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CHEEGER INEQUALITIES FOR GRAPH LIMITS

by Abhishek KHETAN & Mahan MJ (*)

Abstract. — We introduce notions of Cheeger constants for graphons and
graphings. We prove Cheeger and Buser inequalities for these. On the way we
prove co-area formulae for graphons and graphings.

Résumé. — Nous introduisons des notions de constantes de Cheeger pour les
graphons et graphings. Nous prouvons des inégalites de Cheeger et Buser pour
celles-ci. Ce faisant, nous prouvons des formules de la co-aire pour les graphons et
graphings.

1. Introduction

The Cheeger constant, introduced in Riemannian geometry by Cheeger
[10] in the early 70’s measures the “most efficient” way to cut a closed Rie-
mannian manifold into two pieces, where efficiency is measured in terms of
an isoperimetric constant. Cheeger [10] and Buser related this geometric
quantity to a spectral quantity (the bottom of the spectrum of the Lapla-
cian). These are the well-known Cheeger–Buser inequalities in Riemannian
geometry (see [7, Section 8.3] for details). A discrete version of the Cheeger
constant and the Cheeger–Buser inequalities was then obtained indepen-
dently by Dodziuk [13] and Alon–Milman [1, 2] for finite graphs (see [12]
for a number of different proofs and [21] for a survey). These ideas and
inequalities have also been extended to weighted graphs [16] (see also [11,
Chapter 2, p. 24], [23]). In a certain sense, this marked a fertile way of
discretizing a notion that arose in the setup of continuous geometry.

More recently, the theory of graph limits, graphons and graphings was
developed by Lovasz [20] and others (see especially [4, 5, 6, 8]) giving a
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method of obtaining measured continua from infinite sequences of finite
graphs. From a certain point of view, this gives us a path in the opposite
direction: from the discrete to the continuous.

Such continuous limits come in two flavors: dense graphs (graphons) or
sparse graphs (graphings). A graphon is relatively easy to describe: it is a
bounded (Lebesgue) measurable function W : I2 → I that is symmetric:
W (x, y) = W (y, x) for all x, y ∈ I. A graphing on the other hand may be
thought of as a measure on I2 that can be locally described as a product
of a sub-probability measure on I with the counting measure on a set of
uniformly bounded cardinality (see Sections 2.1 and 2.2 for details). Each
of the co-ordinate intervals I × {0} and {0} × I may be thought of as the
vertex set of the graphon or graphing and is equipped with a Borel measure.

The aim of this paper is to define the notion of a Cheeger constant
for graphons and graphings and prove the Cheeger–Buser inequalities for
them. For both a graphon W and a graphing G, the Cheeger constants hW

and hG respectively measure (as in Cheeger’s original definition) the best
way to partition the “vertex set” I into A,Ac such that the isoperimetric
constant is minimized. For instance for a graphon W ,

(1.1) hW = inf
A⊆I : 0<µL(A)<1

eW (A,Ac)
min{volW (A), volW (Ac)} ,

where eW (A,Ac) measures the total measure of edges between A,Ac (see
Definitions 2.2 and 3.1 below for details). A rather different Cheeger-type
inequality for graphings (but not for graphons) involving von Neumann
algebras was explored by Elek in [15].

The main theorem of the paper is the following (see Theorems 5.1, 5.3,
6.2 and 6.4):

Theorem 1.1. — Let W be a connected graphon and λW denote the
bottom of the spectrum of the Laplacian. Then

h2
W

8 ⩽ λW ⩽ 2hW .

Again, let G be a connected graphing and λG denote the bottom of the
spectrum of the Laplacian. Then

h2
G

8 ⩽ λG ⩽ 2hG.

Connectedness in the hypothesis of Theorem 1.1 above is a mild technical
restriction to ensure that the Cheeger constant is well-defined.
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Finite graphs versus graph limits

The classical Cheeger–Buser inequalities for finite graphs can be obtained
(modulo a factor of 4) as an immediate consequence of Theorem 1.1 for
graphings using the following canonical graphing that corresponds to a
finite graph. For any finite connected graph F on {1, . . . , n} as the vertex
set, we can define a graphing G = (I, E, µ) as follows: Let vi = (2i− 1)/2n
for 1 ⩽ i ⩽ n. Define E as

