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COMPATIBILITY DEGREE OF CLUSTER COMPLEXES

by Changjian FU & Yasuaki GYODA (*)

Abstract. — We introduce a new function on the set of pairs of cluster variables
via f -vectors, which is called the compatibility degree (of cluster complexes). The
compatibility degree is a natural generalization of the classical compatibility degree
introduced by Fomin and Zelevinsky. In particular, we prove that the compatibility
degree has the duality property, the symmetry property, the embedding property
and the compatibility property, which the classical one has. We also conjecture that
the compatibility degree has the exchangeability property. As pieces of evidence
of this conjecture, we establish the exchangeability property for cluster algebras
of rank 2, acyclic skew-symmetric cluster algebras, cluster algebras arising from
weighted projective lines, and cluster algebras arising from marked surfaces.

Résumé. — Nous introduisons une nouvelle fonction sur l’ensemble des paires
de variables de cluster via les vecteurs f , qui est appelée le degré de compatibi-
lité (des complexes de cluster). Le degré de compatibilité est une généralisation
naturelle du degré de compatibilité classique introduit par Fomin et Zelevinsky.
En particulier, nous prouvons que le degré de compatibilité possède la propriété
de dualité, la propriété de symétrie, la propriété d’encastrement et la propriété
de compatibilité, que possède le degré classique. Nous conjecturons également que
le degré de compatibilité possède la propriété d’échangeabilité. Comme éléments
de preuve de cette conjecture, nous établissons la propriété d’échangeabilité pour
les algèbres à grappes de rang 2, les algèbres à grappes acycliques asymétriques,
les algèbres à grappes provenant de lignes projectives pondérées et les algèbres à
grappes provenant de surfaces marquées.

1. Introduction

Cluster algebras were defined in [16] to study the dual canonical bases
and the total positivity in semisimple algebraic groups at first. They are
commutative algebras generated by the cluster variables. These generators
are gathered into overlapping sets of fixed finite cardinality, called clusters,
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which are defined recursively from an initial one via mutation. The cluster
complex of a cluster algebra is the simplicial complex whose simplexes are
subsets of cluster variables in each cluster [17] . It encodes the mutation of
cluster variables and has played an important role in the study of cluster
algebras and their interaction with different mathematical subjects. For
example, [5] showed that a simplicial complex whose simplexes are subsets
of tilting sets in a cluster category coincides with one of cluster complexes.
This identification yields an application of representation theory to cluster
algebras. Also, [14] pointed out that triangulations of marked surfaces and
their flips have cluster structures by proving that arc complexes correspond
with cluster complexes. This indicates a connection of cluster algebras with
hyperbolic geometry.

A compatibility degree of a cluster complex (or cluster algebra) is a
function on the set of pairs of cluster variables satisfying various properties.
Such a function was first introduced by Fomin and Zelevinsky [18] for
generalized associhedra associated with finite root systems in their study
of Zamolodchikov’s periodicity for Y -systems, which are a special kind of
cluster complexes of cluster algebras. In particular, for each finite root
system Φ, there is a cluster algebra A(Φ) whose cluster complex coincides
with the generalized associahedron associated with Φ. Let Φ⩾−1 be the set
of almost positive roots of Φ, i.e. the union of all negative simple roots and
all positive roots. In this case, there is a bijection between the set of cluster
variables of A(Φ) and Φ⩾−1 given by the denominator vectors (d-vectors) of
cluster variables [17, 19]. Under this bijection, the (classical) compatibility
degree of A(Φ) introduced in [18] is a function (· ∥ ·)cl from pairs of almost
positive roots to nonnegative integers. The classical compatibility degree
(· ∥ ·)cl was generalized by Reading [40], who introduced the c-compatibility
degree for not necessary crystallographic root systems. Moreover, Ceballos
and Pilaud shows that c-compatibility degree is also given by using d-
vectors in [9]. Recently, Cao and Li [8] introduced a compatibility degree (in
this paper, it is called the d-compatibility degree) for any cluster complexes
by using d-vectors. However, the d-compatibility degree does not preserve
many properties of the classical one.

The main theme of this paper is to introduce a new compatibility degree
for any cluster complexes (Definition 4.9 and Theorem 4.10). Instead of
using d-vectors as in [8], we propose to generalize the classical compatibility
degree by using the f -vectors. We simply call it the compatibility degree.
The f -vectors are maximal degree vectors of F -polynomials, which are
polynomials of coefficients in cluster variables. They were studied in [19,
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21, 22, 25, 26, 44]. It is conjectured that F -matrices, which consist of f -
vectors in a cluster, determine a cluster uniquely.

Our main result is that the compatibility degree defined by the f -vectors
gives a more “natural” generalization of the classical compatibility degree
than the one defined by the d-vectors. First, the compatibility degree has
the duality property, the symmetry property and the embedding prop-
erty (Proposition 4.14). In classical cases, the degree of α and β in Φ⩾−1
equals to that of coroots of β and α in the dual root system Φ∨

⩾−1, that
is, (α ∥ β)cl = (β∨ ∥ α∨)cl. This is the duality property. The compatibility
degree has the same property for a cluster complex and its dual cluster
complex. Next, we give the symmetry property. If Φ is simply laced, then
the compatibility degree is symmetric, that is, (α ∥ β)cl = (β ∥ α)cl.
If Φ is non simply laced, then this equation does not hold. However, if
(α ∥ β)cl = 0, then (β ∥ α)cl = 0. By using the compatibility degree, we
generalize this property to cluster complexes. Moreover, we give a relation
between (α ∥ β)cl and (β ∥ α)cl in non-simply laced cases. The embedding
property is the property that the degree of α and β in Φ⩾−1 equals that in
a root subsystem Φ′

⩾−1 of Φ⩾−1. Considering a cluster complex and their
cluster subcomplex, we can generalize this property.

Second, the compatibility degree has the compatibility property (The-
orem 4.18), that is, for any cluster variables x and x′, there is a simplex
which contains both x and x′ if and only if the compatibility degree of x

and x′ is 0. This property implies that the f -vectors determine the cluster
complex.

In this paper, we also discuss the exchangeability property. In classical
cases, it is known that for distinct positive roots α and β, there exists a
subset X of almost positive roots such that X ∪ α and X ∪ β are both
maximal simplexes of a generalized associahedron if and only if (α ∥ β)cl =
(β ∥ α)cl = 1 ([11, 17]). We consider whether the compatibility degree
satisfies an analogy of this property. We prove the “only if” part for the
general cluster complex case (Theorem 4.22). However, the “if” part is still
open (Conjecture 4.23). We solve this problem partially by a description
of F -matrices of cluster algebras of rank 2 (Theorem 4.25) and by using
2-Calabi–Yau categorification (Theorems 6.3, 6.6, and Corollary 6.12). We
remark that the exchangeability property for d-compatibility degree is not
true in general (cf. Section 6.5).

The structure of this paper is as follows:
In Section 2, we recall the fundamentals of cluster algebras. We also in-

troduce some important properties of cluster algebras which will be used
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in later sections. In Section 3, we compare the d-vectors and the f -vectors.
In [8], the d-compatibility degree was defined by some properties of d-
vectors conjectured in [19]. To define the compatibility degree, we prove
some properties of f -vectors which are analogous to properties of d-vectors
(Theorem 3.3). In Section 4, we introduce the classical compatibility de-
gree and the compatibility degree, and we prove that the compatibility
degree is a generalization of the classical one (Theorem 4.10). We compare
properties of the compatibility degree with those of the d-compatibility de-
gree (Proposition 4.14, Theorem 4.18, Example 4.21). We also formulate
the exchangeability conjecture for the compatibility degree (Theorem 4.22
and Conjecture 4.23). By a description of F -matrices, we prove Conjec-
ture 4.23 for cluster algebras of rank 2 (Theorem 4.25). In Section 5 and 6,
we investigate the exchangeability property for certain important classes
of cluster algebras. In particular, we establish Conjecture 4.23 for acyclic
cluster algebras of skew-symmetric type (Theorem 6.3), cluster algebras
arising from weighted projective lines (Theorem 6.6) and cluster algebras
arising from marked surfaces (Corollary 6.12). Our approach relies on the
existence of additive categorifications by 2-Calabi–Yau triangulated cate-
gories for these cluster algebras. In Section 5.1 and 5.2, we recollect basic
results on cluster-tilting theory in 2-Calabi–Yau triangulated categories and
the associated cluster character. Under mild conditions, we give a categori-
cal interpretation of compatibility degree (Theorem 5.6). In Section 5.3, we
prove an exchangeability property for 2-Calabi–Yau triangulated categories
with cluster-tilting objects (Theorem 5.8), which is applied in Section 6.2,
6.3 and 6.4 to deduce the exchangeability property for the corresponding
cluster algebras.

Acknowledgements

The authors thank Tomoki Nakanishi and Osamu Iyama for their valu-
able comments. We thank Fang Li for informing us that he also obtained
a counterexample for the exchangeability property of d-compatibility de-
gree. We are grateful to the anonymous referee for significant comments
and corrections.

2. Preliminaries
2.1. Cluster algebras

We start by recalling definitions of seed mutations and cluster patterns
according to [19]. A semifield P is an abelian multiplicative group equipped
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with an addition ⊕ which is distributive over the multiplication. We par-
ticularly make use of the following two semifields.

Let Qsf(u1, . . . , uℓ) be the set of rational functions in u1, . . . , uℓ which
have subtraction-free expressions. Then, Qsf(u1, . . . , uℓ) is a semifield by
the usual multiplication and addition. It is called the universal semifield of
u1, . . . , uℓ ([19, Definition 2.1]).

Let Trop(u1, . . . , uℓ) be the abelian multiplicative group freely generated
by the elements u1, . . . , uℓ. Then, Trop(u1, . . . , uℓ) is a semifield by the
following addition:

ℓ∏
j=1

u
aj

j ⊕
ℓ∏

j=1
u

bj

j =
ℓ∏

j=1
u

min(aj ,bj)
j .(2.1)

It is called the tropical semifield of u1, . . . , uℓ ([19, Definition 2.2]). For any
semifield P and p1, . . . , pℓ ∈ P, there exists a unique semifield homomor-
phism π such that

π : Qsf(y1, . . . , yℓ) −→ P(2.2)
yi 7−→ pi.

For F (y1, . . . , yℓ) ∈ Qsf(y1, . . . , yℓ), we denote

F |P(p1, . . . , pℓ) := π(F (y1, . . . , yℓ)).(2.3)

and it is called the evaluation of F at p1, . . . , pℓ. We fix a positive integer n

and a semifield P. Let ZP be the group ring of P as a multiplicative group.
Since ZP is a domain ([16, Section 5]), its total quotient ring is a field Q(P).
Let F be the field of rational functions in n indeterminates with coefficients
in Q(P).

A labeled seed with coefficients in P is a triplet (x, y, B), where
• x = (x1, . . . , xn) is an n-tuple of elements of F forming a free

generating set of F .
• y = (y1, . . . , yn) is an n-tuple of elements of P.
• B = (bij) is an n × n integer matrix which is skew-symmetrizable,

that is, there exists a positive integer diagonal matrix S such that
SB is skew-symmetric. Also, we call S a skew-symmetrizer of B.

We say that x is a cluster and refer to xi, yi and B as the cluster variables,
the coefficients and the exchange matrix, respectively.

Throughout the paper, for an integer b, we use the notation [b]+ =
max(b, 0). We note that

b = [b]+ − [−b]+.(2.4)
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Let (x, y, B) be a labeled seed with coefficients in P, and let k ∈ {1, . . . , n}.
The seed mutation µk in direction k transforms (x, y, B) into another la-
beled seed µk(x, y, B) = (x′, y′, B′) defined as follows:

• The entries of B′ = (b′
ij) are given by

b′
ij =

{
−bij if i = k or j = k,
bij + [bik]+ bkj + bik [−bkj ]+ otherwise.

(2.5)

• The coefficients y′ = (y′
1, . . . , y′

n) are given by

y′
j =

{
y−1

k if j = k,
yjy

[bkj ]+
k (yk ⊕ 1)−bkj otherwise.

(2.6)

• The cluster variables x′ = (x′
1, . . . , x′

n) are given by

x′
j =


yk

n∏
i=1

x
[bik]+
i +

n∏
i=1

x
[−bik]+
i

(yk ⊕ 1)xk
if j = k,

xj otherwise.

(2.7)

Let Tn be the n-regular tree whose edges are labeled by the numbers
1, . . . , n such that the n edges emanating from each vertex have different
labels. We write t t′k to indicate that vertices t, t′ ∈ Tn are joined by
an edge labeled by k. We fix an arbitrary vertex t0 ∈ Tn, which is called
the rooted vertex.

A cluster pattern with coefficients in P is an assignment of a labeled
seed Σt = (xt, yt, Bt) with coefficients in P to every vertex t ∈ Tn such
that the labeled seeds Σt and Σt′ assigned to the endpoints of any edge

t t′k are obtained from each other by the seed mutation in direction
k. The elements of Σt are denoted as follows:

xt = (x1;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), Bt = (bij;t).(2.8)

In particular, at t0, we denote

x = xt0 = (x1, . . . , xn), y = yt0 = (y1, . . . , yn), B = Bt0 = (bij).(2.9)

Definition 2.1. — A cluster algebra A associated with a cluster pat-
tern v 7→ Σv is the ZP-subalgebra of F generated by X = {xi;t}1⩽i⩽n,t∈Tn

.

The degree n of the regular tree Tn is called the rank of A, and F is
the ambient field of A. We also denote by A(B) a cluster algebra with the
initial matrix B.
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Example 2.2. — We give an example for mutations in the case of type
A2. Let n = 2, and we consider a tree T2 whose edges are labeled as follows:

. . . t0 t1 t2 t3 t4 t5 . . .1 2 1 2 1 2 1
.(2.10)

We set B =
[

0 1
−1 0

]
as the initial exchange matrix at t0. Then, coefficients

and cluster variables are given by Table 2.1 [19, Example 2.10].

Table 2.1. Coefficients and cluster variables in type A2

t yt xt

0 y1 y2 x1 x2

1 y1(y2 ⊕ 1) 1
y2

x1
x1y2 + 1

(y2 ⊕ 1)x2

2 1
y1(y2 ⊕ 1)

y1y2 ⊕ y1 ⊕ 1
y2

x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2

x1y2 + 1
(y2 ⊕ 1)x2

3 y1 ⊕ 1
y1y2

y2

y1y2 ⊕ y1 ⊕ 1
x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2

y1 + x2

x1(y1 ⊕ 1)

4 y1y2

y1 ⊕ 1
1
y1

x2
y1 + x2

x1(y1 ⊕ 1)
5 y2 y1 x2 x1

Therefore, we have

A(B) = ZP
[
x1, x2,

x1y2 + 1
(y2 ⊕ 1)x2

,
x1y1y2 + y1 + x2

(y1y2 ⊕ y1 ⊕ 1)x1x2
,

y1 + x2

x1(y1 ⊕ 1)

]
.

