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ACTION RIGIDITY FOR FREE PRODUCTS OF
HYPERBOLIC MANIFOLD GROUPS

by Emily R. STARK & Daniel J. WOODHOUSE (*)

ABSTRACT. — Two groups have a common model geometry if they act properly
and cocompactly by isometries on the same proper geodesic metric space. We
consider free products of uniform lattices in isometry groups of rank-1 symmetric
spaces and prove, within each quasi-isometry class, that residually finite groups
that have a common model geometry are abstractly commensurable. Our result
gives the first examples of hyperbolic groups that are quasi-isometric but do not
virtually have a common model geometry. An important component of the proof is
a generalization of Leighton’s graph covering theorem. The main theorem depends
on residual finiteness, and we show that finite extensions of uniform lattices in
rank-1 symmetric spaces that are not residually finite would give counterexamples.

RESUME. — Deux groupes ont la méme géométrie de modéle s’ils agissent pro-
prement et cocompactement par isométries sur un méme espace métrique propre et
géodésique. Nous étudions les produits libres de réseaux uniformes dans les groupes
d’isométries d’espaces symétriques de rang 1 et prouvons que, dans chaque classe
de quasi-isométries, les groupes résiduellement finis qui ont la méme géométrie
de modele sont abstraitement commensurables. Notre résultat donne les premiers
exemples de groupes hyperboliques qui sont quasi-isométriques mais qui n’ont vir-
tuellement pas la méme géométrie de modele. Un élément important de la preuve
est une généralisation d’un théoréme de Leighton sur les revétements finis communs
des graphes. Le théoréme principal utilise la notion de finitude résiduelle, et nous
montrons que les extensions finies de réseaux uniformes des espaces symétriques
de rang 1 qui ne sont pas résiduellement finis produisent des contre-exemples.

1. Introduction

The study of the large-scale geometry of finitely generated groups seeks
to relate three notions: the quasi-isometry class of a group, the abstract

Keywords: Gromov Hyperbolicity, Residual finiteness, Bass—Serre theory, Action rigidity.
2020 Mathematics Subject Classification: 20F65, 20F67, 20E06, 57M07, 57TM10.

(*) The first author was supported by the Azrieli Foundation, was supported in part at
the Technion by a Zuckerman Fellowship, and was partially supported by the NSF RTG
grant #1840190. The second author was supported by the Israel Science Foundation
(grant 1026/15).



504 Emily R. STARK & Daniel J. WOODHOUSE

commensurability class of a group, and geometric actions of a group on
proper geodesic metric spaces. Within this framework, first suggested by
Gromov [24], quasi-isometry and abstract commensurability define equiva-
lence relations on the class of finitely generated groups. Moreover, abstract
commensurability and geometric actions on a common proper geodesic met-
ric space imply a quasi-isometry (the latter being the Milnor—Schwartz
lemma).

The large-scale geometry of a free product of finitely generated hyper-
bolic groups depends only on the one-ended factors; the quasi-isometry
classification in this setting was given by Papasoglu-Whyte [42]. Martin—
Swiatkowski [37] further proved that the boundary of such a group is deter-
mined up to homeomorphism by the homeomorphism types of the bound-
aries of the one-ended factors. Thus, there is a great deal of flexibility in
creating quasi-isometric groups by free product constructions. In contrast,
we prove in this paper that a strong form of rigidity may hold if one requires
the groups act geometrically on the same space.

A model geometry for a group is a proper geodesic metric space on which
the group acts geometrically, i.e. properly and cocompactly by isometries.
In parallel to the notion of quasi-isometric rigidity, we define a group G to
be action rigid if any group that shares a common model geometry with G is
abstractly commensurable to G. For example, closed hyperbolic n-manifold
groups are not action rigid for each n > 3, as they all act geometrically
on H", but there are infinitely many abstract commensurability classes
of such groups. On the other hand, any group that is quasi-isometrically
rigid is action rigid. We consider action rigidity within classes of groups for
which the quasi-isometry and abstract commensurability classifications do
not coincide.

The first examples of hyperbolic groups that are quasi-isometric but
do not have a common model geometry were given by Mosher—Sageev—
Whyte [38]. Let G, = Z/pZ * Z/pZ for some prime p > 2. A group in
the class {G |p > 2 is prime} is virtually free and has a natural action on
the Bass—Serre tree associated to its splitting as a free product. Although
all groups in the set {Gp|p > 2 is prime} are quasi-isometric, Mosher—
Sageev-Whyte [38] showed that the groups G, and G, have a common
model geometry if and only if p = ¢. All groups in this class virtually have
a common model geometry, meaning that two such groups have finite-index
subgroups that have a common model geometry. Indeed, any pair of finitely
generated, non-abelian free groups act geometrically on the 4-valent tree.
The torsion in G, is precisely the obstruction to finding a common model
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geometry — the proof exploits the fact that any proper, minimal action of
Gp on a simplicial tree must be the natural action on the p-regular tree. A
class of groups called simple surface amalgams gives examples of torsion-
free hyperbolic groups that are quasi-isometric but do not have a common
model geometry, as shown by the authors [47].

Outside the setting of hyperbolic groups, Das—Tessera [16, Theorem 1.1]
proved that if I'; denotes the fundamental group of a genus g > 2 surface,
then I'y X Z and the canonical central extension fg of I'y, are not integrably
measure equivalent. However, these groups are quasi-isometric. Having a
common model geometry implies that two groups are integrably measure
equivalent, and integrably measure equivalence is an equivalence relation
implied by abstract commensurability. Thus, fg and I'y X Z are quasi-
isometric, but do not virtually have a common model geometry.

In this paper we give the first examples of hyperbolic groups that are
quasi-isometric and do not virtually have a common model geometry. We
study action rigidity for free products of closed hyperbolic manifold groups,
and, more generally, for the quasi-isometry class of such groups; see Theo-
rem 6.1 for a more general statement.

THEOREM 1.1. — Let G = Hy * --- x H, * F,,, where H; is a uniform
lattice in the isometry group of a rank-1 symmetric space for 1 < i < k, and
F, is a finitely generated free group. Suppose that G’ is residually finite. If
G and G’ have a common model geometry, then G and G’ are abstractly
commensurable.

Note that in the case where k = 0, this theorem is just the abstract com-
mensurability of finitely generated free groups. Theorem 6.1 is phrased in
terms of Stallings—Dunwoody decompositions and we show that after quasi-
conjugating the action to a new model geometry, the groups are weakly
commensurable in the isometry group the new model geometry.

Recall, the classification of non-compact rank-1 symmetric spaces con-
sists of real hyperbolic space H" = Hg, complex hyperbolic space HE,
quaternionic hyperbolic space Hf (all for n > 2), and the “exceptional
case” of the Cayley hyperbolic plane HZ,,. We will use the notation HZ to
denote any one of these possible rank-1 symmetric spaces, and we define a
closed hyperbolic manifold group to be the fundamental group of a closed
manifold that admits the geometry of Hf for some n and F. See [39] for
details.

It is an open question of considerable interest in the field if hyperbolic
groups are residually finite. So the residual finiteness assumption in Theo-
rem 1.1 could in principal be redundant. Conversely, in Section 7, we show
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that if there exists a non-residually finite finite extension of a uniform lat-
tice in a rank-1 symmetric space, then there exists a pair of groups G and
G’ that share a common model geometry such that G decomposes as in the
statement of the theorem, G’ is not residually finite, and G and G’ are not
even virtually isomorphic. Note that if G’ decomposes as a free product
of uniform lattices in a manner similar to G’, then G’ is residually finite
since these lattices are finitely generated and linear, hence residually finite,
and free products of residually finite groups are residually finite. As a con-
sequence of the resolution of the Virtual Haken Conjecture [1, 52], if G’
is cocompactly cubulated, then G’ is residually finite. If each H; is quasi-
isometric to H? or H3, then the residual finiteness assumption is satisfied.
More generally, it is not known if finite extensions of uniform lattices in
rank-1 symmetric spaces are residually finite. Indeed, finite central exten-
sions of lattices in Sp(n, 1) are considered by some to be likely candidates
for a non-residually finite hyperbolic group. In [26, 27] the authors study
“cohomological goodness”, a criterion for residual finiteness to be preserved
in finite extensions. See [17, 28] for non-residually finite examples of (non-
hyperbolic) extensions of arithmetic groups.

Free products of closed hyperbolic manifold groups is a family closed un-
der passing to finite-index subgroups. Moreover, each quasi-isometry class
contains infinitely many commensurability classes; see Lemma 2.13. Thus,
we have the following.

COROLLARY 1.2. — There are torsion-free hyperbolic groups which are
quasi-isometric but cannot virtually act on a common model geometry.
Moreover, there are examples G and G’ for which the ratios of the non-
b(z)(G)

vanishing ¢2-Betti numbers are equal: b(’;')(G,) =C.
k

Remark 1.3. — After the initial preprint for this paper was presented,
Kevin Schreve observed that Corollary 1.2 can also be deduced for certain
examples among the groups considered here via an application of the pro-
portionality principal for ¢2-Betti numbers due to Gaboriau [22, 23]. This
principal states that if G and G’ are uniform lattices in a locally com-
pact, second countable group H, then their £2-Betti numbers are related
as follows:

(S I (D)

Vol(G\H) ~ Vol(G'\H)’

where volume in the formula is given by the Haar measure on H. If G

and G’ have a common model geometry X, then they embed as uniform
lattices in the isometry group H = Isom(X), which is locally compact and
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b7 (G)
b (@)
the non-vanishing ¢2-Betti numbers of G and G’ must be equal. Moreover,

second countable (see [15, Lemma 5.B.4]). Thus, the ratio of all

since both ¢2-Betti numbers and covolume scale by degree upon passing
to finite-index subgroups, the ratio is preserved for finite-index subgroups.
Thus, if some ratios are not equal for G and G’, then the corresponding
ratios will not be equal for any pair of finite-index subgroups Gy < G and
G, < G.

To construct a pair of quasi-isometric free products with no common
model geometry by these methods, let M and M’ be closed hyperbolic 4-
manifolds with distinct Euler characteristic. The £2-Betti numbers of 71 (M)
and 7 (M) vanish aside from the second, which equals the Euler character-
istic. Let G = m (M) *Z and G’ = 71 (M) +Z, which by Mayer—Vietoris will
have ng)(G) = b§2)(G’) and béQ)(G) # béz)(G’). In contrast, these methods
cannot be applied to free products of surface groups or closed 3-manifold
groups, which have only one non-vanishing ¢?-Betti number.

The strongest form of action rigidity occurs when the groups considered
here are surface groups and there are exactly two factors.

