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WEIGHTS, KOVALEVSKAYA EXPONENTS AND THE
PAINLEVÉ PROPERTY

by Hayato CHIBA

Abstract. — Weighted degrees of quasihomogeneous Hamiltonian functions of
the Painlevé equations are investigated. A t-uple of positive integers, called a reg-
ular weight, satisfying certain conditions related to singularity theory is classified.
For each polynomial Painlevé equation a regular weight is associated. Conversely,
for 2 and 4-dim cases, it is shown that there exists a differential equation satisfying
the Painlevé property associated with each regular weight. Kovalevskaya exponents
of quasihomogeneous Hamiltonian systems are also investigated by means of reg-
ular weights, singularity theory and dynamical systems theory. It is shown that
there is a one-to-one correspondence between Laurent series solutions and stable
manifolds of the associated vector field obtained by the blow-up of the system. For
4-dim autonomous Painlevé equations, the level surface of Hamiltonian functions
can be decomposed into a disjoint union of stable manifolds.

Résumé. — On étudie les degrés pondérés des fonctions hamiltoniennes quasi
homogènes des équations de Painlevé. On classifie un t-uplet d’entiers positifs,
appelé poids régulier, satisfaisant certaines conditions liées à la théorie de la sin-
gularité. A chaque équation polynomiale de Painlevé est associé un poids régulier.
Inversement, pour les cas des dimensions 2 et 4, on montre qu’il existe une équation
différentielle satisfaisant la propriété de Painlevé associée à chaque poids régulier.
Les exposants de Kovalevskaya des systèmes hamiltoniens quasi homogènes sont
également étudiés au moyen de poids réguliers, la théorie des singularités et la
théorie des systèmes dynamiques. On montre qu’il existe une correspondance bi-
univoque entre les solutions de la série de Laurent et des variétés stables du champ
vectoriel associé obtenues par l’éclatement du système. Pour des équations auto-
nomes de Painlevé en dimension 4, la surface de niveau des fonctions hamiltoniennes
peut être décomposée en une union disjointe de variétés stables.

1. Introduction

A differential equation defined on a complex region is said to have the
Painlevé property if any movable singularity (a singularity of a solution

Keywords: Painlevé equation, quasihomogeneous vector field, regular weight, Kovalev-
skaya exponent.
2020 Mathematics Subject Classification: 34M55.



812 Hayato CHIBA

which depends on an initial condition) of any solution is a pole. Painlevé
and his group classified second order ODEs having the Painlevé prop-
erty and found new six differential equations called the Painlevé equations
PI, . . . , PVI. Nowadays, it is known that they are written in Hamiltonian
forms

(PJ) : dq

dz
= ∂HJ

∂p
,

dp

dz
= −∂HJ

∂q
, J = I, . . . , VI.

Among six Painlevé equations, the Hamiltonian functions of the first, sec-
ond and fourth Painlevé equations are polynomials in both of the indepen-
dent variable z and the dependent variables (q, p). They are given by

(1.1)

HI = 1
2p2 − 2q3 − zq,

HII = 1
2p2 − 1

2q4 − 1
2zq2 − αq,

HIV = −pq2 + p2q − 2pqz − αp + βq,

respectively, where α, β ∈ C are arbitrary parameters.
In general, a polynomial H(x1, . . . , xn) is called a quasihomogeneous

polynomial if there are positive integers a1, . . . , an and h such that

(1.2) H(λa1x1, . . . , λanxn) = λhH(x1, . . . , xn)

for any λ ∈ C. A polynomial H is called a semi-quasihomogeneous if H

is decomposed into two polynomials as H = HP + HN , where HP satis-
fies (1.2) and HN satisfies

HN (λa1x1, . . . , λanxn) ∼ o(λh), |λ| → ∞.

The integer deg(H) := h is called the weighted degree of H with respect
to the weight deg(x1, . . . , xn) := (a1, . . . , an). HP and HN are called the
principal part and the non-principal part of H, respectively. The weight of
H, HP and HN are also calculated by the Newton diagram as follows. Plot
all exponents (r1, . . . , rn) of monomials xr1

1 xr2
2 · · · xrn

n included in HP on the
integer lattice in Rn. If they lie on a unique hyperplane a1x1 + · · ·+anxn =
h, then deg(HP ) = h with respect to the weight (a1, . . . , an). Exponents of
monomials included in HN should be on the lower side of the hyperplane.
See [3] for the detail.

The Hamiltonian functions for PI, PII and PIV are semi-quasihomoge-
neous. If we define degrees of variables by deg(q, p, z) = (2, 3, 4) for HI,
deg(q, p, z) = (1, 2, 2) for HII and deg(q, p, z) = (1, 1, 1) for HIV, then
Hamiltonian functions have the weighted degrees 6, 4 and 3, respectively,
(Table 1.1) with HN

I = 0, HN
II = −αq and HN

IV = −αp + βq.

ANNALES DE L’INSTITUT FOURIER



WEIGHTS AND THE PAINLEVÉ PROPERTY 813

The Hamiltonian functions of the third, fifth and sixth Painlevé equations
are not polynomials in z, and their weights include nonpositive integers
(Table 1.1). They are not treated in this paper, while the analysis of them
using weighted projective spaces is given in [7].

Higher dimensional Painlevé equations have not been classified yet, how-
ever, a lot of such equations have been reported in the literature. A list
of four dimensional Painlevé equations derived from the monodromy pre-
serving deformation is given in [20, 21]. Lie-algebraic approach is often
employed to find new Painlevé equations [12, 14, 18, 27]. Several Painlevé
hierarchies, which are hierarchies of 2n-dimensional Painlevé equations, are
obtained by the similarity reductions of soliton equations such as the KdV
equation. Among them, it is known that Hamiltonian functions of the the
first Painlevé hierarchy (PI)n [22, 23, 31], the second-first Painlevé hierar-
chy (PII-1)n [9, 10, 22, 23], the second-second Painlevé hierarchy (PII-2)n

and the fourth Painlevé hierarchy (PIV)n [15, 22] can be expressed as poly-
nomials with respect to both of the dependent variables and the indepen-
dent variables. They are Hamiltonian PDEs of the form

(1.3)
{

∂qj

∂zi
= ∂Hi

∂pj
,

∂pj

∂zi
= − ∂Hi

∂qj
, j = 1, . . . , n; i = 1, . . . , n

Hi = Hi(q1, . . . , qn, p1, . . . , pn, z1, . . . , zn)

consisting of n Hamiltonians H1, . . . , Hn with n independent variables
z1, . . . , zn. When n = 1, (PI)1 and (PIV)1 are reduced to the first and
fourth Painlevé equations, respectively. Both of (PII-1)1 and (PII-2)1 coin-
cide with the second Painlevé equation, while they are different systems for
n ⩾ 2. When n = 2, Hamiltonians of (PI)2, (PII-1)2, (PII-2)2 and (PIV)2
are given by

(PI)2


H

9/2
1 = 2p2p1 +3p2

2q1 +q4
1 −q2

1q2 −q2
2 −z1q1 +z2(q2

1 −q2),
H

9/2
2 = p2

1 + 2p2p1q1 − q5
1 + p2

2q2 + 3q3
1q2 − 2q1q2

2

+z1(q2
1 − q2) + z2(z2q1 + q1q2 − p2

2),
(1.4)

(PII-1)2


H

7/2+1
1 = 2p1p2 −p3

2 −p1q2
1 +q2

2 −z1p2 +z2p1 +2αq1,

H
7/2+1
2 = −p2

1 + p1p2
2 + p1p2q2

1 + 2p1q1q2 + z1p1

+z2(z2p1 −p1q2
1 +p1p2)−α(2p2q1 +2q2 +2z2q1),

(1.5)

(PII-2)2


H5

1 = p1p2 − p1q2
1 − 2p1q2 + p2q1q2 + q1q2

2

+q2z1 + z2(q1q2 − p1) + αq1,

H5
2 = p2

1 − p1p2q1 + p2
2q2 − 2p1q1q2 − p2q2

2 + q2
1q2

2

+z1(q1q2 − p1) − z2(p1q1 + q2
2 + q2z2) + αp2,

(1.6)

TOME 74 (2024), FASCICULE 2



814 Hayato CHIBA

(1.7) (PIV)2


H4+1

1 = p2
1 + p1p2 − p1q2

1 + p2q1q2 − p2q2
2

−z1p1 + z2p2q2 + αq2 + βq1,

H4+1
2 = p1p2q1 − 2p1p2q2 − p2

2q2 + p2q1q2
2 + p2q2z1

+z2(p1p2 −p2q2
2 +p2q2z2)+(p1 −q1q2 +q2z2)α−βp2,

respectively, with arbitrary parameters α, β ∈ C (these notations for Hamil-
tonian functions are related to the spectral type of a monodromy preserving
deformation [21]). The weighted degrees of these hierarchies determined by
the Newton diagrams are shown in Table 1.2 (see also Table 1.3). From
Tables 1.1 and 1.2 and the equations, we deduce the following properties.

• deg(qi) + deg(pi) = deg(H1) − 1.
• deg(z1) = deg(H1) − 2.
• deg(zi) + deg(Hi) is independent of i = 1, . . . , n.
• min1⩽i⩽n{deg(qi), deg(pi)} = 1 or 2.
• The equation (1.3) is invariant under the Zs-action

(qi, pi, zi) 7→
(

ωdeg(qi)qi, ωdeg(pi)pi, ωdeg(zi)zi

)
,

where

s := deg(H1) − 1 and ω := e2πi/s .

• The symplectic form

n∑
i=1

dqi ∧ dpi +
n∑

i=1
dzi ∧ dHi

is also invariant under the same Zs-action, for which Hi 7→ ωdeg(Hi)Hi.

We decompose the Hamiltonian function Hi into the principal part HP
i

and the non-principal part HN
i . Then, we further deduce

• The non-principal part HN
i consists of monomials including arbi-

trary parameters.
• deg(HN

i ) = deg(Hi) − deg(H1) + 1. In particular deg(HN
1 ) = 1.

• The variety defined by

HP
1 (q1, . . . , qn, p1, . . . , pn, 0, . . . , 0) = 0

in C2n has a unique singularity at the origin.

ANNALES DE L’INSTITUT FOURIER
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In Section 2.4, several above properties will be proved from the others.
For (PI), (PII) and (PIV), we have

HP
I (q, p, 0) = 1

2p2 − 2q3,

HP
II (q, p, 0) = 1

2p2 − 1
2q4,

HP
IV(q, p, 0) = −pq2 + p2q.

They define A2, A3 and D4 singularities at the origin, respectively. In sin-
gularity theory, it is known that if a singularity defined by a quasihomoge-
neous polynomial H(x1, . . . , xn) = 0 is isolated, then the rational function

(1.8) χ(T ) := (T h−a1 − 1) · · · (T h−an − 1)
(T a1 − 1) · · · (T an − 1)

becomes a polynomial (Poincaré polynomial), where deg(xi) = ai and
deg(H) = h.