Next, to define the class of cluster algebras of finite type, we define the
non-labeled seeds according to [19]. For a cluster pattern v 7→ Σv, we
introduce the following equivalence relations of labeled seeds: We say that

Σt = (xt, yt, Bt), xt = (x1;t, . . . , xn;t), yt = (y1;t, . . . , yn;t), Bt = (bij;t)

and

Σs = (xs, ys, Bs), xs = (x1;s, . . . , xn;s), ys = (y1;s, . . . , yn;s), Bs = (bij;s)

are equivalent if there exists a permutation σ of indices 1, . . . , n such that

xi;s = xσ(i);t, yj;s = yσ(j);t, bij;s = bσ(i),σ(j);t

for all i and j. We denote by [Σ] the equivalence classes represented by a
labeled seed Σ and call it the non-labeled seed. We define the non-labeled

TOME 74 (2024), FASCICULE 2
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clusters (resp., non-labeled coefficients) as clusters (resp., coefficients) of
non-labeled seeds.

Definition 2.3. — The exchange graph of a cluster algebra is the reg-
ular connected graph whose vertices are the non-labeled seeds of the cluster
pattern and whose edges connect the non-labeled seeds related by a single
mutation.

Using the exchange graph, we define cluster algebras of finite type.

Definition 2.4. — A cluster algebra A is of finite type if the exchange
graph of A is a finite graph.

2.2. d-vectors, c-vectors, g-vectors, and f-vectors

In this subsection, we define the d-vectors, c-vectors, g-vectors, and the
f -vectors. First, we define the d-vectors according to [17, 19]. Let A be
a cluster algebra. By the Laurent phenomenon [19, Theorem 3.5], every
cluster variable xj;t ∈ A can be uniquely written as

xj;t = Nj;t(x1, . . . , xn)
x

d1j;t
1 · · · x

dnj;t
n

, dkj;t ∈ Z,(2.11)

where Nj;t(x1, . . . , xn) is a polynomial with coefficients in ZP which is not
divisible by any initial cluster variable xj ∈ x.

Definition 2.5. — We define the d-vector dj;t as the degree vector of
xj;t, that is,

dB;t0
j;t = dj;t =

d1j;t
...

dnj;t

 ,(2.12)

in (2.11). We define the D-matrix DB;t0
t as

DB;t0
t := (d1;t, . . . , dn;t).(2.13)

Remark 2.6. — We remark that dj;t is independent of the choice of the
coefficient system (see [19, Section 7]). Thus, we can also regard d-vectors as
vectors associated with vertices of Tn. They are also given by the following
recursion: For any j ∈ {1, . . . , n},

dj;t0 = −ej ,

ANNALES DE L’INSTITUT FOURIER
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and for any t t′k ,

(2.14) dj;t′ =

dj;t if j ̸= k;

−dk;t +max
(

n∑
i=1

[bik;t]+di;t, +
n∑

i=1
[−bik;t]+di;t

)
if j = k,

where ej is the jth canonical basis.

Next, we define the c-vectors, the g-vectors and the f -vectors according
to [19, 21, 22]. We introduce the principal coefficients to define them.

Definition 2.7. — We say that a cluster pattern v 7→ Σv or a cluster
algebra A of rank n has principal coefficients at the rooted vertex t0 if
P = Trop(y1, . . . , yn) and yt0 = (y1, . . . , yn). In this case, we denote A =
A•(B).

First, we define the c-vectors. For b = (b1, . . . , bn)⊤, we use the notation
[b]+ = ([b1]+, . . . , [bn]+)⊤, where ⊤ means transposition.

Definition 2.8. — Let A•(B) be a cluster algebra with principal coef-
ficients at t0. We define the c-vector cj;t as the degree of yi in yj;t, that is,
if yj;t = y

c1j;t
1 · · · y

cnj;t
n , then

cB;t0
j;t = cj;t =

c1j;t
...

cnj;t

 .(2.15)

We define the C-matrix CB;t0
t as

CB;t0
t := (c1;t, . . . , cn;t).(2.16)

The c-vectors are the same as those defined by the following recursion:
For any j ∈ {1, . . . , n},

cj;t0 = ej (canonical basis),

and for any t t′k ,

cj;t′ =

−cj;t if j = k;

cj;t + [bkj;t]+ ck;t + bkj;t[−ck;t]+ if j ̸= k

(see [19]). Since the recursion formula only depends on exchange matrices,
we can regard c-vectors as vectors associated with vertices of Tn.

In this way, we remark that it is possible to define c-vectors for a cluster
algebra that does not have principal coefficients.

The C-matrices have the following property:

TOME 74 (2024), FASCICULE 2
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Theorem 2.9 ([24, Corollary 5.5]). — For any initial exchange matrix
B and every column of the C-matrix CB;t0

t (t ∈ Tn), that is, any c-vectors,
its entries are either all nonnegative, or all nonpositive, and not all zero.

We call this property the sign-coherence of the C-matrices.
Next, we define the g-vectors. We can regard cluster variables in cluster

algebras with principal coefficients as homogeneous Laurent polynomials:

Theorem 2.10 ([19, Proposition 6.1]). — Let A•(B) be a cluster al-
gebra with principal coefficients at t0. Each cluster variable xi;t is a ho-
mogeneous Laurent polynomial in x1, . . . , xn, y1, . . . , yn by the following
Zn-grading:

deg xi = ei, deg yi = −bi,(2.17)

where ei is the ith canonical basis of Zn and bi is the ith column vector
of B.

We denote by

g1j;t
...

gnj;t

 the Zn-grading of xj;t.

Definition 2.11. — Let A•(B) be a cluster algebra with principal co-
efficients at t0. We define the g-vector gj;t as the degree of the homogeneous
Laurent polynomial xj;t by the Zn-grading (2.17), that is,

gB;t0
j;t = gj;t =

g1j;t
...

gnj;t

 .(2.18)

We define the G-matrix GB;t0
t as

GB;t0
t := (g1;t, . . . , gn;t).(2.19)

The g-vectors are the same as those defined by the following recursion:
For any j ∈ {1, . . . , n},

gj;t0 = ej (canonical basis),

and for any t t′k ,

gj;t′ =

gj;t if j ̸= k;

−gk;t +
n∑

i=1
[bik;t]+gi;t −

n∑
i=1

[cik;t]+bj if j = k
(2.20)

(see [19]). Since the recursion formula only depend on exchange matrices,
we can regard g-vectors as vectors associated with vertices of Tn.

ANNALES DE L’INSTITUT FOURIER



COMPATIBILITY DEGREE OF CLUSTER COMPLEXES 673

In this way, we remark that it is possible to define g-vectors for a cluster
algebra that does not have principal coefficients.

The G-matrices have the following property, which is the dual one of the
sign-coherence of the C-matrices:

Theorem 2.12 ([24, Corollary 5.11]). — For any initial exchange ma-
trix B and every row of the G-matrix GB;t0

t (t ∈ Tn), its entries are either
all nonnegative, or all nonpositive, and not all zero.

We call this property the sign-coherence of the G-matrices.
Next, we define the F -polynomials and the f -vectors.

Definition 2.13. — Let A•(B) be a cluster algebra with principal co-
efficients at t0. we define the F -polynomial F B;t0

i;t (y) as

F B;t0
i;t (y) = xi;t(x1, . . . , xn; y1, . . . , yn)|x1=···=xn=1,(2.21)

where xi;t(x1, . . . , xn; y1, . . . , yn) means the expression of xi;t by x1, . . . , xn,
y1, . . . , yn.

The following property of F -polynomials is a consequence of Theorem 2.9
and [19, Proposition 5.6].

Proposition 2.14. — Every polynomial F B;t0
ℓ;t (y) has constant term 1.

Using the F -polynomials, we define the f -vectors.

Definition 2.15. — Let A•(B) be a cluster algebra with principal co-
efficients at t0. We denote by fij;t the maximal degree of yi in F B;t0

j;t (y).
Then, we define the f -vector fj;t as

fB;t0
j;t = fj;t =

f1j;t
...

fnj;t

 .(2.22)

We define the F -matrix F B;t0
t as

F B;t0
t := (f1;t, . . . , fn;t).(2.23)

The F -polynomials are the same as those defined by the following recur-
sion: For any j ∈ {1, . . . , n},

F B;t0
j;t0

= 1,

TOME 74 (2024), FASCICULE 2
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and for any t t′k ,

(2.24) F B;t0
j;t′ (y)

=


F B;t0

j;t (y) if j ̸= k;
n∏

i=1
y

[cik]+
i

n∏
i=1

(
F B;t0

i;t (y)
)[bik]+

+
n∏

i=1
y

[−cik]+
i

n∏
i=1

(
F B;t0

i;t (y)
)[−bik]+

F B;t0
k;t (y)

if j = k.

Also, the f -vectors are the same as those defined by the following recursion:
For any j ∈ {1, . . . , n},

fj;t0 = 0,

and for any t t′k ,

fj;t′ =



fj;t if j ̸= k;

−fk;t + max


[ck;t]+ +

n∑
i=1

[bik;t]+fi;t,

[−ck;t]+ +
n∑

i=1
[−bik;t]+fi;t

 if j = k
(2.25)

(about how to get the recursion of the f -vectors, see [22]). Comparing the
d-vector’s and f -vector’s reccursions, (2.14) and (2.25), we can see that they
are very similar. The similarity between the d-vectors and the f -vectors will
be discussed in Section 3. Just like c-vectors and g-vectors, we can regard
F -polynomials and f -vectors as polynomials and vectors associated with
vertices of Tn.

In this way, we remark that it is possible to define F -polynomials and
f -vectors for a cluster algebra that does not have principal coefficients.

The c-vector, the g-vector, the F -polynomials and the exchange matrices
can restore the cluster variables and the coefficients:

Proposition 2.16 ([19, Proposition 3.13, Corollary 6.3]). — Let
{Σt}t∈Tn be a cluster pattern with coefficients in P with the initial seed (2.9).
Then, for any t ∈ Tn and j ∈ {1, . . . , n}, we have

xj;t =
(

n∏
k=1

x
g

B;t0
kj;t

k

)
F B;t0

j;t |F (ŷ1, . . . , ŷn)
F B;t0

j;t |P(y1, . . . , yn)
,(2.26)

yj;t =
n∏

k=1
y

c
B;t0
kj;t

k

n∏
k=1

(F B;t0
k;t |P(y1, . . . , yn))bkj;t ,(2.27)
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where

ŷi = yi

n∏
j=1

x
bji

j ,(2.28)

and gB;t0
ij;t and cB;t0

ij;t are the (i, j) entry of GB;t0
t and CB;t0

t , respectively. Also,
the rational function F B;t0

j;t |F (ŷ1, . . . , ŷn) is the element of F obtained by
substituting ŷi for yi in F B;t0

j;t (y1, . . . , yn).

We call (2.26) and (2.27) the separation formulas.

Example 2.17. — Let A(B) be the cluster algebra given in Example 2.2.
In particular, we take one with principal coefficients at t0, that is, we con-
sider A•(B). Then, clusters and coefficient tuples are given by Table 2.2
and the F -polynomials and the F, D, C, G-matrices are given by Table 2.3.

Table 2.2. Coefficients and cluster variables in type A2

t yt xt

0 y1 y2 x1 x2

1 y1
1
y2

x1
x1y2 + 1

x2

2 1
y1

1
y2

x1y1y2 + y1 + x2

x1x2

x1y2 + 1
x2

3 1
y1y2

y2
x1y1y2 + y1 + x2

x1x2

y1 + x2

x1

4 y1y2
1
y1

x2
y1 + x2

x1

5 y2 y1 x2 x1

Proposition 2.16 implies that if xi;t = xj;t′ in A•(B), then for any cluster
algebra A(B) having the same exchange matrix as A•(B) at t0, the ith
cluster variable associated with t ∈ Tn is same as the jth one associated
with t′ ∈ Tn. More generally, the following fact is known:

Proposition 2.18 ([8, Proposition 6.1(i)]). — Let A1(B) and A2(B) be
cluster algebras having the same exchange matrix at t0. Let P1 and P2 be co-
efficients of A1(B) and A2(B), respectively. Denoted by (xt(k), yt(k), Bt(k)),
the seed of Ak(B) at t ∈ Tn, k = 1, 2. Then, xi;t(1) = xj;t′(1) if and only
if xi;t(2) = xj;t′(2), where t, t′ ∈ Tn and i, j ∈ {1, 2, · · · , n}.
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Table 2.3. F -polynomials, F, D, C, G-matrices in type A2

t F B;t0
1;t (y) F B;t0

2;t (y) F B;t0
t DB;t0

t CB;t0
t GB;t0

t

0 1 1
[
0 0
0 0

] [
−1 0
0 −1

] [
1 0
0 1

] [
1 0
0 1

]

1 1 y2 + 1
[
0 0
0 1

] [
−1 0
0 1

] [
1 0
0 −1

] [
1 0
0 −1

]

2 y1y2 + y1 + 1 y2 + 1
[
1 0
1 1

] [
1 0
1 1

] [
−1 0
0 −1

] [
−1 0
0 −1

]

3 y1y2 + y1 + 1 y1 + 1
[
1 1
1 0

] [
1 1
1 0

] [
−1 0
−1 1

] [
−1 −1
0 1

]

4 1 y1 + 1
[
0 1
0 0

] [
0 1

−1 0

] [
1 −1
1 0

] [
0 −1
1 1

]

5 1 1
[
0 0
0 0

] [
0 −1

−1 0

] [
0 1
1 0

] [
0 1
1 0

]

Remark 2.19. — By recursions (2.7), (2.20), (2.24), (2.25), and Propo-
sition 2.18, for any cluster algebra A(B), if xi;t = xj;t′ , then we have
gi;t = gj;t′ , F B;t0

i;t (y) = F B;t0
j;t′ (y), and fi;t = fj;t′ (we remark that these

vectors and polynomials depend only on Tn and index i ∈ {1, . . . , n}).
Therefore, we can say that gi;t, F B;t0

i;t (y), and fi;t are the g-vector, the
F -polynomial and the f -vector associated with xi;t, respectively.

Let us introduce cluster complexes which were defined in [17].

Definition 2.20. — Let A(B) be a cluster algebra. We define the clus-
ter complex ∆(A(B)) as the simplicial complex whose simplexes are subsets
of cluster variables which are contained in a cluster.

Example 2.21. — We consider the cluster algebra in Example 2.17. We
give a cluster complex corresponding to this cluster algebra in Figure 2.1.

By Proposition 2.18, a cluster complex depends only on B and does not
depend on coefficients P.
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x1y1y2 + y1 + x2

x1x2

y1 + x2

x1

x2

x1

x1y2 + 1
x2

Figure 2.1. Cluster complex of type A2

2.3. Scattering diagrams

The scattering diagrams were introduced in [24] to study the canonical
basis of cluster algebras. In this paper, we give only a few definitions and
properties used in proofs along [8, 35, 36, 41]. For any v = (v1, . . . , vn)⊤

and z = (z1, . . . , zn), we abbreviate zv1
1 · · · zvn

n as zv.