THEOREM 1.4. — Let G = m1(Sy, ) *m1(Sy,) and G' = w1 (Sh, ) *m1(Sh,)
be free products of fundamental groups of closed orientable surfaces of
genus at least two. The groups G and G’ have a common model geometry
if and only if the groups G and G’ are isomorphic.

Whyte [51, Theorem 1.6] proved that if G = m1(Sy,) * m1(S,,) and
G’ = 71(Sh,) * m1(Sh,) are free products of fundamental groups of closed
orientable surfaces of genus at least two, then G and G’ are abstractly com-
mensurable if and only if x(G) = x(G’), which is equivalent to g; + g =
hi + hg. For example, G = m1(S2) * m1(S4) and G’ = m1(S3) * 71(S3) are
abstractly commensurable but do not have a common model geometry by
Theorem 1.4. Moreover, if G is isomorphic to finite-index subgroups of G
and G’, then both G and G have a common model geometry, as do G’
and @, but G and G’ do not, so the property of having a common model
geometry is not transitive on this family of groups. Thus, in combination
with Theorem 1.4, we have the following corollary.

COROLLARY 1.5.

(1) There are torsion-free abstractly commensurable hyperbolic groups
that do not have a common model geometry.

(2) The relation of having a common model geometry is not a transitive
relation on the class of torsion-free hyperbolic groups.
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(3) For each n > 0 there exist n free products of closed hyperbolic
manifold groups in the same abstract commensurability class that
pairwise do not have a common model geometry.

QUESTION 1.6. — Is there a commensurability class of hyperbolic
groups that contains an infinite subset consisting of groups that do not
pairwise share a common model geometry?

The homeomorphism type of a cover of a closed surface by degree d is de-
termined by d, but this fails for higher-dimensional examples. A hyperbolic
3-manifold may have many non-homeomorphic covers of the same degree;
for example, see the discussion by Friedl-Park—Petri-Raimbault—Ray [20].
Nonetheless, if the free product with amalgamation is of higher-dimensional
hyperbolic manifold groups, information can still be deduced.

THEOREM 1.7. — Let G = 71 (My) * 71 (Ms) and G’ = 71 (M) * 71 (M3)
be free products of fundamental groups of closed orientable hyperbolic man-
ifolds. If the groups G and G’ have a common model geometry, then, after
possibly permuting the factors, the manifolds M; and M| have the same
volume.

The results in this paper provoke the following questions:

QUESTION 1.8. — If H and H' are one-ended residually finite hyperbolic
groups, is H + H' action rigid?

QUESTION 1.9. — If H and H' are one-ended residually finite hyperbolic
groups that act geometrically on the same simplicial complex, are H and
H' abstractly commensurable?

Both questions are false in general outside of the hyperbolic setting by
work of Burger—-Mozes [12]. The case that H and H' are closed hyperbolic
manifold groups is handled in Proposition 4.7.

A closed hyperbolic n-manifold group is not quasi-isometrically rigid for
all n > 3, although the class of such groups is quasi-isometrically rigid in the
sense that any group quasi-isometric to Hy does in fact act geometrically
on H. Moreover, a closed hyperbolic manifold group is not action rigid.
The following corollary states that when one starts taking connect sums
of closed hyperbolic 3-manifolds, the resulting fundamental groups become
action rigid.

COROLLARY 1.10. — Let M be a finite non-trivial connected sum of
closed hyperbolic 3-manifolds. Then (M) is action rigid.
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Proof. — Suppose that G’ shares a common model geometry with 71 (M).
The result follows from Theorem 1.1 if we can show that G’ is residually
finite. As G has infinitely many ends, so does G’, and the one-ended vertex
groups in its Stallings—Dunwoody decomposition will be quasi-isometric to
H? by [42]. Any group quasi-isometric to H? surjects onto a closed hyper-
bolic 3-manifold group with finite kernel by [50]. Thus, by [8] we know that
G’ acts geometrically on a proper, hyperbolic CAT(0) cube complex, so
by [1] we know G’ is virtually special and therefore residually finite. O

The corollary provokes the following related question:

QUESTION 1.11. — Is the fundamental group of a compact, non-geo-
metric 3-manifold action rigid?

As explained in the next two subsections, the proof of the theorems above
has two main steps, each of independent interest. The first step is geometric;
we show that geometric actions of two infinite-ended non-free hyperbolic
groups on an arbitrary common model space can be promoted to geometric
actions on a model space with more structure. This strategy to prove action
rigidity was also employed by Mosher—Sageev—Whyte [38] for the virtually
free groups defined above and by the authors [47] for the class of simple
surface amalgams. The second step is topological; we prove a generalization
of Leighton’s graph covering theorem [34], following the methods developed
by Woodhouse [53], and Shepherd and Gardam-Woodhouse [45].

1.1. Common simplicial and hyperbolic model geometries

A central theorem we employ to obtain the results above is the following,
which can be viewed as a generalization of the work of Mosher—Sageev—
Whyte [38] on virtually free groups. We say that a model geometry Y for
G decomposes as a tree of spaces if there is a G-equivariant mapp: Y — T,
where T is a simplicial tree, and the preimage of a vertex Y, := p~*(v) is
a vertex space, and the preimage of the interior of an edge decomposes as
a product of the edge space and open interval Z, x (0,1) := p~1(e°).

THEOREM 1.12. — Let G be a hyperbolic group with infinitely many
ends, and suppose G is not virtually free. Let X be a model geometry for G
and let H = Isom(X). Then, there exists a locally finite, simply connected
simplicial complex Y such that:

(1) there is an H-action on'Y’;

TOME 74 (2024), FASCICULE 2
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(2) Y decomposes as an H-equivariant tree of spaces with each edge
space a point and each vertex space either one-ended or a point;

(3) there is a quasi-isometry f : X — Y that quasi-conjugates the
respective H actions. That is to say, there is a constant B > 0 such
that

dy(h- f(z), f(h-z)) < B.
As a consequence, Y is a model geometry for G, and the one-ended ver-

tex spaces in Y are quasi-isometric to the one-ended vertex groups in the
Stallings—Dunwoody decomposition of G.

The assumption that the group G is infinite-ended is necessary in general.
For example, we show in Proposition 4.7 that, while non-commensurable
closed hyperbolic manifold groups have a common model geometry, Hi,
they cannot act geometrically on the same simplicial complex.

A hyperbolic group admits a Stallings—Dunwoody decomposition [19, 46)
as a finite graph of groups with finite edge groups and vertex groups with
at most one end. We note that while the graph of groups decomposition
is not necessarily unique, the one-ended vertex groups are unique (up to
conjugation). While a quasi-isometry need not induce an isomorphism from
a Bass—Serre tree for a Stallings—Dunwoody decomposition of G to a Bass—
Serre tree for a Stallings—Dunwoody decomposition of G’, the common
model geometry given in Theorem 1.12 defines an isomorphism from a
Bass—Serre tree for G to a Bass—Serre tree for G’. This isomorphism is
a crucial component in the proof of action rigidity for free products of
hyperbolic manifold groups.

To prove Theorem 1.12 in Section 3 we use the visual boundary of hy-
perbolic groups with infinitely many ends. Each conjugate of a one-ended
vertex group corresponds to a component in the boundary. We build a lo-
cally finite simplicial complex admitting geometric actions by G and G’ by
considering the set of weak convex hulls of these components. We take R-
neighborhoods of these weak convex hulls and define a graph with vertices
corresponding to certain intersections of these subsets. We apply the Rips
complex construction to this graph to obtain a simply connected model
geometry for both G and G’. Finally, we use Dunwoody’s tracks [19] to
collapse this simplicial complex to the desired tree of spaces described in
Theorem 1.12.

In the case that the one-ended vertex groups of G and G’ are closed,
real hyperbolic manifold groups, we apply the work of Tukia [50], Hinkka-
nen [29, 30] and Markovic [36] to replace the one-ended vertex spaces in the
simplicial complex Y with copies of H, for varying n > 1. In the complex,
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quarternionic and Cayley hyperbolic cases we apply corresponding results
due to Chow and Pansu [14, 41]. See Section 4.

1.2. Symmetry Restricted Leighton’s Theorem

Having promoted the common model geometry to a tree of spaces X con-
structed from copies of H} and simplicial graphs, we are able to formulate
the problem of showing that groups G,G’ < Isom(X) are (weakly) com-
mensurable in topological terms. Let y = G\ X and x’ = G'\ X . Both x and
X’ are graphs of spaces with respective fundamental groups G' and G’, and
isomorphic universal covers. To show that G and G’ are commensurable it
therefore suffices to prove that x and x’ have homeomorphic finite covers
(see Theorem 6.2). Note that if G and G’ were one-ended with X = H?
and a trivial graph of groups decomposition, then constructing a common
finite cover would be impossible. On the other hand, if x and x’ were both
graphs, with no one-ended vertex spaces isometric to H, then the existence
of a common finite cover is Leighton’s graph covering theorem [34]. Our
argument shows that our situation is closer to the latter than the former.

We take a moment to compare this problem with work of Behrstock—
Januszkiewicz—Neumann [6] concerning free products of free abelian groups.
In contrast to the groups considered here, they prove that if G and G’
are quasi-isometric free products of free abelian groups, then G and G’
are abstractly commensurable. Note that a finite-index subgroup of Z" is
isomorphic to Z™; equivalently, a finite-sheeted cover of a torus is still a
torus. The fact that the volume of a closed hyperbolic manifold increases
when finite covers are taken, and that the groups do not remain isomorphic,
is a source of subtlety and difficulty.

A key ingredient we employ in the proof of Theorem 6.2 is a general-
ization of Leighton’s graph covering theorem to lattices inside symmetry
restricted automorphism groups of trees. Let T be a locally finite simpli-
cial tree with cocompact automorphism group G = Aut(7"). We assume,
after possibly subdividing edges or passing to an index-two subgroup of G
(see [2, Proposition 6.3]), that G acts on T without edge inversions. A free
uniform lattice F' < G is a finitely generated free subgroup that acts freely
and cocompactly on T. In the language of covering spaces, such a lattice
corresponds to a finite graph X and a covering map T — X, where F is
the group of deck transformations given by m (X).

Leighton’s Graph Covering Theorem [34] states that any two free uniform
lattices F, F’ < G, are weakly commensurable in G. That is, there exists
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some g € G such that F9NF’ is a finite-index subgroup of both F9 and F’
in G, where F9 = gFg~"! (see Definition 2.3). In the language of covering
spaces, this condition is equivalent to saying that any pair of finite graphs
X and X’ with isomorphic universal covers have isomorphic finite-sheeted
covers. Subsequent to Leighton’s original proof, Bass—Kulkarni [3] revisited
the problem, setting it in the context of Bass—Serre theory and addressing
the issue of lattice existence. Recently, the second author [53] gave a new
proof, using Haar measure to solve certain gluing equations, that generalizes
Leighton’s theorem to graphs with fins and has applications to a quasi-
isometric rigidity result for free groups with line patterns.

