the 0-th order estimate on φ. Also as an
elementary consequence of the equation (see [9, p. 12])

(3.20)
ωnφ
ωn0

= eF

yields

(3.21) giiφ |φi|2|∂φ|2ω0
+ |∂φ|2ω0

trωφω0 ⩾ C|∂φ|2+ 2
n

ω0 e
−F
n .

Recall that ψ = log|s|2h, where s is a holomorphic section vanishing on E.
Then we get

(3.22) giiφ |φi|2|∂φ|2ω0
+ |∂φ|2ω0

trωφω0 ⩾ C|∂φ|2+ 2
n

ω0 e
−F+Qδ′ψ

n .

We arrive at

(3.23) ∆ωφ(eA(|∂φ|2ω0
+K))

⩾ eA(giiφ |φi|2|∂φ|2ω0
+ |∂φ|2ω0

trωφω0 − C|∂φ|2ω0
− C + 2Qδ′Re(ψαφα))

⩾ eA(C e
−F+Qδ′ψ

n (|∂φ|2ω0
)1+ 1

n − C|∂φ|2ω0
− C + 2Qδ′Re(ψαφα))

⩾ C(eQδ
′ψ |∂φ|2ω0

)1+ 1
n − C eQδ

′ψ |∂φ|2ω0
− C eQδ

′ψ +2 eAQδ′Re(ψαφα)

where we used the fact that ∥F∥C0(M) and ∥φ∥C0(M) are bounded. For the
last term we have

(3.24) ψα = ∂α(|s|2h)
|s|2h

,
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So

(3.25)
2 eAQδ′Re(ψαφα) ⩾ −C e2ψ |∂ψ|2ω0

− C e(2Qδ′−2)ψ |∂φ|2ω0

⩾ −C − C eQδ
′ψ |∂φ|2ω0

.

where we used the fact that Q is chosen such that 2Qδ′ − 2 > Qδ′ so
e(2Qδ′−2)ψ ⩽ C eQδ′ψ. Finally we reach

(3.26) ∆ωφ(eA(|∂φ|2ω0
+K))

⩾ C(eQδ
′ψ |∂φ|2ω0

)1+ 1
n − C eQδ

′ψ |∂φ|2ω0
− C eQδ

′ψ −C.

At a maximum p of eA(|∂φ|2ω0
+K), which is away from E because A = −∞

on E, we have

(3.27)
C(eQδ

′ψ(p) |∂φ|2ω0
(p))1+ 1

n − C eQδ
′ψ(p) |∂φ|2ω0

(p) ⩽ C eQδ
′ψ(p) +C

⩽ C

where for the last inequality we used the fact that ePψ is bounded from
above for any constant P > 0, and our choice that Qδ′ > 1. Thus, we
conclude that eQδ′ψ |∂φ|2ω0

(p) is bounded from above. As a consequence,
eA(|∂φ|2ω0

+ K)(p) is also bounded from above. This concludes
our proof. □

4. Degenerate Lp bound on trω0ωφε and C∞
loc(M\E) bound

on φε

In this section we will first establish a degenerate version of Theorem 3.1
in [9].

Theorem 4.1. — For each p > 0, there exists a constant γ(p) > 0 such
that

(4.1)
∫
M

eγ(p)ψ(trω0ωφε)pωn0 ⩽ C(p, (M,ω0), ∥φε∥C0(M), ∥Fε∥C0(M)).

For simplicity, let Bε = Fε + λφε − λδ′ψ, where δ′ < min{ 1
2 , σ} and σ

is specified in Lemma 3.1. Moreover, let β be a constant greater than 1.
We start by computing at a point away from E in a normal holomorphic
coordinate neighborhood for g0 such that gφ is diagonal.

(4.2) ∆ωφ(e−βB(trω0ωφ))

= ∆ωφ(e−βB)trω0ωφ + e−βB ∆ωφ(trω0ωφ) − 2βRe(e−βB giiφ (Bi∂itrω0ωφ)),
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and

(4.3) ∆ωφ e−βB

= (β2giiφ |Bi|2 + β(R− λn+ λtrωφ(ω + δ′√−1∂∂ψ) + trωφη)) e−βB

⩾ β2giiφ |Bi|2 e−βB +β e−βB(R− λn) + Cδ′λβ e−βB trωφω0.