Definition 2.22. — We fix a skew-symmetrizable matrix B of order n

and take a skew-symmetrizer S = diag(s1, . . . , sn) of B so that s1, . . . , sn

are relatively prime. We call the pair (v, W ) a wall associated with B,
where v ∈ Zn

⩾0 is a non-zero whose entries are relatively prime to each
other, and W is a convex cone spanning v⊥ := {m ∈ Rn | v⊤Sm = 0}.

The open half space {m ∈ Rn | v⊤Sm > 0} is the green side of W (or
a hyperplain including W ), and {m ∈ Rn | v⊤Sm < 0} is the red side
of W . We consider R = Q[x±1

1 , . . . , x±1
n ]Jy1, . . . , ynK, that is, formal power

series in the variables y1, . . . , yn with coefficients in Q[x±1
1 , . . . , x±1

n ]. For
v = (v1, . . . , vn)⊤ ∈ Zn

⩾0, we define the formal elementary transformation
Ev ∈ Aut(R) as

Ev(xw) = xw(1 + ŷv)
v⊤Sw

gcd(s1v1,...,snvn) , Ev(yw′
) = yw′

with the inverse

E−1
v (xw) = xw(1 + ŷv)− v⊤Sw

gcd(s1v1,...,snvn) , E−1
v (yw′

) = yw′
,
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where ŷ = (ŷ1, . . . , ŷn) and ŷi is given by

ŷi = yi

n∏
j=1

x
bji

j .

Let D(B) be a set of walls associated with B and I a monomial ideal of
QJy1, . . . , ynK. The reduction D(B)/I of D(B) is obtained from D(B) by
deleting all walls of the form (v, W ) with yv ∈ I. For a non-negative integer
k, denote by Ik the ideal of QJy1, . . . , ynK generated by all the monomials
of y with total degree ⩾ k.

Definition 2.23. — We say that a set D(B) of walls associated with
B is a scattering diagram of B if it satisfies the following finite condition:

• For each k ∈ Z⩾0, D(B) has finitely many walls in D(B)/Ik.
In this case, each connected compartment of Rn − D(B) is a chamber of
D(B).

Definition 2.24. — Let D(B) be a scattering diagram in Rn. We say
that a continued path ρ : [0, 1] → Rn is generic for D(B) if ρ satisfies the
following conditions:

• ρ(0) and ρ(1) are not in any wall W of D(B).
• The image of ρ crosses each wall W of D(B) transversely.
• The image of ρ does not cross the boundaries of walls or intersection

of walls spanning two distinct hyperplanes.

Let ρ be a generic path of a scattering diagram D(B), and we assume
that ρ crosses walls of D(B)/Ik in the following order:

(v1,k, W1,k), . . . , (vs,k, Ws,k).

We set

Ek
ρ = E

εs,k
vs,k ◦ · · · ◦ E

ε1,k
v1,k ∈ Aut(R),

where εi,k = 1 (resp., εi,k = −1) if ρ crosses Wi,k from its green side
to its red side (resp., from its red side to its green side). We define the
path-ordered product of ρ as

Eρ = lim
k→∞

Ek
ρ ∈ Aut(R).

A scattering diagram D(B) is consistent if for any generic path ρ whose
starting point coincides with terminal point, Eρ = 1 holds. We say that two
scattering diagrams D1(B) and D2(B) for B are equivalent if any generic
path in both diagrams determines the same path-ordered product.
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Lemma 2.25 ([24, Theorem 1.12]). — Let B be a skew-symmetrizable
matrix of order n. There exists a unique consistent scattering diagram
D0(B), up to equivalence, satisfying the following conditions:

• For any i ∈ {1, . . . , n}, (ei, e⊥
i ) are walls of D0(B).

• For any other walls (v, W ) of D0(B), Bv /∈ W holds.

We note that since v ∈ Z⩾0, we have W ∩ (R>0)n = W ∩ (R<0)n = ∅.
Therefore, (R>0)n and (R<0)n are chambers of D0(B), and we call them
the all positive chamber and the all negative chamber respectively. If there
exists a generic path which is finitely transverse from the all positive cham-
ber to a chamber C, then we call C a reachable chamber. Moreover, if there
exists a path which is finitely transverse from the all positive chamber
crossing a wall (v, W ), then we call (v, W ) a reachable wall.

Lemma 2.26 ([24, Lemma 2.10], [36, Theorem 3.3]). — Let A(B) be a
cluster algebra of rank n whose initial matrix is B. Each reachable chamber
of D0(B) is expressed by the following form:

R>0g1 + · · · + R>0gn,(2.29)

where G = (g1, . . . , gn) is one of the G-matrices of A(B).

2.4. Enough g-pairs property

The definition of g-pairs was introduced in [8] for cluster algebras with
principal coefficients with the aim to study d-vectors. By our convention
of g-vectors and Proposition 2.18, it generalizes to cluster algebras with
arbitrary coefficients directly.

Definition 2.27. — Let A(B) be a skew-symmetrizable cluster alge-
bra, and U be a subset of a non-labelled cluster x. Let xt, xt′ be two
non-labeled clusters of A(B). The pair (xt, xt′) of clusters is called a g-pair
associated with U if it satisfies the following two conditions.

(1) U is a subset of xt′ ;
(2) Each row of G

Bt′ ;t′

t corresponding to x \ U is a nonnegative vector.

Remark 2.28. — In [8], the g-pair is defined by using

Rt′

t := (GB;t0
t′ )−1GB;t0

t

instead of G
Bt′ ;t′

t . In fact, Definition 2.27 is equivalent to the original defi-
nition [8, Definition 6]. This fact is given by [7, Corollary 7.18].
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Let A(B) be a cluster algebra of rank n with the rooted vertex t0, and
I = {i1, . . . , ip} be a subset of {1, 2, . . . , n}. We say that a seed Σt =
(xt, yt, Bt) of A(B) is connected with (x, y, B) by an I-sequence, if there
exists a composition of mutations µks

· · · µk2µk1 , such that (xt, yt, Bt) =
µks · · · µk2µk1(x, y, B), where k1, . . . , ks ∈ I.

Theorem 2.29 ([8, Theorems 8,9]). — Let A(B) be a cluster algebra
of rank n with arbitrary coefficients. For any subset U ⊂ x and any cluster
xt, there exists a seed Σt′ = (xt′ , yt′ , Bt′) uniquely such that

(1) the seed Σt′ = (xt′ , yt′ , Bt′) is connected with the initial seed by
an I-sequence, where I = {1, . . . , n} \ J is the subset of {1, . . . , n}
such that U = {xj;t0 | j ∈ J}.

(2) (xt, xt′) is a g-pair associated with U .

We often refer to Theorem 2.29 the enough g-pairs property of A(B).

Example 2.30. — We consider the cluster algebra in Example 2.17. We
set t = t3, that is,

xt =
(

x1y1y2 + y1 + x2

x1x2
,

y1 + x2

x1

)
The vertices in T2 connected to t0 are t−1, t0, and t1. The G-matrices
associated these vertices are given by Table 2.4.

Table 2.4. G-matrices G
Bt′ ;t′

t

t′ t−1 t0 t1

G
B′

t;t′

t

[
1 1

−1 0

] [
−1 −1
0 1

] [
−1 0
0 −1

]

Thus, (xt3 , xt0) is the g-pair associated with U = {x1}, and (xt3 , xt−1)
is the g-pair associated with U = {x2}.

3. d-vectors versus f-vectors

Today, it is known that the d-vectors and the f -vectors are different
vectors essentially, but it was pointed out that these two classes of vec-
tors have similarities. Fomin and Zelevinsky expected that d-vectors of
non-initial cluster variables coincide with f -vectors of them in any cluster
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algebras [19, Conjecture 7.17]. A counterexample of it was given by [21, Ex-
ample 6.7], but it is known that this conjecture is true in cluster algebras
of rank 2 and of finite type:

Theorem 3.1 ([25, Theorem 1.8, Remark 1.9]).
(1) We fix an arbitrary cluster algebra of finite type. For any i ∈

{1, . . . , n} and t ∈ Tn, we have the following relation:

fi;t = [di;t]+,(3.1)

(2) We fix an arbitrary cluster algebra of rank 2. For any i ∈ {1, 2} and
t ∈ T2, we have the relation (3.1).

In this section, we show a weaker similarity of these two families of vectors
than (3.1) in general cluster algebras.

Fomin and Zelevinsky conjectured the following properties about
d-vectors in [19, Conjecture 7.4], which was proved in [8]:

Theorem 3.2 ([8, Theorem 11]). — Let A(B) be any cluster algebra.
The following statements hold:

(1) A cluster variable xi;t is not one of the initial cluster variables if
and only if di;t is a non-negative vector.

(2) The (i, j) entry d
Bt′ ;t′

ij;t of D
Bt′ ;t′

t equals the (k, ℓ) entry dBs;s
kℓ;s′ of

DBs;s
s′ if xi;t′ = xk;s′ and xj;t = xℓ;s′ .

(3) There is a cluster containing xi;t( ̸= xk) and xk if and only if
dki;t = 0.

In this section, we prove the following theorem, which is the f -vector
version of Theorem 3.2.

Theorem 3.3. — Let A(B) be any cluster algebra. The following state-
ments hold:

(1) A cluster variable xi;t is not one of the initial cluster variables if
and only if fi;t is a non-zero vector.

(2) The (i, j) entry fBt;t
ij;t′ of F Bt;t

t′ equals the (k, ℓ) entry fBs;s
kℓ;s′ of F Bs;s

s′

if xi;t = xk;s and xj;t′ = xℓ:s′ .
(3) There is a cluster containing xi;t and xk if and only if fki;t = 0.
(4) A cluster xt contains xk if and only if entries of the kth row of F B:t0

t

are all 0.

Remark 3.4. — Because of Proposition 2.18, it suffices to show Theo-
rem 3.3 in the case of cluster algebras with principal coefficients. In fact,
for example, we assume that Theorem 3.3(1) holds in principal coefficient
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cases and there is a cluster algebra A1(B) with coefficients in P1 which
does not satisfy Theorem 3.3(1). Then, there is a non-initial cluster vari-
able x(1) whose f -vector is zero. Then, for any i, we have x(1) ̸= xi(1) in
A1(B). Since f -vectors are independent of coefficients, we have a cluster
variable x whose f -vector is zero in A•(B) such that for any i, we have
x ̸= xi by Proposition 2.18. This is a contradiction. Therefore, we assume
A(B) = A•(B) in the proof of Theorem 3.3.

The first statement implies there are no cluster variables whose expan-
sions in the initial cluster variables are Laurent monomials except for the
initial cluster variables, and this is a generalization of [25, Corollaries 3.2,
4.2]. The second statement is important for defining the compatibility de-
gree in the next section. We prove Theorem 3.3 in the rest of this section.

To prove Theorem 3.3(1), we use the following two lemmas.

Lemma 3.5 ([8, Lemma 2]). — Let A(B) be any cluster algebra, and
we fix any cluster variable x of A(B). If, for all i ∈ {p + 1, . . . , n}, there
exists a cluster containing x and xi, then there exists a cluster containing
x and all the initial cluster variables xp+1, . . . , xn.

Lemma 3.6 ([8, Theorem 10]). — Let A(B) be any cluster algebra. We
fix any subset X of a cluster. Then, all seeds which have a cluster containing
X form a connected component of the exchange graph of A(B).

Proof of Theorem 3.3(1) . — The “if” part is clear. We prove the “only
if” part by proving the contraposition of the statement. Since fi;t = 0 and
by Proposition 2.14, we have Fi;t(y) = 1. Then we have xi;t =

∏
j x

gji

j

by the separation formula (2.26). We note that di;t coincides with −gi;t.
According to Theorem 3.2(1) , we have gi;t ∈ Zn

⩽0 or gi;t = el. We assume
gi;t ∈ Zn

⩽0. Without loss of generality, we can assume that

gi;t = (a1, · · · , ak, 0, · · · , 0)⊤ ∈ Zn
⩽0, a1, . . . , ak < 0.

By Theorem 3.2(3) and Lemma 3.5, there exists a cluster x such that
x contains xi;t and all the initial cluster variables xk+1, . . . , xn. We set
x = (xi;t, z2, . . . , zk, xk+1, . . . , xn). By the sign-coherence of the G-matrices
(Theorem 2.12), the first k components of g-vectors of z2, . . . , zk lie in
Z⩽0. Then G-matrix associated with x is a partitioned matrix

[
G 0
∗ En−k

]
,

where each column of G lies in Zk
⩽0. We consider the cluster algebra A′ by

freezing all the initial cluster variables xk+1, . . . , xn of A(B). One can show
that the G-matrix of the cluster x̃ = (xi;t, z2, . . . , zk) of A′ is G. We note
that columns of G are linearly independent because of det G = ±1. Then,
according to Lemma 2.26, each column of G is −ei and we have k = 1. Thus
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we have gi;t = −e1 and xi;t = 1/x1. We note that di;t = e1 and thus there
exists a cluster x′ such that x′ = {1/x1, x2. . . . , xn} by Theorem 3.2(1)
again. However, by Lemma 3.6, clusters containing {x2, . . . , xn} are the
initial cluster or a cluster which is obtained by mutating the initial cluster
in direction 1. Clearly, x′ is not the initial cluster. Since the numerator of
x′ does not have any initial cluster variables, the entries of first column
and the first row of B are all 0. In this case, µ1(x1) = (y1 + 1)/x1. Thus
x′ ̸= µ1(xt0). This is a contradiction. Therefore, we have gi;t = −di;t = el.
Because of Theorem 3.2(1), we have xi;t = xl. This finishes the proof. □

Next, we prove Theorem 3.3(2). This statement follows from the fact
that the (i, j) entry of an F -matrix is invariant by mutations in direction
k such that k ̸= j and by initial-seed mutations in direction ℓ such that
ℓ ̸= i. We prepare a lemma. This gives a recursion of the F -matrices by an
initial-seed mutation.

Before describing the lemma, we introduce some notations. Let Jℓ denote
the n×n diagonal matrix obtained from the identity matrix En by replacing
the (ℓ, ℓ) entry with −1. For an n × n matrix B = (bij), let [B]+ be the
matrix obtained from B by replacing every entry bij with [bij ]+. Also, let
Bk• be the matrix obtained from B by replacing all entries outside of the
kth row with zeros. Similarly, let B•k be the matrix replacing all entries
outside of the kth column. Note that the maps B 7→ [B]+ and B 7→ Bk•

commute with each other, and the same is true for B 7→ [B]+ and B 7→ B•k,
so that the notations [B]k•

+ and [B]•k
+ make sense.

