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CORRIGENDUM TO “A SIMPLER PROOF OF
TOROIDALIZATION OF MORPHISMS FROM 3-FOLDS

TO SURFACES”

Annales de l’institut Fourier, vol. 63 (2013), n°3, 865–922

by Steven Dale CUTKOSKY (*)

Abstract. — We correct mistakes in the paper [3]. There is a missing case in
the analysis of [3]. We give the analysis of this additional case.

Résumé. — Nous corrigeons des erreurs dans l’article [3]. Il manque un cas dans
l’analyse de [3]. Nous donnons l’analyse de ce cas supplémentaire.

1. Introduction

A simpler and more conceptual proof of toroidalization of morphisms of
3-folds to surfaces, over an algebraically closed field of characteristic zero,
is given in [3]. A toroidalization is obtained by performing sequences of
blow ups of nonsingular subvarieties above the domain and range, to make
a morphism toroidal. The original proof of toroidalization of morphisms of
3-folds to surfaces, given in [1], is much more complicated. In [2], toroidal-
ization of morphisms from 3-folds to 3-folds is proven (over an algebraically
closed field of characteristic zero). This proof uses the result that toroidal-
ization of morphisms from 3-folds to surfaces is possible.

A case was missed in Lemma 3.6 of [3]. In this errata we give the changes
that must be made in [3] to include the analysis of this additional case.

The consideration of this new case does not lead to a change of any of
the statements of the main results of [3]. It also does not introduce any
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significant change in the proofs. All of the changes which need to be made
in [3] to incorporate this new case are written out in detail in this errata.
Numbers indexing equations, theorems, definitions, etc. in this errata are as
in [3]. New equations and statements of theorems introduced in this errata
are indexed by letters. The new case which we must consider is labeled as
(A) in the revised Definition 3.3 below.

The author thanks the reviewer for their careful reading and helpful
comments to improve the readability of the proofs. The author thanks
Andre Belotto and Ed Bierstone for pointing out that a case was missed in
the analysis of the original publication; this fault is corrected in this errata.

2. The corrections

Page 869, line 8: “g−1(DR)” should be g−1(DT )”.

Page 877, lines 22 - 23: “natural numbers r2, . . . , rm−2 and a positive
integer rm−1” should be “natural numbers r2, . . . , rm−1”.

Page 877: insert after “form of ω after Theorem 4.1.” on line 23: Let
ω′(m, r2, . . . , rm) be a function which associates a positive integer to a
positive integer m and natural numbers r2, . . . , rm. We will give a precise
form of ω′ after Theorem 4.2.

Page 877: Definition 3.3 should be modified as follows.

Definition 3.3. — X is 3-prepared (with respect to f : X → S) at a
point p ∈ D if σD(p) = 0 or if σD(p) > 0, f is 2-prepared with respect to
D at p and there are permissible parameters x, y, z at p such that x, y, z
are uniformizing parameters on an étale cover of an affine neighborhood of
p and we have one of the following forms, with m = σD(p) + 1:

(1) p is a 2-point, and we have an expression (2.2) with

(3.5) F = τ0z
m + τ2x

r2ys2zm−2 + · · · + τm−1x
rm−1ysm−1z + τmx

rmysm

where τ0 ∈ ÔX,p is a unit, τi ∈ ÔX,p are units (or zero), ri + si > 0
whenever τi ̸= 0 and (rm + c)b− (sm + d)a ̸= 0. Further, τm−1 ̸= 0
or τm ̸= 0.

(2) p is a 1-point, and we have an expression (2.1) with

(3.6) F = τ0z
m + τ2x

r2zm−2 + · · · + τm−1x
rm−1z + τmx

rm

where τ0 ∈ ÔX,p is a unit, τi ∈ ÔX,p are units (or zero) for 2 ⩽ i ⩽
m − 1, τm ∈ ÔX,p and ord(τm(0, y, 0)) = 1 (or τm = 0). Further,
ri > 0 if τi ̸= 0, and τm−1 ̸= 0 or τm ̸= 0.
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(3) p is a 1-point, and we have an expression (2.1) with

(3.7) F = τ0z
m + τ2x

r2zm−2 + · · · + τm−1x
rm−1z + xtΩ

where τ0 ∈ ÔX,p is a unit, τi ∈ ÔX,p are units (or zero) for 2 ⩽
i ⩽ m − 1, Ω ∈ ÔX,p, τi ̸= 0 for some i with 2 ⩽ i ⩽ m − 1 and
t > ω(m, r2, . . . , rm−1) (where we set ri = 0 if τi = 0). Further,
ri > 0 if τi ̸= 0.

(4) p is a 1-point, and we have an expression (2.1) with

(A) F = τ0z
m + τ2x

r2yzm−2 + · · · + τm−1x
rm−1yz + τmx

rmy + xtΩ

where τ0 ∈ ÔX,p is a unit, τi ∈ ÔX,p are units (or zero) for 2 ⩽
i ⩽ m, Ω ∈ ÔX,p, τi ̸= 0 for some i with 2 ⩽ i ⩽ m and t >

ω′(m, r2, . . . , rm) (where we set ri = 0 if τi = 0). Further, ri > 0 if
τi ̸= 0.

X is 3-prepared if X is 3-prepared for all p ∈ X.

Page 881, line 5: “Lemma” 3.5.

Pages 880–882: Lemma 3.6 and its proof should be changed as follows.

Lemma 3.6. — Suppose that X is 2-prepared with respect to f : X →
S. Suppose that p ∈ D is a 1-point with m = σD(p) + 1 > 1. Let u, v be
permissible parameters for f(p) and x, y, z be permissible parameters for
D at p such that a form (3.1) holds at p. Let U be an étale cover of an
affine neighborhood of p such that x, y, z are uniformizing parameters on
U . Let C be the curve in U which has local equations x = y = 0 at p.