Now we estimate ∆ωφtrω0ωφ by first recalling that from the calculation in
Yau [53] (see also [44, Lemma 3.7] for an exposition) we have

(4.4) ∆ωφ log trω0ωφ ⩾ −C1trωφω0 −
gij0 Rij(gφ)

trω0ωφ

where C1 only depends on a lower bound for the bisectional curvature of
g0. Recall that

(4.5) log
ωnφ
ωn0

= F.

Then we have

(4.6) −trω0 Ric(ωφ) = trω0η + ∆ω0F.

Thus

(4.7) ∆ωφ logtrω0ωφ ⩾ −C1trωφω0 + ∆ω0F

trω0ωφ
+ trω0η

trω0ωφ
,

and

(4.8) ∆ωφtrω0ωφ ⩾ −C1trωφω0trω0ωφ +
|∂trω0ωφ|2ωφ

trω0ωφ
+ ∆ω0F + trω0η.

Then we are able to conclude that

(4.9) eβB ∆ωφ(e−βB(trω0ωφ))

⩾ (β2giiφ |Bi|2 + β(R− λn))trω0ωφ + (Cδ′λβ − C1)trωφω0trω0ωφ

+
|∂trω0ωφ|2ωφ

trω0ωφ
+ ∆ω0F + trω0η − 2βRe(giiφ (Bi∂itrω0ωφ))

⩾ β(R− λn)trω0ωφ + (Cδ′λβ − C1)trωφω0trω0ωφ + ∆ω0F + trω0η

where we dropped the terms

(4.10) β2giiφ |Bi|2trω0ωφ − 2βRe(giiφ (Bi∂itrω0ωφ)) +
|∂trω0ωφ|2ωφ

trω0ωφ

= trω0ωφg
ii
φ (β2|Bi|2 − 2βRe

(
Bi∂itrω0ωφ

trω0ωφ

)
+

|∂itrω0ωφ|2

(trω0ωφ)2 ) ⩾ 0.
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Use

(4.11) trωφω0trω0ωφ ⩾ e− F
n−1 (trω0ωφ)1+ 1

n−1 ,

and choose λ = max( 2C1+2
Cδ′

, q
2δ′ + 1, 1

2δ′ + 1), where q is specified in Theo-
rem 3.2, so that Cδ′λβ ⩾ (2C1 + 2)β > 2C1 + 1. We get

(4.12) ∆ωφ(e−βB(trω0ωφ))

⩾ β(R− λn)trω0ωφ e−βB +(Cδ′λβ − C1) e− F
n−1 −βB(trω0ωφ)1+ 1

n−1

+ (∆ω0F + trω0η) e−βB

⩾ β(R− λn)trω0ωφ e−βB +(Cδ′λβ − C1) e− F
n−1 −βB(trω0ωφ)1+ 1

n−1

+ ∆ω0F e−βB

where for the last line we took advantage of the fact that η ⩾ 0. Let
u = e−βB trω0ωφ, for any p ⩾ 0, we have

(4.13)
1

2p+ 1∆ωφu
2p+1 = 2pu2p−2 e−βB(trω0ωφ)|∂u|2ωφ + u2p∆ωφu

⩾ 2pu2p−2|∂u|2ω0
e−βB +u2p∆ωφu.

Integrating both sides of (4.13) with respect to ωnφ = eF ωn0 and use (4.12)
we get

(4.14)
∫
M

2pu2p−2|∂u|2ω0
e−βB+F ωn0 +

∫
M

∆ω0F e−βB+F u2pωn0

+
∫
M

u2p e−βB+n−2
n−1F (Cδ′λβ − C1)(trω0ωφ)1+ 1

n−1ωn0

⩽
∫
M

β(λn−R)trω0ωφ e−βB+F u2pωn0 .