Walter Neumann posed a generalization of Leighton’s theorem as an
open problem. The motivation for this generalization was potential applica-
tions to quasi-isometric rigidity questions, such as generalizing Behrstock—
Neumann’s results for non-geometric 3-manifolds [7]. Shepherd and, inde-
pendently (but in the appendix of the same paper), Gardam and the second
author [45], recently solved Neumann’s problem as follows, christening the
generalization symmetry restricted Leighton’s theorem.

Fix some R > 0. Given a vertex v € VT, let Bg(v) denote the closed
R-neighborhood of v. For an element ¢ € G and a vertex v € VT, let
gy : Br(v) — Bgr(gv) denote the restriction of g to Br(v).

DEFINITION 1.13. — The R-symmetry restricted closure of H < G is
the closed subgroup

Sr(H) ={9€G|YveVT,3h € H s.t. g, = h, : Bg(v) = Bgr(gv)}
A subgroup H < G is R-symmetry restricted if H = ./r(H).

Remark 1.14. — Determining if a closed subgroup H < Aut(T) is a
symmetry restricted group can be a subtle question. As discussed in [45,
Remark A.3], the group SLy(Q,) acts on its Bruhat-Tits building, which
is a locally finite tree T', but it is not a symmetry restricted subgroup of
Aut(T) for any R.

THEOREM 1.15 ([45]). — Let F, F’ be free uniform lattices in G, con-
tained in an R-symmetry restricted subgroup H < G. Then F and F’ are
weakly commensurable in H. That is to say, there exists h € H such that
F"N F’ is a finite-index subgroup of F" and F".

Section 6 of the present paper is devoted to the challenge of arranging
covers of the spaces x = G\X and x' = G'\X so that we are in a situa-
tion where Theorem 1.15 can be applied. A key point is that Theorem 1.15
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applies only to locally finite trees and to groups that act freely and co-
compactly on such a tree. While the groups G' and G’ naturally act on the
Bass—Serre tree associated to the space X, this tree is not locally finite,
and the actions are not free. In Section 6, we produce a series of covering
space arguments to find a common (infinite-sheeted) cover x of the spaces
x and x’ so that the underlying tree is locally finite and so that m (x) and
m1(x’) virtually act freely on the underlying tree by deck transformations.

Acknowledgments
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2. Preliminaries

We will use the following notation throughout the paper.

Notation 2.1. — If A C X, let Ng(A) denote the open R-neighborhood
of Ain X. Let Br(x) denote the closed ball of radius R around a point z.
If H<Gand g€ G,let HY :=gHg™!.

The next elementary lemma can be deduced easily from standard tech-
niques; see [10, 11].

LEMMA 2.2. — Let X be a proper metric space, and let G be a group
which acts properly on X. If H < G acts cocompactly on X, then G acts
on X cocompactly, and H is a finite-index subgroup of G.

There exist within the literature various notions of commensurability for
subgroups and groups. Terminology can vary, so we make clear here what
we mean.

DEFINITION 2.3.

(1) A pair of subgroups I'1,I's < G are commensurable in G if their
intersection I'y N I'y is finite index in both I'y and I's.

(2) A pair of subgroups I'1, I's < G are weakly commensurable if there
exists g € G such that the conjugate I'{ is commensurable in G
with I's. In which case we say g commensurates I'; to I's.

(3) A pair of groups I'y and T'y are abstractly commensurable if they
have isomorphic finite-index subgroups.

(4) A pair of groups Ty and Ty are virtually isomorphic if there are
finite-index subgroups H; < I'; and finite normal subgroups F; < H;
such that the quotients Hy/Fy and Hy/Fy are isomorphic.
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2.1. The boundary of a hyperbolic space and the weak convex
hull

We refer the reader to [11] for background on Gromov hyperbolic spaces
and their Gromov boundary. Let X be a proper geodesic metric space,
and suppose it satisfies Gromov’s d-thin triangle condition. Associated to
X is its boundary 0X, a compact topological, metrizable space. As a set,
0X consists of geodesic rays v : [0,00) — X up to an equivalence, where
~ ~ 7 if their respective images in X have finite Hausdorff distance between
them. A set in the basis for the topology on 0X is defined by fixing a ray
~ and taking all rays based at (0) that fellow travel with ~ for some
prescribed duration; the associated set of equivalence classes is an open set
containing [v]. The group of isometries Isom(X) has an induced action on
0X by homeomorphisms.

DEFINITION 2.4. — Let X be a proper geodesic hyperbolic metric space.
The weak convex hull of a set A C 90X, denoted WCHx (A), is the union of
the geodesic lines in X which have both endpoints in the subset A. Given a
subset S C X, Iet AS = SNOX denote the limit set of S, where S denotes
the closure of S in X U0X. If H < Isom(X), then the limit set of the
subgroup H is AH := A(H - x) where x € X. The limit set AH does not
depend on the choice of x.

THEOREM 2.5 ([48, Main Theorem]). — Let G act properly and cocom-
pactly by isometries on X. If H is a quasi-convex subgroup of G, then H
acts properly and cocompactly on WCHx (AH) C X.

2.2. The Stallings—Dunwoody decomposition

This paper concerns fundamental groups of finite graphs of groups. For
background, see [43], [44]. We use the following notation.

DEFINITION 2.6. — A graph of groups G is a graph ' = (VT, ET") with
a vertex group G, for each v € VI, an edge group G, for each e € ET', and
edge maps, which are injective homomorphisms ©F : G, — G, for each
e = (—e,+e) € ET. A graph of spaces associated to a graph of groups G is
a space Z constructed from a pointed vertex space (Z,, z,) for eachv € VT
with w1 (Zy, zy) = G, a pointed edge space (Z., z.) for each e = (—e, +e) €
ET such that 71(Ze, z.) = G, and maps 0F : (Z.,2.) = (Z4c, 2+c) such
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that (0F), = ©F. The space Z is

( L] 2. | ] (Zex [—1,1]))/{(;11) ~0F(2) | (2,%£1) € Zo x [-1,1]}.
veVT ecET

The fundamental group of the graph of groups G is w1(Z). The underlying
graph of the graph of groups G is the graph I'. A group G splits as graph
of groups if G is the fundamental group of a non-trivial graph of groups.

Example 2.7. — Free products of closed hyperbolic manifold groups have
natural graph of groups decompositions. If G = 1 (M) * - - -« w1 (M) * Fy,,
then we make some choice of graph of groups decomposition with underly-
ing graph I" and so that each vertex group G, is either the trivial group or
m1(M;). All the edge groups are trivial. A graph of spaces Z can then be
obtained by letting the vertex spaces Z, be either a point or M;, and the
edge space Z,. also a point. Indeed, in this paper we will allow all compact
M; such that the universal cover ]\Z is a rank-1 symmetric space H.

DEFINITION 2.8. — We refer to the graph of spaces Z constructed in
Example 2.7 as an ideal graph of spaces associated to a free product. The
universal cover Z of an ideal graph of spaces is an ideal tree of spaces. If a
model geometry X is isometric to such a Z then X is said to be an ideal
model geometry. Note that the model geometry given by Proposition 4.5
is an ideal model geometry.

The graph of groups decomposition given in the next theorem is called
a Stallings—Dunwoody decomposition of G.

THEOREM 2.9 ([19, 46]). — If G is a finitely presented group, then G
splits as a finite graph of groups with finite edge groups and vertex groups
that have at most one end.

The ends of a group is a quasi-isometry invariant, and any finitely pre-
sented group with more than one end has a non-trivial Stallings—Dunwoody
decomposition. For a hyperbolic group G, the ends correspond to the com-
ponents of dG. The Stallings—Dunwoody decomposition allows us to gen-
eralize from free products in Theorem 1.1 to the quasi-isometry class of
groups containing such free products (see Theorem 6.1). In particular,
the following theorem of Papasoglu-Whyte implies that the free prod-
uct of closed hyperbolic manifold groups is quasi-isometric to a group
with Stallings—Dunwoody decomposition whose one-ended vertex groups
are quasi-isometric to Hp (for possibly many different n > 1 and F €
{R,C,H, Ca}).
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THEOREM 2.10 ([42]). — Let G and G’ be finitely presented groups with
infinitely many ends. The Stallings—Dunwoody decompositions of G and G’
have the same set of quasi-isometry types of one ended vertex groups (not
counting multiplicity) if and only if G and G’ are quasi-isometric.

Theorem 2.10 combined with the following lemma proves that any resid-
ually finite group quasi-isometric to a free product given in the statement
of Theorem 1.1, is virtually such a free product.

LEMMA 2.11. — Let G be an infinite-ended hyperbolic group such that
the one-ended vertex groups in a Stallings—Dunwoody decomposition are
residually finite. Then G is residually finite and virtually torsion-free.

Proof. — Since G has residually finite vertex groups and finite edge
groups, the group G is itself residually finite. Indeed, residual finiteness
is preserved under HNN extensions and amalgamated free products over fi-
nite subgroups [4, 5, 49]. As G is a hyperbolic group, it contains only finitely
many conjugacy classes of finite elements. Thus, after passing to a finite-
index normal subgroup that excludes a finite list of representatives from
each conjugacy class, one obtains a torsion-free finite-index subgroup. O

COROLLARY 2.12. — Let G = m(My) % -+« w1 (M},) x F,,, where each
M; is a closed hyperbolic manifold. Suppose that G’ is residually finite
and quasi-isometric to G. Then, G’ is virtually a free product of the form
w1 (M) * - - -« w1 (M) * F,,,, where ]\AJZ’ is a rank-1 symmetric space.

Proof. — As the number of ends is a quasi-isometry invariant, G’ has a
non-trivial Stallings—Dunwoody decomposition. By Theorem 2.10 the one-
ended vertex groups in this decomposition are each quasi-isometric to a
rank-1 symmetric space HZ for some d > 2. By rigidity results of Gabai [21],
Tukia [50], Chow [14], and Pansu [41], these vertex groups act geometrically
on rank-1 symmetric spaces. By Lemma 2.11, the group G’ has a torsion-
free subgroup of finite index, in which the vertex groups will embed in the
isometry group of the symmetric space, and so the induced splitting will
give the desired free product decomposition. O

2.3. Abstract commensurability classes

We explain in this section that within the class of free products we
are considering, each quasi-isometry class contains infinitely many abstract
commensurability classes. When all the one-ended factors are cocompact
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Fuchsian groups this result follows from work of Whyte [51, Theorem 1.6].
For uniform lattices in the isometry groups of higher-dimensional rank-1
symmetric spaces, one can form incommensurable free products by forming
free products of incommensurable lattices using the various means avail-
able (see, for example [25, 35, 40]). For our purposes, there is a far simpler
means of constructing incommensurable free products using a variation of
Whyte’s trick via the co-volume of lattices.