Let T0 = Spec(k[x, y]), Λ0 : U → T0. Then there exists a sequence of
quadratic transforms T1 → T0 such that if U1 = U ×T0 T1 and ψ1 : U1 → U

is the induced sequence of blow ups of sections over C, Λ1 : U1 → T1 is the
projection, then U1 is 2-prepared with respect to f ◦ψ1 at all p1 ∈ ψ−1

1 (p).
Further, for every point p1 ∈ ψ−1

1 (p), there exist regular parameters x1, y1
in ÔT1,Λ1(p1) such that x1, y1, z are permissible parameters at p1, and there
exist regular parameters x̃1, ỹ1 in OT1,Λ1(p1) such that if p1 is a 1-point, x1 =
α(x̃1, ỹ1)x̃1 where α(x̃1, ỹ1) ∈ ÔT1,Λ1(p1) is a unit series and y1 = β(x̃1, ỹ1)
with β(x̃1, ỹ1) ∈ ÔT1,Λ1(p1), and if p1 is a 2-point, then x1 = α(x̃1, ỹ1)x̃1

and y1 = β(x̃1, ỹ1)ỹ1, where α(x̃1, ỹ1), β(x̃1, ỹ1) ∈ ÔT1,Λ1(p1) are unit series.
We have one of the following forms:

TOME 0 (0), FASCICULE 0
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(1) p1 is a 2-point, and we have an expression (2.2) with

(3.10) F = τzm + a2(x1, y1)xr2
1 y

s2
1 z

m−2 + · · ·
+ am−1(x1, y1)xrm−1

1 y
sm−1
1 z + amx

rm
1 ysm

1

where τ ∈ ÔU1,p1 is a unit, ai(x1, y1) ∈ k[[x1, y1]] are units (or zero)
for 2 ⩽ i ⩽ m − 1, am = 0 or 1 and if am = 0, then am−1 ̸= 0.
Further, ri + si > 0 whenever ai ̸= 0 and (rm + c)b− (sm +d)a ̸= 0.

(2) p1 is a 1-point, and we have an expression (2.1) with

(3.11) F = τzm + a2(x1, y1)xr2
1 z

m−2 + · · · + am−1(x1, y1)xrm−1
1 z + xrm

1 y1

where τ ∈ ÔU1,p1 is a unit, ai(x1, y1) ∈ k[[x1, y1]] are units (or zero)
for 2 ⩽ i ⩽ m− 1. Further, ri > 0 (whenever ai ̸= 0).

(3) p1 is a 1-point, and we have an expression (2.1) with

(3.12) F = τzm + a2(x1, y1)xr2
1 z

m−2 + · · · + am−1(x1, y1)xrm−1
1 z + xt

1y1Ω

where τ ∈ ÔU1,p1 is a unit, ai(x1, y1) ∈ k[[x1, y1]] are units (or zero)
for 2 ⩽ i ⩽ m − 1 and ri > 0 whenever ai ̸= 0. We also have
t > ω(m, r2, . . . , rm−1). Further, ai ̸= 0 for some 2 ⩽ i ⩽ m− 1 and
Ω ∈ ÔU1,p1 .

(4) p1 is a 1-point, and we have an expression (2.1) with

(B) F = τzm + a2(x1, y1)xr2
1 y1z

m−2 + · · ·

+ am−1(x1, y1)xrm−1
1 y1z + xrm

1 y1 + xt
1y

2
1Ω

where τ ∈ ÔU1,p1 is a unit, ai(x1, y1) ∈ k[[x1, y1]] are units (or
zero) for 2 ⩽ i ⩽ m and ri > 0 whenever ai ̸= 0. We also have
t > ω′(m, r2, . . . , rm). Further, ai ̸= 0 for some 2 ⩽ i ⩽ m and
Ω ∈ ÔU1,p1 .

Proof. — Let p = Λ0(p). Let T = {i | ai(x, y) ̸= 0 and 2 ⩽ i < m}.
There exists a sequence of blow ups φ1 : T1 → T0 of points over p such
that at all points q ∈ ψ−1

1 (p), we have permissible parameters x1, y1, z such
that x1, y1 are regular parameters in ÔT1,Λ1(q) and we have that ug is a
monomial in x1 and y1 times a unit in ÔT1,Λ1(q), where g =

∏
i∈T ai(x, y).

Suppose that am(x, y) ̸= 0. Let v = xbam(x, y) if (2.1) holds and v =
xcydam(x, y) if (2.2) holds. We have v ̸∈ k[[x]] (respectively v ̸∈ k[[xayb]]).
Then by Lemma 3.5 applied to u, v, we have that there exists a further
sequence of blow ups φ2 : T2 → T1 of points over p such that at all points
q ∈ (ψ1 ◦ψ2)−1(p), we have permissible parameters x2, y2, z such that x2, y2
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are regular parameters in ÔT2,Λ2(q) such that ug = 0 is a SNC divisor and
either

(c1) u = xa
2 , v = P (x2) + xb

2y
c
2

with c > 0 or

(c2) u = (xa
2y

b
2)t, v = P (xa

2y
b
2) + xc

2y
d
2

where ad− bc ̸= 0.
At a 1-point or 2-point p2 ∈ U2 above p, we ask if there is an expression

(2.1) or (2.2) such that F has an expression

(3.13) F = τzm + a2(x2, y2)xr2
2 y

s2
2 z

m−2 + · · ·
+ am−1(x2, y2)xrm−1

2 y
sm−1
2 z + amx

rm
2 ysm

2

where τ is a unit series, am = 0 or 1 and ai are unit series (or zero) for
2 ⩽ i < m.

At a 2-point p2 ∈ U2 above p we always have an expression (2.2) such
that (3.13) holds, since ug = 0 is a SNC divisor and by (c2).