E = {(vi, vj) : {i, j} is an edge in F}

Define µ as µ(vi) = 1/n for each i. Thus µ(B) = 0 for all Borel sets which
do not contain any of the vi’s. It is easy to check that G is connected, and
the Cheeger constant of G and the Cheeger constant for F are equal. The
same is true for λG and λF . So we get

h2
F

8 ⩽ λF ⩽ 2hF

as a special case of Theorem 1.1 for graphings.
However, the situation becomes more interesting when we use graphons

rather than graphings in the above. Indeed, any graph F on {1, . . . , n}
naturally gives rise to a graphon W by writing W (x, y) = 1 if there is
an edge between the vertices ⌈nx⌉ and ⌈ny⌉, and 0 otherwise. Clearly,
hW ⩽ hF . So a natural question is to ask for lower bounds on hW /hF . We
investigate this in Section 4.1. In particular, we obtain the result that if F
is any regular connected graph on n vertices, and W is the graphon arising
from F , then

(1.2) hW /hF ⩾ (1 − ε)
(

1 − 2
nε2

)
for all 0 < ε < 1. So if n is large then the two Cheeger constants are close.
The proof of this assertion is probabilistic in nature.

In Section 4.2 we see that the bottom of the spectrum of the normalized
Laplacian of W is at least half the smallest nonzero eigenvalue of the (nor-
malized) Laplacian of F . So for regular graphs one can recover Cheeger
type inequalities from the Cheeger inequalities for graphons.

Formalism of differential forms

We have stated Theorem 1.1 in the form above to demonstrate the fact
that the statements for graphons and graphings are essentially identical. In
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fact, once the preliminaries about graphons and graphings are dealt with in
Section 2, the proof of Theorem 1.1 in the two cases of graphons and graph-
ings follows essentially the same formal route. Thus, though structurally
graphons and graphings are quite dissimilar, the proofs of the Cheeger–
Buser inequalities have striking parallels. This is quite unlike some of the
other spectral theorems exposed in [20] (see in particular the differences in
approach in [4, 5, 6]).

To emphasize this formal similarity of proof-strategy in the two cases,
Sections 3 and 6 have been structured in an identical manner. In both
cases, we use the formalism and language of differential forms and define
the Laplacian ∆ = d∗d on functions after proving that the “exterior deriva-
tive” d is continuous. This is adequate for Buser’s inequality (Theorems 5.1
and 6.2). The proof of the Cheeger’s inequality part of Theorem 1.1 we then
furnish (Theorems 5.3 and 6.4) adapts Cheeger’s original idea from [10].
Thus, we prove co-area formulae in the two settings of graphons and graph-
ings (see Theorems 5.2 and 6.3). This might be of independent interest.

1.1. Connectivity

Finally, in Section 7 we investigate connectivity. For a finite graph F

it is clear that the Cheeger constant of F is positive if and only if F is
connected. This is equivalent, via the Cheeger–Buser inequality for finite
graphs, to the statement that a graph is connected if and only if the nor-
malized Laplacian has a one dimensional eigenspace corresponding to the
zero (lowest) eigenvalue. The analogous statement is not true for either
graphons or graphings. We furnish counterexamples in Sections 7.1 and 7.2
respectively. However, for graphons whose degree is bounded away from
zero, we prove the following equivalence (see Proposition 7.7):

Proposition 1.2. — Let ε > 0 and W be a graphon such that dW (x) ⩾
ε for all x ∈ I. Then W is connected if and only if hW > 0.

We provide two proofs of this theorem, one of which uses the Cheeger–
Buser inequality for graphons from Theorem 1.1 and the other a structural
lemma about connected graphons proved in [3].

1.2. Proof strategy and relation with existing literature

It is natural to try to prove the Cheeger–Buser inequalities for graphons
by approximating a given graphon W by a sequence of finite graphs in

ANNALES DE L’INSTITUT FOURIER
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the cut norm and then prove that the Cheeger constants of the sequence
of graphs converge to the Cheeger constant of the graphon. However, the
convergence of Cheeger constants turns out to be a subtle issue, and in
general it is not true that convergence in the cut norm implies convergence
of Cheeger constants (See Section 5.1 for a counterexample).

Thus to prove the desired inequalities we resort to techniques motivated
and informed by geometry and differential topology rather than combina-
torial methods. We go back to Cheeger’s original proof in the context of
Riemannian geometry [9, Theorem 3, Chapter IV], which we outline for
completeness: Let M be a compact Riemannian manifold without bound-
ary. Let dV denote the Riemannian volume form, hM denote the Cheeger
constant, and λ denote the bottom of the spectrum of the Laplacian of M .

(1) Let g : M → R be an arbitrary smooth map with
∫

M
g2 dV = 1

and
∫

M
g dV = 0. The goal is to show that

∫
M

|∇g|2 dV ⩾ h2
M/4

(2) Translate g to get a map f such that the volumes of M+ := {f⩽0}
and M− := {f ⩾ 0} are the same. Note that

∫
M

|∇g|2 dV ⩾∫
M

|∇f |2 dV , so it suffices to show that the latter dominates h2
M/4.

