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DIAGRAMS FOR PRIMITIVE CYCLES IN SPACES OF
PURE BRAIDS AND STRING LINKS

by Rafal KOMENDARCZYK,
Robin KOYTCHEFF & Ismar VOLIĆ (*)

Dedicated to the memory of Fred Cohen (1945–2022)

Abstract. — The based loop space of a configuration space of points in a Eu-
clidean space can be viewed as a space of pure braids in a Euclidean space of
one dimension higher. We continue our study of such spaces in terms of Kont-
sevich’s CDGA of diagrams and Chen’s iterated integrals. We construct a power
series connection which yields a Hopf algebra isomorphism between the homol-
ogy of the space of pure braids and the cobar construction on diagrams. It maps
iterated Whitehead products to trivalent trees modulo the IHX relation. As an
application, we establish a correspondence between Milnor invariants of Brunnian
spherical links and certain Chen integrals. Finally we show that graphing induces
injections of a certain submodule of the homotopy of configuration spaces into the
homotopy of many spaces of string links. We conjecture that graphing is injective
on all rational homotopy classes.

Résumé. — L’espace des lacets basés d’un espace de configurations des points
dans un espace euclidien peut être vu comme un espace de tresses pures dans un
espace euclidien d’une dimension superieure. Nous continuons notre travail sur ces
espaces du point de vue de l’ADGC de Kontsevich des diagrammes et des inté-
grales de Chen. Nous construisons une connexion série puissance qui donne une
isomorphisme d’algèbre de Hopf entre l’homologie de l’espace des tresses pures et
la construction cobar sur les diagrammes. Il mappe les classes primitives aux arbres
trivalents modulo la relation IHX. En conséquence, nous établissons une bijection
entre les invariants de Milnor des entrelacs sphériques bruniens et certaines in-
tégrales de Chen. Enfin nous montrons que le graphe induit des injections d’un
certain sous-module de l’homotopie des espaces de configurations dans l’homoto-
pie des espaces de longs entrelacs. Nous conjecturons qu’il induit des injections de
toute l’homotopie rationelle des espaces de configurations.
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1. Introduction

We study the space Ω Conf(m,Rn) of smooth based loops in the space
of m-point configurations in Rn for n ⩾ 3. One may view this as the
space of pure braids in Rn+1. Its integral homology H∗(Ω Conf(m,Rn);Z)
and its rational homotopy groups π∗(Ω Conf(m,Rn))⊗Q were determined
by Cohen and Gitler [14]. For n = 2, i.e. the setting of classical pure
braids, an analogous result was obtained by Kohno [31, 33] using a result
of Arnold [1] and Chen’s iterated integrals [9]. In [38] we studied an iso-
morphism of algebras Φ given by composing the formality integration map
of Kontsevich [39, 45] with Chen’s integrals, given as follows. Let (D(m), δ)
be Kontsevich’s (graded-)commutative differential graded algebra (CDGA)
of diagrams, which we consider as an algebra over R. It fits into a zig-zag
of quasi-isomorphisms

H∗
dR(Conf(m,Rn)) I←− D(m) I−→ C∗

dR(Conf(m,Rn))

that establishes the formality of Conf(m,Rn), in the sense of Sullivan [19,
59], over R. (It also leads to the formality of the little n-disks operad.) Let
(B(D(m)), dB) be the bar complex on D(m), and let H∗

dR(Ω Conf(m,Rn))
be the analogue of de Rham cohomology defined via Chen’s iterated inte-
grals. Then the composition of formality integration with Chen’s integrals
is

(1.1) Φ =
∫

Chen
◦B(I) : H∗(B(D(m))) −→ H∗

dR(Ω Conf(m,Rn)),

where we use the same symbol for the map on cochains and the induced
map on cohomology. Here and throughout, we work over R unless specified
otherwise. In this paper, we continue to study spaces of pure braids and
this map Φ, but we focus on homology and homotopy.

Briefly, our main results can be organized as follows:
(i) We describe the isomorphism(1)

Φ∗ : H∗(Ω Conf(m,Rn)) −→ H∗(B∗(D(m)))

in terms of Chen’s formal power series connection (Theorem 1.1),
where D(m) is a slightly bigger CDGA than D(m).

(ii) We recursively describe Θ on iterated Samelson (or Whitehead)
products, and we show that Θ induces an injection of the space
π∗(Ω Conf(m,Rn)) ⊗ R ∼= π∗+1(Conf(m,Rn)) ⊗ R into the space

(1) In more detail, we construct Θ : H∗(Ω Conf(m,Rn)) → H∗(B∗(D(m))) such that
Θ = Φ∗ ◦ i, where i is the dual of the de Rham homomorphism. See Diagram (3.24).
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T n(m) of trivalent trees with leaves labeled by 1, . . . , m, modulo the
graded AS and IHX relations (Theorem 1.7); the correspondence
is particularly simple for non-repeating monomials. This leads to
an injection of link homotopy classes of certain Brunnian spherical
links in Rn into T n(m) (Corollary 1.8).

(iii) We produce an injection of the subspace of π∗(Conf(m,Rn)) cor-
responding to trees with distinctly labeled leaves into homotopy
groups πℓ of spaces of m-component, k-dimensional string links
in Rn+k for various values of n ⩾ 3 and k ⩾ 1 (Theorem 1.9).
Certain values of m, k, and n yield ℓ = 0, i.e. isotopy classes of
high-dimensional string links. We conjecture that this result can be
extended to all of π∗(Conf(m,Rn))⊗Q.

Parts (i) and (ii) are higher-dimensional analogues of results of Kohno [33]
and Habegger and Masbaum [26] on Vassiliev invariants and the Kontsevich
integral for classical braids and string links. Our power series connection
is an alternative to one provided by Kohno [35] for pure braids in Rn+1.
Part (iii) generalizes a previous result of ours [38] for k = 1 and n ⩾ 3,
which in turn generalizes a result of Artin for k = 1 and n = 2 on isotopy
classes of classical braids and string links [3]. A more detailed summary,
including some auxiliary results, is given below.

1.1. Overview of results

In this paper we primarily study the dual to the map Φ in (1.1). To study
homotopy groups, it is convenient to use the CDGA D(m) which is ob-
tained from D(m) by allowing diagrams with multiple edges. The quotient
D(m) ↠ D(m) by diagrams with multiple edges is a quasi-isomorphism.
The map Φ in (1.1) trivially extends to H∗(B(D(m))), because the exten-
sion of the formality integration map to D(m) vanishes on diagrams with
multiple edges. Therefore the dual Θ = Φ∗ is valued in H∗(B∗(D(m))) ∼=
H∗(B∗(D(m))), and we can write the dual map to (1.1) as

(1.2) Θ : H∗(Ω Conf(m,Rn)) −→ H∗(B∗(D(m))),

where (B∗(D(m)), d∗
B) is the cobar complex of the dual coalgebra

(D(m)∗, δ∗).
We picture monomials γ ∈ B(D(m)) as diagrams Γ stacked horizontally

from left to right, based on m strands with free vertices of valence ⩾ 3.
There are functionals Γ∗ indexed by diagrams Γ which are defined by the

TOME 0 (0), FASCICULE 0



4 Rafal KOMENDARCZYK, Robin KOYTCHEFF & Ismar VOLIĆ

pairing ⟨Γ1, Γ∗
2⟩ = ±|Aut(Γ1)|δΓ1,Γ2 where Aut(Γ) is the group of automor-

phisms of Γ and the sign depends on certain orientations on the Γi; see Sec-
tion 2.1. We picture dual diagrams Γ∗ and dual monomials γ∗ ∈ B∗(D(m))
by “transposing” the picture of γ ∈ B(D(m)) so that the monomial γ∗ is
read from bottom to top. For example

γ1 = , γ∗
1 = , γ2 = , γ∗

2 = ,

γ3 = , γ∗
3 = .

The first improvement on our previous work [38] is to show that (1.2)
can be obtained via the power series connection method [9]. By work of
Hain [29], this illuminates the fact that Φ (or Θ) is a map of Hopf algebras,
which was mentioned in [38] but not explained in detail.

Theorem 1.1. — Let n ⩾ 3.
(a) Let Θ : Csing

∗ (Ω Conf(m,Rn))→ B∗(D(m)) be the map induced by
the transport of the formal power series connection ω, valued in
B∗(D(m)) ⊂ B∗(D(m)) and defined by

(1.3) ω =
∑

Γ∈B(m)

I(Γ)⊗ [Γ∗]
|Aut(Γ)| ∈ C∗

dR(Conf(m,Rn))⊗D(m)∗,

where I is the formality integration map and B(m) is the basis of di-
agrams (which is well defined up to signs) for the subspace of D(m)
spanned by nonempty diagrams. Then at the level of homology, Θ
agrees with the map Φ∗ in (1.2).

(b) At the level of homology, Θ is a Hopf algebra isomorphism.

Since I(Γ) = 0 for every Γ with multiple edges, the sum in (1.3) is
really just over the basis B(m) of the subspace of nonempty diagrams in
D(m). The general construction of the power series connection for the loop
space ΩM (where M is a manifold) proposed in [9, 29] involves an inductive
procedure yielding a connection form ω which is valued in the tensor algebra
of H∗−1(M ;R). As a result, ω is generally not available via a direct formula.
In Theorem 1.1, we obtain such a formula thanks to the existence of the
formality integration map I. See Section 3 for further information on Chen’s
formal power series connections.

ANNALES DE L’INSTITUT FOURIER
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Using just the fact that Θ preserves the Hopf algebra structure, we de-
duce that it maps the real homotopy groups π∗(Ω Conf(m,Rn)) ⊗ R to
primitive diagrams. This result is similar to one obtained by Lambrechts
and Turchin [44]; the work of Conant [17] is also related.

Theorem 1.2.
(a) The map Θ restricts to an isomorphism

π∗(Ω Conf(m,Rn))⊗ R Θ−→ PH∗(B∗(D(m))) ∼= H∗(PD(m)∗, δ∗),

where P (−) denotes the subspace of primitive elements in a coal-
gebra.

(b) The dual Φ of Θ induces an isomorphism

H∗(ID(m), δ̃) ∼= IH∗(B(D(m))) Φ−→ Hom(π∗(Ω Conf(m,Rn)), R),

where I(−) denotes the subspace of indecomposable elements in an algebra,
δ̃ = πID ◦ δ, and πID is the projection onto ID.

We prove this result using an explicit formula relating the Samelson
product to the boundary operator on D(m)∗ (Lemma 4.2). We also use
that formula to deduce part of our next main result, Theorem 1.7. Before
stating it, we provide some context.

Theorem 1.2 and the Milnor–Moore Theorem [49] lead to a diagrammatic
description of homology:

Corollary 1.3. — The homology H∗(Ω Conf(m,Rn)) is generated by
diagrams in H∗(PD(m)∗), i.e.,

H∗(Ω Conf(m,Rn)) ∼= U(H∗(PD(m)∗)),

where U is the universal enveloping algebra and where (4.5) defines the
bracket on H∗(PD(m)∗).

Corollary 1.3 is a diagrammatic description of H∗(Ω Conf(m,Rn)), al-
ternative to the horizontal chord diagram algebra of Cohen and Gitler [14]
and Kohno [34] (see also Fadell and Husseini [22]). To explain, let Lm(n−2)
be the graded Lie algebra over R on generators Bj,i, 1 ⩽ i < j ⩽ m, each
of degree n− 2, modulo the Yang–Baxter relations [14, p. 1711]:

(1.4)

[Bj,i, Bk,ℓ] = 0 for i, j, k, ℓ distinct,
Bi,j = (−1)nBj,i,

[Bi,j , Bi,t + (−1)nBt,j ] = 0 for 1 ⩽ j < t < i ⩽ m,

[Bt,j , Bi,j + Bi,t] = 0 for 1 ⩽ j < t < i ⩽ m.

TOME 0 (0), FASCICULE 0
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Note that the last identity follows from the previous two, and is stated only
for convenience. For brevity, we sometimes denote Lm(n−2) simply by Lm

when the ambient dimension n is understood.

Theorem 1.4 (Cohen and Gitler [14]). — If n ⩾ 3, the integral homol-
ogy of Ω Conf(m,Rn) is torsion-free, and there is an isomorphism of Lie
algebras:

(1.5) Lm(n− 2) −→ PH∗(Ω Conf(m,Rn)) ∼= π∗(Ω Conf(m,Rn))⊗ R.

Furthermore, the induced map on the level of universal enveloping algebras,

(1.6) ULm(n− 2) −→ H∗(Ω Conf(m,Rn)),

is an isomorphism of Hopf algebras.(2)

Remark 1.5. — For n = 2, the resulting Lie algebra Lm(0) is called the
Drinfeld–Kohno Lie algebra. Kohno [31] showed that it is the associated
graded Lie algebra of the pure braid group PBm = π0(Ω Conf(m,R2)) and
that the degree completion of Lm(0) is the Malcev Lie algebra of PBm.
See for example the work of Suciu and Wang [57, 58] for definitions of
these Lie algebras associated to groups. The resulting filtration agrees with
the Vassiliev filtration on braids, and Kohno’s application of power series
connections in [32] shows that Vassiliev invariants separate braids. Similar
algebras of diagrams appear for Vassiliev invariants of knots in R3, though
it is not known whether they separate knots. Bar-Natan [4] described these
invariants as dual both to spaces of chord diagrams, as in Theorem 1.4,
and to spaces of (trivalent) graphs with free vertices, as in Corollary 1.3.
The Kontsevich integral is the analogue of the power series connection for
knots [4, 47].

Remark 1.6. — The generators Bj,i of Lm(n − 2) are represented by
spherical cycles [22]

(1.7) Bj,i : Sn−2 −→ Ω Conf(m,Rn), 1 ⩽ j < i ⩽ m,

(2) Cohen and Gitler actually prove the analogous result over Z [14], though in that
setting the primitives in homology cannot be identified with a homotopy group. We
instead work over R.

ANNALES DE L’INSTITUT FOURIER
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which are the adjoints of

bj,i : Sn−1 −→ Conf(m,Rn), bj,i(ξ) = (y1, . . . , yi−1, yj − ξ, yi+1, . . . , ym).

Here (y1, . . . , ym) is the basepoint of Conf(m,Rn).

We will use the fact that as a vector space, Lm
∼= π∗(Ω Conf(m,Rn))⊗R

is the direct sum [22]

(1.8) Lm
∼=

m⊕
j=2
L(Bj,1, Bj,2, . . . , Bj,j−1),

where L(Bj,1, Bj,2, . . . , Bj,j−1) is the free graded Lie algebra generated
by Bj,1, Bj,2, . . . , Bj,j−1. This decomposition holds because the projections
which forget points have sections up to homotopy. It is analogous to the
splitting of the pure braid group as an iterated semi-direct product of free
groups.

Our next main result is Theorem 1.7, in which we show that Θ maps
iterated Samelson products in π∗(Ω Conf(m,Rn)) ⊗ R ∼= Lm to certain
trivalent trees. First, we find it convenient to use a spanning set of Lm

consisting of certain bracket expressions. Namely, any graded Lie algebra
is spanned by left-normed monomials in its generators (Lemma A.2). For
Lm, these are of the form

(1.9)
Bj;I := [Bj,i1 , Bj,i2 , Bj,i3 . . . , Bj,ik

]
:= [[. . . [[Bj,i1 , Bj,i2 ], Bj,i3 ], . . . ], Bj,ik

],
2 ⩽ j ⩽ m, I = (i1, . . . , ik), i1, . . . , ik < j.

Our choice to use left-normed rather than right-normed monomials is arbi-
trary. Paring this spanning set down to a basis is not straightforward,(3) but
a certain subspace that will be important for us admits an easily described
basis of left-normed monomials.

Namely, recall that the Lie module Lie(m − 1) is the submodule of the
free (graded) Lie algebra on m − 1 generators spanned by brackets where
each generator appears exactly once. It is well known that dim Lie(m−1) =
(m− 2)!, with a basis of left-normed monomials in which the leftmost gen-
erator is the first generator [15, 52]. In our setting, these are the monomials

(1.10) Bm;1,σ(2),...,σ(m−1) = [Bm,1, Bm,σ(2), . . . Bm,σ(m−1)]

(3) The monomials in the well known Lyndon basis [12] or Hall bases are generally not
left-normed, though there is relatively recent work on bases of left-normed [60] and
right-normed [13] monomials for a free Lie algebra.

TOME 0 (0), FASCICULE 0



8 Rafal KOMENDARCZYK, Robin KOYTCHEFF & Ismar VOLIĆ

where σ is a permutation of {2, . . . , m− 1}. (Koschorke [41] observed that
geometrically, Lie(m − 1) is isomorphic to the subspace of m-component
Brunnian spherical links in the space of spherical link maps; see Section 4.4
for further details.)

Any monomial B in generators of degree n of a graded Lie algebra can
be represented by a planar rooted trivalent tree with leaves labeled by the
generators; see for example the first pictures in (1.11) and (1.12). In the
setting of such trees, the anti-symmetry and Jacobi relations are often called
the (graded) AS and IHX relations. The planar embedding of this tree can
be used to determine an equivalence class of labeling called an orientation,
defined essentially as in Definition 2.2. For n even, a labeling consists of an
ordering of its edges, while for n odd, it consists of an orientation of each
edge and an ordering of the non-leaf vertices. A tree with an orientation is
called an oriented tree. In either parity of n, the orientation relations that
yield equivalences of labelings encode the (graded) AS relations.

Now let B = Bj;I be a monomial in π∗(Ω Conf(m,Rn))⊗ R as in (1.9).
Let T (B) be the result of replacing each leaf label Bj,i by i and labeling
the root by j. Via the decomposition (1.8), the assignment B 7→ T (B)
determines an injection T from π∗(Ω Conf(m,Rn)) ⊗ R to the R-vector
space T n(m) of (unrooted) oriented trivalent trees with leaves labeled by
{1, . . . , m} modulo the (graded) IHX relations.

