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TRIVIALIZATIONS OF MOMENT MAPS

by Mathieu BALLANDRAS (*)

Abstract. — We study various trivializations of moment maps. First in the
general framework of a complex reductive group G acting on a smooth affine variety.
We prove that the moment map is a locally trivial fibration over a regular locus
of the center of the Lie algebra of H a maximal compact subgroup of G. The
construction relies on Kempf–Ness theory and Morse theory of the square norm of
the moment map studied by Kirwan, Ness–Mumford and Sjamaar. Then we apply
it together with ideas from Nakajima and Kronheimer to trivialize the hyperkähler
moment map for Nakajima quiver varieties. Notice this trivialization result about
quiver varieties was known and used by experts such as Nakajima and Maffei but
we could not locate a proof in the literature.

Résumé. — Plusieurs trivialisations d’applications moment sont étudiées. Tout
d’abord dans le cadre général de l’action d’un groupe réductif sur une variété affine
lisse. Nous prouvons que l’application moment est une fibration localement triviale
au dessus d’un lieu régulier du centre de l’algèbre de Lie d’un sous-groupe compact
maximal. Les constructions reposent sur la théorie de Kempf–Ness et sur la théorie
de Morse du carré de la norme de l’application moment étudiée par Kirwan, Ness–
Mumford et Sjamaar. Ces constructions sont ensuite appliquées avec des idées de
Nakajima et de Kronheimer pour trivialiser l’application moment hyperkähler pour
les variétés de carquois de Nakajima. Ce résultat concernant les variétés de carquois
était connu et utilisé par des experts comme Nakajima et Maffei mais nous n’avons
pu trouver de preuve dans la littérature.

1. Introduction

1.1. Symplectic quotients and GIT quotients of affine varieties

Consider a complex reductive group G acting on a complex smooth
affine variety X. For χ ∈ X ∗(G) a linear character, Xss is the associ-
ated semistable locus. Mumford’s geometric invariant theory [20] provides
a quotient

Xss −→ Xss//G.

Keywords: moment map, hyperkähler moment map, Nakajima quiver varieties.
2020 Mathematics Subject Classification: 53C26, 53D20, 16G20.
(*) This work is part of my PhD thesis at Université de Paris and Scuola Internazionale
Superiore di Studi Avanzati.
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The affine variety X can be embedded in an hermitian vector space
W such that the G-action is linear and restricts to a unitary action of a
maximal compact subgroup H ⊂ G. The hermitian norm on W is denoted
by ∥ . . . ∥. We study the associated real moment map

µ : X −→ h

with h the Lie algebra of H. Its definition relies on the choice of a non
degenerate scalar product ⟨ · , · ⟩ on h invariant under the adjoint action of
H. The real moment map satisfies for all Y ∈ h

(1.1) ⟨µ(x), Y ⟩ = 1
2

d
dt∥exp(itY ).x∥2

∣∣∣∣
t=0

Thanks to the invariant scalar product, to a linear character χ is asso-
ciated an element θ in Z(h), the center of the Lie algebra h, such that for
all Y ∈ h

⟨θ, Y ⟩ = dχId(iY ).
This mapping between X ∗(G) and Z(h) is injective. The character associ-
ated to some element θ ∈ Z(h) is denoted by χθ. From now on, to remember
the dependence on a choice of character, the semistable, respectively stable
locus are denoted by Xθ−ss, respectively Xθ−s.

For a pair (χθ, θ), Kempf–Ness theory [12] relates the symplectic quotient
(defined by Meyer [18] and Marsden–Weinstein [17]) to the GIT quotient,
it gives an homeomorphism

µ−1(θ)/H ∼−→ Xθ−ss//G.

We study trivialization of the moment map over a regular locus in the
center of the Lie algebra h. First, in Section 2, we study the general frame-
work of a unitary action of a compact group on a smooth affine variety.
After a reminder of Migliorini’s version of Kempf–Ness theory [19], a reg-
ular locus in Z(h) is defined. Over this locus the moment map is proved
to be a locally trivial fibration. The case of a torus action was treated by
Kac-Peterson [11]. The construction of the regular locus uses the negative
gradient flow of square norm of the moment map studied by Kirwan [14],
Ness–Mumford [22], Sjamaar [27], Harada–Wilkin [7] and Hoskins [10].

Nakajima quiver varieties introduced in [21] are particular instances of
the symplectic quotients studied in Section 2. Moreover they are hyper-
kähler quotients as defined by Hitchin–Karlhede–Lindström–Roček [9], the
construction of those varieties is recalled in Section 3. In Section 4, the
idea of Kronheimer [15] and Nakajima [21] of consecutive use of different
complex structures are applied together with techniques from the previous
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sections to prove that the hyperkähler moment map is a locally trivial fi-
bration. This implies in particular that the cohomology of the fibers forms
a local system. This later result is used by Nakajima in [21, Section 9]
to construct a Weyl group action on the cohomology of quiver varieties.
Maffei pursued this construction in [16]. I was informed by Nakajima that
the property of the cohomology of the fibers can also be obtained by gen-
eralizing Slodowy argument from [28] to quiver varieties. Similar results
concerning cohomology of the fibers also exist in the framework of deforma-
tions of symplectic quotient singularities in Ginzburg–Kaledin [5]. Finally
Crawley-Boevey and Van den Bergh [3] trivialize the hyperkähler moment
map for Nakajima quiver varieties over complex lines. Nakajima explained
to us how to extend their result to quaternionic lines minus a point thanks
to the theory of twistor spaces see Theorem 4.16.

In the remaining of the introduction the results are stated and the various
steps of the constructions are outlined.

1.2. Real moment map for the action of a complex reductive
group on an affine variety

In Section 2, H ⊂ G is a maximal compact subgroup acting unitarily on
a smooth affine variety X embedded in an hermitian vector space. The dif-
ferential geometry point of view from Kempf–Ness theory allows to extend
the definition of θ-stability for elements χθ ∈ X ∗(G)R := X ∗(G) ⊗Z R. The
correspondence between linear characters and elements in the center of the
Lie algebra h thus extends to an isomorphism of R-vector spaces between
X ∗(G)R and Z(h).

In Section 2.4 we prove a Lie group variant of Hilbert–Mumford criterion
for θ-stability. It is adapted to the differential geometric point of view of
Kempf–Ness theory and the use of real parameters θ ∈ X ∗(G)R. Similar
criteria are discussed by Georgoulas, Robbin and Salamon in [4].

Theorem 1.1 (Hilbert–Mumford criterion for stability). — Let θ ∈
X ∗(G)R and x ∈ X. The following statements are equivalent

(i) x is θ-stable.
(ii) For all Y ∈ h, different from zero, such that limt→+∞ exp(itY ).x

exists we have ⟨θ, Y ⟩ < 0.

This theorem is applied in 3.2 to generalize a result of King [13] charac-
terizing θ-stability for quiver representations.

TOME 74 (2024), FASCICULE 1
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The regular locus Breg is introduced in 2.5. Its construction relies on the
study of the negative gradient flow of the square norm of the moment map
from Kirwan [14], Ness–Mumford [22], Sjamaar [27], Harada–Wilkin [7] and
Hoskins [10]. Breg is an open subset of Z(h) such that for θ ∈ Breg, one has
Xθ−ss = Xθ−s ̸= ∅ and for all x ∈ Xθ−s the stabilizer of x is trivial. Over
the regular locus, the moment map is a locally trivial fibration. A similar
fibration when G is a torus follows from a result of Kac-Peterson [11]. Let
us also mention that with the flow of the norm square in the hermitian
space W , Sjamaar [27] constructed a retraction of the 0-stable locus to the
fiber over 0 of the moment map.

Theorem 1.2. — Let θ0 in Breg, and let Uθ0 be the connected com-
ponent of Breg containing θ0. There is a diffeomorphism f such that the
following diagram commutes

Uθ0 × µ−1 (θ0) µ−1(Uθ0)

Uθ0

f

∼

µ

Moreover f is H equivariant so that the diagram goes down to quotient

Uθ0 × µ−1 (θ0) /H µ−1(Uθ0)/H

Uθ0

∼

To prove this theorem, first we prove that for any θ ∈ Uθ0 and x ∈ Xθ0−s

there exists a unique Y (θ, x) ∈ h such that exp(iY (θ, x)).x ∈ µ−1(θ). This
is achieved thanks to Migliorini’s version of Kempf–Ness theory [19] which
applies to affine varieties and real parameters χθ ∈ X ∗(G)R. Then the map
f is defined by

f(θ, x) := exp (iY (θ, x)) .x
and similarly for its inverse

f−1(x) = (µ(x), exp (iY (θ0, x)) .x) .

The smoothness of f and its inverse is proved in 2.6 with the implicit
function theorem.

1.3. Nakajima quiver varieties and hyperkähler moment map

The quiver varieties considered in this paper were introduced by Naka-
jima [21]. Let Γ be a quiver with vertices Ω0 and edges Ω1, fix a dimension
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vector v ∈ NΩ0 . The space of representations of Γ with dimension vector
v is

Rep(Γ, v) =
⊕

γ∈Ω1

MatC(vh(γ), vt(γ)).

with h(γ) ∈ Ω0 the head of the edge γ and t(γ) ∈ Ω0 its tail. The cotangent
bundle T ∗ Rep(Γ, v) is also a space of representation Rep(Γ̃, v) of a doubled
quiver Γ̃ obtained from Γ by adding a reverse arrow to each element of Ω1.

This space is acted upon by the group

Gv
∼=

 (gj)j∈Ω0 ∈
∏

j∈Ω0

GLvj

∣∣∣∣∣∣
∏

j∈Ω0

det(gj) = 1

 .

This action is described in 3.1, it restricts to a unitary action of the maximal
compact subgroup

Uv =

 (gj)j∈Ω0 ∈
∏

j∈Ω0

Uvj

∣∣∣∣∣∣
∏

j∈Ω0

det(gj) = 1


with Uvj

the group of unitary matrices of size vj . Denote by uv the Lie
algebra of Uv. This is a particular instance of the general situation of Sec-
tion 2: a unitary action of a compact group on a smooth complex affine
variety. Let θ ∈ ZΩ0 such that

∑
j vjθj = 0. Define χθ a linear character of

Gv by

(1.2) χθ ((gj)j∈Ω0) :=
∏

j∈Ω0

det(gj)−θj .

For quiver representations, the correspondence between linear characters
and elements in the center of uv is easily described: to the character χθ

is associated the element (−iθj Idvj )j∈Ω0 ∈ Z(uv). This element is still
denoted by θ, and Z(uv) is identified in this way with a subspace of RΩ0 .