(3) Use the Cauchy–Schwarz inequality to get

∫
M

|∇f |2 dV ⩾
1
4

[∫
M+

|∇f2| dV +
∫

M+

|∇f2| dV
]2

(4) Use the Co-area formula to write
∫

M±
|∇f2| dV as integrals of the

areas of fibers (slices of M) of f2, and then use the definition of the
Cheeger constant to finish.

We adapt the above proof to the case of graph limits by developing a
suitable co-area formula with “volume” of a subset A of I meaning the
“sum of degrees of the vertices in A” and the “area” of a slice being the
“number of edges crossing the slice.” In the process we outline the more
geometric content of graph limits by explicitly describing the differential
operators d (an analog of the gradient operator) and the adjoint d∗ (an
analog of the divergence operator). An implicit and partial aim of this
paper is to make at least some parts of the beautiful theory of graph limits
accessible to a geometrically inclined audience. We have therefore provided
some of the arguments in complete (possibly painful!) detail.

The proof we give for the Cheeger inequality also has some philosophical
similarity with the combinatorial proof of [11, Thereom 2.2]. However the
techniques do not quite apply here. The proof there starts with an eigen-
function of the Laplacian and uses a reordering of vertices, neither of which
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can be done in our situation. These technical difficulties are circumvented
by using the co-area formula.

The applications of Cheeger’s inequalities in graph theory have been
considerable: in the construction of expanders [17], spectral partitioning
in graph clustering [22], algorithms for analyzing Markov chains [18] and
so on. It is therefore natural to be expect that in the future there will be
several applications of Cheeger’s inequalities for graph limits.

Acknowledgments

The authors are grateful to Sourav Chatterjee for a talk on graph limits
that sparked off our interest in the subject, and to Manjunath Krishna-
pur and Ankit Rai for useful comments. Finally, we thank the anonymous
referee for helpful comments.

2. Preliminaries

In this section, we summarize general facts about graphons and graphings
that we shall need in the paper. Most of the material is from the book by
Lovasz [20], but in the subsection on graphings below we deduce a few
elementary consequences as well as a slightly different perspective from
that in [20].

2.1. Preliminaries on graphons

We summarize the relevant material from [20, Chapter 7]. Let I denote
the unit interval [0, 1] and µL denote the Lebesgue measure on I. A function
W : I2 → I is said to be a graphon if W is measurable and symmetric,
that is, W (x, y) = W (y, x) for all x, y ∈ I. Given a graphon W , we define
for each x ∈ I the degree of x as

(2.1) dW (x) =
∫ 1

0
W (x, y) dy

A graphon W is said to be regular if dW is constant µL-a.e. For two mea-
surable subsets A and B of I, we define

(2.2) eW (A,B) =
∫

A×B

W

ANNALES DE L’INSTITUT FOURIER
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Thus, eW (A,B) is the total weight of edges between A and B. For a mea-
surable subset A of I, the volume of W over A is defined as

(2.3) volW (A) =
∫

A×I

W = eW (A, I)

Thus, volW (A) measures the total weight of edges emanating from A.
A graphon is said to be connected if for all measurable subsets A of I

with 0 < µL(A) < 1 we have eW (A,Ac) ̸= 0. Note that if W is connected
then dW > 0 a.e.

2.2. Preliminaries on graphings

Let I denote the unit interval [0, 1].

Definition 2.1 ([20, Chapter 18]). — A bounded degree Borel graph
on I is a pair (I, E), where E is a symmetric measurable subset of I2 such
that there is a positive integer D satisfying

(2.4) |{y ∈ I : (x, y) ∈ E}| ⩽ D

for all x ∈ I.

In other words, the number of neighbors of each point in I is at most
D. Given a bounded degree Borel graph (I, E), we have a degree function
deg : I → R defined as

(2.5) deg(x) = |{y ∈ I : (x, y) ∈ E}|

For any measurable subset A of I we define degA : I → R as

(2.6) degA(x) = |{y ∈ A : (x, y) ∈ E}|

It is proved in [20, Lemma 18.4] that the map degA is a measurable function
for any measurable set A ⊆ I. Note that deg is nothing but degI .

Definition 2.2 ([20, Chapter 18]). — A graphing is a triple G =
(I, µ,E) such that (I, E) is a bounded degree Borel graph, and µ is a
probability measure on I such that

(2.7)
∫

A

degB(x) dµ(x) =
∫

B

degA(x) dµ(x)

for all measurable subsets A and B of I.

TOME 0 (0), FASCICULE 0
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Given a graphing G = (I, µ,E), the measure µ allows us to define a
measure η on I2 as follows. For each measurable rectangle A×B ⊆ I2, we
define

η(A×B) =
∫

A

degB(x) dµ(x).