Lemma 3.7 ([22, Theorem 3.9]). — We set µk(B) = B1 and ε ∈ {±1}.
We have

F B1;t1
t =

(
Jk + [εB]k•

+
)
F B;t0

t +
[
−εG−B;t0

t

]k•
+ +

[
εGB;t0

t

]k•
+ .(3.2)

Proof of Theorem 3.3(2). — Since xi;t = xk;s, according to Lemma 3.6,
there exists a permutation σ of indices such that σ(k) = i and a vertex
s0 ∈ Tn such that the seed Σs0 is the permutation of Σs by the permutation
σ, that is

xu;s = xσ(u);s0 , yu;s = yσ(u);s0 , buv;s = bσ(u),σ(v);s0

for all u and v. Moreover, the seed Σs0 is connected with Σt by a
{1, . . . , n}\{i}-sequence.

By definition of f -vectors, for any cluster variable z, the f -vector of z

with respect to the seed Σs0 is the permutation of the f -vector of z with
respect to the seed Σs by σ. In particular, fBs;s

kℓ;s′ = f
Bs0 ;s0
iℓ;s′ . On the other
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hand, since xj;t′ = xℓ;s′ , we have fBt;t
iℓ;s′ = fBt;t

ij;t′ . By Lemma 3.7, the initial-
seed mutation at m only change the mth row of F -matrices. Therefore, we
have f

Bs0 ;s0
iℓ;s′ = fBt;t

iℓ;s′ . Putting all of these together, we obtain

fBt;t
ij;t′ = fBs;s

kℓ;s′ . □

Let us prove Theorem 3.3(3). The following fact is known.

Lemma 3.8 ([8, Lemma 5.2]). — Suppose that A(B) is an arbitrary
cluster algebra of rank n, and (xt, xt′) is a g-pair associated with {xk}.
Let G

Bt′ ;t′

t = (g′
ij) and dBt′ ;t′

i;t = (d′
1, · · · , d′

n)⊤ be the d-vector of xi;t with
respect to xt′ . We have that

(1) g′
ki > 0 if and only if d′

k = −1, and if and only if xi;t ∈ xt′ and
xi;t = xk;t′ .

(2) g′
ki = 0 if and only if d′

k = 0, and if and only if xi;t ∈ xt′ and
xi;t ̸= xk;t′ .

(3) g′
ki < 0 if and only if d′

k > 0, and if and only if xi;t /∈ xt′ .

We consider a similar lemma to Lemma 3.8 for the f -vectors:

Lemma 3.9. — Suppose that A(B) is an arbitrary cluster algebra of
rank n, and (xt, xt′) is a g-pair associated with {xk}. Let G

Bt′ ;t′

t = (g′
ij)

and fBt′ ;t′

i;t = (f ′
1, · · · , f ′

n)⊤ be the f -vector of xi;t with respect to xt′ . We
have that

(1) g′
ki ⩾ 0 if and only if f ′

k = 0, and if and only if xi;t ∈ xt′ .
(2) g′

ki < 0 if and only if f ′
k > 0, and if and only if xi;t /∈ xt′ .

Let us prove Lemma 3.9. While Lemma 3.8 describes the relation between
the d-vectors and the g-vectors, Lemma 3.9 describes the relation between
the f -vectors and the g-vectors. The H-matrix gives some relation of the
f -vectors and the g-vectors.

Definition 3.10. — Let B be an initial exchange matrix at t0. Then,
for any t, the (i, j) entry of HB;t0

t =
(
hB;t0

ij;t
)

is given by

uh
B;t0
ij;t = F B;t0

j;t |Trop(u)
(
u[−bi1]+ , . . . , u−1, . . . , u[−bin]+

)
,

where u−1 in the ith position. The matrix HB;t0
t is called the H-matrix

at t.

Lemma 3.11 ([22, Theorem 3.7]). — For any t ∈ Tn, we have the fol-
lowing relation:

HB;t0
t = −[−GB;t0

t ]+.(3.3)
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Proof of Lemma 3.9. — By Lemma 3.8, it suffices to show that g′
ki < 0

implies f ′
k > 0. By Lemma 3.11, g′

ki < 0 implies hB′;t′

ki;t < 0. Then, we have
f ′

k > 0 by definition of the H-matrix. □

Proof of Theorem 3.3(3). — We set I = {1, . . . , n}\{k}. First, we prove
the “only if” part. Let xt′ be a cluster such that xt′ contains both xi;t
and xk. Then, according to Lemma 3.6, xt′ is connected with xt0 by an
I-sequence. We set xt′ = µ(xt0). If we regard xt′ as the initial cluster,
then f

Bt′ ;t′

ki;t = 0. We can change the initial cluster from xt′ to xt0 by
initial-seed mutation induced by µ−1. Then, by Theorem 3.3(2), we have
fki;t = f

Bt′ ;t′

ki;t = 0. Second, we prove the “if” part. Let xs be a cluster
containing the cluster variable xi;t. By Theorem 2.29, there is a cluster xs′

such that (xs, xs′) is a g-pair associated with {xk}. Then xk;s′ = xk holds
because xs′ is connected with xt0 by an I-sequence. Since fki;t = 0 implies
f

Bs′ ;s′

ki;t = 0 by Theorem 3.3(2), we have xi;t ∈ xs′ by Lemma 3.9. This
finishes the proof. □

To prove Theorem 3.3(4), we use the following theorem:

Theorem 3.12 ([22, Theorem 3.10]). — For any exchange matrix B

and t0, t ∈ Tn, we have (
F B;t0

t

)⊤ = F
B⊤

t ;t
t0

.(3.4)

We call this property the self-duality for the F -matrices. Theorem 3.12
implies the rows of the F -matrices are the f -vectors of another cluster
algebra.

Proof of Theorem 3.3(4). — The “only if” part follows from the “only if”
part of Theorem 3.3(3). We prove the “if” part. By Theorem 3.12, the trans-
position of the F -matrix F B;t0

t is another F -matrix F
B⊤

t ;t
t0

. By assumption,
the kth column of F

B⊤
t ;t

t0
is the zero vector. By Theorem 3.3(1), a cluster

variable of A(B⊤
t ) associated with this column is an initial cluster variable.

Then, by Theorem 3.3(3), there is a j ∈ {1, . . . , n} such that all entries of
the jth row of F

B⊤
t ;t

t0
are 0. This implies the jth column of F B;t0

t is the zero
vector. Therefore, all entries of the jth column and the kth row of F B;t0

t

are all 0. By Theorem 3.3(1), xt has at least one initial cluster variable.
We show that one of these initial cluster variable is xk. We assume that
xk ̸∈ xt. Then, xt has an initial cluster variable which is not xk. We assume
that this cluster variable is xk′ . Then by Theorem 3.3(3), the k′th column
of F

B⊤
t ;t

t0
is the zero vector. In the same way as the previous argument,

there exists a j′ ∈ {1, . . . , n} such that the j′th column of F B;t0
t is the zero
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vector. Since cluster variables in a cluster are algebraically independent, we
note that j ̸= j′. Therefore, all entries of the j, j′th columns and the k, k′th
rows of F B;t0

t are all 0. By Theorem 3.3(1) again, xt has at least two initial
cluster variables. By assumption, xt has a cluster variable which is neither
xk nor xk′ . By repeating this argument, we have F B;t0

t = 0. Therefore by
Theorem 3.3(1), xt = xt0 . This conflicts with the assumption. □

Theorem 3.3 plays a fundamental role in Section 4 to define the compat-
ibility degree and to prove its properties.

By these theorems, we have the following corollary:

Corollary 3.13. — For any cluster algebra A(B), fij;t = 0 if and only
if dij;t = 0 or −1.

Proof. — It follows from Theorem 3.2(1), (3) and Theorem 3.3(3). □

The property of d-vectors corresponding to Theorem 3.3(4) has not been
known. However, we obtain it by using Theorem 3.3(4) and Corollary 3.13.

Corollary 3.14. — For any cluster algebra A(B), all entries of the
kth row of DB;t0

t are all non-positive if and only if xt contains xk.

Proof. — The “if” part follows from Theorem 3.2(3). We show the “only
if” part. By Corollary 3.13, the kth row of F B;t0

t are all 0. By Theo-
rem 3.3(4), xt contains xk. This finishes the proof. □

4. Compatibility degree and its properties

The classical compatibility degree was introduced to define the gener-
alized associahedron. This is a function on the set of pairs of roots, and
the generalized associahedra are simplicial complexes whose simplexes are
sets consisting of roots such that each classical compatibility degree of a
pair of roots is 0. In this section, we generalize it to a function on pairs
of cluster variables in a different way from [8] by using f -vectors and give
some properties of the generalized one, the compatibility degree.

4.1. Classical compatibility degree and generalized associahedra

In this subsection, we explain the classical compatibility degree and the
generalized associahedra introduced in [18]. Let Φ be a root system of
finite type. We denote by Φ⩾−1 the set of almost positive roots, that is, the
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union of all negative simple roots and all positive roots. Let CΦ be a Cartan
matrix corresponding to Φ and ΓΦ be a Dynkin graph corresponding to Φ.
Denote by I the set of vertices of ΓΦ and (I−, I+) the bipartition of ΓΦ.
Next, we define t± which are compositions of simple reflections as follows:

t+ =
∏

i∈I+

si, t− =
∏

i∈I−

si.(4.1)

We define transformations τ± : Φ⩾−1 → Φ⩾−1 as follows:

τ+(α) =
{

α if α = −αj , j ∈ I−;
t+ (α) otherwise,

(4.2)

τ−(α) =
{

α if α = −αj , j ∈ I+;
t− (α) otherwise.

(4.3)

For k ∈ Z and i ∈ I, we abbreviate

α(k; i) = (τ−τ+)k(−αi).(4.4)

In particular, α(0; i) = −αi for all i and α(±1; i) = αi for i ∈ I∓ .
Let h be the Coxeter number of Φ and w◦ be the longest element of

the Weyl group of Φ. Let i 7→ i∗ denote the involution on I defined by
−αi∗ := w◦(αi). It is known that this involution preserves each of the sets
I+ and I− when h is even, and interchanges them when h is odd.

Proposition 4.1 ([18, Proposition 2.5]).

(1) Suppose h = 2e is even. Then the map (k, i) 7→ α(k; i) restricts to
a bijection

[0, e] × I → Φ⩾−1.(4.5)

Furthermore, α(e + 1; i) = −αi∗ for any i.
(2) Suppose h = 2e + 1 is odd. Then the map (k, i) 7→ α(k; i) restricts

to a bijection

([0, e + 1] × I−) ∪ ([0, e] × I+) → Φ⩾−1.(4.6)

Furthermore, α(e + 2; i) = −αi∗ for i ∈ I−, and α(e + 1; i) = −αi∗

for i ∈ I+.

By this proposition, we can express any root β ∈ Φ⩾−1 with β = τ(−αi),
where τ is a composition of τ+ and τ−, and −αi is a negative simple root.
We consider a function (· ∥ ·)cl : Φ⩾−1 × Φ⩾−1 → Z⩾0 characterized by the
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following property: For any negative simple root −αi and any root β, we
have

(−αi ∥ β)cl = [(β : αi)]+,(4.7)

and for any roots α, β, we have

(α ∥ β)cl = (τε(α) ∥ τε(β))cl,(4.8)

where(β : αi) is the coefficient integer of αi in the expansion of β in simple
roots, and ε ∈ {±1}. This function is well-defined by Proposition 4.1. It is
called the classical compatibility degree. In [18], the classical compatibility
degree is called simply the compatibility degree, but we adopt this name
in imitation of [9] to distinguish it from the other forthcoming degrees. For
α, β ∈ Φ⩾−1, we say that α and β are compatible if (α ∥ β)cl = (β ∥ α)cl =
0.

By using the classical compatibility degree, we define the generalized
associahedra.

Definition 4.2. — For a root system Φ, we define the generalized as-
sociahedron ∆(Φ) as a simplicial complex whose simplexes are subsets of
almost positive roots such that their elements are pairwise compatible.

Example 4.3. — We consider the root system of type A2. We give a
generalized associahedron of type A2 in Figure 4.1. We remark that this
complex is isomorphic to the cluster complex given in Example 2.21. We
introduce the correspondence between cluster complexes and generalized
associahedra in Theorems 4.4 and 4.5.

α1 + α2

α1

−α2

−α1

α2

Figure 4.1. Generalized associahedron of type A2
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The function (· ∥ ·)cl can be regarded as a function on cluster variables
of a cluster algebra in the following way: We fix a root system Φ and the
sign of vertices I = I+ ∪ I− of ΓΦ. We denote by B(CΦ) = (bij) a skew-
symmetrizable matrix obtained from the Cartan matrix CΦ = (Cij) by the
following equation:

bij =
{

0 if i = j,

−εCij if i ̸= j and i ∈ Iε.

We call A(B(CΦ)) the cluster algebra induced by Φ.

Theorem 4.4 ([17, Theorem 1.9]). — For a root system Φ, there is a
unique bijection α 7→ x[α] from Φ⩾−1 to the set X of all cluster variables
in A(B(CΦ)), such that, for any α =

∑
i aiαi ∈ Φ⩾−1, the cluster variable

x[α] is expressed in terms of the initial cluster x1, . . . , xn as

x[α] = P (x1, . . . , xn)
xa1

1 · · · xan
n

,(4.9)

where P (x1, . . . , xn)is a polynomial over ZP which is not divisible by any
xi. Under this bijection, x[−αi] = xi.

The bijection in Theorem 4.4 is natural in the sense of the following.

Theorem 4.5 ([17, Theorem 1.12]). — Under the bijection of Theo-
rem 4.4, the cluster complex ∆(A(B(CΦ))) is identified with the simplicial
complex ∆(Φ).

By Theorems 4.4 and 4.5, we can identify almost positive roots in Φ⩾−1
with the d-vectors of cluster variables of A(B(CΦ)). By abusing of notation,
we use (· ∥ ·)cl as a function on X × X . We denote by Φ∨ the dual root
system of Φ, and for any α ∈ Φ, we denote by α∨ ∈ Φ∨ the coroot of α.
By definition, it is clear that A(B(CΦ∨)) is A(B(CΦ)⊤) or A(−B(CΦ)⊤)
(depending on the choice of I+). We remark that the classical compati-
bility on X × X depends only on root systems, therefore we can assume
A(B(CΦ∨)) = A(−B(CΦ)⊤) without loss of generality.

The classical compatibility degree satisfies the following property:

Proposition 4.6 ([18, Proposition 3.3]). — We fix Φ and an induced
cluster algebra A(B(CΦ)).

(1) We have (x[α] ∥ x[β])cl = (x[β∨] ∥ x[α∨])cl for every α, β ∈ Φ⩾−1.
In particular, if Φ is simply-laced, then (x[α] ∥ x[β])cl = (x[β] ∥
x[α])cl.

(2) If (x[α] ∥ x[β])cl = 0, then (x[β] ∥ x[α])cl = 0.
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(3) If α and β belong to Φ(J)⩾−1 for some proper subset J ⊂ I, then
their compatibility degree with respect to the root subsystem Φ(J)
is equal to (x[α] ∥ x[β])cl.