Further, a representative of any element of T n(m) can be viewed as an
element of PD(m)∗, by identifying leaves with the same label. Below are
examples with m = 4 of the injection B 7→ T (B) and the identification of
the given representative of T (B) with an element of PD(m)∗. The labelings
which determine orientations are not shown.

(1.11) B = [[B4,1, B4,2], B4,3]←→

7−→ T (B) = ←→

ANNALES DE L’INSTITUT FOURIER
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(1.12) B = [[B4,2, B4,1], B4,2]←→

7−→ T (B) = ←→ .

If B is a left- or right-normed monomial, then the class of T (B) can be
represented by trees of the type as in the examples above, sometimes called
“tall trees” or “caterpillar trees.”

Part (b) of Theorem 1.7 below says that there is also a map Θ̃ from
π∗(Ω Conf(m,Rn)) ⊗ R to T n(m) induced by Θ. Although Θ̃(B) is not
always equal to T (B), part (d) says that if the monomial B has no re-
peated indices, then it is, at least up to sign. For example, the last picture
in (1.11) is (up to a sign) Θ(B4;1,2,3). Part (c) says that in general Θ̃(B)
is obtained from T (B) by adding some extra terms. For example, the last
picture in (1.12) is (up to a sign) one of the terms in Θ(B4;2,1,2).

Theorem 1.7. — Below, assume j, j1, . . . , jk ⩽m and I = (i1, i2, . . . , ik)
with 1 ⩽ i1, . . . , ik < j.

(a) If C is a bracket expression containing generators Bj1,i1 , Bj2,i2 ,
. . . , Bjk,ik

(with possible repeats), then Θ(C) is represented in
H∗(PD(m)∗) by a linear combination with ±1 coefficients of all
successive vertex blow-ups of the diagram (Γj,i1 · Γj,i2 · · · · · Γj,ik

)∗,
performed in the order given by the parenthesization in C, from
innermost to outermost brackets.

(b) The map Θ gives rise to an injection Θ̃ : π∗(Ω Conf(m,Rn))⊗R into
the space T n(m) of trivalent trees with leaves labeled by {1, . . . , m},
modulo the (graded) AS and IHX relations.

(c) For any I (with repeated indices allowed), ⟨Θ̃(Bj;I), T (Bj;I)⟩ = ±1,
where ⟨· , ·⟩ is any Kronecker pairing determined by a basis of trees
for T n(m).

TOME 0 (0), FASCICULE 0
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(d) If I has no repeated indices, then Θ̃(Bj;I) = ±T (Bj;I). In particu-
lar, for any k ⩽ j, Θ maps Bj;1,2,...,k−1 to

(1.13) ± ∈ H∗(PD(m)∗).

Thus Θ maps a basis element (1.10) of Lie(m − 1) to the diagram
obtained from (1.13) by setting k = j = m and permuting the
segment vertices by σ ∈ Σ(2, . . . , m− 1).

Part (a) is a translation of formula (4.2) from Lemma 4.2 into a dia-
grammatic procedure. Examples 4.9 and 4.10 illustrate this procedure in
the less straightforward setting of brackets with repeated indices. Part (d)
implies that if B is a monomial without repeated indices, and γ ∈ B(D(m))
is any cocycle, then the evaluation of the integral associated to γ on B can
be computed purely graphically. Indeed, ⟨Φ(γ), B⟩ = ⟨Θ(B), γ⟩, and Θ(B)
is essentially the tree T (B) that can be written down from the bracket
expression. The full statement of Theorem 1.7 in Section 4 includes a final
part (e), which gives the sign on the diagram in part (d) corresponding to
a basis element of Lie(m− 1).

Theorem 1.7 resembles Habegger and Masbaum’s result on Milnor invari-
ants of long links in R3 via the Kontsevich integral [26].(4) It also relates to
the last two authors’ work on Milnor homotopy invariants via configuration
space integrals and the associated cocycles of diagrams [42].

A high-dimensional m-component Brunnian link L in Rn gives rise to
class in π∗(Conf(m,Rn)) and hence a class in π∗−1(Ω Conf(m,Rn)). Us-
ing Theorem 1.1 and Theorem 1.7, we deduce in the following Corollary
that the Milnor invariants of L can be recovered by applying Θ to the
corresponding class in π∗(Ω Conf(m,Rn)).

Corollary 1.8. — Let L : Sp1 ⊔ · · · ⊔ Spm → Rn be a Brunnian link
such that

∑m
i=1 pi = mn− 2m− n + 3. Let κ(L) be the adjoint of the map

κ̃(L) defined in (4.11). Then

Θ(κ(L)) =
∑

I∈Σm−2

µI;m(L)Γ∗
m;I ∈ Lie(m− 1) ⊂ H∗(PD(m)∗),

where Γ∗
m;I = Θ(Bm;I) can be viewed as a trivalent tree and each µI;m(L)

is a Milnor invariant of L in the sense of Koschorke [41].

We may regard the above result as an analogue of Habegger and Mas-
baum’s result [26] for spherical links because Θ is a transport of the power

(4) Habegger and Masbaum use Ct(m) to denote the space that we call T even(m).

ANNALES DE L’INSTITUT FOURIER
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series connection in (1.3), which is an analogue of the partition function
in [26]. Consequently, µI;j(L) can be obtained as Chen’s iterated integral
over κ(L), which ties into the results of [20, 36, 37].

For context for our last main result, recall that a pure braid in Rn+1 can
be viewed as a long (a.k.a. string) 1-dimensional link by graphing the loop
of configurations in Rn. We previously showed [38, Corollary 5.21] that this
inclusion is surjective on real cohomology and hence injective on real ho-
mology for any n ⩾ 3. Since the real homotopy of the space of pure braids
injects into its real homology, this inclusion is also injective on real homo-
topy. Our last main result concerns Ωk Conf(m,Rn), which can be viewed as
the space of k-dimensional braids in Rn+k. Indeed, there is a graphing map

G : Ωk Conf(m,Rn) −→ Embc

(∐
m

Rk, Rn+k

)
f 7−→ G(f)

where Embc(−) stands for the space of embeddings that are fixed outside
the unit box and, for each i = 1, . . . , m, the component G(f)i is given by

(G(f)i)(t1, . . . , tk) := (fi(t1, . . . , tk), t1, . . . , tk) ∈ Rn+k.

The codomain is called the space of k-dimensional string links in Rn+k,
and we abbreviate it as Ln+k

m•k below. Using Koschorke’s map κ and his
generalized Hopf invariants [41], we show that G induces a monomorphism
on the subspace of homotopy consisting of bracket expressions where each
generator appears at most once.

Theorem 1.9. — Fix any m ⩾ 2, k ⩾ 1, and n ⩾ 3. Let Hn,k
m be the

submodule of π∗(Conf(m,Rn)) spanned by iterated Whitehead brackets of
distinct generators bj,ii

, . . . , bj,ip
where 2 ⩽ j ⩽ m and where p(n − 2) ⩾

n + k − 3. Then the following composition is injective:

Hn,k
m ↪→ π∗+k(Conf(m,Rn))

∼=−→ π∗(Ωk Conf(m,Rn)) G∗−→ π∗Ln+k
m•k.

The assumptions on p, m, n, and k imply that the subspace Lie(m−1) of
length-(m−1) brackets on distinct generators lies insideHn,k

m . In accordance
with our strategy of proof, we divide the full statement of Theorem 1.9 in
Section 5 into part (a) on Lie(m− 1) and part (b) on Hn,k

m .
The map κ is essentially the map to the (1, 1, . . . , 1)-stage of the multi-

variable Taylor tower for link maps, and the subspace of brackets without
repeats is a higher-dimensional analogue of braids up to link homotopy. We
conjecture that the graphing map is injective on all of real homotopy and
real homology and that this injectivity can be detected by higher stages of
the Taylor tower.
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1.2. Organization of the paper

In Section 2, we review the definition of the diagram complex (D(m), δ)
from [45], the bar (respectively cobar) complex on a CDGA (respectively
CDGC), and the resulting Hopf algebra structure.

In Section 3, we start with the isomorphism Φ shown in formula (1.1)
and use Chen’s power series connection method [9] to construct the dual
map Θ shown in formula (1.2).

In Section 4, we prove Theorems 1.2 and 1.7, which give diagrammatic
descriptions of homotopy classes. We then provide the connection the mod-
ule Lie(m − 1) in the context of Brunnian spherical link maps. The only
fact from Section 3 needed in Section 4 is that Θ is a Hopf algebra map;
its explicit formula is not needed.

In Section 5, we prove Theorem 1.9, which says that the subspace of non-
repeating bracket expressions injects into the homotopy of many spaces of
high-dimensional (equidimensional) string links. Section 5 is somewhat in-
dependent of the previous sections. The main connection is that Θ provides
a somewhat geometric description of the bracket expressions for those high-
dimensional braids in terms of trivalent trees with non-repeating leaf labels.
The proof also uses maps introduced at the end of Section 4.

Appendix A reviews some basic facts about the Whitehead and Samelson
products. In Appendix B, we remark on methods of computing cocycles
for iterated integrals, which can be applied to computations of the Milnor
invariants as stated in Corollary 1.8.

Acknowledgments
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we thank Matthew Jackson for several corrections to it, and we thank the
referee for their report and comments.

2. The CDGA of diagrams and the bar construction

In Section 2.1, we review Kontsevich’s CDGA of diagrams. In Section 2.2,
we review the bar construction on a differential graded algebra and its dual,
the cobar construction on the dual differential graded coalgebra, as well as
the Hopf algebra structure on these objects.
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2.1. The CDGA of diagrams

The commutative differential graded algebra (CDGA) of admissible di-
agrams D(m) originally appears in [39, Section 3.3.3] and is discussed in
detail in [45, Chapter 6]. Here we also consider a larger algebra D(m) of
diagrams where we do not quotient by multiple edges, defined in the follow-
ing paragraphs. The quasi-isomorphism D(m) → C∗(Conf(m,Rn)) given
by the formality integration map is reviewed in Section 3.

Definition 2.1. — Fix n ⩾ 2 and m ⩾ 1. A diagram Γ (in Rn on m

vertices) consists of
• a set of vertices V (Γ), partitioned into m segment vertices Vseg(Γ)

with distinct labels from {1, . . . , m}, and any number of free ver-
tices Vfree(Γ). Thus

V (Γ) = Vseg(Γ) ⊔ Vfree(Γ);

• a set of edges E(Γ) joining vertices of Γ, where an edge between
two segment vertices is called a chord.

satisfying the following conditions:
• each free vertex of Γ has valence at least 3;
• each free vertex of Γ is joined to some segment vertex by a path of

edges.

In [45], segment vertices are called external vertices, and free vertices
are called internal vertices. Six examples of diagrams in D(3) are shown
below. A segment vertex is drawn as a hollow vertex, whereas a free vertex
is drawn as a solid vertex. We align the segment vertices vertically rather
than horizontally, as was done in [45], since this will be more convenient
when we picture elements of the bar construction on D(m) later.

Definition 2.2. — A labeling of a diagram Γ consists of the following
data:

• for odd n, a labeling of Vfree(Γ) by integers {m+1, . . . , |V (Γ)|} and
an orientation of each edge;

• for even n, an ordering of the set of edges.
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14 Rafal KOMENDARCZYK, Robin KOYTCHEFF & Ismar VOLIĆ

We call a diagram Γ together with a labeling a labeled diagram; these are
considered up to graph isomorphisms which respect the labelings. We then
define orientation relations on labeled diagrams:

• for odd n, Γ ∼ −Γ′ if Γ and Γ′ differ by a transposition of two free
vertex labels;

• for odd n, Γ ∼ −Γ′ if Γ and Γ′ differ by an orientation-reversal of
an edge;

• for even n, Γ ∼ −Γ′ if Γ and Γ′ differ by a transposition of two edge
labels.

The resulting equivalence class of a labeled diagram is called an oriented
diagram. Let D(m) be the R-vector space of oriented diagrams, modulo the
relation that any diagram with a self-loop is zero.

The space D(m), which we used in our previous work [38], is the quotient
of D(m) obtained by further setting to zero any diagram Γ that has more
than one edge between a pair of vertices.

We view D(m) as a graded vector space where the degree of a diagram
Γ is

(2.1) |Γ| = (n− 1)|E(Γ)| − n|Vfree(Γ)|.

When we consider the bar complex on D(m), this will be the internal
degree.

There is a differential δ on D(m) given by

(2.2) δΓ =
∑

ε(Γ, e)Γ/e

where the sum is taken over contractible edges e in Γ, and Γ/e is the result
of contracting e to a point. Recall that a contractible edge is an edge that
is not a chord. Write e = i→ j to indicate that e is an edge with endpoints
i and j, oriented from i to j. If e has endpoints i < j, the sign ε(Γ, e) is

(2.3)
for n odd, ε(e, Γ) =

{
(−1)j−m if e = i→ j

(−1)j−m+1 if e = i← j

and for n even, ε(e, Γ) = (−1)e,

where for n even, e also denotes the label on this edge. This differential δ

makes D(m) into a cochain complex. For further details on the differential,
see [45, Section 6.4].
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There is also a product of diagrams

(2.4)
D(m)⊗D(m) −→ D(m)

(Γ1, Γ2) 7−→ Γ1 · Γ2

given by superposition of the two diagrams along segment vertices in the
following sense: Γ1 · Γ2 has |Vfree(Γ1 · Γ2)| = |Vfree(Γ1)| + |Vfree(Γ2)| and
|E(Γ1 ·Γ2)| = |E(Γ1)|+ |E(Γ2)|, but it still m segment vertices. The orien-
tation is given by appropriately raising the labels of vertices or edges from
Γ2. The degree of a product is the sum of degrees,

|Γ1 · Γ2| = |Γ1|+ |Γ2|,

and the product is graded-commutative:

(2.5) Γ1 · Γ2 = (−1)|Γ1||Γ2|Γ2 · Γ1.

This product makes D(m) into a CDGA, where the diagram with no edges
and no free vertices is the unity 1. More details on this product can be
found in [45, Sections 6.3 and 6.5]. The quotient D(m)→ D(m) is a CDGA
map. Moreover, it is a quasi-isomorphism because all the arguments used
to prove Theorem 8.1 in [45] apply just as well to D(m) as to D(m).

The graded dual D(m)∗ of D(m) is a (graded-)cocommutative differential
graded coalgebra (CDGC). The space D(m) has a basis of isomorphism
classes of diagrams, which is canonical up to the orientation and therefore
the sign of each diagram. For a diagram Γ ∈ D(m), define an element
Γ∗ ∈ D(m)∗ via the pairing

(2.6) ⟨Γ1, Γ∗
2⟩ =

{
±|Aut(Γ1)| if Γ1 ∼= Γ2,

0 otherwise ,

where the sign is determined by whether the isomorphism between Γ1 and
Γ2 is orientation-preserving or orientation-reversing. We may write this
more concisely as ⟨Γ1, Γ∗

2⟩ = δΓ1,Γ2 |Aut(Γ1)|, by a mild abuse of the Kro-
necker delta. The factor |Aut(Γ1)| is the size of the group of automorphisms
of Γ1, meaning automorphisms of the underlying undirected, unlabeled
graph which fix the m segment vertices. It simplifies both the diagram-
matic description of the dual boundary map δ∗ and formula (4.2) which
relates δ∗ to the Samelson product on Ω Conf(m,Rn).
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We draw a diagram Γ∗ as the rotation of the diagram Γ ∈ D(m) by 90◦

counter-clockwise. Six examples of diagrams in D(3)∗ are shown below.

The differential δ∗ dual to δ lowers degree by 1. On a basis element Γ∗

it is given by the signed sum of diagrams

δ∗(Γ∗) =
∑

(Γ′,e) : Γ′/e∼=Γ

ε(Γ′, e)(Γ′)∗ .

The operation yielding such a graph Γ′ from Γ is called the blowing up or
blow-up of the basepoint vertex in Γ′/e; it replaces it by two vertices joined
by an edge. The above sum is taken over all segment vertices of valence ⩾ 2
and all free vertices of valence ⩾ 4. For each such segment vertex v, one ob-
tains a diagram for every ordered partition into two parts of the half-edges
incident to v, such that the second part has cardinality ⩾ 2; the first part
corresponds to the half-edges still incident to the segment vertex. For each
such free vertex v, one obtains a term for every unordered partition of the
half-edges incident to v into two parts such that each part has cardinality
⩾ 2. The blow-up of a 3-valent segment vertex is illustrated below:

⇝ ± + ± + ± + ± .

As a special case, the sum of diagrams resulting from a 4-valent free vertex
is the well known IHX relation. The factor |Aut(Γ1)| in (2.6) ensures that
δ∗ of a 4-valent vertex is always the IHX relation.

2.2. Bar and cobar complexes and Hopf algebra structure

Recall that given a connected, augmented CDGA (A, δ) over a field k,
the bar construction B(A) on A is the tensor algebra T (JA) on the aug-
mentation ideal JA of A. For elements a1, a2, . . . , ar ∈ JA of degrees p1,
p2, . . . , pr, the element a1 ⊗ a2 ⊗ · · · ⊗ ar is denoted by [a1|a2| . . . |ar] and
has degree −r + p1 + p2 + · · · + pr. Because A is (graded-)commutative,
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B(A) is not just a differential graded coalgebra, but a differential graded
Hopf algebra in the following way:

(a) The product ∧ (shuffle) is given by

[a1| . . . |ar] ∧ [ar+1| . . . |ar+s]

:=
∑

σ∈Sh(r,s)

ε(σ; p1 − 1, p2 − 1, . . . , pr+s − 1) [aσ(1)|aσ(2)| . . . |aσ(r+s)]

where σ ranges over the type-(r, s) shuffles Sh(r, s) of
{1, 2, . . . , r + s}, and ε(σ; p1 − 1, p2 − 1, . . . , pr+s − 1) is the sign
defined by

a1∧a2∧· · ·∧ar+s = ε(σ; p1−1, p2−1, . . . , pr+s−1) aσ(1)∧aσ(2)∧· · ·∧aσ(r+s).