Suppose that p2 ∈ U2 is a 1-point above p. Let x2, y2 be the regular
parameters of (c1) in ÔT2,Λ2(p2). There exists ỹ ∈ ÔT2,Λ2(p2) such that
x2, ỹ are regular parameters and ug = αxa

2 ỹ
b where α is a unit. Since

x2, ỹ2 is a regular system of parameters in ÔT2,Λ2(p2) ∼= k[[x2, y2]], we have
that ord ỹ(0, y2) = 1. Thus by the Weierstrass Preparation Theorem, there
exists a unit τ ∈ k[[x2, y2]] and nonunit series φ(x2) ∈ k[[x2]] such that
ỹ = τ(y2 +φ(x2)). Substituting into F , we obtain an expression (2.1) with

(C) F = τzm + a2(x2, y2)xr2
2 (y2 + φ(x2))s2zm−2 + · · ·

+ am−1(x2, y2)xrm−1
2 (y2 + φ(x2))sm−1z + amx

rm
2 ysm

2

where τ is a unit series, am = 0 or 1, sm ⩾ 1 and ai are unit series (or
zero) for 2 ⩽ i ⩽ m, φ ∈ k[[x2]] is a series with 0 ⩽ r := ordφ ⩽ ∞, and
x2, y2, z are permissible parameters with y2 ∈ ÔT2 .

We will show that after a finite number of blow ups of points T3 → T2,
we have an expression (2.2) with (3.13) for all 2-points p3 ∈ U3 above p
and an expression (2.1) with (3.13) for all 1-points p3 ∈ U3 above p.

Suppose that p2 ∈ U2 is a 1-point. If r = 0 or ∞, am = 0 or sm = 1, then
after a permissible change of variables we have a form (3.13). In fact, if a
form (C) holds at p2 with sm = 1, then we set ỹ2 = y2 + φ(x2) and write

v = P (x2) + xb
2F = P (x2) + amx

b+rm
2 φ(x2) + xb

2F
′

TOME 0 (0), FASCICULE 0
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where

F ′ = τzm + a2x
r2
2 ỹ

s2
2 z

m−2 + · · · + am−1x
rm−1
2 ỹ

sm−1
2 z + amx

rm
2 ỹ2

to obtain the form (3.13).
Suppose that a form (3.13) does not hold at p2. Then 0 < r = ordφ < ∞,

am = 1 and sm > 1 in (C). Let T3 → T2 be the blow up of Λ2(p2) ∈ T2 with
induced blow up ψ3 : U3 → U2. Suppose p3 ∈ ψ−1

3 (p2). We have permissible
parameters x3, y3, z in ÔU3,p3 such that one of the following cases holds:

(a) x2 = x3, y2 = x3(y3 + α) with 0 ̸= α ∈ k.
(b) x2 = x3, y2 = x3y3.
(c) x2 = x3y3, y2 = y3.

Suppose that (a) holds at p3. We have

ysm
2 = xsm

3 (y3 + α)sm = xsm
3 (αsm + µ(y3)y3)

where µ(y3) is a unit series.
If α+ 1

x3
φ(x3) is a unit series, then setting ỹ3 = µ(y3)y3, we have

v = P (x2) + xb
2F = P (x3) + amα

smxb+rm+sm
3 F ′

where

F ′ = τzm + a′
2x

r2+s2
2 + · · · + a′

m−1x
rm−1+sm−1
3 + amx

rm+sm
3 ỹ3,

of the form (3.13).
If α+ 1

x3
φ(x3) is not a unit series, then setting y3 = µ(y3)y3, we obtain

an expression (C) at p3 with sm = 1,

(c3) F = τzm + a′
2x

r′
2

3 (y3 + φ′(x3))s′
2zm−2 + · · ·

+ a′
m−1x

r′
m−1

3 (y3 + φ′(x3))s′
m−1z + amx

r′
m

3 y3).

As observed above, making the change of variables ỹ3 = y3 + φ′(x3) now
gives a form (3.13).

If (b) holds at p3, then an expression (2.1) holds at p3 with a form (C)
with ordφ < r. If ordφ = 0 we then have an expression (3.13) (with si = 0
for 2 ⩽ i ⩽ m− 1). If (c) holds then

y2 + φ(x2) = y3 + φ(x3y3) = y3γ(x3, y3)

where γ is a unit series. Thus we have an expression (2.2) with a form
(3.13).

By induction on r, we must obtain an expression (2.1) or (2.2) with a
form (3.13) at all points above p. We may assume that this already holds
in U2.

Suppose that p2 is a 1-point above p.

ANNALES DE L’INSTITUT FOURIER
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Let

J = I2

(
∂u
∂x2

∂u
∂y2

∂u
∂z

∂v
∂x2

∂v
∂y2

∂v
∂z

)
= xn

(
∂F

∂y2
,
∂F

∂z

)
for some positive integer n. Since D contains the locus where f is not
smooth, we have that the localization Jp = (ÔU2,q)p, where p is the prime
ideal (y2, z) in ÔU2,q.

We compute
∂F

∂z
= am−1x

rm−1
2 y

sm−1
2 + Λ1z

and
∂F

∂y2
= smamx

rm
2 ysm−1

2 + Λ2z

for some Λ1,Λ2 ∈ ÔU2,q, to see that

(D) am−1 ̸= 0 and sm−1 = 0, or am ̸= 0 and sm = 1.

Suppose p2 ∈ U2 is a 2-point above p. Deforming p2 to a 1-point, we see
from (D) (and since (3.13) holds) that (3.10) holds at p2.