Let us denote φ̃ = φ − δ′ψ, and to handle the term involving ∆ω0F , we
apply integration by parts

(4.15)
∫
M

e−βB+F u2p∆ω0Fω
n
0

=
∫
M

(β − 1) e(1−β)F−βλφ̃ u2p|∂F |2ω0
ωn0

+
∫
M

βλ e(1−β)F−λβφ̃ u2p⟨∂φ̃, ∂F ⟩ω0ω
n
0

−
∫
M

2p e(1−β)F−βλφ̃ u2p−1⟨∂u, ∂F ⟩ω0ω
n
0 ,
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where ⟨∂φ̃, ∂F ⟩ω0 = gij0 φ̃iFj , and ⟨∂u, ∂F ⟩ω0 = gij0 uiFj in coordinates.
Notice that by Young’s inequality

(4.16) |u2p−1⟨∂u, ∂F ⟩ω0 | ⩽ 1
2u

2p|∂F |2ω0
+ 1

2u
2p−2|∂u|2ω0

,

and

(4.17) |βλ e(1−β)F−λβφ̃ u2p⟨∂φ̃, ∂F ⟩ω0 |

⩽ |βλ e(1−β)F−λβφ̃ u2p⟨∂φ, ∂F ⟩ω0 | + |δ′βλ e(1−β)F−λβφ̃ u2p⟨∂ψ, ∂F ⟩ω0 |

⩽
(β − 1)

2 u2p|∂F |2ω0
e(1−β)F−λβφ̃ +|∂φ|2ω0

β2λ2

(β − 1)u
2p e(1−β)F−λβφ̃

+ δ′2|∂ψ|2ω0

β2λ2

(β − 1)u
2p e(1−β)F−λβφ̃ .

Then substitute this back into (4.15), we get

(4.18)
∫
M

e(1−β)F−βλφ̃ u2p∆ω0Fω
n
0

⩾ −
∫
M

|∂ψ|2ω0

δ′2β2λ2

(β − 1) e(1−β)F−λβφ̃ u2pωn0

−
∫
M

p e(1−β)F−λβφ̃ u2p−2|∂u|2ω0
ωn0

+
∫
M

(
β − 1

2 − p

)
e(1−β)F−βλφ̃ u2p|∂F |2ω0

ωn0

−
∫
M

|∂φ|2ω0

β2λ2

(β − 1) e(1−β)F−λβφ̃ u2pωn0 .

Substituting (4.18) back into (4.14), we conclude

(4.19)
∫
M

pu2p−2|∂u|2ω0
e(1−β)F−λβφ̃ ωn0

+
∫
M

(
β − 1

2 − p

)
e(1−β)F−βλφ̃ u2p|∂F |2ω0

ωn0

+
∫
M

u2p e−(β−n−2
n−1 )F−βλφ̃(Cδ′βλ− C1)(trω0ωφ)1+ 1

n−1ωn0

⩽
∫
M

|∂φ|2ω0

β2λ2

(β − 1) e(1−β)F−λβφ̃ u2pωn0

+
∫
M

|∂ψ|2ω0

δ′2β2λ2

(β − 1) e(1−β)F−λβφ̃ u2pωn0

+
∫
M

β(λn−R)trω0ωφ e(1−β)F−βλφ̃ u2pωn0 .
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Now choose β > 2p + 1, and recall that λ = max( 2C1+2
Cδ′

, q
2δ′ + 1, 1

2δ′ + 1),
where q is specified in Theorem 3.2, so that Cδ′λβ ⩾ (2C1 +2)β > 2C1 +1.
Because trω0ωφ ⩾ n eFn by the arithmetic-geometric means inequality, we
have

(4.20)
∫
M

u2p e−(β−n−2
n−1 )F−βλφ̃(trω0ωφ)1+ 1

n−1ωn0

⩽ C

∫
M

trω0ωφ e(1−β)F−βλφ̃ u2pωn0 + C

∫
M

u2p e(1−β)F−βλφ̃ ωn0

+ C

∫
M

|∂φ|2ω0

β2

β − 1 e(1−β)F−λβφ̃ u2pωn0

+ C

∫
M

|∂ψ|2ω0

δ′2β2

β − 1 e(1−β)F−λβφ̃ u2pωn0 .