(b) The coproduct △ (de-concatenation) is given by

△ ([a1|a2| . . . |ar]) :=
r∑

i=0
[a1| . . . |ai]⊗ [ai+1| . . . |ar].

(c) The differential dB is the (signed) sum of an internal differential δB
and a homological differential DB:(5)

(2.7) dB
(
[a1|a2| . . . |ar]

)
:= (δB −DB)

(
[a1|a2| . . . |ar]

)
:=

r∑
i=1

(−1)i[ε(a1)a1| . . . |ε(ai−1)ai−1|δai|ai+1| . . . |ar]

−
r−1∑
i=1

(−1)i[ε(a1)a1| . . . |ε(ai−1)ai−1|ε(ai)ai · ai+1|ai+2| . . . |ar]

where ε(ai) = (−1)pi .
Furthermore, the product and coproduct descend to a Hopf algebra struc-
ture on cohomology H∗(B(A); k). The graded dual (B(A))∗ is (canoni-
cally) isomorphic as a Hopf algebra to the cobar construction on A∗. Many
authors denote this dual by Ω(A∗), but we denote it by B∗(A) to avoid
overloading the notation Ω. Its Hopf algebra structure is as follows:

(d) The product · =△∗ (concatenation) is given by

[a∗
1| . . . |a∗

r ] · [a∗
r+1| . . . |a∗

r+s] := [a∗
1| . . . |a∗

r |a∗
r+1| . . . |a∗

r+s].

(5) Here B(A) is essentially the same differential graded Hopf algebra as in our previous
work [38]. The only difference is that in [38] we defined dB as δB + DB rather than
δB −DB. In particular, formula (19) in [38] can be read as the sum from 1 to p−1 rather
than from 0 to p because our bar complex is the normalized one.
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(e) The coproduct ∆ = ∧∗ (co-shuffle) is given by

(2.8) ∆([a∗
1| . . . |a∗

r ])

:=
r∑

i=0

∑
σ∈Sh(i,r−i)

ε(σ−1; p1 − 1, . . . , pr+s − 1)[a∗
σ−1(1)| . . . |a∗

σ−1(i)]

⊗ [a∗
σ−1(i+1)| . . . |a∗

σ−1(r)].

The differential on B∗(A) is given by the dual d∗
B. The product (d) and co-

product (e) again yield a Hopf algebra structure on homology H∗(B∗(A); k).
The above definitions applied to the algebras A = D(m) and A =

C∗
dR(Conf(m,Rn)) yield the complexes B(D(m)) and B(C∗

dR(Conf(m,Rn)))
and their cohomology. In addition, the coalgebra A∗ gives the cobar com-
plex B∗(D(m)) and its homology. These objects are of primary interest in
the following sections. Also keep in mind that the isomorphism D(m) ∼=
D(m)∗ coming from the basis of diagrams determines the module isomor-
phism B(D(m)) ∼= B∗(D(m)).

Recall that in an algebra A (with a product · ), an element a ∈ JA is
indecomposable if a = b·c implies b = 1 or c = 1. We denote the submodule
of indecomposables by IA. An element x in the coalgebra A∗ (with the
coproduct s = ( · )∗) is primitive if s(x) = x ⊗ 1 + 1 ⊗ x. We denote the
submodule of primitives by PA∗. The indecomposable elements of A are
dual to the primitive elements of A∗. We will mainly consider these modules
for the algebras D(m) and H∗(B(D(m))) and the coalgebras D(m)∗ and
H∗(B∗(D(m))).

In D(m), the indecomposable elements and the corresponding primitive
elements in D(m)∗ are precisely the linear combinations of nonempty di-
agrams which are connected after all the segment vertices are removed.
In [38], we called such diagrams internally connected. Finally recall that,
for a monomial [a∗] ∈ B∗(A) of length 1, the homological differential on
[a∗] is zero if and only if a∗ is primitive in A∗.

3. The power series connection from the Kontsevich
formality integral

Our main purpose now is to prove Theorem 1.1. In Section 3.1, we review
Chen’s iterated integrals and Kontsevich’s formality integration map. In
Section 3.2, we review Chen’s method of formal power series connections,
which informs our approach to Theorem 1.1. Its proof is given in Section 3.3.
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3.1. Chen’s integrals and the formality integration map

In [38, Theorem 3.7, Theorem 4.1], we showed that the map

(3.1) Φ : H∗(B(D(m))) −→ H∗
dR(Ω Conf(m,Rn)), Φ =

∫
Chen

◦ B(I).

induces an isomorphism on cohomology additively. On the cochain level, Φ
is a composition of Chen’s integration

∫
Chen and the homomorphism B(I)

induced on the bar complex by the formality integration map I of [39, 45].
Next, we briefly explain these maps.

Chen [9] defined his integration map by first defining de Rham cohomol-
ogy of a loop space ΩM in the general setting of a differentiable space M .
More precisely, he constructed a double complex

Ch∗,∗(M) =
⊕

p,q⩾0
Ch−p,q(M), Ch−p,q(M)

=
〈∫

ω1ω2 . . . ωp

∣∣∣∣ ωi ∈ C∗
dR(M)

〉
of so called iterated integrals which can be formally viewed as a subcomplex
of differential forms C∗

dR(ΩM) on ΩM . Further, in [9, 29] he defined a
natural chain map, which we call Chen’s integration map, from the bar
complex of C∗

dR(M) to Ch∗,∗(M), as follows. First, there are maps

Mp evp←− ∆p × ΩM
pr−→ ΩM

where evp evaluates a loop at times t1 ⩽ · · · ⩽ tp and pr is the projection
to ΩM . With πk : Mp →M as the projection to the k-th factor, one writes
ω1ω2 . . . ωp as shorthand for ev∗

p(π∗
1ω1 ∧ · · · ∧ π∗

pωp). One then defines∫
Chen

: B(C∗
dR(M)) −→ Ch∗,∗(M) ⊂ C∗

dR(ΩM) by

[ω1|ω2| . . . |ωp] 7−→
∫

ω1ω2 . . . ωp

(3.2)

where the integration is along the fiber of the trivial bundle over ΩM given
by pr. This map is a quasi-isomorphism for simply connected M , as proved
in [9, 29]. In our setting, the configuration space Conf(m,Rn) is simply
connected for n ⩾ 3, and the quasi-isomorphism (3.2) thus becomes the
quasi-isomorphism

(3.3)
∫

Chen
: B(C∗

dR(Conf(m,Rn))) −→ C∗
dR(Ω Conf(m,Rn)).
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The second map in (3.1), B(I), is induced by the formality integration
map

(3.4) I : D(m) −→ C∗
dR(Conf(m,Rn)),

which factors through the projection p : D(m)→ D(m); i.e. we can define

(3.5) I ′ : D(m) −→ C∗
dR(Conf(m,Rn))

such that

(3.6) I = I ′ ◦ p.

We now review the definition of I. Given a diagram Γ ∈ D(m) with v

free vertices and e edges, there are classical Gauss maps

(3.7) φj,i : Conf(m + v,Rn) −→ (Sn−1)E(Γ)

given by

φj,i : (x1, x2, . . . , xm+v) 7−→ xj − xi

|xj − xi|
.

Each such map can be used to pull back the rotation-invariant unit volume
form ν on the sphere Sn−1. Denote this pullback by αj,i := φ∗

j,i(ν), and let

αΓ =
∧

edges i → j of Γ
αj,i.

By the notation above, we mean that for n odd, the order of the indices
i and j is determined by the orientation of the edge. (For even, the two
orders gives cohomologous forms.) Now let

π : Conf(m + v,Rn) −→ Conf(m,Rn)

be the projection onto the first m configuration points. Then we set, for
Γ ∈ D(m) (or D(m)):

(3.8) I(Γ) (or I ′(Γ)) := π∗(αΓ) ∈ C∗
dR(Conf(m,Rn)).

Here π∗ denotes the pushforward, or integration along the fiber, of the
projection π. Thus, for (x1, . . . , xm) ∈ Conf(m,Rn),

I(Γ)(x1, . . . , xm) =
∫

π−1(x1,...,xm)
αΓ.

The degree of the form obtained this way is precisely the degree of Γ, as
defined just after Definition 2.2. Note that for a diagram Γ with multiple
edges, αΓ = 0. Thus I is simply a trivial extension of I ′ to D(m), i.e. (3.6)
holds.
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Remark 3.1. — From this point on, we will suppress distinct notations
I and I ′ and simply use I for both, since the choice should be clear from
the context.

To show that I is a cochain map, one proves that the form I(Γ) is closed
using Stokes’ Theorem, which amounts to checking that the restrictions of
integrals to the codimension one boundary components of the compactified
configuration space vanish. For details, see [45, Chapter 9].

Combining the above constructions, we conclude that Φ is induced from
the quasi-isomorphism defined on monomials of B(D(m)) by

(3.9) B(D(m))∋ [Γ1|Γ2| . . . |Γk] Φ−−−−→
∫

I(Γ1)I(Γ2) . . . I(Γk)∈Ch∗,∗(M).

3.2. Chen’s power series connections

Our Theorem 1.1 is loosely based on Chen’s method of formal power
series connections. We explain the original method developed in [9, 11, 29]
before describing the modification needed for our Theorem. Power series
connections were first introduced in [9, p. 223] for any manifold(6) M ,
simply as a formal power series

(3.10) w =
∑

wiXi +
∑

wi,jXiXj

+
∑

wi,j,kXiXjXk + . . . ∈ C∗
dR(M)⊗ T (V )

where wi, wi,j , wi,j,k, . . .∈ C∗
dR(M) are differential forms on M and X =

{Xi}1⩽i⩽m, is a basis of a real vector space V .(7) Here T (V ) is the com-
pletion of the tensor algebra T (V ) of V , which can also be viewed as the
(associative) non-commutative power series algebra in X over R.

The transport T of the formal power series connection w in (3.10) is then
defined as a formal power series:
(3.11)
T = 1 +

∫
w +

∫
ww +

∫
www + . . .

= 1+
∑∫

wiXi +
∑∫

(wi,j + wiwj)XiXj + . . . ∈ Ch∗(M)⊗ T (V ).

In [11], Chen sets V = H∗−1(M ;R) for a simply connected M , with the
Xi a basis of V , and he assumes that the wi in (3.10) are closed forms

(6) More generally, M can be any differentiable space in the sense of [9].
(7) We work over R, but Chen’s method equally applies to complex-valued forms.
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representing cohomology classes dual to the Xi. A graded derivation(8) ∂

of degree −1 on T (V ) is said to satisfy the twisted cochain condition if

(3.12) ∂w + dw − ε(w) ∧ w = 0

where ∂w and dw are shorthand for (1⊗∂)w and (d⊗1)w respectively, and
where ∧ is the product on the algebra C∗

dR(M) ⊗ T (V ). The existence of
such a ∂ guarantees the following result, where the transport map θ lands
in T (V ) rather than T (V ) because the degrees of the differential forms
in (3.10) are all greater than 1; see [9, p. 229], [10].

Theorem 3.2 (Chen [11]). — If M , w, ∂, and T are as above, then
(TH∗−1(M ;R), ∂) is a CDGA and we have an isomorphism H∗(ΩM ;R) ∼=
H∗(TH∗−1(M ;R), ∂) induced by the transport T ,

(3.13)
θ : Csing

∗ (ΩM ;R) −→ TH∗−1(M ;R),

c −→ ⟨T , c⟩ = δ0,n +
∑

r

〈∫
w(r), c

〉
,

for any c ∈ Hn(ΩM ;R), where δ0,n is the Kronecker delta, w(r) = ww . . . w︸ ︷︷ ︸
r

and Csing
∗ (ΩM ;R) is the space of smooth singular chains on ΩM .

Call a pair (w, ∂) satisfying the assumptions of the above theorem a
homological power series connection. For any M , (w, ∂) is uniquely deter-
mined by the first-order term in (3.10) and can be constructed by an induc-
tive procedure [10, Theorem 1.3.1]. Chen [11] also showed that the chain
map θ in (3.13) is multiplicative with respect to the Pontryagin product,
and Hain [29] showed further that θ induces a Hopf algebra isomorphism.
See Appendix A for more details on the Pontryagin product.

Remark 3.3. — In the context of Conf(m,C), Chen’s power series con-
nections were studied by Kohno in the series of works [32, 33, 34] in relation
to Vassiliev invariants of pure braids. In more recent work, Kohno [35, The-
orem 6.2] argued for Conf(m,Rn), n ⩾ 3, that there is a homological
power series connection ∂ as in Theorem 3.2 that is quadratic, i.e. sat-
isfies ∂Xi =

∑
k,l ci

k,lXkXl. This implies the formality of Conf(m,Rn) for
n ⩾ 3. We instead use the formality integration map I to determine a
D(m)-valued connection, which may be more useful for explicit geometric
computations, while still yielding a Hopf algebra isomorphism.

(8) Explicitly, ∂(X ⊗ Y ) = (∂X) ⊗ Y + ε(X)X ⊗ (∂Y ), where ε(X) = (−1)|X|.
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3.3. Proof of Theorem 1.1 (power series connection)

Our goal for this Section is to define an algebra quasi-isomorphism

(3.14) Θ : Csing
∗ (ΩM) −→ B∗(D(m)), M = Conf(m,Rn),

via a modification of the method of power series connections and thus
establish the following result.

Theorem 1.1. — Let n ⩾ 3.
(a) Let Θ : Csing

∗ (Ω Conf(m,Rn))→ B∗(D(m)) be the map induced by
the transport of the formal power series connection ω, valued in
B∗(D(m)) ⊂ B∗(D(m)) and defined by

(3.15) ω =
∑

Γ∈B(m)

I(Γ)⊗ [Γ∗]
|Aut(Γ)| ∈ C∗

dR(Conf(m,Rn))⊗D(m)∗,

where I is the formality integration map and B(m) is the basis of di-
agrams (which is well defined up to signs) for the subspace of D(m)
spanned by nonempty diagrams. Then at the level of homology, Θ
agrees with the map Φ∗ in (1.2).

(b) At the level of homology, Θ is a Hopf algebra isomorphism.

Remark 3.4. — If n ⩾ 4, one can easily show that D(m) is of finite
type [45, Remark 6.21]. Thus for n ⩾ 4, the sum in (3.15) is finite, since
Conf(m,Rn) is finite-dimensional and thus supports differential forms of
degree at most dim(Conf(m,Rn)) = mn.

Our notation so far suggests that, in the right setting, the isomorphism
Θ in (1.2) is defined much like θ in (3.13), with M = Conf(m,Rn). Indeed
this is the case, but there are some important differences discussed next.

We begin by setting the vector space V = D(m)∗ instead of H∗−1(M ;R);
note that this V is not isomorphic to H∗−1(M ;R). Consequently, in place
of the basis X, we choose the canonical basis B(m) = {Γ} of diagrams for
the subspace of D(m) spanned by nonempty diagrams. (This basis is well
defined up to signs.) The corresponding tensor algebra T (V ) = T (D(m)∗)
can be now identified with B∗(D(m)).

Consider the definition of our connection ω in (3.15). In contrast to the
general formula (3.10) (and to Kohno’s connection in Remark 3.3), it con-
tains only the first-order part (i.e.

∑
wiXi). One of the assumptions for

Theorem 3.2 is that each wi is a closed form representing the cohomology
class dual to Xi. This assumption does not hold for ω, since I(Γ) is not
a closed form in general (for instance when Γ has free vertices). There-
fore, we cannot apply Theorem 3.2 directly. In addition, we need to define
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a derivation ∂ satisfisfying (3.12). We will show in Lemma 3.5 that, not
suprisingly, the dual differential d∗

B on B∗(D(m)) plays the role of ∂ in our
setting. This will allow us to show in Lemma 3.6 that the transport of ω

induces a chain map. To prove Theorem 3.2, it will only remain to check
that Θ induces a quasi-isomorphism and is a map of Hopf algebras.

For ω in (3.15), we introduce the following notation:

ε(ω) =
∑

Γ∈B(m)

1
|Aut(Γ)|I(Γ)⊗ [ε(Γ)Γ∗],

ε(Γ) = (−1)|Γ|, |Γ| = (n− 1)|E(Γ)| − n|Vfree(Γ)|, ε(I(Γ)) = ε(Γ).

Following [29], we write for any elements
∑

i ai ⊗ Ai and
∑

k bk ⊗ Bk in
C∗

dR(Conf(m,Rn))⊗ B∗(D(m)),

d
(∑

i

ai ⊗Ai

)
=
∑

i

dai ⊗Ai,

d∗
B

(∑
i

ai ⊗Ai

)
=
∑

i

ai ⊗ d∗
BAi,(3.16) (∑

i

ai ⊗Ai

)
∧

(∑
k

bk ⊗Bk

)
=
∑
i,k

ai ∧ bk ⊗ [Ai|Bk].

We interpret ω ∧ ω by regarding D(m)∗ as the subspace of length-one
monomials in B∗(D(m)).

Lemma 3.5. — The connection form ω in (3.15) satisfies the twisted
cochain condition

(3.17) d∗
Bω + dω − ε(ω) ∧ ω = 0.