Motivated by these observation, we classify regular weights, a tuple of
integers (a1, . . . , an, b1, . . . , bn; h) satisfying certain conditions in Section 2.
In particular, for n = 1 and 2, we will show that there is a correspond-
ing Painlevé equation for each weight such that deg(qi) = ai, deg(pi) = bi

and deg(H) = h. In Section 2.4, a Hamiltonian system, whose Hamilton-
ian function satisfies certain assumptions on the quasihomogeneity, will be
considered. Then, some of the above properties of weights will be proved.

In Section 3, a brief review of Kovalevskaya exponents of quasihomoge-
neous vector fields, which seems to be closely related to regular weights,
is given. A list of Kovalevskaya exponents of 4-dim Painlevé equations are
shown in Table 3.1. From the table, it is expected that Painlevé equations
defined by semi-quasihomogeneous Hamiltonian functions can be classified
by their weights and Kovalevskaya exponents.

In Section 4, Kovalevskaya exponents of quasihomogeneous systems are
further studied by means of singularity theory and dynamical systems the-
ory. In general, the level surface of quasihomogeneous Hamiltonian func-
tions has a singularity at the origin. The weighted blow-up of the singu-
larity at the origin induces a vector field on the exceptional divisor. Then,
Laurent series solutions, Kovalevskaya exponents and the level surface are
investigated via the vector field. In particular, it is shown that there is a one-
to-one correspondence between Laurent series solutions and fixed points of
the vector field, and the eigenvalues of the Jacobi matrix of the vector field
at the fixed point precisely coincide with Kovalevskaya exponents. With
the aid of these results, it is shown for several 4-dim Painlevé equations

TOME 74 (2024), FASCICULE 2
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that the level surface of Hamiltonian functions can be decomposed into a
disjoint sum of stable manifolds of the fixed points.

Table 1.1. deg(H) denotes the weighted degree of the Hamiltonian
function with respect to the weight deg(q, p, z). κ denotes the Ko-
valevskaya exponent defined in Section 3.

deg(q, p, z) deg(H) κ

PI (2, 3, 4) 6 6
PII (1, 2, 2) 4 4
PIV (1, 1, 1) 3 3

PIII(D8) (−1, 2, 4) 2 2
PIII(D7) (−1, 2, 3) 2 2
PIII(D6) (0, 1, 2) 2 2

PV (1, 0, 1) 2 2
PVI (1, 0, 0) 2 2

Table 1.2. Weights for four classes of the Painlevé hierarchies.

deg(qj , pj) deg(zi) deg(Hi)
(PI)n (2j, 2n + 3 − 2j) 2n − 2i + 4 2n + 2i + 2

(PII-1)n (2j − 1, 2n + 2 − 2j) 2n − 2i + 2 2n + 2i

(PII-2)n (j, n + 2 − j) n − i + 2 n + i + 2
(PIV)n (j, n + 1 − j) n − i + 1 n + i + 1

Table 1.3. Weightsfor four classes of the Painlevé hierarchies when
n = 2, 3, where deg(qj), deg(pj)’s are shown in ascending order.

{deg(qj), deg(pj)} deg(zi) deg(Hi)
(PI)2 (2, 3, 4, 5) 6, 4 8, 10
(PI)3 (2, 3, 4, 5, 6, 7) 8, 6, 4 10, 12, 14

(PII-1)2 (1, 2, 3, 4) 4, 2 6, 8
(PII-1)3 (1, 2, 3, 4, 5, 6) 6, 4, 2 8, 10, 12
(PII-2)2 (1, 2, 2, 3) 3, 2 5, 6
(PII-2)3 (1, 2, 2, 3, 3, 4) 4, 3, 2 6, 7, 8
(PIV)2 (1, 1, 2, 2) 2, 1 4, 5
(PIV)3 (1, 1, 2, 2, 3, 3) 3, 2, 1 5, 6, 7

ANNALES DE L’INSTITUT FOURIER
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2. Classification of regular weights

Let a1, . . . , an, b1, . . . , bn and h be positive integers such that 1 ⩽ ai, bi <

h. Motivated by the observation in Section 1, we suppose the following.
(W1) min1⩽i⩽n{ai, bi} = 1 or 2.
(W2) ai + bi = h − 1 for i = 1, . . . , n.
(W3) A function

(2.1) χ(T ) = (T h−a1 − 1)(T h−b1 − 1) · · · (T h−an − 1)(T h−bn − 1)
(T a1 − 1)(T b1 − 1) · · · (T an − 1)(T bn − 1)

is polynomial.
In Saito [29], a tuple of integers (a1, . . . , an, b1, · · · , bn; h) satisfying (W3)

is called a regular weight. In this paper, a tuple is called a regular weight
if it satisfies (W1) to (W3). In this section, we will classify all regular
weights for n = 1, 2, 3. In particular, for n = 1 and n = 2, we will show
that there are Hamiltonians of Painlevé equations associated with regular
weights such that deg(qi) = ai, deg(pi) = bi and deg(H) = h.

2.1. n = 1

Proposition 2.1. — When n = 1, regular weights satisfying (W1)
to (W3) are only

(a, b; h) = (2, 3; 6), (1, 2; 4), (1, 1; 3).

They coincide with the weights (deg(q), deg(p); deg(H)) of HI, HII and HIV
for 2-dim Painlevé equations, respectively, given in Section 1.

Hence, there is a one to one correspondence between regular weights and
the 2-dim Painlevé equations written in polynomial Hamiltonians. Note
that deg(z) is recovered by the rule deg(z) = deg(H) − 2 (see also Propo-
sition 2.5). Now we show that HI, HII and HIV can be reconstructed from
the regular weights with the aid of singularity theory.

Step 1. — Consider generic polynomials H(q, p) whose weighted de-
grees are deg(q, p; H) = (2, 3; 6), (1, 2; 4) and (1, 1; 3). They are given by

H = c1p2 + c2q3,

H = c1p2 + c2q2p + c3q4,

H = c1q3 + c2pq2 + c3p2q + c4p3,

respectively, with arbitrary constants c1, . . . , c4.

TOME 74 (2024), FASCICULE 2
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Step 2. — Simplify by symplectic transformations. One of the results
are

H = 1
2p2 − 2q3,

H = 1
2p2 − 1

2q4,

H = −pq2 + p2q,

respectively.

Step 3. — Consider the versal deformations of them [3]. We obtain

H = 1
2p2 − 2q3 + α4q + α6,

H = 1
2p2 − 1

2q4 + α2q2 + α3q + α4,

H = −pq2 + p2q + α1pq + α2p + β2q + α3,

respectively, where αi, βi ∈ C are deformation parameters. The subscripts
i of αi, βi denote the weighted degrees of αi, βi so that H becomes a quasi-
homogeneous.

Step 4. — Now we use the ansatz deg(z) = deg(H) − 2 observed in
Section 1. If there is a parameter αi such that i = deg(H)−2, then replace
it by z. The results are

H = 1
2p2 − 2q3 + zq + α6,

H = 1
2p2 − 1

2q4 + zq2 + α3q + α4,

H = −pq2 + p2q + zpq + α2p + β2q + α3,

respectively. They are equivalent to HI, HII and HIV up to the scaling of z

(constant terms in Hamiltonians such as α6 do not play a role).

Hence, when n = 1, there is a one to one correspondence between the reg-
ular weights and 2-dim polynomial Painlevé equations, and we can recover
one of them from the other.

ANNALES DE L’INSTITUT FOURIER
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2.2. n = 2

Proposition 2.2. — When n = 2, regular weights satisfying (W1)
to (W3) are only

(a1, a2, b2, b1; h) = (2, 3, 4, 5; 8),
(1, 2, 3, 4; 6),
(2, 2, 3, 3; 6),
(1, 2, 2, 3; 5),
(1, 1, 2, 2; 4),
(1, 1, 1, 1; 3),

where we assume without loss of generality that a1 ⩽ a2 ⩽ b2 ⩽ b1. For
each weight, there exists a polynomial Hamiltonian of a 4-dim Painlevé
equation (not unique).

Explicit forms of Hamiltonian functions are given as follows.

(2,3,4,5;8)

The first Hamiltonian H
9/2
1 of (PI)2 shown in (1.4) has this weight with

deg(q1, q2, p1, p2) = (2, 4, 5, 3). Another example is
(2.2)
HCosgrove = −4p1p2−2p2

2q1− 73
128q4

1 + 11
8 q2

1q2− 1
2q2

2 −q1z− 1
48

(
q1 + α

6

)
q2

1α.

This Hamiltonian system is derived by a Lie-algebraic method of type B2
and can be written in Lax form [8], thus it enjoys the Painlevé property.
It seems that it does not appear in the list of 4-dim Painlevé equations
in [20, 21, 26]. If we rewrite the system as the fourth order single equation
of q1 = y, we obtain

(2.3) y′′′′ = 18yy′′ + 9(y′)2 − 24y3 + 16z + αy

(
y + 1

9α

)
.

This equation was first given in Cosgrove [11], denoted by F-VI. He con-
jectured that this equation defines a new Painlevé transcendents (i.e. it is
not reduced to known equations).

TOME 74 (2024), FASCICULE 2
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(1,2,3,4;6)

The first Hamiltonian H
7/2+1
1 of (PII-1)2 shown in (1.5) has this weight

deg(q1, q2, p1, p2) = (1, 3, 4, 2). Another example is the matrix Painlevé
equation of the first type HMat

I [20, 21] defined by

(2.4) HMat
I = 1

2p2
1 − 2q3

1 − 2p2
2q2 + 6q1q2 − 2q1z + 2αp2,

with deg(q1, q2, p1, p2) = (2, 4, 3, 1).

(2,2,3,3;6)

For H
7/2+1
1 and H

7/2+1
2 of (PII-1)2 shown in (1.5), perform the symplectic

transformation

(2.5) q1 = − y1

2x1
, p1 = −x2

1, q2 = y2

2 , p2 = 2x2.

Then we obtain the Hamiltonians

(2.6)


H

(2,3,2,3)
1 = −4x2

1x2 − 8x3
2 + y2

1
4 + y2

2
4 − 2z1x2 − z2x2

1 − αy1
x1

,

H
(2,3,2,3)
2 = −x4

1 − 4x2
1x2

2 − x2y2
1

2 + x1y1y2
2 − z1x2

1

−z2
2x2

1 − 2z2x2
1x2 + z2y2

1
4 − αz2y1

x1
+ 2αx2y1

x1
− αy2.

