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DEFORMATION FORMULAS FOR PARAMETERIZED
HYPERSURFACES

by Brian HEPLER

Abstract. — We investigate one-parameter deformations of functions on affine
space which define parameterizable hypersurfaces. With the assumption of isolated
polar activity at the origin, we are able to completely express the Lê numbers of the
special fiber in terms of the Lê numbers of the generic fiber and the characteristic
polar multiplicities of the comparison complex, a perverse sheaf naturally associ-
ated to any reduced complex analytic space on which the constant sheaf Q•

X [dim X]
is perverse. This generalizes the classical formula for the Milnor number of a plane
curve in terms of double points as well as Mond’s image Milnor number. We also
recover results of Gaffney and Bobadilla using this framework. We obtain similar
deformation formulas for maps from C2 to C3, and provide an ansatz for obtaining
deformation formulas for all dimensions within Mather’s nice dimensions.

Résumé. — Nous étudions les déformations à un paramètre de fonctions sur
un espace affine qui définissent des hypersurfaces paramétrables. Avec l’hypothèse
d’une activité polaire isolée à l’origine, nous pouvons exprimer complètement les
nombres Lê de la fibre spéciale en fonction des nombres Lê de la fibre générique et
des multiplicités polaires caractéristiques de la complexe comparaison, un faisceau
pervers naturellement associé à tout espace analytique complexe réduit sur lequel
le faisceau constant Q•

X [dim X] est pervers. Cela généralise la formule classique
du nombre de Milnor d’une courbe plane en termes de points doubles ainsi que le
nombre de Milnor de l’image de Mond. Nous récupérons également les résultats de
Gaffney et Bobadilla en utilisant ce cadre. Nous obtenons des formules de déforma-
tion similaires pour les cartes de C2 à C3, et fournissons un ansatz pour obtenir des
formules de déformation pour toutes les dimensions dans les dimensions agréables
de Mather.

1. Generalizing Milnor’s Formula to Higher Dimensions

Suppose that U is an open neighborhood of the origin in C2. Let f0 :
(U ,0) → (C, 0) be a complex analytic function which has an isolated critical
point at the origin. Thus, f0 defines a plane curve V (f0) in U . Let r be the

Keywords: Milnor fiber, perverse sheaf, intersection cohomology, non-isolated
singularities.
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2 Brian HEPLER

number of irreducible components of V (f0) at the origin. Then, by a well-
known result of Milnor ([45, Theorem 10.5]), the Milnor number µ0(f0) is
related to the number of double points δ which occur in a generic (stable)
deformation of f0 by

(1.1) µ0(f0) = 2δ − r + 1.

We wish to generalize this formula, in light of recent work of the author
and David Massey in [21, Theorem 5.3], in which we obtain a quick proof
of the above formula.

In re-proving Milnor’s formula (1.1) in [21], one immediately notices that
the generality of the methods used in [21] are not at all limited to defor-
mations of curves in C2; consequently, it is natural to hope that a similar,
more general result holds between the vanishing cycles and the perverse
sheaf N•

V (f) (central to this current paper and [21]) in deformations of pa-
rameterized hypersurfaces. We prove such a generalization in this paper,
and obtain a similar formula for deformations of parameterized surfaces
in C3, and a “bootstrap ansatz” (Theorem 5.5, Remark 5.7) for obtaining
such results for deformations of parameterized hypersurfaces in Cn+1 if one
knows all of the stable maps from Cn+1 to Cn+2. This generalizes work of
David Mond’s image Milnor number [46] (Remark 7.2), similar deforma-
tion formulas of Massey and Dirk Siersma [41] (Remark 7.3), and recovers
work of Terence Gaffney [11, 12] (Remark 7.4), in addition to Milnor’s
original formula. We also recover a result of Javier Fernández de Bobadilla
regarding a special case of Lê’s Conjecture regarding the equisingularity of
surfaces in C3 with smooth normalization [3].

The first question we ask is: what if we didn’t have such a “stable”
deformation of the curve V (f0)? That is, what if we didn’t know that the
origin 0 ∈ V (f0) splits into δ nodes? We can still use the techniques of
Theorem 5.3 of [21] in this situation. In this case, if π parameterizes the
deformation of V (f0), we have

(1.2) µ0(f0) = −m(0) +
∑

p∈Bϵ∩V (t−t0)

(µp(ft0) +m(p))

where m(p) := |π−1(p)|−1; the above formula follows easily from the same
proof as Theorem 5.3 of [21].

Suppose now that π0 : (Ṽ (f0), S) → (V (f0),0) is the normalization of a
(reduced) hypersurface V (f0) ⊆ Cn, and π is a one-parameter unfolding of
π0 (see Section 3), so that, if D is a small open disk around the origin in C,

π : (D × Ṽ (f0), {0} × S) → (V (f),0),

ANNALES DE L’INSTITUT FOURIER



DEFORMATION FORMULAS 3

for some complex analytic function f ∈ OCn+1,0, where π is of the form
π(t, z) = (t, πt(z)) and π(0, z) = π0(z). Here, S = π−1

0 (0) is a finite subset
of Ṽ (f0), a purely (n− 1)-dimensional Q-homology (or smooth) manifold.
We impose this last condition on the normalization of V (f0) because of
the following result regarding the stalk cohomology of the perverse sheaf
N•

X , defined on any locally reduced, purely n-dimensional complex analytic
space on which Q•

X [n] is perverse.
Recall that an n-dimensional complex analytic space Y is a rational ho-

mology manifold (or, a Q-homology manifold) if the natural morphism
Q•

Y [n] → I•
Y is a quasi-isomorphism [4], where I•

Y is the intersection coho-
mology complex with constant Q-coefficients on Y .

Theorem 1.1 ([19, Theorem 2.3]). — Let X be a reduced, purely n-
dimensional complex analytic space on which Q•

X [n] is perverse, and let
π : Y → X be the normalization of X. Then, Y is a Q-homology manifold
if and only if N•

X has stalk cohomology concentrated in degree −n+1, i.e.,
Hk(N•

X)p = 0 for all k ̸= −n+ 1 and all p ∈ X.

The perverse sheaf N•
X is defined in a very straight-forward manner:

when Q•
X [n] is perverse, there is a natural surjection of perverse sheaves

Q•
X [n] → I•

X → 0, where I•
X is the intersection cohomology complex on

X with constant Q coefficients. Since the category of perverse sheaves is
Abelian, this morphism has a kernel, which we define to be N•

X . This
perverse sheaf, called the comparison complex onX, was first defined by the
author and Massey in [21] (where we originally referred to it as the multiple-
point complex), and subsequently studied by the author in [19, 20] and
Massey in [39]. N•

X will play a crucial role in this paper as the cohomological
generalization of the function m(p) = |π−1(p)| − 1 above.

Remark 1.2. — Throughout this paper, we will use Z coefficients when
referring to hypersurfaces with smooth normalizations (where Theorem 1.1
is trivially satisfied), and Q coefficients when referring to hypersurfaces
with Q-homology manifold normalizations. When necessary, we explicitly
state which arguments must change (if at all) to change coefficients (see
Remark 2.6, Remark 4.4).

What would it mean to have a generalization of (1.2)? In the broadest
sense, one would want to express numerical data about the singularities of
f0 completely in terms of data about the singularities of ft0 , for t0 small
and non-zero. What changes when we move to higher dimensions? This is
a classic problem in singularity theory, and in Section 7 we examine some

TOME 0 (0), FASCICULE 0



4 Brian HEPLER

other recent approaches toward generalizing Milnor’s result, and how they
relate to the methods of this paper.

One of the restrictions in considering parameterizable hypersurfaces V (f)
is that they must have codimension-one singularities. In particular, to get
the most use out of the complex N•

V (f) on V (f), we will assume the image
multiple-point set D = supp N•

V (f) ̸= ∅ and D = Σf . For parameterized
spaces, one always has the inclusion D ⊆ Σf , but it is possible for this
inclusion to be strict (e.g., if one parameterizes the cusp y2 = x3 in C2, or
more generally, if V (f) itself is a Q-homology manifold). Since D is purely
(n−1)-dimensional, we are stuck with hypersurfaces that have codimension-
one singularities.

Consequently, we may no longer use the Milnor number in higher dimen-
sions, since this number applies only to isolated singularities. One natural
generalization of the Milnor number to higher-dimensional singularities are
the Lê numbers λi

f,z, and we will express the Lê numbers of the t = 0
slice in terms of the Lê numbers of the t ̸= 0 slice, together with the char-
acteristic polar multiplicities of N•

V (f), which generalize the rank of the
hypercohomology group H0(D ∩Ft|V (f) ,0; N•

V (f)) used in [21, Theorem 5.1
and Theorem 5.3] (here, Ft|Σf

,0 denotes the Milnor fiber of t|Σf
at 0, and

D denotes the image multiple-point set of π). This will be explored in
Section 3 and Section 4.

When moving to higher dimensions, we must also consider which sort
of deformation to allow when relating f0 and ft0 for t0 small and not
zero. For this, we choose the notion of a deformation with isolated polar
activity (or, an IPA-deformation). Intuitively, these are deformations where
the only “interesting” behavior happens at the origin, and the only change
propagates outwards from the origin along curves. Such deformations exist
generically in all dimensions, in the sense that given any complex analytic
function f : (U ,0) → (C, 0), the set of linear functions L for which f is an
IPA-deformation of f|V (L) at 0 is Zariski-open in the cotangent space T ∗

0 U
(see Remark 2.9) We examine this notion, first introduced by Massey in [40],
in Section 2 (although an equivalent notion appears as early as 1992 with
Massey and Siersma [41] under the name equi-transversal deformations,
although without the conormal perspective we use here, see Remark 7.3).
An ordered tuple of linear forms z = (z0, . . . , zk) is called an IPA-tuple (for
f at 0) if, for 1 ⩽ i ⩽ k, f|V (z0,...,zi−1) is an IPA-deformation of f|V (z0,...,zi)

at 0.
In Section 5, we prove the following result.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.3 (Theorem 5.2). — Suppose that π : (D × Ṽ (f0),
{0} × S) → (V (f),0) is a one-parameter unfolding of a parameterized hy-
persurface im π0 = V (f0). Suppose further that z = (z1, . . . , zn) is chosen
such that z is an IPA-tuple for f0 = f|V (t) at 0. Then, the following formulas
hold for the Lê numbers of f0 with respect to z at 0: for 0 < |t0| ≪ ϵ ≪ 1,

λ0
f0,z(0) = −λ0

N•
V (f0),z(0) +

∑
p∈Bϵ∩V (t−t0)

(
λ0

ft0 ,z(p) + λ0
N•

V (ft0 ),z(p)
)
,

and, for 1 ⩽ i ⩽ n− 2,

λi
f0,z(0) =

∑
q∈Bϵ∩V (t−t0,z1,z2,...,zi)

λi
ft0 ,z(q).