A well-known theorem from King [13] gives a characterization of θ-
stability for quiver representations. In 3.2 this result is generalized to real
parameters corresponding to elements χθ ∈ X ∗(G)R.

Theorem 1.3. — For θ ∈ RΩ0 such that
∑

j∈Ω0
θjvj = 0 and the asso-

ciated element χθ ∈ X ∗(Gv)R, a quiver respresentation (V, ϕ) is θ-stable if
and only if for all subrepresentation W ⊂ V∑

j∈Ω0

θj dimWj < 0.

unless W = V or W = 0.

TOME 74 (2024), FASCICULE 1



312 Mathieu BALLANDRAS

The space T ∗ Rep(Γ, v) ∼= Rep(Γ̃, v) admits three complex structures
denoted by I, J and K, they are detailed in Section 4.1. There is a real
moment map for each one of this complex structure, they are denoted by
µI , µJ and µK . They are defined as in equation (1.1), for instance

⟨µI(x), Y ⟩ = 1
2

d
dt∥exp(t.I.Y ).x∥2

∣∣∣∣
t=0

and

⟨µJ(x), Y ⟩ = 1
2

d
dt∥exp(t.J.Y ).x∥2

∣∣∣∣
t=0

.

Together they form the hyperkähler moment map µH = (µI , µJ , µK), it
takes values in u⊕3

v .
Nakajima quiver varieties are constructed for (θI , θJ , θK) ∈ Z(uv)⊕3 as

quotients of fibers of the hyperkähler moment map.

mv(θI , θJ , θK) = µ−1
H (θI , θJ , θK)/Uv.

The hyperkähler regular locus in Z(uv)⊕3 is defined by:

Definition 1.4 (Hyperkähler regular locus). — For w ∈ NΩ0 a dimen-
sion vector

Hw :=

(θI , θJ , θK) ∈ (RΩ0)3

∣∣∣∣∣∣
∑

j

wjθI,j =
∑

j

wjθJ,j =
∑

j

wjθK,j = 0

.

The regular locus is

(1.3) Hreg
v = Hv \

⋃
w<v

Hw

the union is over dimension vector w ̸= v such that 0 ⩽ wi ⩽ vi.

In Section 4.3 various trivializations of the hyperkähler moment map are
discussed. We prove that the hyperkähler moment map is a locally triv-
ial fibration by consecutive use of constructions of Theorem 1.2 for each
complex structure and the associated moment map. The idea of consecu-
tive use of different complex structures comes from Kronheimer [15] and
Nakajima [21].

Theorem 1.5 (Local triviality of the hyperkähler moment map). —
Over the regular locus Hreg

v , the hyperkähler moment map µH is a locally
trivial fibration compatible with the Uv-action:

ANNALES DE L’INSTITUT FOURIER
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Any (θI , θJ , θK) ∈ Hreg
v admits an open neighborhood V , and a diffeo-

morphism f such that the following diagram commutes

V × µ−1
H (θI , θJ , θK) µ−1

H (V )

V

f

∼

µH

Moreover f is compatible with the Uv-action so that the diagram goes down
to quotient

V × µ−1
H (θI , θJ , θK)/Uv µ−1

H (V )/Uv

V

∼

p

A similar trivialization of the hyperkähler moment map over lines is
described in [3, Lemma 2.3.3]. In Theorem 4.16 we provide an extension of
their result using twistor spaces as suggested by Nakajima.

Denote by π the map obtained by taking quotient of the hyperkähler
moment map over the regular locus

µ−1
H (Hreg

v )/Uv
π−→ Hreg

v .

Consider Hiπ∗Ql, the cohomology sheaves of the derived pushforward of the
constant sheaf. As a direct corollary of the local triviality of the hyperkähler
moment map, those sheaves are locally constant. Moreover asHreg

v is simply
connected, those sheaves are constant. They provide the local system of the
cohomology of the fibers.
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2. Kempf–Ness theory for affine varieties

Kempf–Ness [12] relate geometric invariant theory quotients to symplec-
tic quotients. In this section we recall Migliorini’s version of this theory [19]
which applies to affine varieties and real parameter χθ ∈ X ∗(G)R. Then we
prove that the real moment map is a locally trivial fibration over a regular
locus.
G is a connected complex reductive group acting on a smooth affine

complex variety X. The action is assumed to have a trivial kernel.

2.1. Characterization of semistability from a differential
geometry point of view

For χθ ∈ X ∗(G) a linear character of G, a regular function f ∈ C [X] is
θ-equivariant if there exists a strictly positive integer r such that f(g.x) =
χθ(g)rf(x) for all x ∈ X.

Definition 2.1. — A point x ∈ X is θ-semistable if there exists a θ-
equivariant regular function f such that f(x) ̸= 0. The set of θ-semistable
points is denoted by Xθ−ss.

A point x ∈ X is θ-stable if it is θ-semistable and if its orbit G.x is closed
in Xθ−ss and its stabilizer is finite. The set of θ-stable points is denoted
by Xθ−s.

The GIT quotient as defined by Mumford [20] is denoted by Xθ−ss →
Xθ−ss//G. A point of this quotient represents a closed G-orbit in Xθ−ss.
When working over the field of complex numbers, such quotients are related
to symplectic quotients. The affine variety X can be embedded as a closed
subvariety of an hermitian space W with hermitian pairing denoted by
p( · , · ). The embedding can be chosen so that the action of G on X comes
from a linear action on W and the action of a maximal compact subgroup
H ⊂ G preserves the hermitian pairing, p(h.u, h.v) = p(u, v) for all h ∈ H

and u, v ∈ W . Then G can be identified with a subgroup of GL(W ). The
hermitian pairing induces a symplectic form on the underlying real space

(2.1) ω( · , · ) := Re p(i · , · )

with i a square root of −1 and Re the real part. The hermitian pairing on
the ambient space induces an hermitian metric on X. As X is a smooth
subvariety of W , its tangent space is stable under multiplication by i, hence
the non-degeneracy of the hermitian metric implies the non degeneracy of

ANNALES DE L’INSTITUT FOURIER
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the restriction of the symplectic form ω to the tangent space of X and the
symplectic form on W restricts to a symplectic form on X. Then the action
of G on X induces a symplectic action of H on X.

For x ∈ X introduce the Kempf–Ness map
ϕθ,x : G −→ R

g 7−→ ∥g.x∥2 − log
(
|χθ(g)|2

)
with ∥ · ∥ the hermitian norm.

Theorem 2.2 ([19, Theorem A.4]). — A point x0 ∈ X is θ-semistable
if and only if there exists in the closure of its orbit a point x ∈ G.x0 such
that ϕθ,x has a minimum at the identity.

Remark 2.3. — Let X ∗(G)R := X ∗(G) ⊗Z R, the definiton of ϕθ,x makes
sense not only for linear characters but for any χθ ∈ X ∗(G)R. It provides the
following generalization of the definition of θ-semistability and θ-stability
for any χθ ∈ X ∗(G)R.

Definition 2.4 (Semistable points). — Let χθ ∈ X ∗(G)R, a point x0 is
θ-semistable if there exists x ∈ G.x0 such that ϕθ,x has a minimum at the
identity.

A point x0 is θ-stable if it is θ-semistable, its orbit is closed in Xθ−ss and
its stabilizer is finite.

In the following of the article, θ-stability and θ-semistability as well as
the notations Xθ−s and Xθ−ss always refer to this definition.

2.2. Correspondence between linear characters and center of
the Lie algebra of H

The Lie algebra of G is denoted by g and the real Lie algebra of H is h.
Fix a non-degenerate scalar product ⟨ · , · ⟩ on h invariant under the adjoint
action.

Proposition 2.5 (Polar decomposition). — For all g ∈ G there exists
a unique (h, Y ) ∈ H × h such that g = h exp(iY ) such an expression is
called a polar decomposition. This implies for the Lie algebra g = h ⊕ ih.

Proof. — It follows from [23, Theorem 6.6]. □

The first step in Kempf–Ness theory is to associate to a character χθ ∈
X ∗(G) an element in the center Z(h) of the Lie algebra h. As H is compact,
its image under a complex character lies in the unit circle. Consider the

TOME 74 (2024), FASCICULE 1
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differential of the character at the identity, it is a C-linear map dχθ
Id : g →

C. The inclusion χθ(H) ⊂ S1 implies for the Lie algebra dχθ
Id(h) ⊂ iR. By

C-linearity, dχθ
Id(ih) ⊂ R and the following map is R-linear

(2.2)
dχθ

Id(i . . . ) : h −→ R

Y 7−→ dχθ
Id(iY ).

The invariant scalar product on h identifies this linear form with an element
of h denoted by θ satisfying for all Y ∈ h

⟨θ, Y ⟩ = i dχθ
Id(Y ).

Moreover, as the scalar product is invariant for the adjoint action and so
is the character χθ, the element θ lies in the center of h. This construction
is Z-linear so that it extends to an R-linear map

ι : X ∗(G)R −→ Z(h)

χθ 7−→ θ

Proposition 2.6. — The R-linear map ι is an isomorphism from
X ∗(G)R to Z(h).

Proof. — As G is a complex reductive group G = Z(G)D(G) with Z(G)
its center and D(G) its derived subgroup. Then X ∗(G) identifies with the
set of linear characters of the torus Z(G). Hence X ∗(G) is a Z-module of
rank the complex dimension of Z(G) so that dimR X ∗(G)R = dimR Z(h).
It remains to prove that ι is injective. Let χθ be a linear character such
that dχθ

Id(iY ) = 0 for all Y ∈ h. By C-linearity and polar decomposition
dχθ

Id = 0. Hence for any g ∈ G the differential at g is also zero dχθ
g = 0. As

G is connected, χθ is the trivial character. □

Remark 2.7. — This isomorphism justifies the notation χθ for elements
in X ∗(G)R, such elements are uniquely determined by a choice of θ ∈ Z(h),
moreover

χθχθ′
= χθ+θ′

.

2.3. Correspondence between symplectic quotient and GIT
quotient

Definition 2.8 (Real moment map). — The real moment map µ : X →
h is defined thanks to the invariant scalar product ⟨ · , · ⟩ by

⟨µ(x), Y ⟩ = 1
2

d
dt∥exp(itY ).x∥2

∣∣∣∣
t=0

ANNALES DE L’INSTITUT FOURIER
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for all Y ∈ h and x ∈ X. In this section the real moment map is just called
the moment map. Later on complex and hyperkähler moment maps are
also considered.

