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LIMITS OF MAHLER MEASURES IN MULTIPLE
VARIABLES

by François BRUNAULT, Antonin GUILLOUX,
Mahya MEHRABDOLLAHEI & Riccardo PENGO (*)

Abstract. — We prove that certain sequences of Laurent polynomials, obtained
from a fixed multivariate Laurent polynomial P by monomial substitutions, give
rise to sequences of Mahler measures which converge to the Mahler measure of
P . This generalises previous work of Boyd and Lawton, who considered univariate
monomial substitutions. We provide moreover an explicit upper bound for the
error term in this convergence, extending work of Dimitrov and Habegger, and
a full asymptotic expansion for a family of 2-variable polynomials, whose Mahler
measures were studied independently by the third author.

Résumé. — Nous prouvons que certaines suites de polynômes de Laurent, ob-
tenues à partir d’un polynôme de Laurent P fixé par substitutions monomiales,
donnent des suites de mesures de Mahler qui convergent vers la mesure de Mahler
de P . Ce résultat généralisent des travaux antérieurs de Boyd et Lawton, qui consi-
déraient des substitutions univariées. Nous obtenons aussi une borne supérieure
explicite pour le terme d’erreur dans cette convergence, généralisant des travaux
de Dimitrov et Habegger. Nous donnons enfin un développement asymptotique
complet pour une famille particulière de polynômes bivariés, dont les mesures de
Mahler avaient été étudiées indépendamment par la troisième autrice.

1. Introduction

Let P ∈ Z[z] be a monic polynomial with integer coefficients. Writing
P (z) =

∏d
j=1(z − αj) for its complex factorisation, the product ∆k(P ) =∏d

j=1(αkj − 1) is an integer for every k ∈ N. The case of the polynomial
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P (z) = z − 2 recovers the Mersenne numbers 2k − 1. In the aim of finding
large prime numbers, D. H. Lehmer and T. A. Pierce [41, 50] developed
specific primality tests for these numbers ∆k(P ). If no root of P lies on the
unit circle, then |∆k+1(P )/∆k(P )| converges to the real number

M(P ) :=
d∏
j=1

max(|αj |, 1) ⩾ 1.

The (logarithmic) Mahler measure of P is then defined asm(P ) = logM(P ).
In order to maximise the number of prime candidates, Lehmer searched for
polynomials with small Mahler measure, and wondered whether there ex-
ist irreducible polynomials P ∈ Z[z] with m(P ) non-zero and arbitrarily
small. This seemingly simple question is open to this day, and the Mahler
measure of Lehmer’s polynomial z10 + z9 − z7 − z6 − z5 − z4 − z3 + z+ 1 is
still the smallest, non-zero Mahler measure of a polynomial P ∈ Z[z] \ {0}
which has been computed (see [57] for a survey).

Thanks to Jensen’s formula, m(P ) can be expressed as an integral over
the unit circle [11, Proposition 1.4]. This integral generalises naturally to
polynomials with several variables, leading to the following general defi-
nition of the Mahler measure, which is due to K. Mahler [46]. More pre-
cisely, given a n-variable Laurent polynomial P ∈ C[z±1

1 , . . . , z±1
n ] \ {0},

the Mahler measure of P is defined as

m(P ) :=
∫

[0,1]n

log|P (e2π i t1 , . . . , e2π i tn)| dt1 · · · dtn.

It can be shown that m(P ) ⩾ 0 whenever P has integer coefficients [6,
p. 117].

One of the most interesting strategies to attack Lehmer’s problem has
been proposed by Boyd [7]. He observed that if the set:

M :=
+∞⋃
n=1

m(Z[z±1
1 , . . . , z±1

n ] \ {0}) ⊆ R⩾0

is closed, then indeed there exists m0 > 0 such that for each P ∈ Z[t] either
m(P ) = 0 or m(P ) ⩾ m0. This observation follows from the fact that each
Mahler measure m(P ) of a multivariate polynomial P ∈ Z[z±1

1 , . . . , z±1
n ]\{0}

is the limit of a sequence of Mahler measures of univariate polynomials.
More precisely, Boyd shows that:

lim
a1→+∞

· · · lim
an→+∞

m(P (ta1 , . . . , tan)) = m(P )

where each limit is taken independently. It seems natural to ask what kind
of monomial substitutions in the variables of P give the same convergence.

ANNALES DE L’INSTITUT FOURIER
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Indeed, for a Laurent polynomial P ∈ C[z±1
1 , . . . , z±1

n ] and a matrix
A = (ai,j) ∈ Zm×n, one can consider the polynomial PA, in m variables,
given by:

PA(z1, . . . , zm) = P (za1,1
1 · · · zam,1

m , . . . , z
a1,n

1 · · · zam,n
m ).

The substitutions appearing in the previous limit proven by Boyd are the
special case of the row-matrix A = (a1, . . . , an). In order to generalise
Boyd’s result, Lawton [39] considered the quantity ρ(A) associated to the
matrix A defined as the smallest ℓ∞-norm of an integer vector in the kernel
of A:

ρ(A) := min{∥v∥∞ : v ∈ Zn \ {0}, A · v = 0}.
Lawton showed that if Ad is a sequence of row-matrices, with ρ(Ad) → ∞,
then we have:

lim
d→∞

m(PAd
) = m(P ).

Recently, Dimitrov and Habegger [20, Theorem A.1] have given an up-
per bound on the rate of convergence which is a negative power of ρ(A).
Strikingly, the exponent depends only on the number of non-vanishing co-
efficients in P . The constant involved depends also on the degree of P and
the number n of variables.

Moreover, Smyth [58] used Lawton’s result to show that the set M can
be written as a nested ascending union of closed subsets of R. In fact,
Smyth proves more generally that for every Laurent polynomial
P ∈ C[z±1

1 , . . . , z±1
n ] \ {0}, the set:

M(P ) :=
+∞⋃
m=1

{m(PA) : A ∈ Zm×n such that PA ̸= 0}(1.1)

is closed. Smyth shows moreover that M is the nested ascending union of
the sets M

(∑n
j=1 z2j−1 − z2j

)
for n → +∞ (see [58, Proposition 14]).

With this context in mind, it seems natural to understand sequences
m(PAd

) and their convergence when Ad is a sequence of m×n-matrices, and
not only of row-matrices. The present paper aims at initialising a systematic
study of these sequences. To do so, first of all we devote Section 3 to the
proof of the following theorem (see Theorem 3.1) which very naturally
generalises the theorems of Boyd and Lawton to the multivariate setting:

Theorem 1.1. — For P ∈ C[z±1
1 , . . . , z±1

n ] \ {0} a non-zero Laurent
polynomial and every sequence of integer m×n-matrices {Ad}d∈N ⊆ Zm×n

such that lim
d→+∞

ρ(Ad) = +∞, the convergence lim
d→+∞

m(PAd
) = m(P )

holds.

TOME 74 (2024), FASCICULE 4
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Further, we obtain in Theorem 4.1 an upper bound for the error term
|m(PA) − m(P )|, which generalises the bound proved by Dimitrov and
Habegger [20, Theorem A.1]. In fact, our proof of Theorem 4.1, which oc-
cupies the entirety of Section 4, follows a strategy similar to the one of
Dimitrov and Habegger. More precisely, we proceed, as they do, by regu-
larising the function log|P |, and we bound separately the error terms for the
regularisations (see Corollary 4.14) and the integrals of the differences be-
tween log|P | and the regularised functions (see Proposition 4.10). However,
our regularisation proceeds by using the smooth functions 1

2 log(|P |2 + ε),
which extend holomorphically to a neighbourhood of the unit torus (see
Proposition 4.11), whereas the regularisation carried out in [20] uses func-
tions which are not smooth in general. Let us point out as well that our
proof of Proposition 4.10 relies on an estimate about the volume of the
subset of the torus where a polynomial is small (see Theorem 4.6), which
is a slight improvement on results of Dobrowolski [22, Theorem 1.3] and
Dimitrov–Habegger [20, Lemma A.3] (see Remark 4.8 for a comparison).
Along the proof, we show furthermore that if a polynomial P does not
vanish on the unit torus Tn, then m(PA) tends to m(P ) exponentially fast
as ρ(A) → +∞ (see Corollary 4.4).

Section 5 gives some insight on which optimal rate of convergence and
even on what kind of asymptotic expansion one can expect for the conver-
gence of m(PA) towards m(P ). For the case of 1-variable Mahler measures
converging to 2-variable ones, the asymptotic expansions of the error term
have been studied by Condon [17]. His work, which we review in Section 5.1,
shows that for a large class of 2-variable polynomials, the rate of conver-
gence for the limit m(P (z1, z

d
1)) → m(P ) is an integer power of 1/d, and

a full asymptotic expansion for the error term can be obtained. Note that
this rate of convergence is much better than the bounds provided by [20,
Theorem A.1] and by Theorem 4.1. Moreover, Condon proceeds to give
experimental evidences for other polynomials, exhibiting what seems to be
a rate of convergence comparable to a rational power of 1/ρ(A). The full
description of the rate of convergence, even in this particular case, is still
open.

However, we exhibit in Section 5.2 the example of the 4-variate polyno-
mial P∞(z1, . . . , z4) = (1 − z1)(1 − z2) − (1 − z3)(1 − z4) and a sequence Ad
of 2 × 4 integer matrices, such that the polynomials (P∞)Ad

are intimately
related to the sequence:

Pd(z1, z2) :=
∑

0⩽i+j⩽d
zi1z

j
2

ANNALES DE L’INSTITUT FOURIER
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and in particular m(PAd
) = m(Pd). The sequence of Mahler measures

m(Pd) was thoroughly studied by the third named author of the present
paper in [47], where she proved that m(Pd) → −18 · ζ ′(−2) as d → +∞.
We use Theorem 3.1 to give a new proof of this convergence, using the
equality −18ζ ′(−2) = m(P∞), which is due to D’Andrea and Lalín [18,
Theorem 7]. We then provide a complete asymptotic expansion for the
error term m(Pd) −m(P∞) as d → +∞ in Theorem 5.1. In particular, we
prove that the following asymptotic behaviour holds true when d → +∞:

m(Pd) −m(P∞) ∼ − log(ρ(Ad))
2ρ(Ad)2 .

The logarithmic term represents a behaviour which is different from what
Condon studied and proved. Moreover, this asymptotic is still much better
than our general bound. So, this example shows how far we are from fully
understanding the optimal rate of convergence and asymptotic expansion
of m(PAd

) to m(P ) in a general multivariate setting.

1.1. Historical remarks

We devote this subsection to a short historical overview of the existing
results using and generalising the work of Boyd [6, 7] and Lawton [39]. First
of all, Boyd himself [6] used an earlier version of this theorem to characterise
those Laurent polynomials P ∈ Z[z±1]\{0} such that m(P ) = 0. Moreover,
Lawton’s result has been used by Schinzel [53] to provide an explicit bound
on the Mahler measure of a polynomial, which generalises a classical re-
sult of Gonçalves [59] (see also [29, Theorem 1.22]). Furthermore, the work
of Boyd and Mossinghoff [9], later generalised by Otmani, Rhin and Sac-
Épée [27], used Lawton’s result as a starting point for an investigation of
the genuine limit points in the set M. On the other hand, Dobrowolski [21]
used Lawton’s limit formula to answer a question of Schinzel. Moving on,
Dubickas and Jankauskas [25] used Lawton’s theorem to construct many
non-reciprocal univariate polynomials whose Mahler measures lie in the
interval [m(z3

1 − z1 − 1),m(1 + z1 + · · · + zn)], whereas Dobrowolski and
Smyth [23], as well as Akhtari and Vaaler [1], used the theorem of Law-
ton to study Mahler measures of polynomials with a bounded number of
monomials. Finally, Dubickas [24] and Habegger [34] used Lawton’s result
in their investigations of sums of roots of unity, whereas, as we already
mentioned, Smyth [58] used Lawton’s limit formula to prove that the sets
M(P ) defined in (1.1) are closed.