In particular, the following relationship holds for 0 ⩽ i ⩽ n− 2:

λi
f0,z(0)+λi

N•
V (f0),z(0) =

∑
p∈Bϵ∩V (t−t0,z1,z2,...,zi)

(
λi

ft0 ,z(p) + λi
N•

V (ft0 ),z(p)
)
.

We then conclude the chapter with some applications of this theorem
to various dimensions, and obtain formulas in the same vein as Milnor’s
double point formula. In particular, we obtain the following result.

Corollary 1.4 (Corollary 5.6). — Let π0 : (C2, S) → (C3,0) be a
finitely-determined map germ parameterizing a surface V (f0) ⊆ C3, and
let T,C, and δ, denote the number of triple points, cross caps, and A1-
singularities, respectively, appearing in a stabilization of π0. Then, the fol-
lowing equality holds:

|π−1
0 (0)| − 1 = −C + T + δ + χ(Ft|Σf

,0),

where Ft|Σf
,0 denotes the Milnor fiber of the unfolding parameter of such

a stabilization im π = V (f), restricted to the singular locus of f (that is,
the complex link of Σf at 0).

Remark 1.5. — The main result of this paper (Theorem 5.2) can be
seen as a powerful special case of a more general relationship between Lê
numbers and polar numbers by Massey ([34, Proposition 1.18]) for arbitrary
IPA-deformations:

(1.3) λ0
f|V (t) ,z(0) =

(
Γ1

f,t · V (t)
)

0 + λ1
f,(t,z)(0).

This formula can be derived fairly easily from the definition of the Lê
numbers and Lê cycles using the theory of proper intersections of analytic
cycles inside a complex manifold (see e.g. [7, Chapter 6]), when the critical
locus of f has arbitrary dimension and (t, z) is an IPA-tuple for f at 0. See

TOME 0 (0), FASCICULE 0



6 Brian HEPLER

Proposition 2.12 for a general proof, or Remark A.6 in the Appendix for a
simple proof in the case where dim0 Σf = 1.

One can also derive formula (1.3) from the work of Gaffney–Gassler [14]
via their intersection theoretic interpretation of the Lê numbers, together
with Gaffney’s Multiplicty Polar Theorem [13] (or, more generally, Ran-
gachev’s Excess Degree Formula (see [50, Theorem 2.1])).

At the heart of all of these approaches is the idea that the change in
generic vs. special values of the Milnor number (or its generalizations) is
seen by the degree of the vertical components of the exceptional divisor of
the blow up of the ideal defining Σf (i.e., the relative Jacobian ideal). By a
conservation of number argument, this is exactly the degree of the relative
polar curve.

2. IPA-Deformations

Although we need to consider only the case of a family of parameterized
hypersurfaces for this section, much of the machinery we use for Section 4
and Section 5 does not require such restrictive hypotheses. That is, the no-
tion of IPA-deformations and Lê numbers (see Massey, [32] and [40]) apply
to hypersurface singularities in general, not just parameterized hypersur-
faces.

Suppose z = (z0, . . . , zn) are local coordinates on an open neighborhood
U ⊆ Cn+1 of 0, so that we have T ∗U ∼= U × Cn+1, with fiber-wise basis
(dpz0, . . . , dpzn) of (T ∗U)p = τ−1(p), where τ : T ∗U → U is the canonical
projection map.

Denote by Span⟨dz0, . . . ,dzk⟩ the subset of T ∗U given by{(
p,

k∑
i=0

widpzi

)∣∣∣∣∣ p ∈ U , wi ∈ C

}
.

Let f : (U ,0) → (C, 0) be a (reduced) complex analytic function, where
U is a connected open neighborhood of the origin in Cn+1.

Finally, let T ∗
f U denote the (closure of) the relative conormal space of f

in U , i.e.,
T ∗

f U := {(p, ξ) ∈ T ∗U | ξ(ker dpf) = 0}.

It is important to note that T ∗
f U is a C-conic subset of T ∗U , as we will

consider its projectivization in Definition 2.2.
The following definitions of the relative polar varieties of f differ slightly

from their more classical construction (see, for example [18, 24, 26]),

ANNALES DE L’INSTITUT FOURIER
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following that of [34, 40]. Lastly, the intersection product appearing in the
following definitions is that of proper intersections in complex manifolds
(See [7, Chapter 6]).

Definition 2.1. — The relative polar curve of f with respect to z0,
denoted Γ1

f,z0
, is, as an analytic cycle at the origin, the collection of those

components of the cycle

τ∗

(
T ∗

f U · im dz0

)
which are not contained in Σf , provided that T ∗

f U and im dz0 intersect
properly in T ∗U (where τ∗ is the proper pushfoward of cycles).

More generally, one can define the higher k-dimensional relative po-
lar varieties Γk

f,z in this manner, by considering the projectivized relative
conormal space P(T ∗

f U) as follows. For 0 ⩽ k ⩽ n, consider the subspace
P(Span⟨dz0, . . . ,dzk⟩) of P(T ∗U) ∼= U × Pn, the projectivized cotangent
bundle of U (The following definition does not require one to use the pro-
jectivized relative conormal space; we do so to make the formulas involved
less cumbersome).

Definition 2.2. — The (k + 1)-dimensional relative polar variety of f
with respect to z, denoted Γk

f,z , is, as an analytic cycle at the origin, the
collection of those components of

τ∗

(
P(T ∗

f U) · P (Span⟨dz0, . . . ,dzk⟩)
)

which are not contained in the critical locus Σf at the origin, provided that
P(T ∗

f U) and P (Span⟨dz0, . . . ,dzk⟩) intersect properly in T ∗U . By abuse of
notation, we also use τ to denote the canonical projection P(T ∗U) → U .

See Section A for the classical definition of Γk
f,z.

Throughout this paper we will use the (shifted) nearby and vanishing
cycle functors ψf [−1] and ϕf [−1], respectively, from the bounded derived
category Db

c(U) of constructible complexes of sheaves on U to those on
V (f) (see for example [2, 6, 17, 22]). The shifts [−1] are need to for these
functors to take perverse sheaves on U to perverse sheaves on V (f). One
of the most important properties of these functors is that, for an arbitrary
bounded, constructible complex of sheaves F• on U , we have isomorphisms

Hk(ψf [−1]F•)p
∼= Hk(Ff,p; F•) and(2.1)

Hk(ϕf [−1]F•)p
∼= Hk+1(Bϵ(p), Ff,p; F•),(2.2)

where H∗ denotes hypercohomology of complexes of sheaves, and Ff,p =
Bϵ(p) ∩ f−1(ξ) denotes the Milnor fiber of f at p (here 0 < |ξ| ≪ ϵ ≪ 1).

TOME 0 (0), FASCICULE 0



8 Brian HEPLER

The Milnor fiber of a generic linear form L on a space X at a point p is often
referred to as the complex link of X at p, and we sometimes distinguish
this with the notation LX,p. The (stratified) homeomorphism type of LX,p

is independent of the linear form chosen, provided L is sufficiently generic.
If we use F• = Z•

U [n + 1] for coefficients, then ψf [−1] (resp. ϕf [−1])
recovers the ordinary integral (resp. reduced) cohomology groups of the
Milnor fiber Ff,p of f at p (up to a shift):

Hk(ϕf [−1]Z•
U [n+ 1])p

∼= H̃k+n(Ff,p;Z).

One of the most important properties of the nearby and vanishing cycles are
that they fit into a distinguished triangle in the derived category Db

c(V (f)):

(F•)|V (f) [−1] → ψf [−1]F• → ϕf [−1]F• +1−−→ .

Additionally, the functors ψf [−1] and ϕf [−1] are perverse exact, so this
distinguished triangle yields the short exact sequence of perverse sheaves
on V (f):

0 → Z•
V (f)[n] comp−−−→ ψf [−1]Z•

U [n+ 1] can−−→ ϕf [−1]Z•
U [n+ 1] → 0,

where the morphism comp is known as the comparison morphism, and can
the canonical morphism.

We will also make frequent use of the microsupport SS(F•) of a (bounded,
constructible) complex of sheaves F• which is a closed C×-conic subset of
T ∗U . We will use the following characterization of SS(F•) in terms the
vanishing cycles (See [22, Proposition 8.6.4]).

Proposition 2.3 (Microsupport). — Let F• ∈ Db
c(U) and let (p, ξ) ∈

T ∗U . Then, the following are equivalent:
(1) (p, ξ) /∈ SS(F•).
(2) There exists an open neighborhood Ω of (p, ξ) in T ∗U such that, for

any q ∈ U and any complex analytic function g defined in a neigh-
borhood of q with f(q) = 0 and (q,dqg) ∈ Ω, one has (ϕgF•)q = 0.

It is instructive to think about the condition (p,dpg) /∈ SS(F•) from
the perspective of microlocal/stratified Morse theory. That is, (p,dpg) /∈
SS(F•) if and only if p is not a critical point of g “with coefficients in F•”.

Using constant coefficients, we make the following definition to clarify
what we mean by a critical point of a function on a possibly singular space.

Definition 2.4. — Let g : (V (f),0) → (C, 0) be a complex analytic
function. We define the topological critical locus of g|V (g) to be the set

Σtopg := suppϕg[−1]Z•
V (f)[n] = τ(im dg ∩ SS(Z•

V (f)[n])).