Let p2 ∈ U2 be a 1-point above p where the conclusions of the lemma do
not hold. Let T3 → T2 be the blow up of Λ2(p2) ∈ T2 with induced blow up
ψ3 : U3 → U2. Suppose p3 ∈ ψ−1

3 (p2). We have that the conclusions of the
lemma hold in the form (3.10) if p3 is the 2-point which has permissible
parameters x3, y3, z defined by x2 = x3y3 and y2 = y3. At a 1-point which
has permissible parameters x3, y3, z defined by x2 = x3, y2 = x3(y3 + α)
with α ̸= 0, we have that a form (3.11) or (3.12) holds. Thus the only case
where we may possibly have not achieved the conclusions of the lemma is at
the 1-point which has permissible parameters x3, y3, z defined by x2 = x3
and y2 = x3y3. We continue to blow up, so that there is at most one point
p3 above p2 where the conclusions of the lemma do not hold. This point
is a 1-point which has permissible parameters x3, y3, z with x2 = x3 and
y2 = xn

3y3 where we can take n as large as we like. Substituting into (3.13),
we have an expression (2.1) at p3 with

F = τzm + a2x
r2+s2n
3 ys2

3 z
m−2 + · · ·

+ am−1x
rm−1+sm−1n
3 y

sm−1
3 z + amx

rm+smn
3 ysm

3 .

Since we must have some ai ̸= 0 with si ⩽ 1 by (D) for n ≫ 0, we obtain
a form (3.12) or (B). □

Pages 882–883: The statement of Lemma 3.7 should be changed to:

Lemma 3.7. — Suppose that X is 2-prepared with respect to f : X →
S. Suppose that p ∈ D is a 1-point with σD(p) > 0. Let m = σD(p)+1. Let

TOME 0 (0), FASCICULE 0
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x, y, z be permissible parameters for D at p such that a form (3.1) holds
at p.

Let notation be as in Lemma 3.6. For p1 ∈ ψ−1
1 (p) let r(p1) = m+1+rm,

if a form (3.11) holds at p1, and

r(p1) =
{

max{m+ 1 + rm,m+ 1 + sm} if am = 1
max{m+ 1 + rm−1,m+ 1 + sm−1} if am = 0

if a form (3.10) holds at p1. Let r(p1) = ω(m, r2, . . . , rm−1) + m + 1 if a
form (3.12) holds at p1, r(p1) = ω′(m, r2, . . . , rm) + m + 1 if a form (B)
holds at p1. Let

(3.15) r = max{r(p1) | p1 ∈ ψ−1
1 (p)}.

Suppose that x∗ ∈ OX,p is such that x = γx∗ for some unit γ ∈ ÔX,p

with γ ≡ 1 mod mr
pÔX,p.

Let V be an affine neighborhood of p such that x∗, y ∈ Γ(V,OX), and
let C∗ be the curve in V which has local equations x∗ = y = 0 at p.

Let T ∗
0 = Spec(k[x∗, y]). Then there exists a sequence of blow ups of

points T ∗
1 → T ∗

0 above (x∗, y) such that if V1 = V ×T ∗
0
T ∗

1 and ψ∗
1 : V1 → V

is the induced sequence of blow ups of sections over C∗, Λ∗
1 : V1 → T ∗

1 is
the projection, then V1 is 2-prepared at all p∗

1 ∈ (ψ∗
1)−1(p). Further, for

every point p∗
1 ∈ (ψ∗

1)−1(p), there exist x̂1, y1 ∈ ÔV1,p∗
1

such that x̂1, y1, z

are permissible parameters at p∗
1 and we have one of the following forms:

(1) p∗
1 is a 2-point, and we have an expression (2.2) with

(3.16) F = τ0z
m + τ2x̂

r2
1 y

s2
1 z

m−2 + · · · + τm−1x̂
rm−1
1 y

sm−1
1 z + τmx̂

rm
1 ysm

1

where τ0 ∈ ÔV1,p∗
1

is a unit, τ i ∈ ÔV1,p∗
1

are units (or zero) for
0 ⩽ i ⩽ m − 1, τm is zero or 1, τm−1 ̸= 0 if τm = 0, ri + si > 0 if
τ i ̸= 0, and

(rm + c)b− (sm + d)a ̸= 0.
(2) p∗

1 is a 1-point, and we have an expression (2.1) with

(3.17) F = τ0z
m + τ2x̂

r2
1 z

m−2 + · · · + τm−1x̂
rm−1
1 z + τmx̂

rm
1

where τ0 ∈ ÔV1,p∗
1

is a unit, τ i ∈ ÔV1,p∗
1

are units (or zero), and
ord τm(0, y1, 0) = 1. Further, ri > 0 if τ i ̸= 0.

(3) p∗
1 is a 1-point, and we have an expression (2.1) with

(3.18) F = τ0z
m + τ2x̂

r2
1 z

m−2 + · · · + τm−1x̂
rm−1
1 z + x̂t

1Ω

where τ0 ∈ ÔV1,p∗
1

is a unit, τ i ∈ ÔV1,p∗
1

are units (or zero), Ω ∈
ÔV1,p∗

1
, τ i ̸= 0 for some 2 ⩽ i ⩽ m− 1 and t > ω(m, r2, . . . , rm−1).

Further, ri > 0 if τ i ̸= 0.

ANNALES DE L’INSTITUT FOURIER
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(4) p∗
1 is a 1-point, and we have an expression (2.1) with

(F) F = τ0z
m + τ2x̂

r2
1 y1z

m−2 + · · · + τm−1x̂
rm−1
1 y1z + xrm

1 y1 + x̂t
1Ω

where τ0 ∈ ÔV1,p∗
1

is a unit, τ i ∈ ÔV1,p∗
1

are units (or zero) for
2 ⩽ i ⩽ m, Ω ∈ ÔV1,p∗

1
, τ i ̸= 0 for some 2 ⩽ i ⩽ m and t >

ω′(m, r2, . . . , rm). Further, ri > 0 if τ i ̸= 0.