Thus, putting α = 0 yields semi-quasihomogeneous Hamiltonians of
deg(H(2,3,2,3)

1 , H
(2,3,2,3)
2 ) = (6, 8) with respect to deg(x1, y1, x2, y2) =

(2, 3, 2, 3) and deg(z1, z2) = (4, 2). Although this is equivalent to (PII-1)2
for α = 0, they should be distinguished from each other from a viewpoint
of a geometric classification of Painlevé equations (i.e. a classification based
on the spaces of initial conditions) because the above symplectic transfor-
mation is not a one-to-one mapping. The direct product of two (PI) also
has this weight, see Example 4.14.

(1,2,2,3;5)

The first Hamiltonian H5
1 of (PII-2)2 shown in (1.6) has this weight with

deg(q1, q2, p1, p2) = (1, 2, 3, 2).

ANNALES DE L’INSTITUT FOURIER
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(1,1,2,2;4)

The first Hamiltonian H4+1
1 of (PIV)2 shown in (1.7) has this weight

with deg(q1, q2, p1, p2) = (1, 1, 2, 2). Another example is the matrix Painlevé
equation of the second type HMat

II [20, 21] defined by

(2.7) HMat
II = 1

2p2
1−p1q2

1 +p1q2−2p2
2q2−4p2q1q2−p1z+2αp2+2β(p2+q1),

with deg(q1, q2, p1, p2) = (1, 2, 2, 1). The direct product of two (PII) also
has this weight.

(1,1,1,1;3)

The Noumi–Yamada system of type A4 [21, 27] defined by

(2.8) HA4
NY = 2p1p2q1 + p1q1(p1 − q1 − z) + p2q2(p2 − q2 − z)

+ αp1 + βq1 + γp2 + δq2

has the weight deg(q1, q2, p1, p2) = (1, 1, 1, 1), where α, β, γ, δ are arbitrary
parameters. The direct product of two (PIV) also has this weight.

2.3. n = 3

To determine all regular weights satisfying (W1) to (W3), the following
lemma is useful. Without loss of generality, we assume a1 ⩽ a2 ⩽ · · · ⩽
an ⩽ bn ⩽ · · · ⩽ b2 ⩽ b1. There exist integers N and j(1), . . . , j(N) such
that

a1 = · · · = aj(1) < aj(1)+1 = · · · = aj(2) < · · · < aj(N)+1 = · · · = an

⩽ bn = · · · = bj(N)+1 < · · · < bj(2) = · · · = bj(1)+1 < bj(1) = · · · = b1.

We put Jl = j(l) − j(l − 1) (l = 1, . . . , N + 1), where j(0) = 0 and
j(N + 1) = n.

Lemma 2.3.
(i) When N = 0 (i.e. a1 = an), then

(a1, . . . , an, bn, . . . , b1; h) = (1, . . . , 1, 1, . . . , 1; 3)
= (1, . . . , 1, 2, . . . , 2; 4)
= (2, . . . , 2, 3, . . . , 3; 6).
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(ii) When N ⩾ 1, the equality bj(i) = bj(i+1) + 1 holds for i = 1, . . . , N

and Ji+1 ⩾ Ji holds for i = 1, . . . , N − 1. If an ̸= bn, further
bn = an + 1 and JN+1 ⩾ JN hold.

(iii) If ai < ai+1 for any i = 1, . . . , n − 1, then

(a1, . . . , an, bn, . . . , b1; h) = (1, . . . , n, n, . . . , 2n − 1; 2n + 1)
= (1, . . . , n, n + 1, . . . , 2n; 2n + 2)
= (2, . . . , n + 1, n + 2, . . . , 2n + 1; 2n + 4).

Proof. — Because of (W2), (2.1) is rewritten as

(2.9) χ(T ) = (T a1+1 − 1) · · · (T an+1 − 1)(T bn+1 − 1) · · · (T b1+1 − 1)
(T a1 − 1) · · · (T an − 1)(T bn − 1) · · · (T b1 − 1) .

(i). — In this case, a1 = an ⩽ bn = b1 due to (W2), which implies

χ(T ) = (T a1+1 − 1)n(T b1+1 − 1)n

(T a1 − 1)n(T b1 − 1)n
.

Since it is polynomial, either b1 + 1 or a1 + 1 is a multiple of b1. If
b1m = b1 + 1, then (m, b1) = (2, 1) and we obtain (a1, . . . , an, bn, . . . , b1) =
(1, · · · 1, 1, . . . , 1). If a1 = b1, the same result is obtained. Now suppose that
b1m = a1 + 1 < b1 + 1. It is easy to verify that m = 1 and b1 = a1 + 1.
Then,

χ(T ) = (T a1+2 − 1)n

(T a1 − 1)n
.

Since a1 +2 is a multiple of a1, we have a1m = a1 +2. This provides a1 = 1
or 2 (we need not use (W1)).

(ii). — In what follows, we suppose that b1 > 1. In this case, bj > 1 for
any j = 1, . . . , n due to the assumption 1 ⩽ a1 ⩽ · · · ⩽ an ⩽ bn ⩽ · · · ⩽ b1
and (W2).

Step 1. — Since χ(T ) is polynomial, there is a multiple of bj(1) among
exponents bj(l) +1 in the numerator. If bj(1)m = bj(1) +1, then (m, bj(1)) =
(2, 1) and it contradicts the assumption bj(1) = b1 > 1.

If bj(1)m = bj(l) + 1 < bj(1) + 1 for some l > 1, it is easy to verify
m = 1, l = 2 and bj(1) = bj(2) + 1. There are J1 factors T bj(1) − 1 in the
denominator. This implies that 2J2 ⩾ J1 when N = 1 and an = bn, and
J2 ⩾ J1 otherwise.

Step 2. — Now we assume that for some r ⩽ N , bj(i) = bj(i+1) +1 holds
for i = 1, . . . , r −1. There exists a multiple of bj(r) among bj(l) +1. If l ⩽ r,
we have

bj(r)m = bj(l) + 1 = bj(l+1) + 2 = · · · = bj(r) + r − l + 1,

ANNALES DE L’INSTITUT FOURIER



WEIGHTS AND THE PAINLEVÉ PROPERTY 823

which yields
1 < bj(r) ⩽ r − l + 1 ⩽ r.

This proves bj(r) = bn = an = r (otherwise, a1 becomes nonpositive).
Hence, r = N + 1, which contradicts the assumption r ⩽ N .

If bj(r)m = bj(l) + 1 for some l > r, then m = 1, l = r + 1 and bj(r) =
bj(r+1) +1. There are Jr factors T bj(r) −1 in the denominator. This implies
that 2Jr+1 ⩾ Jr when r = N and an = bn, and Jr+1 ⩾ Jr otherwise.

Step 3. — By induction, we obtain bj(i) = bj(i+1) + 1 for i = 1, . . . , N ,
and Ji+1 ⩾ Ji for i = 1, . . . , N − 1. In particular, if an ̸= bn, JN+1 ⩾ JN

also holds.
Step 4. — There exists a multiple of bj(N+1) = bn among exponents of

the numerator. Suppose bj(N+1)m = bj(l) +1 for some l = 1, . . . , N +1. The
same argument as Step 2 shows that an = bn. Suppose bj(N+1)m = aj(l) +
1 < bj(N+1) +1 for some l = 1, . . . , N +1. Then, we obtain m = 1, l = N +1
and bj(N+1) = bn = an + 1. This completes the proof of (ii).

(iii). — This is verified by a direct calculation with the aid of (ii). □

Proposition 2.4. — When n = 3, regular weights satisfying (W1)
to (W3) are only

(a1, a2, a3, b3, b2, b1; h) = (2, 3, 4, 5, 6, 7; 10),
(2, 3, 3, 4, 4, 5; 8),
(1, 2, 3, 4, 5, 6; 8),
(1, 2, 3, 3, 4, 5; 7),
(2, 2, 2, 3, 3, 3; 6),
(1, 2, 2, 3, 3, 4; 6),
(1, 1, 2, 2, 3, 3; 5),
(1, 1, 1, 2, 2, 2; 4),
(1, 1, 1, 1, 1, 1; 3),

where we assume without loss of generality that a1 ⩽ a2 ⩽ a3 ⩽ b3 ⩽
b2 ⩽ b1.

This proposition is easily obtained with the aid of Lemma 2.3 To find
corresponding Painlevé equations is a future work. The weights of 6-dim
Painlevé equations (PI)3, (PII-1)3, (PII-2)3 and (PIV)3 shown in Table 1.3
are included in Proposition 2.4 The author does not know a Painlevé equa-
tion whose Hamiltonian function is semi-quasihomogeneous but its degree
does not satisfy (W1) to (W3).

TOME 74 (2024), FASCICULE 2



824 Hayato CHIBA

2.4. Properties of weights for semi-quasihomogeneous
Hamiltonian systems

We gave the definition of a regular weight which is independent of differ-
ential equations so far. Now let us consider the 2n-dimensional Hamiltonian
system

(2.10) dqi

dz
= ∂H

∂pi
,

dpi

dz
= −∂H

∂qi
, i = 1, . . . , n,

with the Hamiltonian function H(q1, . . . , qn, p1, . . . , pn, z) with a single time
variable z for simplicity. We suppose the following.

(A1) H is semi-quasihomogeneous; it is decomposed into two polynomials
as H = HP + HN . For the principal part HP , there exist integers
1 ⩽ ai, bi, r < h such that

(2.11) HP (λaq, λbp, λrz) = λhHP (q, p, z),

for any λ ∈ C, where

λaq = (λa1q1, . . . , λanqn)

and
λbp = (λb1p1, . . . , λbnpn).

(A2) The Hamiltonian vector field of HP satisfies

∂HP

∂pi
(λaq, λbp, λrz) = λ1+ai

∂HP

∂pi
(q, p, z),

∂HP

∂qi
(λaq, λbp, λrz) = λ1+bi

∂HP

∂qi
(q, p, z).

(A3) The non-principal part satisfies HN (λaq, λbp, λrz) ∼ o(λh) as
|λ| → ∞.

(A4) The Hamiltonian vector field of H = HP + HN is invariant under
the Zs action

(2.12) (qj , pj , z) 7→ (ωaj qj , ωbj pj , ωrz),

where s = h − 1 and ω := e2πi/s.
(A5) The symplectic form

∑n
j=1 dqj ∧ dpj + dz ∧ dH is also invariant

under the same Zs-action, for which H 7→ ωhH.
From these assumptions, we will explain some of the properties of weights

shown in Section 1.
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Remark. — The assumption (A2) is used to define the Kovalevskaya
exponents in the next section. In this case, we can construct Laurent se-
ries solutions of (2.10) systematically. Due to the assumptions (A1), (A2)
and (A5), it is easy to show that the Hamiltonian vector field of HP

is invariant under the action (2.12). The assumption (A4) requires that
the vector field of HN is also invariant under the action. Then, (2.10)
induces a rational differential equation on the weighted projective space
CP 2n+1(a, b, r, s) [5, 6].