TOME 74 (2024), FASCICULE 4
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Let us point out that Lawton’s result has found applications also out-
side number theory. First of all, Lind, Schmidt and Ward [42] used it to
provide a lower bound for the entropy of the dynamical system associated
to a Laurent polynomial in terms of its Mahler measure. Moreover, the
work of Silver and Williams [54, 55], later generalised by Raimbault [51]
and Lê [40], applied Lawton’s result to knot theory, in order to study the
convergence of Mahler measures of Alexander polynomials, and the growth
of homology under surgery operations. Staying in the realm of knot theory,
the work of Champanerkar and Kofman [15, 16], later generalised by Cai
and Todd [12], used Lawton’s theorem to study Mahler measures of Jones
polynomials. Moving to the world of von Neumann algebras, Deninger [19,
Theorem 17] proved a continuity result for Fuglede–Kadison determinants
on the space of marked groups, which implies Lawton’s result under the
strong assumption that P does not vanish on the torus Tn. Note that
Deninger’s result is reminiscent of the classical theorem of Szegö [19, Theo-
rem 1], which approximates univariate Mahler measures in terms of Toeplitz
determinants. A multivariate analogue of Szegö’s result has been recently
found by Hajli [35]. Finally, Lawton’s result has been used by Lück in
functional analysis, to study spectral density functions [44] and twists of
L2-invariants [45].

To conclude this subsection, let us mention some existing generalisations
and improved versions of Lawton’s result. First of all, Champanerkar and
Kofman prove in [16, Lemma 3.3] that one can perform signed monomial
substitutions. Moreover, Duke [26, Theorem 6] provides the first term in
the asymptotic expansion of the difference m(zn1 + zm1 + 1) −m(z1 + z2 + 1)
as (n,m) → +∞. Furthermore, Lalín and Sinha [38] mention a gener-
alisation of Lawton’s theorem [38, Theorem 30] to the multiple Mahler
measure, introduced in previous work of Kurokawa, Lalín and Ochiai [37].
Such a generalisation was rigorously proved by Issa and Lalín [36], who
dealt also with the generalised Mahler measures defined by Gon and Oy-
anagi [30]. On the other hand, Carter, Lalín, Manes, Miller and Mocz [14,
Proposition 1.3] recently proved a weak generalisation of Lawton’s result
to dynamical Mahler measures (introduced in [14, Definition 1.1]).

In addition to the previously mentioned results, Dobrowolski [22] gen-
eralised a crucial estimate of Lawton [39, Theorem 1] on the measure of
the set of points z ∈ Tn where a polynomial is small. Similar bounds have
been provided by Lück [44, Proposition 2.1], Habegger [34, Lemma A.4],
and Dimitrov and Habegger [20, Lemma A.3] (see Remarks 4.7 and 4.8 for a
comparison). Finally, Gu and Lalín [31, Proposition 8] have recently proved

ANNALES DE L’INSTITUT FOURIER
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a multivariate convergence of Mahler measures, which can be obtained as
a corollary of Theorem 1.1, for one particular family of polynomials (see
for more details remark 5.4).
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2. Notation and conventions

For the reader’s convenience, we collect in this section the notation that
we most frequently use in the rest of the paper.

2.1. Generalities

We let N = {0, 1, . . . } denote the natural numbers, Z denote the integers,
R denote the real numbers, C denote the complex ones, and C× = C\{0}.
For any n ∈ N, we denote by zn = (z1, . . . , zn) the coordinates of Cn, and
by

Tn := {zn ∈ Cn : |z1| = · · · = |zn| = 1}
the n-dimensional real-analytic unit torus. Moreover, for every p ∈ R⩾1,
we let ∥·∥p : Cn → R⩾0 denote the ℓp-norm, defined for every zn ∈ Cn by:

∥zn∥p :=

 n∑
j=1

|zj |p
1/p

and we let ∥·∥∞ : Cn → R⩾0 denote the ℓ∞-norm, defined by

∥zn∥∞ := max {|z1|, . . . , |zn|} .

Finally, for any natural number n and any real number δ > 0, we define
the annulus

Cδ :=
{
zn ∈ (C×)n :

n∑
i=1

|log|zi|| ⩽ δ

}
(2.1)

which is a closed neighbourhood of the torus Tn in (C×)n.

TOME 74 (2024), FASCICULE 4
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2.2. Matrices

Fix a matrix A = (ai,j) ∈ Zm×n. We denote by d(A) the dimension of
the linear subspace ker(A) ⊆ Rn, and by ΛA := ker(A) ∩ Zn the integer
lattice within this subspace. Moreover, we introduce the quantity:

ρ(A) := min{∥v∥∞ : v ∈ ΛA, v ̸= 0}

which is the first successive minimum of the lattice ΛA with respect to the
ℓ∞-norm. By convention, we put ρ(A) = +∞ when ΛA = {0}. Finally, we
consider the monomial substitution:

zAm := (za1,1
1 · · · zam,1

m , . . . , z
a1,n

1 · · · zam,n
m )

and for any Laurent polynomial P ∈ C[z±1
1 , . . . , z±1

n ], we define PA ∈
C[z±1

1 , . . . , z±1
m ] by setting PA(z1, . . . , zm) := P (zAm). In particular, we con-

sider vectors v = (v1, . . . , vn) ∈ Zn as column matrices, so that zvn =
zv1

1 · · · zvn
n is a monomial.

2.3. Measure theory

For every n ∈ N, we denote by µn := 1
(2π i)n

dz1
z1

∧· · ·∧ dzn

zn
the probability

Haar measure on Tn. More generally, for every matrix A = (ai,j) ∈ Zm×n,
we let µA be the probability measure on Tn defined as the push-forward of
µm along the map Tm → Tn given by zm 7→ zAm. Note in particular that
µIdn = µn. Finally, for every non-zero Laurent polynomial P ∈ C[z±1

n ]\{0},
we let:

m(P ) :=
∫

Tn

log|P (zn)| dµn(zn) ∈ R

denote the logarithmic Mahler measure of P .

2.4. Fourier coefficients

For every integrable function f : Tn → C, and every vector v ∈ Zn, we
denote by:

cv(f) :=
∫

Tn

f(zn)
zvn

dµn(zn)

the corresponding Fourier coefficient. In particular, if P ∈ C[z±1
1 , . . . , z±1

n ]
is a Laurent polynomial, then P (zn) =

∑
v∈Zn cv(P ) · zvn.

ANNALES DE L’INSTITUT FOURIER
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2.5. Polynomials

Fix a non-zero Laurent polynomial P ∈ C[z±1
1 , . . . , z±1

n ]. We denote by
NP ⊆ Rn its Newton polytope, which is the convex hull in Rn of the
support set supp(P ) := {v ∈ Zn : cv(P ) ̸= 0}. We also denote by diam(P )
the diameter of P , which is the smallest d ∈ N such that NP is contained
inside a translate of [0, d]n.

We define k(P ) to be the number of non-zero coefficients P , and for every
1 ⩽ i ⩽ n, we define ki(P ) to be the number of non-zero coefficients of P
seen as a polynomial in zi. We also denote κ(P ) = max1⩽i⩽n(ki(P )).

We write
L1(P ) :=

∑
v∈Zn

|cv(P )|

for the length of P , and

L∞(P ) := max
v∈Zn

|cv(P )|

for the modulus of P .
Furthermore, we let VP ↪→ Gn

m be the hypersurface defined by P , so
that VP (C) := {zn ∈ (C×)n : P (zn) = 0}. We also define the conjugate
reciprocal of P by:

P ∗(zn) := P (z−1
n ) =

∑
v∈Zn

cv(P ) · z−v
n .

Finally, for every r ⩾ 0 we define the set:

S(P, r) := {z ∈ Tn : |P (z)| ⩽ r} ⊆ Tn.

2.6. Constants

For every non-zero Laurent polynomial P ∈ C[z±1
n ] \ {0} we define a

constant in R>0:

(2.2) ρ0(P ) := max
{

diam(P )+1, 7 diam(P )2, exp(2(k−1) max(n, 5))
}
,

and a further family of constants:

(2.3) δε(P ) := min
( √

ε

diam(P )L1(P ) ,
log(4/3)
diam(P )

)
∈ R>0

depending on a positive real number ε > 0.

TOME 74 (2024), FASCICULE 4
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3. A higher dimensional analogue of Lawton’s theorem

The aim of this section is to show that the Mahler measure

m(P ) :=
∫

Tn

log|P (zn)| dµn(zn)

of any non-zero Laurent polynomial P (zn) ∈ C[z±1
n ] \ {0} can be approx-

imated by suitable sequences of “lower-dimensional” Mahler measures, as
specified in the following theorem (see also Theorem 1.1).

Theorem 3.1. — Let n ∈ N be an integer, and P (zn) ∈ C[z±1
n ] \ {0}

be a non-zero Laurent polynomial. Then, for every sequence of matrices
Ad ∈ Zmd×n such that lim

d→+∞
ρ(Ad) = +∞, we have the convergence

lim
d→+∞

m(PAd
) = m(P ).

3.1. Convergence of measures and integrals

In order to prove Theorem 3.1, we start by relating the growth of ρ(A)
to the weak convergence of the push-forward measures µA:

Lemma 3.2. — Fix n ∈ Z⩾1, and let Ad ∈ Zmd×n be a sequence of
integral matrices, with fixed number of columns, such that ρ(Ad) → +∞
as d → +∞. Then the sequence of measures µAd

on Tn converges weakly
to the measure µIdn

.

Proof. — This result is classical. We follow the lines of [6, Lemma 1],
which treats the case when md = 1 for every d. By the definition of weak
convergence and push-forward of measures, and by Weierstraß approxima-
tion, it is sufficient to prove that:

lim
d→+∞

(∫
Tmd

Q(zAd
md

) dµmd
(zmd

)
)

=
∫

Tn

Q(zn) dµn(zn)(3.1)

for every Laurent polynomial Q(zn) ∈ C[z±1
n ]. We see now immediately

that for every d ∈ N, the following identities hold true:∫
Tmd

Q(zAd
md

) dµmd
(zmd

) =
∑
v∈Zn

cv(Q) ·
∫

Tmd

zAd·v
md

dµmd
(zmd

)

=
∑
v∈Zn

Ad·v=0

cv(Q) =
∑
v∈ΛAd

cv(Q).(3.2)

ANNALES DE L’INSTITUT FOURIER
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Now, set R := max{∥v∥∞ : v ∈ supp(Q)}. If ρ(Ad) > R, then the only
vector v ∈ ΛAj

for which it may happen that cv(Q) ̸= 0 is the null vector
v = 0. In this case, we have the identity:

∑
v∈ΛAd

cv(Q) = c0(Q) =
∫

Tn

Q(zn) dµIdn
(zn)

which, combined with (3.2), shows (3.1), because the sequence on the left
is eventually constantly equal to the right hand side. □

Weak convergence of measures implies the convergence of integrals of
any bounded continuous function. Unfortunately, we would like a conver-
gence of integrals of log |P |, which is singular. However, uniform estimates
on L2-norms are enough to guarantee that the weak-convergence of mea-
sures implies convergence of integrals, as shown in the following general
Lemma 3.3. In this lemma, we choose to work with continuous functions
possibly having +∞-values, for which the integral for any measure on the
torus is naturally defined (possibly +∞), as explained for instance in [52,
Chapter 1].