We call (1) the duality property, (2) the symmetry property, and (3) the
embedding property respectively. Moreover, the classical compatibility de-
gree satisfies the following two properties, the compatibility property and
the exchangeability property:

Proposition 4.7. — Let Φ be a root system and A(B(CΦ)) be an
induced cluster algebra by Φ. For any set of cluster variables X, there exists
a cluster x such that x contains X if and only if the classical compatibility
degrees of any pairs of cluster variables in X are 0.

Proof. — It follows from Theorem 4.5 immediately. □

Proposition 4.8. — Let Φ be a root system and A(B(CΦ)) be an
induced cluster algebra by Φ. For any x[α], x[β], there exists a set X of
cluster variables such that X ∪ x[α] and X ∪ x[β] are both clusters, if and
only if (x[α] ∥ x[β])cl = (x[β] ∥ x[α])cl = 1.

Proof. — The exchangeability of almost positive roots is proved by [11,
Lemma 2.2] and [17, Corollary 4.4]. The proposition is shown by combining
it with Theorem 4.5. □

We consider a natural generalization of the classical compatibility degree
preserving these properties in the next subsection.

4.2. Compatibility degree

We introduce the compatibility degree. This is defined by using compo-
nents of f -vectors. In this subsection, we prove that compatibility degree
preserves the results of Proposition 4.6 and Proposition 4.7.

Definition 4.9. — Let A(B) be a cluster algebra. We define the com-
patibility degree (· ∥ ·) : X × X → Z⩾0 of A(B) as follows: For any two
cluster variables x and x′, if x = xi;t and x′ = xj;t′ , then

(x ∥ x′) = fBt;t
ij;t′ .(4.10)

When we want to emphasize that this function is defined by f -vector, we
use (x ∥ x′)f as the notation.

We remark that the choice of i, j, t, t′ satisfying x = xi;t and x′ = xj;t′ is
not unique, but the compatibility degree is well-defined by Theorem 3.3(2).
This function is a generalization of the classical compatibility degree.
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Theorem 4.10. — We fix any root system Φ and its induced cluster
algebra A(B(CΦ)). For any cluster variables x and x′, we have

(x ∥ x′)cl = (x ∥ x′).(4.11)

To prove the theorem, we introduce d-compatibility degree defined by [8].

Definition 4.11. — Let A(B) be a cluster algebra. We define the d-
compatibility degree (· ∥ ·)d : X × X → Z⩾0 of A(B) as follows: For any
two cluster variables x and x′, if x = xi;t and x′ = xj;t′ , then

(x ∥ x′)d =
[
dBt;t

ij;t′

]
+

.(4.12)

In [8], the compatibility degree is not defined by
[
dBt;t

ij;t′

]
+

but dBt;t
ij;t′ . We

adopt this definition for simplicity of the notation. The following theorem
is essential for the proof of Theorem 4.10:

Theorem 4.12 ([9, Corollary 3.2]). — We fix any root system Φ and
its induced cluster algebra A(B(CΦ)). For any cluster variables x and x′,
we have

(x ∥ x′)cl = (x ∥ x′)d.(4.13)

Proof of Theorem 4.10. — Since A(B(CΦ)) is of finite type, it follows
from Theorem 3.1 and Theorem 4.12. □

Remark 4.13. — Theorem 4.10 can be generalized from the classical com-
patibility degree to c-compatiblity degree, which is a function of the set of
pairs of almost positive root in finite root system, defined by [40, Proposi-
tion 7.2]. This fact follows from [9, Corollary 3.3] and Theorem 3.1.

We will show that the compatibility degree satisfies properties which are
analogous to Proposition 4.6 and Proposition 4.7. First, we consider the
following proposition, which is an analogue of Proposition 4.6.

Proposition 4.14. — We fix any cluster algebra A(B) of rank n. For
any x = xi;t, we denote by x∨ the ith cluster variable in the cluster at t of
A(−B⊤).

(1) For any two cluster variables x, x′, we have (x ∥ x′) = ((x′)∨ ∥ x∨).
In particular, if B is skew-symmetric, then (x ∥ x′) = (x′ ∥ x).

(2) If x = xi;t and x′ = xj;t′ , we have (x ∥ x′) = s−1
i sj(x′ ∥ x), where

si is the ith entry of skew-symmetrizer S of B. In particular, if
(x ∥ x′) = 0, then we have (x′ ∥ x) = 0.
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(3) Let J = {k1, . . . km} be a subset of {1, . . . , n} and BJ be the subma-
trix of B such that BJ = (bkikj

). For any pair of cluster variables
x, x′ of A(BJ), which we regard as a pair of cluster variables of
A(B) by embedding, (x ∥ x′) on A(BJ) equals to (x ∥ x′) on A(B).

To prove Proposition 4.14, we prepare two lemmas:

Lemma 4.15 ([22, Theorem 2.8]). — For any exchange matrix B and
t0, t ∈ Tn, we have

F −B;t0
t = F B;t0

t .(4.14)

Lemma 4.16. — For any exchange matrix B and t0, t ∈ Tn, we have

F B;t0
t = S−1F −B⊤;t0

t S.(4.15)

Proof. — By (2.25), we have a recursion of the F -matrices

(4.16) F B;t0
t′

= F B;t0
t Jℓ + max([CB;t0

t ]•ℓ
+ + F B;t0

t [Bt]•ℓ
+ , [−CB;t0

t ]•ℓ
+ + F B;t0

t [−Bt]•ℓ
+ ).

By [37, (2.7)] and definition of S, for any t, we have

CB;t0
t = S−1C−B⊤;t0

t S,(4.17)

Bt = S−1(−B⊤
t )S.(4.18)

We prove (4.15) by induction on the distance from t0 to t. If t = t0,
then (4.15) holds clearly because F B;t0

t0
is the zero matrix. When we as-

sume (4.15) holds at t, we have (4.15) holds at t′ by substituting (4.16)
with (4.17) and (4.18). □

Proof of Proposition 4.14. — First, we prove (1). By Theorem 3.12 and
Lemma 4.15, for any t and t′, we have

F Bt;t
t′ =

(
F

−B⊤
t′ ;t′

t

)⊤

.(4.19)

Thus, we have

fBt;t
ij;t′ = f

−B⊤
t′ ;t′

ji;t .(4.20)

This implies the first statement of (1). Furthermore, if B is skew-symmetric,
then we have Bt′ = −B⊤

t′ . This implies the second statement of (1). Second,
we prove (2). By (1) and Lemma 4.16, for any t and t′, we have

F Bt;t
t′ =

(
F

−B⊤
t′ ;t′

t

)⊤

=
(

SF
Bt′ ;t′

t S−1
)⊤

= S−1
(

F
Bt′ ;t′

t

)⊤
S.(4.21)
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Thus, we have

fBt;t
ij;t′ = s−1

i sjf
Bt′ ;t′

ji;t .(4.22)

This implies (2). Finally, we prove (3). Without loss of generality, we can
assume J = {1, . . . , m}. It suffice to show that F BJ ;t0

t equals the m × m

principal submatrix of F B;t0
t for any t0 ∈ Tn and t ∈ Tm, where Tm is

the m-regular graph whose labels of edges are 1, . . . , m and which is a
connected component of Tn containing t0. We prove (3) by induction on
the distance from t0 to t. The base case t = t0 is immediate as F B;t0

t0
= 0

and F BJ ;t0
t0

= 0. Let CBJ ;t0
t = (cij;t) and we abbreviate F B;t0

i;t (y) = Fi;t

and F BJ ;t0
i;t (y) = F i;t. We have the following fact by direct calculation: BJ t

equals the m × m principal matrix Bt, Fi;t = 1 for all i ∈ {m + 1, . . . , n},
and the left side m × n submatrix of CB;t0

t is
[

C
BJ ;t0
t

0

]
. By these facts and

the inductive assumption, for t t′ℓ , we have

F i;t′ = F i;t = Fi;t = Fi;t′ if i ̸= ℓ,

F ℓ;t′ =

m∏
j=1

y
[cjℓ;t]+
j

m∏
i=1

F
[biℓ;t]+
i;t +

m∏
j=1

y
[−cjℓ;t]+
j

m∏
i=1

F
[−biℓ;t]+
i;t

F ℓ;t

=

n∏
j=1

y
[cjℓ;t]+
j

n∏
i=1

F
[biℓ;t]+
i;t +

n∏
j=1

y
[cjℓ;t]+
j

n∏
i=1

F
[−biℓ;t]+
i;t

Fℓ;t

= Fℓ;t′ .

Therefore, F BJ ;t0
t equals the m × m principal submatrix of F B;t0

t . □

Remark 4.17. — We can prove the second statement of (1) by using the
first statement of (2) because when B is skew-symmetric, then s−1

i sj is
always 1.

Next, we consider the compatibility property, which is an analogue of
Proposition 4.7.

Theorem 4.18. — For any cluster algebra A(B) and any set X of clus-
ter variables, there exists a cluster x such that x contains X if and only if
the compatibility degrees of any pairs of cluster variables in X are 0.

Proof. — It follows from Theorem 3.3(3) and Lemma 3.5 immedia-
tely. □
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Let us compare the compatibility degree with the d-compatibility degree.
It is proved by [8] that d-compatibility degree also has the similar property
of Theorem 4.18.

Theorem 4.19 ([8, Theorem 7.4]). — For any cluster algebra A(B) and
any set X of cluster variables, there exists a cluster x such that x contains
X if and only if the d-compatibility degrees of any pairs of cluster variables
in X are 0.

However, the d-compatibility degree does not satisfy the similar property
of the duality and symmetry properties (Proposition 4.14(1),(2)). Actually,
if these properties hold for d-vectors, the D-matrices must satisfy the fol-
lowing equation when B is skew-symmetric:

(
DB;t0

t

)⊤ = D
−B⊤

t ;t
t0

= DBt;t
t0

.(4.23)

However, this equation does not hold generally unlike the F -matrices.
For the class of cluster algebras arising from marked surfaces, [42] gave
a complete classification of marked surfaces whose corresponding cluster
algebras satisfy (4.23).

Theorem 4.20 ([42, Theorem 2.4]). — The equation (4.23) holds for
the cluster algebra arising from a marked surface if and only if the marked
surface is one of the following.

(1) A disk with at most one puncture (finite types A and D).
(2) An annulus with no punctures and one or two marked points on

each boundary component (affine types Ã1,1, Ã2,1, and Ã2,2).
(3) A disk with two punctures and one or two marked points on the

boundary component (affine types D̃3 and D̃4).
(4) A sphere with four punctures and no boundary components.
(5) A torus with exactly one marked point (either one puncture or one

boundary component containing one marked point).

According to Theorem 4.20, for example, cluster algebras arising from a
disk with three punctures and one marked point on the boundary compo-
nent do not satisfy (4.23). Let us see a concrete example.
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Example 4.21. — We set P = {1} the trivial semifield and consider a
seed (x, B), where

x = (x1, x2, x3, x4, x5, x6, x7), B =



0 0 −1 0 1 0 0
0 0 −1 0 1 0 0
1 1 0 −1 −1 1 0
0 0 1 0 0 −1 1

−1 −1 1 0 0 −1 1
0 0 −1 1 1 0 −1
0 0 0 −1 −1 1 0


.

Moreover, we set

x′ = (x1, x′
2, x′

3, x′
4, x′

5, x6, x′
7) = µ7µ5µ4µ3µ2(x).

Then, we have (x2 ∥ x′
7)d = 2, (x′∨

7 ∥ x∨
2 )d = (x′

7 ∥ x2)d = 1. Let us see
this fact by using marked surface and their flips (cf. [14] or Section 6.4 in
this paper). A(B) is a cluster algebra arising from the marked surface in
Figure 4.2.

1

▷◁

2

3
4 5

6 7

Figure 4.2. Marked surface corresponding to B

We consider flipping the marked surface in Figure 4.2 at 2,3,4,5,7. The
relative position of arc corresponding to x2 and x′

7 is as in Figure 4.3.

▷◁

x2

x′
7

Figure 4.3. Relative position of arc corresponding to x2 and x′
7

As mentioned in [14, Example 8.5], considering the intersection num-
ber ([14, Definition 8.4]), we have (x2 ∥ x′

7)d = 2, (x′
7 ∥ x2)d = 1. This
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example implies (· ∥ ·)d does not satisfy the similar property of Proposi-
tion 4.14(1),(2).

Next, we consider a generalization of Proposition 4.8. The following state-
ment is clear:

Theorem 4.22. — For any cluster algebra A(B) and any pair of its
cluster variables x and x′, if there exists a set X of cluster variables such
that X ∪ x and X ∪ x′ are both clusters, then (x ∥ x′) = (x′ ∥ x) = 1.

Proof. — We take a seed whose cluster is X ∪ x as the initial seed and
consider a mutation such that it changes cluster from X ∪ x to X ∪ x′. By
Lemma 3.6, there is a mutation satisfying this condition. The statement
is followed by definition of the cluster mutation (2.7) and of the f -vectors
(Definition 2.15). □

The converse of Theorem 4.22 is still open:

Conjecture 4.23. — For any cluster algebra A(B) and any pair of its
cluster variables x and x′, if (x ∥ x′) = (x′ ∥ x) = 1, then there exists a set
X of cluster variables such that X ∪ x and X ∪ x′ are both clusters.

We call Theorem 4.22 and Conjecture 4.23 the exchangeability property.
In the case of finite type, Conjecture 4.23 is correct:

Theorem 4.24. — For any cluster algebra A(B) of finite type and any
pair of its cluster variables x and x′, if (x ∥ x′) = (x′ ∥ x) = 1, then there
exists a set X of cluster variables such that X ∪ x and X ∪ x′ are both
clusters.

Proof. — It follows from Proposition 4.8 and Theorem 4.10. □

Also in the case of rank 2, we can prove Conjecture 4.23 by using de-
scriptions of the F -matrices.

Theorem 4.25. — For any cluster algebra A of rank 2 and any pair of
its cluster variables x and x′, if (x ∥ x′) = (x′ ∥ x) = 1, then there exists a
set X of cluster variables such that X ∪ x and X ∪ x′ are both clusters.

Proof. — If A is of finite type, the result follows from Theorem 4.24. We
assume that A is not of finite type. Let Σ = (x, y, B) be a labeled seed of
A which contains the cluster variable x. Without loss of generality, we may
assume that B =

[ 0 b
−c 0

]
for some b, c ∈ Z⩾0 such that bc ⩾ 4.

We name vertices of T2 by the rule of (2.10) and fix a cluster pattern
tn 7→ (xtn , ytn , Btn) by assigning the seed Σ to the vertex t0. We abbreviate
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xtn
(resp., ytn

, Btn
, Σtn

) to xn (resp., yn, Bn, Σn). We also abbreviate
cluster variables, f -vectors and F -matrices in the same way.

Let us consider the case x = x1;0, the case x = x2;0 can be proved
similarly. In this case, it suffices to prove that x′ ∈ {x1;2, x1;−1}.