For p = 0, β = 2 we have

(4.21)
∫
M

e2λδ′ψ(trω0ωφ)1+ 1
n−1ωn0

⩽ C

∫
M

e−(2−n−2
n−1 )F−2λφ̃(trω0ωφ)1+ 1

n−1ωn0

⩽ C

∫
M

trω0ωφ e2λδ′ψ ωn0 + C

∫
M

e2λδ′ψ ωn0

+ C

∫
M

|∂φ|2ω0
e−2λφ+2λδ′ψ ωn0 + C

∫
M

|∂ψ|2ω0
e−2λφ+2λδ′ψ ωn0

⩽ C

∫
M

trω0ωφω
n
0 + C + C

∫
M

|∂φ|2ω0
e2λδ′ψ ωn0

+ C

∫
M

|∂ψ|2ω0
e2λδ′ψ ωn0 ,

where we used the fact that φ and F are bounded. Also notice that

(4.22)
∫
M

trω0ωφω
n
0 =

∫
M

trω0ωω
n
0 +

∫
M

∆ω0φω
n
0 ⩽ C.

For the last two terms

(4.23)
∫
M

|∂φ|2ω0
e2λδ′ψ ωn0 ⩽ C

∫
M

|s|4λδ
′−2q

h ωn0 ⩽ C,

and

(4.24)
∫
M

|∂ψ|2ω0
e2λδ′ψ ωn0 ⩽ C

∫
M

|s|4λδ
′−2

h ωn0 ⩽ C.
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Recall that we choose λ > max{ q
2δ′ ,

1
2δ′ }, so we can bound the last two

terms since |s|2h is bounded. As a result, we obtained a bound for∫
M

e2λδ′ψ(trω0ωφ)
n
n−1ωn0 .

Now it suffices to show that for each given p > 0,∫
M

(trω0ωφ)p eλ(2p+2)(δ′(p−1)+1)ψ ωn0

(recall that δ′ < 1
2 , so that δ′(p−1)+1 > δ′ when p = n

n−1 ) being bounded
above implies that for p+ 1

n−1 ,∫
M

(trω0ωφ)p+ 1
n−1 eλ(2p+2)(δ′(p+ 1

n−1 −1)+1)ψ ωn0

is bounded above, then we are done by induction. Given p > 1, let p̃ = p−1
2 ,

β = 2p+ 2 > 2p̃+ 1 and take p̃, β into our inequality (4.20), we get

(4.25)
∫
M

eλ(2p+2)(δ′(p+ 1
n+1 −1)+1)ψ(trω0ωφ)p+ 1

n−1ωn0

⩽ C

∫
M

e−(2p+2−n−2
n−1 )F−(2p+2)λφ̃−2p̃(2p+2)B(trω0ωφ)p+ 1

n−1ωn0

⩽ C

∫
M

eλ(2p+2)(δ′(p−1)+1)ψ(trω0ωφ)pωn0

+ C

∫
M

eλ(2p+2)(δ′(p−1)+1)ψ(trω0ωφ)p−1ωn0

+ C

∫
M

|∂φ|2ω0
eλ(2p+2)(δ′(p−1)+1)ψ(trω0ωφ)p−1ωn0

+ C

∫
M

|∂ψ|2ω0
eλ(2p+2)(δ′(p−1)+1)ψ(trω0ωφ)p−1ωn0 .

The first two terms on the right hand side are bounded due to the inductive
hypothesis and the 0-th order bound on F and φ. For the last two terms
we can use the same idea as in the case where p = 0, β = 2, to bound them.
Then we are done by induction. We now need the following proposition
from [9] (1) to show that φε is locally uniformly smoothly bounded away
from E.

Proposition 4.2. — Let K be a compact subset of M , suppose that
trω0ωφε ∈ Lp(K), and trωφεω0 ∈ Lp(K) for some p > 3n(n − 1)(n is the
dimension of M), then for any m ∈ N,m ⩾ 2, φε ∈ Cm(K,ω0) with the

(1) The authors of [9] decided to omit this result in the published version of the article
and it can be found in Corollary 6.2 of the arXiv version (https://arxiv.org/abs/1712.
06697) of [9].

TOME 0 (0), FASCICULE 0

https://arxiv.org/abs/1712.06697
https://arxiv.org/abs/1712.06697


22 Wanxing LIU

bound only depends on p, ∥trωφεω0∥Lp(K′), ∥trω0ωφε∥Lp(K′), ∥φε∥C0(K′),m,
and (M,ω0), where K ′ is a larger compact set containing K.