Lemma 3.3. — Let νk be a sequence of probability measures on Tn,
which converges weakly to some probability measure ν∞. Let
f : Tn → R∪{+∞} be a continuous function, which is uniformly L2 for the
family {νk : k ∈ N ∪ {∞}}. Then we have the convergence∫

Tn f dνk →
∫

Tn f dν∞ as k → +∞.

Proof. — By assumption, there exists a positive real number C ∈ R>0
such that

∫
Tn |f |2 dνk ⩽ C for every k ∈ N∪{∞}. Fix ε > 0 and let λ = C

ε .
Define the set Sλ = {t ∈ Tn : |f(t)| > λ}. The L2-bounds yield, for any
k ∈ N ∪ {∞}:

(3.3)

∣∣∣∣∫
Sλ

(f − λ) dνk
∣∣∣∣ ⩽ 2

∫
Sλ

|f | dνk ⩽ 2
∫
Sλ

|f | |f |
λ

dνk

⩽
2
λ

∫
Tn

|f |2 dνk ⩽
2C
λ

= 2ε.

Now, let f̃ be the continuous function min(f, λ), which is bounded from
above by λ. For every z ∈ Tn, we have the equality

f(z) = f̃(z) + (f(z) − λ) · χSλ
(z),
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where χSλ
denotes the characteristic function of Sλ. Hence, for all k ∈ N

we have the bound:

(3.4)
∣∣∣∣∫

Tn

f dνk−
∫

Tn

f dν∞

∣∣∣∣⩽ ∣∣∣∣∫
Tn

f̃ dνk−
∫

Tn

f̃ dν∞

∣∣∣∣
+
∣∣∣∣∫
Sλ

(f − λ) dνk
∣∣∣∣+ ∣∣∣∣∫

Sλ

(f − λ) dν∞

∣∣∣∣ .
The last two terms on the right hand side of (3.4) are bounded by 2ε,
thanks to (3.3). For k big enough, by the convergence νk → ν∞, the first
one is less than ε. So we have proven that, for k big enough, we have:∣∣∣∣∫

Tn

f dνk −
∫

Tn

f dν∞

∣∣∣∣ ⩽ 5ε

which shows that
∫

Tn f dνk →
∫

Tn f dν∞ as k → +∞. □

3.2. Uniform L2-bounds and convergence of Mahler measures

Our goal is to prove that m(PA) =
∫

Tn log |P | dµA converges to
m(P ) =

∫
Tn log |P | dµA. From the previous results we know that an uni-

form L2-bound for these functions would grant the convergence. The fol-
lowing estimate is essentially obtained by Dimitrov and Habegger in [20,
Appendix A], where they deal with Lawton theorem and improves the rate
of convergence (see also [34]).

Proposition 3.4 (Dimitrov & Habegger). — Let n, k ∈ N be two in-
tegers. Then, there exists a constant C > 0 such that, for every non-zero
Laurent polynomial P (zn) ∈ C[z±1

n ] \ {0} with k(P ) = k and L∞(P ) = 1,
and every matrix A ∈ Zm×n with ρ(A) > diam(P ) and m ⩽ n, the follow-
ing holds:

∥ log |P |∥2
2,µA

:=
∫

Tn

∣∣log |P (zAm)|
∣∣2 dµA ⩽ C and ∥log |P |∥2

2,µn
⩽ C.

Proof. — A direct computation, similar to the one carried out in (3.2),
proves that, for any matrix A ∈ Zm×n, we have:

P (zAm) =
∑
v∈Zn

cv(P )zA·v
m =

∑
w∈Zm

 ∑
v∈Zn

A·v=w

cv(P )

 zwm.

Two vectors v, v′ ∈ Zn contribute non-trivially to the same monomial in
the above sum if and only if cv(P ) ̸= 0, cv′(P ) ̸= 0 and A · v = A · v′,
or equivalently v − v′ ∈ ΛA. By definition of diam(P ) (see Section 2.5), in
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this case, we have ∥v − v′∥∞ ⩽ diam(P ). We see that if ρ(A) > diam(P )
the only possibility is v − v′ = 0. In other terms, each monomial of PA
comes from a single monomial of P (zAm) with the same coefficient and no
compensations.

So, for any A with ρ(A) > diam(P ), the polynomial PA = P (zAm)
has m ⩽ n variables, k(PA) = k(P ) = k non-vanishing coefficients, and
L∞(PA) = L∞(P ) = 1. Our proposition comes then directly from the es-
timates of Dimitrov and Habegger. They show in [20, Lemma A.3(i)] that
for every l, k ∈ Z⩾1, there exists a constant Cl,k > 0 such that for any
Laurent polynomial Q ∈ C[z±1

l ], with k(Q) = k and L∞(Q) = 1, we have:∫
Tl

(log |Q|)2 dµl ⩽ Cl,k.

Thanks to the considerations in the previous paragraph, this bound applies
both to Q = P and to Q = PA, hence we can take

C := max{Cm,k : m ⩽ n}. □

Theorem 3.1 is now an easy consequence of the other results proved in
this section:

Proof of Theorem 3.1. — We first make an easy reduction: up to multi-
plying P by a constant a, we may and will assume that L∞(P ) = 1. Indeed,
we have, for all a ∈ C∗, both m(aP ) = log |a| + m(P ) and m(aPAj ) =
log |a| + m(PAj

). So the problem of convergence is equivalently solved for
P or aP . Observe moreover that, for every d ∈ N, we have the following
identities:

m(PAd
) =

∫
Tmd

log |P (zAd
md

)| dµmd
=
∫

Tn

log |P | dµAd
.

Let d0 ∈ N be any natural number such that ρ(Ad) ⩾ diam(P ) for
every d ⩾ d0. From Proposition 3.4, we know that the function log |P | is
uniformly L2 for the family {µAd

, d ⩾ d0} ∪ {µn}. Moreover, we know from
Lemma 3.2 that the family µAd

converges weakly to µn as d → +∞. Thus,
we have:

lim
d→+∞

m(P (zAd
md

)) = lim
d→+∞

∫
Tn

log |P | dµAd
=
∫

Tn

log |P | dµn = m(P )

thanks to Lemma 3.3. □

We will see an example of application of Theorem 3.1 in Section 5.2.
Meanwhile, we will devote the following section to a more careful analysis
of the convergence, which will provide an upper bound on its rate.
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4. Bounding the error term for the Mahler measure

The aim of this section is to improve Theorem 3.1 by providing an explicit
upper bound for the error term |m(PA) − m(P )|, where P ∈ C[z±1

n ] \ {0}
is a non-zero Laurent polynomial, and A ∈ Zm×n is an integral matrix.
We will assume without loss of generality that P is not a monomial (i.e.
k(P ) > 1), and that n ⩾ 2, because otherwise m(PA) = m(P ) for every
non-zero integral matrix A ∈ Zm×n. Then, we obtain the following result,
which generalises [20, Theorem A.1] to higher dimensions:

Theorem 4.1. — Fix two integers k, n ⩾ 2. Let P ∈ C[z±1
n ] be a Lau-

rent polynomial with k(P ) = k non-zero coefficients, and let ρ0(P ) be
the constant defined in (2.2). Then, for every m ∈ Z⩾1 and every matrix
A ∈ Zm×n such that ρ(A) ⩾ ρ0(P ), the following inequality holds:

|m(PA) −m(P )| ⩽ 8 · (36ek)n−1 · log(ρ(A))n
(

diam(P )
ρ(A)

) 1
k−1

.

4.1. An explicit exponential convergence for polynomials
without toric points

The aim of this section is to show that, for a Laurent polynomial P in
C[z±1

n ] which does not vanish on the unit torus Tn, the convergence of
m(PA) to m(P ) as ρ(A) → +∞ is exponentially fast, and its speed can
be explicitly bounded, as we will see in Corollary 4.4. This result follows
easily from the more general Theorem 4.2, which we will use later on in
the proof of Corollary 4.14, which in turn plays a crucial part in the proof
of Theorem 4.1. The proof of Theorem 4.2 uses crucially the standard fact
that the Fourier coefficients of a holomorphic function on a neighbourhood
of the torus Tn decay exponentially.

Theorem 4.2. — Fix two natural numbers n,m ⩾ 1, an open U ⊆ Cn

containing Tn, and a holomorphic function f : U → C. Then, for every real
number δ > 0 such that U contains the annulus Cδ defined in (2.1), and
every matrix A ∈ Zm×n such that ρ(A) ⩾ 2d(A)

3δ , the following estimate
holds:∣∣∣∣∫

Tn

f(z) dµA(z) −
∫

Tn

f(z) dµn(z)
∣∣∣∣ ⩽ (d(A) + 1)3d(A) · maxCδ

|f |
exp(δρ(A))

where d(A) := dim(ker(A)).
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Proof. — Let r = eδ and ΛA = ker(A) ∩ Zn, as in Section 2.2. For any
v ∈ Zn, write cv(f) :=

∫
Tn f(z)z−v dµn(z) for the v-th Fourier coefficient

of f , as in Section 2.4. Since f is holomorphic on U , the Fourier series∑
v∈Zn cv(f)zv converges normally to f on Tn, and the dominated conver-

gence theorem gives

(4.1)
∫

Tn

f(z) dµA(z) −
∫

Tn

f(z) dµn(z)

=
(∑
v∈Zn

cv(f)
∫

Tn

zv dµA(z)
)

− c0(f)

=

∑
v∈ΛA

cv(f)

− c0(f) =
∑

v∈ΛA\{0}

cv(f).

To bound the Fourier coefficients cv(f), we use the holomorphicity of f on
U . To be more precise, let us associate to every vector h = (h1, . . . , hn)
in Rn the torus Th := {z ∈ Cn : |zj | = ehj , ∀j ∈ {1, . . . , n}}. Then, for
every v ∈ Zn\{0} and every h ∈ Rn such that ∥h∥1 ⩽ δ, the homotopy
invariance of integrals of holomorphic functions implies that

cv(f) =
∫

Th

f(z)z−v dµn(z)(4.2)

because Th ⊆ Cδ ⊆ U by assumption. Now let j0 ∈ {1, . . . , n} be any
integer such that ∥v∥∞ = |vj0 |, and take h ∈ Rn to be the vector with
hj := 0 for any j ∈ {1, . . . , n}\{j0}, and hj0 := δ·vj0/|vj0 |. Then, using (4.2)
we see that:

|cv(f)| ⩽ max
Cδ

|f | · r−∥v∥∞ .(4.3)

Combining (4.1) and (4.3), we get

(4.4)

∣∣∣∣∫
Tn

f(z) dµA(z) −
∫

Tn

f(z) dµn(z)
∣∣∣∣ ⩽ ∑

v∈ΛA\{0}

|cv(f)|

⩽ max
Cδ

|f |
∑

v∈ΛA\{0}

r−∥v∥∞ .