ANNALES DE L’INSTITUT FOURIER
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Most of our examples in this paper are for the case where g is a linear
form on a hypersurface V (f).

In order to compute numerical invariants associated to certain perverse
sheaves (see the characteristic polar multiplicities (Section 4) and Lê num-
bers), we need to choose hyperplanes that “cut down” the support in a
certain way. We now give several equivalent conditions for this “cutting”
procedure, that will be used throughout this paper (see Definition 2.7).

Proposition 2.5 (IPA-Deformations). — The following are equivalent:
(1) dim0 Γ1

f,z0
∩ V (z0) ⩽ 0.

(2) dim0 Γ1
f,z0

∩ V (f) ⩽ 0.
(3) dim(0,d0z0) im dz0∩(f◦τ)−1(0)∩T ∗

f U ⩽ 0, where again τ : T ∗U → U
is the canonical projection map.

(4) dim(0,d0z0) SS(ψf [−1]Z•
U [n+ 1]) ∩ im dz0 ⩽ 0.

(5) dim(0,d0z0) SS(Z•
V (f)[n]) ∩ im dz0 ⩽ 0.

(6) dim0 suppϕz0 [−1]Z•
V (f)[n] ⩽ 0.

(7) Away from 0, the comparison morphism

Z•
V (f,z0)[n− 1] → ψz0 [−1]Z•

V (f)[n]

is an isomorphism.

Proof. — The equivalence of statements (1), (2), and (3) are covered in
[40, Proposition 2.6].

The equivalence (3) ⇐⇒ (4) follows directly from the equality

T ∗
f U ∩ (f ◦ τ)−1(0) = SS(ψf [−1]Z•

U [n+ 1]).

(See [5] for the original result, although the phrasing used above is found
in [35]).

To see the equivalence (4) ⇐⇒ (5), consider the natural distinguished
triangle

(‡) i∗i
∗[−1]Z•

U [n+ 1] → j!j
!Z•

U [n+ 1] → Z•
U [n+ 1] +1→

where i : V (f) ↪→ U , and j : U\V (f) ↪→ U . Then, by [37], there is an
equality of microsupports

SS(ψf [−1]Z•
U [n+ 1]) = SS(j!j

!Z•
U [n+ 1])⊆V (f),

where the subscript ⊆ V (f) denotes the union of irreducible components
of SS(j!j

!ZU [n+ 1]) that lie over the hypersurface V (f). But, since

SS(ZU [n+ 1]) ∼= U × {0},

TOME 0 (0), FASCICULE 0



10 Brian HEPLER

(‡) implies that

SS(i∗i∗[−1]Z•
U [n+ 1]) = SS(j!j

!Z•
U [n+ 1])⊆V (f),

by the triangle inequality for microsupports. The claim follows after noting

i∗i
∗[−1]Z•

U [n+ 1] = Z•
V (f)[n].

The equivalence (5) ⇐⇒ (6) follows easily from Proposition 2.3, or see
[33, Theorem 3.1].

Lastly, one concludes (6) ⇐⇒ (7) trivially from the short exact se-
quence of perverse sheaves

0 → Z•
V (f,z0)[n− 1] → ψz0 [−1]Z•

V (f)[n] → ϕz0 [−1]Z•
V (f)[n] → 0

on V (f, z0). □

Remark 2.6 (Z vs. Q coefficients). — As we mentioned in the introduc-
tion of this section, all results in this paper hold with either Z coefficients or
Q coefficients (depending on whether the normalization of V (f) is smooth,
or a Q-homology manifold).

To see this for Proposition 2.5, suppose that dim suppϕL[−1]Q•
V (f)[n] ⩽

0 but dim suppϕL[−1]Z•
V (f)[n] > 0. Then, at a generic point p in the sup-

port of ϕL[−1]Z•
V (f)[n], the stalk cohomology of ϕL[−1]Z•

V (f)[n] is a torsion
Z-module concentrated in a single degree by the perversity of
ϕL[−1]Z•

V (f)[n]. However, this cohomology must be free Abelian (see e.g,
Lê’s classical result about the cohomology of the Milnor fiber, or [21, Propo-
sition 1.2.3]) and is therefore zero. The reverse implication, from Z to Q
coefficients, is trivial.

Thus,
dim0 suppϕL[−1]Q•

V (f)[n] ⩽ 0

if and only if
dim0 suppϕL[−1]Z•

V (f)[n] ⩽ 0.

Definition 2.7. — Given an analytic function f : (U ,0) → (C, 0) and
a non-zero linear form z0 : (U , 0) → (C, 0), we say that f is a deformation of
f|V (z0) with isolated polar activity at 0 (or, an IPA deformation for short)
if the equivalent statements of Proposition 2.5 hold.

Remark 2.8. — IPA-deformations are closely related to the notion of pre-
polar deformations [41]; given a Thom af stratification S of V (f) and linear
form L, we say f is a prepolar deformation of f|V (L) if V (L) transversally

ANNALES DE L’INSTITUT FOURIER
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intersects all strata S ∈ S\{0} in a neighborhood of the origin. We can
alternatively phrase this as

dim0
⋃

S∈S

Σ
(
L|S

)
⩽ 0,

where the union
⋃

S∈S Σ
(
L|S

)
=: ΣSL|V (f) is called the stratified critical

locus of L|V (f) with respect to S (see [33, Definition 1.3]) .
In particular, a prepolar deformation is defined with respect to a given af

stratification S, whereas an IPA-deformation does not refer to any strati-
fication. While one does always have the inclusion

(2.3) suppϕL[−1]Z•
V (f)[n] =: Σtop

(
L|V (f)

)
⊆ ΣS

(
L|V (f)

)
(this follows by stratified Morse theory, or [33, Remark 1.10], or [22, Propo-
sition 8.4.1 and Exercise 8.6.12])), it is an open question whether or not
there exist IPA-deformations that are not prepolar deformations. The pri-
mary difficulty of this question is in showing that a given IPA-deformation is
not prepolar with respect to any af stratification–one imagines this cannot
be the case due to the intimately connected natures of C-constructibility
of the vanishing cycles and af stratifications, but it is highly non-trivial to
show this explicitly.

Remark 2.9 (Genericity of IPA Deformations). — As mentioned in the
introduction, IPA-deformations exist generically in all dimensions. This
can be seen as a relatively straight-forward statement of stratified Morse
theory, using Remark 2.8. Indeed, f is an IPA-deformation of f|V (L) at 0
if, given any Whitney stratification S of V (f), d0L is a (Morse-theoretic)
non-degenerate covector to V (f) at 0. That is,

d0L /∈
⋃

S∈S−{0}

T ∗
SU .

The complement of
⋃

S∈S−{0}
(
T ∗

SU
)

0 in T ∗
0 U is a Zariski-open set, and

so the set of such non-degenerate covectors yielding IPA-deformations is
dense.

We can iterate the notion of an IPA-deformation as follows.

Definition 2.10. — Let k ⩾ 0. A (k + 1)−tuple (z0, . . . , zk) is said
to be an IPA-tuple for f at 0 if, for all 1 ⩽ i ⩽ k, f|V (z0,...,zi−1) is an
IPA-deformation of f|V (z0,...,zi) at 0.

The following lemma follows from an inductive application of [38, The-
orem 1.1], and is crucial for our understanding of what IPA-deformation
“looks like” in the cotangent bundle (cf. Proposition 2.5(2)).
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Lemma 2.11 (Gaffney, Massey, [15]). — Let k ⩾ 0. Then, for all p ∈

V (z0, . . . , zk−1) with dpzk /∈
(
T ∗

f|V (z0,...,zk−1)
V (z0, . . . , zk−1)

)
p

, we have

(
T ∗

f U
)

p
∩ Span⟨dpz0, . . . ,dpzk⟩ = 0.

The main goal of this subsection is the following result. This result, orig-
inally from [32], is presented here with the “weaker” hypothesis of choosing
an IPA-tuple, in lieu of a prepolar-tuple. For the definition of the Lê num-
bers of f with respect to a tuple of linear forms z, see Section A.

Proposition 2.12 (Existence of Lê Numbers of a Slice). — Suppose
that z = (z0, . . . , zn) is an IPA-tuple for f at 0, and use coordinates z̃ =
(z1, . . . , zn) for V (z0). Then, for 0 ⩽ i ⩽ dim0 Σf , the Lê numbers λi

f,z(0)
are defined, and the following equalities hold:

λ0
f|V (z0) ,̃z(0) =

(
Γ1

f,z0
· V (z0)

)
0 + λ1

f,z(0)

λi

f|V (z0) ,̃z(0) = λi+1
f,z (0),

for 1 ⩽ i ⩽ dim0 Σf − 1, where Γ1
f,z0

is the relative polar curve of f with
respect to z0.

Proof. — The proof follows [32, Theorem 1.28], mutatis mutandis
(changing prepolar to IPA and working with covectors instead of tangent
hyperplanes).

Via the Chain Rule, it suffices to demonstrate that

dim0 Γi+1
f,z ∩ V (f) ∩ V (z0, . . . , zi−1) ⩽ 0,

since any analytic curve in Γi+1
f,z ∩V

(
∂f
∂zi

)
∩V (z0, . . . , zi−1) passing through

0 must be contained in V (f), where Γi+1
f,z is the (i+1)-dimensional relative

polar variety of f with respect to z (Definition 2.2).
Suppose that we had a sequence of points p ∈ Γi+1

f,z ∩V (f)∩V (z0, . . . , zi−1)
approaching 0. As each p is contained in Γi+1

f,z , for each p we can find a se-
quence pk → p with pk /∈ Σf satisfying ⟨dpk

f⟩ ⊆ Span⟨dpk
z0, . . . ,dpk

zi−1⟩
for each k. But then, by construction, we have found a nonzero element
in the intersection

(
T ∗

f U
)

p
∩ Span⟨dpz0, . . . ,dpzi−1⟩, contradicting

Lemma 2.11. □
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3. Unfoldings and N•
V (f)

As mentioned in the introduction of this section, we will be considering
parameterized hypersurfaces that are the total space of a family of param-
eterized hypersurfaces. We make this precise with the following definition.