A direct computation show that

F B;t0
0 =

[
0 0
0 0

]
, F B;t0

1 =
[
0 0
0 1

]
.(4.24)

By descriptions of D-matrices of rank 2 [34, (1.13)] and Theorem 3.1, if
n > 0 is even, then we have

F B;t0
n =

[
S n−2

2
(u) + S n−4

2
(u) bS n−4

2
(u)

cS n−2
2

(u) S n−2
2

(u) + S n−4
2

(u)

]
,(4.25)

and if n > 1 is odd, then we have

F B;t0
n =

[
S n−3

2
(u) + S n−5

2
(u) bS n−3

2
(u)

cS n−3
2

(u) S n−1
2

(u) + S n−3
2

(u)

]
,(4.26)

where u = bc − 2 and Sp(u) is a (normalized) Chebyshev polynomial of the
second kind, that is,

S−1(u) = 0, S0(u) = 1, Sp(u) = uSp−1(u) − Sp−2(u) (p ∈ N).(4.27)

When n < 0, F B;t0
n is the following matrix:

F B;t0
n =

[
f−B⊤

22;−n f−B⊤

21;−n

f−B⊤

12;−n f−B⊤

11;−n

]
,(4.28)

where f−B⊤

ij;−n is the (i, j) entry of F −B⊤;t0
−n . For any p ⩾ 0, we have Sp(u) −

Sp−1(u) > 0. Indeed, we have S0(u) − S−1(u) = 1 > 0. Assume that
Sq(u) − Sq−1(u) > 0, then Sq+1(u) − Sq(u) = (u − 1)Sq(u) − Sq−1(u) > 0.
In particular, for any p ∈ Z⩾−1, we have

· · · > Sp+1(u) > Sp(u) > · · · > S0(u) = 1 > S−1(u) = 0.(4.29)

We claim that (x1;0 ∥ xi;n)(xi;n ∥ x1;0) > 1 for i ∈ {1, 2} whenever n ⩾ 4
or n ⩽ −3. As a consequence, x′ ̸= xi;n for any n ⩾ 4 and n ⩽ −3 and x′ ∈⋃

−2⩽n⩽3 xn. Recall that according to Proposition 4.14(2), (x1;0 ∥ xi;n) = 0
if and only if (xi;n ∥ x1;0) = 0. For i = 1 and n ⩾ 4,

(x1;0 ∥ x1;n)(x1;n ∥ x1;0) = fB;t0
11;n (x1;n ∥ x1;0)

⩾ (S1(u) + S0(u))(x1;n ∥ x1;0) by (4.25)(4.26)
> 1. by (4.29)
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For i = 2 and n ⩾ 4,

(x1;0 ∥ x2;n)(x2;n ∥ x1;0) = fB;t0
12;n (x2;n ∥ x1;0)

⩾ b(x2;n ∥ x1;0) by (4.25)(4.26)
= b(x∨

1;0 ∥ x∨
2;n) by Proposition 4.14(1)

= bf−B⊤;t0
12;n

⩾ bc ⩾ 4. by (4.25)(4.26)

This completes the proof of the claim for n ⩾ 4. For n ⩽ −3, one can prove
the statement by using (4.28) similarly and we omit the proof.

According to the cluster pattern, we have

x2;−2 = x2;−3, x1;−2 = x1;−1, x2;−1 = x2;0, x1;0 = x1;1,

x2;1 = x2;2, x1;2 = x1;3, x2;3 = x2;4.

By the above claim, we conclude that x′ ̸= x2;−2 and x′ ̸= x2;3. By Theo-
rem 4.18, we have

(x1;0 ∥ x1;0) = (x1;0 ∥ x2;0) = (x1;0 ∥ x2;1) = 0

since there is a cluster containing x1;0 and xi;n for (i, n) ∈
{(1, 0), (2, 0), (2, 1)}. It follows that x′ ∈ {x1;−1, x1;2}. This finishes the
proof. □

Remark 4.26. — In the case of finite type or rank 2, the d-compatibility
degree also has the exchangeability property. However, it is not correct in
general. See Section 6.5.

In the last section, we prove Conjecture 4.23 in some more cases.

5. Exchangeability property of 2-Calabi–Yau categories

Let k be an algebraically closed field and D = Homk(−, k) the usual
duality over k. Let T be a Krull–Schmidt category over k and M an object
of T . Denote by add M the full subcategory of T consisting of objects which
are direct summands of finite direct sums of copies of M . Denote by |M |
the number of non-isomorphic indecomposable direct summands of M .
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5.1. Reminder on cluster-tilting theory in 2-Calabi–Yau
categories

Let C be a 2-Calabi–Yau triangulated category over k with suspension
functor Σ. In particular, for any X, Y ∈ C, we have the following bifuncto-
rially isomorphism

HomC(X, Y ) ∼= D HomC(Y, Σ2X).

An object M ∈ C is rigid if HomC(M, ΣM) = 0. It is maximal rigid if it
is maximal with respect to this property, i.e. HomC(M ⊕ Y, ΣM ⊕ ΣY ) = 0
implies that Y ∈ add M . An object T ∈ C is a cluster-tilting object if T is
rigid and HomC(T, ΣY ) = 0 implies that Y ∈ add T . It is clear that cluster-
tilting objects are maximal rigid objects, but the converse is not true in
general. For 2-Calabi–Yau categories with cluster-tilting objects, we have
the following.

Lemma 5.1 ([47, Theorem 2.6]). — Let C be a 2-Calabi–Yau triangu-
lated category with cluster-tilting objects. Every maximal rigid object is a
cluster-tilting object.

Let T be a basic cluster-tilting object of C. According to [30], for any
M ∈ C, we have a triangle

T M
1 → T M

0 → M → ΣT M
1 ,

where T M
1 , T M

0 ∈ add T . The index of M with respect to T is defined to
be the class in G0(add T ):

indT (M) = [T M
0 ] − [T M

1 ],

where G0(add T ) is the split Grothendieck group of add T and [∗] stands
for the image of ∗ in G0(add T ). The following has been proved in [12].

Lemma 5.2 ([12, Theorem 2.6]). — Let C be a 2-Calabi–Yau triangu-
lated category with cluster-tilting objects. For any basic cluster-tilting ob-
ject T and T ′ of C, we have |T | = |T ′|.

Let T = M ⊕ T be a basic cluster-tilting object with indecomposable
direct summand M . It was shown in [28] that there exists a unique object
M∗ ̸∼= M such that µM (T ) := M∗ ⊕ T is again a cluster-tilting object of C.
Moreover, M∗ is uniquely determined by the exchange triangles

M
f−→ B

g−→ M∗ → ΣM and M∗ f ′

−→ B′ g′

−→ M → ΣM∗,
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where g, g′ are minimal right add T -approximations. The cluster-tilting ob-
ject µM (T ) is called the mutation of T at the indecomposable direct sum-
mand M . In this case, (M, M∗) is called an exchange pair. A basic cluster-
tilting object T ′ is reachable from T if T ′ is obtained from T by a finite
sequence of mutations. A rigid object M is reachable from T if it lies in
add T ′ for a cluster-tilting object T ′ reachable from T . The cluster-tilting
graph or exchange graph of C has as vertices the isomorphism classes of
basic cluster-tilting objects of C, while two vertices T and T ′ are connected
by an edge if and only if T ′ is a mutation of T . If the exchange graph of C is
connected, then every rigid object is reachable from a given cluster-tilting
object T .

Let C be a 2-Calabi–Yau triangulated category with cluster-tilting ob-
jects. For a given rigid object U ∈ C, we define the full subcategory Z(U)
of C as follows

Z(U) := {X ∈ C | HomC(U, ΣX) = 0} ⊆ C.

By definition, we have U ∈ Z(U) and hence we can form the additive
quotient

CU := Z(U)/[add U ].
It has the same objects as Z(U) and for X, Y ∈ Z(U) we have

HomCU
(X, Y ) := HomC(X, Y )/[add U ](X, Y ),

where [add U ](X, Y ) denotes the subgroup of HomC(X, Y ) consisting of
morphisms which factor through objects in add U .

For X ∈ Z(U), let X → UX be a minimal left add U -approximation. We
define X⟨1⟩ to be the cone

X → UX → X⟨1⟩ → ΣX.

Theorem 5.3 ([28, Theorems 4.7, 4.9]). — The category CU is a 2-
Calabi–Yau triangulated category with suspension functor ⟨1⟩. Moreover,
there is a bijection between the set of cluster-tilting objects of C containing
U as a direct summand and the set of cluster-tilting objects of CU .

We refer to CU the Iyama–Yoshino’s reduction of C with respect to U .

5.2. Reminder on categorification via 2-Calabi–Yau categories

For a quiver Q without loops nor 2-cycles, denote by Q0 = {1, . . . , n}
its vertex set. We define a skew-symmetric matrix B(Q) = (bij) ∈ Mn(Z)
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associated to Q, where

bij =
{

0 i = j;
|{arrows i → j}| − |{arrows j → i}| i ̸= j.

On the other hand, for a given skew-symmetric integer matrix B, one can
construct a quiver Q without loops nor 2-cycles such that B = B(Q).

Let C be a 2-Calabi–Yau triangulated category with cluster-tilting ob-
jects. The category C has no loops nor 2-cycles provided that for each basic
cluster-tilting object T , the Gabriel quiver QT of its endomorphism alge-
bra EndC(T ) has no loops nor 2-cycles. The category C admits a cluster
structure [3] if

• for each basic cluster-tilting object T , the Gabriel quiver QT of its
endomorphism algebra EndC(T ) has no loops and no 2-cycles;

• if T = M ⊕ T is a basic cluster-tilting object with M indecompos-
able, then B(QµM (T )) is the Fomin–Zelevinsky’s mutation (2.5) of
B(QT ) at the vertex corresponding to M .

According to [3, Theorem II.1.6], if C has no loops nor 2-cycles, then C has
a cluster structure.

Let C be a 2-Calabi–Yau triangulated category with cluster-tilting ob-
jects. Let T =

⊕n
i=1 Ti be a basic cluster-tilting object of C with indecom-

posable direct summands T1, . . . , Tn. For any M ∈ C, the cluster charac-
ter [38] CCT (M) of M with respect to T is defined as follows:

CCT (M) := xindT (M)
∑

e

χ(Gre(HomC(T, ΣM)))xB(QT )e ∈ Z[x±
1 , . . . , x±

n ],

where
• for a vector a = (a1, . . . , an)⊤ ∈Zn or α =

∑n
i=1 ai[Ti] ∈ G0(add T ),

we write xα = xa1
1 · · · xan

n ;
• HomC(T, ΣM) is a right EndC(T )-module and Gre(HomC(T, ΣM))

is the quiver Grassmanian of HomC(T, ΣM) consisting of submod-
ules with dimension vector e, which is a projective variety.

• χ is the Euler–Poincaré characteristic.

Proposition 5.4. — Let C be a 2-Calabi–Yau triangulated category
with a cluster-tilting object T . Assume that C admits a cluster structure.
Denote by AT := A(B(QT )) the cluster algebra associated to T .

(1) The map M 7→ CCT (M) induces a bijection between the set of
indecomposable rigid objects reachable from T and the set of cluster
variables of the cluster algebra AT .
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(2) The bijection of (1) induces a bijection between the set of basic
cluster-tilting objects reachable from T and the set of clusters of
AT . Furthermore, the bijection is compatible with mutations.

Proof. — The surjectivity of M 7→ CCT (M) follows from [38], and we
refer to [21, Proposition 2.3] for a proof. The injectivity of the map has
been proved by [10, Corollary 3.5] in a general setting. □

Remark 5.5. — In the above proposition, in order to categorify the clus-
ter algebra AT , the condition that C admits a cluster structure can be
weakened. Namely, it suffices to assume that each basic cluster-tilting ob-
ject which is reachable from T satisfies the conditions in the definition of
cluster structure.

Theorem 5.6. — Let C be a 2-Calabi–Yau triangulated category which
admits a cluster structure. Let T be a basic cluster-tilting object of C such
that B(QT ) is of full rank. For any indecomposable rigid objects L, N

reachable from T , we have

(CCT (L) ∥ CCT (N)) = dimk HomC(L, ΣN).

Proof. — Denote by |T | = n. We fix a cluster-tilting pattern for cluster-
tilting objects which are reachable from T . Namely, for each vertex t ∈
Tn, we assign t a basic cluster-tilting object Tt =

⊕n
i=1 Ti,t reachable

from T such that the basic cluster-tilting objects assigned to t and t′

linked by an edge labeled j are obtained from each other by mutation
at the jth indecomposable direct summand. For each t ∈ Tt, we denote
by Bt := B(QTt

), which is the exchange matrix of the labeled cluster
xt := (CCT (T1,t), . . . , CCT (Tn,t)). We abbreviate Bt0 = B.

Let t0 and s be two vertices of Tn such that L ∈ add Tt0 and N ∈ add Ts.
Without loss of generality, we may assume that N ∼= T1,s. We consider the
cluster algebra A•(B) with principal coefficients at the rooted vertex t0
and set xt0 := (x1, . . . , xn) and yt0 := (y1, . . . , yn).

Let z := zB;t0
1,s be the first cluster variable of A•(B) associated to the

vertex s ∈ Tn. Let Fz(y) := F B;t0
1,s (y) =

∑
v∈Nn cvyv ∈ Z[y1, · · · , yn] be

the F -polynomial of the cluster variable z, where cv ∈ Z. By definition, it
suffices to prove that

Fz(y) =
∑

e

χ(Gre(HomC(Tt0 , ΣN)))ye.

Denote by gz ∈ Zn the g-vector of z. By the separation formula (2.26), we
have

z = xgz Fz(ŷ1, . . . , ŷn),
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where ŷi = yi

∏n
j=1 x

bji;t0
j for 1 ⩽ i ⩽ n. Note that we also have

CCTt0
(N) = z|y1=···=yn=1.

Consequently,

xindTt0
(N)∑

e

χ(Gre(HomC(Tt0 , ΣN)))xBe = xgz

∑
v

cvxBv.

It follows from [12, Section 4] and [13, Theorem 1.7] that gz = indTt0
(N)

by identifying Zn with G0(add Tt0). Hence we have∑
e

χ(Gre(HomC(Tt0 , ΣN)))xBe =
∑

v

cvxBv.

As note that the rank of an exchange matrix is invariant under mutations,
by the condition that B(QT ) is of full rank, we know that rank B = n.
Therefore, Be ̸= Bf whenever e ̸= f ∈ Zn. It follows that

F B;t0
1,s (y) = Fz(y) =

∑
e

χ(Gre(HomC(Tt0 , ΣN)))ye. □

5.3. The exchangeability property of 2-Calabi–Yau categories

The aim of this subsection is to establish the exchangeability property
of 2-Calabi–Yau categories. We begin with the following special case.

Lemma 5.7. — Let C be a 2-Calabi–Yau triangulated categories with
cluster-tilting objects. Let X be an indecomposable rigid object such that
HomC(X, X) ∼= k and X ∼= Σ2X. Then (X, ΣX) is an exchange pair of C.