Corollary 4.3. — Given any compact subset K of M\E, φε is uni-
formly bounded in C∞(K).

Proof. — Given a compact subset K ⊂ M\E, the Lp(K) bound on
trω0ωφε is a direct consequence of Theorem 4.1. Furthermore, notice that

(4.26)

trωφεω0 =
∑
i

1
(gφε)ii

=
∑
i

1∏
m(gφε)mm

∏
j ̸=i

(gφε)jj

= e−F
∏
j ̸=i

(gφε)jj ⩽ e−F (trω0ωφε)n−1.

So we are able to obtain the Lp(K) bound on trωφω0 by using the C0(M)
bound on F and Theorem 4.1 again. We conclude the proof by recalling that
we previously showed that ∥φε∥C0(M) is uniformly bounded in Section 2
and |∂φε|ω0 is uniformly bounded on K in Section 3. □

5. Uniform upper bound on the Mabuchi energy and the
entropy

All the estimates we proved in the previous sections depend on the en-
tropy

(5.1)
∫
M

log
ωnφε
ωn0

ωnφε
n! ,

thus in order to obtain uniform estimates, it is essential to show that the
entropies are uniformly bounded from above independent of ε. To achieve
that, we need to study the Mabuchi energy which is closely related to the
entropy. Recall that ωε = η + εω0, and we will continue suppressing ε for
simplicity of notation. The Mabuchi energy is defined to be the functional

(5.2) Mω(θ) =
∫
M

log ω
n
θ

ωn
ωnθ
n! + J− Ric(ω)(θ)

where θ ∈ Hω := {θ ∈ C∞(M)|ω +
√

−1∂∂θ > 0, supM θ = 0}. For any
real (1, 1) form χ, Jχ is a functional on Hω defined through its variation

(5.3) dJχ
dt =

∫
M

∂θ

∂t
(trωθχ− χ)ω

n
θ

n!

ANNALES DE L’INSTITUT FOURIER



CONVERGENCE OF CSCK METRICS 23

where χ = n [χ]·[ω]n−1

[ω]n . Following Chen [7] (see also [10, Section 2.1]), we
have the following explicit formula for Jχ

(5.4) Jχ(θ)

= −
χ

(n+1)!

∫
M

θ

(
n∑
i=0

ωi ∧ ωn−i
θ

)
+ 1
n!

∫
M

θχ∧

(
n−1∑
i=0

ωi ∧ ωn−1−i
θ

)
,

so Jχ(0) = 0. Furthermore, the variation of the Mabuchi functional is given
by

(5.5) dMω

dt =
∫
M

∂θ

∂t
(−trωθ Ric(ωθ) + Ric(ω))ω

n
θ

n! .

The first term appearing in the Mabuchi functional is the same as what
we referred to as the entropy term before except that the leading term in
the integral has its denominator as ωn while ours is ωn0 . Thus, we need to
adjust the Mabuchi energy slighly to match our entropy term. We define
our modified Mabuchi energy to be

(5.6) Eω(θ) =
∫
M

log ω
n
θ

ωn0

ωnθ
n! + Jη(θ).

It turns out that Eω only differs from Mω by a term equal to
∫
M

log ωn

ωn0

ωn

n! .
Observe that

(5.7) d
dt

∫
M

log ω
n
θ

ωn0

ωnθ
n! =

∫
M

∂θ

∂t
(−trωθη − trωθ Ric(ωθ))

ωnθ
n! .

So we know that

(5.8)

dEω
dt =

∫
M

∂θ

∂t
(−trωθ Ric(ωθ) − η)ω

n
θ

n!

=
∫
M

∂θ

∂t
(−trωθ Ric(ωθ) + Ric(ω))ω

n
θ

n! .

Thus the variation of Eω is actually the same as that of the usual Mabuchi
energy Mω. We know that the potentials of cscK metrics are minimizers
of Mω and we want to show that the same is true for Eω. We have just
showed that d

dtMω = d
dtEω. Taking a path tθ in Hω, we have

(5.9) Mω(θ) =
∫ 1

0

d
dtEω dt+ Mω(0) = Eω(θ) −

∫
M

log ω
n

ωn0

ωn

n! .