(2.7) ensures that η(A×B) = η(B×A). By Caratheodory extension, we get
a measure η on the Borel σ-algebra of I2. As proved in [20, Lemma 18.14],
the measure η is concentrated on E.

A fundamental result proved in [20, Theorem 18.21] is that every graph-
ing can be decomposed as a disjoint union of finitely many graphings, each
having degree deg(x) bounded by 1 for all x. More precisely,

Theorem 2.3. — Let G = (I, µ,E) be a graphing. Then there exist
measurable subsets A1, . . . , Ak ⊆ I and µ-measure preserving involutions
φi : Ai → Ai such that

(2.8) E =
k⊔

i=1
{(x, φi(x)) : x ∈ Ai}

We can pictorially represent a graphing G = (I, µ,E) by drawing the
edge set E of G in the unit square. Each subset {(x, φi(x)) : x ∈ Ai} can
be thought of as a “strand” in I2. Thus the previous theorem allows us to
think of a graphing as a disjoint union of strands in the unit square. When
the degree bound of a graphing is 1, we may say that the graphing consists
of a single strand.

The measure η counts the number of edges in any measurable subset
of S ⊆ I2. When S = A × B is a rectangle, we count the number of
strands in S each vertical line cuts, and integrate this count against dµ.
This is immediate from the definition of η. This extends to arbitrary S, as
the following lemma shows. We shall use χA to denote the characteristic
function of the set A.

Lemma 2.4. — Let S be any measurable subset of I2. Then

(2.9) η(S) =
∫

I

∑
y

χE∩S(x, y) dµ(x)

Proof. — First let us see why the integral on the RHS makes sense. Using
Theorem 2.3 we know that there exist µ-measure preserving involutions
φi : Ai → Ai, i = 1, . . . , k, for some measurable subsets Ai of I, such that

(2.10) E =
k⊔

i=1
{(x, φi(x)) : x ∈ Ai}

ANNALES DE L’INSTITUT FOURIER
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Hence,

(2.11)
∑
y∈I

χE∩S(x, y) =
k∑

i=1
χS(x, φi(x))

Thus the integrand in the RHS of (2.9) is a sum of finitely many non-
negative measurable functions I → R and therefore the RHS of (2.9) is
well-defined.

Let ν(S) be the RHS of (2.4). Let us verify that ν is a measure on the
Borel σ-algebra of I2. So let S =

⊔∞
j=1 Sj be a countable disjoint union of

measurable sets. Then

(2.12) χS(x, φi(x)) =
∞∑

j=1
χSj

(x, φi(x))

⇒
k∑

i=1
χS(x, φi(x)) =

k∑
i=1

∞∑
j=1

χSj
(x, φi(x)) =

∞∑
j=1

k∑
i=1

χSj
(x, φi(x))

⇒
∫

I

k∑
i=1

χS(x, φi(x)) =
∫

I

∞∑
j=1

k∑
i=1

χSj
(x, φi(x)) dµ(x)

This implies that

ν(S) =
∫

I

lim
n→∞

n∑
j=1

(
k∑

i=1
χSj

(x, φi(x))
)

dµ(x)

= lim
n→∞

∫
I

n∑
j=1

(
k∑

i=1
χSj

(x, φi(x))
)

dµ(x)

= lim
n→∞

 n∑
j=1

∫
I

(
k∑

i=1
χSj

(x, φi(x))
)

dµ(x)


⇒ ν(S) = lim

n→∞

n∑
j=1

ν(Sj) =
∞∑

j=1
ν(Sj)

(2.13)

showing that ν is countably additive and is therefore a measure. Now let
S = A×B be a measurable rectangle. Then

ν(S) =
∫

I

∑
y

χE∩(A×B)(x, y) dµ(x) =
∫

A

∑
y

χE∩(I×B)(x, y) dµ(x)

=
∫

A

degB(x) dµ(x) = η(A×B)
(2.14)

TOME 0 (0), FASCICULE 0



10 Abhishek KHETAN & Mahan MJ

So ν agrees with η on the measurable rectangles. But since extension of
a finitely additive and countably sub-additive measure on the algebra of
measurable rectangles to the Borel σ-algebra is unique (Caratheodory Ex-
tension Theorem), we must have that ν = η and we are done. □

If we have a non-negative map ψ : I2 → R, then by definition of inte-
gration we have that ∫

I2
ψ dη = lim

n→∞

∫
I2
ψn dη(2.15)

where (ψn) is a sequence of non-negative simple functions such that ψn ↑ ψ.
This definition gives a theory of integration. We could define another theory
of integration by declaring the integral of ψ to be equal to

(2.16)
∫

I

∑
y∈I

ψ(x, y)χE(x, y) dµ(x)