Assume the compact group H is a torus T . The ambient space decom-
poses as an orthogonal direct sum W =

⊕
χα Wχα with χα linear characters

of T and
Wχα = {x ∈ W | t.x = χα(t)w for all t ∈ T}

Similarly to 2.2, a character χα is uniquely determined by an element α in
t the Lie algebra of T such that

idχα
Id(Y ) = ⟨α, Y ⟩ .

Let A be the finite subset of elements α ∈ t such that Wχα ̸= {0}. Let us
compute µT the moment map for the torus action. Let x =

∑
α∈A xχα in

W , for Y in t the Lie algebra of T

⟨µT (x), Y ⟩ = 1
2

d
dt∥exp(itY ).x∥2

∣∣∣∣
t=0

=
∑
α∈A

idχα
Id(Y )∥xχα∥2

=
〈∑

α∈A

∥xχα∥2α, Y

〉
Therefore the non-degeneracy of the scalar product implies µT (x) =∑

χ∈A ∥xχα∥2α. In particular the image of µT is the cone C(A) ⊂ t spanned
by positive coefficients combinations of elements α ∈ A. This example
proves to be useful later on.

Proposition 2.9 (Guillemin-Sternberg [6]). — dxµ the differential of
the moment map at x is surjective if and only if the stabilizer of x in H is
finite.

Proof. — A computation using the definition of the moment map and
the symplectic form gives for v ∈ TxX a tangent vector at x and Y ∈ h

⟨dxµ(v), Y ⟩ = ω

(
d
dt exp(tY ).x

∣∣∣∣
t=0

, v

)
.

This relation is often taken as a definition of the moment map. By non
degeneracy of the symplectic form ω it implies that Y is orthogonal to the
image of dxµ if and only if the stabilizer of x contains exp(tY ) for all t ∈ R.
Hence the differential of the moment map is surjective if and only if the
stabilizer of x is finite. □

TOME 74 (2024), FASCICULE 1
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Lemma 2.10. — Let χθ ∈ X ∗(G)R and x ∈ X, then ϕθ,x has a minimum
at the identity if and only if µ(x) = θ.

Moreover if ϕθ,x has a minimun at the identity and at a point h exp(iY )
with h ∈ H and Y ∈ h, then exp(iY ).x = x.

Proof. — Up to a shift in the definition of the moment map, this result
is [19, Corollary A.7]. The proof is recalled as it is useful for the next
proposition.

For all h ∈ H and g ∈ G

ϕθ,x(hg) = ϕθ,x(g)

so that the differential of ϕθ,x at the identity vanishes on h. For Y ′ + iY ∈
h ⊕ ih this differential is

dϕθ,x
Id (Y ′ + iY ) = dϕθ,x

Id (iY ) = d
dt∥exp(itY ).x∥2

∣∣∣∣
t=0

− dχθ
Id(iY ) − dχθ

Id(iY )

= 2 ⟨µ(x), Y ⟩ − 2 ⟨θ, Y ⟩ .

last equality follows from the definition of the moment map µ and the
discussion in Section 2.2 defining θ and proving the reality of dχθ

Id(iY ).
So far we proved that ϕθ,x has a critical point at the identity if and

only if µ(x) = θ, it remains to prove that this critical point is necessarily a
minimum. Let ϕθ,x be critical a the identity and g ∈ G written in polar form
g = h exp(iY ). The action of iY is hermitian so that it can be diagonalized
in an orthonormal basis (ej) such that iY.ej = λjej with λj ∈ R.

ϕθ,x(h exp(iY )) − ϕθ,x(Id) = ϕθ,x(exp(iY )) − ϕθ,x(Id)

=
∑

j

|exp(λj)p(ej , x)|2 − log

∏
j

exp(2rjλj)


−

∑
j

|p(ej , x)|2

with rj real parameters determined by χθ ∈ X ∗(G)R. As ϕθ,x is critical at
the identity:

0 = d
dtϕ

θ,x(exp(itY ))
∣∣∣∣
t=0

=
∑

j

(
2λj |p(ej , x)|2 − 2rjλj

)
.

Combining the two previous equations

ϕθ,x(h exp(iY )) − ϕθ,x(Id) =
∑

j

(exp(2λj) − 2λj − 1) |p(ej , x)|2 .
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So that ϕθ,x(h exp(iY )) − ϕθ,x(Id) ⩾ 0 with equality if and only if
exp(iY ).x = x. Hence when ϕθ,x has a critical point at the identity, it
is necessarily a minimum. □

Proposition 2.11. — Let χθ ∈ X ∗(G)R then µ−1(θ) ⊂ Xθ−ss. More-
over, a point x0 is θ-stable if and only if the orbit G.x0 intersects µ−1(θ)
exactly in a H-orbit.

Proof. — The first statement follows from Definition 2.4 of stability and
Lemma 2.10.

Assume x0 is θ-stable, then its orbit is closed in Xθ−ss and G.x0 ∩µ−1(θ)
is not empty. Let x lies in this intersection, then ϕθ,x has a minimum at
the identity. For all g, g′ ∈ G

ϕθ,g.x(g′) = ϕθ,x(g′g) + log
(∣∣χθ(g)

∣∣2)
Hence ϕθ,g.x(g′) is minimum for g′ = g−1. Now if g ∈ G verifies g.x ∈
µ−1(θ) by Lemma 2.10, ϕθ,g.x(g′) has a minimum not only at g′ = g−1

but also at the identity. By the second statement of the previous lemma,
g−1 = h exp(iY ) with h ∈ H and exp(iY ).x = x. As x is stable, its stabilizer
is finite so that exp(iY ) = Id and g−1 ∈ H. Moreover for any h ∈ H,
the map ϕθ,h.x has a minimum at identity hence h.x ∈ µ−1(θ) so that
G.x0 ∩ µ−1(θ) = H.x.

Conversely suppose G.x0 ∩ µ−1(θ) = H.x. First x0 is θ-semistable. By
Migliorini [19, Proposition A.9], the orbitG.x0 is closed inXθ−ss. It remains
to prove that the stabilizer of x0 is finite. By Lemma 2.10 the map ϕθ,x is
minimum at the identity. Let Y ∈ h such that exp(iY ) is in the stabilizer of
x. Then

∣∣χθ (exp(iY ))
∣∣ = 1, otherwise either ϕθ,x (exp(iY )) < ϕθ,x(Id) or

ϕθ,x (exp(−iY )) < ϕθ,x(Id). Hence ϕθ,x(exp(iY )) = ϕθ,x(Id) and exp(iY ) ∈
H so that Y = 0 and the stabilizer of x is finite. □

Remark 2.12. — For χθ ∈ X ∗(G) such that θ-stability and θ-semistability
coincide. The last proposition implies that the inclusion µ−1(θ) ⊂ Xθ−ss

goes down to a continuous bijective map

µ−1(θ)/H ∼−→ Xθ−ss//G.

This result is a particular instance of Kempf–Ness theory, it gives a natural
bijection between a symplectic quotient and a GIT quotient. Hoskins [10]
proved that this map is actually an homeomorphism.
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2.4. Hilbert–Mumford criterion for stability

The next theorem is a variant of the usual Hilbert–Mumford criterion
for stability. It applies to real parameters χθ ∈ X ∗(G)R not only to linear
characters. Instead of algebraic one-parameter subgroups it relies on one-
parameter real Lie groups defined for Y ∈ h by

R −→ G

t 7−→ exp(itY )
Many variants of Hilbert–Mumford criterion for one-parameter real Lie
groups are given in [4]. Before proving the criterion, two classical technical
lemmas are necessary.

Lemma 2.13. — Let χθ ∈ X ∗(G)R and Y ∈ h, for t ∈ R

log
∣∣χθ(exp(itY ))

∣∣2 = 2 ⟨θ, Y ⟩ t.

Proof. — We prove it for χθ ∈ X ∗(G) and deduce for elements in X ∗(G)R
by R-linearity.

d
dt

∣∣∣∣
t=s

log
∣∣χθ(exp(itY ))

∣∣2 = 1
|χθ (exp(isY ))|2

d
dt

∣∣∣∣
t=s

∣∣χθ(exp(itY ))
∣∣2

= d
dt

∣∣∣∣
t=s

∣∣χθ(exp(i(t− s)Y ))
∣∣2

= d
dt

∣∣∣∣
t=0

∣∣χθ(exp(itY ))
∣∣2

= 2dχθ
Id(iY )

By the construction of the element θ ∈ Z(h) from 2.2 we conclude that
d
dt

∣∣∣∣
t=s

log
∣∣χθ(exp(itY ))

∣∣2 = 2 ⟨θ, Y ⟩

and
log

∣∣χθ(exp(itY ))
∣∣2 = 2 ⟨θ, Y ⟩ t. □

Lemma 2.14. — Let x0 ∈ Xθ−s such that ϕθ,x0 is minimum at the
identity. Let Z ∈ h and decompose x0 in a basis of eigenvectors of the
hermitian endomorphism iZ

x0 =
∑

λ

x0
λ

with
exp(iZ)x0

λ = exp(λ)x0
λ.

Then either ⟨θ, Z⟩ < 0 or there exists λ > 0 with x0
λ ̸= 0.
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Proof. — By Lemma 2.10 and Proposition 2.11, as x0 is θ-stable, the
Kempf–Ness map ϕθ,x0 reaches its minimum exactly on H. For Z ∈ h

consider the map fZ defined for t real by

fZ(t) = ϕθ,x0 (exp(iZt)) .

fZ reaches its minimum only at t = 0. We can compute fZ(t) using the
decomposition of x0 in eigenvectors of iZ and Lemma 2.13

(2.3) fZ(t) =
∑

λ

exp(2tλ)∥x0
λ∥2 − 2 ⟨θ, Z⟩ t.

Its second derivative is

f ′′
Z(t) =

∑
λ

4λ2 exp(2tλ)∥x0
λ∥2.

Then fZ is convex, moreover it reaches its minimum only at t = 0 so that

lim
t→+∞

fZ(t) = +∞.

Looking at equation (2.3) this implies either ⟨θ, Z⟩ < 0 or there exists λ > 0
with x0

λ ̸= 0. □

Theorem 2.15 (Hilbert–Mumford criterion for stability). — Let θ ∈
X ∗(G)R and x ∈ X. The following statements are equivalent

(i) x is θ-stable.
(ii) For all Y ∈ h, different from zero, such that limt→+∞ exp(itY ).x

exists then ⟨θ, Y ⟩ < 0.