We know that

(5.10) Mω(θ) − Mω(φ) ⩾ 0

for all θ ∈ Hω and φ such that ωφ = ω +
√

−1∂∂φ is a cscK metric thus,

(5.11) Eω(θ) − Eω(φ) = Mω(θ) − Mω(φ) ⩾ 0.
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So we reach the conclusion that the potentials of cscK metrics are still
minimizers of Eω. One immediate consequence is the following lemma.

Lemma 5.1. — Let φε ∈ Hω be a smooth real-valued function such that
ωφε = ωε +

√
−1∂∂φε is cscK, then

(5.12) Eωε(φε) ⩽ Eωε(0) =
∫
M

log ω
n
ε

ωn0

ωnε
n! ⩽ C

where C is independent of ε.

We are now ready to show that the entropies are uniformly bounded from
above. One possible approach is to first establish a uniform lower bound
on the J functionals since we already know from Lemma 5.1 that Eω(φ)
is uniformly bounded from above. However, this approach requires one to
study the solutions of the J equations assoicated with the J functionals. For
more details related to this route, see [27, 30, 52]. Instead of following this
path, we turn to an approach introduced by Dervan [18] which generates
explicit bounds on the functionals involved.

To begin with, we estimate the entropy term in the Mabuchi energy using
the α-invariant, and this technique should be well-known to the experts in
this field (see for example Tian [47]).

Lemma 5.2. — for all ε ∈ [0, 1], and α such that α > 0 and α <

α(M, [η + ω0]), we have

(5.13)
∫
M

log ω
n
θ

ωn0

ωnθ
n! ⩾ −α

∫
M

θ
ωnθ
n! − C

where C is a positive constant independent of ε.

Proof. — First notice that

(5.14)
∫
M

e−αθ ω
n
0
n! =

∫
M

e− log
ωn
θ
ωn0

−αθ ωnθ
n! ⩽ C

where we used Lemma 2.3 again. Then by Jensen’s inequality,

(5.15)
∫
M

(
− log ω

n
θ

ωn0
− αθ

)
ωnθ
n! ⩽ C

∫
M

ωn

n! ⩽ C

where
∫
M

ωn

n! arises because we need a probability measure in order to apply
Jensen’s inequality. Thus,

□(5.16)
∫
M

log ω
n
θ

ωn0

ωnθ
n! ⩾ −α

∫
M

θ
ωnθ
n! − C.

We will need the following lemmas due to [18], and we include brief proofs
of them here for the reader’s convenience.
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Lemma 5.3 ([18, Lemma 2.9]). — We have

(5.17) −n
∫
M

θωnθ ⩾ −
n∑
i=1

∫
M

θωi ∧ ωn−i
θ .

Proof.

(5.18) −n
∫
M

θωnθ +
n∑
i=1

∫
M

θωi ∧ ωn−i
θ =

n∑
i=1

∫
M

θωn−i
θ ∧ (ωi − ωiθ).

We only need to show that each summand is positive separately∫
M

θωn−i
θ ∧(ωi−ωiθ) =

∫
M

√
−1∂θ∧∂θ ∧ ωn−i

θ ∧

 i∑
j=1

ωi−j ∧ωj−1
θ

(5.19)

⩾ 0. □

Lemma 5.4. — We have

(5.20) −
η

(n+ 1)!

∫
M

θ

(
n∑
i=0

ωi ∧ ωn−i
θ

)

⩾ −
η

n!n

∫
M

θω ∧

(
n−1∑
i=0

ωi ∧ ωn−i−1
θ

)
.

Proof. — We calculate

(5.21) −
η

(n+ 1)!

∫
M

θ

(
n∑
i=0

ωi ∧ ωn−i
θ

)

= −n
η

n(n+ 1)!

∫
M

θωnθ −
η

(n+ 1)!

∫
M

θω ∧

(
n−1∑
i=0

ω ∧ ωn−i−1
θ

)

⩾ −
η

(n+1)!n

∫
M

n∑
i=1

θωi∧ωn−i
θ −

η

(n+1)!