By Lemma 2.4 these two theories agree on simple functions, and therefore
are the same theories of integration. So for any ψ ∈ L1(I2, η) we have

(2.17)
∫

I2
ψ(x, y) dη(x, y) =

∫
I

∑
y

ψ(x, y)χE(x, y) dµ(x)

3. Cheeger Constant, Laplacian, and the Bottom of the
Spectrum for a Graphon

3.1. Cheeger Constant for Graphons

Definition 3.1. — Given a graphon W , we define the Cheeger constant
of W as

(3.1) hW = inf
A⊆I : 0<µL(A)<1

eW (A,Ac)
min{volW (A), volW (Ac)}

It will be convenient to denote the quantity

(3.2) eW (A,Ac)
min{volW (A), volW (Ac)}

as hW (A). A symmetrized version of the above constant, which we call the
symmetric Cheeger constant is defined as

(3.3) gW = inf
A⊆I : 0<µL(A)<1

eW (A,Ac)
volW (A) volW (Ac)

ANNALES DE L’INSTITUT FOURIER
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The analogue of gW for finite graphs is called the averaged minimal cut
in [16]. Note that the above defined constants exist for connected graphons.
We shall need the notion of strong mixing below. A measure preserving
transformation T : I → I is called strong mixing if for all measurable
subsets A and B of I we have ηL(T−n(A) ∩B) → ηL(A)ηL(B) as n → ∞.

Lemma 3.2. — Let W be a connected graphon. Then hW ⩽ 1/2.

Proof. — Let A be the interval [0, 1/2] and write ηL to denote the
Lebesgue measure on I2. Define S : I → I as S(x) = 2x (mod 1), and
write An to denote S−n(A). Thus S is strong mixing, and hence so is
T := S × S : I2 → I2. Fix ε > 0. The strong mixing property of T gives
that

(3.4)
lim

n→∞

∫
I2

(χA×Ac ◦ Tn)W dηL =
(∫

I2
χA×Ac dηL

)(∫
I2
W dηL

)
= volW (I)/4

and

(3.5)
lim

n→∞

∫
I2

(χA×I ◦ Tn)W dηL =
(∫

I2
χA×Ac dηL

)(∫
I2
W dηL

)
= volW (I)/2

Therefore for n large enough we have

(3.6)

∣∣∣∣∣
∫

An×Ac
n

W dηL − volW (I)/4

∣∣∣∣∣ < ε

and

(3.7)
∣∣∣∣∫

An×I

W dηL − volW (I)/2
∣∣∣∣ < ε

From the last equation we also get

(3.8)

∣∣∣∣∣
∫

Ac
n×I

W dηL − volW (I)/2

∣∣∣∣∣ < ε

So we see that the ratio

(3.9)

∫
An×Ac

n
W dηL

min{
∫

An×I
W dηL,

∫
Ac

n×I
W dηL}

= hW (An)

can be made arbitrarily close to 1
4 volW (I)/ 1

2 volW (I) = 1/2 for n suitably
large. But hW ⩽ hW (An) and so we conclude that hW ⩽ 1/2. □

There certainly exist graphons with Cheeger constant 1/2, for example
the graphon which takes the value 1 everywhere.

TOME 0 (0), FASCICULE 0



12 Abhishek KHETAN & Mahan MJ

3.2. Definition of d, d*, and Laplacian of a Graphon

Let W be a connected graphon. Define

(3.10) E = {(x, y) ∈ I2 : y > x}, EW = {(x, y) ∈ E : W (x, y) > 0}

The set E can be thought of as an orientation of all the “edges”. The set
EW disregards the oriented edges which have zero weight.

Define a measure ν on I as

(3.11) ν(A) =
∫

A

dW (x) dx = volW (A)

for all measurable subsets A of I. In other words, the Radon–Nikodym
derivative of ν with respect to the Lebesgue measure is dW . Clearly, ν
is absolutely continuous with respect to the Lebesgue measure on I. The
connectedness of W implies that the Lebesgue measure is also absolutely
continuous with respect to ν. Thus we may talk about null sets in I un-
ambiguously. This also says that L∞(I, ν) = L∞(I, µL), and thus we write
these simply as L∞(I).

Similarly, define a measure η on EW as

(3.12) η(S) =
∫

S

W (x, y) dxdy

for all measurable subsets S of EW . So the Radon–Nikodym derivative of
η with respect to the Lebesgue measure is W . These measures give rise to
Hilbert spaces L2(I, ν) and L2(EW , η), the inner products on which will be
denoted by ⟨ · , · ⟩v and ⟨ · , · ⟩e respectively. Explicitly

(3.13) ⟨f, g⟩v =
∫ 1

0
f(x)g(x)dW (x) dx

for all f, g ∈ L2(I, ν), and

(3.14) ⟨φ,ψ⟩e =
∫

EW

φψW =
∫ 1

0

∫ 1

x

φ(x, y)ψ(x, y)W (x, y) dydx

for all φ,ψ ∈ L2(EW ). The standard inner products on L2(I, µL) and
L2(I2, µL ⊗ µL) will be denoted by ⟨ · , · ⟩L2(I) and ⟨ · , · ⟩L2(I2).