Proof. — Let us compute the differential d∗
B([Γ∗]) of a length-one mono-

mial [Γ∗] in (B∗(D(m)), d∗
B). By directly dualizing the definition (2.7) of

dB, we obtain the following (cf. [23, p. 307]), where (Γa, Γb) denotes an
ordered pair in B(m)× B(m):

(3.18) d∗
B

(
[Γ∗]
|Aut(Γ)|

)
=

∑
(Γa,Γb)

Γa·Γb
∼=Γ

1
2
(
[ε(Γa)Γ∗

a|Γ∗
b ] + (−1)|Γa||Γb|[ε(Γb)Γ∗

b |Γ∗
a]
)

|Aut(Γa)||Aut(Γb)|

−
∑

Γ′: Γ′/e=Γ

ε(Γ′, e)[(Γ′)∗]
|Aut(Γ′)|
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The above equality is most easily verified by recalling that Γ∗/|Aut(Γ)|
is the functional which sends Γ to 1, and thus by grouping together any
|Aut(−)| factors together with the corresponding diagrams. This yields

(3.19)

d∗
Bω =

∑
Γ∈B(m)

I(Γ)⊗ d∗
B

(
[Γ∗]
|Aut(Γ)|

)

=
∑

Γ∈B(m)

∑
(Γa,Γb)

Γa·Γb
∼=Γ

I(Γ)⊗
1
2
(
[ε(Γa)Γ∗

a|Γ∗
b ]+(−1)|Γa||Γb|[ε(Γb)Γ∗

b |Γ∗
a]
)

|Aut(Γa)||Aut(Γb)|

−
∑

Γ∈B(m)

∑
Γ′

Γ′/e=Γ

ε(Γ′, e) I(Γ)⊗ [(Γ′)∗]
|Aut(Γ′)| .

From (3.15), dω is the sum

(3.20)

dω =
∑

Γ∈B(m)

d(I(Γ))⊗ [Γ∗]
|Aut(Γ)| =

∑
Γ∈B(m)

I(dΓ)⊗ [Γ∗]
|Aut(Γ)|

=
∑

Γ∈B(m)

∑
e∈E(Γ)

ε(Γ, e)I(Γ/e)⊗ [Γ∗]
|Aut(Γ)| .

Rearranging (3.20), we obtain

dω =
∑

Γ∈B(m)

∑
Γ′: Γ′/e=Γ

ε(Γ′, e) I(Γ)⊗ [(Γ′)∗]
|Aut(Γ′)| ,

which is the same as the second term in (3.19). Next

ε(ω) ∧ ω =
∑

(Γa,Γb)

I(Γa) ∧ I(Γb)⊗ [ε(Γa)Γ∗
a|Γ∗

b ]
|Aut(Γa)||Aut(Γb)|

=
∑

(Γa,Γb)

I(Γa · Γb)⊗ [ε(Γa)Γ∗
a|Γ∗

b ]
|Aut(Γa)||Aut(Γb)|

=
∑

Γ∈B(m)

∑
(Γa,Γb)

Γa·Γb
∼=Γ

I(Γ)⊗
1
2
(
[ε(Γa)Γ∗

a|Γ∗
b ] + (−1)|Γa||Γb|[ε(Γb)Γ∗

b |Γ∗
a]
)

|Aut(Γa)||Aut(Γb)| ,

which is the same as the first term in (3.19). These computations
yield (3.17). □
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Lemma 3.6. — The formal transport of ω, defined as(9)

(3.21) T = 1 +
∫

ω +
∫

ωω +
∫

ωωω + . . . ∈ Ch∗(M)⊗ B∗(D(m)),

satisfies

(3.22) dChT = d∗
BT

and yields a chain map
Θ : Csing

∗ (Ω Conf(m,Rn)) −→ B∗(D(m)),

c 7−→ ⟨T , c⟩ = δ0,n +
∑

r

〈∫
ω(r), c

〉
.

(3.23)

Proof. — Using the bar differential dCh of the iterated integral complex
Ch∗(Conf(m,Rn)) defined in (2.7), we have

dCh

(∫
ω(r)

)
=

r∑
i=1

(−1)i

∫
ε(ω)(i−1)(dω)ω(r−i)

+
r−1∑
i=1

(−1)i+1
∫

ε(ω)(i−1)(ε(ω) ∧ ω)ω(r−i−1).

Arranging the summation properly, we get

dCh (T ) = dCh

∑
r⩾0

∫
ω(r)


=
∑
r⩾0

r∑
i=1

(−1)i

∫
ε(ω)(i−1)(dω − ε(ω) ∧ ω)ω(r−i)

=
∑
r⩾0

r∑
i=1

(−1)i

∫
ε(ω)(i−1)(−d∗

Bω)ω(r−i) = d∗
B
(
T
)
.

We used Lemma 3.5 in the third equality above. The last equality holds
because, by using (3.18), we may write

d∗
B
(
[Γ∗

1 |Γ∗
2 | . . . |Γ∗

m]
)

=
m∑

i=1
(−1)i−1[ε(Γ1)Γ∗

1 | . . . |ε(Γi−1)Γ∗
i−1 |d∗

B([Γ∗
i ])|Γ∗

i+1 | . . . |Γ∗
m].

Since ⟨dChT , c⟩ = ⟨T , ∂singc⟩ and d∗
B⟨T , c⟩ = ⟨d∗

BT , c⟩, formula (3.22) im-
plies that Θ as defined above is a chain map. □

(9) The symbol 1 here is the 0-cochain that is the unity in Ch∗(M) ⊗ B∗(D(m)). In
particular, it evaluates to 0 on chains of positive dimension.
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Proof of Theorem 1.1. — It remains only to check that Θ is dual to Φ and
that Θ is a map of Hopf algebras. Indeed, Θ is a chain map which fits in the
commutative diagram of chain maps (which are also quasi-isomorphisms)

(3.24)

Csing
∗ (Ω Conf(m,Rn)) Hom

(
C∗

dR(Ω Conf(m,Rn)),R
)
,

B∗(D(m))

i

Θ Φ∗

i.e. Θ = Φ∗ ◦ i, where

i(c)(β) = ⟨β, c⟩, β ∈ C∗
dR(Conf(m,Rn)).

Note that Φ∗ is a quasi-isomorphism by our previous work [38] and i is a
quasi-isomorphism by a result of Chen in [11, p. 859]. We next check that
Θ is multiplicative with respect to the Pontryagin product, i.e.,

(3.25) Θ(a · b) = Θ(a)Θ(b).

We use the identity from [11, p. 843]〈∫
α1α2 . . . αm, a · b

〉
=

m∑
i=0

〈∫
α1α2 . . . αi, a

〉〈∫
αi+1αi+2 . . . αm, b

〉
.

Since ∫
ω(r) =

∑
Γ1,...,Γr

∫
I(Γ1) . . . I(Γr)⊗ [Γ1| . . . |Γr],

we have 〈∫
ω(r), c

〉
=

∑
Γ1,...,Γr

〈∫
I(Γ1) . . . I(Γr), c

〉
⊗ [Γ1| . . . |Γr],

〈∫
ω(t), a

〉〈∫
ω(r), b

〉
=

∑
Γ1,...,Γt,Γ′

1,...,Γ′
r

〈∫
I(Γ1) . . . I(Γt), a

〉
〈∫

I(Γ′
1) . . . I(Γ′

r), b

〉
⊗ [Γ1| . . . |Γt|Γ′

1| . . . |Γ′
r],〈∫

ω(r), a · b
〉

=
∑

Γ1,...,Γr

〈∫
I(Γ1) . . . I(Γr), a · b

〉
⊗ [Γ1| . . . |Γr]

=
∑

Γ1,...,Γr

r∑
i=1

〈∫
I(Γ1) . . . I(Γi), a

〉
〈∫

I(Γi+1) . . . I(Γr), b

〉
⊗ [Γ1| . . . |Γr],

and we obtain ⟨T , a · b⟩ = ⟨T , a⟩⟨T , b⟩ and (3.25) as a result.
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Finally, since Θ is defined via the power series connection, we can ap-
ply [29, Lemma 6.17] to establish that Θ is a map of coalgebras. The key
point is that the map Φ = Θ∗ is an algebra map because it takes the shuffle
product on B(D(m)) to the wedge product of differential forms. □

Remark 3.7. — The above modification of the power series technique
applies to any situation where one has a quasi-isomorphism I : (A, δ) →
(C∗

dR(M), d) of CDGA’s. Then a connection form ω may be defined as
in (3.15) for a choice of a basis B(A) of the CDGA A.

4. Samelson products, primitive diagrams, and trees

We will now prove Theorems 1.2 and 1.7, which describe homotopy
classes in configuration space in terms of diagrams. The main point of
Section 4.1 is Lemma 4.2, which describes Samelson products in terms of
blow-ups of diagrams. We use this fact in Section 4.2 to prove Theorem 1.2,
which says that the map Θ induced by the transport of the power series
connection takes real homotopy classes in Ω Conf(m,Rn) to primitive dia-
grams in D(m)∗. In Section 4.3, we prove Theorem 1.7, which recasts these
elements as trivalent trees modulo the IHX relations; we also obtain an
explicit formula that completely describes Θ for non-repeating monomials.
In Section 4.4, we observe a connection to Brunnian spherical links and
provide examples of Theorem 1.7.

4.1. Samelson products and blow-ups of diagrams

Recall that the Samelson product [−,−] on π∗(ΩX) makes π∗(ΩX) ⊗
R into a graded Lie algebra over R. It differs only by a sign from the
Whitehead product [−,−]W of the corresponding elements in π∗(X). Let h :
π∗(ΩX)⊗R→ H∗(ΩX;R) be the Hurewicz map. Restricting its codomain
to the subspace of primitive elements gives an isomorphism of graded Lie
algebras. See Appendix A for further details.

The next Lemma is proven in Appendix A. Lemma 4.1 below is its spe-
cialization to the graded Lie algebra L = π∗(Ω Conf(m,Rn))⊗R. The latter
lemma helps us show in Corollary 4.4 that our proof of Theorem 1.2 can
be adapted to D(m) rather than D(m) with only a little modification. The
spanning set obtained in Lemma 4.1 will also be used in Section 5.
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Lemma A.2. — Let L be a graded Lie algebra over R, generated by
elements Xi, i ∈ I, of degrees |Xi|.

(a) The left-normed monomials in the Xi span L.
(b) Powers [Xi, . . . , Xi] of length greater than 2 vanish.
(c) Squares [Xi, Xi] are nontrivial only on generators in even grading.
(d) If |Xi| and |Xh| are odd, then [[Xi, Xi], Xh] = −2[[Xi, Xh], Xi].

Recall that additively, Lm(n−2) = π∗(Ω Conf(m,Rn)) is a direct sum of
free Lie algebras (1.8), with the j-th summand generated by the elements
Bj,1, Bj,2, . . . , Bj,j−1. We thus deduce the following.

Lemma 4.1. — For any n ⩾ 3 and any m ⩾ 1, the space Lm(n − 2) =
π∗(Ω Conf(m,Rn)) ⊗ R is additively generated by left-normed Samelson
products

(4.1) [Bj,i1 , Bj,i2 , Bj,i3 . . . , Bj,ik
] = [[. . . [[Bj,i1 , Bj,i2 ], Bj,i3 ], . . . ], Bj,ik

],

for 2 ⩽ j ⩽ m and 1 ⩽ i1, i2, . . . , ik ⩽ j − 1. For any j with 2 ⩽ j ⩽ m

and any i, h < j, the identities in Lemma A.2, parts (a), (c), and (d), hold
with Xi = Bj,i and Xh = Bj,h.

We base the proofs of Theorem 1.2 and part of Theorem 1.7 on the next
Lemma, which says that we can represent an iterated bracket in the Bj,i

as an element in PD(m)∗.

Lemma 4.2. — Let C be any iterated Samelson product (with repeats
allowed) in the generators Bj,i of length k.

(i) Then Θ ◦ h(C) ∈ B∗(D(m)) is homologous to a length-1 monomial
[Γ∗

C ] where Γ∗
C is a cycle in PD(m)∗.

(ii) With C as above, write C = [A, B], where A and B are iterated
Samelson products of length less than k. Then Γ∗

C can be deter-
mined recursively by using ΓA and ΓB :

(4.2) Γ∗
[A,B] = (−1)aδ∗((ΓA · ΓB)∗) ∈ PD(m)∗, a = |Γ∗

A| = |A|+ 1.

Proof of Lemma 4.2. — We proceed by induction on k. For k = 1,
Θ(Bj,i) is the class [Γ∗

j,i] of a diagram with a single chord between vertices
i to j (oriented from i to j if n is odd), which lies in PD(m)∗. This proves
the base case for statement (i).

Now suppose that A, B, and C are as above, where C has length k ⩾ 2,
and that (i) holds for A and B; that is Θ◦h(A) and Θ◦h(B) are homologous
to [Γ∗

A] and [Γ∗
B ] for some cycles Γ∗

A, Γ∗
B ∈ PD(m). Let a = |Γ∗

A| and
b = |Γ∗

B | be the degrees in D(m)∗. Note that ΓA · ΓB ̸= 0, since we do not
quotient by diagrams with multiple edges in D(m). (More generally, D(m)
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is the free CDGA on its indecomposable elements, as observed in [44].) In
general, the homological differential on length-1 monomials in the cobar
complex on a CDGC is a sum of graded commutators [23, p. 307]. We
apply this to the product ΓA ·ΓB of two indecomposable elements. For the
moment, suppose ΓA ̸∼= ΓB . We then have

(4.3) d∗
B[(ΓA · ΓB)∗]

= [(−1)aΓ∗
A|Γ∗

B ] + (−1)ab[(−1)bΓ∗
B |Γ∗

A]− [δ∗((ΓA · ΓB)∗)

= (−1)a
(
[Γ∗

A|Γ∗
B ]− (−1)(a−1)(b−1)[Γ∗

B |Γ∗
A]
)
− [δ∗((ΓA · ΓB)∗)]

= (−1)a[Γ∗
A, Γ∗

B ]− [δ∗((ΓA · ΓB)∗)].

The first equality uses the fact that Γ∗ is defined so that ⟨Γ∗
1, Γ2⟩ =

δΓ1,Γ2 |Aut(Γ1)| and the fact that |Aut(ΓA · ΓB)| = |Aut(ΓA)||Aut(ΓB)|
if ΓA ̸∼= ΓB . In the last line above, [−,−] denotes the graded commutator
in the cobar complex, and we recall that there are suppressed desuspensions
∂−1

∗ throughout to get the last equality.
Now if instead ΓA

∼= ΓB (and n is odd), then the homological dif-
ferential gives only one term (−1)a[Γ∗

A|Γ∗
A], which can be rewritten as

1
2 (−1)a[ΓA, ΓA]. However, |Aut(ΓA · ΓA)| = 2|Aut(ΓA)|2, so the other two
terms in (4.3) are also essentially multiplied by 1

2 , and (4.3) still holds.
Thus [δ∗((ΓA · ΓB)∗)] is always homologous to (−1)a[Γ∗

A, Γ∗
B ]. Now h

sends a Samelson product [A, B] to (−1)a[h(A), h(B)]. Since Θ is a map
of graded algebras, Θ ◦ h[A, B] is homologous to (−1)a[Γ∗

A, Γ∗
B ], and state-

ment (ii), i.e. formula (4.2), is proven.
It remains to check that Γ∗

[A,B] is a primitive cycle in D(m)∗. Indeed,
[Γ∗

[A,B]] is homologous to Θ ◦ h[A, B] and hence is a cycle in B∗(D(m)).
Since [Γ∗

[A,B]] is a cycle of length 1 in B∗(D(m)), Γ∗
[A,B] must be primitive

and a cycle in D(m)∗. So statement (i) follows as well. □

4.2. Proof of Theorem 1.2 (homotopy classes as primitive
diagrams)

By a mild abuse of notation, we will sometimes write Θ to mean the
composition Θ ◦ h with the Hurewicz map.

Theorem 1.2.
(a) Let PD(m)∗ be the primitives of the coalgebra D(m)∗. Then Θ

induces an isomorphism

π∗(Ω Conf(m,Rn))⊗ R
∼=−→ H∗(PD(m)∗, δ∗|P D(m)∗).
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(b) The dual Φ of Θ induces an isomorphism

Hom(π∗(Ω Conf(m,Rn)), R)
∼=←− H∗(ID(m), δ̃),

where δ̃ = πID ◦ δ, and πID is the projection onto the indecompos-
ables ID(m) of D(m).

Proof. — Pre-composing the map Θ in (1.2) with the Hurewicz map
gives an isomorphism of graded Lie algebras

π∗(Ω Conf(m,Rn))⊗ R −→ PH∗(B∗(D(m)))

onto the space of primitive elements of the Hopf algebra H∗(B∗(D(m))).
The primitive elements in a CDGC always form a subcomplex, so we con-
sider (PD(m)∗, δ∗|P D(m)∗) as a subcomplex of (D(m)∗, δ∗). We just have
to check that

(4.4) PH∗(B∗(D(m))) = H∗(PD(m)∗).

The containment “⊃” in (4.4) holds even if D(m) is replaced by an arbi-
trary CDGA. Indeed, if Γ∗ ∈ PD(m)∗ is a cycle in (PD(m)∗, δ∗|P D(m)∗),
then Γ is indecomposable and δ∗(Γ∗) = 0, so d∗

B [Γ∗] = 0. Furthermore,
Γ∗

1 and Γ∗
2 are homologous in (PD(m)∗, δ∗) if and only if [Γ∗

1] and [Γ∗
2] are

homologous in (B∗(D(m)), d∗
B). Finally [Γ∗] is primitive in B∗(D(m)) as a

cobar cycle of length 1.
To show the inclusion “⊂” in (4.4), note that by Lemma 4.2, any bracket

expression in the Bj,i is homologous in B∗(D(m)) to a length-1 monomial
[Γ∗] such that δ∗Γ∗ = 0, which thus represents an element of H∗(PD(m)∗).
So part (a) is proven.