LEMMA 2.13. — FEach quasi-isometry class of free products of uniform
lattices in the isometry groups of rank-1 symmetric spaces contains infin-
itely many abstract commensurability classes.

Proof. — The quasi-isometry class of a free product is determined by
the set of quasi-isometry classes of its one-ended factors by Theorem 2.10.
First, suppose that we are considering a quasi-isometry class determined
by a set of n > 1 distinct quasi-isometry classes of one-ended factors, each
corresponding to a unique rank-1 symmetric space H%j for 1 <i < n. Let
G=H;*---+xH, and G' = H| ...+ H] where H; and H! are uniform
lattices in Isom(Hf;j). Suppose that G and G’ contain isomorphic finite-
index subgroups G < G and G/ < G'. Then, G = G' = Hy «...x H,, * Fy,
and for each subgroup H ; there exists an index i so that H ; is conjugate in
G to a finite-index subgroup of H; and H ; is conjugate in G’ to a finite-index
subgroup of H]. Let the covolumes of the lattices be v; = Vol(Hi\Hgi) and
v; = Vol(H] \H%) We now assert we can express the index of the subgroups
in the following terms:

CrAamM 2.14. — For eachi € {1,...,n}

s, Vol(H\HE) S, Vol(H\HE)
(G G) = ZHaxts P and (@G = S T

(] v;

where PAIj ~ H; indicates that after conjugating in G, the subgroup PAIJ- is
a finite-index subgroup of H;, and H; ~ H/ is similarly defined.

Proof of Claim 2.14. — We prove the expression for G, and G’ follows
similarly. Let X be a graph of spaces for G corresponding to the given free
splitting with underlying graph T, a star with root vertex ug with X, a
point, each edge space a point, and each vertex space X,, a presentation
complex for H;. Let p : X — X be the finite cover corresponding to the
subgroup G < G. Then p~1(X,,) is a disjoint collection of vertex spaces
in the inducted decomposition {X’a e ,)?ak} that are in correspondence

with the H j ~ H; in the free factorization of G. Then the degree of p, which
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is equal to [G : G] can be read off by summing the degrees of each covering
XQ- — X, which is equal to Vol( ]\Hd )/ Vol(H; \Hd ) since covolume of
a lattice is multiplicative by the degree of a finite-index subgroup. Thus
the equality given in the statement follows by taking the sum. O

The summation of volumes in the numerators of the left and right hand-

side are equal for each i. So, we deduce that for all 4,

v (G @

v [G:G]
Therefore, choosing suitable H; and H/ to give distinct ratios for each i
produces infinitely many incommensurable G and G’.

In the case n = 1, and there is a single quasi-isometry class of one-ended
factors, let G = Hy x Hy and G' = Hj = Hj. Suppose again you can find
1somorph1c finite-index subgroups GG Hl x. *H xF. Each factor
H is conjugate in G [resp. G'] into a factor H; or H2 [resp. Hi and H}.
We can then sum covolumes over these respective partitions of the factors
to verify that

_ Lgecy, Vol(H;\Hf) _ Xge Vol(H;\Hg)
G:G) = i and [G': G = i

V; v;

Thus we again obtain that v; /v = [G' : G']/[G : G] and we can obtain
incommensurable G and G’ by choosing factors with different covolume
ratios. U

3. A common simplicial model geometry

This section is devoted to proving Theorem 1.12. We will let G de-
note an infinite-ended hyperbolic group that is not virtually free. Let G
be a Stallings-Dunwoody decomposition of G. Let {G;}%_, denote the one-
ended vertex groups in G. Let T be the Bass—Serre tree for the graph of
groups decomposition G. Suppose that G acts geometrically on a proper
geodesic metric space X, and let H = Isom(X).

3.1. A simplicial model geometry from intersecting weak convex
hulls

As detailed by Martin-Swiatkowski [37, Section 2], the boundary 0G
decomposes as

0G = | |oG? LaT.
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The atomic components of the boundary 0G are the singletons correspond-
ing to the ends of the tree T', and the non-atomic components of the bound-
aries are the components dGY, homeomorphic to the boundaries of the
one-ended vertex groups. The homeomorphism ¢g : 9G — JX induced by
the geometric action of G on X yields well-defined atomic components and
non-atomic components of 0X.

Let {So |« € I} be the set of non-atomic components of X, indexed in
some fashion by I. We note that I is non-empty as G is not virtually free.
Let X, = WCH(S,) be the weak convex hull of S, in X. By Theorem 2.5,
the weak convex hull X, is quasi-isometric to G;, a one-ended vertex group
inG. For o, €I and r € R, let

UL (r) == No(Xa) NN (Xp).
Note that U2 (r) = Ug (r). For a specified value of  we will let UB .= UB(r).

LEMMA 3.1. — There exists r € R sufficiently large so that

(1) X C UaeI NT(Xa);

(2) Xa C UBeI—{a} Ny (Xp);

(3) X € Ua,per US().

Moreover, for a given value of r > 0,

(4) there exists a constant B = B(r) > 0 such that diam(U#(r)) < B,
and

(5) there is an upper bound N = N (r) on the number of subsets Ujj(r)
that can intersect a given subset UZ(r).

Proof of Lemma 3.1. — If (1), (2), and (3) hold for some r > 0 then
they also hold for any ' > r. If (1) and (2) hold for 7, then (3) holds for
2r. Indeed,

X c |JMN(Xa)
a€el

clU U MNar(Xa) 0 Nop(Xp)
a€cl gel—{a}

-U U v

a€l pel—{a}

where the first line follows from (1), the second from (2), and the third by
definition. Since the action of G preserves the sets { X, }qcr, and since the
G action on X is cobounded, there exists r such that (1) holds. To obtain r
for (2), and check (4) and (5), we need to compare the geometry of X to G.
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The group G is the fundamental group of a compact graph of spaces Z
with associated Bass—Serre tree T'. By abusing notation somewhat, we let
Z denote the 1-skeleton of the universal cover of Z equipped with the path
metric, which is a model geometry for G. By an appropriate application
of the Milnor—Schwartz lemma, there exists a G-equivariant quasi-isometry
f: Z — X. After identifying dZ with OX, there exists D' > 0 such that
for all « € I, the weak convex hull Za of S, is within Hausdorff distance
D’ from a vertex space Z, in Z. There are corresponding subsets V% in Z
defined in a similar fashion to U? for some sufficiently large constant R.
We will show the claims hold for the subsets V,# in Z and then deduce they
hold in X as well.

To obtain (2) for {V/}, observe that each vertex space Z, is contained
in a finite neighborhood of its incident edge spaces, so we can choose R to
be sufficiently large such that

Z,< |J Na(Z).
(u,v)EET

Therefore, using the existence of the constant D’, we can ensure that R is
large enough that

Zo € |J Nr(Zs).
pel—{a}
we let Z,

be the vertex space Hausdorff distance D’ from Za, and Zu be the vertex

For (4), to obtain the upper bound on the diameter of V2
space Hausdorff distance D’ from Zg. Let e; be the edge in T incident to v
that is closest to u, and let es be the edge in T incident to u that is closest
to v. Then

V= Nr(Za) N Nr(Zp)
C Nrip/(Zo) N Npyp(Zy)
C Npip/(Ze,) U Npipr(Ze,).

To see the final inequality, observe that if « lies in Ng4p/(Z,) N\Nr4p/(Zy,)
then there are paths v; and 75 of length at most R + D’ that respectively
connect Zv to x and Zu to x. By considering the tree of spaces decompo-
sition we conclude that either ~; must pass through Zel or o must pass
through 262, so x lies in the R 4+ D’ neighborhood of one of these edge
spaces. Since edge spaces in Z have finite diameter, (4) follows.

For (5) suppose that for all m > 0 there is some V2 such that VNV #
() for distinct sets Vf;‘ with 1 <4 < m and ~; distinct from « or 5. Then
since all these subsets have diameter bounded above by a constant B’,
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we deduce that the subsets {V,f} are pairwise within distance B’ of each
other. This implies that the subspaces {Zv} are pairwise distance at most
B’ + 2R apart. If Z,i is the vertex space Hausdorfl distance D’ from Z’w
then we conclude that {Z,,} are pairwise distance at most B’ + 2R + 2D’
apart. As m was arbitrary, this violates the bounded packing of the one-
ended vertex groups {G.,}; see [31] for definition and details of bounded
packing.

We now deduce (2), (4), and (5) for X, using standard quasi-isometry
and d-hyperbolicity arguments, which we include for the benefit of the
reader. The sufficient size of the constant r > 0 is determined by R, the
quasi-isometry constants (), €) for the map f : Z — X, and § > 0 large
enough so that both X and Z are é-hyperbolic. First, there exists a con-
stant D = D()\, ¢, ) so that for all @ € I, the Hausdorff distance between
f(Zs) and X, is at most D. Indeed, by the Morse Lemma [11, Theorem
ITI.H.1.7], there exists a D; = Di(\,¢, ) sufficiently large such that a bi-
infinite (A, €)-quasi-geodesic lies at distance at most D; from an actual
geodesic. Thus, f(Z4) € Np, (X, ). For the converse inclusion we consider
a quasi-inverse f of f, which has quasi-isometry constants (), €) determined
by (A, €). Thus, by the Morse Lemma, there exists Do = Dy(A,€,8) > 0,
such that f(X.) € Np,(Zs). Then, by the definition of quasi-inverse, there
exists a constant k = k(\, €) so that

Xo € Nip(f 0 F(Xa)) € Nk (f(Npy(Za)))-

50 Xo € Np(f(Za)) if D > ADy+€e+k. Thus we take D > max{D;, A\D+
e+ k}.
Since (2) holds for Z, we can deduce that

Xo € Np(f(Za))

g%( U f(NR%)))

BeI—{a}

QND< U N>\R+D+6(Xﬁ)>7

BeIl—{a}

so (2) holds for X with r > AR+ 2D +e.
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To see (4) and (5) for X observe that
FUL(r)) = F(Ne(Xa) N No(X5))
Ny (Xa)) N F(N:(X5))

NT+€(f(X )) )\r+e( ( ))
C Nr(Zs) N Nr(Zs) = VA(R)

| |
A

N

N

where R > A\r + € + Ds. If diam(UZ(r)) were unbounded over a, 3 € I,
then diam(V,?(R)) would be unbounded too. If UZ(r) intersects arbitrar-
ily large collections of distinct sets Ug (r), then V’(R) would intersect
the corresponding arbitrarily large collection of distinct sets of the form
Vj(R). O

Define a (1-dimensional) simplicial complex ) as follows. Let » € R be
sufficiently large, as to satisfy the conclusions of Lemma 3.1. Let ) be the
1-skeleton of the nerve of the cover of X by the sets {UZ |US # ()}. That is,
the vertices of ), are in one-to-one correspondence with elements of the set
{UB|UE # 0}, and there is an edge {US, U2} if and only if USNUS # 0. We
view ) as a metric space by equipping each edge with the Euclidean metric,
such that each edge has length one. As H acts by isometries on X and
permutes the non-atomic components of 0X, we deduce that H preserves
the open cover {UZ |U£ # ()} so there is an induced H-action on ).