Page 885, line 6: “τm ∈ k[[x1, y1]] with ord(τm(0, y1)) = 1” should be
“τm ∈ k[[x1, y1, z]] with ord(τm(0, y1, 0)) = 1”.

Page 885, line 11: after “form (3.18)” insert: “and in the case when p1
has a form (B) a similar argument shows that p∗

1 has a form (F).” The
following is a detailed proof of this statement.

Suppose that p1 has a form (B). With the notation of Lemma 3.6, we
have polynomials φ,ψ such that

x = φ(x̃1, ỹ1), y = ψ(x̃1, ỹ1)

determines the birational extension OT0,p0 → OT1,Λ1(p1), and we have a
formal change of variables

x1 = α(x̃1, ỹ1)x̃1, y1 = β(x̃1, ỹ1)

for some unit series α and series β. In this case, p1 maps to a 1-point with
an expression (3.13). Let W ⊂ {2, . . . ,m − 1} be the set of i such that
si ⩾ 2. Then W ̸= ∅, i ̸∈ W implies, with the notation of (B),

ai(x, y) = ai(x1, y1)xri
1 y1,

am(x, y) = am(x1, y1)xrm
1 y1

and ∑
i∈W

ai(x, y)zi = xt
1y

2
1Ω

with t > ω′(m, r1, . . . , rm).
We have x = γx∗ with γ ≡ 1 mod mr

pÔX,p. Set y∗ = y. At p∗
1, we have

regular parameters x∗
1, y

∗
1 in OT ∗

1 ,Λ∗
1(p∗

1) such that

x∗ = φ(x∗
1, y

∗
1), y∗ = ψ(x∗

1, y
∗
1),

and x∗
1, y

∗
1 , z̃ are regular parameters in OV1,p∗

1
(recall that z = σz̃ in Lem-

ma 3.1). We have regular parameters x1, y1,∈ ÔT ∗
1 ,Λ∗

1(p∗
1) defined by

x1 = α(x∗
1, y

∗
1)x∗

1, y1 = β(x∗
1, y

∗
1).

We have u = xa = xa1
1 where a1 = ad for some d ∈ Z+. Since

[α(x̃1, ỹ1)x̃1]d = x, we have that [α(x∗
1, y

∗
1)x∗

1]d = x∗. Set x̂1 = γ
1
dx1 =

γ
1
dα(x∗

1, y
∗
1)x∗

1. We have that γ 1
dα(x∗

1, y
∗
1) is a unit in ÔV1,p∗

1
, and x = x̂d

1.
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Thus x1 = x̂1 (with an appropriate choice of root γ 1
d ). We have u = x̂ad

1 ,
so that x̂1, y1, z are permissible parameters at p∗

1.
For i ̸∈ W , we have

ai(x, y) = ai(γx∗, y∗) ≡ ai(x∗, y∗) mod mr
pÔV,p

and

ai(x∗, y∗) = ai(φ(x∗
1, y

∗
1), ψ(x∗

1, y
∗
1))

= xri
1 ai(x1, y1)

≡ xri
1 ai(x1, y1) mod mr

pOV1,p∗
1
.

We further have

am(x∗, y∗) ≡ xrm
1 y1 mod mr

pÔV1,p∗
1

and
xt

1y
2
1Ω ≡ xt

1y
2
1Ω(x1, y1, z) mod mr

pOV1,p∗
1
.

Thus we have expressions (2.1) with

(c4)

u = xda
1

v = P (xd
1) + xbd

1 P1(x1) + xbd
1 (τzm + xr2

1 a2(x1, y1)y1z
m−2 + · · ·

+ xrm
1 y1 + xt

1y
2
1Ω + h)

where τ ∈ ÔV1,p∗
1

is a unit series and

h ∈ mr
pÔV1,p∗

1
⊂ (x1, z)r.

Set s = r −m, and write

h = zmΛ0(x1, y1, z) + zm−1x1+s
1 Λ1(x1, y1) + zm−2x2+s

1 Λ2(x1, y1) + · · ·

+ zx
(m−1)+s
1 Λm−1(x1, y1) + xm+s

1 Λm(x1, y1)

with Λ0 ∈ mp∗
1
ÔV1,p∗

1
and Λi ∈ k[[x1, y1]] for 1 ⩽ i ⩽ m.

Substituting into (c4), we obtain an expression

u = xda
1

v = P (xd
1) + xbd

1 P1(x1) + xbd
1 (τ0z

m + xr2
1 τ2y1z

m−2 + · · ·

+ x
rm−1
1 τm−1y1z + xrm

1 y1 + xt′

1 Ω)

where τ0 ∈ ÔV1,p∗
1

is a unit, τ i ∈ ÔV1,p∗
1

are units (or zero), for 1 ⩽ i ⩽
m− 1.
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A SIMPLER PROOF OF TOROIDALIZATION 11

We have τ0 = τ + Λ0, τi = ai(x1, y1) for 2 ⩽ i ⩽ m− 1, and

Ω = xt−t′

1 y2
1Ω(x, y1, z) + zm−1x1+s−rm

1 Λ1(x1, y1) + · · ·

+ xm+s−rm
1 Λm(x1, y1)).

with t′ = ω′(m, r2, . . . , rm) + 1
We thus have the desired form (F).

Page 894, line 16: After “in a neighborhood of q” insert “Further, if
IOU ′,q is principal, then σD(q) = 0”.

Page 895, line 3: “σD′(q)” should be “σD(q)”.

Page 895, line 10: “σD(q) < m− h− 1” should be “σD(q) ⩽ m− h− 1”

Page 896, line 17: “rm if τi ̸= 0” should be “rm if τm ̸= 0”

Page 896, line 17:

s = min{b1m, ri + b1(m− i) with τi ̸= 0 for 2 ⩽ i ⩽ m− 1, rm if τm ̸= 0}.