For part (b), we dualize the composite given by Θ followed by the iden-
tification PH∗(B∗(D(m)))

∼=→ H∗(P (D(m)∗)) to obtain an isomorphism

Hom(H∗(PD(m)∗),R)
∼=−→ Hom(π∗(Ω Conf(m,Rn)),R).

By the universal coefficient theorem for cohomology [30] applied to the
complex (ID(m), δ̃),

Hom(H∗(ID(m)),R) ∼= H∗(PD(m)∗, δ∗|P D(m)∗).

In each degree, this is an isomorphism of finite-dimensional vector spaces,
so dualizing it gives an isomorphism H∗(ID(m)) ∼= Hom(H∗(PD(m)∗),R).
So part (b) of Theorem 1.2 is proven. □

We can now “diagrammatically” define the bracket via the identity (4.2)
in Lemma 4.2:

(4.5) [−,−] : H∗(PD(m)∗)⊗H∗(PD(m)∗) −→ H∗(PD(m)∗).
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Example 4.3. — If n = 3, then Conf(2,R3) ≃ S2, and [B2,1, B2,1] ∈
π3(Conf(2,R3)) is twice the Hopf map [30]. In this case the corresponding
diagram is obtained as follows:

(4.6)

Θ([B2,1, B2,1]) = [Γ2,1, Γ2,1] =
[

,
]

= (−1)2δ∗
( )

= − − ,

where the sign comes from (2.3), applied to the choice of labels and arrows
shown. If we call the above sum −Γ∗

1 − Γ∗
2, then ⟨Γi, Γ∗

i ⟩ = 2 for i = 1, 2
because each Γi has 2 automorphisms. The element in T n(m) corresponding
to each Γi is a tripod (a uni-trivalent tree with 3 leaves), with leaves labeled
1,1,2 (for i = 1) and 1,2,2 (for i = 2).

We now describe the relationship between H∗(PD(m)∗) and H∗(PD(m)∗).

Corollary 4.4. — There are isomorphisms

(4.7) H∗(PD(m)∗) ∼=

{
H∗(PD(m)∗), for n even,

H∗(PD(m)∗)⊕ RN , for n odd,
N =

(
m

2

)
.

Proof. — The proof of Lemma 4.2 can be repeated for D(m) and for
left-normed bracket expressions with distinct first two terms, i.e., for C =
[Bj,i1,, Bj,i2 , . . . , Bj,ik

] with i1 ̸= i2. Then Θ ◦h(C) ∈ B∗(D(m)) is homolo-
gous to a length-1 monomial [Γ∗

C ] where Γ∗
C ∈ PD(m)∗. In addition, (4.3)

holds for these brackets. As in the proof of Theorem 1.2, each of the gen-
erators of Lemma 4.1 can be represented by an element of H∗(PD(m)∗),
with the exception of the squares [Bj,i, Bj,i] for n odd. We conclude that
Lm is isomorphic to H∗(PD(m)∗) for n even and H∗(PD(m)∗) ⊕ RN for
n odd, where the RN factor is spanned by the square brackets. Since
H∗(PD(m)∗) ∼= Lm the claim follows. □

4.3. Proof of Theorem 1.7 (homotopy classes as trees)

Recall from the Introduction that T : π∗(Ω Conf(m,Rn))⊗ R→ T n(m)
is the map defined using the direct-sum decomposition (1.8) that sends a
bracket expression B to the corresponding tree.
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Theorem 1.7. — Below, assume j, j1, . . . , jk ⩽m and I = (i1, i2, . . . , ik)
with 1⩽ i1, . . . , ik < j.

(a) If C is a length-k Samelson product on the generators Bj1,i1 , Bj2,i2 ,

. . . , Bjk,ik
(with possible repeats), then Θ(C) is represented in

H∗(PD(m)∗) by a linear combination, with ±1 coefficients, of all
successive vertex blow-ups of the diagram (Γj,i1 · Γj,i2 · · · · · Γj,ik

)∗,
performed in the order given by the parenthesization in C, from
innermost to outermost brackets.

(b) The map Θ gives rise to an injection Θ̃ of π∗(Conf(m,Rn))⊗R into
the space T n(m) of trivalent trees with leaves labeled by {1, . . . , m},
modulo the (graded) AS and IHX relations.

(c) For any I (with repeats of indices allowed), ⟨Θ̃(Bj;I), T (Bj;I)⟩ =
±1, where ⟨·, ·⟩ is any Kronecker pairing determined by a basis of
trees for T n(m).

(d) If I has no repeated indices, then Θ̃(Bj;I) = ±T (Bj;I). In particu-
lar, for any k ⩽ j, Θ maps Bj;1,2,...,k−1 to

(1.13) ± ∈ H∗(PD(m)∗).

Thus Θ maps a basis element (1.10) of Lie(m − 1) to the diagram
obtained from (1.13) by setting k = j = m and permuting the
segment vertices by σ ∈ Σ(2, . . . , m− 1).

(e) (Signs) If I is a multi-index of length m−1 with no repeats, then the
sign of the diagram (1.13) corresponding to a basis element (1.10)
of Lie(m− 1) is as follows. For n odd, orient this diagram by label-
ing the vertices as in (1.13) and orienting each edge from smaller to
larger vertex label. For n even, orient this diagram by using the ver-
tex labels shown to order the edges first by smallest endpoint label,
then by largest endpoint label, i.e., {1, m+1}, {2, m+1}, {3, m+2},
{4, m+3}, . . . , {m, 2m−2}, {2m−1, 2m−2}. Then the sign ε(n, m)
is given by

ε(n, m) =


+1 if n is even and m ≡ 0, 1 mod 4

or n is odd and m is odd
−1 if n is even and m ≡ 2, 3 mod 4

or n is odd and m is even.
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Proof. — Part (a) follows directly from the identity (4.2) in Lemma 4.2.
For part (b), the desired injection Θ̃ can be obtained from the map in

the top row of the following commutative diagram, which we explain below,
where the uppper-left space is isomorphic to π∗(Ω Conf(m,Rn))⊗ R:

(4.8)
PH∗(ΩConf(m,Rn)) //

� _

��

PH0,∗(LDn+1
fores(m)∗)∼= T n(m)� _

��
H∗(ΩConf(m,Rn)) Θ

∼=
// H∗(B∗(D(m))) �

� φ∗
// H0,∗(LDn+1

fores(m)∗)

There is a differential graded Hopf algebra LDn+1(m) of link diagrams for
long links in Rn+1. A link diagram is a graph with some vertices lying
on m line segments and some free vertices, together with an orientation
depending on the parity of n + 1, much like in Definition 2.2. The subspace
LDn+1

fores(m), which is also a differential graded Hopf algebra, consists of
forests whose leaves lie on the segments. Link diagrams of bidegree (0, ∗)
are precisely uni-trivalent graphs. The CDGAs LDn+1(m) and LDn+1

fores(m)
differ from the CDGAs LDn+1(m) and LDn+1

fores(m) that we studied in [38]
only in that link diagrams with multiple edges are not set to zero. Imposing
this relation gives maps LD(m) ↠ LD(m) and LDfores(m) ↠ LDfores(m)
of differential graded Hopf algebras.

The map φ∗ is dual to a map φ defined at the level of cochains in [38],
where we showed that φ is surjective in cohomology. Although in that
paper we defined φ as a map B(D(m)) → LDfores(m), one can easily
modify that definition to get a map B(D(m)) → LDfores(m). Our proof
of the surjectivity of φ relied on work of Habegger and Masbaum,(10)

which like various other authors’ work on Vassiliev invariants of knots links
in R3 actually used (the uni-trivalent part of) LDfores(m). So more pre-
cisely, our application of their work yields surjectivity of the composition
H0,∗(LDfores(m))→ H0,∗(LDfores(m)) φ→ H∗(B(D(m))). Thus the dual φ∗

in (4.8) is indeed injective.
Moreover, φ is a map of Hopf algebras. Thus Θ◦φ∗ is also a map of Hopf

algebras, and the top horizontal arrow can be defined as the restriction of
φ∗ ◦Θ to the primitive elements.

Finally, the isomorphism T n(m)→ PH0,∗(LDn+1
fores(m)∗) is given by aver-

aging over all the possible ways of attaching the leaves labeled i to segment
i, for i = 1, . . . , m. The case where n is even is proven in [4, Theorem 8],

(10) Habegger and Masbaum’s Ct(m) is our T 2(m) (∼= T n(m) for any even n), and their
Ak(m) is our H0,k(LDfores(m)).
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and the proof for n odd is similar.(11) The right-hand vertical inclusion is
thus essentially an inclusion of trees on m line segments into forests on m

line segments.
By Theorem 1.2, Θ sends the image of the Hurewicz map to linear combi-

nations of (length-1 monomials of) connected diagrams. On such elements,
the composition of φ∗ followed by the isomorphism to T n(m) is given by
first killing diagrams with loops of free vertices and then separating any
edges which meet at the same segment vertex, as one would do to get from
the fourth picture to the third picture in (1.12). In summary, the desired
injection Θ̃ : π∗(Conf(m,Rn)) ↪→ T n(m) is given by the Hurewicz map,
followed by Θ, followed the quotient by diagrams with loops of free vertices
and the splitting apart of all edge-ends which meet at multivalent segment
vertices.

For part (c), if I is any multi-index we want to show that the successive
blow-ups for Bj;I determined by formula (4.2) produce the diagram T (Bj;I)
with coefficient ±1. We get a diagram for every sequence of blow-ups, where
at each step we may have a choice of multivalent vertex to blow up at
because repeated indices are possible. The sequence where we blow up at
the root j at every step produces precisely this diagram. Consider any other
sequence, which at some step has a blow-up at some other segment vertex,
say v. The result of such a sequence of blow-ups cannot be T (Bj;I) because
segment vertex v will have fewer edges incident to it than it does in T (Bj;I).
Moreover, any linear combination of trees equivalent to it cannot contain
a term T (Bj;I) because the IHX relations preserve leaf labels.

For part (d), write Γ∗
j;I for Θ(Bj;I), as in Lemma 4.2. First suppose

I = (1, 2, . . . , k). We proceed by induction on k. We know the statement is
true for k = 1. Suppose 2 ⩽ k < j and that Γ∗

j;1,...,k−1 = ±T (Bj;1,...,k−1),
which is the diagram below (where the free vertex labels are shown only to
determine the sign in part (e)):

By Lemma 4.2 and the induction hypothesis,

Θ([Bj,1, . . . , Bj,k]) = ±δ∗((Γj;1,...,k−1 · Γj;k)∗) = ±T (Bj;1,...,k).

(11) One needs to use LDfores(m) rather than LDfores(m) to get an isomorphism to
T n(m). Indeed, P H0,∗(LDfores(m)) has elements corresponding to connected graphs
that are not trees, such as a graph in which a pair of edges joins two (free) vertices, each
of which is connected to a univalent (segment) vertex.
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The case of an arbitrary non-repeating multi-index I can be treated by ap-
plying the same argument but with (1, . . . , k) replaced by (i1, . . . , ik−1, ik).

To get the signs claimed in part (e), consider the iterated blow-ups of
(Γm,1 · Γm,2 . . . Γm,m−1)∗. One adds up the signs from (2.3) in those blow-
ups, the signs from Definition 2.2 incurred by relabeling the tree, and for
n odd, the signs from (4.2) coming from the Samelson product. For odd
n, we incur the same number of minus signs, modulo 2, from the blow-ups
and the Samelson product, namely 1

2 (m− 1)(m− 2), while we incur m− 3
minus signs from edge reversals. For even n, we incur 1

2 (m − 1)(m − 2)
minus signs from the blow-ups and m− 3 minus signs from permuting the
edge labels. □

Remark 4.5. — If one uses the Whitehead product instead of the Samel-
son product, the sign (−1)a in equation (4.2) in Lemma 4.2 disappears,
and the sign for n odd above becomes −1 if m ≡ 0, 3 mod 4, while the
sign for n even is unchanged.

We postpone our Examples to the end of Section 4.4 below for the pur-
pose of connecting them to Brunnian links.

4.4. The Lie module and Brunnian spherical links.

A spherical m-component Brunnian link L in Rn gives rise to a class
in π∗(Conf(m,Rn)) and hence a class in π∗−1(Ω Conf(m,Rn)). Using The-
orem 1.1 and Theorem 1.7, we will deduce that the Milnor invariants of
L in the sense of Koschorke [41] can be recovered by applying Θ to the
corresponding class in π∗(Ω Conf(m,Rn)) in Corollary 1.8. In more detail,
a spherical m-component link map is a smooth map
(4.9)
L : Sp1 ⊔ Sp2 ⊔ · · · ⊔ Spm −→ Rn, n ⩾ 3 L(Spi) ∩ L(Spj ) = ∅, i ̸= j.

A link homotopy is a homotopy through link maps. If each (m − 1)-
component sublink of L is link homotopic to a trivial link, L is called
Brunnian or Borromean. Let p =

∑m
i=1 pi. We say L is κ-Brunnian, follow-

ing [41], if whenever p ⩽ m(n− 2) the evaluation map

κ(L) :
m∏

i=1
Spi −→ Conf(m,Rn)

κ(L)(t1, . . . tm) = (L1(t1), . . . , Lm(tm)), Li = L
∣∣
Spi

,

(4.10)
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factors via the projection π :
∏m

i=1 Spi → Sp, which collapses all faces
of
∏m

i=1 Spi to a point. That is, L is κ-Brunnian if there exists a map
κ̃(L) : S|p| → Conf(m,Rn) completing the diagram

(4.11)

∏m
i=1 Spi Conf(m,Rn).

Sp

π

κ(L)

κ̃(L)

It is easy to show that if L is Brunnian, then it is also κ-Brunnian. Moreover,
Koschorke [41] defines a map h =

⊕
I∈Σm−2

hI which for a certain value of p

(specified below) induces an isomorphism from link homotopy classes of m-
component Brunnian spherical link maps to

⊕
(m−2)! Z. One can then define

the Milnor invariants {µI;j(L)}I of L as the components of the resulting
element in

⊕
(m−2)! Z.

We now digress to define the generalized Hopf invariants hI . Although
we do not need it to deduce Corollary 1.8, it is essential for our proof of
Theorem 1.9. First, Conf(m,Rn) contains a subspace

∨
m−1 Sn−1 which is

homotopy equivalent to the fiber of the projection that forgets one configu-
ration point. Let pr

î
:
∨

m−1 Sn−1 →
∨

m−2 Sn−1 be the map that collapses
the i-th summand to the basepoint. Define the reduced homotopy groups
of a wedge of spheres by π̃∗

(∨
m−1 Sn−1) :=

⋂m−1
i=1 ker(pr

î
). Because L

is Brunnian, κ̃(L) is not only homotopic to a map with image image in∨
m−1 Sn−1, but also represents a class in the reduced homotopy groups.

This definition is due to Koschorke [41], but it is also closely related to
earlier work of Boardman and Steer [5]:

Definition 4.6. — Let I = (i1, . . . , im−1) be a permutation of the set
{1, . . . , m− 1} which fixes 1, i.e., such that i1 = 1.(12) For each such multi-
index I, we now define a generalized Hopf invariant

hI : π̃p

( ∨
m−1

Sn−1

)
−→ πs

p−(m−1)(n−1)+m−2

where the target is the stable homotopy groups of spheres. Given a smooth
map f representing an element of the domain, take the preimages under f

of (m − 1) points, one in each wedge summand. The result is an (m − 1)
component link P1 ⊔ · · · ⊔ Pm−1 in Sp. Find a manifold Q1 bounding P1,
then replace P1 ⊔ Pi2 by Q1 ∩ Pi2 . Then find a manifold Q2 bounding

(12) Compared to Koschorke’s conventions, we reverse the order of each multi-index
because we consider left-normed iterated Whitehead products, whereas he considers the
right-normed ones.
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Q1 ∩ Pi2 , and replace Q1 ∩ Pi2 ⊔ Pi3 by Q2 ∩ Pi3 . Continue this procedure
until Qm−3∩Pim−2⊔Pim−1 is replaced by Qm−2∩Pim−1 . Consider the result
as a framed bordism class, which by the Pontryagin–Thom construction can
be identified with a class in the stable homotopy groups of spheres.

The specialization of a result of Koschorke [41, Theorem 3.1] to the case
of a wedge of equidimensional spheres gives an isomorphism

(4.12) h :=
⊕

I↔σ∈Σm−2

hI : π̃p

( ∨
m−1

Sn−1

)
∼=−→

⊕
(m−2)!

πs
p−(m−1)(n−1)+m−2

provided that (m − 1)(n − 1) − (m − 2) ⩽ p ⩽ m(n − 1) − m. Of par-
ticular interest to us, both in Corollary 1.8 and Theorem 1.9, is the case
of the smallest possible value of p, namely p = (m − 1)(n − 1) − m + 2.
For this p, the target is

⊕
(m−2)! πs

0, and h =
⊕

hI gives an isomorphism
π̃p

(∨
m−1 Sn−1) ∼=→

⊕
(m−2)! Z. The domain is spanned by iterated White-

head brackets [ι1, ιi2 . . . ιim−1 ], where ιj is the projection to the j-th wedge
summand. This allows us to explicitly identify it with Lie(m− 1).

Definition 4.7 (Koschorke [41]). — Let L : Sp1 ⊔ · · · ⊔Spm → Rn be a
Brunnian link, with p :=

∑m
i=1 pi, and suppose that p = mn− 2m− n + 3.

Define the Milnor invariant µI;j(L) as the Hopf invariant hI of κ̃(L) ∈
π̃p

(∨
m−1 Sn−1).