LEMMA 3.2. — The graph Y is connected and locally finite. The action
of H on Y is continuous, and the action of G on Y is geometric. The H-
action on X is quasi-conjugate to the H-action on ). That is, there is a
quasi-isometry ¢ : X — ) and a constant L > 0 such that for all x € X

dy(h-¢(z),¢(h-z)) < L.
The existence of the quasi-conjugacy will be due to the following, more

general lemma;

LeEmMMA 3.3. — Let H be a locally compact topological group acting
continuously by isometries on proper geodesic metric spaces X and Y.
Suppose that G < H is a uniform lattice, and that the actions of G on X
and Y are geometric. Then there exists a quasi-isometry f : X — Y that
is an H-quasi-conjugacy.

Proof. — The Svarc-Milnor Lemma gives G-equivariant quasi-isometries:
fx :Cay(G,S) = X and fy:Cay(G,S)—Y.

The quasi-inverse fx is a G-quasi-conjugacy, so we obtain a G-quasi-
conjugacy f := fy o fx : X — Y with quasi-conjugacy bound B and

ANNALES DE L’INSTITUT FOURIER



ACTION RIGIDITY 523

quasi-isometry constants (C,¢). It remains to show that f is an H-quasi-
conjugacy.

Fix a basepoint x¢g € X. Since G is a uniform lattice, there exists a
compact set K C H such that GK = H. By continuity of the actions of
H on X and Y, and since K is compact, there exists R > 0 such that
Kxo C Np(xo) and K f(xo) C Nr(f(zo)). If h € H, then we can write it
as h = gk, where g € G and k € K. Thus, we can approximate that

dy (f(hxo), hf(xo)) = dy (f(gkzo), gk f(20))
< dy (f(gkxo), 9f (kxo)) + dy (9.f (kwo), gk f (x0))
< B +dy (f(kxo), kf(z0))
<B4+ CR+e+dy(f(zo),kf(xz0))
<B+CR+¢e¢+ R.

By cocompactness of the G action on X, there exists an R’ > 0 such that for

any ¢ € X and h € H there exists some g € G such that d(gzg, ha) < R’.
Thus

dy (f(hx), hf(z)) < dy (f(gzo), hf(x)) + CR + €
)

(

(9f(x0),hf(z))+ B+ CR +e¢

(h™'gf(x0), f(x)) + B+ CR +¢

v (f(h " Ygxo), f(x)) + 2B+ (C + 1)R+ CR' + 2¢
< 2B+ (C+1)R+2CR' + 3¢,

where the second to last inequality is given by applying the quasi-conjugacy

bound (f) at zp. Our final bound is independent of h and z, so f is an H-
quasiconjugacy. O

LEMMA 3.4. — For fixed r > 0 and x, € X, then for R suffiently large
we have that if the compact set KE = Np(xa) NN, /2(X,) is such that
hKE C N,.(Xp) for some h € H then hX, = Xg.

Proof. — Suppose not. Then for all R > 0 there exists some h € H
such that hKE C N,(Xg) but hX, # Xs. Suppose that hX, = X;.
Then we conclude that U(SB (r) has diameter at least R, which violates (4)
of Lemma 3.1 since R is arbitrary. 0

Proof of Lemma 3.2. — The space Y is connected by (3) of Lemma 3.1,
and locally finite by (5) of Lemma 3.1. To see that G acts properly on
) observe that Stabg(UZ (7)) stabilizes a finite diameter set in X, by (4)
of Lemma 3.1, so the properness of G on X implies that Stabg (U’ (r))
is finite, and thus the action on ) is proper. Cocompactness follows by
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observing that cocompactness of G on X implies that there exists some
compact set K C X such that GK = X. Thus every G-orbit of U? has at
least one representative intersecting K. By (5) of Lemma 3.1, only finitely
many UZ(r) intersect K, which allows us to conclude that there are only
finitely many vertex orbits in ), so cocompactness of the G action follows
from local finiteness of ).

The group H has the compact-open topology with respect its action
on X, and the action of H on X is continuous with respect to this topology.
To see that the action of H on Y is continuous we check that the associated
evaluation map e : H x ) — ) is continuous. Let U C ) be an open set.
Suppose that (h,y) € e~ }(U), where y is a vertex in ). Then, there exists
€ > 0 such that N.(hy) C U. Let U? C X be the subset corresponding to
the vertex y, and let Ujf C X be the subset corresponding to the vertex hy.
Suppose moreover that hX, = X, and hXz = X;. After making a choice
of points z, € X, and zg € Xg, by Lemma 3.4 we can find R sufficiently
large such that if »’ € H maps the corresponding compact sets K into
N,(X,) and KﬁR into N,(Xs), then A’ X, = X, and W' X3 = X;. Thus by
taking standard subbasis sets (that contain h)

Vo = V(KZ,N.(X,)) = {h' € H | K] C N,(X,)}
Vs = V(KF, N, (X5)) = {h' € H| KK} C N.(X5)},

we can conclude for b’ € V, N Vs that h'y = hy since we know that
hUJ = US. Thus, the image of the open set (V,NV3) x N(y) contains (h,y)
and has image contained in N(hy). A similar argument can be made for y
on the interior of an edge, and it follows that H is continuous. Therefore,
the H-actions are quasi-conjugate by Lemma 3.3. O

We extend ) to a simply connected 2-complex Y as follows. The Milnor—
Schwartz lemma combined with Lemma 3.2 proves that the space ) is
quasi-isometric to G and is therefore a Gromov hyperbolic space. Let Pp())
denote the Rips complex of Y: the simplicial complex with vertex set Y(©)
the vertex set of the graph ), and n-simplices given by all subsets of vertices
of Y of diameter at most D. As Y is §-hyperbolic, for all D > 4§+3 the com-
plex Pp(Y) is a locally finite, contractible complex [11, III.T" Prop. 3.23].
Let )A) be the 2-skeleton of Pp(Y) for some D > 46 + 3. The H-action on Y
extends to Pp()) and y and the embedding of ) into y is a quasi- 1sometry
that will quasi-conjugate the respective actions. We let qb X — y denote
the resulting quasi-conjugacy of the H-actions.
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3.2. Tracks and a new tree of spaces model geometry

We employ the notion of tracks, as first defined by Dunwoody [19].

DEFINITION 3.5. — Let K be a simplicial 2-complex. A track 7 is a
connected subset of K (or rather its topological realization) such that

(1) for each 2-simplex o of K, the intersection of T with o is the union
of finitely many disjoint straight lines joining distinct edges of o.

(2) Ife is a 1-simplex in K not contained in a 2-simplex, then either T
does not intersect e, or T is a single point in the interior of e.

We will employ the following theorem of Dunwoody [19] in the form
stated by Mosher—Sageev—Whyte [38]. Alternatively, consult [18, Chap-
ter 20].

THEOREM 3.6 ([19], [38, Theorem 15]). — Let K be a locally finite,
simply connected, simplicial 2-complex with cobounded isometry group.
There exists a disjoint union of finite tracks 7 = | |7; in K invariant under
the action of Isom(K) such that the closure of each component of K —
has at most one end.

Proof of Theorem 1.12. — As JAJ is a locally finite, simply connected,
simplicial 2-complex with cobounded isometry group, Theorem 3.6 yields

an H- equivariant set of finite tracks 7 = | |, ; 7; such that the closure of

i€J
each component y — 7 has at most one end. Let T be the dual tree to this
set of tracks. Each vertex v in T corresponds to a component :))v of y —T.
Reindex the set of tracks so that each edge e in T corresponds to a track
Te in 7.

Construct an H-equivariant map q : j}\ — T as follows. For each track 7,
there exists a product neighborhood of 7. in )A) homeomorphic to 7. x [0, 1].
These product neighborhoods can be chosen H-equivariantly and disjoint
from the set of 0-simplices and from each other to obtain an H-equivariant
set 7 x [0, 1] |_|e€E7— Te % [0, 1] Each component of Y — (7 x [0, 1]) is a
subspace :)) C y,, Note that y’ has the same number of ends as yv, as
each 0-simplex in y,, is a 0-simplex in y’ as well. Define the H-equivariant
map q so that q(y{)) = v and 7. X [0, 1] is mapped to e by projection onto
the second factor. Then, the map ¢ decomposes the space :)Ai as a tree of
spaces.

Let Y be obtained from )’ by collapsing the vertex spaces )A)’ with zero
ends to vertices and collapsing each subspace 7. x [0,1] to an edge. Then,
the map ¢ can be factored YyoY > T, where the first map q : Y Y is
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given by collapsing as above. See Figure 3.1. The 1-ended vertex spaces JAJ;
have their (finite) intersections 5)\1’) N7 x [0, 1] crushed to points to obtain
new l-ended vertex spaces Y,. Indeed, the O-simplices in JA){, embed in Y.

The quotient map q : JA) — Y is H-equivariant and obtained by col-
lapsing sets of universally bounded dlameter S0 q IS a quasi-conjugacy. By
composing the H-quasi-conjugacies ¢ o (b X — y — Y we obtain the
quasi-conjugation from the statement of the theorem. O

Figure 3.1. An illustration of the map q. The dashed lines on the left
denote tracks and their shaded neighborhoods are collapsed to edges
on the right. The blue region around the central vertex is the space
JA){) and is collapsed to the vertex Y, on the right.

4. A common hyperbolic model geometry

To obtain an ideal common model geometry that is built out of copies
of rank-1 symmetric spaces, we will apply the next theorem.

THEOREM 4.1. — Let H act cocompactly on a proper geodesic metric
space X which is quasi-isometric to a rank-1 symmetric space Hg. Then,
H acts cocompactly on Hi and there is a quasi-isometry f : X — Hy and

a constant D > 0 such that d(h - f(x), f(h-x)) < D for all x € X and
heH.

The natural language for proving Theorem 4.1 is that of quasi-actions.
For background on quasi-isometries and quasi-actions we refer the reader
to Drutu—Kapovich [18, Section 8.5].