The only remaining step to prove the theorem is to bound the sum appear-
ing in the right-hand-side of (4.4). It is an independent estimate, which
we state separately in Lemma 4.3. Note that we fulfil its assumptions: ΛA
is a lattice of full rank inside the vector space ker(A) of dimension d(A).
Moreover, its first successive minimum with respect to the ℓ∞-norm is by
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definition ρ(A). Eventually, we have by assumption

ρ(A) log(r) = ρ(A)δ ⩾ 2d(A)/3,

so we can use the bound (4.6) of the following Lemma 4.3. □

Lemma 4.3. — Fix a real vector space V of finite dimension d ∈ Z⩾1,
and a norm ∥·∥ : V → R⩾0. Let Λ ⊆ V be a lattice of full rank, and denote
by ρ the norm of the shortest vector of Λ \ {0} with respect to ∥·∥. Then,
we have the following estimate:

∑
v∈Λ\{0}

r−∥v∥ ⩽
3dd!
rρ

d∑
k=0

1
(d− k)!

(
2

3ρ log(r)

)k
(r > 1).(4.5)

In particular, if ρ log(r) ⩾ 2d/3, we have∑
v∈Λ\{0}

r−∥v∥ ⩽
(d+ 1)3d

rρ
(r > 1).(4.6)

Proof. — First of all, set B(x, q) := {y ∈ V : ∥y − x∥ ⩽ q}, for every
x ∈ V and q ⩾ 0, and let Nq := |B(0, q) ∩ Λ|. Now, observe that:

(4.7)

∑
v∈Λ\{0}

r−∥v∥ =
+∞∑
q=1

|{v ∈ Λ: ∥v∥ = q}| · r−q

=
+∞∑
q=1

(Nq −Nq−1) · r−q

= −Nρ−1

rρ−1 + log(r)
∫ +∞

ρ−1

N⌊t⌋

rt
dt

= − 1
rρ

+ log(r)
∫ +∞

ρ

N⌊t⌋

rt
dt

as follows from Abel’s summation formula (see [2, Theorem 4.2]), since
Nq = 1 if q ⩽ ρ− 1. Moreover, note that:⊔

x∈B(0,q)∩Λ

B
(
x,
ρ

2

)◦
⊆ B(0, q + ρ/2) (q ⩾ 0)

where B(x, ρ/2)◦ := {y ∈ V : ∥y−x∥ < ρ/2}. This inclusion, together with
the fact that vol(B(x, ρ/2)) = vol(B(x, ρ/2)◦), provides the bound

Nq ⩽
vol
(
B
(
0, q + ρ

2
))

vol
(
B
(
0, ρ2

)) =
(

2q
ρ

+ 1
)d

(q ⩾ 0)(4.8)
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which is also proved in [4, Theorem 2.1]. Applying the bound (4.8) to (4.7),
we get: ∑

v∈Λ\{0}

r−∥v∥ ⩽ − 1
rρ

+ log(r)
ρd

∫ +∞

ρ

(2t+ ρ)d

rt
dt

= − 1
rρ

+ 2drρ/2

(ρ log(r))d

∫ +∞

3ρ log(r)/2
ud e−u du,

where the last equality follows from the change of variables

2u = (2t+ ρ) log(r).

Putting x = 3ρ log(r)/2, we recognise the incomplete gamma function [28,
§ 9.2.1]:

Γ(d+ 1, x) =
∫ +∞

x

ud e−u du = d! e−x
d∑
k=0

xk

k! .

The inequality (4.5) in the Lemma follows. Now under the assumption
x ⩾ d, the right hand side of (4.5) is bounded by

3dd!
rρ

d∑
k=0

1
(d− k)! dk ⩽

3dd!
rρ

d∑
k=0

1
d! ⩽

(d+ 1)3d

rρ
. □

To conclude this section, let us see how to deduce the exponential conver-
gence of m(PA) → m(P ) as ρ(A) → +∞ from the previous Theorem 4.2.
Note that if a polynomial P does not vanish on the torus Tn, then there is
some δ > 0 such that it does not vanish on the annulus Cδ defined in (2.1).

Corollary 4.4. — Let P ∈ C[z±1
n ] be a Laurent polynomial that does

not vanish on the torus Tn. Then there exist r > 1 and C > 0 such that
for every matrix A ∈ Zm×n with the property that ρ(A) ⩾ 2d(A)/3 log(r),
we have the following estimate:

|m(PA) −m(P )| ⩽ C

rρ(A) .(4.9)

More precisely, one can take r = eδ, where δ > 0 is any real number such
that P does not vanish on the annulus Cδ.

Proof. — Let P ∗ be the conjugate reciprocal of P , introduced in Sec-
tion 2.5. Note that for z = (z1, . . . , zn) ∈ Tn, we have

|P (z)|2 = P (z1, . . . , zn)P (z1, . . . , zn) = P (z1, . . . , zn)P (z1, . . . , zn)

= P (z1, . . . , zn)P
(

1
z1
, . . . ,

1
zn

)
= PP ∗(z).
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This shows that
PP ∗ = |P |2

on the torus Tn. Fix δ > 0 such that P does not vanish on the annu-
lus Cδ. Since the involution (z1, . . . , zn) 7→ (z−1

1 , . . . , z−1
n ) preserves Cδ,

the polynomial P ∗ also does not vanish on Cδ. So, the differential form
ω := 1

2 d log(PP ∗) = d(PP ∗)/(2PP ∗) is holomorphic on some open
U ⊆ Cn containing Cδ. Moreover, the restriction of ω to the torus is equal
to d log |P |, hence is exact.

Now, for U ⊇ Cδ small enough, each loop γ ⊆ U is homologous to a
loop γ′ ⊆ Tn. This implies that

∫
γ
ω =

∫
γ′ d log|P | = 0. Thus, de Rham’s

comparison theorem shows that there exists a unique holomorphic func-
tion f : U → C such that ω = df on U and f = log |P | on Tn. Hence
|m(PA)−m(P )| =

∣∣∫
Tn f dµA −

∫
Tn f dµn

∣∣, and we can apply Theorem 4.2
because f is holomorphic on U ⊇ Cδ. This yields the bound (4.9), where
we set C := (n+ 1)3n · maxCδ

|f |. □

Remark 4.5. — For a given Laurent polynomial P ∈ C[z±1
n ] \ {0} which

does not vanish on Tn, one can find an explicit δ > 0, depending on
minTn |P |, such that P does not vanish on Cδ. We will carry out this com-
putation for a specific type of polynomial in Proposition 4.11.

4.2. An explicit error term in the general case

Let P ∈ C[z±1
n ] be a Laurent polynomial in n variables, which is not

a monomial. Given a matrix A ∈ Zm×n, we wish to prove Theorem 4.1,
which gives a precise estimate for the error |m(PA) − m(P )|. In order to
do so, we approximate the function:

f : Tn → R ∪ {−∞}
z 7→ log|P (z)|

which is singular when P vanishes on Tn, with the smooth functions
fε(z) = 1

2 log(|P (z)|2 + ε). Then, one has that:

(4.10) |m(PA) −m(P )|

⩽

∣∣∣∣∫
Tn

1
2 log(|P |2 + ε) − log |P | dµA

∣∣∣∣
+
∣∣∣∣∫

Tn

1
2 log(|P |2 + ε) − log |P | dµn

∣∣∣∣
+
∣∣∣∣∫

Tn

fε(z) dµA −
∫

Tn

fε(z) dµn(z)
∣∣∣∣
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and we proceed by bounding each integral separately. We will show in
Proposition 4.11 that fε is holomorphic on a neighbourhood of the torus,
so the results of the previous section apply to the last integral. However, two
phenomena are competing here. On the one hand, one need to take ε small
enough to make the first two integrals small. On the other hand, the annulus
on which fε is holomorphic becomes smaller and smaller when ε → 0, which
weakens the bound for the third integral given by Theorem 4.2. Thus, the
proof of Theorem 4.1 will consist in choosing a suitable value of ε, depending
on the quantity ρ(A), which balances these two phenomena.

In order to bound the first two integrals, we rely on an explicit esti-
mate for the measure of the set of points z ∈ Tn where |P (z)| is small.
This estimate is expressed in the following Theorem 4.6, which is similar
to results by Dobrowolski [22, Theorem 1.4] and Dimitrov–Habegger [20,
Lemma A.3]. The main idea of the proof is to compute the aforementioned
measure as an integral on Tn−1, and then to “slice” the torus Tn−1 ac-
cording to the magnitude of a given polynomial Pℓ(zn−1) related to P .
This method is due to Habegger, and has already been used in the proof
of [20, Lemma A.3]. We discuss the relation of our result with other similar
results in Remark 4.8. Finally, we remark that the following Theorem 4.6
is slightly better than needed for the proof of our main result. As we ex-
plain in Remark 4.9, the order of growth expressed by the bound (4.11) is
attained by a specific family of polynomials.

Theorem 4.6. — Let n ⩾ 1 be an integer, and let P ∈ C[z±1
n ] be a

Laurent polynomial with k = k(P ) ⩾ 2 non-zero coefficients. Let more-
over L∞(P ) := maxv∈Zn |cv(P )| and S(P, r) := {z ∈ Tn : |P (z)| ⩽ r} for
every r ∈ R⩾0. Also, set κ = κ(P ) = max1⩽i⩽n(ki(P )), where for every
i ∈ {1, . . . , n} we let ki = ki(P ) be the number of non-zero coefficients of
P seen as a polynomial in zi. Then for every α ∈ ]0, 1[ and every r > 0, we
have the following bound:

µn(S(P, r)) ⩽ C1(n, k) · α1−n
(

r

L∞(P )

) 1−α
κ−1

,(4.11)

where C1(n, k) := 6k · (18nk2)n−1.

Proof. — We may assume that P ∈ C[zn], since multiplying P by a
monomial does not change S(P, r) and L∞(P ). Also, replacing (P, r) by
(P/L∞(P ), r/L∞(P )), we may assume that L∞(P ) = 1. Finally, we may
assume r < 1, since the right-hand side of (4.11) is ⩾ 1 when L∞(P ) = 1
and r ⩾ 1.
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We prove the result by induction on n. When n = 1, the result is due to
Dobrowolski, as can be seen by applying to [22, Theorem 1.1] the trivial
inequality (k − 1)( 12

√
2

π )
k−2
k−1 ⩽ C1(1, k) = 6k.

If n ⩾ 2, we write
P =

∑
j

Pj(zn−1)zjn,

and we choose ℓ ∈ Z such that L∞(Pℓ) = L∞(P ) = 1. Note that
k(Pℓ) ⩽ k(P ) = k and κ(Pℓ) ⩽ κ(P ) = κ. Moreover, for every y ∈ Tn−1,
we set Qy(z) := P (y, z) ∈ C[z]. Similarly, we have k(Qy) ⩽ kn(P ) ⩽ k

and κ(Qy) ⩽ kn(P ) ⩽ κ. From now on, we will assume that Pℓ is not a
monomial, in other words κ(Pℓ) ⩾ 2. We will explain how to cover the case
κ(Pℓ) = 1 at the end of the proof.