Definition 3.1. — A parameterization π : (D × Ṽ (f0), {0} × S) →
(V (f),0) is said to be a one-parameter unfolding with unfolding parameter
t if π is of the form

π(t, z) = (t, πt(z))

where π0(z) := π(0, z) is a generically one-to-one parameterization of
V (f, t).

We say that a parameterization π0 has an isolated instability at 0 with
respect to an unfolding π of π0 with parameter t if one has dim0 Σtopt|im π

⩽
0. Compare this with the more general (standard) notion in Section B.

The following proposition is one of our main motivations for using IPA-
deformations: they naturally appear from one-parameter unfoldings with
isolated instabilities.

Proposition 3.2. — Suppose π : (D× Ṽ (f0), {0} ×S) → (V (f),0) is a
1-parameter unfolding of π0 with unfolding parameter t, such that π0 has
an isolated instability at 0 with respect to π. Then, f is an IPA-deformation
of f|V (t) at 0.

Proof. — By definition, π0 has an isolated instability at 0 with respect
to the unfolding π with parameter t if

dim0 Σtop

(
t|V (f)

)
⩽ 0.

Following [33, Definition 1.9],

Σtop

(
t|V (f)

)
= {p ∈ V (f) | (p, dpt) ∈ SS(Z•

V (f)[n])}

= τ
(
SS(Z•

V (f)[n]) ∩ im dt
)
,

where τ : T ∗U → U is the natural projection. This follows immediately
from Proposition 2.3.

Consequently, if dim0 Σtop
(
t|V (f)

)
⩽ 0, it follows that (0,d0t) is an iso-

lated point in the intersection SS(Z•
V (f)[n]) ∩ im dt, and the the result

follows by Proposition 2.5. □
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Remark 3.3. — It is well-known that finitely-determined map germs π0
have isolated instabilities with respect to a generic one-parameter unfold-
ing ([44, p. 241], and [9]). Consequently, generic one-parameter unfold-
ings of finitely-determined maps parameterizing hypersurfaces all give IPA-
deformations. We shall make use of this fact later in Section 5.

Remark 3.4. — If π is a one-parameter unfolding of a parameterization
π0, then for all t0 small, it is easy to see that there is an isomorphism
N•

V (f)|V (t−t0)
[−1] ∼= N•

V (ft0 ), where πt0(z) = π(t0, z).

Example 3.5. — In the situation of Milnor’s double-point formula, π :
(D × C, {0} × S) → (C3,0) parameterizes the deformation of the curve
V (f0) with r irreducible components at 0 into a curve V (ft0) with only
double-point singularities. Hence, dim0 V (f) = 2, and the image multiple-
point set D is purely 1-dimensional at 0.

Since π is a one-parameter unfolding with parameter t, we moreover have
N•

V (f)|V (t−t0)
[−1] ∼= N•

V (ft0 ),

where N•
V (ft0 ) is the multiple-point complex of the parameterization πt0(z).

For all t0 ̸= 0 small, N•
V (ft0 ) is supported on the set of double points

of V (ft0), and at each such double-point p we have rankH0(N•
V (f0))p =

|π−1(p)| − 1 = 1.
At 0 ∈ V (f0), we have π−1(0) = S, and |S| = r by assumption. Thus,

rankH0(N•
V (f0))0 = r − 1.

4. Characteristic Polar Multiplicities

The central concept of this section, the characteristic polar multiplicities
of a perverse sheaf, were first defined and explored in [30]. These multi-
plicities, defined with respect to a “nice” choice of a tuple of linear forms
z = (z0, . . . , zs), are non-negative, integer-valued functions that mimic the
properties of the Lê numbers associated to non-isolated hypersurface singu-
larities (see [32]), and the characteristic polar multiplicities of the vanishing
cycles ϕf [−1]Z•

U [n + 1] with respect to z coincide with the Lê numbers of
f with respect to z.

Definition 4.1 ([30, Corollary 4.10]). — Let P• be a perverse sheaf
on V (f), with dim0 supp P• = s. Let z = (z0, . . . , zs) be a tuple of linear
forms such that, for all 0 ⩽ i ⩽ s, we have

dim0 suppϕzi−zi(p)[−1]ψzi−1−zi−1(p)[−1] · · ·ψz0−z0(p)[−1]P• ⩽ 0.
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Then, the i-dimensional characteristic polar multiplicity of P• with respect
to z at p ∈ V (g) is defined and given by the formula

λi
P•,z(p) = rankZH

0(ϕzi−zi(p)[−1]ψzi−1−zi−1(p)[−1] · · ·ψz0−z0(p)P•)p.

Remark 4.2. — In general, one can define the characteristic polar mul-
tiplicities of any object in the bounded, derived category of constructible
sheaves on V (f), but they are slightly more cumbersome to define, and no
longer need to be non-negative.

Example 4.3. — Let f : U → C be an analytic function, with f(0) =
0, U an open neighborhood of the origin in Cn+1, and dim0 Σf = s.
Then, ϕf [−1]Z•

U [n+ 1] is a perverse sheaf on V (f), with support equal to
Σf ∩V (f). Indeed, the containment suppϕf [−1]Z•

U [n+1] ⊆ Σf ∩V (f) fol-
lows from the complex analytic Implicit Function Theorem. For the reverse
containment, if p /∈ suppϕf [−1]Z•

U [n+ 1], then the Milnor monodromy on
the nearby cycles is the identity morphism, so that the Lefschetz number
of the monodromy cannot be zero; by A’Campo’s result [1], we therefore
have p /∈ V (f) ∩ Σf .

We then have
λi

f,z(p) = λi
ϕf [−1]Z•

U [n+1],z(p)
for all 0 ⩽ i ⩽ s, and all p in an open neighborhood of 0 [30].

Remark 4.4 (Z vs. Q Coefficients). — By Massey ([36, Theorem 3.4]), if
dim0 Σf = s, then there is a chain complex of free Abelian groups

0 ∂s+1−−−→ Zλs
f,z(p) ∂s−→ Zλs−1

f,z (p) ∂s−1−−−→ · · · ∂2−→ Zλ1
f,z(p) ∂1−→ Zλ0

f,z(p) ∂0−→ 0

satisfying ker ∂j/ im ∂i+1 ∼= H̃n−j(Ff,0;Z). Since this complex is free, ten-
soring this complex with Q will compute H̃n−j(Ff,0;Q). Hence, we can use
either Z or Q coefficients in when characterizing the Lê numbers λi

f,z(p) in
terms of the characteristic polar multiplicities of the vanishing cycles.

Example 4.5. — If dim0 Σf = 0, any non-zero linear form z0 suffices
for this construction, since ψz0 [−1]ϕf [−1]Z•

U [n + 1] = 0. Then, the only
non-zero Lê number of f is λ0

f,z0
(0), and we have

λ0
f,z0

(0) = rankZH
0(ϕz0 [−1]ϕf [−1]Z•

U [n+ 1])0

= rankZH
0(ϕf [−1]Z•

U [n+ 1])0

= Milnor number of f at 0.

Example 4.6. — If dim0 Σf = 1, we need z0 such that dim0 Σ
(
f|V (z0)

)
=

0, and any non-zero linear form suffices for z1. Then the only non-zero Lê
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numbers of f with respect to z = (z0, z1) are λ0
f,z(0) and λ1

f,z(p) for p ∈ Σf .
At 0, we have

λ1
f,z(0) = rankH0(ϕz1 [−1]ψz0 [−1]ϕf [−1]Z•

U [n+ 1])0

=
∑

C⊆Σf irr.comp. at 0

◦
µC (C · V (z0))0 ,

where ◦
µC denotes the generic transverse Milnor number of f along C\{0}.

Remark 4.7. — Analogous to the Lê numbers λi
f,z(p), the characteristic

polar multiplicities of a perverse sheaf may be expressed as intersection
numbers. That is, suppose we have a perverse sheaf P• and a tuple of
linear forms z such that, for all 0 ⩽ i ⩽ dim0 supp P•, the characteristic
polar multiplicities λi

P•,z(p) are defined for all p in a neighborhood U of
0. Then, there is a unique collection of non-negative analytic cycles Λi

P•,z
called the characteristic polar cycles of P• with respect to z satisfying, for
all p ∈ U ,

λi
P•,z(p) =

(
Λi

P•,z · V (z0 − p0, . . . , zi−1 − pi−1)
)

p
.

These cycles can also be thought of as being defined by the constructible
function χ(P•)p, so that

χ(P•)p :=
∑

i

(−1)iHi(P•)p =
∑

i

(−1)iλi
P•,z(p).

Example 4.8. — To illustrate this method of computing the characteris-
tic polar multiplicities, we will compute λ0

N•
V (f),z(0) and λ1

N•
V (f),z(0) for a

triple point singularity in C3, e.g., V (f) = V (xyz). Clearly V (f) is param-
eterized (the normalization π of V (xyz) separates the three planes into a
disjoint union in three copies of C3), and so N•

V (f) has stalk cohomology
concentrated in degree −1, implying

χ(N•)p = −|π−1(p)| + 1.

Away from the origin, on the singular locus of V (xyz), χ(N•
V (f))p has value

−1 everywhere, and so we can identify the 1-dimensional characteristic
polar cycle of N•

V (f) as the sum of the lines of intersection of these three
planes, each weighted by 1. Thus, λ1

N•
V (f),z(0) = 3. Since χ(N•

V (f))0 = −2,
we find that λ0

N•
V (f),z(0) = 1, from the equality

−2 = χ(N•
V (f))0 = λ0

N•
V (f),z(0) − λ1

N•
V (f),z(0) = λ0

N•
V (f),z(0) − 3.