DEFINITION 4.2. — Let G be a group and X a metric space. An (L, A)-
quasi-action of G on X is a map ¢ : G — Map(X, X) such that

(1) ¢(g) is an (L, A)-quasi-isometry of X for all g € G;
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(2) d(o(id),Idx) < A;

(3) d(@(9192), #(91)d(g2)) < A for all g1, g2 € G.
A quasi-action is cobounded if there exists x € X and a constant R such
that for all ' € X there exists g € G so that d(z’, ¢(g)(z)) < R.

Given an action of a group G on a geodesic metric space X and a quasi-
isometry g : X — Y to another geodesic metric space, one obtains a con-
Jjugate quasi-action ¢ : G — Map(Y,Y) given by ¢(g) = q o g o § where §
denotes a quasi-inverse of q. The conjugate quasi-action yields the following
lemma, a version of the quasi-action principal.

LEMMA 4.3. — If G is a group that acts by isometries on a metric space
X, and X is quasi-isometric to a metric space Y, then there is a quasi-
action of G on Y. Moreover, if the action of G on X is cocompact, then
the quasi-action of G on'Y is cobounded.

Lemma 4.3 applied to a group H acting cocompactly by isometries on
a geodesic metric space quasi-isometric to Hy yields a cobounded quasi-
action of H on H.

Theorem 4.1 is thus the consequence of the following statement, a special
case of Theorem 1.4 in [33] (see also [32]), that is the consequence of a wide
body of work [13, 14, 21, 29, 30, 36, 41, 50]. We refer the reader to [18] for
recent exposition on the real hyperbolic case.

THEOREM 4.4. — A cobounded quasi-action ¢ of a group G on the
rank-1 symmetric space Hy is quasi-isometrically conjugate to an isometric
action.

We can now apply Theorem 4.1 to build a new common ideal model
geometry as in Definition 2.8.

PROPOSITION 4.5. — Let G be an infinite-ended group with a Stallings—
Dunwoody decomposition in which every one-ended vertex group G, < G
is quasi-isometric to a rank-1 symmetric space Hg(v) for some n(v) > 2, and
such that there is at least one such vertex group. If X is a model geometry
for G, and H = Isom(X), then the H-action on X is quasi-conjugate to an

H-action on an ideal model geometry.

Proof. — Apply Theorem 1.12 to quasi-conjugate the H-action on X to
a simplicial H-action on a simplicial 2-complex Y that decomposes as a
tree of spaces with underlying graph T and with vertex spaces isomorphic
to either points or one-ended simplicial 2-complexes, and each edge space
a point. The group H acts on the tree T
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Let Y, be a one-ended vertex space of Y. The space Y, is quasi-isometric
to Hy for some n > 2 since it is stabilized by a one-ended subgroup in the
Stallings—Dunwoody decomposition of G. Let H, = Stabg (Y,). The group
H, acts on Y, cocompactly since it acts on Y, simplicially and contains a
subgroup G, that acts on Y, cocompactly. Apply Theorem 4.1 to obtain
a cocompact H,-action on Hy and a quasi-isometry f, : Y, — Hf that
quasi-conjugates the action of H, on Y, to the action of H, on HE.

To obtain the ideal model geometry we will equivariantly remove the H-
orbit of Y,, and replace it with a copy of Hy. The H-orbit of Y, is the disjoint
union of vertex spaces, each of the form Y}, for some h € H. Enumerate
the vertices H -v = {v = vg, v1,v2,...}. For each ¢ € N, choose h; € H such
that hg = id and h; - v = v;; then {h;}y is a set of coset representatives
for H/H,. Realize H -Y,, as the direct product Y, x (H/H,) with induced
H-action given by

h- (y,[hi]) = (h5  hhi -y, [h] = [hhi]).

Note that [h;] = [hh;] implies that hj_lhhi € H,. This action on the product
is the same as the natural action of H on H -Y,, after identifying the
element h;Y, with the element (Y,,[h;]) via the isomorphism that maps
h; -y (y, [hi]), where y € Y,,.

Now, define an action of H on Hy x (H/H,) by

h-(,[hi]) = (hy 'hhi -, [hy] = [Rh]).
Take the closure of Y — H - Y,, and the disjoint union
Y—-H -Y,U(Hy x H/H,)

to recover a tree of spaces by equivariantly reattaching the ends of the edge
spaces that intersected H - Y, and to (Hf x H/H,) as follows. Let e be an
edge of the tree T incident to the vertex v. Let Y, denote the corresponding
edge space in Y and H, = Stabgy (Y,). Each edge of H, - e corresponds to a
coset in H,/H,. Let y. = Y,,NY,. The H.-orbit of f,(y.) € Hf is a bounded
set, since f, quasi-conjugates the action of H, on Y, to the action of H,
on HE. Thus, the convex hull of H, - f,(y.) has a center g, invariant under
H,; see [11, Proposition 11.2.7]. The H-orbit of (¥, [id]) in Hf x (H/H,)
defines the points to which the the edge spaces H - Y, are reattached. More
precisely, attach the endpoint h-y. of the edge h-e € Y — H - Y,, to the point
h - (Ye, [id]) € HE x H/H,. Doing this for all H,-orbits of edges incident to
v, we obtain a new tree of spaces as a quotient space

(Mu (HZ x H/Hq,)) / ~
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which has a natural H-action and such that G and G’ act geometrically.
Repeating for all H-orbits of one-ended vertex spaces yields the desired
ideal model geometry. O

4.1. Commensurability of certain manifold groups

LEMMA 4.6. — If P C Hf is a discrete subset stabilized by a uniform
lattice ', then I is a finite-index subgroup of Stab(P) < Isom(Hf).

Proof. — Equip the subspace P with the metric induced by the inclusion
P — HE. Since P is a proper metric space, it suffices to prove that I =
Stab(P) < Isom(Hy) acts properly on P by Lemma 2.2. Let y € P and pick
e > 0 so that B.(y) contains no other points of P. Then, if v € T so that
d(y,7y-y) <€, then v -y = y. Thus, it is enough to prove that Stabr(y) is
finite. Choose R > 0 so that Br(y) contains at least m+ 1 points in P that
are not contained in a codimension-1 hyperplane, where m is the (real)
dimension of H*. There is a homomorphism Stabr:(y) — Sym(M), the
group of permutations of M > m elements. Any element of the kernel fixes
m + 1 distinct points in H* not contained in a codimension-1 hyperplane,
so the kernel consists of only the trivial isometry. Indeed, the stabilizer of
a single point will act by isometries on the unit tangent space which is an
(m — 1)-sphere. The remaining fixed points will correspond to fixed points
in the unit tangent space. Since the remaining fixed points in Hy* don’t
stabilize a codimension-1 subspace, the corresponding fixed points in the
unit tangent sphere will give a basis for the tangent space, and therefore the
entire tangent sphere will be fixed and the isometry will be trivial. Thus,
Stabr-(y) is finite, as desired. O

The next proposition follows from the previous lemma and arguments
tacit in the proof of Proposition 4.5.

PROPOSITION 4.7. — If G and G’ are closed hyperbolic manifold groups
that act geometrically on the same simplicial complex, then G and G’ are
virtually isomorphic. Moreover, if G and G’ are residually finite then G and
G’ are abstractly commensurable.

Proof. — Suppose G and G’ are closed hyperbolic manifold groups that
act geometrically on the same simplicial complex X, which is quasi-isometric
to Ht. Let H = Isom(X). The group H acts on X cocompactly since X is
a simplicial complex and the subgroups G, G’ < H act on X cocompactly.
There exists a quasi-isometry f : X — Hg that quasi-conjugates the H
action on X to a cocompact H-action on Hy by Theorem 4.1.
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We define a discrete subset P C H stabilized by H to which we may
apply Lemma 4.6. Let v € X be a vertex, and let H, = Staby (v). The
H,-orbit of f(v) in Hf is a bounded set since the map f quasi-conjugates
the H-action on X to the H-action on H. As in Proposition 4.5, the convex
hull of H, - f(v) has a center v that is invariant under the action of H,. We
claim that H - v’ is a discrete subset of Hf. Since Stabgy (v) C Stabgy (v'), if
h-v' # v, then h-v # v. If dyy (v, h - ") < ¢, then there exists C' = C(e)
depending on the quasi-conjugacy constants so that dx(v,h-v) < C. The
simplicial complex X is locally finite, so the set {h|d(v, h-v) < C} is finite.
Thus, the set {h|d(v',h-v") < €} is finite.

The H-action on HE is given by a homomorphism ® : H — Isom(HEg).
Let G = ®(G), G’ = ®(G"), and H = ®(H). As G and G’ act geometrically
on HZ we deduce that G = G/F and G’ = G'/F’, where F and F’ are
the finite kernels of the respective actions on HZ. Since H stabilizes P,
Lemma 4.6 implies that H is a uniform lattice so G and G’ are finite-index
subgroups of H, so are commensurable in H. Let G = ®~1(GNG')NE and
G'=dYGNG)NG. Then G/F 2 GNG = G'/F', and we conclude
that G and G’ are virtually isomorphic. If G and G’ are residually finite,
then we can assume that F' and F’ are trivial by first passing to finite-
index subgroups that do not contain the non-trivial elements of F' and
F’ respectively. In which case the argument implies that G and G’ are
abstractly commensurable. O

5. Pairwise Amalgamations

We prove Theorem 1.4 and Theorem 1.7 in this section. We use the
following notation throughout.

Notation 5.1. — Let G = X1 % Xp and G’ = X} % X, where 3; = 71 (M;)
and ) = m(M]) are fundamental groups of closed orientable hyperbolic
manifolds. Suppose G and G’ have a common model geometry. By Proposi-
tion 4.5, the groups G and G’ act geometrically on an ideal model geometry
Y. Let Hy =Y, C Y be a one-ended vertex space. Let I, be the set of
edges incident to v in T, and let y. = Y. NY, be the point of intersection
between the respective edge and vertex space. Then P, = {y. | e € I, } is a
discrete subset of points in Y, that coarsely covers Y,. Let H = Isom(Y").
Then, Staby(Y,) < H, the subgroup of isometries of Y that stabilize Y,
stabilizes the set P,.

LEMMA 5.2. — The group Staby(Y,)/Fixg(Y,) acts on Y, geometri-
cally.

ANNALES DE L’INSTITUT FOURIER



ACTION RIGIDITY 531

Proof. — Since the group ¥; acts cocompactly on Y, the lemma follows
from Lemma 4.6. g

Without loss of generality, suppose in the following lemmas that the
subgroups ¥; < G and ¥} < G’ stabilize the vertex space Y,. We briefly
introduce some terminology: We will say that a G action on a tree is reduced
if the action is minimal and for each valence two vertex v in G\T, if the
corresponding edges are distinct, then at least one of the associated edge
groups properly embeds in the vertex group associated to v. A reduced G-
tree can be obtained from a G tree by taking a G-minimal subtree and then
removing bad valence two vertices, so the pair of incident edges become a
single edge. We note that our notion of reduced is distinct from the notion
in [9], and is tailored to our particular needs.