Page 896, line −8: “Then xrm generates IÔU ′,q” should be “If τm ̸= 0,
then xrm generates IÔU ′,q”.

Page 896, line −6: After “Thus U ′ is prepared at q” insert: “If τm = 0
then τm−1 ̸= 0 so xrm−1z generates IÔU ′,q. Then G′ = x

rm−1+b1
1 Λ with

ord Λ(0, 0, z) = 1 so U ′ is prepared at q.”

Page 896, line −4: Remove “and rm−1 > 0”

Page 896, line −2 and page 897, line 8: “ri > 0” should be τi ̸= 0”.

Page 897, line 7: Should be “z = xb1
1 z1 for some b1 ∈ Z+”

Page 897, lines −10, −7, −5: “ri > 0” should be τi ̸= 0”.

Page 898, line 10, Replace “The proof is similar to that of the Theo-
rem 4.1” with the following detailed proof of Theorem 4.2.

Proof. — Let I be the ideal in Γ(U,OX) generated by

zrm and {xrizm−i | 2 ⩽ i ⩽ m− 1 and τi ̸= 0}.

Suppose that ψ : U ′ → U is toroidal for D and U ′ is nonsingular. Let
D′ = ψ−1(D).

The set of 2-curves of D′ is the disjoint union of the 2-curves of DU ′ and
the 2-curve which is the intersection of the strict transform of the surface

TOME 0 (0), FASCICULE 0
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z = 0 on U ′ with DU ′ . ψ factors as a sequence of blow ups of 2-curves of
(the preimage of) D. We will verify the following three statements, from
which the conclusions of the theorem follow.

(c5) If q ∈ ψ−1(p) and IOU ′,q is principal, then σD(q) < σD(p).
In particular, σD(q) < σD(p) if q is a 1-point of D′.

(c6)

If C ′ is a 2-curve of DU ′ , then U ′ is prepared at q = C ′ ∩ ψ−1(p)
if and only if σD(q) < ∞
if and only if IOU ′,q is principal
if and only if U ′ is prepared at all q′ ∈ C ′ in a neighborhood of q.

(c7)

If C ′ is the 2-curve of D′ which is the intersection of DU ′ with
the strict transform of z̃ = 0 in U ′, then σD(q) ⩽ σD(p) if q =
C ′ ∩ ψ−1(p), and σD(q′) = σD(q) for q′ ∈ C ′ in a neighborhood
of q.

Suppose that q ∈ ψ−1(p) is a 1-point for D′. Then IÔU ′,q is principal.
At q, we have permissible parameters x1, y, z1 defined by

(c8) x = xa1
1 , z = xb1

1 (z1 + α)

for some a1, b1 ∈ Z+ and 0 ̸= α ∈ k. Substituting into (3.7), we have

u = xaa1
1 , v = P (xa1

1 ) + xba1
1 G

where

G = τ0x
b1m
1 (z1 + α)m + τ2x

a1r2+b1(m−2)
1 (z1 + α)m−2 + · · ·

+ τm−1x
a1rm−1+b1
1 (z1 + α) + xa1t

1 Ω.

Let xs
1 be a local generator of IÔU ′,q. We have that a1t > s by our con-

struction of ω(m, r2, . . . , rm−1) before the statement of Theorem 4.2. Let
G′ = G

xs
1
.

If zm is a local generator of IÔU ′,q, then G′ has an expansion

G′ = τ ′(z1 + α)m + g2(z1 + α)m−2 + · · · + gm−1(z1 + α) + +x1Ω1 + yΩ2

where 0 ̸= τ ′ = τ(0, 0, 0) ∈ k, g2, . . . , gm ∈ k and Ω1,Ω2 ∈ ÔU ′,q. We have
ord(G′(0, 0, z1)) ⩽ m − 1. Setting F ′ = G′ − G′(x1, 0, 0) and P ′(x1) =
P (xa1

1 ) + xba1+b1m
1 G′(x1, 0, 0), we have an expression

u = xaa1
1 , v = P ′(x1) + xba1+b1m

1 F ′

of the form of (2.1). Thus U ′ is 2-prepared at q with σD′(q) < m − 1 =
σD(p).
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A SIMPLER PROOF OF TOROIDALIZATION 13

Suppose that zm is not a local generator of IÔU ′,q, but there exists some
i with 2 ⩽ i ⩽ m− 1 such that xrizm−i is a local generator of IÔU ′,q. Let
h be the smallest i with this property. Then G′ has an expression

G′ = gh(z1 + α)m−h + · · · + gm + x1Ω1 + y1Ω2

for some gi ∈ k with gh ̸= 0 and Ω1,Ω2 ∈ ÔU ′,q. As in the previous case, we
have that U ′ is 2-prepared at q with σD(q) ⩽ m− h− 1 < m− 1 = σD(p).

Now suppose that q ∈ ψ−1(p) is a 2-point for DU ′ . We have permissible
parameters x1, y, z1 in ÔU ′,q such that

(c9) x = xa1
1 zb1

1 , z = xc1
1 z

d1
1

with a1, b1 > 0 and a1d1 − b1c1 = ±1. Substituting into (3.7), we have

u = xa1a
1 zb1a

1 , v = P (xa1
1 zb1

1 ) + xa1b
1 zb1b

1 G

where

G = τ0x
c1m
1 zd1m

1 + τ2x
r2a1+c1(m−2)
1 z

r2b1+d1(m−2)
1 + · · ·

+ τm−1x
a1rm−1+c1
1 z

b1rm−1+d1
1 + xa1t

1 zb1t
1 Ω.

Let C ′ be the 2-curve of DU ′ containing q. The three statements σD(q) <
∞, σD(q) = 0 and IOU ′,q is principal are equivalent. Further, we have that
σD(q′) = σD(q) for q′ ∈ C ′ in a neighborhood of q.