Remark 4.9. — We will need the representation of the characteristic po-
lar multiplicities as intersection numbers in Section 5 when we will use
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the dynamic intersection property for proper intersections to understand
λi

N•
V (f),z(0). By this, we mean the equality(
Λi

P•,z · V (z0, z1, . . . , zi−1)
)

0

=
∑

p∈Bϵ∩Λi
P•,z∩V (z0−t)

(
Λi

P•,z · V (z0 − t, z1, . . . , zi−1)
)

p

for 0 < |t| ≪ ϵ ≪ 1 (see [7, Chapter 6]). Additionally, we will make use
of the fact that characteristic polar multiplicities of perverse sheaves are
additive on short exact sequences in Section 5. Precisely, if

0 → A• → B• → C• → 0

is a short exact sequence of perverse sheaves, and if coordinates z are generic
enough so that λi

B•,z(p) is defined, then λi
A•,z(p) and λi

C•,z(p) are defined,
and

λi
B•,z(p) = λi

A•,z(p) + λi
C•,z(p).

(See [30, Proposition 3.3].)

Lemma 4.10. — If π is a one-parameter unfolding (with parameter t)
of a parameterization of V (f, t) with isolated instability at the origin, then
the 0-dimensional characteristic polar multiplicity of N•

V (f) with respect to
t is defined, and

λ0
N•

V (f),t(0) = λ0
Z•

V (f)[n],t(0) =
(
Γ1

f,t · V (t)
)

0 .

Proof. — If f is an IPA-deformation of f|V (t) at 0, then

dim0 suppϕt[−1]Z•
V (f)[n] ⩽ 0,

by Proposition 2.5. By Definition 4.1, this is precisely what is needed to
define λ0

Z•
V (f)[n],t(0). Then, by a proper base-change, we have ϕtπ∗ ∼= π̂∗ϕt◦π,

where π̂ : V (t◦π) → V (f, t) is the pullback of π via the inclusion V (f, t) ↪→
V (f). But, because π is a one-parameter unfolding, t ◦ π is a linear form
on affine space and has no critical points; hence, ϕt◦πZ•

U = 0.
Consequently, it follows from the short exact sequence of perverse sheaves

0 → ϕt[−1]N•
V (f) → ϕt[−1]Z•

V (f)[n] → ϕt[−1]π∗Z•
D×X̃

[n] → 0

that there is an equality λ0
N•

V (f),t(0) = λ0
Z•

V (f)[n],t(0), since the characteristic
polar multiplicities are additive on short exact sequences.

It is then a classical result by Lê, Hamm, Teissier, and Siersma that, for
sufficiently generic t,

λ0
Z•

V (f)[n],t(0) =
(
Γ1

f,t · V (t)
)

0 ;
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the result in the generality of IPA-deformations is found in [31]. The claim
follows. □

Remark 4.11. — The unfolding condition is not needed for the charac-
teristic polar multiplicities of N•

V (f) to be defined, but it is needed for the
vanishing λ0

π∗Z•
D×Ṽ (f0)

[n],t(0) = 0 which yields the equalities of Lemma 4.10.

Example 4.12. — Let us compute λ0
N•

V (f),t(0) in the case where V (f)
is the Whitney umbrella, with defining function f(x, y, t) = y2 − x3 − tx2.
Then, we can realize V (f) as the total space of the one-parameter unfolding
π(t, u) = (u2 − t, u(u2 − t), t) with parameter t, and Lemma 4.10 tells us
that λ0

N•
V (f),t(0) is equal to the intersection multiplicity

(
Γ1

f,t · V (t)
)

0. A
quick computation tells us that the relative polar curve Γ1

f,t is equal to
V (3x+ 2t, y), and thus transversely intersects V (t) at 0. Hence,

λ0
N•

V (f),t(0) =
(
Γ1

f,t · V (t)
)

0 = 1.

The iterated IPA-condition implies the higher characteristic polar mul-
tiplicities of N•

V (f) exist as well.

Theorem 4.13. — Suppose that (t, z) = (t, z1, . . . , zn) is an IPA-tuple
for g at 0. Then, for 0 ⩽ i ⩽ n − 1, the characteristic polar multiplicities
λi

N•
V (f),(t,z)(0) with respect to (t, z) are defined, and the following equalities

hold:
λ0

N•
V (f0),z(0) = λ1

N•
V (f),(t,z)(0) − λ0

N•
V (f),(t,z)(0),

and, for 1 ⩽ i ⩽ n− 2,

λi
N•

V (f0),z(0) = λi+1
N•

V (f),(t,z)(0).

Proof. — That λ0
N•

V (f),(t,z)(0) is defined is precisely the inequality

dim0 suppϕt[−1]N•
V (f) ⩽ 0

concluded in Lemma 4.10 from the inclusion of perverse sheaves

0 → ϕt[−1]N•
V (f) → ϕt[−1]Z•

V (f)[n].

By [30, Proposition 3.2], it remains to show that λi
N•

V (f),(t,z)(0) is defined
for 1 ⩽ i ⩽ n− 1, i.e., we need to show that

dim0 suppϕzi−1 [−1]ψzi−2 [−1] · · ·ψz1 [−1]ψt[−1]N•
V (f) ⩽ 0.

From the inclusion of perverse sheaves

0 → N•
V (f) → Z•

V (f)[n],
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it follows that λi
N•

V (f),(t,z)(0) is defined if λi
Z•

V (f)[n],(t,z)(0) is defined, by the
triangle inequality for supports of perverse sheaves.

Since (t, z) is an IPA-tuple for f at 0, Proposition 2.5 gives, for 1 ⩽ i ⩽
n− 1,

dim0 suppϕzi [−1]Z•
V (f,t,z1,...,zi−1)[n− i] ⩽ 0.

Thus, away from 0, each of the comparison morphisms

Z•
V (f,t,z1,...,zi−1,zi)[n− i− 1] ∼→ ψzi [−1]Z•

V (f,t,z1,...,zi−1)[n− i]

is an isomorphism for 1 ⩽ i ⩽ n− 1. Consequently,

dim0 suppϕzi
[−1]Z•

V (f,t,z1,...,zi−1)[n− i] ⩽ 0

implies

dim0 suppϕzi−1 [−1]ψzi−2 [−1] · · ·ψz1 [−1]ψt[−1]Z•
V (f)[n] ⩽ 0,

and the claim follows. □

Remark 4.14. — In the wake of a recent result [39] by David Massey, we
can obtain a much simpler proof of the above result; one has the identifica-
tion N•

V (f)
∼= ker{id −T̃f } for hypersurfaces, where T̃f is the Milnor mon-

odromy automorphism on the vanishing cycles ϕf [−1]Z•
U [n+1], with the ker-

nel being taken in the category of perverse sheaves on V (f). Consequently,
N•

V (f) is a perverse subobject of the vanishing cycles ϕf [−1]Z•
U [n+ 1], and

we obtain Theorem 4.13 by either the triangle inequality for microsupports,
or the fact that characteristic polar multiplicities are additive on short ex-
act sequences [30] from the fact that supp N•

V (f) ⊆ suppϕf [−1]Z•
U [n+1] =

V (f) ∩ Σf .
We still wish to include our original proof of Theorem 4.13, since the

methods used provide good intuition for how one uses IPA-deformations
cohomologically to “move around” the origin.

5. Milnor’s Result and Beyond

We wish to express the Lê numbers of f0 entirely in terms of data from
the Lê numbers of ft0 and the characteristic polar multiplicities of both
N•

V (f0) and N•
V (ft0 ), for t0 small and nonzero. The starting point is Propo-

sition 2.12:

λ0
f0,z(0) =

(
Γ1

f,t · V (t)
)

0 + λ1
f,(t,z)(0)

λi
ft0 ,z(0) = λi+1

f,(t,z)(0),
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where (t, z) = (t, z1, . . . , zn) is an IPA-tuple for f at 0. From Lemma 4.10,
we have

(
Γ1

f,t · V (t)
)

0
= λ0

N•
V (f),(t,z)(0); we now have all our relevant data

in terms of Lê numbers and characteristic polar multiplicities of N•
V (f).

The goal is then to decompose this data into numerical invariants which
refer only to the t = 0 and t ̸= 0 slices of V (f). So, in order to realize this
goal, the next step is to decompose λ0

N•
V (f),(t,z)(0) and λi

f,(t,z)(0) for i ⩾ 1.
The 1-dimensional Lê number λ1

f,(t,z)(0) is the easiest; by the dynamic
intersection property for proper intersections,

λ1
f,(t,z)(0) =

(
Λ1

f,(t,z) · V (t)
)

0

=
∑

p∈Bϵ∩V (t−t0)

(
Λ1

f,(t,z) · V (t− t0)
)

p

=
∑

p∈Bϵ∩V (t−t0)

λ0
ft0 ,z(p).

The approach for λi
f0,z(0) for i ⩾ 1 is similar: we will use the fact that f

is an IPA-deformation of f0 to “move” around the origin in the V (t) slice,
and then use the dynamic intersection property.

Proposition 5.1. — If (t, z) = (t, z1, . . . , zi) is an IPA-tuple for f at 0
for i ⩾ 1, the following equality of intersection numbers holds:

λi
f0,z(0) =

∑
q∈Bϵ∩V (t−t0,z1,z2,...,zi)

λi
ft0 ,z(q)

where 0 < |t0| ≪ ϵ ≪ 1

Proof. — First, recall that λi
f0,z(0) =

(
Λi

f0,z ·V (z1, . . . , zi)
)

0, where Λi
f0,z

is the i-dimensional Lê cycle of f0 with respect to z (see Section A, as well
as [32]). For i ⩾ 1, we have

Λi
f0,z = Λi+1

f,(t,z) · V (t),

so, by the dynamic intersection property,

λi
f0,z(0) =

(
Λi+1

f,(t,z) · V (t, z1, . . . , zi)
)

0

=
∑

q∈Bϵ∩V (t−t0,z1,z2,...,zi)

(
Λi+1

f,(t,z) · V (t− t0, z1, z2, . . . , zi)
)

q

=
∑

q∈Bϵ∩V (t−t0,z1,z2,...,zi)

(
Λi

ft0 ,z · V (z1, z2, . . . , zi)
)

q

=
∑

q∈Bϵ∩V (t−t0,z1,z2,...,zi)

λi
ft0 ,z(0),
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where the second equality follows from the equality of cycles

Λi+1
f,z · V (t− t0) = Λi

ft0 ,z. □

We can now state and prove our main result.