Proof.
not (i) implies not (ii). — Let x ∈ X \ Xθ−s. Then if ϕθ,x admits a

minimum, the stabilizer of x is not finite and this minimum is reached
on an unbounded subset of G. Thus there exists an unbounded minimizing
sequence for ϕθ,x. By polar decomposition and H invariance we can assume
it has the following form (exp iYn)n∈N with (Yn)n∈N ∈ hN unbounded. The
hermitian space W admits an orthonormal basis Bn = (en

1 , . . . , e
n
d ) made

of eigenvectors of iYn with associated eigenvalues λn
1 , . . . , λ

n
d .

exp(iYn).en
k = exp(λn

k )en
k .

This basis allows to compute:

ϕθ,x (exp iYn) =
d∑

k=1
exp (2λn

k ) ∥xn
k ∥2 − 2 ⟨θ, Yn⟩

with xn
k = p(x, en

k )en
k the components of x in the basis Bn. By compactness

of the set of orthonormal frames, we can assume the sequence of basis
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(Bn)n∈N converges to an orthonormal basis B = (e1, . . . , ek). Let xk =
p(x, ek)ek be the components of x in the basis B. Then limn→+∞ xn

k = xk.
Let

Σn =
d∑

k=1
|λn

k |

As (Yn)n∈N is unbounded, up to an extraction of a subsequence, we can
assume that limn→+∞ Σn = +∞ and that the following limit exist and are
finite:

Y := lim
n→+∞

Yn

Σn

and

λk := lim
n→+∞

λn
k

Σn
.

Now one can bound from bellow the values ϕθ,x (exp iYn) of the minimizing
sequence

ϕθ,x (exp iYn)

⩾
∑

{k|xk ̸=0 }

exp (2λn
k ) ∥xn

k ∥2 − 2 ⟨θ, Yn⟩ .

⩾
∑

{k|xk ̸=0 }

exp (2 (λk + o(1)) Σn)
(
∥xk∥2 + o(1)

)
− 2 (⟨θ, Y ⟩ + o(1)) Σn

with o(1) some sequences going to zero when n goes to infinity. As the
left-hand side is the value of a minimizing sequence, it cannot go to plus
infinity. Hence ⟨θ, Y ⟩ ⩾ 0, moreover if xk ̸= 0 Then λk ⩽ 0. We conclude
as Y satisfies limt→+∞ exp(itY ).x exists and ⟨θ, Y ⟩ ⩾ 0.

(i) implies (ii). — Let x ∈ Xθ−s, by Lemma 2.10 and Proposition 2.11
there exists g0 ∈ G such that for x0 = g0.x, the Kempf–Ness map
ϕθ,x0 reaches its minimum exactly on H. Now let Y ∈ h such that
limt→+∞ exp(itY ).x exists then limn→+∞ exp(inY ).x exists. For all n ∈ N
polar decomposition provides unique hn ∈ H and Zn ∈ h such that

exp(inY ) = hn exp(iZn)g0.

Then Zn is unbounded. Proceed as in the first part of the proof, iZn is an
hermitian endomorphism denote by λn

1 , . . . , λ
n
d its eigenvalues and let

Σn =
d∑

k=1
|λn

k | .
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We can assume that limn→+∞ Σn = +∞ and that the following limits exist
and are finite:

Z := lim
n→+∞

Zn

Σn

and
λk := lim

n→+∞

λn
k

Σn
.

Then denoting by x0
k the components of x0 in an orthonormal basis of

eigenvectors of iZ

ϕθ,x (exp(iZn)g0) ⩾
∑

{k|xk ̸=0 }

exp (2 (λk + o(1)) Σn)
(
∥xk∥2 + o(1)

)
− 2 (⟨θ, Z⟩ + o(1)) Σn + log

∣∣χθ(g0)
∣∣2

By Lemma 2.14 either ⟨θ, Z⟩ < 0 or there exists λk > 0 with x0
k ̸= 0. In

any case
lim

n→+∞
ϕθ,x (exp(iZn)g0) = +∞.

Then the relation (2.4) defining Zn implies

(2.4) lim
n→+∞

ϕθ,x(exp(inY )) = +∞.

Decompose x in a basis of eigenvectors of the hermitian endomorphism iY

x =
∑

λ

xλ

then
ϕθ,x(exp(inY )) =

∑
λ

exp(2nλ)∥xλ∥2 − 2 ⟨θ, Y ⟩n.

As the limit limn→+∞ exp(inY ).x is assumed to exist, λ ⩽ 0 if xλ ̸= 0.
Then the condition (2.4) implies ⟨θ, Y ⟩ < 0. □

2.5. Regular locus

In this subsection the closed subvariety X is not relevant, the action of G
and H on the ambient hermitian vector space W is studied. First note that
the moment map can be defined not only on X but on the whole space W .
Let T ⊂ H a maximal torus. As in 2.3 the ambient space W decomposes
as an orthogonal direct sum W =

⊕
Wχα with χα characters of T and

Wχα = {x ∈ W |t.x = χα(t)x for all t ∈ T } .
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Denote by A the finite subset of elements α ∈ t such that for the character
χα the space Wχα is not zero then

W =
⊕
α∈A

Wχα .

As before the link between linear characters and elements in t is through
the invariant pairing ⟨ · , · ⟩

idχα
Id(β) = ⟨α, β⟩ .

Hence if β is orthogonal to the R vector space spanned by A

χα(exp tβ) = 1

for all α ∈ A so that exp tβ is in the kernel of the action of H on W . From
the beginning this kernel is assumed to be trivial, hence the vector space
spanned by A is t. As in Remark 2.3, the image of µT , the moment map
relative to the T -action, is the cone spanned by positive combinations of
A. For any A′ finite subset of t the cone spanned by positive combinations
of A′ is:

C(A′) :=
{ ∑

α∈A′

aαα

∣∣∣∣∣ aα ⩾ 0 for all α ∈ A′

}
.

For any β ∈ t

⟨µ(x), β⟩ = d
dt ∥ exp(itβ).x∥2∣∣

t=0

= ⟨µT (x), β⟩ .

Hence, as noted by Kirwan [14], if µ(x) ∈ t then µ(x) = µT (x). For A′ a
finite subset of t we denote by dimA′ the dimension of the vector space
spanned by A′.

Lemma 2.16. — Let x ∈ W such that for all A′ ⊂ A with dimA′ <

dim t, the value of the moment map µT (x) does not lie in C(A′). Then the
stabilizer of x is finite.

Proof. — Decompose x according to its weight x =
∑

α∈A xα then

µT (x) =
∑

∥xα∥2α.

Denote by Ax the set of elements α such that xα ̸= 0. The hypothesis about
µT (x) implies that dimAx = dim t. Now for β ∈ t

exp(βt).x =
∑

α∈Ax

χα(expβt)xα.
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Hence if expβt is in the stabilizer of x, for all α ∈ Ax the pairing with β

vanishes ⟨α, β⟩ = 0. As Ax spans t this implies that β = 0 and the stabilizer
of x in T is finite. □

The previous lemma justifies the introduction of the following nonempty
open subset of t

C(A)reg := C(A) \
⋂

A′⊂A
dim A′<dim t

C(A′).

As all maximal torus of H are conjugated, the set C(A)reg ∩ Z(h) is inde-
pendent of a choice of maximal torus T .

Proposition 2.17. — For θ ∈ C(A)reg∩Z(h), every θ-semistable points
are θ-stable, W θ−ss = W θ−s and in particular Xθ−ss = Xθ−s.

Proof. — Let x ∈ W θ−ss, thenG.xmeets µ−1(θ). ButG.x\G.x is a union
of G-orbits of dimension strictly smaller than G.x, points in those orbits
has stabilizer with dimension greater than one. By the previous lemma
every point in µ−1(θ) has a finite stabilizer. Thus G.x ∩ µ−1(θ) ̸= ∅ and
the stabilizer of x is finite so that x is θ-stable. □

Kirwan [14], Ness–Mumford [22], Sjamaar [27], Harada–Wilkin [7] and
Hoskins [10] studied a stratification of W . It relies on the Morse theory of
the following map. For θ ∈ Z(h)

hθ : W −→ R

x 7−→ |µ(x) − θ|2

with | · | the norm defined by the invariant pairing ⟨ · , · ⟩ on h. A critical
point of a smooth map f is a point x where the differential vanishes dxf = 0.
A critical value of f is the image f(x) of a critical point x. The gradient
of hθ is the vector field defined thanks to the hermitian pairing p( · , · ) for
x ∈ W and v ∈ TxW by

p (gradx hθ, v) = dxhθ.v

For x ∈ W the negative gradient flow relative to hθ is the map

γθ
x : R⩾0 −→ W

t 7−→ γθ
x(t)

uniquely determined by the condition

dγθ
x(s)
ds

∣∣∣∣
s=t

= − gradγθ
x(t) hθ.
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and γθ
x(0) = x. By [7] and [27] it is well defined and for any x the limit

limt→+∞ γθ
x(t) exists and is a critical point of hθ. Sθ is the set of point

x ∈ W with negative gradient flow for hθ converging to a point where hθ

reaches its minimal value 0:

Sθ :=
{
x ∈ W

∣∣∣∣ lim
t→+∞

γθ
x(t) ∈ µ−1(θ)

}
.

This is the open strata of the stratification, Sjamaar called it the set of
analitically semistable points. When the stability parameter is a true char-
acter i.e. χθ ∈ X ∗(G), Hoskins [10] proved that this strata coincides with
the θ-semistable locus. Here we want to consider any χθ ∈ X ∗(G)R, the
proof of the inclusion Sθ ⊂ W θ−ss is the same and it is enough for our
purpose.

Proposition 2.18. — Sθ is a subset of W θ−ss.

Proof. — The flow γx(t) belongs to the orbit G.x hence limt→+∞ γx(t) ⊂
G.x. Therefore if x ∈ Sθ then G.x ∩ µ−1(θ) ̸= ∅. □

An important feature of the map hθ is that its critical points lie in a
finite union ⋃

A′⊂A

µ−1 (H.β(A′, θ))

indexed by the subsets of the finite set A. With β(A′, θ) the projection of
θ to the closed convex C(A′) and H.β(A′, θ) the adjoint orbit of β(A′, θ).

Lemma 2.19. — By definition of the projection to a closed convex in an
euclidian space, the distance between θ and the cone C(A′) is |β(A′, θ) − θ|.
Define

(2.5) dθ = inf
A′⊂A

β(A′,θ)̸=θ

|β(A′, θ) − θ|2

then dθ > 0 and hθ
−1 [0, dθ[ ⊂ Sθ.

Proof. — For any h ∈ H by invariance of the scalar product under the
adjoint action and as θ ∈ Z(h)

|h.β(A′, θ) − θ|2 = |β(θ,A′) − θ|2 .