Suppose that IOU ′,q is principal and let xs
1z

t
1 be a local generator of

IÔU ′,q. We have that a1t > s and b1t > t by our construction of
ω(m, r2, . . . , rm−1) before the statement of Theorem 4.2. Let G′ = G/xs

1z
t
1.

We have that

u = (xa1
1 zb1

1 )a, v = P (xa1
1 zb1

1 ) + xa1b+s
1 zbb1+t

1 G′

has the form (2.2), since we have made a monomial substitution in x and
z. Since zm or xrizm−i for some i < m is a local generator of IÔU ′,q, we
have that G′ is a unit in ÔU ′,q. We thus have that U ′ is prepared at q.

The final case is when q ∈ ψ−1(p) is on the 2-curve C ′ of D′ which is the
intersection of DU ′ with the strict transform of z = 0 in U ′. Then there
exist permissible parameters x1, y, z1 at q such that

(c10) x = x1, z = xb1
1 z1

for some b1 ∈ Z+. The equations x1 = z1 = 0 are local equations of C ′ at
q. Let

s = min{b1m, ri + b1(m− i) with τi ̸= 0 for 2 ⩽ i ⩽ m− 1}.
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We have that t > s by our construction of ω(m, r2, . . . , rm−1) before the
statement of Theorem 4.1. We have an expression of the form (2.1) at q,

u = xa
1

v = P (xa
1) + xab+s

1 G′

with

G′ = τ0x
b1m−s
1 zm

1 +τ2x
r2+b1(m−2)−s
1 zm−2

1 +· · ·+τm−1x
rm−1+b1−s
1 z1+xt−s

1 Ω.

We see that σD(q) ⩽ σD(p) (with σD(q) < σD(p) if s = ri + b1(m− i) for
some i with 2 ⩽ i ⩽ m − 1) and σD(q′) = σD(q) for q′ in a neighborhood
of q on C ′.

Suppose that IOU ′,q is principal. Let h be the largest i such that τi ̸= 0 in
(3.7). Then xrhzm−h is the local generator of IÔU ′,q. Since 2 ⩽ h ⩽ m− 1,
we have that

σD(q) = m− h− 1 < m− 1 = σD(p). □

Before the statement of Theorem 4.3 on page 898, add the following:

We construct the function ω′(m, r2, . . . , rm) in a similar way to the con-
struction of ω. Let I be the ideal in k[x, z] generated by zm and xrizm−i

for all i such that 2 ⩽ i ⩽ m and τi ̸= 0. We define ω′(m, r2, . . . , rm) as we
define ω, except we allow i to range within 2 ⩽ i ⩽ m.

Theorem G. — Suppose that p ∈ Sing1(X) is a 1-point and X is 3-
prepared at p. Let x, y, z be permissible parameters at p giving a form (A)
at p. Let U be an étale cover of an affine neighborhood of p in which x, y, z
are uniformizing parameters. Then xz = 0 gives a toroidal structure D

on U .
There is (after possibly replacing U with a smaller neighborhood of p) a

unique, minimal toroidal morphism ψ : U ′ → U with respect to D which
has the property that U ′ is nonsingular, 2-prepared and ΓD(U ′) < σD(p).
This map ψ factors as a sequence of permissible blowups πi : Ui → Ui−1
of sections Ci over the two curve C of D. Ui is 1-prepared for Ui → S. We
have that the curve Ci blown up in Ui+1 → Ui is in SingσD(p)(Ui) if Ci is
not a 2-curve of DUi

, and that Ci is in Sing1(Ui) if Ci is a 2-curve of DUi
.

Proof. — Let I be the ideal in Γ(U,OX) generated by

zrm and {xrizm−i | 2 ⩽ i ⩽ m and τi ̸= 0}.

Suppose that ψ : U ′ → U is toroidal for D and U ′ is nonsingular. Let
D′ = ψ−1(D).
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The set of 2-curves of D′ is the disjoint union of the 2-curves of DU ′ and
the 2-curve which is the intersection of the strict transform of the surface
z = 0 on U ′ with DU ′ . ψ factors as a sequence of blow ups of 2-curves of
(the preimage of) D. We will verify the following three statements, from
which the conclusions of the theorem follow.

(c11) If q ∈ ψ−1(p) and IOU ′,q is principal, then σD(q) < σD(p).
In particular, σD(q) < σD(p) if q is a 1-point of D′.

(c12)

If C ′ is a 2-curve of DU ′ , then U ′ is prepared at q = C ′ ∩ ψ−1(p)
if and only if σD(q) < ∞
if and only if IOU ′,q is principal
if and only if U ′ is prepared at all q′ ∈ C ′ in a neighborhood of q.

(c13)

If C ′ is the 2-curve of D′ which is the intersection of DU ′ with
the strict transform of z̃ = 0 in U ′, then σD(q) ⩽ σD(p) if q =
C ′ ∩ ψ−1(p), and σD(q′) = σD(q) for q′ ∈ C ′ in a neighborhood
of q.

Suppose that q ∈ ψ−1(p) is a 1-point for D′. Then IÔU ′,q is principal.
At q, we have permissible parameters x1, y, z1 defined by

(c14) x = xa1
1 , z = xb1

1 (z1 + α)

for some a1, b1 ∈ Z+ and 0 ̸= α ∈ k. Substituting into (A), we have

u = xaa1
1 , v = P (xa1

1 ) + xba1
1 G

where

G = τ0x
b1m
1 (z1 + α)m + τ2x

a1r2+b1(m−2)
1 y(z1 + α)m−2 + · · ·

+ τm−1x
a1rm−1+b1
1 y(z1 + α) + τmx

a1rm
1 y + xa1t

1 Ω.

Let xs
1 be a local generator of IÔU ′,q. We have that a1t > s by our con-

struction of ω′(m, r2, . . . , rm). Let G′ = G
xs

1
.