Theorem 5.2. — Suppose that π : (D× Ṽ (f0), {0} ×S) → (V (f),0) is
a one-parameter unfolding with an isolated instability of a parameterized
hypersurface im π0 = V (f0). Suppose further that z = (z1, . . . , zn) is chosen
such that z is an IPA-tuple for f0 = f|V (t) at 0. Then, the following formulas
hold for the Lê numbers of f0 with respect to z at 0: for 0 < |t0| ≪ ϵ ≪ 1,

λ0
f0,z(0) = −λ0

N•
V (f0),z(0) +

∑
p∈Bϵ∩V (t−t0)

(
λ0

ft0 ,z(p) + λ0
N•

V (ft0 ),z(p)
)
,

and, for 1 ⩽ i ⩽ n− 2,

λi
f0,z(0) =

∑
q∈Bϵ∩V (t−t0,z1,z2,...,zi)

λi
ft0 ,z(q).

In particular, the following relationship holds for 0 ⩽ i ⩽ n− 2:

λi
f0,z(0)+λi

N•
V (f0),z(0) =

∑
p∈Bϵ∩V (t−t0,z1,z2,...,zi)

(
λi

ft0 ,z(p)+λi
N•

V (ft0 ),z(p)
)
.

Proof. — By Proposition 2.12 and Proposition 5.1, it suffices to prove

λ0
N•

V (f),(t,z)(0) = −λ0
N•

V (f0),z(0) +
∑

p∈Bϵ∩V (t−t0)

λ0
N•

V (ft0 ),z(p).(5.1)

Since (t, z) is an IPA-tuple for f at 0, Theorem 4.13 yields

λ0
N•

V (f0),z(0) = λ1
N•

V (f),(t,z)(0) − λ0
N•

V (f),(t,z)(0),

where N•
V (f0)

∼= N•
V (f)|V (t)

[−1] (cf. Remark 3.4).
The main claim then follows by the dynamic intersection property for

proper intersections applied to Λ1
N•

V (f),(t,z) (see Remark 4.9):

λ1
N•

V (f),(t,z)(0) =
(

Λ1
N•

V (f),(t,z) · V (t)
)

0

=
∑

p∈Bϵ∩V (t−t0)

(
Λ1

N•
V (f),(t,z) · V (t− t0)

)
p

=
∑

p∈Bϵ∩V (t−t0)

λ0
N•

V (ft0 ),z(p),

for 0 < |t0| ≪ ϵ ≪ 1.
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Finally, we examine the relationship

λi
f0,z(0)+λi

N•
V (f0),z(0) =

∑
p∈Bϵ∩V (t−t0,z1,z2,...,zi)

(
λi

ft0 ,z(p)+λi
N•

V (ft0 ),z(p)
)
.

For i = 0, this follows by a trivial rearrangement of the terms in our
expression for λ0

f0,z(0). For i ⩾ 1, this is just Proposition 5.1 combined with
Theorem 4.13 and the dynamic intersection property on λi

N•
V (f),(t,z)(0), as

in Proposition 5.1 for λi
f,(t,z)(0). □

Remark 5.3. — The relationship

λi
f0,z(0) + λi

N•
V (f0),z(0) =

∑
p∈Bϵ∩V (t−t0,z1,z2,...,zi)

(
λi

ft0 ,z(p) + λi
N•

V (ft0 ),z(p)
)

suggests a sort of “conserved quantity” between the sum of the Lê numbers
of ft and the characteristic polar multiplicities of N•

V (ft) in one parameter
deformations of parameterized hypersurfaces. It is a very interesting ques-
tion to see how this relates to results in [20] regarding the structure of N•

V (f)

as a mixed Hodge module, and the isomorphism N•
V (f)

∼= ker{id −T̃f }.

Example 5.4. — We wish to examine Theorem 5.2 in the context of Mil-
nor’s double point formula, where π : (D × C, {0} × S) → (C3,0) pa-
rameterizes a deformation of the curve V (f0) into a curve V (ft0) with
only double-point singularities (we can identify this deformed curve with
the complex link LV (f),0 inside the total deformation V (f)). In this case,
dim0 Σf0 = 0, so the only non-zero Lê number of f0 is λ0

f0,z(0), where z is
any non-zero linear form on C2, and λ0

f0,z(0) = µ0(f0).
It is then an easy exercise to see that λ0

N•
V (ft0 ),z(p) = m(p) = |π−1(p)|−1

for t0 small (and possibly zero) and p ∈ Σf .
All together, this gives, by Theorem 5.2

µ0(f0) = −(r − 1) +
∑

p∈Bϵ∩V (t−t0)

(
µp(ft0) + |π−1(p)| − 1

)
= 2δ − r + 1,

as there are δ double-points in the deformed curve V (ft0). We have thus
recovered Milnor’s original double-point formula for the Milnor number of
a plane curve singularity. We picture this computation below.

In analogy to plane curve singularities deforming into node singularities,
it is well-known (see, e.g., [47]), that for stabilizations of finitely determined
maps π0 : (C2, S) → (C3,0), the image surface im π0 = V (f0) splits into
cross caps (i.e., Whitney umbrellas), triple points, and A1-singularities (i.e.,
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nodes, which appear off the hypersurface on the relative polar curve). These
numbers are independent of the stabilization chosen, and depend only on
π0. We give the precise definition of finite determinacy of maps in Section B.

Unfortunately, detecting these invariants using characteristic polar mul-
tiplicities and Theorem 5.2 will have an unavoidable problem: we will also
see points that belong to the absolute polar curve Γ1

z(Σf), which lie in the
smooth part of Σf near 0, and are artifacts of our choice of linear forms z
in calculating the characteristic polar multiplicities. For z = (t, z) a generic
pair of linear forms on C4, the absolute polar curve of Σf at 0 is

Γ1
z(Σf) = Σ

(
(t, z)|Σf

)
− Σ(Σf)

(see [27, 51], but we instead index by dimension instead of codimension).
Consequently, if p ∈ Γ1

z(Σf)\{0}, we see that λ0
N•

V (ft0 ),z(p) ̸= 0 even if the
stalk cohomology of N•

V (ft0 ) is locally constant near p. This problem does
not occur in the case of Milnor’s original result, since the topology of the
complex link of Σf at 0 is just a that of a finite set of points.

We thus obtain the following result:

Theorem 5.5. — Suppose π : (D × C2, {0} × S) → (C4,0) is a one-
parameter unfolding of a finitely-determined map germ π0 : (C2, S) →
(C3,0) parameterizing a surface V (f0) ⊆ C3. Then,

λ0
N•

V (f0),z(0) = T + C − δ + P

where T,C, δ, and P denote the number of triple points, cross caps, A1-
singularities appearing in a stable deformation of V (f0), respectively, and
if V (f) = im π, P denotes the number of intersection points of the absolute
polar curve Γ1

(t,z)(Σf) with a generic hyperplane V (z) on C4 for which (t, z)
is an IPA-tuple for f at 0.
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Proof. — This follows directly from Theorem 4.13, Remark 3.3,
Lemma 4.10, and recalling that λ0

N•
V (ft0 ),z(0) = 1 for both Whitney um-

brellas and triple point singularities in C3 (see Examples 4.12 and 4.8). The
δ term is equal to the degree of the relative polar curve Γ1

f,t at the origin,
i.e.,

δ =
(
Γ1

f,t · V (t)
)

0 = λ0
N•

V (f),t
(0). □

In fact, we can explicitly identify the Euler characteristic λ0
N•

V (f0),z(0) −
λ1

N•
V (f0),z(0) using Theorem 5.5.

Corollary 5.6. — Let π0, π, T,C, δ, and P be as in Theorem 5.5.
Then, the following equalities hold:

λ0
N•

V (f0),z(0) − λ1
N•

V (f0),z(0) = χ(N•
V (f0))0

= −|π−1
0 (0)| + 1

= C − T − δ − χ(LΣf,0),

where LΣf,0 ∼= Ft|Σf
,0 denotes the complex link of Σf at 0.

Remark 5.7 (The “Bootstrap” Ansatz). — Theorem 5.5 suggests a more
general, heuristic result: if we have a one-parameter unfolding π : (D ×
Cn+1, {0} ×S) → (Cn+2,0) of a finitely determined map π0, and we know
all of the possible stable types of finitely-determined maps from Cn to
Cn+1, then it is possible to obtain a general expression for λ0

N•
V (f0),z(0)

analogous to that of Theorem 5.5. Indeed, the value of λ0
N•

V (f0),z(0) for
an arbitrary one-parameter unfolding would then be a sum of the values
of λ0

N•
V (ft0 ),z(0) on these stable types (via Theorem 4.13), and then one

subtracts any nodes that appear off the hypersurface, coming from the
contribution of λ0

N•
V (f),t(0) =

(
Γ1

f,t · V (t)
)

0.
For example, we know the only stable map germs from C2 to C3 are the

Whitney Umbrella (i.e., the Cross Cap), the triple point singularity, A1 sin-
gularities appearing off the hypersurface on the relative polar curve. Con-
sequently, any one-parameter unfolding of a finitely-determined map germ
from C2 to C3 must split into some number of Whitney Umbrellas, triple
points, and A1 singularities. This is perhaps the “true” higher-dimensional
generalization of Milnor’s original formula (as well as Mond’s formula for
the Image Milnor Number).

We specifically use the term “ansatz” in this remark, since one still has
to know all stable types of a given dimension before one can obtain such a
formula, so it is very much a heuristic result.
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Remark 5.8. — Before we give the proof of Corollary 5.6 using derived
category techniques, we will give a down-to-earth topological argument.
The key idea in our proof is that one can compute the term P using con-
stant Z coefficients instead of N•

V (f), since N•
V (f) generically has stalk co-

homology Z along Σf for hypersurfaces V (f) that are the image of finitely-
determined map germs [47].