Combining the results of [41] and Theorem 1.7 yields the following:

Corollary 1.8. — Let L : Sp1 ⊔ · · · ⊔ Spm → Rn be a Brunnian link
such that

∑m
i=1 pi = mn− 2m− n + 3. Let κ(L) be the adjoint of the map

κ̃(L) defined in (4.11). Then

Θ(κ(L)) =
∑

I∈Σm−2

µI;m(L)Γ∗
m;I ∈ Lie(m− 1) ⊂ H∗(PD(m)∗),

where Γ∗
m;I = Θ(Bm;I) can be viewed as a trivalent tree.

We will use the maps κ and h to prove our last main result, Theo-
rem 1.9. There we will apply them to basepoint-preserving embeddings (or
basepoint-preserving link maps, as in Remark 5.4) rather than arbitrary
link maps. The definition of h is given just after formula (4.12).

Example 4.8. — The basic case of Θ([B3,1, B3,2]) is obtained by a single
vertex blow-up of the product Γ3,1 · Γ3,2, which gives a tripod diagram:

(4.13) (Γ3,1 · Γ3,2) ⇝ ⇝ ± .
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The dashed decoration on an edge shows the edge resulting from a blow-up
and is not part of the data of the diagram. Since [B3,1, B3,2] ∈ Lie(2) ∼= Z,
any Brunnian spherical link map L : Sn−2 ⊔ Sn−2 ⊔ Sn−2 → Rn satisfies
κ(L) = µ1,2;3[B3,1, B3,2], in π3(n−2)(Ω Conf(3,Rn)) for some integer µ1,2;3.
By Corollary 1.8, we have

Θ(κ(L)) = 1± µ1,2;3 .

Therefore, µ1,2;3 = µ1,2;3(L) is (up to sign) the triple linking number of L

(cf. [20] for the classical case of n = 3). Taking this one step further, we
may easily generalize this example to any m-component Brunnian spherical
link L : Sn−2 ⊔ · · · ⊔ Sn−2 → Rn, and by part (d) of Theorem 1.7 write

Θ(κ(L)) = 1+
∑

σ∈Σ(2,...,m−1)

± µ1,σ(2),...,σ(m−1);m(L)

,

where µ1,σ(2),...,σ(m−1);m(L) are the generalized Milnor invariants of Defi-
nition 4.7

Example 4.9. — As in the previous example, we compute the class
Θ([B3,1, B3,2, B3,1]) via successive vertex blow-ups of the product Γ3,1 ·
Γ3,2 · Γ3,1, parenthesized as ((Γ3,1 · Γ3,2) · Γ3,1), where the dashed decora-
tion on some edges is not part of the data of the diagram, but is simply
given to indicate that those edges result from a blow-up:

(4.14)

((Γ3,1 ·Γ3,2) · Γ3,1) ⇝ ⇝ ±

⇝ + ±

Thus for B3;1,2,1 := [B3,1, B3,2, B3,1], we get that Θ(B3;1,2,1) is given by the
diagram corresponding to ±T (B3;1,2,1) plus one extra term.

Example 4.10. — Although the second term in the last line of the ex-
ample above can be obtained from the first term by blowing up segment
vertex 1 and contracting the edge incident to the root 3, the extra terms
become more complicated as the multiplicity of a repeated index increases.
For instance, the successive blow-ups for Θ(B3;1,2,2,2) ultimately yield the
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six terms shown below after simplifying, not all of which are obtained in
this manner. The labelings and therefore the signs depend on the parity of
n and are not shown. As in the previous example, the dashed decoration
on some edges is not part of the data of the diagram, but is simply shown
to indicate that those edges result from blow-ups.

Θ(B3;1,2,2,2)

=± +± +±

+± +± +± .

The first term corresponds to ±T (B3;1,2,2,2). The third, fifth, and sixth
terms can be viewed as trivalent trees by splitting each multivalent segment
vertex into multiple leaves. The second and fourth terms however are not
trees, even after splitting multivalent segment vertices into multiple leaves.

5. High-dimensional braids as high-dimensional string
links

We will now prove Theorem 1.9, which says that via a certain graphing
map, any bracket expression without repeated indices in π∗(Conf(m,Rn))
gives rise to a nontrivial class in spaces of k-dimensional string links in
Rn+k for many values of k ⩾ 1 and n ⩾ 3. By Theorem 1.7, we may
identify such classes with trivalent trees with distinctly labeled leaves. The
construction of these classes of string links is fairly explicit, via Whitehead
products of the generators in Remark 1.6 and the graphing map.

For k = 1 and any n ⩾ 2, the result actually holds for all real ho-
motopy classes by classical results [3] and our previous work [38] . This
motivates Conjecture 5.7, which says that Theorem 1.9 generalizes to ar-
bitrary bracket expressions in rational homotopy. That is, we expect that
it generalizes to brackets with repeated indices or equivalently, trees with
repeated leaf labels.
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Section 5.1 mainly contains the proof of Theorem 1.9, while Section 5.2
contains some examples, Conjecture 5.7, and related discussion. Through-
out these Sections, we will use iterated Whitehead products of the classes
bj,i ∈ πn−1(Conf(m,Rn)) adjoint to Bj,i ∈ πn−2(Ω Conf(m,Rn)). We will
simply write [ , ] instead of [ , ]W for the Whitehead product, which
should cause no confusion, since we will not use the Samelson product in
these Sections.

Figure 5.1. A long embedding in Embc

(∐
m Rk, Rn+k

)
that is the

graph G(f) of a braid f in Ωk Conf(m,Rn), for m = 2, k = 1, n = 2.

5.1. Proof of Theorem 1.9 (string links by graphing braids)

Let k ⩾ 1 and n ⩾ 2, and let Embc

(∐
m Rk, Rn+k

)
be the space of

string links, namely smooth embeddings g of m disjoint copies of Rk into
Rn+k with fixed behavior outside a fixed compact set. More precisely, let
Dk be the unit disk in Rk. Then for each i = 1, . . . , m, we require that at
any t⃗ = (t1, . . . , tk) outside the interior of Dk, the i-th component gi and
all its partial derivatives of all orders agree with those of the embedding

ei : (t1, . . . , tk) 7−→ (qi, 0, . . . , 0, t1, . . . , tk),

where qi = −1 + 2i
m+1 so that −1, q1, q2, . . . , qm, 1 are evenly spaced points

in [−1, 1] (see Figure 5.1). We will often abbreviate this space as Ln+k
m•k.

We will now define a map Ωk Conf(m,Rn) → Ln+k
m•k from k-dimensional

braids in Rn to k-dimensional string links in Rn+k. For each i = 1, . . . , m,
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let pi : Conf(m,Rn)→ Rn be the map which remembers only the i-th con-
figuration point. Write an element f ∈ Ωk Conf(m,Rn) as f = (f1, . . . , fm)
where fi = pi◦f : Dk → Rn. Write an element g ∈ Ln+k

m•k as g = (g1, . . . , gm)
where gi ∈ Embc(Rk, Rn+k). (We are just using the universal properties of
the product (Rn)m ⊃ Conf(m,Rn) and the coproduct

∐
m Rk.) Define the

graphing map

G : Ωk Conf(m,Rn) −→ Ln+k
m•k

f 7−→ G(f)

by defining, for each i = 1, . . . , m the component G(f)i as

(G(f)i)(t1, . . . , tk) := (fi(t1, . . . , tk), t1, . . . , tk) ∈ Rn+k.

Theorem 1.9. — Let m ⩾ 2, k ⩾ 1, and n ⩾ 3.
(a) View Lie(m− 1) as the submodule of π(m−1)(n−2)+1(Conf(m,Rn))

spanned by length-(m − 1) iterated Whitehead brackets in which
each generator bm,1, . . . , bm,m−1 appears exactly once. Let ℓ = mn−
2m−n−k + 3. If ℓ ⩾ 0, then the following composition is injective:

Lie(m− 1) ↪−→ πℓ+k Conf(m,Rn)
∼=−→ πℓΩk Conf(m,Rn) G∗−→ πℓLn+k

m•k.

(b) Let Hn,k
m be the submodule of π∗(Conf(m,Rn)) spanned by iter-

ated Whitehead brackets on distinct generators bj,ii
, . . . , bj,ip

where
2 ⩽ j ⩽ m and where p(n−2) ⩾ n + k − 3. Then the following com-
position is injective:

Hn,k
m ↪−→ π∗+k Conf(m,Rn)

∼=−→ π∗Ωk Conf(m,Rn) G∗−→ π∗Ln+k
m•k.

Part (b) generalizes and will follow rather quickly from part (a). The
inequality involving p, k, and n in part (b) ensures precisely that the index
∗ is nonnegative. If k = 1 and n ⩾ 2, then that inequality is satisfied for
all p ⩾ 1.

In the classical case where k = 1 and n = 2, the domain of G∗ is nonzero
only for ℓ = 0, where it is the pure braid group PBm. In this case, the map
G∗ is injective on all homotopy classes by work of Artin [3]. This setting
motivates the notation Hn,k

m , since H2,1
m is a subspace of the associated

graded Lie algebra of PBm that is dual to Milnor homotopy invariants of
string links or equivalently, to additive Vassiliev homotopy invariants of
string links; cf. Remark 1.5.

If k = 1 and n ⩾ 3, then G∗ is injective on all real homotopy classes.
This holds because G is surjective on real cohomology [38, Corollary 5.21],
hence injective on real homology, and because the real homotopy of a loop
space is a subspace of its real homology.
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The proof of the theorem uses two key maps, the first of which we now
define.

Definition 5.1. — For any n ⩾ 2 and k ⩾ 1, we will construct a closure
map

·̂ : Embc

(∐
m

Rk, Rn+k

)
−→ Emb∗

(∐
m

Sk, Rn+k

)
g 7−→ ĝ

where the subscript ∗ on the right-hand side indicates embeddings that
take a prescribed value at a basepoint in each component Sk. Since n ⩾ 2,
we can first fix an embedding of Dk into [qi − 1

2m , qi + 1
2m ] × Rn+k−1 −

Dn ×Dk; moreover, we prescribe the behavior on a collar of ∂Dk so that
this embedding together with gi|Dk can be glued together to give a smooth
embedding ĝ of Sk = Dk ∪Dk for any g ∈ Embc

(∐
m Rk, Rn+k

)
. For the

basepoint in each component Sk, we choose any point in the equator Sk−1

along which the two copies of Dk are glued.

The second key map is

κ : Emb∗

(∐
m

Sk, Rn+k

)
−→ Map∗((Sk)×m, Conf(m,Rn+k))

g = (g1, . . . , gm) 7−→ (κ(g) : (s1, . . . , sm) 7→ (g1(s1), . . . , gm(sm))

previously shown in (4.10). It evaluates g at all configurations of m points
in
∐

m Sk such that one point lies on each component.

Definition 5.2. — Define the space of Brunnian long links, denoted
BrEmbc

(∐
m Rk, Rn+k

)
, as the subspace of long links g in Ln+k

m•k such
that the restriction of g to any m − 1 of its components is isotopic to a
trivial link, meaning a sublink of e = (e1, . . . , em). Similarly define the
space of Brunnian links BrEmb∗

(∐
m Sk, Rn+k

)
as the subspace of links

in Emb∗
(∐

m Sk, Rn+k
)

whose restrictions to any m − 1 components are
trivial.

Thus the Brunnian (long) links form a union of path components of the
space of all (long) links. In many of the cases we consider, the latter space is
path-connected, in which case all embeddings are Brunnian. The key reason
for introducing the subspace of Brunnian links is that the restriction of κ

to it descends to a map

(5.1) κ : BrEmb∗

(
m∐
1

Sk, Rn+k

)
−→ Map∗

(
Smk, Conf(m,Rn+k)

)
.
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Indeed, by the Brunnian property, the restriction of κ(g) to each k(m−1)-
dimensional cell given by fixing the basepoint in one coordinate is nullho-
motopic. The proof of part (a) of Theorem 1.9 requires replacing long links
by Brunnian long links, but this is sufficient because the latter are a union
of path components of the former.

Proof of Theorem 1.9, part (a). — Let Ĝ denote the composition of
G followed by the closure map. That is, Ĝ(f) := G(f̂). Suppose b ∈
πℓ+k Conf(m,Rn) comes from Lie(m − 1), where we will use the same
symbol b for a representative map and its homotopy class. Then ℓ + k =
mn − 2m − n + 3 = (m − 1)(n − 2) + 1 and ℓ ⩾ 0 (as in the Theorem
statement), so we can write b ∈ πℓΩk Conf(m,Rn). Notice that Ĝ(b) is
Brunnian, i.e., forgetting any of the m components yields the trivial ele-
ment in πℓ. Thus κ ◦ Ĝ(b) lies in the codomain of (5.1) and represents an
element of πℓ+mk Conf(m,Rn+k).

We will check that κ ◦ Ĝ(b) is represented by the same bracket expres-
sion as b, but with the dimensions of the generators shifted up by k. To
distinguish between spherical generators in configuration spaces of points
in Euclidean spaces of different dimensions, write bn

j,i for such a gener-
ator in πn−1 Conf(m,Rn) (see Remark 1.6). The restriction of κ∗ ◦ Ĝ∗
to Lie(m − 1) induces a homomorphism of abelian groups Lie(m − 1) →
πℓ+mk Conf(m,Rn+k). Therefore, it suffices to check that if b = bm;I =
[bn

m,i1
, . . . , bn

m,im−1
], then

(5.2) κ∗ ◦ Ĝ∗(b) = ±[bn+k
m,i1

, . . . , bn+k
m,im−1

].

Since changing signs of basis elements always produces a basis, it suffices
to check (5.2) up to a sign.

To prove (5.2), we will use Koschorke’s generalized Hopf invariants hI

and in particular their relation to Whitehead products. Recall from Def-
inition 4.6 that for any multi-index I = (1, i2, . . . , im−1), hI is an in-
variant of classes in the reduced homotopy groups of a wedge of (m−1)
spheres. We consider these invariants for

∨
m−1 Sd, viewed as a subspace of

Conf(m,Rd+1) (i.e. the fiber of the projection Conf(m,Rd+1) →
Conf(m − 1,Rd+1) forgetting the m-th configuration point), for two dif-
ferent values of d, namely d = n − 1 or d = n + k − 1. We will therefore
sometimes write hd

I to indicate this value.
The main point is to establish that each hn−k+1

J of (κ◦Ĝ)(bm;I) coincides
with hn−1

J (bm;I) for all J . Recall also from Definition 4.6 that hJ(f) is a
framed bordism class obtained from an (m− 1)-component link associated
to f , in an iterative manner determined by J . One can use fairly standard
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link components and bounding manifolds to compute that hn−1
J (bm;I) is the

Kronecker delta ±δJI , where ±1 = ±[{point}] and 0 = [∅]. The punchline
is that all the manifolds involved in computing hn+k−1

J of κ∗ ◦ Ĝ∗(bm;I)
are essentially products of these manifolds with various numbers of factors
of Dk, but the iterated intersection is still either a point or empty. The
lengthier details of explicitly checking this follow. They are based on the
ideas in Koschorke’s proof of [41, Theorem 3.1]. We sacrifice some efficiency
for the sake of clarity, by first explaining the cases m = 2 and m = 3. We
then cover the case of arbitrary m, at which point part (a) will be proven.

The case m = 2. — Here ℓ = n− k− 1, and the composition of the last
two maps below is the identity:

(5.3)
Dℓ ×Dk q // // Sn−1

bn
2,1 // Conf(2,Rn)

φn
2,1 // Sn−1

(s, t) � bn
2,1◦q

// (b2,1(s, t))

Above, φn
j,i is the Gauss map φj,i defined in (3.7), with the superscript n

added to indicate the dimension of the Euclidean space, just as for bn
j,i. As

shown above, quotients by the boundary of a disk such as q are sometimes
omitted from the formulas. We want to verify that the composition of the
last two maps below has degree ±1:

(5.4)

Dn−k−1 ×Dk ×Dk

q′����
Sn+k−1

(κ◦Ĝ)(bn
2,1)

// Conf(2,Rn+k)
φn+k

2,1 // Sn+k−1

(s, t, u) �(κ◦Ĝ)(bn
2,1)◦q′

//
(
((bn

2,1)1(s, t), t), ((bn
2,1)2(s, u), u)

)
Here (bn

2,1)i denotes the i-th configuration point of bn
2,1. This degree corre-

sponds to the invariant h1 = hn+k−1
1 .

Let pn ∈ Sn−1 be a regular value of the composite (5.3) such that
the basepoint induced by the quotient q is not in its preimage. Define
pn+k := pn × (0, . . . , 0) ∈ Sn+k−1(⊂ Rn+k). From the formula in (5.4), we
can see that pn+k is a regular value of this composite and that the base-
point induced by q′ does not map to it. Moreover, we use that formula to
determine the pre-image of pn+k under (5.4), by solving

(
((bn

2,1)1(s, t), t)−
((bn

2,1)2(s, u), u))
)
∥ pn+k. The result is the single point (s0, t0, t0) such that

φn
2,1◦bn

2,1◦q(s0, t0)(= q(s0, t0)) = pn. So the composition of the last two maps
has degree ±1, (κ ◦ Ĝ)(bn

2,1) = ±bn+k
2,1 , and h1(φn+k

2,1 ◦ ((κ ◦ Ĝ)(bn
2,1))) = ±1.
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The case m = 3. — Here ℓ = 2n− k − 3. The first relevant diagram is

(5.5)

Dℓ ×Dk

q����
S2n−3 // Sn−1 ∨ Sn−1

bn
3,1∨bn

3,2 // Conf(3,Rn)
φn

3,1 //
φn

3,2

))

Sn−1

(s, t) � (bn
3,1∨bn

3,2)◦[ιn−1
1 , ιn−1

2 ]◦q
// ([b3,1, b3,2]i(s, t))3

i=1 Sn−1

where ιn−1
j is the projection Sn−1 ∨ Sn−1 → Sn−1 onto the j-th summand

and where [b3,1, b3,2]i denotes the i-th configuration point of [b3,2, b3,1]. The
second relevant diagram is

(5.6)

Dℓ × (Dk)×3

q′����
S2n+2k−3

f
&&

(κ◦Ĝ)[bn
3,1, bn

3,2]
// Conf(3,Rn+k)

φn+k
3,1 //

φn+k
3,2

$$

Sn+k−1

Sn+k−1 ∨ Sn+k−1
* 
 bn+k

3,1 ∨bn+k
3,2

88

Sn+k−1

The composition ((κ ◦ Ĝ)[bn
3,1, bn

3,2]) ◦ q′ of the first two horizontal maps
in (5.6) sends (s, t, u, v) to

(5.7)
(

([bn
3,1, bn

3,2]1(s, t), t), ([bn
3,1, bn

3,2]2(s, u), u), ([bn
3,1, bn

3,2]3(s, v), v)
)

.