Define a map d : L2(I, ν) → L2(EW , η) as

(3.15) (df)(x, y) = f(y) − f(x)

for all f ∈ L2(I, ν). The map d can be thought of as a gradient which
measures the change in f as we travel from the tail of an edge to the head.
We need to check that df actually lands in L2(EW , η) for any given member
of L2(I, ν). This and more is proved in the following lemma.
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Lemma 3.3. — The map d is continuous.

Proof. — We want to show that d is bounded. Let f ∈ L2(I, ν). Then

(3.16) ∥df∥2
e

=
∫

EW

(df)2W

=
∫ 1

0

∫ 1

x

(f(y) − f(x))2W (x, y) dydx

⩽
∫ 1

0

∫ 1

0
(f(y) − f(x))2W (x, y) dydx

⩽
∫ 1

0

∫ 1

0
f2(y)W (x, y) dydx+

∫ 1

0

∫ 1

0
f2(x)W (x, y) dydx

+ 2
∫ 1

0

∫ 1

0
|f(x)f(y)|W (x, y) dydx

= 2
∫ 1

0
f2(x)dW (x) dx+ 2

∫ 1

0

∫ 1

0
|f(x)f(y)|W (x, y) dydx

The first term is the same as 2∥f∥2
v. So we need to bound the second term.

Let α, β : I2 → R be defined as

(3.17) α(x, y) = |f(x)|
√
W (x, y), β(x, y) = |f(y)|

√
W (x, y)

The fact that f ∈ L2(I, ν) implies that α, β ∈ L2(I2). Then we have

(3.18)
∫ 1

0

∫ 1

0
|f(x)f(y)|W (x, y) dydx = ⟨α, β⟩L2(I2)

But now by Cauchy–Schwarz inequality we have

(3.19) ⟨α, β⟩L2(I2)

⩽ ∥α∥L2(I2)∥β∥L2(I2)

=
(∫ 1

0

∫ 1

0
f2(x)W (x, y) dydx

)1/2(∫ 1

0

∫ 1

0
f2(y)W (x, y) dxdy

)1/2

= ∥f∥2
v

We conclude that ∥df∥e ⩽ 2∥f∥v. This shows that d is continuous. □

The above lemma shows that d∗, the adjoint(1) of d, exists. We now
calculate it explicitly. Let f ∈ L2(I, ν) and φ ∈ L2(EW , η) be arbitrary.

(1) Here, again, the adjoint is taken with respect to the Hilbert space structure coming
from ⟨ · , · ⟩v and ⟨ · , · ⟩e.
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We have

(3.20) ⟨df, φ⟩e

=
∫ 1

0

∫ 1

x

df(x, y)φ(x, y)W (x, y) dydx

=
∫ 1

0

∫ 1

x

(f(y) − f(x))φ(x, y)W (x, y) dydx

=
∫ 1

0

∫ 1

x

f(y)φ(x, y)W (x, y) dydx−
∫ 1

0

∫ 1

x

f(x)φ(x, y)W (x, y) dydx

Fubini=
∫ 1

0

∫ y

0
f(y)φ(x, y)W (x, y) dxdy −

∫ 1

0

∫ 1

x

f(x)φ(x, y)W (x, y) dydx

=
∫ 1

0

∫ x

0
f(x)φ(y, x)W (x, y) dydx−

∫ 1

0

∫ 1

x

f(x)φ(x, y)W (x, y) dydx

=
∫ 1

0
f(x)

[∫ x

0
φ(y, x)W (x, y) dy −

∫ 1

x

φ(x, y)W (x, y) dy
]
dx

On the other hand we have

(3.21) ⟨f, d∗φ⟩v =
∫ 1

0
f(x)d∗φ(x)dW (x) dx

Thus we have
(3.22)

(d∗φ)(x) = 1
dW (x)

[∫ x

0
φ(y, x)W (x, y) dy −

∫ 1

x

φ(x, y)W (x, y) dy
]

wherever dW (x) ̸= 0. We set (d∗φ)(x) = 0 if dW (x) = 0.

Remark 3.4. — We have adapted the language of differential forms above
so that we think of the map

d : C0(W ) → C1(W )

as an exterior derivative from 0−forms (i.e. functions on the vertex set) to
1−forms (i.e. functions on the set of directed edges). Then d∗ is the adjoint
map using the Hodge ∗:

d∗ : C1(W ) → C0(W ).