In what follows, we assume h ⩾ 3 (if h ⩽ 2, (2.10) is linear).

Proposition 2.5. — Suppose that (2.10) satisfies (A1) to (A5) and
h ⩾ 3. Then,

(i) ai + bi = h − 1 for i = 1, . . . , n,
(ii) r = h − 2,
(iii) deg(HN ) = 1,
(iv) if (2.10) is non-autonomous, min1⩽i⩽n{ai, bi} = 1 or 2.

Proof.
(i). — The first statement immediately follows from (A1) and (A2).
(ii). — Because of (A5), there exists an integer N such that r + h =

N(h − 1). Since r < h, we obtain 0 < r = N(h − 1) − h < h. This yields
h < N/(N −2) if N ̸= 2. This contradicts the assumption h ⩾ 3. Therefore,
N = 2, which proves r = h − 2.

(iii). — Let qµ1
1 · · · qµn

n pν1
1 · · · pνn

n zη be a monomial included in HN . Due
to (A3), the exponents satisfy

0 ⩽
n∑

i=1
(aiµi + biνi) + rη ⩽ h − 1.

Further, (A4) implies that there exists an integer N such that
n∑

i=1
(aiµi + biνi) + rη − aj − bj + r = N(h − 1).

This and (i), (ii) give
n∑

i=1
(aiµi + biνi) + rη = N(h − 1) + 1.

Hence, we obtain 0 ⩽ N(h − 1) + 1 ⩽ h − 1. This proves N = 0 and∑n
i=1 (aiµi + biνi) + rη = 1.
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(iv). — Suppose that H includes z. Since deg(H) = h and deg(z) =
h − 2, z is multiplied by a function whose weighted degree is 2. It exists
only when min1⩽i⩽n{ai, bi} = 1 or 2. □

3. Kovalevskaya exponents

Kovalevskaya exponents are the most important invariants of a quasiho-
mogeneous vector field related to the Painlevé test. Here, we give a brief
review of properties of them according to [5]. Let us consider the system
of differential equations on Cm

(3.1) dxi

dz
= fi(x1, . . . , xm, z) + gi(x1, . . . , xm, z), i = 1, . . . , m,

where fi and gi are polynomials in (x1, . . . , xm, z) ∈ Cm+1. We suppose
that

(K1) (f1, . . . , fm) is a quasihomogeneous vector field satisfying

(3.2) fi(λa1x1, . . . , λamxm, λrz) = λ1+aifi(x1, . . . , xm, z)

for any λ ∈ C and i = 1, . . . , m, where (a1, . . . , am, r) ∈ Zm+1
>0 .

(K2) (g1, . . . , gm) satisfies

gi(λa1x1, . . . , λamxm, λrz) = o(λai+1), |λ| → ∞.

Put fA
i (x1, . . . , xm) := fi(x1, . . . , xm, 0) and fNA

i := fi −fA
i (i.e. fA

i and
fNA

i are autonomous and nonautonomous parts, respectively). We also
consider the truncated system

(3.3) dxi

dz
= fA

i (x1, . . . , xm), i = 1, . . . , m.

By substituting xi(z) = ci(z − z0)−ai into the truncated system, we find
the following definition.

Definition 3.1. — A root c = (c1, . . . , cm) ∈ Cm of the equation

(3.4) −aici = fA
i (c1, . . . , cm), i = 1, . . . , m

is called the indicial locus.

For each indicial locus, xi(z) = ci(z − z0)−ai is an exact solution of the
truncated system for any z0 ∈ C. Due to the assumption (K1), c = 0
is always an indicial locus, which corresponds to the fixed point at the
origin. Usually, we assume c ̸= 0 for an indicial locus. Considering the
variational equation along the exact solution xi(z) = ci(z −z0)−ai suggests
the following definition.
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Definition 3.2. — For an indicial locus c = (c1, . . . , cm) ̸= 0, the ma-
trix

(3.5) K = K(c) :=
{

∂fA
i

∂xj
(c1, . . . , cm) + aiδij

}m

i,j=1

and its eigenvalues are called the Kovalevskaya matrix and the Kovalevskaya
exponents, respectively, of the system (3.1) associated with c.

Proposition 3.3 (see [2, 5, 16] for the detail). — Suppose (K1)
and (K2).

(i) −1 is always a Kovalevskaya exponent with the eigenvector
(a1c1, . . . , amcm)T .

(ii) λ = 0 is a Kovalevskaya exponent associated with c if and only if c

is not an isolated root of the equation −aici = fA
i (c1, . . . , cm).

(iii) The Kovalevskaya exponents are invariant under weight preserving
diffeomorphisms.

Consider a formal power series solution of (3.1) of the form

(3.6) xi = ci(z − z0)−ai + bi,1(z − z0)−ai+1 + bi,2(z − z0)−ai+2 + · · ·

Coefficients bi,j are determined by substituting it into (3.1). The column
vector bj = (b1,j , . . . , bm,j)T satisfies

(3.7) (K − jI)bj = (a function of ci and bi,k with k < j).

If a positive integer j is not an eigenvalue of K, bj is uniquely determined. If
a positive integer j is an eigenvalue of K and (3.7) has no solutions, we have
to introduce a logarithmic term log(z − z0) into the coefficient bj . In this
case, the system (3.1) has no Laurent series solution of the form (3.6) with a
given indicial locus c. If a positive integer j is an eigenvalue of K and (3.7)
has a solution bj , then bj + v is also a solution for any eigenvectors v.
This implies that the power series solution (3.6) includes a free parameter
in (b1,j , . . . , bm,j). Therefore, if (3.6) represents a k-parameter family of
formal Laurent series solutions which includes k − 1 free parameters other
than z0, at least k − 1 Kovalevskaya exponents have to be nonnegative
integers. Hence, the classical Painlevé test [1, 16, 33] for the necessary
condition for the Painlevé property is stated as follows;

Classical Painlevé test

If the system (3.1) satisfying (K1) and (K2) has the Painlevé property
in a sense that any solutions are meromorphic, then there exists an indicial
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locus c = (c1, . . . , cm) such that all Kovalevskaya exponents except for one
−1 are nonnegative integers (such an indicial locus is called principal), and
the Kovalevskaya matrix is semisimple. In this case, (3.6) represents an
m-parameter family of formal Laurent series solutions.

Due to (K1), the system dxi/dt = fi(x1, . . . , xm, z) is invariant under
the Zs action

(3.8) (x1, . . . , xm, z) 7→ (ωa1x1, . . . , ωamxm, ωrz), ω := e2πi/s,

where s = r + 1. We assume that the full system (3.1) is also invariant
under the same action (i.e. the perturbation term gi admit the same Zs

action as fi);
(K3) The system (3.1) is invariant under the above Zs action.

Proposition 3.4. — Suppose (K1) to (K3). If the system (3.1) has a
formal power series solution (3.6), then it is a convergent power series on
0 < |z − z0| < ε for some ε > 0. In particular, when gi = 0 (i = 1, . . . , m)
this is true without the assumption (K3).

This proposition is shown in [17] for autonomous systems and extended
to nonautonomous systems (3.1) in [5] by using the weighted projective
space CP m+1(a1, . . . , am, r, s). The assumption (K1) and (K3) are used
to confirm that the system (3.1) induces a rational vector field on the
space CP m+1(a1, . . . , am, r, s). The classical Painlevé test gives the nec-
essary condition that (3.1) has an m-parameter family of formal Laurent
series solutions. Proposition 3.4 means that if a formal power series solution
of the form (3.6) exists, it is convergent. In Chiba [5, Proposition 3.5], the
necessary and sufficient condition that (3.1) has a k-parameter family of
convergent Laurent series solution (3.6) is given under the assumption (K1)
to (K3) with the aid of the weighted projective space, Kovalevskaya expo-
nents and the normal form theory of dynamical systems.

For the next theorem, we further assume that
(S) The origin is the only fixed point of the truncated system (3.3), i.e,

(3.9) fA
i (x1, . . . , xm) = 0 (i = 1, . . . , m) ⇒ (x1, . . . , xm) = (0, . . . , 0).

Theorem 3.5 (see [5]). — If the system (3.1) satisfies (K1), (K2)
and (S), any formal Laurent series solutions with a pole at z = z0 are of the
form (3.6) such that (c1, . . . , cm) ̸= (0, . . . , 0). If we further assume (K3),
they are convergent (due to Proposition 3.4).

This theorem implies that there does not exist Laurent series solutions
(x1(z), . . . , xm(z)) of (3.1) such that the order of a pole of xi is larger
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than ai for some i (For the proof, (S) is essentially used). Furthermore, if
(c1, . . . , cm) = 0 (i.e. the orders of a pole of x1, . . . , xm are smaller than
a1, . . . , am), it should be a local analytic solution. Therefore, the leading
term of a Laurent series solution is strictly given by ci(z − z0)−ai with a
given weight (a1, . . . , am) and an indicial locus (c1, . . . , cm) ̸= 0.

In the rest of this section, we consider the semi-quasihomogeneous Hamil-
tonian system (2.10). If it satisfies (A1) to (A5), then it also satisfies (K1)
to (K3) and the above results are applicable. Further, the assumption (S)
implies that a singularity of the algebraic variety defined by {H = 0} is
isolated. This fact is used to study a relationship between the Painlevé equa-
tions and singularity theory (see (1.8)). The next lemma is well known [4,
16, 19].

Lemma 3.6. — For a semi-quasihomogeneous Hamiltonian system (2.10)
of deg(H) = h satisfying (A1) and (A2), if κ is a Kovalevskaya exponent,
so is µ given by κ + µ = h − 1. In particular, h is always a Kovalevskaya
exponent for any indicial loci.

Example 3.7. — The first Painlevé equation in Hamiltonian form is given
by

(PI)
{

dx
dz = 6y2 + z
dy
dz = x,

It satisfies the assumptions (A1) to (A5) as is mentioned with (a1, a2; h) =
(3, 2; 6) (Table 1.1). The indicial locus is uniquely given by (c1, c2) =
(−2, 1). The associated Laurent series solution is given by(

x

y

)
=
(

−2
0

)
T −3+

(
0
1

)
T −2−

(
z0/5

0

)
T −
(

1/2
z0/10

)
T 2+

(
A6

−1/6

)
T 3+· · · ,

where T = z − z0 and A6 is an arbitrary constant. Lemma 3.6 shows
that h = 6 is a Kovalevskaya exponent. As a result, an arbitrary constant
appears in the sixth place from the beginning (i.e. in the coefficient of
T −3+h = T 3).