Hence if x is a critical point of hθ not in µ−1(θ), then x ∈ µ−1(H.β(A′, θ))
for some β(A′, θ) different from θ and

|µ(x) − θ|2 = |β(θ,A′) − θ|2 > dθ.

So that the only critical value of hθ0 in the intervalle [0, dθ[ is 0.
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Now for any x ∈ W , the map t 7→ hθ

(
γθ

x(t)
)

can only decrease, and
it converges to a critical value. Therefore if x ∈ h−1

θ [0, dθ[ the negative
gradient flow converges necessarily to a point limt→+∞ γθ

x(t) which belongs
to h−1

θ (0) = µ−1(θ) so that x ∈ Sθ. □

Theorem 2.20. — Let θ0 ∈ C(A)reg ∩Z(h), there is an open neighbor-
hood Vθ0 of θ0 in C(A)reg ∩ Z(h) such that for all θ ∈ Vθ0 , θ-stability and
θ0-stability coincide W θ0−ss = W θ−ss.

Proof. — Let ϵ > 0 such that B(θ0, ϵ) the ball of center θ0 and radius ϵ
in t is included in C(A)reg. Then when θ varies in B(θ0, ϵ) it does not meet
any frontier of a cone C(A′) with A′ ⊂ A. So that for θ ∈ B(θ0, ϵ), for all
A′ ⊂ A, β(θ,A′) ̸= 0 if and only if β(θ0, A

′) ̸= 0. Thus the subset indexing
the infima defining dθ and dθ0 in (2.5) are identical. As the projection
to closed convex is a continuous map, the map θ 7→ dθ is continuous on
B(θ0, ϵ). Therefore one can chose ϵ′ > 0 such that

• dθ >
dθ0

2 for all θ ∈ B(θ0, ϵ
′).

Moreover ϵ′ can be chosen to satisfy the following conditions
• B(θ0, ϵ

′) ⊂ C(A)reg

• ϵ′2 <
dθ0

2
Let θ in B(θ0, ϵ

′)∩Z(h), we shall see that W θ−ss = W θ0−ss. First note that
θ ∈ C(A)reg ∩ Z(h) and Proposition 2.17 implies W θ−ss = W θ−s.

For x ∈ W θ−ss = W θ−s, by Proposition 2.11 there exists g ∈ G such
that g.x ∈ µ−1(θ). Then |µ(g.x) − θ0| < dθ0

2 and g.x ∈ h−1
θ0

[0, dθ0 [. By
Lemma 2.19, g.x ∈ Sθ0 and by Proposition 2.18 g.x is θ0-semistable so
that x ∈ W θ0−ss.

Similarly for x ∈ W θ0−ss, there exists g ∈ G such that g.x ∈ µ−1(θ0).
Then |µ(g.x) − θ|2 < dθ0

2 and as dθ0
2 < dθ, the point g.x lies in h−1

θ [0, dθ[
therefore x is θ-stable. □

Considering again the closed subvariety X ⊂ W one defines the regular
locus:

Definition 2.21 (Regular locus). — The regular locus Breg is the set
of elements θ ∈ C(A)reg ∩Z(h) such that for all x ∈ Xθ−ss the stabilizer of
x in G is trivial and Xθ−ss ̸= ∅.

Proposition 2.22. — The regular locus Breg is the union of some con-
nected components of C(A)reg ∩ Z(h).

Proof. — By Theorem 2.20, if θ and θ′ are in the same connected compo-
nent of C(A)reg ∩Z(h) then W θ−ss = W θ′−ss. Hence if θ ∈ C(A)reg ∩Z(h)

TOME 74 (2024), FASCICULE 1



328 Mathieu BALLANDRAS

is such that for all x ∈ Xθ−ss the stabilizer of x in G is trivial and
Xθ−ss ̸= ∅, the same holds for θ′ in the same connected component of
C(A)reg ∩ Z(h). □

Remark 2.23. — Note that the regular locus Breg can be empty, for in-
stance if the center Z(h) is a subset of a cone C(A′) with dimA′ < dim t.
Fortunately it is non-empty for the application to Nakajima quiver varieties
of the next sections.

In the next subsection we prove that the real moment map is a locally
trivial fibration over the regular locus Breg.

2.6. Trivialization of the real moment map over the regular
locus

The next construction follows ideas from Hitchin–Karlhede–Lindström–
Roček and is illustrated in [9, Figure 3 p. 348].

Proposition 2.24. — For χθ ∈ X ∗(G)R and x a θ-stable point with
trivial stabilizer, there exists a unique Y θ,x ∈ h such that exp

(
iY θ,x

)
.x ∈

µ−1(θ). Moreover for h ∈ H the adjoint action of h on Y θ,x satisfies

(2.6) h.Y θ,x = Y θ,h.x.

Let θ′ = µ(x) and x′ = exp
(
iY θ,x

)
.x, then

(2.7) Y θ′,x′
= −Y θ,x.

Proof. — As x is θ-stable, by Proposition 2.11 the orbit G.x intersects
µ−1(θ) exactly on a H-orbit. There exists g ∈ G such that g.x ∈ µ−1(θ).
Apply the polar decomposition to this element g = h0 exp

(
iY θ,x

)
with

h0 ∈ H and Y θ,x ∈ h. Then

µ−1(θ) ∩G.x = H. exp
(
iY θ,x

)
.x

Take Y ′ such that exp (iY ′) .x ∈ µ−1(θ) then

exp(iY ′).x = h exp(iY θ,x).x

for some h in H. By the triviality of the stabilizer of x and the uniqueness
of polar decomposition Y ′ = Y θ,x hence Y θ,x is uniquely determined. Let
us check H-equivariance, for h ∈ H

µ−1(θ) ∋ h exp(iY θ,x).x = exp
(
ih.Y θ,x

)
.h.x

by uniqueness Y θ,h.x = h.Y θ,x. Equation (2.7) is clear. □
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Remark 2.25. — The assumption that x has a trivial stabilizer can be
relaxed. Then there exists Y x,θ ∈ h such that{

Y ∈ h
∣∣ exp(iY ).x ∈ µ−1(θ)

}
= (StabH x) .Y θ,x

The right-hand side is the orbit of Y θ,x under the adjoint action of the
stabilizer of x in H. For applications to quiver varieties we only need to
consider the case of a trivial stabilizer.

Lemma 2.26. — Let θ ∈ Z(h) and x0 a θ-stable point with trivial sta-
bilizer. There exists an open neighborhood Uθ,x0 of (θ, x0) in h ×X and a
smooth map

Y : Uθ,x0 −→ h

(θ′, x′) 7−→ Y (θ′, x′)

such that µ (exp (iY (θ′, x′)) .x′) = θ′.

Proof. — Note that when θ ∈ Z(h) necessarily Y (θ, x) is equal to the
Y θ,x introduced in the previous proposition. Let Y θ,x0 such that x :=
exp

(
iY θ,x0

)
.x0 is in the intersection G.x0 ∩ µ−1(θ). Consider the map

f : h × h ×X −→ h

(Y ′, θ′, x′) 7−→ µ (exp(iY ′).x′) − θ′

in order to use the implicit function theorem on a neighborhood of(
Y θ,x0 , θ, x0

)
we first prove that the differential of f with respect to Y ′

at (Y θ,x0 , θ, x0) is invertible. As x has a finite stabilizer, the embedding of
tangent spaces TxH.x ↪−→ TxG.x identifies with the embedding

(2.8) h ∼= TIdH ↪−→ TIdG ∼= h ⊕ ih.

By Proposition 2.9, dµ is surjective so that µ−1(θ) is a smooth manifold
and ker dµx = Txµ

−1(θ). Proposition 2.11 implies µ−1(θ) ∩ G.x = H.x.
Restricting dxµ to the tangent space of the G-orbit we obtain the following
short exact sequence

0 ↪−→ TxH.x ↪−→ TxG.x
dxµ|TxG.x−−−−−−−→ h −→ 0.

the surjectivity follows from dimension counting and the identification of
the tangent spaces with (2.8). Thus we obtain the expected invertibil-
ity of the differential with respect to Y ′ of f at (Y θ,x0 , θ, x0), the map
dY ′f(Y θ,x0 ,θ,x0), identifies with an invertible map ih → h. The implicit
function theorem applies and gives the existence of Uθ,x0 ⊂ h × X an
open neighborhood of (θ, x0) and the expected smooth map Y ( · , · ). □
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The next theorem is a first result concerning local triviality of the mo-
ment map, over the regular locus Breg the real moment map is a locally
trivial fibration.

Theorem 2.27. — Let θ0 in Breg, and let Uθ0 be the connected com-
ponent of Breg containing θ0. There is a diffeomorphism f such that the
following diagram commutes

Uθ0 × µ−1 (θ0) µ−1(Uθ0)

Uθ0

f

∼

µ

Moreover f is H equivariant so that the diagram goes down to quotient

Uθ0 × µ−1 (θ0) /H µ−1(Uθ0)/H

Uθ0

∼

Proof. — For θ ∈ Uθ0 we know from 2.5 that Xθ−s = Xθ0−s ̸= ∅. Define
f by

f(θ, x) := exp (iY (θ, x)) .x

It follows from Proposition 2.24 that it is invertible with inverse

f−1(x′) = (µ(x′), exp (iY (θ0, x
′)) .x′) .

Lemma 2.26 implies that f is a diffeomorphism. Equivariance follows from
equation (2.6) so that f(θ, h.x) = h.f(θ, x) and f goes down to a diffeo-
morphism between quotients. □

In the next sections Nakajima quiver varieties are considered, they admit
an additional hyperkähler structure. A similar trivialization is established
in this hyperkähler context.

3. Quiver varieties and stability

3.1. Generalities about quiver varieties

The quiver varieties considered in this paper were introduced by Naka-
jima [21]. Let Γ be a quiver with vertices Ω0 and edges Ω1. For an edge
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γ ∈ Ω1 we denote t(γ) ∈ Ω0 its tail and h(γ) ∈ Ω0 its head, we define the
reverse edge γ such that t(γ) = h(γ) and h(γ) = t(γ).

t(γ)• •h(γ)

γ

γ

Let Ω1 := {γ | γ ∈ Ω1} and Ω̃ := Ω1 ⊔ Ω1. For γ ∈ Ω1 we set γ := γ to
obtain an involution on Ω̃. The doubled quiver Γ̃ is obtained by adding an
inverse to all edges in Ω1, its set of vertices is Ω0 and its set of edges is Ω̃.
Let ϵ : Ω̃ → {−1, 1} be the map

ϵ(γ) =
{

1 if γ ∈ Ω1

−1 if γ ∈ Ω1

We fix a dimension vector v ∈ NΩ0 . A representation of the quiver Γ with
dimension vector v is a pair (V, ϕ) with V =

⊕
j∈Ω0

Vj a graded vector
space with dimVj = vj and ϕ = (ϕγ)γ∈Ω1 a collection of linear maps ϕγ :
Vt(γ) → Vh(γ). A subrepresentation is a subspace W ⊂ V with a compatible
Ω0-grading and preserved by ϕ. The set of quiver representations with
dimension vector v is identified with

Rep(Γ, v) :=
⊕

γ∈Ω1

MatC(vh(γ), vt(γ)).