If zm is a local generator of IÔU ′,q, then G′ has an expansion

G′ = τ ′(z1 + α)m + x1Ω1 + yΩ2

where 0 ̸= τ ′ = τ(0, 0, 0) ∈ k, g2, . . . , gm ∈ k and Ω1,Ω2 ∈ ÔU ′,q. We have
ord(G′(0, 0, z1)) ⩽ m − 1. Setting F ′ = G′ − G′(x1, 0, 0) and P ′(x1) =
P (xa1

1 ) + xba1+b1m
1 G′(x1, 0, 0), we have an expression

u = xaa1
1 , v = P ′(x1) + xba1+b1m

1 F ′

of the form of (2.1). Thus U ′ is 2-prepared at q with σD′(q) < m − 1 =
σD(p).
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Suppose that zm is not a local generator of IÔU ′,q, but there exists some
i with 2 ⩽ i ⩽ m such that xrizm−i is a local generator of IÔU ′,q. Let h
be the smallest i with this property. Then G′ has an expression

G′ = gh(z1 + α)m−hy + · · · + gmy + x1Ω1 + y2
1Ω2

for some gi ∈ k with gh ̸= 0 and Ω1,Ω2 ∈ ÔU ′,q. We have that U ′ is
2-prepared at q with σD(q) ⩽ (m−h+1)−1 < m−1 = σD(p) since h ⩾ 2.

Now suppose that q ∈ ψ−1(p) is a 2-point for DU ′ . We have permissible
parameters x1, y, z1 in ÔU ′,q such that

(c15) x = xa1
1 zb1

1 , z = xc1
1 z

d1
1

with a1, b1 > 0 and a1d1 − b1c1 = ±1. Substituting into (A), we have

u = xa1a
1 zb1a

1 , v = P (xa1
1 zb1

1 ) + xa1b
1 zb1b

1 G

where

G = τ0x
c1m
1 zd1m

1 + τ2x
r2a1+c1(m−2)
1 z

r2b1+d1(m−2)
1 y + · · ·

+ τm−1x
a1rm−1+c1
1 z

b1rm−1+d1
1 y + τmx

a1rm
1 zb1rm

1 y + xa1t
1 zb1t

1 Ω.

Let C ′ be the 2-curve of DU ′ containing q. The three statements σD(q) <
∞, σD(q) = 0 and IOU ′,q is principal are equivalent. Further, we have that
σD(q′) = σD(q) for q′ ∈ C ′ in a neighborhood of q.

Suppose that IOU ′,q is principal and let xs
1z

t
1 be a local generator of

IÔU ′,q. We have that a1t > s and b1t > t by our construction of
ω′(m, r2, . . . , rm). Let G′ = G/xs

1z
t
1. We have that

u = (xa1
1 zb1

1 )a, v = P (xa1
1 zb1

1 ) + xa1b+s
1 zbb1+t

1 G′

has the form (2.2), since we have made a monomial substitution in x and
z. Since zm or xrizm−i for some i is a local generator of IÔU ′,q, we have
that ordG′(0, y, 0) ⩽ 1. We thus have that U ′ is prepared at q.

The final case is when q ∈ ψ−1(p) is on the 2-curve C ′ of D′ which is the
intersection of DU ′ with the strict transform of z = 0 in U ′. Then there
exist permissible parameters x1, y, z1 at q such that

(c16) x = x1, z = xb1
1 z1

for some b1 ∈ Z+. The equations x1 = z1 = 0 are local equations of C ′ at
q. Let

s = min{b1m, ri + b1(m− i) with τi ̸= 0 for 2 ⩽ i ⩽ m}.
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We have that t > s by our construction of ω′(m, r2, . . . , rm). We have an
expression of the form (2.1) at q,

u = xa
1

v = P (xa
1) + xab+s

1 G′

with

G′ = τ0x
b1m−s
1 zm

1 + τ2x
r2+b1(m−2)−s
1 zm−2

1 y + · · ·

+ τm−1x
rm−1+b1−s
1 z1y + τmx

rm
1 y + xt−s

1 Ω.

We see that σD(q) ⩽ σD(p) (with σD(q) < σD(p) if s = ri + b1(m− i) for
some i with 2 ⩽ i ⩽ m) and σD(q′) = σD(q) for q′ in a neighborhood of q
on C ′.

Suppose that IOU ′,q is principal. Let h be the largest i such that τi ̸= 0
in (A). Then xrhzm−h is the local generator of IÔU ′,q. Since 2 ⩽ h ⩽ m−1,
we have that

σD(q) = (m− h+ 1) − 1 < m− 1 = σD(p). □

Page 907, lines 19–20 and line 29: should be “(3.6), (3.7) or (A)”

Page 908, line 9: should be “Theorem 4.1, 4.2 or G”.

Page 918, lines 16 and −2: should be “Theorem 4.2 and G”

BIBLIOGRAPHY

[1] S. D. Cutkosky, Monomialization of morphisms from 3-folds to surfaces, Lecture
Notes in Mathematics, vol. 1786, Springer, 2002, v+235 pages.

[2] ——— , Toroidalization of dominant morphisms of 3-folds, Memoirs of the American
Mathematical Society, vol. 190, American Mathematical Society, 2007, 222 pages.

[3] ——— , “A simpler proof of toroidalization of morphisms from 3-folds to surfaces”,
Ann. Inst. Fourier 63 (2013), no. 3, p. 865-922.

Manuscrit reçu le 2 décembre 2021,
révisé le 17 septembre 2022,
accepté le 17 novembre 2022.

Steven Dale CUTKOSKY
Department of Mathematics
University of Missouri
Columbia MO 65211 (USA)
cutkoskys@missouri.edu

TOME 0 (0), FASCICULE 0

mailto:cutkoskys@missouri.edu

	1. Introduction
	2. The corrections
	References