Proof (topological argument). We compute the Euler characteristic of
the pair χ(LΣf,0,LΣf0,0). We can use t to compute the complex link of
Σf and z to compute the complex link of Σf0 = V (t) ∩ Σf . This pair
of subspaces makes sense, using the fact that f is an IPA-deformation of
f0, and the complex link LΣf0,0 of Σf0 is a finite set of points, and their
multiplicity is unchanged as one moves in the t direction away from the
origin, pictured below: Thus, we can identify LΣf0,0 = Bϵ ∩Σf ∩V (t, z− b)
with Bϵ ∩ Σf ∩ V (t− a, z − b) for 0 < |a| ≪ |b| ≪ ϵ ≪ 1. Consequently, we
can identify

χ(LΣf,0,LΣf0,0) = χ(ϕz[−1]Z•
LΣf,0

[1])0 =
∑

p

λ0
Z•

Σft0
[1],z(p).

As the value of z grows from 0 to b, we pick up cohomological contributions
(in the form of a non-zero multiplicity λ0

Z•
Σft0

[1],z(p)) as we pass through
points of the curves of triple points, cross caps, and the absolute polar curve
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with respect to (t, z), pictured below: At triple points, λ0
Z•

Σft0
[1],z(p) = 2,

and at cross caps λ0
Z•

Σft0
[1],z(p) = 0. We count the contribution from the

absolute polar curve as P =
(

Γ1
(t,z)(Σf) · V (z)

)
0
.

2T + P = χ(LΣf,0,LΣf0,0) = χ(LΣf,0) − χ(LΣf0,0)
= χ(LΣf,0) − λ1

N•
V (f0),z(0).

Solving for P and plugging the resulting expression into Theorem 5.5 gives
the result. □

Proof (Perverse sheaves argument). We wish to better understand the
contribution of the term P coming from the absolute polar curve of Σf
appearing in Theorem 5.5. First, we note that these terms come from the
0-dimensional characteristic polar multiplicities λ0

N•
V (ft0 ),z(p) in the expan-

sion of λ1
N•

V (f),(t,z)(0), where p is a smooth point of Σf in the V (t−t0) slice.
Since the transverse singularity type of the image of a finitely-determined
map is always that of a Morse function (see e.g., Mond [47]), the stalk co-
homology of N•

V (f) is Z at all smooth points of Σf . Consequently, we can
calculate P using the constant sheaf Z•

Σf [2] in place of N•
V (f).

However, Z•
Σf [2] is not necessarily a perverse sheaf. To deal with this,

note that, for all t0 ̸= 0, the restriction
(
Z•

Σf [2]
)

|V (t−t0)
∼= Z•

Σft0
[1] is a

perverse sheaf (the shifted constant sheaf on a curve is always perverse),
and therefore ψt[−1]Z•

Σf [2] is perverse.
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We then examine Euler characteristics at the origin of the distinguished
triangle

(5.2)
(
ψt[−1]Z•

Σf [2]
)

|V (z)
[−1] → ψz[−1]ψt[−1]Z•

Σf [2]

→ ϕz[−1]ψt[−1]Z•
Σf [2] +1−−→,

where ψz[−1]ψt[−1]Z•
Σf [2] and ϕz[−1]ψt[−1]Z•

Σf [2] are perverse sheaves for
which 0 is an isolated point in their support. By Definition 4.1,

χ(ϕz[−1]ψt[−1]Z•
Σf [2])0 = rankH0(ϕz[−1]ψt[−1]Z•

Σf [2])0 =λ1
Z•

Σf
[2],(t,z)(0).

To calculate χ(ψz[−1]ψt[−1]Z•
Σf [2])0, note that

dim0 suppϕt[−1]Z•
Σf [2] ⩽ 0

(since f is an IPA-deformation of f|V (t) at 0) implies ψz[−1]ϕt[−1]Z•
Σf [2] =

0, and so
ψz[−1]Z•

Σf0
[1] ∼−→ ψz[−1]ψt[−1]Z•

Σf [2].

Thus, χ(ψz[−1]ψt[−1]Z•
Σf [2])0 = χ(ψz[−1]Z•

Σf0
[1])0 = λ1

Z•
Σf0

[1],z(0). It is
easy to see that λ1

Z•
Σf0

[1],z(0) = λ1
N•

V (f0),z(0), since the transverse singularity
type of Σf0 is that of a Morse function.

Finally, we see that

χ(
(
ψt[−1]Z•

Σf [2]
)

|V (z)
[−1])0 = χ(Ft|Σf

,0) = χ(LΣf,0),

and we obtain the following formula from taking the Euler characteristic
of (5.2):

(5.3) χ(LΣf,0) − λ1
N•

V (f0),z(0) + λ1
Z•

Σf
[2],(t,z)(0) = 0.

Using the dynamic intersection property,

λ1
Z•

Σf
[2],(t,z)(0) =

∑
p∈Bϵ∩V (t−t0)

λ0
Z•

Σft0
[1],z(p) = 2T + P,

since λ0
Z•

Σft0
[1],z(p) = 2 when p is a triple point singularity, and

λ0
Z•

Σft0
[1],z(p) = 0 when p is a cross-cap singularity. The remaining terms,

as in Theorem 5.5, come from the absolute polar curve of Σf with respect
to V (z). Consequently, we can solve for P using (5.3)

P = λ1
N•

V (f0),z(0) − χ(LΣf,0) − 2T.
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Plugging this expression for P into Theorem 5.5 tells us
λ0

N•
V (f0),z(0) = T + C − δ + P

= T + C − δ + λ1
N•

V (f0),z(0) − χ(LΣf,0) − 2T

and so
χ(N•

V (f0))0 = λ0
N•

V (f0),z(0) − λ1
N•

V (f0),z(0) = C − T − δ − χ(LΣf,0).

Finally, the Corollary follows from the fact that N•
V (f0) has stalk cohomol-

ogy concentrated in degree −1 (by Theorem 1.1 and Remark 4.7) □

Remark 5.9. — If V (f0) is itself a Q-homology manifold, then N•
V (f0) =

0. In this case, Theorem 5.5 tells us that, in a stabilization V (f) of V (f0),
we have

χ(LΣf,0) = C − T − δ.

This scenario happens, for example, in Lê’s Conjecture below.

6. Relationship with Lê’s Conjecture

Parameterized surfaces in C3 are the subject of a long-standing conjec-
ture by Lê Dũng Tráng [52], in the vein of classical equisingularity problems
of Mumford [49] and Zariski, and is related to Bobadilla’s Conjecture [3].

Conjecture 6.1 (Lê). — Suppose (V (f),0) ⊆ (C3,0) is a reduced hy-
persurface with dim0 Σf = 1, for which the normalization of V (f) is a
bijection. Then, in fact, V (f) is the total space of an equisingular defor-
mation of plane curve singularities.

We note that the assumption of the normalization of V (f) being a bi-
jection is equivalent to N•

V (f) = 0, and that the conjecture is equivalent to
the vanishing ϕL[−1]Z•

V (f)[2] = 0 for generic linear forms L on C3.
The first case to examine for this conjecture is when π : (C2,0) →

(C3,0) is a corank 1 one map, which we may take to mean that π is
a one parameter unfolding with parameter t. This is the case proved in
Bobadilla’s reformulation of Lê’s Conjecture in [3], in which Σf contains
a smooth curve through the origin. Using Theorem 5.2, we can provide an
alternative proof.

This is actually the degenerate case mentioned in the introduction! Recall
the non-stable deformation formula (1.2):

µ0(f0) = −m(0) +
∑

p∈Bϵ∩V (t−t0)

(µp(ft0) +m(p)) ,
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where m(p) = |π−1(p)| − 1. Since π is a bijection, we must have m(p) = 0
for all p ∈ V (f). Hence,

µ0(f0) =
∑

p∈Bϵ∩V (t−t0)

µp(ft0),

so the result follows from the non-splitting result of Gabrielov [8], Lazzeri
[23], and Lê [25] (where this equality implies Σf is smooth at the origin,
and thus defines a µ-constant family of curves).

The difficult part for the general conjecture is reducing the above case,
where one does not know if π is an unfolding. Since N•

V (f) = 0, it will be
difficult to adapt the results obtained in this paper toward the conjecture.

7. Other Generalizations in the Literature

In this section, we recall several recent approaches to generalizing Mil-
nor’s formula µ = 2δ − r + 1.

Remark 7.1 (Greuel’s Approach). — One possible method for generaliza-
tion would be to search for a more general class of singularities for which
it makes sense to talk about a δ-invariant, similar to the curve case. This
is the strategy of Greuel [16], for isolated non-normal singularities. In this
setting, one defines µ := 2δ−r+1, and Greuel computes the change in µ for
generic reduced curves of arbitrary codimension. This is a fundamentally
different approach to the one of this paper, where Greuel looks at higher
dimensional analogues of plane curve singularities for which a δ-invariant
is defined, where we instead look at higher-dimensional generalizations of
the Milnor number itself for non-isolated hypersurface singularities.

Remark 7.2 (Mond’s Approach). — In [46, Lemma 2.2], David Mond also
obtains the result that, for a stabilization V (f) of a plane curve singularity
V (f0), one has

µ0

(
t|V (f)

)
= δ − r + 1,

where µ0
(
t|V (f)

)
is called the image Milnor number of the stabilization,

and is equal to the degree of the relative polar curve of f with respect to
t, i.e.,

(
Γ1

f,t ·V (t)
)

0. Thus, Mond’s result for the image Milnor number can
be seen as a special case of our calculation of this degree in terms of N•

V (f).
It is an interesting question in general how one can relate the theory

of map germs from Cn to Cn+1 of finite A-codimension (in Mather’s nice
dimensions (n < 15) and beyond) to our result Theorem 5.2. Even more so
would be to understand the relationship between this theorem and Mond’s
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conjecture, since IPA-deformations are more general than deformations typ-
ically used in the singularity theory of maps.

Remark 7.3 (Massey and Siersma’s Approach). — The notion of IPA-
deformation first appears in a paper of Massey–Siersma [41] under the
name equi-transversal deformation, where the authors obtain deformation
formulas for hypersurfaces with one-dimensional singular loci, without the
added hypothesis of assuming parameterized hypersurfaces.