LEMMA 5.3. — The groups ¥; and 3} act transitively on the set P,,.

Proof. — The lemma follows from the uniqueness of the reduced
Stallings—Dunwoody decomposition of G and G’ in this case. The quo-
tient G\T contains two vertices u, v, corresponding to the cosets of ¥; and
Y5, and a single edge. Indeed, if any other vertex existed in G\T, then its
associated vertex group is trivial. If G\T contains more than one edge then
either: the graph is not simply connected, the graph contains spurs that
are not u, v, or the graph is a subdivided edge connecting v and v. In the
first case, if G\T is not simply connected, there would exist a non-trivial
homomorphism from G to Z such that ¥; and ¥ were in the kernel, con-
tradicting the fact that G = X1 % 3o. If G\T has spurs that are not either
u or v, then the action of G on T is not minimal. Finally, if G\T is a
subdivided edge joining u to v, then since the vertices and edges inside the
subdivided edge have trivial groups associated to them, the action of G on
T would not be reduced. Thus, the points in P, correspond to edges in the
same G-orbit, and indeed in the same G,-orbit. O

LEMMA 5.4. — There exists d € N so that ¥; and X are index-d sub-
groups of Staby (Y,)/ Fixy (Y,,). Moreover, if Y, = H? then ¥ = X}. More
generally, if Y, = H, then My and M| have the same volume.

Proof. — By Lemma 5.2, the action of Staby(Y,)/Fixg(Y,) on Y, is
geometric with quotient O, a compact hyperbolic orbifold. Since ¥; and
Y} act freely on Y, they embed in Stabg(Y,)/Fixg(Y,), so we obtain
finite-sheeted orbifold covering maps f: My — O, and f': M| — O,. Tt
suffices to show that f and f’ both have the same degree. By Lemma 5.3
the groups 31, 3o, and Staby(Y,)/Fixg(Y,) act transitively on P,, so
there exists points m € My, m’ € M{, and o € O, corresponding to the
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quotient of that orbit. The degrees of f and f’ are determined by the local
degrees of the covering at m and m’, which can be read off from the orbifold
data at o, specifically the order of the finite group associated to a chart
corresponding to o.

Thus, the Euler characteristic x(M7) = x(M]) = dx(O,). So if M; and
M, are surfaces, then they are homeomorphic, hence ¥ = ¥}. Otherwise
we can deduce that volume of M; and Mj is simply d times the volume
of O,. O

Proof of Theorem 1.4. — As above, we can assume that 3; and 3
stabilize a vertex space Y, and conclude as in Lemma 5.4 that ¥; = ¥.
Then we can also deduce that ¥y and X stabilize a vertex space Y, and
similarly conclude that o = 33 O

Proof of Theorem 1.7. — As above, we can assume that 3; and 3
stabilize a vertex space Y, and conclude as in Lemma 5.4 that M; and M,
have the same volume. Then we can also deduce that X5 and X4 stabilize
a vertex space Y, and similarly conclude that My and M} also have the
same volume. O

6. Action Rigidity and Leighton’s Theorem

The goal of this section is to prove the following theorem.

THEOREM 6.1. — Let G be a finitely generated, infinite-ended group.
Suppose that the Stallings—Dunwoody decomposition of G contains at least
one one-ended vertex group, and that all one-ended vertex groups are quasi-
isometric to a rank-1 symmetric space. If G and G’ share a common model
geometry X, then there exists a quasi-isometry f : X — Y to an ideal
model geometry Y that quasi-conjugates the Isom(X)-action on X to an
isometric action of Isom(X) on Y. Let F : Isom(X) — Isom(Y') denote the
induced homomorphism. If G and G’ are both residually finite, then F(G)
and F(G') are weakly commensurable in Isom(Y).

Abstract commensurability of G and G’ follows from their residual finite-
ness, and the weak commensurability of F/(G) and F(G’). So Theorem 1.1
follows immediately from the statement of Theorem 6.1. All that remains
to be proven of Theorem 6.1 is given by the following statement:

THEOREM 6.2. — Let X be an ideal model geometry. Let T and T” be
uniform lattices of Isom(X). If ' and I are residually finite, then they are
weakly commensurable in Isom(X).
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Proof of Theorem 6.1. — Proposition 4.5 yields the quasi-conjugacy f.
The statement follows immediately by an application of Theorem 6.2, since
the groups F(G) and F(G’) will be quotients of G and G’ by finite, normal
subgroups, and will therefore also be residually finite. O

We take a moment to motivate the proof of Theorem 6.2. See Figure 6.1
for an illustration. Let X be an ideal model geometry for I, T” < Isom(X).
By residual finiteness, we can assume that T' and I are torsion free by
passing to finite-index subgroups. The spaces y = I'\X and x' = I"\X
decompose as finite graphs of spaces with vertex spaces that are closed
hyperbolic manifolds or points and edge spaces that are isometric to [0, 1].
We think of these spaces as being a hybrid between graphs and hyperbolic
manifolds. The ultimate goal is to construct homeomorphic finite covers
of x and x’, which would imply their fundamental groups are abstractly
commensurable. To construct these covers, we set up the framework to ap-
ply symmetry-restricted Leighton’s theorem (Theorem 1.15 in Section 1.2).
Importantly, this theorem applies only to locally finite trees and to groups
that act freely and cocompactly on such a tree. So, we find a common
(infinite-sheeted) cover ¥ of x and x’ so that the underlying tree is locally
finite and so that m (x) and 71 (x’) virtually act freely on this tree by deck
transformations.

X\
ﬂ‘_

Figure 6.1. An illustration of the proof up to the point of Proposi-
tion 6.3. The space X is a common cover of x and x' with locally
finite underlying tree. Note that the underlying tree of X in this exam-
ple is the simplicial line, but in general it could be any locally finite
tree.
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In the first stage of our argument, we pass to finite covers ¥ — x and
X — X’ that are locally isomorphic in the sense that if X, and X! are vertex
spaces of ¥ and )’ that have lifts to X in the same Isom(X) orbit, then
Xv and X', are isometric. In Section 6.1 we construct common covers of the
vertex spaces by taking a certain kind of normal core of the vertex groups.
In Section 6.2 we obtain X and X’ by constructing quotient homomorphisms
from 1 (x) and 7 (x’) to virtually free groups obtained by quotienting the
vertex groups by the normal cores obtained in the previous section. By
passing to torsion-free finite-index subgroups of the virtually free groups,
we obtain finite-index subgroups corresponding to X and X’. In Section 6.3,
we prove that ¥ and X’ have isometric regular covers ¥ = ¥’ which de-
compose as locally finite trees of spaces. Finally, in Section 6.4, we prove
that if 7" is the underlying tree of the space X, then Isom(X) < Isom(T) is
symmetry restricted. The images of 7 (X) and 71 (Y’) in Isom(x) are free
uniform lattices, so the main theorem will follow from an application of
Theorem 1.15.

6.1. Finite covers of the vertex spaces

Let H =Isom(X). Let v € VT, let X;F = N1(X,), let H, = Staby (X,"),
and let
K, = H,/Fixg(X,) < Isom(X;").

Let g, : H, — K, denote the quotient map. The space X, is either iso-
morphic to a vertex with a finite number of edges attached in a star, or
it is isomorphic to Hf} with edges isometric to [0, 1] attached at a discrete
subset of distinct points. We consider the latter case where X, is isometric
to H. We will refer to such v € V'I' as one-ended vertices and denote their
subset by V1T C VT.

The group K, acts geometrically on X;'. Indeed, since the edges at-
tached to X, in X are preserved by K,, we deduce, as before (see the
proof of Lemma 5.2), that K, acts properly on X,. Both I';, and I"} are
embedded in K, by the map ¢, (again, see the proof of Lemma 5.2). So,
K, acts cocompactly on X, and T', and T') are embedded as finite-index
subgroups of K, by Lemma 2.2. Thus, the group K, acts geometrically on
X . Moreover, for all h € H such hu = v the subgroups I'* and (T",)" are
also embedded as finite-index subgroups of K, via the map g, . Since there
are only finitely many I and I orbits of vertices, there is a global upper
bound on the index of ¢,(T'?),q,((I',)") < K,. Therefore, the following

ANNALES DE L’INSTITUT FOURIER



ACTION RIGIDITY 535

group is a finite-index normal subgroup of K,
K, = ﬂ (T N, ((l—‘;)h) 4 K,.
{h€eH | hu=v}
Indeed, to verify normality, let k& € K,. The element k is represented by
some h’ € H,. Then,

- N (o)

{h€eH | hu=v}

- N a0 (@)™
{h'heH | h' hu=v}
Moreover, since this same computation holds for all k£ € ¢,(T,) and k €
qv(T)) we deduce that K, is also a normal subgroup of ¢,(T',) and ¢, (I7).
If v € T, then K, is a finite-index subgroup of both T, and I'). Let
bv * Xo = Xov and @ 1 X. — X, be the associated finite-sheeted regular
covers.

6.2. Locally-isomorphic finite covers ¥ — x and Y’ — \’

Suppose the spaces x = I'\X and x’ = I"\ X have underlying graphs T
and Y’, respectively. Recall, the cone of a topological space Z is defined to
be the quotient space Cone(Z) = (Z x [0,1]) / (Z x {1}). Define quotient
spaces

Y = (X |_| Cone()’{u)> / ~ and Y'= <X/ |_| Cone(;?@)) / ~
ueWVL Y ueVy Y’
where the equivalence relations ~ are given by ¢, (z) ~ (z,0) and ¢/, (z') ~
(2’,0) for each u € V1T, where ¢, and ¢/, are the covering maps defined
above. There are natural embeddings 6 : x - Y and 6’ : Y’ — Y".
On a group theoretic level,
() = T (Xer) * - * T (Xo,) * F2,
where vy, ...,v,, are the one ended vertices in Y. Then, take the quotient
T1(Y) = m1 (X0, )/T1(Xoy) * - % T1(Xo,, ) /71 (Ko ) * Fo-

An analogous construction is applied to 1 (') to obtain 71 (Y”). The groups
71 (Xw; ) /71 (Xo;) and m1(x;,.)/m1(X,,) are finite groups. Hence, the groups
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m1(Y) and 71 (Y”) are virtually free. Thus, there exist finite-sheeted cov-
ers Y — Y and Y/ — Y’ with free fundamental groups. Let ¥ — x be
the finite-sheeted cover corresponding to 6, l(wl(?)), and ¥’ — x’ be the
finite-sheeted cover corresponding to (8')7 (w1 (Y”)). The vertex spaces in
X covering ¥, are isomorphic to X, and the covering maps are precisely
¢w. An analogous statement holds for the vertex spaces in X’.