We give a list of Kovalevskaya exponents of 4-dim Painlevé equations
shown in Section 2.2. In Table 3.1, H

9/2
1 , H

7/2+1
1 , H5

1 and H4+1
1 denote the

first Hamiltonians of (PI)2, (PII-1)2, (PII-2)2 and (PIV)2, respectively, given
in Section 1 (this notation is related to the spectral type of a monodromy
preserving deformation [21]). For example, (−1, 2, 3, 6) × 2 in Table 3.1 im-
plies that there are two indicial loci c, for which the associated Kovalevskaya
exponents are κ = −1, 2, 3 and 6. Since Kovalevskaya exponents are invari-
ant under weight preserving diffeomorphisms, we can conclude that two
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Hamiltonian systems having the same weights are actually different sys-
tems if their Kovalevskaya exponents are different from each other.

For a differential equation dx/dz = f(x, z) on (x, z) ∈ Cm+1, an m-dim
manifold M(z) parameterized by z is called the space of initial conditions
if any solutions of the system give global holomorphic sections of the fiber
bundle P = {(x, z) | x ∈ M(z), z ∈ C} over C [28]. In particular, the space
of initial conditions exists for a system having the Painlevé property in the
sense that any solutions are meromorphic. Many experts believe that the
Painlevé equations can be classified by the geometry of the space of initial
conditions, which was confirmed for two dimensional Painlevé equations
by Sakai [30] and Takano et al. [24, 25, 32]. In Chiba [5], an algorithm
to construct the space of initial conditions for semi-quasihomogeneous sys-
tems is obtained by the weighted blow-up of the weighted projective space.
The weight for the weighted projective space is just the weight of the
variables, and the weight for the blow-up is given by Kovalevskaya ex-
ponents. This suggests the conjecture that polynomial systems having the
Painlevé property can be classified by their weights and Kovalevskaya ex-
ponents.

For 2-dim Painlevé equations, we have constructed the Painlevé equa-
tions PI, PII and PIV from the weights (Proposition 2.1). In this case, the
Kovalevskaya exponent is given by h (Lemma 3.6), which is included in the
information of the weight (a, b; h). For 4-dim Painlevé equations listed in
Table 3.1, they are classified by the weights with Kovalevskaya exponents.
Thus, the above conjecture looks true at least up to four dimensional quasi-
homogeneous systems.

As a convenience for readers, we provide a few 4-dim Painlevé equa-
tions whose Hamiltonian functions are polynomial, but the weights are not
positive integers. Thus, they do not satisfy the assumption (W3).

HMat
IV = p2

1q1

2 −p1q2
1 +p1q2 +2p1p2q2 −4p2q1q2 −2p2

2q1q2(3.10)

−p1q1z −2p2q2z +2p2q1θ0 −p1θ1 +2p2q1θ1

−p1θ2 +2q1θ2 +2p2q1θ2,

H(1,2,1,0) =−p2
1q1 −2p1q2

1 +2p1q2 −2p1p2q2(3.11)
−2p2q1q2 +(2p1q1 +2p2q2)z +(2α2 +2β2)q1

+2β2p1 +2β3p2,

H(−1,1,4,2) = p1 −p2
2 −2p1q1q2 −p2q2

2 +2β3q2 +2β5q1 +p2z.(3.12)
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The first one HMat
IV , whose degree is deg(q1, q2, p1, p2; h) = (1, 2, 1, 0; 3), is

the matrix Painlevé equation of the fourth type HMat
IV [20, 21]. H(1,2,1,0) (h =

3) and H(−1,1,4,2) (h = 4) are obtained in [8] by a Lie algebraic method
as well as HCosgrove. Although the weights are nonpositive, they still sat-
isfy (W2) and (A1) to (A5). See also Table 3.1.

4. Blow-up of quasihomogeneous systems

Let us investigate the role of Kovalevskaya exponents for quasihomoge-
neous systems from a view point of dynamical systems theory. Since the
Kovalevskaya exponents are defined by the autonomous part of a quasiho-
mogeneous system, we consider the following autonomous system

(4.1) dxi

dz
= fi(x1, . . . , xm), i = 1, . . . , m

satisfying the assumptions (K1) and (S) for the weight (a1, . . . , am) ∈ Zm
>0.

For an indicial locus c = (c1, . . . , cm) ̸= 0 ∈ Cm given as a root of −aici =
fi(c1, . . . , cm), xi(z) = ciz

−ai is an exact solution.
We introduce the weighted blow-up π : B → Cm of the system (4.1) at

the origin by the coordinates transformations

(4.2)


x1
x2
...

xm

 =


ra1

1
ra2

1 X
(1)
2

...
ram

1 X
(1)
m

 =


ra1

2 X
(2)
1

ra2
2
...

ram
2 X

(2)
m

 = · · · =


ra1

m X
(m)
1

ra2
m X

(m)
2

...
ram

m

 ,

and the blow-up space B by

B = B1 ∪ B2 ∪ · · · ∪ Bm, Bj ≃ Cm/Zaj
.

Here, the space Cm/Zaj
is defined as follows: Let (r1, X

(1)
2 , . . . , X

(1)
m ) be

the coordinates of Cm. Then, B1 is defined as a quotient space by the Za1

action

(4.3) (r1, X
(1)
2 , . . . , X(1)

m )

7→ (e2πi/a1 r1, e−2πia2/a1 X
(1)
2 , . . . , e−2πiam/a1 X(1)

m ),

and similar for B2, . . . , Bm. Let π : B → Cm be the surjection defined
through (4.2). The exceptional divisor

(4.4) D := π−1({0}) = {r1 = 0} ∪ {r2 = 0} ∪ · · · ∪ {rm = 0} ⊂ B
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Table 3.1. Weights and Kovalevskaya exponents κ of 4-dim Painlevé
equations. The weights for dependent variables q1, q2, p1, p2 are shown
in ascending order. For example, (−1, 2, 3, 6) × 2 means that there are
two indicial loci whose Kovalevskaya exponents are given by κ =
−1, 2, 3, 6.

(a1, a2, b2, b1; h) κ

H
9/2
1 (1.4) (2, 3, 4, 5; 8) (−1, 2, 5, 8)

(−3, −1, 8, 10)
×1
×1

HCosgrove (2.2) (2, 3, 4, 5; 8) (−1, 3, 4, 8)
(−5, −1, 8, 12)

×1
×1

H
7/2+1
1 (1.5) (1, 2, 3, 4; 6) (−1, 2, 3, 6)

(−3, −1, 6, 8)
×2
×2

HMat
I (2.4) (1, 2, 3, 4; 6) (−1, 2, 3, 6)

(−2, −1, 6, 7)
(−7, −1, 6, 12)

×2
×1
×1

H
(2,3,2,3)
1 (2.6) (2, 2, 3, 3; 6) (−1, 1, 4, 6)

(−3, −1, 6, 8)
×1
×2

H5
1 (1.6) (1, 2, 2, 3; 5) (−1, 1, 3, 5)

(−2, −1, 5, 6)
×2
×3

H4+1
1 (1.7) (1, 1, 2, 2; 4) (−1, 1, 2, 4)

(−2, −1, 4, 5)
×3
×5

HMat
II (2.7) (1, 1, 2, 2; 4) (−1, 1, 2, 4)

(−2, −1, 4, 5)
(−5, −1, 4, 8)
(−1, −1, 4, 4)

×3
×2
×2
×1

HA4
NY (2.8) (1, 1, 1, 1; 3) (−1, 1, 1, 3)

(−1, −1, 3, 3)
(−3, −1, 3, 5)

×5
×5
×5

HMat
IV (3.10) (0, 1, 1, 2; 3) (−1, 1, 1, 3)

(−1, −1, 3, 3)
(−2, −1, 3, 4)
(−4, −1, 3, 6)

×2
×3
×2
×3

H(1,2,1,0) (3.11) (0, 1, 1, 2; 3) (−1, 1, 1, 3)
(−2, −1, 3, 4)

×2
×4

H(−1,1,4,2) (3.12) (−1, 1, 2, 4; 4) (−1, 1, 2, 4)
(−3, −1, 4, 6)

×2
×2
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is isomorphic to the m − 1 dimensional weighted projective space
CP m−1(a1, . . . , am), and π|B\D : B\D → Cm\{0} is a diffeomorphism.
Since (c1, . . . , cm) ̸= (0, . . . , 0), we assume c1 ̸= 0 and denote the first lo-
cal coordinates (r1, X

(1)
2 , . . . , X

(1)
m ) on the chart B1 as (r, X2, . . . , Xm) for

simplicity. In this coordinates, (4.1) is written as{
dr
dz = 1

a1
r2f1(1, X2, . . . , Xm)

dXi

dz = rfi(1, X2, . . . , Xm) − ai

a1
rXif1(1, X2, . . . , Xm), i = 2, . . . , m.

A new independent variable t satisfying the relation d/dz = r · d/dt is
introduced, that results in

(4.5)
{

dr
dt = 1

a1
rf1(1, X2, . . . , Xm)

dXi

dt = fi(1, X2, . . . , Xm)− ai

a1
Xif1(1, X2, . . . , Xm), i = 2, . . . , m.

We regard it as a vector field on B1. The set {(0, X2, . . . , Xm)} ⊂ D is an
invariant manifold.

Lemma 4.1.
(i) For an indicial locus (c1, . . . , cm) of (4.1) with c1 ̸= 0,

(4.6) (r, X2, . . . , Xm) = (0, c
−a2/a1
1 c2, . . . , c

−am/a1
1 cm)

is a fixed point of the vector field (4.5). Conversely, for any fixed
point (0, X2, . . . , Xm) of (4.5) on the divisor, there exists an indicial
locus (c1, . . . , cm) satisfying (4.6).

(ii) For an indicial locus c, the exact solution xi(z) = ciz
−ai , (i =

1, . . . , m) on the blow-up space converges to the fixed point (4.6)
as z → ∞.

Proof.
(i). — A fixed point satisfying r = 0 is given by a root of the equation

(4.7) a1fi(1, X2, . . . , Xm) − aiXif1(1, X2, . . . , Xm) = 0, (i = 2, . . . , m).

If there is a root (X2, . . . , Xm) satisfying f1(1, X2, . . . , Xm) = 0, then
fi(1, X2, . . . , Xm) = 0 for i = 2, . . . , m. This contradicts the assump-
tion (S). Thus, there is a number λ ̸= 0 such that (4.7) is equivalent to

(4.8)
{

fi(1, X2, . . . , Xm) = −aiXiλ
−1

f1(1, X2, . . . , Xm) = −a1λ−1.

By using the assumption (K1), we rewrite the above equation as

λai+1fi(1, X2, . . . , Xm) = fi(λa1 , λa2X2, . . . , λamXn)

= −λai+1aiXiλ
−1 = −aiλ

aiXi,
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for i = 2, . . . , m, and

λa1+1f1(1, X2, . . . , Xm) = f1(λa1 , λa2X2, . . . , λamXn)

= −λa1+1a1λ−1 = −a1λa1 .