However, the formulas obtained by Massey–Siersma ([41, Theorem 1.1
and 2.2]) are completely in terms of the Betti numbers of the deformed
hypersurface, which are, in general, extremely difficult to actually compute
in practice.

Remark 7.4 (Gaffney’s Approach). — Gaffney also generalizes the result
µ0(t|V (f)) = δ− r+ 1 in [11], although to the very different setting of maps
G : (Cn, S) → (C2n,0). In Theorem 3.2 and Corollary 3.3 of [11], this
formula is derived in terms of the Segre number of dimension 0 of an ideal
associated to the image multiple-point set and the number of Whitney
umbrellas of the composition of the map G with a generic projection to
C2n−1.

In the case of finitely-determined maps F : (C2,0) → (C3,0) of the
form F (t, z2, F3(t, z)), imF = V (f) defines a surface whose singular locus
Σf is an isolated complete intersection singularity by results of Mond and
Pellikaan (e.g., [48, Proposition 2.2.4]). In this case, the results of [12]
apply, and we can recover Gaffney’s formula (Proposition 2.4) for the 0-
dimensional Lê number of f at 0

λ0
f,z(0) = δ + 2C + e(JM(Σf)).

where δ (resp., C) is the number of A1-singularities (resp., cross caps)
appearing in a stabilization of F , and e(JM(Σf)) is the Buchbaum–Rim
multiplicity of the Jacobian Module of Σf = D. This follows directly from
Theorem 5.2, using the fact that e(JM(Σf)) gives the number of criti-
cal points of a generic linear form on the curves of multiple-points in the
stabilization (which comprise the term P used in Theorem 5.5). Finally,
since Σf is an isolated complete intersection singularity, there can be no
triple points in a stabilization of F . We would like to express our thanks
to Terence Gaffney for pointing out this relationship.

It is a very interesting question to see what formulas might arise from
Theorem 5.2 when one works outside of Mather’s nice dimensions; for n ⩾
15, one can no longer approximate a finitely determined map with stable
maps, but the relationship in Theorem 5.2 still holds.
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Appendix A. The Lê Cycles and Relative Polar Varieties

The Lê numbers of a function with a non-isolated critical locus are the
fundamental invariants we consider in this paper. First defined by Massey
in [28] and [29], these numbers generalize the Milnor number of a function
with an isolated critical point.

The Lê cycles and numbers of g are classically defined with respect to
a prepolar-tuple of linear forms z = (z0, . . . , zn); loosely, these are linear
forms that transversely intersect all strata of a good stratification of V (g)
near 0 (see, for example, [32, Definition 1.26]). The purpose of Proposi-
tion 2.12 in Section 2 is to replace the assumption of prepolar-tuples with
IPA tuples.

Definition A.1. — The k-dimensional relative polar variety of g with
respect to z, at the origin, denoted Γk

g,z, consists of those components of
the analytic cycle V

(
∂g

∂zk
, . . . , ∂g

∂zn

)
at the origin which are not contained in

Σg.

Definition A.2. — The k-dimensional Lê cycle of g with respect to z,
at the origin, denoted Λk

g,z, consists of those components of the analytic
cycle Γk+1

g,z · V
(

∂g
∂zk

)
which are contained in Σg.

Definition A.3. — The k-dimensional Lê number of g at
p = (p0, . . . , pn) with respect to z, denoted λk

g,z(p), is equal to the in-
tersection number(

Λk
g,z · V (z0 − p0, . . . , zk−1 − pk−1)

)
p
,

provided this intersection is purely zero-dimensional at p.

Example A.4. — When g has an isolated critical point at the origin, the
only non-zero Lê number of g is λ0

g,z(0). In this case, we have:

λ0
g,z(0) =

(
Λ0

g,z · U
)

0

= V

(
∂g

∂z0
, . . . ,

∂g

∂zn

)
0
,

i.e., the 0-dimensonal Lê number of g is just the multiplicity of the Jacobian
scheme. In the case of an isolated critical point, this is the Milnor number
of g at 0.

Example A.5. — Suppose now that dim0 Σg = 1. Then, the only non-
zero Lê numbers of g are λ0

g,z(0) and λ1
g,z(p) for p ∈ Σg.

TOME 0 (0), FASCICULE 0



32 Brian HEPLER

At 0, we have
λ1

g,z(0) =
(
Λ1

g,z · V (z0)
)

0

=
(
V

(
∂g

∂z1
, . . . ,

∂g

∂zn

)
· V (z0)

)
0

=
∑

q∈Bϵ∩V (z0−q0)∩Σg

(
V

(
∂g

∂z1
, . . . ,

∂g

∂zn

)
· V (z0 − q0)

)
q

=
∑

q∈Bϵ∩V (z0−q0)∩Σg

µq

(
g|V (z0−q0)

)
where the second to last line is the dynamic intersection property for proper
intersections.

After rearranging the terms in the last line, we find

λ1
g,z(0) =

∑
C⊆Σg irred. comp.

◦
µC (C · V (z0))0 ,

where the sum is indexed over the collection of irreducible components of
Σg at the origin, and ◦

µC denotes the generic transversal Milnor number of
g along C.

Remark A.6. — We want to give a down-to-earth justification of the
formula

λ0
f|V (t) ,z(0) =

(
Γ1

f,(t,z) · V (t)
)

0
+
(

Λ1
f,(t,z) · V (t)

)
0

at the core of the argument of this paper, mentioned in Remark 1.5 (and
separately proved in greater generality in Proposition 2.12). We give a quick
proof for the case of dim0 Σf = 1, and refer to the general proof in [34,
Proposition 1.18]. Suppose t is a linear form for which dim0 Σ

(
f|V (t)

)
⩽ 0

(this is a priori stronger than assuming f is an IPA-deformation of f|V (t)

at 0, see Remark 2.8). Then, V (t) ∩ Σf = Σ
(
f|V (t)

)
near 0, and

V

(
∂f|V (t)

∂z1
, . . . ,

∂f|V (t)

∂zn

)
= V

(
t,
∂f

∂z1
, . . . ,

∂f

∂zn

)
is purely 0-dimensional at 0, so that V

(
∂f
∂z1

, . . . , ∂f
∂zn

)
is purely 1-dimen-

sional at 0, and consists of components that are contained in Σf , and
components that are not contained in Σf . By definition, the sum of the
components that are contained in Σf is equal to Λ1

f,(t,z), and the sum of
the components not contained in Σf is equal to Γ1

f,(t,z). That is, there is
an equality of analytic cycles at 0:

V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
= Γ1

f,(t,z) + Λ1
f,(t,z).
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By assumption, V (t) properly intersects the two cycles on the right hand
side, and so by Example A.4 we find

V

(
t,
∂f

∂z1
, . . . ,

∂f

∂zn

)
0

=λ0
f|V (t) ,z(0) =

(
Γ1

f,(t,z) · V (t)
)

0
+
(

Λ1
f,(t,z) · V (t)

)
0
,

as desired.

Appendix B. Singularities of Maps

Our primary references for this appendix are [10, 42, 43].
Let f : (Cn, S) → (Cp,0) be a holomorphic map (multi-)germ, with S a

finite subset of Cn. Then, the group of biholomorphisms Diff(N,S) from Cn

to Cn (preserving S), acts on f on the left by pre-composition; similarly,
the group of biholomorphisms Diff(Cp,0) from Cp to to Cp (preserving
the origin), acts on f on the right by composition (we realize the notation
Diff to denote biholomorphisms seems confusing, but this appears to be
standard notation). Thus, we have a group action of A := Diff(Cn, S) ×
Diff(Cp,0) on the space of all holomorphic maps O(n, p) from (Cn, S) to
(Cp,0):

A × O(n, p) → O(n, p)
(Φ,Ψ) ∗ f = Φ ◦ f ◦ Ψ−1.

Clearly, this group action defines an equivalence relation on O(n, p), where
f ∼ g if there exists (Φ,Ψ) ∈ A for which Φ−1 ◦ f ◦ Ψ = g. Let Ae denote
the pseudo-group gotten by allowing non-origin preserving equivalences,
and Oe(n, p) the space of map-germs at the origin, but not necessarily
origin-preserving.

Definition B.1. — A d-parameter unfolding of f is a map germ

F : (Cd × Cn, {0} × S) → (Cd × Cp,0)
of the form

F (t, z) = (t, f̃(t, z)),
such that f̃(0, z) = f(z), and t = (t1, . . . , td) are coordinates on Cd. We
also write ft(z) := f̃(t, z), so that f0 = f .

We say F is a trivial unfolding of f if there are d-parameter unfoldings of
the identity on Cn and Cp, say Φ and Ψ, respectively, such that Φ◦F◦Ψ−1 =
(id, f).

Definition B.2. — We say f ∈ Oe(n, p) is stable if every unfolding of
f is trivial.
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Definition B.3. — We say an unfolding F : (Cd×Cn, {0}×S) → (Cd×
Cp,0), F (t, z) = (t, ft(z)) of f is a stable unfolding (or, a stabilization) of
f if ft is stable for all t ̸= 0.

Definition B.4. — We say that a map f ∈ O(n, p) is finitely deter-
mined if there exists an integer k such that any g ∈ O(n, p) which has the
same k-jet as f satisfies f ∼ g. That is, if, for all x ∈ S, the derivatives
of f and g at x of order ⩽ k are the same (with respect to a system of
coordinates at x and y).

We primarily care about (one-parameter) stabilizations of finitely-deter-
mined map germs for the fact that these maps all have isolated instabilities
at the origin (see Section 3). In general, we have the following remark.

Remark B.5. — Suppose, that F is a stable one-parameter unfolding of
a finite map f , and that h : (imF,0) → (C, 0) is the projection onto the
unfolding parameter. Then a point x ∈ V (h) is a point in the image of
f . If f is stable at x, then h is locally a topologically trivial fibration in
a neighborhood of x; consequently, the Milnor fiber is contractible, and
x /∈ Σtoph. Thus, Σtoph is contained in the unstable locus of F0. We will
need this observation in Section 3.
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