6.3. A common regular cover with locally finite underlying
graph

There is a normal subgroup of m () generated by the vertex groups
and all their conjugates in 71 (). The corresponding regular cover Y — X
decomposes as a tree of spaces. The induced covering map X, — X, given
by restricting to a vertex space, is an isometry. Alternatively, if T is the
underlying graph for ¥, then ¥ is the covering space determined by the
universal cover of Y. Similarly, we obtain the corresponding regular covering
X =X

PROPOSITION 6.3. — There is an isometry ¢ : X — X'.

Proof. — Let T := m()\T and T := 71 (¥')\T denote the underlying
trees of ¥ and Y’ respectively. The induced covering maps P : X — x and
P’ : X — ¥’ respect the tree of spaces decomposition. So, there are quotient
maps p: T — T and p/ : T — T’ so that P induces a cover X, — Xp(v)
for each v € VT, and similarly for P’. Choose an exhaustive enumeration
Ug, U1, Us, . . . of the vertices of T such that {ug, ..., u,} span a subtree of T
for all n € N. Let ¥, and ¥/t denote the 1- nelghborhood of the respectlve
vertex spaces as before. We will inductively define @, : T — T" and the
map  along with it.

Choose vy € V1T such that p(vg) = ug. The covering map X,& — X, is
induced by quotienting by Kv0~ Let uy = p’(vo) and observe that X;B —
)E’:/ is also obtained by quotienting by IA(UO. If vo € ViT then )2?[0 =

K, \X} = v;jé so there is an isometry ¢o : i — )Z;jé such that the
followmg diagram commutes:

1)0

SN

oI+
X'u.o > X ’
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Now, we may proceed inductively, assuming that isometries g, . .., ©p—1
have been defined, and the map ¢, is defined on all vertices ug, ..., up—1
and their incident edges. For all ¢ < n there exists v; € VT and a map ;
has been defined such that the following commutes:

+
X

The vertex uy, is incident to some u; for j < n via an edge e,,. Then there
exists a vertex v, € VT incident to v; via an edge €, such that p(v,) = uy,
and p(é,) = en. Let u,, = p'(v,) and €], = p/(€,). Note that e/, connects
)} to uy,. If v, € ViT then as in the initial case X = K,,\X; = X,/
commutes:

X

Un

so there is an isometry ¢, : XI — )v(;f, such that the following diagram
+

o $n o/

Otherwise, if v, ¢ V4T then the covering maps X,/ — X and X} — ¥/}

are isometries and ¢, is given by the composition ., — Xj: = )“(j, SO
the diagram commutes. Again, as in the initial case, if e is an edge incident
t0 Uy, then @,(Xe) = Xer, where e and e’ both correspond to the same
IA(U,,L—orbit of edge incident to v, in T'. The edge space X7 covers Xe, and
Xé; respectively by an isometry, so ¢, will map Xe, to Xe: so we deduce
that ¢, is consistent with ¢; on the edge space Xe, = Xif, N X4, -

The induction is complete and taking all the ¢, gives a well defined
function ¢ such that ¢, is a local isometry between two trees, and hence

an isomorphism. O

Identifying ¥ with ¥’, we can say that ¥ is a common regular cover of
both ¥ and Y.

6.4. The group Isom(Y) < Isom(7T) is symmetry restricted

Recall the notion of a symmetry restricted subgroup given in Defini-
tion 1.13. There are maps P : m(X) — Isom(x) and P’ : m(Y) —

¥

Isom(¥x). Let ® : Isom(x) — Isom(7') be the natural map induced by
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9 v

the tree of spaces decomposition X — T. Let F := ® o P(m(YX)) and
F':=®o0 P'(m(X))-

LEMMA 6.4. — The groups F and F’ are free uniform lattices in Aut(T).

Proof. — The fundamental groups 71 (Y) and 71 (Y’) act cocompactly on
X by construction. To show that F' and F’ are free, we claim that F and F’
act freely on the locally finite tree T. Indeed, if a vertex v € T is stabilized
by an element ® o P(g), then g must stabilize x,, and so fixes X, since by
construction the covering map X, — X, is an isometry. O

LEMMA 6.5. — The group H := ®(Aut(x)) is a 1-symmetry restricted
subgroup of Aut(T); that is,

H = (H) < Aut(T).

Proof. — Suppose that g € .#(H). We wish to find h € Aut(Y) such
that ®(h) = g. By the definition of .} (H), for each v € VT the restriction
gy : N1(v) — Ni(gv) is equal to the restriction of some h, € Aut(X) to
N1(Xw) = Xi©- If w and v are adjacent vertices then the isometries h,, and h,
agree on the edge space Y. = Xi7 N X, where e is the edge connecting u
to v. See Figure 6.2. Thus, we can define an isometry h of X to be h,
on X 0

X -

Figure 6.2. An illustration of the gluing in Lemma 6.5.

Proof of Theorem 6.2. — By applying Theorem 1.15 we obtain heH
such that F = hFh~' N F’ is a finite-index subgroup of both hFh™!, and
F'. Thus h=*Fh is a finite-index subgroup of F' with associated finite cover
X — X, that is isometric to the finite cover ¥’ — X’ associated to F, a finite-
index subgroup of F’. Thus we have an element h € H such that (m;%)" is
equal to m1Y’, and thus A commensurates I' to IV in H. O
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7. Free products of finite extensions

Let G be a uniform lattice in Isom(H}), and suppose that there exists a
finite extension
1= F—=2E—-G—1

such that E is not residually finite. Since G is residually finite, by taking
the preimage in E of a torsion-free, finite-index subgroup of GG, we can
assume that G is torsion free. The non-residual finiteness of E implies that
there exists some element of E that lives in every finite-index subgroup
of E. Since G is residually finite, this element must lie in F. Let f € F
denote such an element. As F' is finite, let r be the order of f.

Consider the hyperbolic triangle group

A = A(r,5,5) = {(a,b,c | a® = b* = ¢* = (ab)" = (be)® = (ac)® = 1).
Consider the following amalgamated free product:
H = Ex(py=(ap) A
We will show the following:

ProproSITION 7.1. — Under the assumption that E is not residually
finite, the group H is not action rigid. Moreover, there exists H' that shares
a common model geometry with H, but is not even virtually isomorphic
to H.

Proof. — First we construct a model geometry for H. Let T be the Bass—
Serre tree for H. Let v be the vertex stabilized by F < H and u be the
adjacent vertex stabilized by A < H. Let e = {v,u}. Let X, := Hft. We
have a geometric action of E on X, given by the surjection onto G. Fix a
basepoint z,, € X,. Note that z, is fixed by F', while G itself acts freely on
X,. Let X, := H? with the associated A-action. Fix the basepoint =, € X,
to be the unique fixed point of the torsion element ab € A.

Let 1,hq,hs,... be coset representatives of H/H, and let [h], denote
the coset containing h. The vertices v, hyv, hav, ... are the H-orbit of v.
Similarly, let 1, ], k5, ... be coset representatives of H/H,, and [h], denote
the corresponding coset. The vertices u, hiu, hou, . .. are the H-orbit of w.
Define an action of H on X, x H/H, by letting

he (@, [hlo) = (b5 'hhi - @, [hy)e = [hhaly),

which is well defined since [h;], = [hh;], implies that h;lhhi € H,. Simi-
larly, define an action of H on X, x H/H, by letting

h-(z,[W]w) = ('] b 2, W], = [hhi]w).
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For h € H, let [ﬁ]e denote the coset hH, in H/H,. Define the H-action on
(0,1} x H/H, by
h - (a7 [h]e) = (a’ [hh]e)

for h € H. We define the model geometry to be the quotient space

X :=(X,x H/H,) x (X, x H/H,) x ([0,1] x H/H_.)/ ~
by letting

(0, [Ale) ~ (hi  hay, [h]s = [hil.)

and

(L [Ale) ~ (A" haw, [Alu = [Aa)-

K2

Note that this does not depend on the choice of representative h since H,
fixes x, and z,. We can verify that the H action on the disjoint union
passes to the quotient space by observing that

h- (0, [h]e) = (0, [hh].)

(5 hhazy, (W), = [hy),)

( hthh)( 1hxv)7 [hhily = [h]0)
= h- (hi ' ha, [ho = [hil)-

~

Since (0, [h)e) ~ (h;lﬁxv, [h]y = [hi]v), we conclude that the action re-
spects the relation ~, so H acts on X.
The space X decomposes as an H-equivariant tree of spaces via the map

p: X—>T

given by mapping (z, [h],) — hv and (z,[h}],) — hiu and linearly map-
ping [0,1] x [h]. to the edge he so that (0, [k].) — hv and (1, [h].) — hu.

The vertices of the underlying tree T are bicoloured according to whether
the vertex space is isometric to HZ or H?. Within each vertex space iso-
metric to HY there are |F|/r edge spaces attached to each G-orbit point of
%, and in each vertex space isometric to H? there is a single edge space
attached to each A-orbit point of x,. Any other space that decomposes in
the fashion described will be isometric to X, since a suitably chosen isome-
try between vertex spaces can be extended to the incident edge space, then
the neighbouring vertex spaces, and so on through the entire tree of spaces.

We now construct H’'. Let p = |F|/r. Let A’ < A be a torsion-free,
finite-index subgroup. Note that r divides [A : A’] so let ¢ = [A : A']/r.
Let

H' = (x{_1G) * (x]_1 A") ¥ Fpgpgi1
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Realize H' as the fundamental group of a graph of spaces obtained by
taking ¢ copies of G\ X, and p copies of A’\ X,,. The underlying graph will
be the bipartite graph I" with ¢ vertices of valence p with vertex space G\ X,
and p-vertices of valence g with vertex space A\ X,,. The edge spaces will
be intervals with endpoints attached to either the basepoint Z, € G\ X,
covered by x,, or the ¢ distinct points in A’\X,, covered by the orbits
of Az, C X,. The resulting graph of spaces Y will have universal cover
isometric to X.

To see that H and H' are not virtually isomorphic, suppose J is a finite
normal subgroup of T, where T is a finite-index subgroup of H or H'. Then,
J will fix a vertex of T (since J is finite), and therefore the entire Y-orbit
of that vertex (since J is normal), and thus J will fix the entire tree T. The
only elements of H or H’ that fix the entire tree are the identity, so J must
be trivial. Thus if H and H' are virtually isomorphic, then they must be
abstractly commensurable, which is impossible since H' is residually finite,
H is not, and residual finiteness is a commensurability invariant. O
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