For construction of Nakajima quiver varieties it is interesting to consider
representations of the doubled quiver Γ̃

Rep(Γ̃, v) :=
⊕
γ∈Ω̃

MatC(vh(γ), vt(γ)).

This space is in fact the cotangent bundle T ∗ Rep(Γ, v). It is a complex
vector space, the complex structure considered in this section is

I.(ϕγ)
γ∈Ω̃ = (iϕγ)

γ∈Ω̃

The group GLv :=
∏

i∈Ω0
GLvi

(C) acts linearly on Rep(Γ̃, v)

g. (ϕγ)
γ∈Ω̃ :=

(
gh(γ)ϕγg

−1
t(γ)

)
γ∈Ω̃

.

The diagonal embedding of C∗ in GLv acts trivially so that it is enough to
consider the action of:

Gv
∼=

(gj)j∈Ω0 ∈ GLv

∣∣∣∣∣∣
∏

j∈Ω0

det(gj) = 1

 .
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Note that Gv is isomorphic to a Levi subgroup of a parabolic subgroup of
a special linear group, therefore it is reductive. The Lie algebra of GLv,
respectively Gv is glv =

⊕
j∈Ω0

glvj
(C) respectively.

gv =

(xj)j∈Ω0 ∈ glv

∣∣∣∣∣∣
∑

j∈Ω0

trxj = 0


The center of gv is

Z(gv) =

(ξj Idvj )j∈Ω0

∣∣∣∣∣∣ (ξj)j∈Ω0 ∈ (C)Ω0 with
∑

j∈Ω0

vjξj = 0

 .

Let θ ∈ ZΩ0 such that
∑

j∈Ω0
vjθj = 0, define χθ a character of Gv by

(3.1) χθ ((gj)j∈Ω0) =
∏

j∈Ω0

det(gj)−θj .

The θ-semistable locus, respectively θ-stable locus in the sense of Mum-
ford’s Geometric Invariant Theory [20], are denoted by Rep(Γ̃, v)θ−ss, re-
spectively Rep(Γ̃, v)θ−s.

Definition 3.1 (Complex moment map). — The complex moment map
is defined by

µC : Rep(Γ̃, v) −→ gv

(ϕγ)
γ∈Ω̃ 7−→

∑
γ∈Ω̃

ϵ(γ)ϕγϕγ

it is Gv-equivariant for the adjoint action on gv.

This complex moment map will be related to the real moment map of
Definition 2.8 in the next section.

Definition 3.2 (Nakajima quiver variety). — For ξ ∈ Z(gv), the set
µ−1
C (ξ) is an affine variety in Rep(Γ̃, v), it inherits a Gv action. Nakajima

quiver varieties are defined as GIT quotients:

Mθ
v(ξ) := µ−1

C (ξ) ∩ Rep(Γ̃, v)θ−ss//Gv.

Those varieties are interesting from the differential geometry point of
view and have an hyperkähler structure. We are interested in the family
formed by those varieties when the parameters ξ and θ are varying.
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3.2. King’s characterization of stability for quiver
representations

As in Section 2 the geometric invariant theory has a symplectic counter-
part. Rep(Γ̃, v) is an hermitian vector space with norm

∥(ϕγ)
γ∈Ω̃∥2 =

∑
γ∈Ω̃

tr(ϕγϕ
†
γ).

The Gv-action restricts to a unitary action of the maximal compact sub-
group

Uv =

(gj)j∈Ω0 ∈
∏

j∈Ω0

Uvj

∣∣∣∣∣∣
∏

j∈Ω0

det(gvj
) = 1


The Lie algebra of Uv is

uv =

(xj)j∈Ω0 ∈
⊕
j∈Ω0

uvj

∣∣∣∣∣∣
∑

j∈Ω0

trxj = 0


with Uvj

, respectively uvj
, the group of unitary matrices, respectively the

space of skew-hermitian matrices of size vj . The real moment map µI for
the Uv action satisfies

⟨µI(x), Y ⟩ = 1
2

d
dt∥exp(it.Y ).x∥2

∣∣∣∣
t=0

for Y ∈ uv. The pairing is defined for Y = (Yj)j∈Ω0 and Z = (Zj)j∈Ω0 by

(3.2) ⟨Y,Z⟩ =
∑

j∈Ω0

tr(YjZj).

As in 2.2, to the character χθ defined by (3.1) is associated the following
element of the Lie algebra uv

(3.3) θ = (−iθj Idvj
)j∈Ω0 ∈ uv.

Indeed for Y = (Yj)j∈Ω0 in the Lie algebra uv, by the usual differentiation
of the determinant map at identity

dχθ
Id(iYj) = −

∑
j∈Ω0

iθj tr(Yj) = ⟨θ, Y ⟩ .

We recall here an important result from King giving a characterization
of θ-stability for quiver representations.
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Theorem 3.3 (King [13, Proposition 3.1]). — Let θ ∈ ZΩ0 such that∑
θjvj = 0 and χθ the associated character defined by (3.1).

(1) A quiver representation (V, ϕ) ∈ Rep(Γ̃, v) is θ-semistable if and
only if for all subrepresentation W ⊂ V∑

j∈Ω0

θj dimWj ⩽ 0.

(2) A quiver representation (V, ϕ) is a θ-stable if and only if for all
subrepresentation W different from 0 and (V, ϕ)∑

j∈Ω0

θj dimWj < 0.

The symplectic point of view allows to consider real parameters θ ∈ RΩ0

satisfying the equation
∑

j∈Ω0
vjθj = 0. They are associated to elements

χθ ∈ X ∗(Gv)R with well-defined modulus:∣∣χθ ((gj)j∈Ω0)
∣∣ =

∏
j∈Ω0

|det(gj)|−θj .

The set of θ-stable points in Rep(Γ̃, v) is defined by Definition 2.4. The end
of this section is devoted to a generalization of the second point of King’s
theorem for real parameters θ ∈ RΩ0 such that

∑
θjvj = 0.

Let Y = (Yj)j∈Ω0
∈ uv, the iYj are hermitian endomorphisms of V j . For

λ ∈ R denote by V j
⩽λ the subspace of V j spanned by eigenvectors of iYj

with eigenvalues smaller than λ then define

V⩽λ :=
⊕
j∈Ω0

V j
⩽λ.

We need the following well-known lemma.

Lemma 3.4. — Let x = (V, ϕ) in Rep(Γ̃, v) and Y ∈ uv. The limit

lim
t→+∞

exp(itY ).x

exists if and only if for every λ real, V⩽λ defines a subrepresentation of (V, ϕ)

Proof. — For all j ∈ Ω0 take a basis of V j formed by eigenvectors of iYj

and assume the eigenvalues repeated according to multiplicities are ordered

λj
1 ⩽ λj

2 ⩽ · · · ⩽ λj
vj
.

ANNALES DE L’INSTITUT FOURIER



TRIVIALIZATIONS OF MOMENT MAPS 335

In those basis of eigenvectors, for γ ∈ Γ̃ one can write the matrix of ϕγ and
compute the action of exp(itY )

(exp(itY ).ϕ)γ =


ϕγ

1,1 et(λ
h(γ)
1 −λ

t(γ)
2 )ϕγ

1,2 . . .

et(λ
h(γ)
2 −λ

t(γ)
1 )ϕγ

2,1
... . . . et(λh(γ)

a −λ
t(γ)
b

)ϕγ
a,b . . .

e
t(λh(γ)

vh(γ)
−λ

t(γ)
1 )

ϕγ
vh(γ),1 . . .


the limit exists if and only if the matrix is upper triangular i.e. ϕ(V⩽λ) ⊂
V⩽λ and V⩽λ defines a subrepresentation of (V, ϕ). □

The next result is the generalization of King’s theorem relative to θ-
stability of quiver representations for a real parameter θ. Its proof relies
on the previous lemma and the Hilbert–Mumford criterion for real one-
parameter Lie groups 2.15.

Theorem 3.5. — Let θ ∈ RΩ0 such that
∑

j∈Ω0
θjvj = 0 and χθ the

associated element in X ∗(Gv)R. A quiver representation (V, ϕ) is θ-stable
if and only if for all subrepresentation W ⊂ V different from 0 and (V, ϕ)∑

j∈Ω0

θj dimWj < 0.

Proof. — Let x = (V, ϕ) in Rep(Γ̃, v)θ−s a θ-stable point. By
Hilbert–Mumford criterion (Theorem 2.15), for all Y ∈ uv such that
limt→+∞ exp(itY ).x exists then ⟨θ, Y ⟩ < 0.

Let W be a subrepresentation of (V, ϕ) different from 0 and (V, ϕ). For all
j ∈ Ω0 define Yj in uvj

such that Wj is an eigenspace of iYj with eigenvalue
λ1 and W⊥

j the orthogonal complement of Wj is an eigenspace of iYj with
eigenvalue λ2 and λ2 > λ1. By the previous lemma limt→+∞ exp(itY ).x
exists.

⟨θ, Y ⟩ = −
∑

j∈Ω0

θj (λ1 dimWj + λ2 (dimVj − dimWj))

= −
∑

j∈Ω0

(λ1 − λ2)θj dimWj

because
∑
θjvj = 0. Then Hilbert–Mumford criterion implies ⟨θ, Y ⟩ < 0,

hence
∑

j∈Ω0
θj dimWj < 0.