By Fubini’s theorem, we can write:

(4.12)

µn(S(P, r)) =
∫

Tn−1
µ1(S(Qy, r)) dµn−1(y)

=
∫

|Pℓ(y)|⩽r
µ1(S(Qy, r)) dµn−1(y)

+
∫

|Pℓ(y)|>r
µ1(S(Qy, r)) dµn−1(y)

=: I1 + I2.

The integral I1 is bounded by µn−1(S(Pℓ, r)), and by induction we have

(4.13)
I1 ⩽ µn−1(S(Pℓ, r)) ⩽ C1(n− 1, k(Pℓ)) · α2−n

(
r

L∞(Pℓ)

) 1−α
κ(Pℓ)−1

⩽ C1(n− 1, k) · α2−nr
1−α
κ−1 .

We now concentrate on the integral I2. Since Pℓ(y) is a coefficient of Qy,
we have |Pℓ(y)| ⩽ L∞(Qy), so:

(4.14)

µ1(S(Qy, r)) ⩽ C1(1, k(Qy))
(

r

L∞(Qy)

) 1−α
κ(Qy)−1

⩽ C1(1, k)
(

r

|Pℓ(y)|

) 1−α
κ(Qy)−1

⩽ C1(1, k)
(

r

|Pℓ(y)|

) 1−α
κ−1

for every y ∈ Tn−1 \ S(Pℓ, r). Here we assumed κ(Qy) ⩾ 2, but the
bound (4.14) also holds if Qy is a monomial, because L∞(Qy) > r im-
plies S(Qy, r) = ∅ in this case.
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We now slice the domain Tn−1 \S(Pℓ, r) according to the modulus of Pℓ.
Choose an integer N ⩾ 1, and let r0, . . . , rN be the geometric progression
starting at r0 = r and ending at rN = k(Pℓ). Write Σm = S(Pℓ, rm) for
m = 0, . . . , N . Then

∫
|Pℓ(y)|>r

(
r

|Pℓ(y)|

)1−α
κ−1

dµn−1(y)

=
N∑
m=1

∫
Σm\Σm−1

(
r

|Pℓ(y)|

) 1−α
κ−1

dµn−1(y)

⩽
N∑
m=1

∫
Σm\Σm−1

(
r

rm−1

) 1−α
κ−1

⩽
N∑
m=1

(
r

rm−1

) 1−α
κ−1

· (µn−1(Σm) − µn−1(Σm−1)).

Let S denote the last sum. Using summation by parts, we have

S =
(

r

rN−1

) 1−α
κ−1

µn−1(ΣN ) −
(
r

r0

) 1−α
κ−1

µn−1(Σ0)

+
N−1∑
m=1

µn−1(Σm) ·

((
r

rm−1

) 1−α
κ−1

−
(
r

rm

) 1−α
κ−1
)
.

We now bound the volume of Σm using the induction hypothesis applied
to Pℓ, with a parameter β ∈ ]0, α[ to be specified later:

S⩽

(
r

rN−1

) 1−α
κ−1

+C1(n− 1, k)β2−nr
1−α
κ−1

N−1∑
m=1

r
1−β

κ(Pℓ)−1
m

(
r

− 1−α
κ−1

m−1 − r
− 1−α

κ−1
m

)
.

Taking the limit when N tends to infinity, the sum over 1 ⩽ m ⩽ N−1 be-
comes the Riemann–Stieltjes integral of the function f(x) =x(1−β)/(κ(Pℓ)−1)

on the interval [r, k(Pℓ)] with respect to g(x) = −x−(1−α)/(κ−1). This inte-
gral evaluates to, with γ = 1−β

κ(Pℓ)−1 − 1−α
κ−1 :

∫ k(Pℓ)

r

f(x)g′(x) dx = 1 − α

(κ− 1) · γ
(
k(Pℓ)γ − rγ

)
.
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Since κ(Pℓ) ⩽ κ and α′ < α, we have γ ⩾ (α − β)/(κ − 1) > 0 and also
γ < 1. Using also 1 ⩽ k(Pℓ) ⩽ k, we obtain∫

|Pℓ(y)|>r

(
r

|Pℓ(y)|

) 1−α
κ−1

dµn−1(y)

⩽ r
1−α
κ−1 + C1(n− 1, k)β2−n · 1 − α

(κ− 1) · γ
k(Pℓ)γr

1−α
κ−1

⩽ r
1−α
κ−1 + kC1(n− 1, k) β

2−n

α− β
r

1−α
κ−1 .

The function β ∈ ]0, α[ 7→ β2−n(α − β)−1 has a minimum at β = n−2
n−1 · α

for n ⩾ 3. For this choice of β, or taking β → 0 in the case n = 2, we get
the bound:

(4.15)
∫

|Pℓ(y)|>r

(
r

|Pℓ(y)|

) 1−α
κ−1

dµn−1(y)

⩽
(
1 + ke(n− 1)C1(n− 1, k)α1−n)r 1−α

κ−1 .

Going back to the volume of S(P, r), we obtain using (4.12), (4.13), (4.14)
and (4.15):

µn(S(P, r)) ⩽ C1(n− 1, k) · α2−nr
1−α
κ−1

+ C1(1, k)
(
1 + ke(n− 1)C1(n− 1, k)α1−n)r 1−α

κ−1

⩽
(
C1(n− 1, k) + C1(1, k) · e · nk · C1(n− 1, k)

)
α1−nr

1−α
κ−1

⩽ 18nk2 · C1(n− 1, k)α1−nr
1−α
κ−1

⩽ C1(n, k)α1−nr
1−α
κ−1 .

Finally, let us treat the case κ(Pℓ) = 1. Since L∞(Pℓ) = 1, we have I1 = 0.
Moreover (4.14) is still valid, so

µn(S(P, r)) = I2 =
∫

Tn−1
µ1(S(Qy, r)) dµn−1(y) ⩽ C1(1, k) · r

1−α
κ−1 ,

which is less than the right-hand side of (4.11). □

Remark 4.7. — We note that Lück [44, Proposition 2.1] provided another
estimate for the measure µn(S(P, t)). However, this bound depends on the
width wd(P ), which is a quantity defined in [44, §1.2] that turns out to be
comparable with diam(P ). In particular wd(PA) → +∞ as ρ(A) → +∞,
which makes Lück’s bound not adapted to our purposes. More precisely, if
we used Lück’s bound in the proof of Proposition 4.10, we would get an
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estimate for the first two integrals appearing in (4.10) which would diverge
as ρ(A) → +∞.

Remark 4.8. — We note that Habegger [34, Lemma A.4] and Dimitrov
and Habegger [20, Lemma A.3] stated another estimate for µn(S(P, t)),
where the exponent (1 − α)/(κ − 1) appearing in (4.11) is replaced by
1/(2(k− 1)), but the implicit constant does not depend on α. Our method
of proof is similar to theirs, and indeed the shape of the bound discussed
in Theorem 4.6 was already suggested after the proof of [20, Lemma A.3].
Finally, Dobrowolski [22, Theorem 1.4] provided a bound with an expo-
nent of the form 1/ (

∑n
i=1(ki(P ) − 1)), which in general is worse than

1/(κ(P ) − 1).

Remark 4.9. — From the bound of Theorem 4.6, choosing suitably α we
may achieve a bound of the form:

µn(S(P, r)) ≪ r1/(κ−1)| log r|n−1

when r → 0. On the other hand, consider the family of polynomials
{Pn,m :=

∏n
i=1(zi − 1)m : n ∈ Z⩾1, m ∈ Z⩾1}, for which we have that

κ(Pn,m) = m + 1. Then, it can be proved by induction on n and m that
the following asymptotic behaviour:

µn (S (Pn,m, r)) ≍ r
1
m | log r|n−1

holds true when r → 0.
Hence, we see that the bound provided by Theorem 4.6 is actually at-

tained (up to multiplicative constants) by a family of polynomials. How-
ever, we expect that for a generic polynomial P it should be possible to
get much better upper bounds for the function µn(S(P, r)), for instance
assuming that the zero locus of P inside (C×)n intersects Tn transversally.
This will be the subject of future investigations.

The crucial property of the bound provided by (4.11) is that the constants
involved remain bounded if we replace P by PA, for any matrix A ∈ Zm×n.
Under the additional assumptions that L∞(P ) = 1 and m ⩽ n, this suffices
to bound the first two integrals appearing in (4.10), as we show in the
following Proposition 4.10. This proposition follows from Theorem 4.6 by
a Tauberian estimate, similar in spirit to the ones considered in [60]. Note
that the aforementioned assumptions are harmless, as we will explain at
the beginning of the proof of Theorem 4.1.

Proposition 4.10. — Fix two natural numbers k ∈ Z⩾2 and n ∈ Z⩾1,
and a real number 0 < α < 1. Let P ∈ C[z±1

n ] be a Laurent polynomial
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such that k(P ) = k and L∞(P ) = 1. Let A be a matrix in Zm×n such
that ρ(A) > diam(P ) and m ⩽ n. Then, for every ε > 0 the following
inequalities hold:

0 ⩽
∫

Tn

1
2 log(|P |2 + ε) − log |P | dµA ⩽ C2(n, k, α) · ε

1−α
2(k−1)

where C2(n, k, α) := 12k2(18nk2)n−1 · α
1−n

1−α .

Proof. — Let ν be the measure on R⩾0 defined as the push-forward
of µA along the (measurable) function |P | : Tn → R⩾0. Moreover, let us
define the functions ϕ(t) := 1

2 log
(
1 + ε

t2

)
and ψ(s) :=

√
ε

e2s −1 , so that
ψ(ϕ(x)) = ϕ(ψ(x)) = x for every x > 0. Writing χS for the characteristic
function of a subset S ⊆ R, we have the following identities:

(4.16)
∫

Tn

1
2 log(|P |2 + ε) − log |P | dµA

=
∫ +∞

0
ϕ(t) dν(t)

=
∫ +∞

0

(∫ +∞

0
χ[0,ϕ(t)](s) ds

)
dν(t)

=
∫ +∞

0

(∫ +∞

0
χ[0,ψ(s)](t) dν(t)

)
ds

=
∫ +∞

0
ν([0, ψ(s)]) ds.

Now, we can bound ν([0, t]) using Theorem 4.6. Indeed, the assumption
ρ(A) > diam(P ) implies that k(PA) = k(P ) = k and L∞(PA) = L∞(P ) =
1, as we explained at the beginning of the proof of Proposition 3.4. Hence,
we see from Theorem 4.6 that:

ν([0, t]) := µA({z ∈ Tn : |P (z)| ⩽ t})
= µm({z ∈ Tm : |PA(z)| ⩽ t})

⩽ C1 (m, k(PA)) · α1−m · t
1−α

κ(PA)−1

⩽ C1(n, k) · α1−n · t
1−α
k−1
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because κ(PA) ⩽ k(PA) = k and C1 is an increasing function in both vari-
ables. Combining this bound with the identities provided by (4.16), we get:∫

Tn

1
2 log(|P |2 + ε) − log |P | dµA

=
∫ +∞

0
ν([0, ψ(s)]) ds

⩽

(
C1(n, k) · α1−n ·

∫ +∞

0

(
e2s −1

)− 1−α
2(k−1) ds

)
· ε

1−α
2(k−1) .