Proof. — Since C is 2-Calabi–Yau, we know that the suspension functor
Σ coincides with the Auslander–Reiten translation of C. By the condition
that HomC(X, X) ∼= k and X ∼= Σ2X, we conclude that

ΣX
f−→ 0 → X → Σ2X ∼= X

is the Auslander–Reiten triangle ending at X. Let T be an object such
that T ⊕ X is a basic cluster-tilting object of C. In particular, we have
X ̸∈ add T . Such a T exists by Lemma 5.1, namely, X can be comple-
mented to a basic maximal rigid object. By definition of AR triangles, each
morphism from ΣX to ΣT factors through the morphism f . In particu-
lar, HomC(ΣX, ΣT ) = 0. Consequently, ΣX ⊕ T is rigid. By X ∼= Σ2X

and HomC(X, ΣT ) = 0, we deduce that ΣX ̸∈ add T . It follows that
|X ⊕ T | = |ΣX ⊕ T |, we conclude that ΣX ⊕ T is a cluster-tilting ob-
ject by Lemma 5.1 and Lemma 5.2. □
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The following is the main result of this subsection, which generalizes [5,
Theorem 7.5] for cluster categories associated with hereditary algebras.

Theorem 5.8. — Let C be a 2-Calabi–Yau triangulated category with
cluster-tilting objects. Let L, N be two indecomposable rigid objects of C. If
dimk HomC(L, ΣN) = 1, then (L, N) is an exchange pair. Assume moreover
that C admits a cluster structure, then dimk HomC(L, ΣN) = 1 if and only
if (L, N) is an exchange pair.

Proof. — Let h ∈ HomC(N, ΣL) and t ∈ HomC(L, ΣN) be non-zero
morphisms. We consider the triangles determined by h and t:

L
f−→ M

g−→ N
h−→ ΣL(5.1)

and

N
r−→ M ′ s−→ L

t−→ ΣN.(5.2)

If both h and t are isomorphisms, then we are in the situation of Lemma 5.7
and we are done. Now suppose that at least one of h and t is not an
isomorphism. In particular, at least one of M and M ′ is non-zero.

Applying HomC(−, ΣL) to the triangle (5.1), we obtain a long exact
sequence

HomC(ΣL, ΣL) h∗

−→ HomC(N, ΣL) → HomC(M, ΣL) → HomC(L, ΣL).

As note that h∗(1ΣL) = h ̸= 0, hence h∗ is non-zero. Since
dimk HomC(N, ΣL) = 1, we conclude that h∗ is surjective. On the other
hand, by HomC(L, ΣL) = 0, we deduce that HomC(M, ΣL) = 0. By the
2-Calabi–Yau duality, we obtain

HomC(M, ΣL) = 0 = HomC(L, ΣM).

Similarly, by applying the functor HomC(Σ−1N, −) to the triangle (5.1),
one can show that

HomC(N, ΣM) = 0 = HomC(M, ΣN).

Now applying the functor HomC(−, ΣM) to the triangle (5.1), we have

HomC(M, ΣM) = 0.

In particular, we have proved that L ⊕ M and N ⊕ M are rigid objects of
C. Similarly, one can show that L ⊕ M ′ and N ⊕ M ′ are rigid.

By applying HomC(−, ΣM ′) to the triangle (5.1), we obtain

HomC(N, ΣM ′) → HomC(M, ΣM ′) → HomC(L, ΣM ′).
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In particular, we have HomC(M, ΣM ′) = 0. By the 2-Calabi–Yau duality,
we obtain HomC(M ′, ΣM) = 0.

Let R be a basic rigid object such that add R = add M ⊕ M ′. In particu-
lar, R⊕L and R⊕N are rigid objects. It follows that L, N ̸∈ add R. Indeed,
if L ∈ add R, then by HomC(N, ΣR) = 0, we deduce that HomC(N, ΣL) =
0, a contradiction. It remains to show that there exists an object P ∈ C
such that P ⊕ R ⊕ L and P ⊕ R ⊕ N are cluster-tilting objects.

We consider the Iyama–Yoshino’s reduction CR of C with respect to R.
It is routine to check that

• f and r are minimal left add R–approximations of L and N respec-
tively;

• g and s are minimal right add R–approximations of N and L re-
spectively.

Consequently, we have L ∼= N⟨1⟩ and N ∼= L⟨1⟩ in CR. Furthermore,
L ∼= L⟨2⟩ in CR. Applying the functor HomC(L, −) to the triangle (5.2), we
obtain a long exact sequence

HomC(L, N) → HomC(L, M ′) s∗

−→ HomC(L, L) t∗

−→ HomC(L, ΣN) ∼= k.

Since s is a right add R-approximation of L, we deduce that

HomCR
(L, N⟨1⟩) = HomCR

(L, L) ∼= HomC(L, L)/ im s∗ ∼= k.

Applying Lemma 5.7 to the 2-Calabi–Yau category CR and the object L,
we conclude that there is an object P ∈ CR such that L⊕P and L⟨1⟩⊕P =
N ⊕ P are cluster-tilting objects of CR. Now by applying Theorem 5.3, we
conclude that P ⊕ L ⊕ R and P ⊕ N ⊕ R are cluster-tilting objects of C.
This completes the proof of the first statement.

Now assume moreover that C admits a cluster structure. It remains to
show that if (L, N) is an exchange pair, then HomC(L, ΣN) ∼= k. Let T be a
rigid object such that T ⊕L and T ⊕N are cluster-tilting objects. Denote by

N → U
v−→ L → ΣN

one of the exchange triangles associated with L and N . By definition of
cluster structure, we know that C has no loops. In particular, each non-
isomorphism u : L → L factors through v. Applying HomC(L, −) to the
triangle yields that

HomC(L, ΣN) ∼= HomC(L, L)/ im v∗ ∼= k,

where the last isomorphism follows from the fact that HomC(L, L) is a local
algebra. □
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6. Exchangeability property for three classes of cluster
algebras

In this section, we prove Conjecture 4.23 for
• acyclic cluster algebras of skew-symmetric type;
• cluster algebras arising from weighted projective lines;
• cluster algebras arising from marked surfaces.

Our approach depends on the existence of additive categorification by 2-
Calabi–Yau categories.

6.1. Reminder on cluster categories associated with hereditary
categories

Let H be a hereditary abelian category with tilting objects. Let Db(H)
be the bounded derived category of H. Denote by τ : Db(H) → Db(H) the
Auslander–Reiten translation and Σ the suspension functor of Db(H). The
cluster category CH of H is defined as the orbit category Db(H)/τ−1 ◦ Σ
of Db(H) [5] (cf. [6] for the An case). Keller [29] proved that CH admits a
canonical triangle structure such that the projection functor π : Db(H) →
CH is a triangle functor. Moreover, CH is a 2-Calabi–Yau triangulated cat-
egory. Let T be a tilting object of H, it was proved in [5, Theorem 3.3 and
Proposition 3.4] that π(T ) is a cluster-tilting object of CH.

Let Q be a finite acyclic quiver and kQ its path algebra. The category
mod kQ of finitely generated right kQ-modules is a hereditary abelian cat-
egory with tilting objects. In particular, the free module kQ is a tilting
object. Another important class of hereditary abelian categories with tilt-
ing objects comes from weighted projective lines introduced by Geigle and
Lenzing [23]. According to Happel’s classification theorem [27], each con-
nected hereditary abelian category with tilting object is derived equivalent
to mod kQ for the path algebra of an acyclic quiver Q or to the category
cohX of coherent sheaves over a weighted projective line X. We remark
that if H and H′ are hereditary abelian categories with tilting objects
such that Db(H) ∼= Db(H′), then CH ∼= CH′ . By Happel’s result, we may
unify [4, Theorem 1.3 and Proposition 3.2] and [2, Theorem 3.1] as follows.

Theorem 6.1. — Let H be a hereditary abelian category with tilting
objects. The cluster category CH admits a cluster structure.

As a consequence, for each basic cluster-tilting object T of CH, we have
a skew-symmetric integer matrix B(QT ). The cluster algebra A(B(QT ))
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is an acyclic cluster algebra if H = mod kQ for an acyclic quiver Q. If Q′

is mutation equivalent to an acyclic quiver Q, then there exists a cluster-
tilting object T in CH such that Q′ = QT . Therefore, if the initial matrix
B(Q′) is obtained from Q′, then A(B(Q′)) is an acyclic cluster algebra. We
refer to A(B(QT )) a cluster algebra arising from weighted projective line
whenever H = cohX for a weighted projective line X.

The connectedness of cluster-tilting graph of CH plays a key role in
our approach to the exchangeability property of cluster algebras arising
from CH.

Theorem 6.2 ([20, Theorem 1.2]). — Let H be a hereditary abelian
category with tilting objects. The cluster-tilting graph of CH is connected.

6.2. Acyclic cluster algebras of skew-symmetric type

This subsection aims to establish Conjecture 4.23 for acyclic cluster al-
gebras of skew-symmetric type.

Theorem 6.3. — Conjecture 4.23 holds for acyclic cluster algebras of
skew-symmetric type.

Proof. — According to [10, Corollary 5.5], the exchange graph of a skew-
symmetric cluster algebra only depends on its initial exchange matrix. On
the other hand, the definition of f -vectors does not depend on the coeffi-
cients. It suffices to prove this statement for acyclic skew-symmetric cluster
algebras with principal coefficients. Furthermore, since a compatibility de-
gree is not depend on the initial matrix (or quiver), we can assume the
initial quiver Q is acyclic.

Let Q be an acyclic quiver and A•(B(Q)) the cluster algebra with prin-
cipal coefficients. We are going to show that Conjecture 4.23 is true for
A•(B(Q)). Let Q0 = {1, . . . , n} be the vertex set of Q and Q1 the arrow
set of Q. We introduce a new acyclic quiver Q̂ as follows

• the set of vertices Q̂0 := Q0 ⊔ {i∗ | ∀i ∈ Q0};
• the set of arrows Q̂1 := Q1 ⊔ {i∗ → i | ∀i ∈ Q0}.

In particular, A•(B(Q)) is a subalgebra of the cluster algebra A(B(Q̂)) with
trivial coefficients. We fix a cluster pattern of A(B(Q̂)) (resp. A•(B(Q)))
by assigning the initial seed to the rooted vertex t0 ∈ T2n (resp. t′

0 ∈ Tn).
By identifying the vertex t′

0 with t0, the cluster pattern of A•(B(Q)) can be
identified with a subgraph of T2n. Let C

Q̂
be the cluster category associated

to mod kQ̂. For each vertex i ∈ Q̂0, denote by Pi the indecomposable
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projective kQ̂-modules associated to i. Set T =
⊕

i∈Q̂0
ΣPi. It is known

that T is a basic cluster-tilting object of C
Q̂

. According to Theorem 6.1,
Theorem 6.2 and Proposition 5.4, the cluster character CCT (?) yields a
bijection between the set of indecomposable rigid objects of C

Q̂
and the set

of cluster variables of A(B(Q̂)). Denote by U :=
⊕

i∈Q0
ΣPi∗ and define

Z(U) := {X ∈ C
Q̂

| HomC
Q̂

(U, ΣX) = 0}.

Let L be an indecomposable rigid object of C
Q̂

. The cluster variable CCT (L)
belongs to A•(B(Q)) if and only if L ∈ Z(U).

Now let L, N ∈ Z(U) be indecomposable rigid objects of C
Q̂

such that

(CCT (L) ∥ CCT (N))A•(B(Q)) = (CCT (N) ∥ CCT (L))A•(B(Q)) = 1,

where the subscript is to indicate the compatibility degree of A•(B(Q)).
By Proposition 4.14(3), we have

(CCT (L) ∥ CCT (N))A(B(Q̂)) = (CCT (N) ∥ CCT (L))A(B(Q̂)) = 1.

Note that, as the exchange matrix B(Q̂) is of full rank, we have
dimk HomC

Q̂

(L, ΣN) = 1 by Theorem 5.6. Denote by C = Z(U)/[add U ]
the Iyama–Yoshino’s reduction of C

Q̂
with respect to U . In particular, L, N

belong to C. Let

N
f−→ B → N⟨1⟩ → ΣN

be a triangle of C
Q̂

, where f is a minimal left add U -approximation. By
applying HomC

Q̂

(L, −) to the triangle yields a long exact sequence

HomC
Q̂

(L, N) f∗

−→ HomC
Q̂

(L, B)

→ HomC
Q̂

(L, N⟨1⟩) → HomC
Q̂

(L, ΣN) → HomC
Q̂

(L, ΣB) ∼= 0.

By definition of C, we obtain that

HomC(L, N⟨1⟩) ∼= HomC
Q̂

(L, ΣN).

Hence
dimk HomC(L, N⟨1⟩) = 1.

By Theorem 5.8, (L, N) is an exchange pair of C. In other words, there is a
rigid object M ∈ C such that L⊕M and N ⊕M are cluster-tilting objects of
C. According to Theorem 5.3, L⊕M ⊕U and N ⊕M ⊕U are cluster-tilting
objects of C

Q̂
. Now the statement follows from Proposition 5.4. □
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6.3. Cluster algebras arising from weighted projective lines

Fix a positive integer t ⩾ 2. A weighted projective line X = X(p, λ)
over k is given by a weight sequence p = (p1, . . . , pt) of positive integers,
and a parameter sequence λ = (λ1, . . . , λt) of pairwise distinct points of
the projective line P1(k). We always assume that pi ⩾ 2 for all 1 ⩽ i ⩽ t.
Denote by cohX the category of coherent sheaves over X. We refer to [23]
for the construction of cohX. It has been proved in [23] that cohX is a
hereditary abelian category with tilting objects. In this case, we denote by
CX the cluster category associated with cohX.

For a weight sequence p = (p1, . . . , pt), we introduce a quiver Qp in
Figure 6.1.

◦ •

S
[p1−1]
1

S
[p2−1]
2

...

S
[pt−1]
t

S
[p1−2]
1 S

[2]
1 S

[1]
1

S
[p2−2]
2 S

[2]
2 S

[1]
2

S
[pt−2]
t

S
[2]
t

S
[1]
t

...
...

Figure 6.1. Quiver Qp.

The following fact can be founded in [2, Section 8].

Lemma 6.4. — Let X(p, λ) be a weighted projective line. There is a
basic cluster-tilting object Tsq such that its Gabriel quiver QTsq

coincides
with Qp.

The following is an easy observation and we left the proof as an exercise.

Lemma 6.5. — Let p = (p1, . . . , pt) be a weight sequence. If pi ⩾ 3 and
(2, pi) = 1 for all 1 ⩽ i ⩽ t, then the skew-symmetric matrix B(Qp) is of
full rank.

Theorem 6.6. — Conjecture 4.23 holds true for cluster algebras arising
from weighted projective lines.

Proof. — According to Theorem 6.2 and Lemma 6.4, it suffices to prove
the result for a cluster algebra with initial exchange matrix B(Qp) for
a weighted sequence p. Similar to Theorem 6.3, it suffices to prove the
statement for a particular choice of coefficients.
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Let p̂ = (p̂1, . . . , p̂t) be a weight sequence such that

p̂i ⩾ 3, p̂i ⩾ pi and (2, p̂i) = 1 for all 1 ⩽ i ⩽ t.