Conversely let x = (V, ϕ) a quiver representation such that for all sub-
representation W ⊊ V different from 0∑

j∈Ω0

θj dimWj < 0.
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Let Y = (Yj)j∈Ω0
∈ uv different from zero. The set of eigenvalues of iYj

is ordered λj
1 < · · · < λj

dj
. The set of all eigenvalues for all j ∈ Ω0 is also

ordered {
λj

k

}
j∈Ω0

1⩽k⩽dj

= {λ1, λ2, . . . , λm}

with λk < λk+1. For convenience add an element λ0 < λ1. If
limt→=∞ exp(itY ).x exists, by the previous lemma V⩽λ is a subrepresenta-
tion of (V, ϕ). Moreover

⟨θ, Y ⟩ = −
∑

j∈Ω0

θj

dj∑
k=1

λj
k

(
dimV j

⩽λj
k

− dimV j

⩽λj
k−1

)

= −
∑

j∈Ω0

θj

m∑
k=1

λk

(
dimV j

⩽λk
− dimV j

⩽λk−1

)

= −
∑

j∈Ω0

θj

m−1∑
k=1

(λk − λk+1) dimV j
⩽λk

− λm

∑
j∈Ω0

θj dimV j
⩽λm

.

The last summand vanishes as
∑
θjvj = 0,

⟨θ, Y ⟩ = −
m∑

k=1
(λk − λk+1)

∑
j∈Ω0

θj dimV j
⩽λk

As Y ̸= 0, it has at least two distinct eigenvalues. Then V⩽λ1 is a subrep-
resentation different from zero and V and

−(λ0 − λ1)
∑

j∈Ω0

θj dimV j
⩽λ1

< 0

so that ⟨θ, Y ⟩ < 0. □

This result is useful in the next section to characterize a regular locus
for the hyperkähler moment map.

4. Nakajima quiver varieties and trivialization of the
hyperkähler moment map

After some reminder about the hyperkähler structure of Nakajima quiver
varieties, trivializations of the hyperkähler moment map are discussed.
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4.1. Hyperkähler structure on the space of representations of a
doubled quiver

The space Rep(Γ̃, v) is endowed with three complex structures

I. (ϕγ , ϕγ) = (iϕγ , iϕγ)

J. (ϕγ , ϕγ) = (−ϕ†
γ , ϕ

†
γ)

K. (ϕγ , ϕγ) = (−iϕ†
γ , iϕ

†
γ)

satisfying quaternionic relations

(4.1) I2 = J2 = K2 = IJK = −1

and a norm
∥(ϕγ)

γ∈Ω̃∥2 =
∑
γ∈Ω̃

tr
(
ϕγϕ

†
γ

)
.

For each complex structure, polarisation identity defines an hermitian pair-
ing compatible with ∥ · ∥. For example the hermitian pairing compatible
with the complex structure I used in the previous section is

pI (u, v) = 1
4

(
∥u+ v∥2 − ∥u− v∥2 + i∥u+ I.v∥2 − i∥u− I.v∥2)

pJ( · , · ) and pK( · , · ) are similarly defined. One expression is particularly
simple

pI

(
(ϕγ)

γ∈Ω̃, (ψγ)
γ∈Ω̃

)
=

∑
γ∈Ω̃

tr(ϕγψ
†
γ).

Remark 4.1. — Even if the hermitian metric relies on the choice of com-
plex structure, by the polarisation identity the real part remains the same,
it is the hyperkähler metric

g( · , · ) := Re pI( · , · ) = Re pJ( · , · ) = Re pK( · , · ).

Definition 4.2 (Real symplectic forms). — As in equation (2.1) we
define a real symplectic form for each complex structure

ωI( · , · ) := g(I · , · )
ωJ( · , · ) := g(J · , · )
ωK( · , · ) := g(K · , · )

Notation 4.3. — I-linear means C-linear with respect to the complex
structure I and similarly for J-linear and K-linear.
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Proposition 4.4 (Permutation of complex structures). — Consider the
map

Ψ : Rep(Γ̃, v) −→ Rep(Γ̃, v)

x 7−→ 1
2 (1 + I + J +K) .x

It is an isomorphism from the hermitian vector space Rep(Γ̃, v) with the
complex structure I and hermitian pairing pI to the hermitian vector space
Rep(Γ̃, v) with the complex structure J and pairing pJ .

More generally it cyclically permutes the three complex structure I, J,K

(4.2)
Ψ(I.x) = J.Ψ(x)
Ψ(J.x) = K.Ψ(x)

Ψ(K.x) = I.Ψ(x).
Such a map is sometimes called an hyperkähler rotation.

Proof. — Relations (4.2) follow from a computation with the quater-
nionic relations (4.1). To prove the compatibility with the hermitian struc-
tures it is enough to check that ∥Ψ(x)∥ = ∥x∥.

∥(1 + I + J +K).x∥2 = g ((1 + I + J +K).x, (1 + I + J +K).x) .

The expected result is obtain after cancellations from the identity
g(I.u, u) = 0, similar relations for the other complex structures and quater-
nionic relations (4.1). □

In Section 3.1 an I-linear action of Gv is described. The hyperkähler
rotation Ψ provides the following construction for J-linear and K-linear
actions. This three actions coincide when restricted to the compact sub-
group Uv.

Definition 4.5 (Complexification of the action). — Thanks to polar
decomposition, to define a linear action of Gv compatible with the complex
structure J it is enough to define the action of exp(i.Y ) for Y ∈ uv. To
highlight the complex structure used, this action is written exp(J.Y ) . . .
and defined by

exp(J.Y ).x := Ψ
(
exp(i.Y ).Ψ−1(x)

)
with the element exp(i.Y ) of Gv acting by the natural I-linear action pre-
viously described. Similarly

exp(K.Y ).x := Ψ−1 (exp(i.Y ).Ψ(x)) .

Remark 4.6. — A point x is θ-(semi)stable with respect to the I-linear
action if and only if Ψ(x) is θ-(semi)stable with respect to the J-linear
action.
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4.2. Hyperkähler structure and moment maps

By Proposition 4.4 the various Gv-actions previously described are com-
patible with the hermitian metrics so that the constructions of Section 2
apply. They provide a moment map for each complex structure.

⟨µI(x), Y ⟩ = 1
2

d
dt∥exp(t.I.Y ).x∥2

∣∣∣∣
t=0

⟨µJ(x), Y ⟩ = 1
2

d
dt∥exp(t.J.Y ).x∥2

∣∣∣∣
t=0

⟨µK(x), Y ⟩ = 1
2

d
dt∥exp(t.K.Y ).x∥2

∣∣∣∣
t=0

.

The pairing is defined by (3.2).

Definition 4.7 (Hyperkähler moment map). — Those three real mo-
ment maps fit together in an hyperkähler moment map µH : Rep(Γ̃, v) →
uv ⊕ uv ⊕ uv defined by µH = (µI , µJ , µK).

The moment map µC defined in Section 3.1 by

(4.3) µC

(
(ϕγ)

γ∈Ω̃

)
:=

∑
γ∈Ω̃

ϵ(γ)ϕγϕγ .

can be expressed from the real moment maps

µC := µJ + iµK .

it is a polynomial map with respect to the complex structure I.

Remark 4.8. — By cyclic permutation of the complex structure, µK +iµI

is polynomial with respect to the complex structure J and µI + iµJ is
polynomial with respect to the complex structure K.

Take (θJ,j)j∈Ω0 and (θK,j)j∈Ω0 in RΩ0 such that
∑

j vjθJ,j =
∑

j vjθK,j =
0. Associate to each of them an element in the center of the Lie algebra uv

θJ :=
(
−iθJ,j Idvj

)
j∈Ω0

θK :=
(
−iθK,j Idvj

)
j∈Ω0

.

Then θJ + iθK defines an element in the center of gv = uv ⊕ iuv. Hence
µ−1

J (θJ) ∩ µ−1
K (θK) = µ−1

C (θJ + iθK) is an affine variety embedded in the
vector space Rep(Γ̃, v) endowed with the complex structure I and stable
under the Gv-action. Section 2 does not apply directly to this situation as
µ−1
C (θJ + iθK) might be singular. However it applies to the action of Gv

on the ambiant space Rep(Γ̃, v). For θI ∈ RΩ0 such that
∑

j∈Ω0
vjθI,j = 0

consider the associated element χθI ∈ X ∗(Gv)R.
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Definition 4.9 (Hyperkähler regular locus). — For w ∈ NΩ0 a dimen-
sion vector

Hw :=

(θI , θJ , θK) ∈ (RΩ0)3

∣∣∣∣∣∣
∑

j

wjθI,j =
∑

j

wjθJ,j =
∑

j

wjθK,j = 0

.

The regular locus is

(4.4) Hreg
v = Hv \

⋃
w<v

Hw

the union is over dimension vector w ̸= v such that 0 ⩽ wi ⩽ vi.

Remark 4.10. — This regular locus is empty unless the dimension vec-
tor v is indivisible, then Hreg

v is the complementary of a finite union of
codimension 3 real vector space.

Thanks to Kempf–Ness theory, Nakajima quiver varieties can be con-
structed as hyperkähler quotients. The underlying manifold of the variety
MθI

v (θJ + iθK) (see Definition 3.2) is:

mv(θI , θJ , θK) = µ−1
H (θI , θJ , θK)/Uv

4.3. Trivialization of the hyperkähler moment map

We study the family of Nakajima quiver varieties when the parameters
(θI , θJ , θK) are varying. Nakajima proved by consecutive uses of different
complex structures that for θ and θ′ in Hreg

v the manifolds mv(θI , θJ , θK)
and mv(θ′

I , θ
′
J , θ

′
K) are diffeomorphic [21, Corollary 4.2]. We use this idea of

consecutive uses of different complex structures to prove that those mani-
folds fit in a locally trivial family over the regular locus Hreg

v . First let us
highlight relevant facts about the regular locus.

Lemma 4.11. — Let (θI , θJ , θK) ∈ Hreg
v and x ∈ µ−1

J (θJ) ∩ µ−1
K (θK).

Then x is θI -stable if and only if it is θI -semistable.

Proof. — If x0 ∈ µ−1
H (θI , θJ , θK) its stabilizer in Gv is trivial. Indeed

Maffei proved that the differential of the moment map at x0 is surjective [16,
Lemma 48], then Proposition 2.9 implies the triviality of the stabilizer of x0.

Let x ∈ µ−1
J (θJ) ∩ µ−1

K (θK) a θI -semistable point. Then Gv.x ∩ µ−1
I (θI)

is not empty. As µ−1
J (θJ) ∩ µ−1

K (θK) = µ−1
C (θJ + iθK) is Gv stable, the

closure of the orbit Gv.x meets µ−1
H (θI , θJ , θK) at a point x0. This point

necessarily has a trivial stabilizer, hence x0 ∈ Gv.x and x is θI -stable. □
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Let (θI , θJ , θK) ∈ Hreg
v and consider first the complex structure I. By

the previous lemma and King’s characterisation of stability (Theorem 3.5),
for θ′

I in an open neighborhood of θI , stability with respect to θ′
I is the

same as stability with respect to θI .
Now consider the complex structure J . Thanks to Remark 4.6 on the

affine variety µ−1
K (θK) ∩ µ−1

I (θI) all θJ -semistable points are θJ -stable.
Moreover for θ′

J in an open neighborhood of θJ , stability with respect to
θ′

J is the same as stability with respect to θJ . Similarly for the complex
structure K.