Up to homotopy, (κ◦Ĝ)[bn
3,1, bn

3,2] factors through a map f as shown in (5.6).
Indeed, it lies in the kernel of the projection that forgets the third configura-
tion point because [bn

3,1, bn
3,2] does. Explicitly, if (r, s, t) 7→ (Hi(r, s, t))i=1,2,

is a nullhomotopy of ([bn
3,1, bn

3,2]i)i=1,2 with r ∈ [0, 1], then the homotopy

(r, s, t, u, v) 7−→ ((H1(r, s, t), t), (H2(r, s, u), u))

starts at (κ◦Ĝ)[bn
3,1, bn

3,2] and ends at a map that is nullhomotopic because
it factors through a sphere of dimension 2k(< ℓ + 3k).

We want to check that f is homotopic to [ιn+k−1
1 , ιn+k−1

2 ]. We take f to be
smooth and use the invariant h12. To see that the homotopy class of f is de-
termined by h12(f), it suffices by the isomorphism (4.12) to check that f lies
in the reduced homotopy group, i.e., the intersection of the kernels of the
projections π2n+2k−3(Sn+k−1 ∨ Sn+k−1) → π2n+2k−3(Sn+k−1) onto each
summand. These projections come from the projections Conf(3,Rn) →
Conf(2,Rn) which forget the first and second configuration points. Since
[bn

3,1, bn
3,2] maps to zero under either of these two forgetting maps, so does
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(κ ◦ Ĝ)[bn
3,1, bn

3,2], as desired, by a nullhomotopy as in the previous para-
graph.

We next describe the calculation of h12[ιn−1
1 , ιn−1

2 ] using the framed bor-
dism class of its preimages. Since this calculation is independent of the di-
mension n−1, it also applies to h12[ιn+k−1

1 , ιn+k−1
2 ], at least up to sign. At

the same time, this calculation will help us determine the value of h12(f),
showing that it equals ±h12[ιn+k−1

1 , ιn+k−1
2 ]. Represent [ιn−1

1 , ιn−1
2 ] by a

map under which the preimage of a pair of regular values {pn} ⊔ {pn} is

P := P1 ⊔ P2 := {0} × Sn−2 ⊔ Sn−2 × {0}

which lies in

(5.8) Dn−1 × Sn−2 ∪ Sn−2 ×Dn−1 = S2n−3.

Each Pi is the preimage in S2n−3 of a point under one of the compositions
to Sn−1 in (5.5). Then hn−1

12 (P ) = ±1, the linking number of P1 and P2.
It is represented by the intersection of say the second sphere P2 with a
disk Q1 bounded by the first sphere P1, which is a single point: Q1 ∩ P2 =
±[{point}]. Let ∞ ∈ S2n−3 be the basepoint, i.e. the pre-image of the
wedge-point in Sn−1 ∨ Sn−1. We can arrange for it to be the image of the
boundary under q and for it to lie in the boundary Sn−2 × Sn−2 of the
two summands in (5.8), Then q−1(P ) lies in the interior of D2n−k−3×Dk,
and so does q−1(Q1 ∩ P2). We thus identify the point Q1 ∩ P2 with some
(s0, t0) ∈ D2n−k−3×Dk, and we can view the Pi as submanifolds of Dℓ×Dk

in (5.6).
Finally, to calculate h12(f), we use the framed bordism class of the preim-

age under f of two points, one in each sphere summand. Since φn+k
m,i ◦

bn+k
m,i = idSn+k−1 , we can instead consider the preimages of pn+k := pn ×

(0, . . . , 0) ∈ Sn+k−1 under φn+k
3,i ◦ ((κ ◦ Ĝ)[bn

3,1, bn
3,2]) for i = 1, 2. Define

∆ : D2n−k−3×Dk → D2n−k−3×Dk×Dk as the (two-fold) diagonal map on
Dk, namely ∆(s, t) = (s, t, t). For 1 ⩽ i < j ⩽ 3, let prij be the projection
D2n−k−3 × (Dk)×3 → Dk ×Dk onto the i-th and j-th factors of (Dk)×3.
Using formula (5.7), as well as diagram (5.5) together with the fact that
φn

j,i ◦ bn
j,i = idSn−1 , we see that the union of the preimages of pn+k under

the compositions across (5.6) is

{(s, t, u, t) : (s, t) ∈ P1} ⊔ {(s, t, u, u) : (s, u) ∈ P2}

= pr−1
13 ∆(P1) ⊔ pr−1

23 ∆(P2) ⊂ D2n−k−3 × (Dk)×3.

TOME 0 (0), FASCICULE 0



48 Rafal KOMENDARCZYK, Robin KOYTCHEFF & Ismar VOLIĆ

Then pr−1
13 ∆(Q1) bounds pr−1

13 ∆(P1), and the intersection (pr−1
13 ∆(Q1)) ∩

(pr−1
23 ∆(P2)) is the single point {(s0, t0, t0, t0)}. So h12(f) = ±1, which

completes the verification for m = 3.
The case of arbitrary m ⩾ 2. — In general, ℓ = mn − 2m − n − k + 3,

as in the theorem statement. The space of bracket expressions in question
has dimension (m − 2)!. However, we have a basis of monomials obtained
by permuting the indices in b = [[bm,1, bm,2], . . . , bm,m−1], so it suffices to
consider only this monomial. The relevant diagrams are

(5.9)

Dℓ×Dk

q
����

Sn−1

Sℓ+k
[ιn−1

1 ,...,ιn−1
m−1]
// ∨

m−1 Sn−1

∨m−1
j=1

bn
m,j
// Conf(m,Rn)

φn
m,1

66

...
φn

m,m−1

((

...

(s, t) �(bn
m,1∨···∨bn

m,m−1)◦[ιn−1
1 ,...,ιn−1

m−1]
//
(
[bn

m,1, . . . bn
m,m−1]i(s, t)

)m

i=1 Sn−1

and

(5.10)

Dℓ × (Dk)×m

q′����

Sn+k−1

Sℓ+mk

f
��

(κ◦Ĝ)[bn
m,1,...,bn

m,m−1]
// Conf(m,Rn+k)

φn+k
m,1

55

...
φn+k

m,m−1

))

...

∨
m−1 Sn+k−1

% � bn+k
m,1 ∨···∨bn+k

m,m−1

33

Sn+k−1

We claim that the homotopy class of f is determined by the Hopf invari-
ants hI(f) of (4.12), where I runs over all permutations of {1, . . . , m− 1}
which fix 1. The projection maps

∨
m−1 Sn+k−1 →

∨
m−2 Sn+k−1 come

from maps which forget one of the first m− 1 configuration points. Since b

lies in the kernel of any such projection, so does κ∗ ◦ Ĝ∗(b), and therefore f

lies in the reduced homotopy groups. Therefore, by the isomorphism (4.12),
the (m−2)! Hopf invariants hI(f) completely determine f up to homotopy.

We represent [ιn−1
1 , . . . , ιn−1

m−1] ∈ πℓ+k(
∨

m−1 Sn−1) by a map such that
the preimage of a collection of regular values {pn} ⊔ · · · ⊔ {pn} is a certain
(m− 1)-component manifold

P := P1 ⊔ · · · ⊔ Pm−1 ⊂ int(Dℓ × (Dk)×m) ⊂ Sℓ+mk

of codimension n−1, obtained by a handle decomposition of Sℓ+mk similar
to (5.8) but iterated m − 2 times. Each Pi is the preimage in Sℓ+k of a
point under one of the compositions to Sn−1 in (5.9). Its Hopf invariant
h1,2,...,m−1 is calculated by bounding P1 by Q1, replacing P1⊔P2 by Q1∩P2,
bounding this intersection by Q2, and so on, until we are left with Qm−2 ∩
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Pm−1, a single point (s0, t0). To calculate hJ [ιn−1
1 , . . . , ιn−1

m−1] for any other
J , note that if J ̸= (1, 2, . . . , m − 1), then J = (1, 2 . . . , i − 1, i, j, . . . ) for
some j > i + 1 and some i ∈ {1, . . . , m− 3}. Then Qi intersects only Pi+1,
and Qi ∩ Pj = ∅.

Example 5.3 (for m = 4). — We represent the class [[ιn−1
1 , ιn−1

2 ], ιn−1
3 ] in

π3n−5(
∨

3 Sn−1) by a map under which the preimage of {pn}⊔{pn}⊔{pn}
is

P1 ⊔ P2 ⊔ P3 := {0} × Sn−2 × Sn−2 ⊔ Sn−2 × {0} × Sn−2 ⊔ S2n−4 × {0}

⊂ D2n−3 × Sn−2 ∪ S2n−4 ×Dn−1 = S3n−5

Its Hopf invariant h123 can be obtained by taking a manifold Q1 bounded
by P1, replacing P1 ⊔ P2 by Q1 ∩ P2, and calculating h12 of the resulting
2-component submanifold. Here we can take Q1 ∼= Dn−1 × Sn−2, using a
Dn−1 bounded by {0} × Sn−2 in D2n−3. Then Q1 ∩ P2 ∼= Sn−2, which
bounds a disk Q2, and Q2 ∩ P3 is a single point. Let ∞ ∈ S3n−5 be the
basepoint, i.e., the image of the boundary under q and the preimage of the
wedge-point in

∨
3 Sn−1. We can take ∞ to lie in the S2n−4 × Sn−2 which

bounds the summands in the decomposition of S3n−5. We thus identify
Q2 ∩ P3 with a point (s0, t0) ∈ D3n−k−5 × Dk. So h123[[ι1, ι2], ι3] = ±1.
On the other hand, when we calculate h132 of the manifold P in the same
way, we find that Q1 ∩ P3 is empty because Q1 ⊂ D2n−3 × Sn−2; that is,
Q1 is nested deep enough in the decomposition of S3n−5 to miss P3. Thus
h132([[ι1, ι2], ι3]) = 0.

We now calculate hJ(f), first for J = (1, 2, . . . , m − 1). For a subset
S ⊆ {1, . . . , m}, let prS be the projection Dℓ×(Dk)×m → Dℓ×(Dk)S onto
the factors of Dk indexed by S. (We omit braces in the subscript, writing
for example pri,j for prS with S = {i, j}.) For i ⩾ 2, define ∆i : Dℓ×Dk →
Dℓ × (Dk)×i via the i-fold diagonal on Dk, that is, ∆i(s, t) = (s, t, . . . , t).
The union of preimages of pn+k := pn × (0, . . . , 0) under the compositions
all the way across diagram (5.10) is

pr−1
1,m∆2(P1) ⊔ pr−1

2,m∆2(P1) ⊔ · · · ⊔ pr−1
m−1,m∆2(Pm−1).

Then pr−1
1,m∆1,m(Q1) bounds pr−1

1,m∆1,m(P1), and

pr−1
1,m∆2(Q1) ∩ pr−1

2,m∆2(P2) = pr−1
1,2,m∆3(Q1 ∩ P2).

The latter term bounds pr−1
1,2,m∆3(Q2), and

pr−1
1,2,m∆3(Q2) ∩ pr−1

3,m∆2(P3) = pr−1
1,2,3,m∆4(Q2 ∩ P3).
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Continuing, we are led to consider

pr−1
1,2,...,m−2,m∆m−1(Qm−3 ∩ Pm−2)

which bounds pr−1
1,2,...,m−2,m∆m−1(Qm−2). Finally, we are ultimately led to

consider

pr−1
1,2,...,m−2,m∆m−1(Qm−2) ∩ pr−1

m−1,m∆2(Pm−1)
= ∆m(Qm−2 ∩ Pm−1)
= ∆m{(s0, t0)}

= {(s0, t0, . . . , t0)} ⊂ Dℓ × (Dk)×m.

So h1,2,...,m−1(f) = ±1, as desired.
If J ̸= (1, 2, . . . , m− 1), write J = (1, 2, . . . , i− 1, i, j, . . . ) where 1 ⩽ i ⩽

m− 3 and j > i + 1. Then, calculating as above, we ultimately obtain

pr−1
1,2,...,i−1,i,m∆i+1(Qi) ∩ pr−1

j,m∆2(Pj) = pr−1
1,2,...,i−1,i,j,m∆i+2(Qi ∩ Pj)

= pr−1
1,2,...,i−1,i,j,m∆i+2(∅) = ∅.

Thus for such J , hJ(f) = 0. This completes the proof of par (a). □

Proof of Theorem 1.9, part (b). — We need only an extension of the
proof of part (a) to all (unordered) subsets of {1, . . . , m}. The key idea is
that an element in Hn,k

m is a sum of monomials each of which is Brunnian
(i.e., comes from Lie(p) for some p < m) after restricting to the appro-
priate subset S ⊂ {1, . . . , m}. For each S, restricting to the appropriate
submodule of Hn,k

m will give a homomorphism into π∗(Conf(m,Rn)).
For any subset S ⊆ {1, . . . , m} of cardinality at least 2, define

κS : BrEmb∗

(∐
m

Sk, Rn+k

)
−→ Map∗((Sk)S , Conf(S,Rn+k))

g = (g1, . . . , gm) 7−→ (κS(g) : (si)i∈S 7→ (gi(si))i∈S)

where Conf(S,Rn+k) is the space of injections S → Rn+k.
If b is a left-normed bracket bj;I = [bj,i1 , . . . , bj,ip

], call S := S(j; I) :=
{j, i1, . . . , ip} the index set of b. Then κS◦Ĝ(b) factors through the quotient
(Sk)S → Sk|S|. So we may view κS ◦ Ĝ(b) as an element of

MS := Map∗(Sk|S|, Conf(S,Rn+k)).

Note that

πℓMS
∼= πℓ+k|S| Conf(S,Rn+k) ⊂ πℓ+k|S| Conf(m,Rn+k)

where the above inclusion is induced by the inclusion S ↪→ {1, . . . , m}.
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Now suppose b is any element in Hn,k
m . We use the direct-sum decompo-

sition (1.8), which also applies over Z to the non-torsion part of the group
π∗(Conf(m,Rn)). Fix a basis of left-normed monomials bj;I for each free
graded Lie algebra summand; such a basis exists by for example [60]. Let B
be the union of these bases, with elements corresponding to multi-indices
(j; I). We can then write b as a unique Z-linear combination

(5.11) b =
∑

(j;I)∈B

αj;Ibj;I , bj;I = [bj,i1 , . . . , bj,ip
],

where αj;I is nonzero only if I = (i1, . . . , ip) consists of distinct indices and
p(n − 2) ⩾ n + k − 3. Now b ∈ πℓΩk Conf(m,Rn) where ℓ = pm − 2p −
n− k + 3 ⩾ 0. If S = S(j; I) is the index set of bj;I , then κS ◦ Ĝ(bj;I) can
be mapped to MS . On the image Ĝ∗(Hn,k

m ), we define the following map,
where the sum ranges over all subsets S ⊂ {1, . . . , m}:∑

S

κS : Ĝ∗(Hn,k
m ) −→

∑
S

π∗(MS) ⊂ π∗(Conf(m,Rn+k))

Ĝ∗

 ∑
(j;I)∈B

αj;Ibj;I

 7−→ ∑
(j;I)∈B

αj;I
(
κS(j;I)

)
∗ ◦ Ĝ∗(bj;I)

The sum
∑

S π∗(MS) is not direct, and the assignment (j; I) 7→ S(j; I) is
not injective because it forgets the order of the indices, but this map suffices
to show the desired injectivity. Indeed, by a similar argument as for part (a),
a Whitehead bracket with index set S = {j, i1, . . . , ip} is mapped to the
corresponding left-normed Whitehead bracket by (κS)∗ ◦ Ĝ∗:

πℓ+k Conf(m,Rn)
(κS)∗◦Ĝ∗ // πℓ+pk Conf(m,Rn+k)

[bn
j,i1

, . . . , bn
j,ip

] � // [bn+k
j,i1

, . . . , bn+k
j,ip

].

As a result, (
∑

S κS)∗ ◦ Ĝ∗ maps Hn,k
m ⊂ π∗(Conf(m,Rn)) isomorphically

onto the corresponding submodule of π∗(Conf(m,Rn+k)). □

Remark 5.4 (Variations of Theorem 1.9). — Both parts of Theorem 1.9
hold if we replace the space of long links by the corresponding space of
based closed links, with very little change to the proofs. They similarly
hold — in both the long and closed settings — if we replace embeddings
by link maps, meaning smooth maps of the disjoint union such that the
images of the components are pairwise disjoint.
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5.2. Examples and a conjecture

Part (a) of Theorem 1.9 shows that graphing yields nontrivial classes in
π0 of spaces of m-component k-dimensional string links in Rn+k, for any n

and k such that m = n+k−3
n−2 . To list all the possible values of n and k, we

introduce another integer parameter j ⩾ 0 and put k = j(m − 1) + 1 and
n = j + 2.