Alternately, in the presence of inner products on both the vertex and
edge-spaces (the situation here) we may think of d as an analog of the
gradient operator (grad or ∇) in classical vector calculus and d∗ as an
analog of the divergence operator div.
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Define the Laplacian of W as ∆W = d∗d. We may drop the subscript
when there is no confusion. For f ∈ L2(I, ν), we calculate (∆W f)(x).

(3.23) (∆W f)(x)
= (d∗df)(x)

= 1
dW (x)

[∫ x

0
df(y, x)W (x, y) dy −

∫ 1

x

df(x, y)W (x, y) dy
]

= 1
dW (x)

[∫ 1

0
(f(x) − f(y))W (x, y) dy

]
= f(x) − 1

dW (x)TW f(x)

where TW : L2(I, ν) → L2(I, ν) is a linear map defined as

(3.24) (TW f)(x) =
∫ 1

0
W (x, y)f(y) dy

The map TW is well-defined. Indeed, the integral on the RHS of (3.24)
exists. To see this, let 1 denote the constant map I → R which takes all
points to 1. Then 1 ∈ L2(I, ν), and thus

⟨|f |,1⟩v =
∫ 1

0
|f(y)|dW (y) dy < ∞

⇒
∫ 1

0
|f(y)|

[∫ 1

0
W (x, y) dx

]
dy < ∞

⇒
∫ 1

0

[∫ 1

0
|f(y)|W (x, y) dy

]
dx < ∞

(3.25)

Therefore
∫ 1

0 |f(y)|W (x, y) dy is almost everywhere finite and consequently
(TW f)(x) exists. It is also easy to check (using Cauchy–Schwarz) that TW f

lies in L2(I, ν). Therefore we have ∆W = I − 1
dW

TW .

3.3. Bottom of the Spectrum of a Graphon

Let us see what is the multiplicity of the singular value 0 of the Laplacian
of a connected graphon W . For f ∈ L2(I, ν), we have ∆f = 0 if and only
if df = 0. We claim that df = 0 if and only if f is constant (up to a set of
measure zero). Clearly, if f is constant, then df = 0. Conversely, assume
that df = 0. Thus

(3.26)
∫

EW

(df)2W =
∫

E

(df)2W =
∫ 1

0

∫ 1

x

(f(y) − f(x))2W (x, y) dydx = 0
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which implies that

(3.27)
∫ 1

0

∫ 1

0
(f(y) − f(x))2W (x, y) dydx = 0

For each t ∈ R, let St = f−1(t,∞). From the last equation we have

(3.28)
∫

Sc
t ×St

(f(y) − f(x))2W (x, y) dydx = 0

which implies that (f(y) − f(x))2W (x, y) is a.e. 0 on Sc
t × St. But f(y) −

f(x) ̸= 0 for all (x, y) ∈ Sc
t × St, which means that W = 0 a.e. on Sc

t × St.
The connectedness of W then implies that either St or Sc

t has measure 0.
So our claim follows from the following lemma.

Lemma 3.5. — Let f : I → R be a measurable function such that for
all t ∈ R we have either f−1(−∞, t] or f−1(t,∞) has measure 0. Then f

is essentially constant.

Proof. — Let

(3.29) t0 = inf{t ∈ R : f−1(−∞, t] is full measure}

Then t0 ̸= −∞. This is because I =
⊔

n∈Z f
−1(n, n+1]. Thus f−1(n, n+1]

has positive measure for some integer n, and this n cannot exceed t0. Also,
by definition of t0, we have that f−1(−∞, t0 − 1/n] has measure 0 for each
n. Thus f−1(−∞, t0) also has measure 0. Again, by definition of t0 we have
that f−1(t0 + 1/n,∞) has measure zero for all n, and thus f−1(t0,∞) has
measure zero. So we conclude that f−1(t0) has full measure. □

So we have shown that the eigenfunctions corresponding to 0 are precisely
the essentially constant functions. In other words, the eigenspace of ∆
corresponding to 0 is generated by 1, the constant function taking value 1
everywhere. The bottom of the spectrum denoted λW is therefore given by
the following Rayleigh quotient:

(3.30) λW = inf
f∈1⊥

v ,f ̸=0

⟨f,∆f⟩v

⟨f, f⟩v
= inf

f∈1⊥
v ,f ̸=0

∥df∥2
e

∥f∥2
v

(Here, 1⊥
v denotes the orthogonal complement of 1 with respect to the

inner product ⟨ · , · ⟩v).