The last integral can be computed by substituting u = e2s −1 and using
Cauchy’s residue theorem (see [13, p. 107]):∫ +∞

0

(
e2s −1

)− 1−α
2(k−1) ds = 1

2

∫ +∞

0

u− 1−α
2(k−1)

u+ 1 du = π

2 · sin
(
π(1−α)
2(k−1)

) .
To conclude, we observe that 2 sin(x) ⩾ x when 0 ⩽ x ⩽ π/2 and that
2 k−1

1−α · C1(n, k) · α1−n ⩽ C2(n, k, α). □

We now tackle the last term in (4.10). We wish to bound it using The-
orem 4.2. To this end, we must show that the function 1

2 log(|P |2 + ε),
defined on the torus Tn, can be extended to a holomorphic function on
a neighbourhood of Tn. Following the idea used to prove Corollary 4.4,
we use the Laurent polynomial PP ∗, which is equal to |P |2 on Tn, and
we consider the function 1

2 log(PP ∗ + ε). The following proposition shows
that this function is well-defined and holomorphic on an explicit annulus
containing Tn.

Proposition 4.11. — Fix n ∈ N, a non-zero Laurent polynomial P in
C[z±1

n ], and ε > 0. Let P ∗ be the conjugate reciprocal of P , introduced
in Section 2.5. Let δ := δε(P ) be the constant defined in (2.3). Then the
function fε := 1

2 log(PP ∗ + ε), defined using the principal branch of the
logarithm, is holomorphic on an open neighbourhood of the annulus Cδ
defined in (2.1).

Proof. — Denote by Q the Laurent polynomial PP ∗. Since Q = |P |2 on
the torus, the image Q(Tn) is a segment contained in R⩾0. We will show
that Q(Cδ) is contained in the half-plane {w ∈ C : Re(w) > −ε}, so that
we may consider the principal branch of the logarithm of Q + ε on Cδ.
Our strategy is to fix a point u = (u1, . . . , un) on Tn, and to bound from
below the real part of Q near u in radial directions. We therefore write
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z = (eh1 u1, . . . , ehn un), and consider the function gu : Rn → C defined by

gu(h) = Q(eh1 u1, . . . , ehn un).

Note in particular that gu(0) = Q(u) ∈ R⩾0. Let us apply the multivariable
Taylor theorem to gu at the origin:

gu(h) = gu(0) +
n∑
i=1

∂gu

∂hi
(0) · hi +Ru(h)

where the remainder is given in Lagrange’s form by

Ru(h) = 1
2

n∑
i,j=1

∂2gu

∂hi∂hj
(αh h) · hihj (0 < αh < 1).

Lemma 4.12. — The partial derivatives ∂gu/∂hi(0), 1 ⩽ i ⩽ n, are
purely imaginary.

Proof. — From the definition of Q, we have

Q(z1, . . . , zn) = Q(1/z1, . . . , 1/zn)

for every z ∈ (C×)n. Substituting z = (eh1 u1, . . . , ehn un) gives gu(h) =
gu(−h). Differentiating with respect to hi at 0, we get the result. □

Lemma 4.12 ensures that the real part of Q behaves quadratically in h

near the torus. More precisely, we have

(4.17)
Re(Q(z)) = Re(gu(h)) = gu(0) + Re(Ru(h))

⩾ Re(Ru(h)) ⩾ −|Ru(h)|.

Now, let us introduce the differential operators Dk = zk(∂/∂zk) for every
k ∈ {1, . . . , n}. Notice that ∂gu/∂hk(h) = (DkQ)(z), and similarly for the
higher order derivatives. So, in order to give an upper bound for |Ru(h)|,
it suffices to bound |DiDjQ(z)|. Expanding this polynomial, we get

(4.18)
DiDjQ(z) = DiDj

 ∑
v,w∈Zn

cv(P )cw(P )zv−w


=

∑
v,w∈Zn

(vi − wi)(vj − wj)cv(P )cw(P )zv−w

which gives the bound

(4.19)
|DiDjQ(z)|⩽

∑
v,w∈Zn

|vi−wi||vj−wj ||cv(P )||cw(P )|
n∏
k=1

e|hk||vk−wk|

⩽ diam(P )2L1(P )2 ediam(P )∥h∥1 .
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Combining (4.17) and (4.19), we obtain

(4.20)
Re(Q(z)) ⩾ −|Ru(h)| ⩾ −1

2

n∑
i,j=1

∣∣∣∣ ∂2gu

∂hi∂hj
(αh h)

∣∣∣∣ · |hi||hj |

⩾ −1
2 diam(P )2L1(P )2 ediam(P )∥h∥1 ·∥h∥2

1.

Finally, if z ∈ Cδ then ∥h∥1 =
∑n
i=1|log|zi|| ⩽ δ, and the definition (2.3)

of δ implies that the right-hand side of (4.20) is ⩾ − 2
3ε. We thus have

Re(Q+ ε) > 0 on an open neighbourhood of Cδ, as we wanted to show. □

Thanks to Proposition 4.11, we may apply Theorem 4.2 to the functions
fε. However, we also need to bound fε on the domain Cδε(P ). This is the
content of the following lemma.

Lemma 4.13. — Let P ∈ C[z±1
n ] be a non-zero Laurent polynomial,

and fix ε > 0. Let δ := δε(P ) ∈ R>0 be defined as in (2.3), and let fε be
the function defined in Proposition 4.11. Then, we have that:

|fε(z)| ⩽ |log ε| + 2|logL1(P )| + 3

for every z ∈ Cδ.

Proof. — Let Q = PP ∗. We have

fε = log(Q+ ε) = log |Q+ ε| + i arg(Q+ ε),

and by the proof of Proposition 4.11, the argument of Q + ε stays in
]−π/2, π/2[ on the domain Cδ. It remains to bound from below and from
above the modulus of Q+ ε.

The lower bound follows from (4.20), since

|Q(z) + ε| ⩾ Re(Q(z)) + ε ⩾ ε/3

for z ∈ Cδ as seen at the end of the previous proof. For the upper bound,
let us write z = (eh1 u1, . . . , ehn un), where u = (u1, . . . , un) ∈ Tn and
h = (h1, . . . , hn) ∈ Rn. Then, a simple application of the triangle inequality
yields:

|Q(z)| ⩽
∑

v,w∈Zn

|cv(P )||cw(P )|
n∏
j=1

e|hj ||vj−wj |

⩽ L1(P )2 eδε(P ) diam(P ) ⩽
4
3L1(P )2.
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We deduce that:

|log(Q(z) + ε)| ⩽ |log|Q(z) + ε|| + π

2

⩽ max
( ∣∣∣log ε3

∣∣∣ , ∣∣∣∣log
(

4
3L1(P )2 + ε

)∣∣∣∣ )+ π

2 .

We conclude using the inequality |log(x + y)| ⩽ |log(x)| + |log(y)| + log 2,
valid for any x, y > 0, which is easily proved by distinguishing the cases
x ⩽ y and x ⩾ y. □

Using Theorem 4.2, together with Proposition 4.11 and the bound of
Lemma 4.13, we get:

Corollary 4.14. — Let m,n ⩾ 1 be integers, and P (zn) ∈ C[z±1
n ]

be a non-zero Laurent polynomial. For every ε > 0, consider the function
fε = 1

2 log(|P |2 + ε), and let δε(P ) ∈ R>0 be defined as in (2.3). Then,
for every matrix A ∈ Zm×n such that the inequality ρ(A)δε(P ) ⩾ 2d(A)/3
holds true, we have:∣∣∣∣∫

Tn

fε dµA −
∫

Tn

fε dµn
∣∣∣∣ ⩽ (d(A) + 1)3d(A) · |log ε| + 2|logL1(P )| + 3

exp(δε(P ) · ρ(A)) .

We are finally ready to prove Theorem 4.1, by choosing a suitable value
of ε.

Proof of Theorem 4.1. — We fix the Laurent polynomial P and a matrix
A in Zm×n verifying the assumption of Theorem 4.1, that is ρ(A) ⩾ ρ0(P ).
For this proof, we will simplify a bit the notations, by denoting k := k(P ),
ρ0 := ρ0(P ), δε := δε(P ), ρ := ρ(A) and d = d(A). Note that d ⩽ n by
definition.

Since the quantity |m(P ) − m(PA)|, which we want to bound, does not
change when multiplying P by a non-zero constant, we will assume without
loss of generality that L∞(P ) = 1. Finally, we may assume without loss
of generality that m ⩽ n (compare with [58, Theorem 4]). Indeed, let
U ∈ Zm×m be a matrix with non-zero determinant such that U · A is in
row-echelon form, and write B ∈ Zm′×n for the matrix obtained from U ·A
by deleting all the zero rows. Then, m′ = rk(B) ⩽ n by construction, and
one has that ΛA = ΛB , which implies that ρ(A) = ρ(B). Moreover, one
sees that m(PA) = m((PA)U ) = m(PU ·A) = m(PB) by combining [56,
Lemma 7] and [58, Lemma 6]. Hence, upon replacing A with B, we can
and will assume without loss of generality that m ⩽ n, as we claimed.

ANNALES DE L’INSTITUT FOURIER



LIMITS OF MAHLER MEASURES 1435

Now, let us come back to the bound provided by (4.10):

|m(PA) −m(P )| ⩽
∣∣∣∣∫

Tn

1
2 log(|P |2 + ε) − log |P | dµA

∣∣∣∣
+
∣∣∣∣∫

Tn

1
2 log(|P |2 + ε) − log |P | dµn

∣∣∣∣
+
∣∣∣∣∫

Tn

fε(z) dµA −
∫

Tn

fε(z) dµn(z)
∣∣∣∣

which holds for any ε > 0. The first two terms are bounded by Propo-
sition 4.10 under some conditions, whereas the third term is bounded by
Corollary 4.14, under other assumptions. The strategy is to choose the
value of ε such that we can indeed apply these two results and, moreover,
that the two upper bounds become comparable. To that end, let us fix the
quantity:

ε :=
(

(1 − α) diam(P ) · L1(P )
k − 1 · log(ρ)

ρ

)2
(4.21)

where 0 ⩽ α ⩽ 1
2 is a real number to be fixed later.

To begin with, we may apply Proposition 4.10, since ρ ⩾ ρ0 > diam(P )
by assumption (see (2.2) for the definition of ρ0), as well as L∞(P ) = 1
and m ⩽ n.

Next, to verify the assumptions of Corollary 4.14, we have to check that
δερ ⩾ 2d/3. To see this, note first of all that ρ ⩾ ρ0 ⩾ 7diam(P )2. Plugging
this bound in (4.21), and using the elementary inequalities log(ρ)

ρ ⩽ 3
4√
ρ

and k − 1 > 1 − α, we see that
√
ε ⩽ log(4/3)L1(P ). Combining this with

the definition of δε, given in (2.3), we get the equality:

δϵ =
√
ε

diam(P ) · L1(P ) = 1 − α

k − 1 · log(ρ)
ρ

.(4.22)

The desired condition δερ ⩾ 2d/3 then follows from the lower bound
ρ ⩾ ρ0 ⩾ exp(2(k− 1) max(n, 5)) ⩾ exp

(
k−1
1−αd

)
, as we have both 1 −α ⩾ 1

2
and d ⩽ n.