Assume that the dimension vector v is a root of the quiver so that the
moment map is surjective, see [2, Theorem 2]. Consider the diagram

µ−1
H (Hreg

v ) Rep(Γ̃, v)

Hreg
v uv ⊕ uv ⊕ uv.

µH

Theorem 4.12 (Local triviality of the hyperkähler moment map). —
Over the regular locus Hreg

v , the hyperkähler moment map µH is a locally
trivial fibration compatible with the Uv-action:

Any (θI , θJ , θK) ∈ Hreg
v admits an open neighborhood V , and a diffeo-

morphism f such that the following diagram commutes

V × µ−1
H (θI , θJ , θK) µ−1

H (V )

V

f

∼

µH

Moreover f is compatible with the Uv-action so that the diagram goes down
to quotient

V × mv(θI , θJ , θK) µ−1
H (V )/Uv

V

∼

Proof. — The method is similar to the proof of Theorem 2.27 applied
consecutively to the three complex structures. The idea of using different
complex structures comes from [15] and [21]. Take (θI , θJ , θK) ∈ Hreg

v and a
connected open neighborhood UI ×UJ ×UK such that for θ′

I ∈ UI , any x ∈
µ−1

J (UJ) ∩ µ−1
K (UK) is θ′

I -semistable if and only if it is θI -stable. Similarly
for UJ and UK . For any x with µH(x) = (θ′

I , θ
′
J , θ

′
K) ∈ UI × UJ × UK , by

Proposition 2.24 applied to the I-linear action of Gv on Rep(Γ̃, v), there
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exists a unique YI(θI , x) ∈ uv such that

exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θ

′
J , θ

′
K).

Then by exchanging the three complex structures with hyperkähler rota-
tions, there exists unique YJ(θJ , x) and YK(θK , x) such that

exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θJ , θ

′
K)

and

exp (K.YK(θK , x)) exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θJ , θK).

This defines the map f−1

f−1(x) :=
(
(θ′

I , θ
′
J , θ

′
K), exp (K.YK(θJ , x)) exp (J.YJ(θJ , x))

× exp (I.YI(θI , x)) .x
)
.

Lemma 2.26 implies the smoothness of f−1. This map induces a diffeomor-
phism, indeed exchanging θ and θ′ in the previous construction produces
the expected inverse

f (x, (θ′
I , θ

′
J , θ

′
K))

:= exp (I.YI(θ′
I , x)) exp (J.YJ(θ′

J , x)) exp (K.YK(θ′
K , x)) .x

It follows from equation (2.7) that the maps are inverse of each others. The
exchange in the order of appearance of the complex structures I, J and K

in the definition of f and f−1 are necessary as the exponentials do not
necessarily commute. The Uv-equivariance follows from equation (2.6). □

Similarly one can consider the complex moment map µC = µJ + iµK

instead of µH. The complex regular locus is Creg
v := Cv \

⋃
w<v Cw with

Cw =

ξ ∈ CΩ0

∣∣∣∣∣∣
∑

j∈Ω0

wjξj = 0


Theorem 4.13. — The complex moment map is a locally trivial fi-

bration over Creg
v . Any ξ ∈ Creg

v admits an open neighborhood V , and a
diffeomorphism f such that the following diagram commutes

V × µ−1
C (ξ) µ−1

C (V )

V

f

∼

µC

Proof. — The proof is similar to the hyperkähler situation. □
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Denote π : µ−1
H (Hreg

v )/Uv → Hreg
v the map obtained taking the quotient

of µH. Consider the cohomology sheaves Hiπ∗Ql of the derived pushforward
of the constant sheaf and the cohomology sheaves Hiπ!Ql of the derived
compactly supported pushforward of the constant sheaf.

Corollary 4.14. — The sheaves Hiπ∗Ql and Hip!Ql are constant
sheaves over Hreg

v .

Proof. — By Theorem 4.12 those sheaves are locally constant. Hreg
v is a

complementary of a finite union of codimension 3 real vector spaces, hence
it is simply connected so that the locally constant sheaves are constant. □

Nakajima explained to us that this corollary can also be obtained by
generalizing Slodowy’s construction [28] to quiver varieties.

Remark 4.15 (Comparison with a construction by Crawley-Boevey, Van
den Bergh [3]). — Crawley-Boevey, Van den Bergh constructed a triviali-
azition of the complex moment map over complex lines. It is obtained after
fixing some generic stability parameter denoted by λ in [3] and by θI with
our notations. Then the base of their trivializations are affine lines in the
regular locus Hreg

v containing (θI , 0, 0) and with first coordinate fixed and
equal to θI . They use this trivialization to prove that the cohomology of
Nakajima quiver varieties is pure. Moreover, together with the appendix by
Nakajima, they prove that the quiver varieties over this line have the same
number of points over finite fields (for sufficiently large characteristic). Us-
ing two lines, all the quiver varieties over Z(uv)⊕3 with first parameter θI

generic also have the same number of points. Notice that there is nothing
particular about the complex structure I, same results can be obtained
after any hyperkähler rotation.

Finally we extend the trivialization of the hyperkähler moment map over
lines constructed by Crawley-Boevey and Van den Bergh [3] using twistor
spaces as told to us by Nakajima.

Denote by H, respectively H0, the set of quaternions, respectively the
set of purely imaginary quaternions and H∗

0 = H0 \ {0}. The space u⊕3
v is

identified with H0 ⊗R uv. Then the hyperkähler moment map reads

µH = I ⊗ µI + J ⊗ µJ +K ⊗ µK .

Once an orthonormal basis of R3 is fixed, the triple of complex struc-
tures I, J and K is fixed and we write µR = µI , µC = µJ + iµK . The
hyperkähler moment map is assumed to be surjective and the dimension
vector indivisible. Then Hreg

v is the open subset of generic parameters in
H0 ⊗RZ(uv). For θ ∈ Hreg

v a generic parameter and S a contractible subset
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of H∗
0, Crawley-Boevey and Van den Bergh constructed a trivialization of

the hyperkähler moment map over S ⊗ θ, see [3, proof of Lemma 2.3.3] (in
the statement of this lemma S is chosen to be a complex line). The assump-
tion contractible is relaxed in the next theorem. It relies on the theory of
twistor spaces developped by Penrose [24], Atiyah–Hitchin–Singer [1] and
Salamon [25, 26]. The main point is the compatibility between hyperkähler
quotients and twistor spaces from Hitchin–Karlhede–Lindström–Roček [9,
p. 560], see also Hitchin [8]. The following Theorem as well as its proof was
told to us by Nakajima.

Theorem 4.16. — For θ generic in H0 ⊗R Z(uv) define

H∗
0.θ = {h⊗ θ |h ∈ H∗

0} .

There exists a diffeomorphism f such that the following diagram commutes

µ−1
H (H∗

0.θ)/Uv µ−1
H (θ)/Uv ×H∗

0.θ

H∗
0.θ

f

µH

the vertical arrow is the projection to H∗
0.θ.

Proof. — Consider the quaternionic vector space Rep(Γ̃, v) and the pro-
jection

Rep(Γ̃, v) × S2 −→ S2.

With S2 the 2-sphere of imaginary quaternions with unit norm

S2 =
{
aI + bJ + cK

∣∣ a2 + b2 + c2 = 1
}
.

S2 is given the usual complex structure of the projective line. The twistor
space associated to Rep(Γ̃, v) is the manifold Rep(Γ̃, v) × S2 endowed with
a complex structure such that the fiber over Iu ∈ S2 is Rep(Γ̃, v) seen as a
vector space with complex structure Iu.

As detailed in [3], the group of quaternion of unit norm, identified with
SU(2), acts on H0 ⊗ Z(uv) by

h. (h′ ⊗ θ) = hh′h⊗ θ.

with aI + bJ + cK + d = −aI − bJ − cK + d. Let θ be a generic parame-
ter, up to the choice of orthonormal basis of R3 we can assume θ = I ⊗ θI .
The SU(2) orbit of θ thus identifies with S2 as

(4.5) SU(2).θ =
{
Iu ⊗ θ

∣∣ Iu ∈ S2}
.
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The twistor space of the hyperkähler manifold µ−1
H (θ)/Uv is a complex

manifold T with an holomorphic map p to S2

T S2.
p

The underlying differential manifold of the twistor space is just a product
and p the projection to the second factor

µ−1
H (θ)/Uv × S2 S2.

The twistor spaces construction is compatible with hyperkähler quotients as
explained in [9, p. 560]. Thus the fiber of p over Iu is µ−1

H (θ)/Uv endowed
with the complex structure inherited from the complex structure Iu on
Rep

(
Γ, v

)
. Namely if Iu ⊗ θ = (θ′

I , θ
′
J , θ

′
K) then the fiber of the twistor

space over Iu is the complex manifold

p−1(Iu) = µ−1
C (θ′

J + iθ′
K) ∩ µ−1

R (θ′
I)/Uv

Thus fibers of p are exactly fibers of µH and the twistor space provides
trivialization of the hyperkähler moment map over the orbit SU(2).θ:

µ−1
H (SU(2).θ)/Uv T µ−1

H (θ)/Uv × S2

SU(2).θ S2

µH

β

p

γ

∼
α

α is defined thanks to (4.5), the map β is the identity on the fibers and
γ forgets the complex structure. This diagram traduces the equivalence
between, on the right, varying complex structure on a fixed fiber µ−1

H (θ)/Uv

and on the left varying the fiber for a fixed complex structure I.
The construction is similar to Crawley-Boevey and Van den Bergh’s con-

struction except that the twistor space formalism allows to obtain a trivi-
alization over the non-contractible space SU(2).θ.

As in [3], the trivialization can be extended thanks to the R>0 action.
Note that for t a positive real number µH(tx) = t2µH(x). Then identifying
S2 × R>0 with H∗

0 we obtain the trivialization

µ−1
H (H∗

0.θ)/Uv µ−1
H (θ)/Uv ×H∗

0

H∗
0.θ H∗

0

The SU(2)-action on the base of this trivialization traduces the variation
of complex structure on the hyperkähler manifold µ−1

H (θ)/Uv whereas the
R>0 action traduces the rescaling of the metric. □
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