∫
M

θω∧

(
n−1∑
i=0

ωi∧ωn−i−1
θ

)

= −
η

n!n

∫
M

θω ∧

(
n−1∑
i=0

ωi ∧ ωn−i−1
θ

)
where for the inequality we used Lemma 5.3. □

Theorem 5.5. — There exists C > 0, such that

(5.22)
∫
M

log
ωnφϵ
ωn0

ωn0
n! ⩽ C.
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Proof. — Again, we will suppress ε for brevity. Fix α > 0 with α <

α(M, [η + ω0]), then we get

(5.23) Eω(φ)

⩾
1
2

∫
M

log
ωnφ
ωn0

ωnφ
n! − α

2

∫
M

φ
ωnφ
n! −

η

(n+ 1)!

∫
M

φ

(
n∑
i=0

ωi ∧ ωn−i
φ

)

+ 1
n!

∫
M

φη ∧

(
n−1∑
i=0

ωi ∧ ωn−1−i
φ

)
− C

⩾
1
2

∫
M

log
ωnφ
ωn0

ωnφ
n! − 1

n!

∫
M

φ

(
α

2nω − η + 1
n
ηω

)
∧

(
n−1∑
i=0

ωi ∧ ωn−1−i
φ

)
− C

where for the first inequality we used Lemma 5.2, and the second inequality
we used Lemma 5.3 and Lemma 5.4. Notice that

(5.24) α

2nω − η + 1
n
ηω =

(
α

2n − 1 + 1
n
η

)
η + ε

(
α

2n + 1
n
η

)
ω0 > 0

for ε > 0 small enough because η = n [η]·[ωε]n−1

[ωε]n → n as ε → 0. Thus for ε
sufficiently small, we have

(5.25) Eω(φ)

⩾
1
2

∫
M

log
ωnφ
ωn0

ωnφ
n! −

∫
M

φ

(
α

2n−η+ 1
n
ηω

)
∧

(
n−1∑
i=0

ωi∧ωn−1−i
φ

)
−C

⩾
1
2

∫
M

log
ωnφ
ωn0

ωnφ
n! − C,

since we assume that φ ⩽ 0. We conclude the proof by recalling that
Eω(φ) ⩽ Eω(0) ⩽ C according to Lemma 5.1. □

6. Convergence

Now we use the estimates developed in previous sections to show that
away from E, ωφε converges to the singular Kähler Einstein metric ωKE
on M\E given by Theorem 1.4. Fix a connected compact subset K ⊂ M ,
and a subsequence εi such that φεi converges smoothly to φ∞, and Fεi
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converges smoothly to F∞ (such a subsequence always exists by Arzela–
Ascoli). Recall that our equations read

(6.1)
(ωεi +

√
−1∂∂φεi)n

ωn0
= eFεi ,

∆ωφεi
Fϵi = −trωφεi η −Rεi .

Let us compute

(6.2)
∫
K

|∂(Fεi − φεi)|2ωφεi ω
n
φεi

⩽
∫
M

|∂(Fεi − φεi)|2ωφεi ω
n
φεi

= −
∫
M

(Fεi − φεi)∆ωφεi
(Fεi − φεi)ωnφ

= (R+ n)
∫
M

(Fεi − φεi)ωnφεi − εi

∫
M

(Fεi − φεi)trωφεi ω0ω
n
φεi

⩽ C(R+ n)
∫
M

ωnφεi
+ Cεin

∫
M

ωn−1
φεi

∧ ω0 → 0

where for the last line we used the C0 estimates on F and φ. So ∂F∞ = ∂φ∞
on K which implies that F∞ = φ∞ + C on K. Furthermore,

(6.3) Ric(ωφ∞) = Ric(ω0) −
√

−1∂∂F∞ = −η −
√

−1∂∂φ∞ = −ωφ∞

on K. Now, we can take a countable compact increasing exhaustion Un of
M\E such that ∪n∈NKn = M\E, and Ki ⊂ Ki+1,∀i. Then by using the
usual diagonal argument, we can get a subsequence of φεi so that passing
to its limit defines a φ∞ on M\E and

(6.4) Ric(ωφ∞) = −ωφ∞ .

By Theorem 1.4, the uniqueness of such singular Kähler Einstein metric, all
convergent subsequences on K we initially start with have to converge to the
same limit. If for each sequence we have a further subsequence converging
to the same limit, then the sequence itself has to converge.
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