Eventually, to use efficiently Corollary 4.14, we need an upper bound
on the quantity |log(ε)| + 2 log(L1(P )) + 3. We begin by noting that our
assumption that ρ ⩾ ρ0 ⩾ 7 diam(P )2, together with the remark
1 = L∞(P ) ⩽ L1(P ) ⩽ kL∞(P ) = k and the elementary inequality
log(ρ)
ρ ⩽ 3

4√
ρ , implies that:

ε ⩽

(
(1 − α) diam(P ) · L1(P )

k − 1

)2
· 9

16ρ ⩽

(
k

k − 1

)2
· 9

112 ⩽ 1.
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This allows us to bound |log ε|. Using the expression (4.22) for ε and our
assumption log(ρ) ⩾ 2(k − 1) max(n, 5) ⩾ e3/2 ·(k−1)

(1−α) diam(P ) , we get:

|log(ε)| + 2 log(L1(P )) + 3 = 2 log
(

e3/2(k − 1)
(1 − α) diam(P ) · ρ

log(ρ)

)
⩽ 2 log(ρ).

Applying Proposition 4.10 and Corollary 4.14 together with the last es-
timate, we obtain the following bound:

|m(PA) −m(P )| ⩽ C2(n, k, α) · ε
1−α

2(k−1) + (d+ 1)3d · 2 log(ρ)
exp(δερ) .

We can now use our definition (4.21) of ε, together with the bounds
L1(P ) ⩽ k and d ⩽ n, to obtain:

|m(PA) −m(P )|

⩽C2(n, k, α) ·
(

(1−α) diam(P ) ·L1(P )
k − 1 · log(ρ)

ρ

)1−α
k−1

+(d+1)3d · 2 log(ρ)
ρ

1−α
k−1

⩽

(
C2(n, k, α) ·

(
diam(P ) · L1(P )

k − 1

) 1−α
k−1

+ 2(n+ 1)3n
)

log(ρ)
ρ

1−α
k−1

⩽

(
C2(n, k, α) ·

(
k

k − 1

) 1
k−1

+ 2(n+ 1)3n
)

· log(ρ) ·
(

diam(P )
ρ

) 1−α
k−1

.

The constant of the last inequality can be bounded using elementary in-
equalities, giving

|m(PA)−m(P )|⩽ 25k2(18nk2)n−1 · α
1−n

1 − α
· log(ρ) ·

(
diam(P )

ρ

)1−α
k−1

.(4.23)

Finally, we convert (4.23) into a bound with a logarithmic factor log(ρ)n.
To this end, we observe that the function:

α 7→ α1−n · ρ
α

k−1
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achieves its minimum at the value α = n(k−1)
log(ρ) . Note that 0 < α ⩽ 1

2 ,
because ρ ⩾ ρ0 ⩾ e2n(k−1), and ρ

α
k−1 = en. Thus, we obtain:

|m(PA) −m(P )| ⩽ 25k2(18nk2)n−1 · log(ρ)n−1

(1 − α)(n(k − 1))n−1 log(ρ) en(4.24)

·
(

diam(P )
ρ

) 1
k−1

⩽
50k2(18nk2)n−1 en

(n(k − 1))n−1 · log(ρ)n ·
(

diam(P )
ρ

) 1
k−1

(4.25)

⩽ 8 · (36ek)n−1 · log(ρ)n ·
(

diam(P )
ρ

) 1
k−1

.(4.26)

This gives the theorem. □

Remark 4.15. — As is clear from the proof of Theorem 4.1, the quality of
the error term depends essentially only on the quality of the bound (4.11)
provided by Theorem 4.6. To see this, fix a Laurent polynomial P ∈ C[z±1

n ]
with k(P ) ⩾ 2, and a matrix A ∈ Zm×n such that m ⩽ n and
ρ(A) > diam(P )+1, so that k(P ) = k(PA) and L∞(P ) = L∞(PA). Suppose
moreover that there exist a, b, C ∈ R>0 such that the bounds:

µn(S(P, t)) ⩽ C · α−b · (t/L∞(P ))(1−α)·a

µm(S(PA, t)) ⩽ C · α−b · (t/L∞(PA))(1−α)·a

hold true for every t ∈ R>0 and 0 < α < 1. Then, going through the proof
of Theorem 4.1 one sees that there exist two constants C ′, ρ′

0 ⩾ 0 such that
the following bound holds:

|m(PA) −m(P )| ⩽ C ′ · log(ρ(A))b+1 ·
(

diam(P )
ρ(A)

)a
for every matrix A such that ρ(A) ⩾ ρ′

0.

5. Discussion of the speed of convergence

In this section, we study several situations where more can be said about
the error term m(PA) − m(P ), compared to the bounds given in Corol-
lary 4.4 and Theorem 4.1. In particular, we devote Section 5.1 to an exper-
imental study of the differences m(P (z1, z

d
1))−m(P ) for some two-variable

polynomials P ∈ Z[z2]. A full asymptotic expansion for these sequences,
under a technical assumption on P , was provided by Condon [17], and our
experiments are compatible with this result. Finally, we devote Section 5.2
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to the study of a multivariate example where not only an equivalent of the
error term can be obtained, but also a full asymptotic expansion. This ex-
ample goes beyond Condon’s framework, both with respect to the number
of variables involved (as we study a family of 2-variable polynomials whose
Mahler measures converge to the Mahler measure of a 4-variable one) and
the type of expansion that we get, where a logarithmic term appears.

5.1. Asymptotic expansions in the presence of toric points

When a polynomial P (zn) ∈ C[z±1
n ] vanishes on the torus Tn, one can-

not hope that the error term |m(PA) −m(P )| decays exponentially fast as
ρ(A) → +∞. This is already evident when n = 2, and we take the sequence
of matrices Ad := (1, d) ∈ Z1×2, which results in the sequence of polynomi-
als PAd

(z1) := P (z1, z
d
1). For P (z1, z2) = z1 + z2 + 1, the resulting sequence

of polynomials {PAd
(z1) = z1 +zd1 +1}+∞

d=1 was already studied by Boyd [6,
Appendix 2], who proved that:

m(z1 + zd1 + 1) −m(z1 + z2 + 1) = c(d)
d2 +O

(
1
d3

)
where c : Z → R is a 3-periodic function. More precisely, c(d) := −

√
3π/6

if d ≡ 2(3), and c(d) :=
√

3π/18 otherwise. This is reflected by the fact
that the plot of m(PAd

) − m(P ), depicted in Figure 5.1(a), consists of
two branches. This is by no means an isolated phenomenon: we include in
Figure 5.1 two other examples, taken from [8, Eq. (1-7)] and [8, Table 1]
respectively, of polynomials P for which the error term m(PAd

) − m(P )
appears to be divided into a finite number of smooth branches.

Note however that not all polynomials P (z1, z2) give rise to an error
term m(PAd

) −m(P ) with this kind of behaviour. This is depicted in Fig-
ure 5.2(a) to 5.2(c), which display polynomials taken from [10, Table 1], [43,
Example 4.8] and [48, Eq. 1] respectively.

These different types of phenomena have been partially explained by
Condon’s work [17], which provides an asymptotic expansion for the error
term m(PAd

) − m(P ) of an irreducible polynomial P ∈ C[z±1
2 ] such that

P and ∂P/∂z2 do not have a common root on T2. To be more precise,
we need to recall some terminology introduced by Condon in [17]. First of
all, a function c : R → R is said to be quasi-periodic if it is the sum of
finitely many continuous periodic functions. Then, for every collection of
quasi-periodic functions {cj : R → R}j∈N and every function f : N → R
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(a) P (z1, z2) = z2 + (z1 + 1)
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(b) P (z1, z2) = (z1 + 1)z2 + (z1 − 1)
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-4e-4

-3e-4

-2e-4

-1e-4

0

1e-4

2e-4

(c) P (z1, z2) = z1z2
2 +(z2

1 +z1+1)z2+z1

Figure 5.1. Plots of m(PAd
) − m(P ), for Ad = (1, d) and

200 ⩽ d ⩽ 1 000, which seem to lie on finitely many smooth branches.
The SageMath code we used to produce these plots is available on-
line [32].

we will use the notation f(d) ≈
∑
j∈N

cj(d)
dj if, for every J ∈ N, there exists

a constant Cf,J > 0 such that the following bound:∣∣∣∣∣∣f(d) −
J∑
j=0

cj(d)
dj

∣∣∣∣∣∣ ⩽ Cf,J
dJ+1

holds for every d ⩾ 1. This notation generalises the usual notion of asymp-
totic series (see for example [5, Definition 1.3.1]), where the coefficients cj
are assumed to be constant. In particular, [17, Proposition 1] shows that,
as in the classical case, any given function f : N → R has at most one as-
ymptotic expansion of this kind. Then, Condon proves in [17, Theorem 1]
that for any Laurent polynomial P ∈ C[z±1

2 ] such that P and ∂P/∂z2 do
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(a) P = (z1+1)4z2−(z2
1 +1)(z2

1 −z1+1)
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(b) P = (z8
1 +z6

1 +z4
1 +z2

1 +1)(z2
2 +1)+

(2z8
1 − 37z6

1 + 5z5
1 + 70z4

1 + 5z3
1 −

37z2
1 + 2)z2

200 300 400 500 600 700 800 900 1000

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

(c) P = (z1 + 1)z2
2 + (z2

1 + z1 + 1)z2 +
z2

1 + z1

Figure 5.2. Plots of m(PAd
) − m(P ), for Ad = (1, d) and

200 ⩽ d ⩽ 1 000, which seem to lie on infinitely many smooth branches.
The SageMath code we used to produce these plots is available on-
line [32].

not have common zeros on T2, one has an asymptotic expansion:

m(P (z1, z
d
1)) −m(P ) ≈

+∞∑
j=2

cj(d)
dj

(5.1)

where each cj : R → R is an explicit quasi-periodic function, given by a
linear combination of the periodic functions:

{t 7→ Bk(⟨θ − tφ⟩) : k ∈ {2, . . . , j}, (e2π i θ, e2π iφ) ∈ VP (C) ∩ T2}

where Bk(x) denotes the k-th Bernoulli polynomial, and ⟨x⟩ := x − ⌊x⌋
denotes the fractional part of a real number x ∈ R. In particular, if
VP (C) ∩ T2 ⊆ µN × µN , where µN ⊆ T1 denotes the set of N -th roots of
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unity, each function cj is N -periodic. This is precisely what happens for the
two polynomials displayed in Figure 5.1(a) and 5.1(b), and hence this peri-
odicity of the coefficients cj explains why each point (d,m(PAd

)−m(P )) ∈ R2

seems to lie on a finite union of graphs of smooth functions. On the other
hand, one can show that each of the polynomials displayed in Figure 5.2
has toric points whose coordinates are not roots of unity, and this gives
rise to the depicted behaviour, where the points (d,m(PAd

) −m(P )) ∈ R2

seem to lie on an infinite union of graphs of smooth functions. Note fi-
nally that Figure 5.1(c), 5.2(b) and 5.2(c) do not fall strictly within the
framework of [17, Theorem 1], because in these cases P and ∂P/∂z2 have
common roots on T2. This is related to the fact that m(PAd

) − m(P )
seems to decay more slowly than 1/d2 in some cases. For instance, exten-
sive computational evidence (already mentioned in [17, § 8.3]), shows that
for the polynomial P appearing in Figure 5.1(c) one might expect that
m(PAd

) −m(P ) ∼ c(d)/d3/2, where c : Z → R is 6-periodic.