By putting λa1 = c1 and λaiXi = ci, it turns out that (4.8) is equivalent to
the equation −aici = fi(c1, . . . , cm) to determine an indicial locus. A proof
of (ii) is straightforward. □

Note that the choice of a branch of c
−aj/a1
1 does not matter because of

the Za1 action (4.3). When c1 = 0, there are no fixed points in the chart
B1 but exists in Bj when cj ̸= 0. In this manner, there is a one-to-one
correspondence between indicial loci c and fixed points of the vector field
induced on the divisor, denoted by P(c). If we do not assume (S), there is a
fixed point of (4.5) on the divisor, which results not from an indicial locus
but from a fixed point of (4.1) other than the origin. The next proposition
associates the Kovalevskaya exponents with the local dynamics around a
fixed point of the vector field.

Proposition 4.2. — Let κ1 = −1, κ2, . . . , κm be Kovalevskaya expo-
nents of the system (4.1) associated with an indicial locus c = (c1, . . . , cm).
The eigenvalues of the Jacobi matrix of the vector field (4.5) at the fixed
point P(c) are given by

(4.9) λ1 = −c
−1/a1
1 , λ2 = c

−1/a1
1 κ2, . . . , λm = c

−1/a1
1 κm.

Hence, the ratio of eigenvalues is the same as that of the Kovalevskaya
exponents.

Proof. — Let K be the Kovalevskaya matrix for an indicial locus c. Set
v1 = a1c1 and v2 = (a2c2, . . . , amcm). Then, (v1, v2)T is an eigenvector of
K associated with κ1 = −1 (Proposition 3.3). Define

P =
(

v1 0
vT

2 id

)
, P −1 =

(
v−1

1 0
−v−1

1 vT
2 id

)
, K =

(
K1 K2
K3 K4

)
.

We obtain

P −1KP =
(

−1 v−1
1 K2

0 K4 − v−1
1 vT

2 K2

)
) =:

(
−1 v−1

1 K2

0 K̃

)
,

where an (m − 1) × (m − 1) matrix K̃ = (K̃ij)m
i,j=2 is given by

(4.10) K̃ij = ∂fi

∂xj
(c) − aici

a1c1

∂f1

∂xj
(c) + aiδij .

By the definition, eigenvalues of K̃ are κ2, . . . , κm.
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On the other hand, the Jacobi matrix of (4.5) at the fixed point P(c) is
given by

J =
(

λ1 0
0 J̃

)
,

where

λ1 = 1
a1

f1(1, c
−a2/a1
1 c2, . . . , c

−am/a1
1 cm)

= 1
a1

c
−(a1+1)/a1
1 f1(c1, . . . , cm) = −c

−1/a1
1 ,

and

J̃ij = ∂fi

∂xj
(1, c

−a2/a1
1 c2, . . . , c

−am/a1
1 cm)

− ai

a1
Xi

∂f1

∂xj
(1, c

−a2/a1
1 c2, . . . , c

−am/a1
1 cm)

− ai

a1
f1(1, c

−a2/a1
1 c2, . . . , c

−am/a1
1 cm)δij

= c
−(ai+1−aj)/a1
1

∂fi

∂xj
(c) − ai

a1
c

−ai/a1
1 cic

−(a1+1−aj)/a1
1

∂f1

∂xj
(c)

− ai

a1
c

−(a1+1)/a1
1 f1(c)δij

= c
−1/a1
1 c

−(ai−aj)/a1
1

(
∂fi

∂xj
(c) − aici

a1c1

∂f1

∂xj
(c) + aiδij

)
.

This shows
c

1/a1
1 J̃ij = c

−(ai−aj)/a1
1 K̃ij .

Let κ be an eigenvalue of K̃ with the eigenvector u = (u2, . . . , um)T satis-
fying

∑
K̃ijuj = κui. Putting uj = c

aj/a1
1 ũj yields∑

c
−(ai−aj)/a1
1 K̃ij ũj = κũi.

This proves that κ is an eigenvalue of the matrix c
1/a1
1 J̃ . □

We turn to the quasihomogeneous Hamiltonian system of degree m

(4.11) dqi

dz
= ∂H

∂pi
,

dpi

dz
= −∂H

∂qi
, i = 1, . . . , m.

We assume stronger conditions than (A1) and (A2) as follows.
(H0) There exist polynomials H = H1, H2, . . . , Hk (1⩽ k ⩽m) that com-

mute with respect to the canonical Poisson structure; {Hi,Hj} = 0
for i, j = 1, . . . , k.
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(H1) Hi is quasihomogeneous; there exist positive integers aj , bj and hi

such that

(4.12) Hi(λaq, λbp) = λhiHi(q, p), i = 1, . . . , k,

for any λ ∈ C, where

λaq = (λa1q1, . . . , λamqm) and λbp = (λb1p1, . . . , λbmpm).

(H2) h1 = aj + bj + 1 for j = 1, . . . , m and h1 ⩽ hi for i = 1, . . . , k.
(S) The origin is the only fixed point;

∂H1

∂pi
= ∂H1

∂qi
= 0 (i = 1, . . . , m) ⇒ (q1, . . . , qm, p1, . . . , pm) = 0.

Note that (H1) and (H2) for k = 1 is equivalent to (A1) and (A2), see
Proposition 2.5(i). Let c = (c1, . . . , c2m) be an indicial locus determined by
H1 as

(4.13) ∂H1

∂pi
(c) = −aici,

∂H1

∂qi
(c) = bicm+i, i = 1, . . . , m.

The Kovalevskaya matrix at c is

K(c) =

 ∂2H1
∂p∂q (c) ∂2H1

∂p∂p (c)

− ∂2H1
∂q∂q (c) − ∂2H1

∂q∂p (c)

+

diag(a1, . . . , am) 0

0 diag(b1, . . . , bm)

 ,

where ∂2/∂p∂q =
(
∂2/∂pi∂qj

)
i,j

.

Lemma 4.3.

(4.14)
m∑

j=1

(
ajqj

∂Hi

∂qj
+ bjpj

∂Hi

∂pj

)
= hiHi(q, p).

Proof. — This is obtained by the derivative of (4.12) at λ = 1. □

Lemma 4.4. — For any i = 1, . . . , k and indicial loci c, we have
Hi(c) = 0 .

Proof. — Use the relations (4.13), (4.14) and {H1, Hj} = 0 at
(q, p) = c. □

In what follows, the gradient of a function H is denoted by a row vector

(4.15) dH :=
(

∂H

∂q1
, . . . ,

∂H

∂qm
,

∂H

∂p1
, . . . ,

∂H

∂pm

)
.

The assumption (S) implies that dH1(q, p) = 0 if and only if (q, p) = 0; i.e.
the origin is a unique singularity of the variety {H1 = 0}. The following
result was first obtained by Yoshida [34]. Here, we give a simple proof.
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Theorem 4.5. — For an indicial locus c, the following equality

(4.16) dHj(c)(K(c) − hj · id2m×2m) = 0, j = 1, . . . , k

holds. In particular, if dHj(c) ̸= 0, then hj is a Kovalevskaya exponent.

Proof. — {H1, Hj} = 0 gives

0 = ∂

∂ql
{H1, Hj}

=
m∑

i=1

(
∂2H1

∂qi∂ql

∂Hj

∂pi
+ ∂H1

∂qi

∂2Hj

∂pi∂ql
− ∂2Hj

∂qi∂ql

∂H1

∂pi
− ∂Hj

∂qi

∂2H1

∂pi∂ql

)
.

Substituting (q, p) = c yields

0 =
m∑

i=1

(
aici

∂2Hj

∂qi∂ql
+ bicm+i

∂2Hj

∂pi∂ql
+ ∂2H1

∂qi∂ql

∂Hj

∂pi
− ∂Hj

∂qi

∂2H1

∂pi∂ql

)
.

By the derivative of (4.14) with respect to ql, we obtain
m∑

i=1

(
aiqi

∂2Hj

∂qi∂ql
+ bipi

∂2Hj

∂pi∂ql

)
+ al

∂Hj

∂ql
= hj

∂Hj

∂ql
.

Thus, we obtain

(4.17) 0 =
m∑

i=1

(
∂2H1

∂qi∂ql

∂Hj

∂pi
− ∂2H1

∂pi∂ql

∂Hj

∂qi

)
+ (hj − al)

∂Hj

∂ql

for l = 1, . . . , m. The derivative of (4.14) with respect to pl gives similar m

relations. The resultant 2m relations are equivalent to (4.16). □

Example 4.6. — We consider the Hamiltonians of degree 2

(4.18)
{

H1 = 2p2p1 + 3p2
2q1 + q4

1 − q2
1q2 − q2

2 ,

H2 = p2
1 + 2p2p1q1 − q5

1 + p2
2q2 + 3q3

1q2 − 2q1q2
2 .

They are autonomous parts of (PI)2 given in (1.4). They satisfy (H0),
(H1), (H2) and (S) for the weight (a1, a2, b1, b2) = (2, 4, 5, 3) and h1 =
8, h2 = 10 shown in Table 1.2. There are two indicial loci c1 = (1, 1, 1, −1)
and c2 = (3, 0, 27, −3). For the former c1, the Kovalevskaya exponents
are κ = −1, 2, 5, 8. Thus, the corresponding Laurent series solution (3.6)
represents a general solution including four free parameters (Painlevé test).
Since κ ̸= −10, Theorem 4.5 implies that dH2(c1) = 0. For the indicial locus
c2, we can verify that dH1(c2) ̸= 0, dH2(c2) ̸= 0. Therefore, Theorem 4.5
and Lemma 3.6 show that the Kovalevskaya exponents are given by κ =
−3, −1, 8, 10 (see H

9/2
1 of Table 3.1).
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Let V be a variety defined by the level set

(4.19) V = {(q, p) ∈ C2m | Hj(q, p) = 0, j = 1, . . . , k} ∋ 0.

Lemma 4.4 shows c ∈ V for an indicial locus c. Because of (H1), the orbit

{(λa1c1, . . . , λamcm, λb1cm+1, . . . , λbmc2m) | λ ∈ C}

is also included in V . Let us consider the weighted blow-up π : B → C2m

at the origin

(4.20) B = B1 ∪ · · · ∪ B2m, Bi = C2m/Zai , Bm+i = C2m/Zbi

for i = 1, . . . , m. The exceptional divisor D is a 2m−1 dimensional weighted
projective space

(4.21) D = π−1({0}) = CP 2m−1(a1, . . . , am, b1, . . . , bm).

For an indicial locus c, we assume c1 ̸= 0 as before. The local coordinates
(r, Q2, . . . , Qm, P1, . . . , Pm) on B1 is defined by

q1 = ra1 , qi = raiQi (i = 2, . . . , m),

pi = rbiPi (i = 1, . . . , m).