In particular, the matrix B(Qp̂) is of full rank by Lemma 6.5. We identify
Qp as a full subquiver of Qp̂. We label the vertices of Qp̂ by {1, . . . , n, n +
1, . . . , m} such that {1, . . . , n} are precisely the vertices of Qp. In this way,

B(Qp̂) =
[
B(Qp) −C⊤

C A

]
,

where C = (cij) ∈ M(m−n)×n(Z) and A ∈ Mm−n(Z). By Lemma 6.4,
there is a basic cluster-tilting object Tsq =

⊕m
i=1 Ti of CX

p̂
such that it

Gabriel quiver QT is Qp̂. Here we label the indecomposable direct sum-
mand Ti according to the vertex i. Let A(B(Qp̂)) be the cluster alge-
bra with trivial coefficients and initial seed (x = (x1, . . . , xm), B(Qp̂))
and A(B(Qp)) the cluster algebra over P := Trop(xn+1, . . . , xm) with ini-
tial seed (z = (x1, . . . , xn), y = (

∏m−n
i=1 xci1

i+n, . . . ,
∏m−n

i=1 xcin
i+n), B(Qp)). In

particular, A•(B(Qp)) is a subalgebra of A(B(Qp̂)). Similar to Proposi-
tion 4.14(3), we identify the cluster pattern of A(B(Qp)) with a subgraph
of the cluster pattern of A(B(Qp̂)). We are going to prove the statement
for the cluster algebra A(B(Qp)).

Applying Theorem 6.1, Theorem 6.2 and Proposition 5.4, the cluster
character CCT (?) yields a bijection between the set of indecomposable
rigid objects of CX

p̂
and the set of cluster variables of A(B(Qp̂)). For an

indecomposable rigid object L ∈ CX
p̂
, the cluster variable CCT (L) belong

to A(B(Qp)) if and only if L ∈ Z(U), where U =
⊕m

j=n+1 Tj and Z(U) =
{X ∈ CX

p̂
| HomCX

p̂
(U, ΣX) = 0}.

Now assume that L, N ∈ Z(U) are indecomposable rigid objects such
that

(CCT (L) ∥ CCT (N))A(B(Qp)) = (CCT (N) ∥ CCT (L))A(B(Qp)) = 1.

By Proposition 4.14(3), we have

(CCT (L) ∥ CCT (N))A(B(Q
p̂

)) = (CCT (N) ∥ CCT (L))A(B(Q
p̂

)) = 1.

Note that, as B(Qp̂) is of full rank, we deduce that

dimk HomCX
p̂

(L, ΣN) = 1

by Theorem 5.6. Now the remaining proof is the same as the one of Theo-
rem 6.3. □

ANNALES DE L’INSTITUT FOURIER



COMPATIBILITY DEGREE OF CLUSTER COMPLEXES 711

6.4. Cluster algebras arising from marked surfaces

Let (S,M) be a marked surface, i.e. S is a connected compact oriented
Riemann surface with (possibly empty) boundary and M a non-empty finite
set of marked points on S with at least one marked point on each boundary
component if S has boundaries. A marked point in the interior of S is a
puncture. For technical reasons, (S,M) is not a monogon with at most
one puncture, a digon without punctures, a triangle without punctures nor
a sphere with at most three punctures (cf. [14]). The tagged arc, tagged
triangulation and their flips of (S,M) were introduced in [14]. The exchange
graph E(S,M) of (S,M) consists of tagged triangulations as vertices, while
two vertices T and T ′ are connected by an edge if and only if T ′ is obtained
from T by a flip.

For a given tagged triangulation T of (S,M), Fomin, Shapiro and
Thurston constructed a quiver QT without loops nor 2-cycles associated
to T . Hence a cluster algebra A(B(QT )) can be associated with a tagged
triangulation T . We refer to [14] for the precise definition and construction.
A cluster algebra A with exchange matrix B(QT ) for some tagged triangu-
lation over certain marked surface (S,M) is called a cluster algebra arising
from marked surfaces.

Theorem 6.7 ([14, Theorem 7.11] [15, Theorem 6.1]). — Let (S,M) be
a marked surface and T a tagged triangulation. Denote by ET the connected
component of E(S,M) containing T .

(1) If (S,M) is a closed surface with exactly one puncture, then E(S,M)
has precisely two isomorphic connected components: one in which
all ends of tagged arcs are plain and one in which they are notched.
Otherwise, it is connected, i.e. any two tagged triangulation of
(S,M) are connected by a finite sequence of flips.

(2) There is a bijection between the set of tagged arcs which belong to
tagged triangulations contained in ET and the set of cluster variables
of the cluster algebra A(B(QT )). It induces a bijection between the
set of tagged triangulations lying in ET and the set of clusters of
A(B(QT )). Moreover, a flip of tagged triangulations corresponds to
a mutation of clusters.

Let T be a tagged triangulation and QT the associated quiver. It follows
from [31, 32, 33, 43] that there is a non-degenerate potential WT on QT

such that the associated Jacobian algebra J(QT , WT ) is finite-dimensional.
By applying Amiot’s construction of generalized cluster category [1], we
obtain a 2-Calabi–Yau category C(QT ,WT ) with cluster-tilting objects. In
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particular, the tagged triangulation T induces a basic cluster-tilting object
Γ in C(QT ,WT ). Moreover, the generalized cluster category C(QT ,WT ) is in-
dependent of the choice of the triangulation T , which we will denote it by
C(S,M).

By applying Proposition 5.4 and Remark 5.5, the cluster character
CCΓ(?) induces a bijection clΓ between the set of indecomposable rigid
objects reachable from Γ and the set of cluster variables of the cluster al-
gebra A(B(QT )). Combining the bijection in Theorem 6.7 with the inverse
of clΓ, we obtain a bijection ϕ+ from the set of tagged arcs which belong to
triangulations lying in ET and the set of indecomposable rigid objects reach-
able from Γ. We remark that the bijection ϕ+ induces a bijection between
the set of triangulations lying in ET and the set of cluster-tilting objects
reachable from Γ which commutes with flips and mutations. If (S,M) is not
a closed surface with exactly one puncture, we know that the cluster-tilting
graph of C(S,M) is connected by [45, Corollary 1.4] and the exchange graph
of (S,M) is also connected by Theorem 6.7. In particular, ϕ := ϕ+ is a
bijection from the set of tagged arcs of (S,M) to the set of indecomposable
rigid objects of C(S,M).

Let us assume that (S,M) is a closed surface with exactly one puncture.
In this case, by [45, Corollary 1.4], the cluster-tilting graph of C(S,M) has
precisely two connected components: GΓ and GΣΓ, where G∗ stands for the
connected component containing ∗. On the other hand, the exchange graph
of E(S,M) also has two connected components which we denote by ET+ := ET

and ET− . Similar to the construction of ϕ+, there is a bijection ϕ− from the
set of tagged arcs which belong to triangulations lying in ET− to the set of
indecomposable rigid objects reachable from ΣΓ (cf. [45, Section 3 and 4]).
Now for any tagged arc l, we define

ϕ(l) =
{

ϕ+(l) if l belongs to a triangulation lying in ET+ ;
ϕ−(l) if l belongs to a triangulation lying in ET− ;

The following result is a refinement of [45, Corollary 1.4 and Sections 3.2,
4.2] (cf. [39] for marked surfaces with non-empty boundary).

Proposition 6.8. — Let (S,M) be a marked surface. The map ϕ is a
bijection from the set of tagged arcs of (S,M) to the set of indecomposable
rigid objects of C(S,M). It induces a bijection between the set of triangula-
tions of (S,M) and the set of basic cluster-tilting objects of C(S,M) which
commutes with flips and mutations.
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Proof. — There is nothing to prove if (S,M) is not a closed surface with
exactly one puncture. Let us assume that (S,M) is a closed surface with
exactly one puncture. It remains to show that ϕ is a bijection. We fix a
triangulation T of (S,M) and denote by Γ the induced basic cluster-tilting
object in C(S,M).

By [45, Corollary 1.4], each indecomposable rigid object of C(S,M) is either
reachable from Γ or reachable from ΣΓ. It follows that ϕ is a surjection by
definition. To prove that ϕ is a bijection, it suffices to show that there
does not exist an indecomposable rigid object M which is reachable from
Γ and ΣΓ. Otherwise, there exists a basic cluster-tilting object TM (resp.
T ′

M ) containing M as a direct summand which is reachable from Γ(resp.
ΣΓ). By applying the inverse of the suspension functor Σ, we know that
Σ−1T ′

M is reachable from Γ. Consequently, Σ−1T ′
M is reachable from TM .

Let T ′ be the triangulation corresponding to Σ−1T ′
M and A(B(QT ′)) the

associated cluster algebra. Denote by xM the cluster variable of A(B(QT ′))
corresponding to M . It follows from [12, Section 4] and [13, Theorem 1.7]
that the g-vector g(xM ) of xM is indΣ−1T ′

M
(M) = −[Σ−1M ] by identifying

Zn with G0(add Σ−1T ′
M ). Applying [45, Theorem 1.2] to the triangulation

T ′, we obtain a contradiction. This completes the proof. □

As a byproduct, we obtain

Corollary 6.9. — Let (S,M) be a closed surface with exactly one
puncture. Let T and T ′ be two cluster-tilting objects of C(S,M). If add T ∩
add T ′ ̸= {0}, then T is reachable from T ′.

The f -vectors for cluster algebras associated to marked surfaces with
principal coefficients have been investigated in [44]. Combining [44, Theo-
rem 1.8], Theorem [39, Theorem 1.1] and [46, Theorem 3.4], one obtains
the following result:

Theorem 6.10. — Let T be a tagged triangulation of a marked surface
(S,M). Let A•(B(QT )) be the cluster algebra associated to T with prin-
cipal coefficients. Let x, z be two cluster variables and X, Z ∈ C(S,M) the
corresponding indecomposable rigid objects, then

(x ∥ z) = dimk HomC(S,M)(X, ΣZ).

Remark 6.11. — Let T be a tagged triangulation of a marked surface
(S,M) and A(B(QT )) the cluster algebra associated to T . Let xδ and xγ

be the cluster variables of A(B(QT )) corresponding to the tagged arcs δ

and γ, respectively. We have

(xδ ∥ xγ) = Int(δ, γ),

TOME 74 (2024), FASCICULE 2



714 Changjian FU & Yasuaki GYODA

where Int(δ, γ) is the intersection number of δ and γ in the sense of [39]
(cf. [44, Theorem 1.8]).

The following is the main result of this subsection.

Corollary 6.12. — Let (S,M) be a marked surface and T a tagged
triangulation. Let A be the cluster algebra with initial exchange matrix
B(QT ) associated to T . Then Conjecture 4.23 holds true for A.

Proof. — Denote by Γ the induced cluster-tilting object in C(S,M).
Assume that (S,M) is not a closed surface with exactly one puncture. Ac-

cording to Proposition 6.8 and Theorem 6.7, the cluster character CCΓ(?)
yields a bijection between the set of indecomposable rigid objects of C(S,M)
and the set of cluster variables of A. Now the result is a direct consequence
of Theorem 5.8 and Theorem 6.10.

Let us assume that (S,M) is a closed surface with exactly one puncture.
In this case, the cluster character CCΓ(?) induces a bijection between the
set of indecomposable rigid objects reachable from Γ and the set of cluster
variables of A(B(QT )). Let x, x′ be two cluster variables of A(B(QT )) such
that

(x ∥ x′) = (x′ ∥ x) = 1.

Denote by X (resp. X ′) the corresponding indecomposable rigid objects of
x (resp. x′). In particular, there is a basic cluster-tilting object Tx (resp.
Tx′) reachable from Γ which admits X (resp. X ′) as a direct summand. Let
us rewrite Tx as Tx = T x ⊕ X. By Theorem 6.10, we obtain that

dimk HomC(X, ΣX ′) = 1.

It follows from Theorem 5.8 that (X, X ′) is an exchange pair. In particular,
there is a basic rigid object M such that both M⊕X and M⊕X ′ are cluster-
tilting objects of C(S,M). We conclude that M ⊕ X is reachable from Γ by
Corollary 6.9 and we are done. □

6.5. Counterexamples of exchangeability property for the
d-vectors

The d-compatibility degree does not satisfy the analogous property of
Conjecture 4.23. Let us see some examples.
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Example 6.13. — We set P = {1} the trivial semifield and consider a
seed (x, B), where

x = (x1, x2, x3, x4, x5), B =


0 1 0 −1 0

−1 0 1 1 −1
0 −1 0 1 0
1 −1 −1 0 1
0 1 0 −1 0

 .

This is of type D̂4. Moreover, we set

x′ = (x′
1, x′

2, x′
3, x′

4, x5) = µ4µ3µ2µ1(x).

Then, we have (x1 ∥ x′
4)d = (x′

4 ∥ x1)d = 1 and (x1 ∥ x′
4) = (x′

4 ∥ x1) = 2.
Let us see this fact by using marked surface and their flips. A(B) is a cluster
algebra arising from the marked surface in Figure 6.2.

3 4

5

1
2

Figure 6.2. Marked surface corresponding to B

We consider flipping the marked surface in Figure 6.2 at 1,2,3,4. The
relative position of arc corresponding to x1 and x′

4 is as in Figure 6.3.

x1

x′
4

Figure 6.3. Relative position of arc corresponding to x1 and x′
4

Considering the intersection number induced by the d-vector ([14, Defini-
tion 8.4]), we have (x1 ∥ x′

4)d = (x′
4 ∥ x1)d = 1. On the other hand, consid-

ering the intersection number induced by the f -vector ([44, Section 1]), we
have (x1 ∥ x′

4) = (x′
4 ∥ x1) = 2. Therefore, by Corollary 6.12, x1 and x′

4 are
not exchangeable. This example implies (· ∥ ·)d does not satisfy the similar
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property of Conjecture 4.23. We remark that A(B) satisfies the similar
property of Proposition 4.14 for the d-vectors because of Theorem 4.20(3).

Example 6.14. — We set P = {1} and consider a seed (x, B), where

x = (x1.x2.x3), B =

 0 2 −1
−2 0 1
1 −1 0

 .

We fix a cluster pattern by assigning Σt0 = (x, B) to the rooted vertex t0
of T3. The cluster algebra A(B) is acyclic (type Â2). Let

t0
3

t1
2

t2
1

t3

be a subgraph of T3. According to [21, Example 6.7], we have

fB,t0
1,t3

=

1
1
2

 , dB,t0
1;t3

=

1
1
1

 .

Therefore (x3 ∥ x1;t3) = (x1;t3 ∥ x3) = 2 by Proposition 4.14(2). Hence
x3 and x1;t3 are not exchangeable by Theorem 6.3. On the other hand, a
direct computation shows that

dBt3 ;t3
3,t0

=

1
1
1

 .

Hence (x3 ∥ x1;t3)d = (x1,t3 ∥ x3)d = 1. In particular, (· ∥ ·)d does not
satisfy the similar property of Conjecture 4.23.
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