5.2. An asymptotic expansion with a logarithmic term

This section is dedicated to the sequence of polynomials Pd(z1, z2) :=∑
0⩽i+j⩽d z

i
1z
j
2 ∈ C[z1, z2], whose Mahler measure was widely studied

in [47] by the third author of this paper. In particular, she proved that

lim
d→+∞

m(Pd) = 9
2π2 ζ(3) = −18 · ζ ′(−2)(5.2)

where ζ(s) denotes Riemann’s zeta function. This convergence is illustrated
in Figure 5.3 and exhibits a much simpler behaviour than the examples
discussed before.

We can give a new proof of (5.2) using Theorem 3.1. More precisely, we
can write:

Pd(z2) = 1
(1 − z1)(1 − z2) −

(
z1

(1 − z1)(z1 − z2)

)
zd+1

1

−
(

z2

(1 − z2)(z2 − z1)

)
zd+1

2

using the geometric series. Thus, we see that:

Pd(z2)(1 − z1)(1 − z2)(z1 − z2) = zd+2
1 (z2 − 1) + zd+2

2 (1 − z1) + (z1 − z2)

= (1 − zd+2
1 )(1 − z2) − (1 − z1)(1 − zd+2

2 )

= P∞(zMd
2 )
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with

P∞(z4) := (1−z1)(1−z2)−(1−z3)(1−z4) and Md :=
(
d+2 0 1 0

0 1 0 d+2
)

∈ Z2×4.

This implies that m(Pd) = m(P∞(zMd
2 )). To apply Theorem 3.1, we need

to compute ρ(Md). This is elementary:

{v ∈ Z4 | Md · v = 0} =
〈( −1

0
d+2

0

)
,

( 0
d+2

0
−1

)〉
Z

so that ρ(Md) = d+ 2 for every d ∈ N. Thus, Theorem 3.1 shows that:

lim
d→+∞

m(Pd) = lim
d→+∞

m(P∞(zMd
2 )) = m(P∞).

Finally, D’Andrea and Lalín [18, Theorem 7] have proved that
m(P∞) = −18 · ζ ′(−2), which yields back the convergence (5.2) proved
by Mehrabdollahei in [47].

The proof of (5.2) provided in [47] proceeds along very different lines.
More precisely, Mehrabdollahei uses crucially the fact that Pd is always an
exact polynomial (see [47, Definition 2.2]), which allows her to write:

(5.3) m(Pd) = 3
d+ 1

∑
1⩽k⩽d+1

(d+ 2 − 2k)
2π ·D

(
e

2πik
d+2

)
− 3
d+ 2

∑
1⩽k⩽d

(d+ 1 − 2k)
2π ·D

(
e

2πik
d+1

)
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Figure 5.3. Plot of m(Pd) −m(P∞), for 200 ⩽ d ⩽ 1 000.
The SageMath code we used to produce this plot is available on-
line [32].
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where D(z) := arg(1 − z) log|z| − Im
(∫ z

0 log(1 − t) dt
t

)
denotes the Bloch–

Wigner dilogarithm (see [47, Theorem p. 2]). Even if our proof of (5.2)
does not use (5.3), the latter identity allows us to obtain a full asymptotic
expansion for the error term m(Pd) − m(P∞), which is the content of the
following theorem.

Theorem 5.1. — We have the following asymptotic expansion of the
error m(Pd) −m(P∞) as d → +∞:

m(Pd) −m(P∞) ≈ 1
(d+ 1)(d+ 2)

[
− log(d)

2 +
+∞∑
k=0

αk
dk

]
(5.4)

where the coefficients αk ∈ R are defined as:

α0 := 6
(
ζ ′(−1) − ζ ′(−2)

)
+ log(2π)

2 − 1

and, for k ⩾ 1:

αk := 12 · (−1)k

k(k + 1)

⌊k/2⌋∑
j=0

(
k + 1

2j

)
· (2k+1−2j − 1)(2j − 1)

(2j + 1)(2j + 2) ·B2j+2 · ζ(2j)

where Bn denotes the n-th Bernoulli number.
In particular, we have that m(Pd)−m(P∞) ∼ − log(ρ(Md))

2ρ(Md)2 as d → +∞.

Proof. — First of all, we observe that (5.3) can be rewritten as:

(5.5) m(Pd) −m(P∞)

= 3
(d+1)(d+2)

[
−2ζ ′(−2)+(d+1)3Ed+1(f)−(d+2)3Ed+2(f)

]
where f(x) := 1−2x

2π D(e2π i x) and Ed(F ) :=
∫ 1

0 F (x)dx − 1
d

(∑d
j=1 F

(
j
d

))
for each integrable function F : [0, 1] → R.

Now, write h(x) := (2x− 1)x log(x) and observe that the function

g(x) := f(x) − log(2π)(1 − 2x)2 − h(x) − h(1 − x)

is smooth on the closed interval [0, 1]. Indeed, f(x) and g(x) are smooth
on the open interval (0, 1), and g(x) = g(1 − x). Thus, to see that g(x) is
smooth on [0, 1] it is sufficient to compute the Maclaurin series:

(5.6) g(x) = (1 − 2x)
[

− log(2π) + (log(2π) + 2)x

+
+∞∑
k=2

1
(1 − k)k · xk +

+∞∑
m=1

ζ(2m)
m(2m+ 1) · x2m+1

]
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which follows from the identity d2

dθ2D(e2 i θ) = −2 cot(θ). Moreover, (5.6)
allows one to write the asymptotic expansion:

Ed(g) ≈ 3 log(2π) + 2
6 · 1

d2 +
+∞∑
m=2

B2m[2m+ 1 + 2(2m− 3)ζ(2m− 2)]
m(2m− 1)(2m− 2)(2m− 3) · 1

d2m

using the classical Euler–Maclaurin summation formula [49, Eq. 1].
This formula was extended by Navot to functions with a logarithmic

singularity at one endpoint of the integration interval [49, Eq. 7]. Applying
this generalisation to h(x) we see that:

Ed(h) ≈ 1
12 · log(d)

d2 −
(
ζ ′(−1) + 1

12

)
· 1
d2 + 2ζ ′(−2) · 1

d3

−
+∞∑
m=2

B2m(2m+ 1)
(2m)(2m− 1)(2m− 2)(2m− 3) · 1

d2m

as follows from the Taylor expansion

h(x) = (x− 1) + 5
2(x− 1)2 +

+∞∑
k=3

(−1)k+1(k + 2)
k(k − 1)(k − 2) · (x− 1)k.

Observing that Ed((1 − 2x)2) = − 2
3 · 1

d2 and Ed(h(x)) = Ed(h(1 − x)),
we get:

(5.7) Ed(f) ≈ 1
6 · log(d)

d2 +
(

1 − log(2π)
6 − 2ζ ′(−1)

)
· 1
d2

+ 4ζ ′(−2) · 1
d3 + 4

+∞∑
m=2

a2m · 1
d2m

where we set ak := Bkζ(k−2)
k(k−1)(k−2) ∈ Q · πk−2 for every integer k ⩾ 4.

Now, combining the identities:

(d+1) log(d+1)−(d+2) log(d+2) ≈ − log(d)−1+
+∞∑
k=1

(−1)k(2k+1 − 1)
k(k + 1) · 1

dk

and

1
(d+ 1)2m−3 − 1

(d+ 2)2m−3

≈ (2m− 3)
+∞∑
j=1

(
j + 2m− 4

2m− 3

)
(−1)j+1(2j − 1)

j
· 1
dj+2m−3
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with (5.5) and (5.7) we get:

(d+ 1)(d+ 2)(m(Pd) −m(P∞))

≈ − log(d)
2 +

(
6(ζ ′(−1) − ζ ′(−2)) + log(2π)

2 − 1
)

+
+∞∑
k=1

(−1)k(2k+1 − 1)
2k(k + 1) · 1

dk

+ 12
+∞∑
k=2

(−1)k ·

k−1∑
j=1

(
k − 1
k − j

)
(2j − 1)(k − j)

j
ak−j+3

 1
dk

which after some rearrangement, gives us (5.4). □

Remark 5.2. — The asymptotic expansion (5.4) has been checked nu-
merically using the PARI/GP program Asympraw available at [3].

Remark 5.3. — We note that in the asymptotic expansion (5.4), the co-
efficients αk do not depend on d, which is in contrast to what happened
for the examples described in Section 5.1. Moreover, if k ⩾ 1 we see that
αk is a Q-linear combination of 1, π2, π4, . . . , π2⌊k/2⌋, whereas α0 and π are
most likely algebraically independent.

Remark 5.4. — Note that [31, Proposition 8] provides another family of
polynomials, in three variables, whose Mahler measures converge tom(P∞).
They correspond to the monomial substitutions provided by the matrices:

Aa,b :=

b 0 0 a

0 1 0 0
0 0 1 0

 ∈ Z3×4

taken as either a → +∞ or b → +∞, where a, b ∈ N are coprime. Since
ker(Aa,b)∩Z4 = Z·(−a, 0, 0, b)t, we see that ρ(Aa,b) = max(a, b), and so [31,
Proposition 8] can be seen as a special case of Theorem 3.1. On the other
hand, the proof provided by Gu and Lalín uses an explicit formula (see [31,
Theorem 1]) for the Mahler measures of the three-variable polynomials
(P∞)Aa,b

, which is similar to the formula (5.3) proved in [47] by the third
named author of this paper.

5.3. Perspectives

We hope that the previous Sections 5.1 and 5.2 managed to convey to
the reader our impression that understanding the rate of convergence (and,
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even more, the asymptotic expansions) of the difference m(PA) − m(P ),
remains a difficult and interesting challenge. In particular, the bound pro-
vided by Theorem 4.1 seems far from optimal, even for a general polyno-
mial. Moreover, the actual rate of convergence, for a fixed polynomial P ,
seems to depend on the geometry of the real algebraic set VP (C) ∩ Tn,
which can be quite complicated on its own (see [33, Example 5.2.5]). Fur-
thermore, one should study as well the geometries of the intersections of
this real algebraic set with the sub-tori cut out by the matrices A. For ex-
ample, it would be interesting to explain the exponent 3/2 observed in the
asymptotics for P given in Figure 5.1(c). We also lack a rationale explain-
ing the logarithmic term appearing in the asymptotic expansion provided
in Theorem 5.1.
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(a) Ad = (1, d)

200 300 400 500 600 700 800 900 1000
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1

0
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2 1e 6

(b) Ad = (d, 1)

Figure 5.4. Plots of m(PAd
) −m(P ), for P = z2

1 + z2 + 1.

To conclude, we note that the invariant ρ(A), whose divergence is suf-
ficient to guarantee the convergence m(PA) → m(P ) (as we showed in
Theorem 3.1), will not suffice to express even the first term in the asymp-
totic expansion of m(PA) −m(P ). More precisely, let P = z2

1 + z2 + 1, and
consider the two sequences of matrices Ad = (1, d) and Ad = (d, 1). Then
ρ(Ad) = d in both cases, but the convergence patterns for m(PAd

) → m(P ),
portrayed in Figure 5.4, are quite different, which can be rigorously proved
using Condon’s formula (5.1).
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