In particular, D ∩ B1 is given by the set {r = 0}. The set π−1(V ) ⊂ B is a
disjoint union of D and π−1(V \{0}). Let π−1(V \{0}) be the closure with
respect to the usual topology and

V0 := D ∩ π−1(V \{0}) ⊂ D,

see Figure 4.1. On the chart B1, we have Hj(q, p) = rhj Hj(1, Q2, . . . , Pm).
Hence, define

V01 := {(0, Q2, . . . , Pm) ∈ D | Hj(1, Q2, . . . , Pm) = 0, j = 1, . . . , k} ⊂ D∩B1.

The sets V0i on the chart Bi are also defined in the same way for i =
2, . . . , 2m. Then, we have

V0 = V01 ∪ V02 ∪ · · · ∪ V0,2m ⊂ D

π−1(V ) = D ∪ π−1(V \{0}) ≃ D ∪ (V0 × C).

V and V0 are 2m − k and 2m − k − 1 dimensional manifolds, respectively,
with singularities. As in (4.5), the system (4.11) induces the vector field
X on B after a suitable change of the independent variable. On B1, X is
expressed as

(4.22)


dr
dt = 1

a1
r ∂H1

∂p1
(1, Q2, . . . , Pm)

dQi

dt = ∂H1
∂pi

(1, Q2, . . . , Pm) − ai

a1
Qi

∂H1
∂p1

(1, Q2, . . . , Pm)
dPi

dt = − ∂H1
∂qi

(1, Q2, . . . , Pm) − bi

a1
Pi

∂H1
∂p1

(1, Q2, . . . , Pm).
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Proposition 4.7.
(i) D is an invariant manifold of X .
(ii) V0 ⊂ D is an invariant manifold of X .
(iii) All fixed points of X are included in V0.
(iv) For an indicial locus c = (c1, . . . , c2m), the orbit of the exact solution

qi(z) = ciz
−a1 , pi(z) = cm+iz

−bi of (4.11) is included in V . On the
blow-up space B, it tends to a fixed point P(c) on V0 as z → ∞.

Proof. — It is sufficient to prove the statements on the chart B1. Since
D ∩ B1 = {r = 0}, (i) immediately follows from (4.22). By the assump-
tion (S), all fixed points of X lie on the divisor D. Due to Lemma 4.1(i),
a fixed point P(c) on D ∩ B1 is of the form (0, c

−a2/a1
1 c2, . . . , c

−bm/a1
1 c2m)

for an indicial locus c. Then, Lemma 4.4 implies

Hj(1, c
−a2/a1
1 c2, . . . , c

−bm/a1
1 c2m) = c

−hj/a1
1 Hj(c) = 0,

which proves (iii): P(c) ∈ V01 ⊂ V0. Part (iv) is shown by Lemma 4.1(ii)
and Lemma 4.4. Finally, let us show the statement (ii) . Along an integral
curve of (4.22), we have

d
dt

Hj(1, Q2, . . . , Pm)

=
m∑

i=2

∂Hj

∂qi

(
∂H1

∂pi
− ai

a1
Qi

∂H1

∂p1

)
+

m∑
i=1

∂Hj

∂pi

(
−∂H1

∂qi
− bi

a1
Pi

∂H1

∂p1

)
.

By introducing a dummy parameter Q1 = 1, it is rewritten as

d
dt

Hj(1, Q2, . . . , Pm)

=
m∑

i=1

∂Hj

∂qi

(
∂H1

∂pi
− ai

a1
Qi

∂H1

∂p1

)
+

m∑
i=1

∂Hj

∂pi

(
−∂H1

∂qi
− bi

a1
Pi

∂H1

∂p1

)

=
m∑

i=1

(
∂Hj

∂qi

∂H1

∂pi
− ∂H1

∂qi

∂Hj

∂pi

)
− 1

a1

∂H1

∂p1

m∑
i=1

(
aiQi

∂Hj

∂qi
+ biPi

∂Hj

∂pi

)
.

Lemma 4.3 and {H1, Hj} = 0 show
d
dt

Hj(1, Q2, . . . , Pm) = − 1
a1

∂H1

∂p1
hjHj(1, Q2, . . . , Pm).

This is a linear equation of Hj(1, Q2, . . . , Pm) solved as

Hj(1, Q2(t), . . . , Pm(t))=Hj(1, Q2(0), . . . , Pm(0)) · exp
[
−hj

a1

∫ t

0

∂H1

∂p1
ds

]
.

This proves that if (0, Q2, . . . , Pm) ∈ V01 at the initial time t = 0, so that
Hj(1, Q2(0), . . . , Pm(0)) = 0, then (0, Q2, . . . , Pm) ∈ V01 for any t ∈ R. □
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Fix an indicial locus c = (c1, . . . , c2m) ̸= 0 with c1 ̸= 0. Without loss of
generality we assume that c1 = 1 by a suitable scaling of the independent
variable. By Lemma 4.1, the indicial locus associates the fixed point P(c) :
(r, Q2, . . . , Pm) = (0, c2, . . . , c2m) of the vector field (4.22) on the chart B1.
Proposition 4.2 shows that the Jacobi matrix at the fixed point written in
(r, Q2, . . . , Pm)-coordinates is of the form

(4.23) J =
(

−1 0
0 J̃

)
,

and its eigenvalues coincide with the Kovalevskaya exponents κ1 = −1 and
κ2, . . . , κ2m. Thus, eigenvectors of κ2, . . . , κ2m are tangent to the divisor
D = {r = 0}. Let Es, Eu and Ec be the stable, unstable and center sub-
space at the point P = P(c), which are eigenspaces of eigenvalues with
negative real parts, positive real parts, and zero real parts, respectively.
Let Ws(P), Wu(P) and Wc(P) be a local stable manifold, unstable man-
ifold and center manifold, respectively, which are tangent to Es, Eu and
Ec at P. Because of Lemma 3.6 (κ + µ = h1 − 1 > 0), dim Eu ⩾ m and
1 ⩽ dim Es ⩽ m.

Proposition 4.8. — Under the above situation, the unstable mani-
fold Wu(P) is included in D and the stable manifold Ws(P) is included in
π−1(V \{0}) ≃ V0 × C. If there are no purely imaginary eigenvalues (̸= 0),
Wc(P) is included in V0.

Proof. — Since Eu is tangent to the divisor D and D is an invariant
manifold, Wu(P) ⊂ D. Let x be a point on Ws(P) and suppose x /∈ D ∪ V .
Since x ∈ Ws(P), a solution of (4.22) with an initial value at x tends to
the fixed point P as t → ∞. Since x /∈ V , Hj(x) ̸= 0 for some j. This is a
contradiction because Hj = 0 at P and Hj is a constant along a solution.
Let x′ be a point on Ws(P) such that x′ ∈ D\V0. Then, there is a point x

on Ws(P) and x /∈ D ∪ V because the eigenvector of κ1 = −1 is transverse
to D, that is again a contradiction. If the Kovalevskaya matrix at c has zero
eigenvalues, then an indicial locus c is not isolated (Proposition 3.3). Thus,
the fixed point P(c) is not isolated and there exists a neighborhood U of
P(c) such that U ∩V0 consists of fixed points of the vector field. If there are
no purely imaginary eigenvalues, U ∩ V0 gives a local center manifold. □

Next, we consider the system (4.11) satisfying (H0), (H1), (H2) and (S)
with k = m. In this case, V and π−1(V \{0}) are m dimensional and V0 is
an m − 1 dimensional variety with singularities. If the system satisfies the
Painlevé property in a sense that any solution is meromorphic, there is an
indicial locus c such that all the Kovalevskaya exponents but unique −1
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are positive integers (Painlevé test). Thus, a stable manifold at P(c) is one
dimensional, which is precisely given by the orbit of the special solution
qi(z) = ciz

−ai , pi(z) = cm+iz
−bi . The next theorem consider the opposite

situation.

Theorem 4.9. — Suppose that the system (4.11) satisfies (H0), (H1),
(H2) and (S) with k = m. Suppose that there exists an indicial locus
c such that vectors dH1(c), . . . , dHm(c) are linearly independent. Then,
there exists a neighborhood U of P(c) such that

π−1(V \{0}) ∪ U = Ws(P(c)) ∪ U.

Proof. — Theorem 4.5 shows that h1, . . . , hm > 0 are Kovalevskaya ex-
ponents. Due to Lemma 3.6, negative integers µj := h1 − 1 − hj , j =
1, . . . , m are also Kovalevskaya exponents. Thus, a local stable manifold
Ws(P(c)) of the vector field (4.22) is an m-dimensional smooth manifold
included in π−1(V \{0}). Indeed, again Theorem 4.5 implies that the (right)
eigenvectors of K(c) associated with eigenvalues µ1, . . . , µm are orthogonal
to dH1(c), . . . , dHm(c). Hence, the stable subspace Es coincides with the
tangent space of π−1(V \{0}) at P(c). □

An indicial locus c satisfying the assumption of the theorem (that implies
h1, . . . , hm > 0 are Kovalevskaya exponents), for which dim Eu = dim Es =
m, is called the lowest indicial locus. The existence of a lowest indicial
locus is proved by [13] for a certain class of integrable systems called the
hyperelliptically separable systems, while the existence for more general
systems is not known. Let us demonstrate our results for several 4-dim
systems obtained from the autonomous parts of Painlevé equations. See also
Table 4.1. They have lowest indicial loci and π−1(V \{0}) is decomposed
into the disjoint union of stable manifolds at the fixed points on the divisor.

Example 4.10. — We consider the autonomous part of (PI)2 given in
Example 4.6. Since the Kovalevskaya exponents of the indicial locus c1 =
(1, 1, 1, −1), which corresponds to the principal Laurent series solution, are
−1, 2, 5, 8, the stable manifold Ws(P1) at the fixed point P(c1) is given by
the orbit of the special solution q1 = z−2, q2 = z−4, p1 = z−5, p2 = −z−3.
The Kovalevskaya exponents of the indicial locus c2 = (3, 0, 27, −3), which
satisfies the assumptions for Theorem 4.9, are −3, −1, 8, 10. The 2-dim
stable manifold Ws(P2) locally coincides with π−1(V \{0}). In this case,
π−1(V \{0}) is decomposed into the disjoint union of Ws(P1) and Ws(P2),
see Figure 4.1.
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On the (r, Q2, P1, P2)-coordinates, H1 and H2 are written as

H1 = r8(1 + 2P1P2 + 3P 2
2 − Q2 − Q2

2),

H2 = r10(−1 + P 2
1 + 2P1P2 + 3Q2 + P 2

2 Q2 − 2Q2
2).

Thus, V01 is defined by

V01 =
{

1 + 2P1P2 + 3P 2
2 − Q2 − Q2

2 = 0,

−1 + P 2
1 + 2P1P2 + 3Q2 + P 2

2 Q2 − 2Q2
2 = 0

}
.