Corollary 5.5 (Isotopy classes of high-dimensional string links). —
For each j ⩾ 0, there is an injection

Lie(m− 1) ↪−→ π0(Ωj(m−1)+1 Conf(m,Rj+2)) G∗−→ π0Ljm+3
m•(j(m−1)+1)

Setting j = 0 gives an inclusion of a subspace of pure braids into string
links. For m ⩾ 2 and j ⩾ 1, we get k-dimensional string links in RN with
k ⩾ 2 and N ⩾ 5.

Examples 5.6.
(a) Fix m = 3. If (k, n) = (2j−1, j+1)), the class [b3,1, b3,2] correspond-

ing to the tripod diagram from Example 4.8 gives rise via (G or) Ĝ

to elements in π0 of spaces of (2j − 1)-dimensional (string) links in
R3j . Such embeddings are the well known higher-dimensional ana-
logues S2j−1 ⊔ S2j−1 ⊔ S2j−1 ↪→ R3j of the Borromean rings. The
smallest possible values of k and n in this case are k = 3 and n = 3,
for which we get an embedding S3 ⊔ S3 ⊔ S3 ↪→ R6.

(b) Fix m = 4. If (k, n) = (3j − 2, j + 1), then (G or) Ĝ gives rise
to a certain 2-dimensional subspace of isotopy classes of (3j − 2)-
dimensional (string) links in R4j−1. It is the image of the subspace
spanned by say [[b4,1, b4,2], b4,3] and [[b4,1, b4,3], b4,2], which is iso-
morphic to the subspace of T n(4) spanned by trees with 4 distinctly
labeled leaves. It is 2-dimensional for either parity of n. The small-
est possible values of k and n in this case are k = 4 and n = 3, for
which we get embeddings

∐
4 S4 ↪→ R7.

In this setting of equidimensional string links, we can compare our work
to a result of Songhafouo Tsopméné and Turchin [56, Theorem 3.2] (further
developed by these authors [55] and by Fresse, Turchin, and Willwacher [25,
Section 5]). That result identifies π0

(
Embc

(∐
m Rk,Rn+k

))
⊗ Q with the

Q-vector space of trivalent trees with leaves labeled by {1, . . . , m}, modulo
IHX, defined like T n(m) in the Introduction but over Q instead of R.
The orientations on graphs in those cited works depend a priori on the
parities of k and n. However, one can check that for trees of odd valence
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in this equidimensional setting, they depend only on the parity of n and
agree with the orientations in T n(m), by adapting [43, Section 3.1] to the
setting of two types of vertices. Theorem 1.9 realizes (over Z) the subspace
Lie(m− 1) of distinctly labeled trees with m leaves in T n(m). We suspect
that this identification agrees with the one given by [55], since both use
graph complexes associated to configuration spaces. Some but not all trees
with repeated leaf-labels could also arise from graphing braids, as explained
in Conjecture 5.7 and Remark 5.8 below.

Conjecture 5.7. — The graphing map G : Ωk Conf(m,Rn) → Ln+k
m•k

induces injections on rational homotopy π∗(−)⊗Q and rational homology
H∗(−;Q).

It seems likely that G is a map of algebras over the little k-cubes op-
erad, in which case an injection in rational homotopy would imply an
injection in rational homology by F. Cohen’s thesis results [16]. Theo-
rem 1.9 essentially uses the fact that the space of “homotopy string link”
classes Hn,k

m survives the evaluation map ev1,1,...,1 = κ to the multi-linear
stage T1,1,...,1 Link

(∐
m Rk,Rn+k

)
of the Taylor tower for the space of link

maps. The latter space records information about configurations where
one point lies on each component, though it records no tangential data.
Equivalently, it is the multi-linear stage T1,1,...,1Emb

(∐
m Rk,Rn+k

)
where

Emb := hofiber(Emb → Imm) is the space of embeddings modulo immer-
sions. The nontriviality of bracket expressions with repeats may be detected
by a more refined analogue of κ where in the target, multiple configuration
points are allowed on each component. See for example [7, 8, 53]. Such an
investigation may also be informed by the recent work of Kosanović [40],
who realized certain trees in the Taylor tower for knots in R3 using grope
cobordisms.

If n and k are both odd, a method of proof would have to go beyond the
Whitehead bracket expressions used in (5.2). Indeed, let deven

ℓ (m) (respec-
tively dodd

ℓ (m)) be the dimension of the subspace of length-ℓ monomials
in the free graded Lie algebra over Q on generators X1, . . . , Xm which all
have even (respectively odd) degree. By for example the first formula in
Corollary 1.1 in [51], deven

4j−2(m) < dodd
4j−2(m). For instance, at length ℓ = 2,

[X, X] is nontrivial only if |X| is odd. On the other hand, for ℓ ̸≡ 2 mod 4,
the same formula shows that deven

ℓ (m) = dodd
ℓ (m).

Remark 5.8 (Braids vs. trivalent trees modulo IHX). — Even if G∗ is in-
jective on all of rational homotopy, we would realize only a proper subspace
of the space T n(m) of leaf-labeled trivalent trees modulo IHX. We explain
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why in the case where n is even, though we expect this statement to hold
also for odd n.

For any fixed m, the subspaceMr(m) of trees in T even(m) with r leaves is
dual to the space of Milnor invariants of m-component string links of finite
type r [26]. (See also [18, 27, 46] for statements over Z and at the level of
Lie algebras.) On the other hand, the subspace Pr(m) of π∗(Conf(m,Rn))
corresponding to trees in T even(m) with r leaves is dual to the space of
indecomposable invariants of m-component pure braids of finite type r.
Over Q or R, both Pr(m) andMr(m) can be further identified with spaces
of type-r concordance invariants of m-strand pure braids and m-strand
string links respectively. In general, Pr(m) ⊂ Mr(m) [26, Theorem 16.1].
More precisely, their respective dimensions are [50, Theorem 15]

dimMr(m) = mNr(m)−Nr+1(m), where Nr(m) = 1
r

∑
d|r

µ(r/d)md

and [61, Corollary 29], [48, Theorem 5.11]

dimPr(m) = 1
r

∑
d|r

µ(r/d)
m−1∑
i=1

id.

Although for fixed r, Pr(m)/Mr(m) → 1 as m → ∞, it appears that for
fixed m, Pr(m)/Mr(m) → 0 as r → ∞ and that Pr(m)/Mr(m) ≈ 1/2 for
large and roughly equal values of m and r.

Appendix A. Graded Lie algebras and Whitehead and
Samelson products

Here we review the Whitehead and Samelson products in homotopy of a
space and the Pontryagin product on the homology of its based loop space.
We begin with some facts about graded Lie algebras.

First, recall that a graded Lie algebra(13) over R is an R-vector space
with a bilinear operation [−,−] satisfying the graded anti-symmetry and
Jacobi relations, where |a|, |b|, and |c| are the degrees of the elements a, b,
and c:

(A.1)
[a, b] = −(−1)|a||b|[b, a]

(−1)|a||c|[[a, b], c] + (−1)|b||a|[[b, c], a] + (−1)|c||b|[[c, a], b] = 0.

(13) Some authors call this a “graded quasi-Lie algebra.” A quasi-Lie algebra (vis-a-vis
a Lie algebra) is a structure where anti-symmetry rather than the stronger condition of
alternativity is satisfied. Thus one could say that a quasi-Lie algebra is a graded quasi-
Lie algebra concentrated in degree 0. However, omitting the prefix “quasi” should cause
no confusion, especially over R where anti-symmetry and alternativity are equivalent.
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When all the elements have degree zero, one gets an ordinary Lie algebra.
One can replace “R-vector space” by “Z-module” to get the definition of a
graded Lie algebra (or graded Lie ring) over Z. Lemma A.2 applies in that
setting too.

Definition A.1. — The length of a Lie monomial (i.e. bracket expres-
sion) in the generators of a graded Lie algebra is the number of generators
which appear, counted with multiplicity. A Lie monomial is left-normed if
it is of the form

[Xi1 , Xi2 , Xi3 . . . , Xik
] := [[. . . [[Xi1 , Xi2 ], Xi3 ], . . . ], Xik

].

Lemma A.2. — Let L be a graded Lie algebra, generated by elements
Xi, i ∈ I.

(a) The left-normed monomials in the Xi span L.
(b) Powers [Xi, . . . , Xi] of length greater than 2 vanish.
(c) Squares [Xi, Xi] are nontrivial only on generators in odd grading.
(d) If |Xi| and |Xh| are odd, then [[Xi, Xi], Xh] = −2[[Xi, Xh], Xi].

Proof. — We show that any monomial of length ℓ is in the span of left-
normed monomials by induction on ℓ. The statement is obvious for ℓ =
1. Suppose it holds for all monomials of length at most ℓ ⩾ 1. Given
a monomial of length ℓ + 1, write it as [V0, W0], where V0 and W0 are
monomials of lengths ℓ(V0), ℓ(W0) < ℓ. If ℓ(V0) = 1 or ℓ(W0) = 1, then
[V0, W0] can be written as a linear combination of left-normed monomials
by applying possibly anti-symmetry and then the induction hypothesis. If
ℓ(V0), ℓ(W0) ⩾ 2, we may assume by induction that both V0 an W0 are
left-normed monomials. So we may write V0 = [V1, Xi] for some monomial
V1 and some generator Xi, and by the Jacobi identity

[V0, W0] = [[V1, Xi], W0] = ±[[Xi, W0], V1]± [[W0, V1], Xi].

The second term can be written as a linear combination of left-normed
monomials. If ℓ(V1) = 1, so can the first term. Otherwise, rewrite it as
±[V1, [Xi, W0]] = [V1, W1], where W1 = [Xi, W0]. Note that ℓ(V1) = ℓ(V0)−
1 and ℓ(W1) = ℓ(W0) + 1. Therefore repeating this calculation ℓ(V1) − 1
more times yields an expression for [V0, W0] as a linear combination of
left-normed monomials, proving part (a).

Part (b) follows from the graded Jacobi identity, since all the signs are
the same and 1/3 ∈ R. Part (c) follows from graded anti-symmetry, since
1/2 ∈ R. Part (d) follows by using both relations. □

The homotopy groups π∗(X) of a space X equipped with the Whitehead
product [−,−]W satisfy the relations below, where the second is the graded
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Jacobi identity as above, but the first differs from graded anti-symmetry:

(A.2) [A, B]W = (−1)|A||B|[B, A]W
(−1)|A||C|[[A, B]W , C]W + (−1)|B||A|[[B, C]W , A]W

+ (−1)|C||B|[[C, A]W , B]W = 0.

The Samelson product [−,−] on π∗(ΩX) is defined by

[a, b] = (−1)|a|+1∂∗[∂−1
∗ a, ∂−1

∗ b]W
where ∂∗ : π∗+1(X) → π∗(ΩX). So if a = ∂∗A, then |a| + 1 = |A|. The
Samelson product makes π∗(ΩX) and π∗(ΩX)⊗R into graded Lie algebras
over Z and R respectively. In Section 4, we apply Lemma A.2 to it.

Concatenation of loops induces the Pontryagin product on H∗(ΩX;R),
which makes it a graded algebra, with its graded commutator given by

(A.3) [a, b] = ab− (−1)|a||b|ba .

The coalgebra structure given by the diagonal map

∆ : H∗(ΩX;R) −→ H∗(ΩX;R)⊗H∗(ΩX;R).

then makes H∗(ΩX;R) into a Hopf algebra. By the Milnor–Moore Theo-
rem, the Hurewicz map h : π∗(ΩX) ⊗ R → H∗(ΩX;R) maps π∗(ΩX) ⊗ R
isomorphically onto the subspace of primitive elements. (This statement
holds only over a field of characteristic zero.) Restricting the codomain
thusly gives an isomorphism π∗(ΩX) ⊗ R → PH∗(ΩX;R) of graded Lie
algebras. Explicitly, if A ∈ πp(X) and B ∈ πq(X), then

(A.4) h∂∗([A, B]) = (−1)p
(
h∂∗(A)h∂∗(B)−(−1)(p−1)(q−1)h∂∗(A)h∂∗(B)

)
.

Appendix B. Computations of some cocycles in spaces of
pure braids

Our goal here is to construct cocycles in (B(D(m)), dB) which detect
primitive homology classes in H∗(B∗(D(m))). The map Φ sends these to co-
homology classes in H∗

dR(Ω Conf(m,Rn)) which detect classes in the space
π∗(Ω Conf(m,Rn))⊗R. The general setup here applies when D(m) replaced
by D(m), by Corollary 4.4. In Example B.3 below, we thus simplify the cal-
culation by eliminating diagrams with multiple edges from consideration.

We can assign a grading to B(D(m)) by (−p, q), i.e. the total degree q of
factors in the monomial and the monomial’s length p:

B(D(m)) =
⊕
p,q

B(D(m))(−p,q).
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Recall that the differential dB decomposes as dB = δB − DB as in for-
mula (2.7), where

δB : B(D(m))(−p,q) −→ B(D(m))(−p,q+1),

DB : B(D(m))(−p,q) −→ B(D(m))(−p+1,q).

For any cochain z ∈ B(D(m)), we write

(B.1) z = z(1) + · · ·+ z(p),

a decomposition with respect to the monomial length, where p = p(z) is
the maximal monomial length in z. Next dBz = 0 can be written as the
following system of equations for the factors z(i), i = 1, . . . , p (cf. [6, p. 163]):

(B.2)
{

δBz(i) = DBz(i+1), i = 1, . . . , p− 1,

δBz(p) = 0.

Lemma B.1. — The map j∗ : H∗(B(D(m)), dB) → H∗(ID(m), δ̃), in-
duced by the subspace inclusion j : PD(m)∗ → B∗(D(m)) is an epimor-
phism.

Proof. — Following the proof of Theorem 1.2, we observe that the inclu-
sion j induces a monomorphism

j∗ : H∗(PD(m)∗, δ∗|P D(m)∗) −→ H∗(B∗(D(m)), d∗
B),

whose image is PH∗(B∗(D(m)), d∗
B). Dualizing and applying the Universal

Coefficient Theorem yields the claim. □

As a consequence, for any cocycle in H∗(B(D(m)), dB) represented by
z : B∗(D(m))→ R, the top term z(1) satisfies

(B.3) δ̃z0 = 0, z0 = j∗(z) = z(1)|P D(m)∗ .

In other words, z0 represents a cocycle in H∗(PD(m), δ̃). As a result we
may attempt to recover z from a representative cocycle z0 by solving the
system (B.2). We end this Appendix by performing such a calculation for
two examples. The reader may consult [28], [37], and [54] for other ap-
proaches to cocycle computations. In the following examples we denote
by zj;I the expressions for cocycles dual to the left–normed brackets Bj;I
defined in (1.9).

Example B.2 (Computation of z2;1,1, a cocycle detecting B2;1,1). — Let
n be odd. A representative of B2;1,1 = [B2,1, B2,1], n odd, in H∗(PD(2)∗)

was already computed in Example 4.3. Thus we may try z0 = −
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as a candidate in (B.3). Since δz0 = , we have δ̃z0 = 0. We may

try solving (B.2) with z(1) = z0, which yields just a single equation

δBz0 = DBz(2),

with z(2) to be determined. Applying the definitions we have

δB

−
 = − = DB

  ,

and therefore

z2;1,1 = z(1) + z(2) = − + .

The corresponding Chen iterated integral(14) is

Φ(z2;1,1) =
∫

α2,1α2,1.

One may recognize that, up to a sign, the above integral is just the classical
Whitehead integral for the Hopf invariant (cf. [29]), so it yields ±2 on
[B2,1, B2,1]. (If n − 1 is 2, 4, or 8, this cycle is twice the Hopf map, and
otherwise it corresponds to a generator of π2n−3(Sn−1).) Alternatively (and
to get the correct sign), we can use (4.6) to get ⟨Θ(B2;1,1), z2;1,1⟩ = 2
because the first diagram in z2;1,1, which corresponds to the first diagram
in (4.6), has 2 automorphisms.

Example B.3. — Next we show the computation for a cocycle z3;1,2,2
detecting B3;1,2,2 = [[B3,1, B3,2], B3,2]. The class B3;1,2,2 is nontrivial in
either parity of n, but we show the calculation only for n odd. Also, to
avoid lengthy expressions we calculate in D(3) rather than in D(3).

As in the previous example, we can deduce that z0 = represents

a cocycle in
H5(n−1)−2n(PD(3), δ̃), dual to Γ∗

3;1,2,2 = Θ(B3;1,2,2). Next, we solve (B.2)
with z(1) = z0:

δB


 = − .

(14) The z(1) term vanishes because the diagram has a double edge and I vanishes on
such diagrams.
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We match the right side with a value under DB:

DB


 = − , DB


 = .

Further,

δB


 =

− − −

 ,

δB


 = −

− − −

 ,

and

DB


 = , DB


 = − ,

DB


 = − + ,

DB


 = , DB


 = − .

This yields the cocycle

− + −

+ − − + .
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This cocycle was previously found in Example 5.12 of [38]. The correspond-
ing Chen’s iterated integral reads

Φ(z3;1,2,2) =
∫

α2,1α2,1α3,1 +
∫

α2,1α2,1α3,2 +
∫

α2,1α3,1α3,2

+
∫

α2,1α3,2α3,2 +
∫

α3,1α3,2α3,2 −
∫

α2,1π∗(α4,1 × α4,2 × α4,3)

−
∫

π∗(α4,1 × α4,2 × α3,4)α3,2 +
∫

π∗(α4,1 × α4,2 × α5,2 × α5,3),

where the pushforward π∗ was previously defined in (3.8) and

π∗(α4,1×α4,2×α5,2×α5,3) = I

  , π∗(α4,1×α4,2×α4,3) = I

  .

We end this appendix by proposing that all cocycles zj;I and the corre-
sponding iterated integrals should be computable via the method outlined
here, and one may hope for a more tractable algorithm for computing such
cocycle expressions. We aim to investigate this further in the context of
geometric problems as studied, for example, in [2, 20, 21, 24, 36].
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