Since dH2(c1) = 0, V0 is singular at P1 : (Q2, P1, P2) = (1, 1, −1). We
can verify that it is a A4-singularity, for example, by using blow-up of
a singularity or direct suitable coordinate transformations (a singularity
whose normal form of defining equation is y2 + x5 = 0).

P1

P2

0

D

V

V(   )-1

Figure 4.1. A schematic view of π−1(V ), V0 and the dynamics on it
for Example 4.10. The singularity P1 of V0 is of type A4.

Example 4.11. — The autonomous, quasihomogeneous part of (PII-1)2
given in (1.5) is defined by the Hamiltonians

(4.24)
{

H1 = 2p1p2 − p3
2 − p1q2

1 + q2
2 ,

H2 = −p2
1 + p1p2

2 + p1p2q2
1 + 2p1q1q2.
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The weights are (a1, a2, b1, b2) = (1, 3, 4, 2) and h1 = 6, h2 = 8. Its four
indicial loci and the Kovalevskaya exponents are given by

c1 = (1, 0, 0, 0), κ = −1, 2, 3, 6
c2 = (−1, 1, 0, 1), κ = −1, 2, 3, 6
c3 = (2, 1, 0, 1), κ = −1, −3, 6, 8
c4 = (−2, 3, 9, 3), κ = −1, −3, 6, 8.

Among them, c3 and c4 satisfy the assumptions for Theorem 4.9. Thus,
the fixed points P(c3) and P(c4) have 2-dim stable manifolds that locally
coincide with π−1(V \{0}). The fixed points P(c1) and P(c2) have 1-dim
stable manifolds that are given by the orbit of special solutions.

On the (r, Q2, P1, P2)-coordinates, H1 and H2 are written as

H1 = r6(2P1P2 − P 3
2 − P1 + Q2

2)

H2 = r8(−P 2
1 + P1P 2

2 + P1P2 + 2P1Q2).

Thus, V01 is defined by

V01 = {2P1P2 − P 3
2 − P1 + Q2

2 = 0, −P 2
1 + P1P 2

2 + P1P2 + 2P1Q2 = 0}.

Theorem 4.5 shows that dH2(c1) = dH2(c2) = 0. Hence, V0 is singular
at P(c1) : (Q2, P1, P2) = (0, 0, 0) and P(c2) : (−1, 0, 1). We can ver-
ify that both P(c1) and P(c2) are D5-singularities (the normal form is
y(x2 + y3) = 0).

Example 4.12. — The autonomous, quasihomogeneous part of (PII-2)2
given in (1.6) is defined by the Hamiltonians

(4.25)
{

H1 = p1p2 − p1q2
1 − 2p1q2 + p2q1q2 + q1q2

2 ,

H2 = p2
1 − p1p2q1 + p2

2q2 − 2p1q1q2 − p2q2
2 + q2

1q2
2 .

The weights are (a1, a2, b1, b2) = (1, 2, 3, 2) and h1 = 5, h2 = 6. It has five
indicial loci given by

c1 = (1, 0, 0, 0), κ = −1, 1, 3, 5
c2 = (−1, −1, 1, 0), κ = −1, 1, 3, 5
c3 = (0, −2, 4, −4), κ = −1, −2, 5, 6
c4 = (−2, −2, 0, 2), κ = −1, −2, 5, 6
c5 = (2, 0, 0, 2), κ = −1, −2, 5, 6.

Among them, c3, c4 and c5 satisfy the assumptions for Theorem 4.9. Thus,
the fixed points P(c3), P(c4) and P(c5) have 2-dim stable manifolds that
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locally coincide with π−1(V \{0}). The fixed points P(c1) and P(c2) have
1-dim stable manifolds that are given by the orbit of special solutions.

On the (r, Q2, P1, P2)-coordinates, H1 and H2 are written as

H1 = r5(P1P2 − P1 − 2P1Q2 + P2Q2 + Q2
2)

H2 = r6(P 2
1 − P1P2 + P 2

2 Q2 − 2P1Q2 − P2Q2
2 + Q2

2).

V01 is defined by

V01 =
{

P1P2 − P1 − 2P1Q2 + P2Q2 + Q2
2 = 0,

P 2
1 − P1P2 + P 2

2 Q2 − 2P1Q2 − P2Q2
2 + Q2

2 = 0

}
.

Since dH2(c1) = dH2(c2) = 0, V0 is singular at P(c1) : (Q2, P1, P2) =
(0, 0, 0) and P(c2) : (−1, −1, 0). We can verify that both P(c1) and P(c2)
are A5-singularities (the normal form is y2 + x6 = 0).

Example 4.13. — The autonomous, quasihomogeneous part of (PIV)2
given in (1.7) is defined by the Hamiltonians

(4.26)
{

H1 = p2
1 + p1p2 − p1q2

1 + p2q1q2 − p2q2
2 ,

H2 = p1p2q1 − 2p1p2q2 − p2
2q2 + p2q1q2

2 .

The weights are (a1, a2, b1, b2) = (1, 1, 2, 2) and h1 = 4, h2 = 5. It has eight
indicial loci given by

c1 = (−1, −1, 1, 0), κ = −1, 1, 2, 4
c2 = (1, 0, 0, 0), κ = −1, 1, 2, 4
c3 = (0, 1, 0, 0), κ = −1, 1, 2, 4
c4 = (0, −1, 2, −4), κ = −1, −2, 4, 5
c5 = (2, 0, 0, 2), κ = −1, −2, 4, 5
c6 = (−1, 1, 1, 0), κ = −1, −2, 4, 5
c7 = (1, 2, 0, 0), κ = −1, −2, 4, 5
c8 = (−2, −2, 2, 2), κ = −1, −2, 4, 5

Among them, c4 to c8 satisfy the assumptions for Theorem 4.9. To in-
vestigate the fixed points P(c1) and P(c2), we move to B1 chart with the
(r, Q2, P1, P2)-coordinates, on which H1 and H2 are written as

H1 = r4(P 2
1 + P1P2 − P1 + P2Q2 − P2Q2

2)

H2 = r5(P1P2 − 2P1P2Q2 − P 2
2 Q2 + P2Q2

2).
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V01 is defined by

V01 =
{

P 2
1 + P1P2 − P1 + P2Q2 − P2Q2

2 = 0,

P1P2 − 2P1P2Q2 − P 2
2 Q2 + P2Q2

2 = 0

}
.

Since dH2(c1) = dH2(c2) = 0, V01 is singular at P(c1) : (Q2, P1, P2) =
(1, 1, 0) and P(c2) : (0, 0, 0). We can verify that both P(c1) and P(c2) are
D6-singularities (the normal form is y(x2 + y4) = 0).

Note that P(c3) is not included in B1 chart because the first component
of c3 is zero. To study P(c3) we use to B2 chart with the coordinates
(Q1, r, P1, P2) defined as (4.2). In this coordinates, H1 and H2 are written as

H1 = r4(P 2
1 + P1P2 − P1Q2

1 + P2Q1 − P2)

H2 = r5(P1P2Q1 − 2P1P2 − P 2
2 + P2Q1).

V02 is defined by

V02 =
{

P 2
1 + P1P2 − P1Q2

1 + P2Q1 − P2 = 0,

P1P2Q1 − 2P1P2 − P 2
2 + P2Q1 = 0

}
.

Since dH2(c3) = 0, V02 is singular at P(c3) : (Q1, P1, P2) = (0, 0, 0), which
is also a D6-singularity.

Example 4.14. — Let us consider the following Hamiltonians

(4.27)
{

H1 = (p2
1/2 − 2q3

1) + (p2
2/2 − 2q3

2),
H2 = p2

1/2 − 2q3
1 .

The Hamiltonian equation of H1 is a direct product of the autonomous part
of the first Painlevé equation. The weights are (a1, a2, b1, b2) = (2, 2, 3, 3)
and h1 = 6, h2 = 6. It has three indicial loci c1, c2, c3, whose Kovalevskaya
exponents are κ = −1, 2, 3, 6 for c1, c2 and κ = −1, −1, 6, 6 for c3. Since
dH2(c1) = dH2(c2) = 0, V0 is singular at P(c1) and P(c2). We can show
that both singularities are A2- singularity.

Similarly, consider the direct product of the autonomous part of the
second Painlevé equation

(4.28)
{

H1 = (p2
1/2 − q4

1/2) + (p2
2/2 − q4

2/2),
H2 = p2

1/2 − q4
1/2.

The weights are (a1, a2, b1, b2) = (1, 1, 2, 2) and h1 = 4, h2 = 4. It has eight
indicial loci c1, . . . , c8, whose Kovalevskaya exponents are κ = −1, 1, 2, 4 for
c1, c2, c3 and κ = −1, −1, 4, 4 for the others. Since dH2(c1) = dH2(c2) =
dH2(c3) = 0, V0 is singular at P(c1) to P(c3). We can show that singularities
of them are A3- singularity.
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Finally, consider the direct product of the autonomous part of the fourth
Painlevé equation

(4.29)
{

H1 = (−p1q2
1 + p2

1q1) + (−p2q2
2 + p2

2q2),
H2 = −p1q2

1 + p2
1q1.

The weights are (a1, a2, b1, b2) = (1, 1, 1, 1) and h1 = 3, h2 = 3. It has fifteen
indicial loci c1, . . . , c15, whose Kovalevskaya exponents are κ = −1, 1, 1, 3
for c1 to c5 and κ = −1, −1, 3, 3 for the others. Since dH2(c1) · · · =
dH2(c5) = 0, V0 is singular at P(c1) to P(c5). They are D4- singularities.

Table 4.1. Weights, Kovalevskaya exponents and singularity-types of
4-dim autonomous Painlevé equations.

(a1, a2, b1, b2; h1, h2) κ sing.

HI × HI (4.27) (2, 2, 3, 3; 6, 6) (−1, 2, 3, 6)
(−1, −1, 6, 6)

×2
×1

A2

HII × HII (4.28) (1, 1, 2, 2; 4, 4) (−1, 1, 2, 4)
(−1, −1, 4, 4)

×3
×5

A3

HIV×HIV (4.29) (1, 1, 1, 1; 3, 3) (−1, 1, 1, 3)
(−1, −1, 3, 3)

×5
×10

D4

H
9/2
1 (1.4) (2, 4, 5, 3; 8, 10) (−1, 2, 5, 8)

(−3, −1, 8, 10)
×1
×1

A4

H
7/2+1
1 (1.5) (1, 3, 4, 2; 6, 8) (−1, 2, 3, 6)

(−3, −1, 6, 8)
×2
×2

D5

H5
1 (1.6) (1, 2, 3, 2; 5, 6) (−1, 1, 3, 5)

(−2, −1, 5, 6)
×2
×3

A5

H4+1
1 (1.7) (1, 1, 2, 2; 4, 5) (−1, 1, 2, 4)

(−2, −1, 4, 5)
×3
×5

D6
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