4. Finite graphs and graphons

The purpose of this section is to explore the relationship between the
Cheeger constant of a finite graph with that of a canonically associated
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graphon. Similarly we study the relationship between the bottom of the
spectrum of a finite graphs with that of its canonically associated graphon.

4.1. Cheeger constant of a graph versus that of the
corresponding graphon

In what follows, by a weighted graph we mean a pair (V,w), where w :
V × V → [0, 1] is a symmetric map. Every weighted graph G naturally
gives rise to a graphon. It is natural to ask about the relation between
their Cheeger constants. Clearly that hW ⩽ hG. The aim of this section
is to put a lower bound on the ratio hW /hG when G is loopless, where a
loopless weighted graph is a weighted graph (V,w) such that w(x, x) = 0
for all x ∈ V . We will also assume that all the weighted graphs considered
are connected. This means that whenever we partition the vertex set into
two parts, the total weight of the cut is positive. The volume of a vertex v
of a weighted graph (V,w) is defined as vol(v) =

∑
u∈V wuv. We also define

vol(G) =
∑

v∈V vol(v).
Given any set V , a fractional partition of V is a pair (ρ, η), where ρ, η :

V → I are functions such that ρ(u) + η(u) = 1 for all u ∈ V . Note that
a true partition of V (into two parts) can be thought of as a fractional
partition (ρ, η) such that ρ and η takes values in {0, 1}.

Let G = (V = [n], w) be a weighted graph. We define the fractional
Cheeger constant of G as follows: For a fractional partition (ρ, η) of V , we
define

(4.1) h̃(G; ρ, η) =
∑

u,v∈V ρ(u)η(v)w(u, v)
min{

∑
u∈V ρ(u) vol(u),

∑
v∈V η(v) vol(v)}

Of course, the above is well-defined only when ∥ρ∥ :=
∑

u∈V ρ(u) vol(u) ̸= 0
and ∥η∥ :=

∑
v∈V η(v) vol(v) ̸= 0, and throughout we will tacitly assume

this condition. The fractional Cheeger constant of G is defined as

(4.2) h̃G = inf
(ρ,η)

h̃(G; ρ, η)

where the infimum runs over all fractional partitions (ρ, η) of V . Note that
the Cheeger constant of the graphon corresponding to a graph G is the
same as the fractional Cheeger constant of the graph G. The use of the
notion of fractional Cheeger constant is just for convenience. Therefore, by
Lemma 3.2 the fractional Cheeger constant of any weighted graph is at
most 1/2.(2)

(2) This can be seen directly. One can achieve the value 1/2 by choosing a fractional
partition which puts half of each vertex on one side and the other half on the other side.
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4.1.1. Realization of Fractional Cheeger

Lemma 4.1. — Let G = (V = [n], w) be a weighted graph. Then the
fractional Cheeger constant of G is realized by a fractional partition.

Proof. — Let h̃ be the fractional Cheeger constant of G and (ρ1, η1),
(ρ2, η2), (ρ3, η3), . . . be a sequence of fractional partitions of such that

(4.3) h̃(G; ρk, ηk) ⩽ h̃+ 1/k ⩽ 1/2 + 1/k

for all k. Without loss of generality, assume that ∥ρk∥ ⩽ vol(G)/2 for all
k. Since each ρn can be thought of as a member of the compact metric
space In, we may assume, by passing to a subsequence if necessary, that
ρn → ρ ∈ In. If ∥ρ∥ > 0 then it is clear that h̃(G; ρ, 1 − ρ) = h̃. So we
may assume that ρ(i) = 0 for all i. Then for all large enough k we have
ρk(i) < 1/3. Therefore

(4.4)
n∑

i,j=1
ρk(i)(1 − ρk(j))wij

=
n∑

i=1
ρk(i)

 n∑
j=1

(1 − ρk(j))wij


⩾

n∑
i=1

ρk(i)

 n∑
j=1

2wij/3

 = 2/3
n∑

i=1
ρk(i) vol(i)

Therefore

(4.5) h̃(G; ρk, ηk) =
∑n

i,j=1 ρk(i)(1 − ρk(j))wij∑n
i=1 ρk(i) vol(i)

⩾
2
3

Thus (4.3) gives 1/2 + 1/k ⩾ 2/3 for all large enough k. This is a contra-
diction. □

Next, define functions f : In → R and s : In → R as follows:

(4.6) f(x1, . . . , xn) =
n∑

i,j=1
xi(1 − xj)wij

and

(4.7) s(x1, . . . , xn) = x1 vol(1) + · · · + xn vol(n)

Taking the partial derivative of f with respect to xp, we have

(4.8) ∂f/∂xp =
n∑

j=1
(1 − 2xi)wpj
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and thus

(4.9) ∂2f/∂x2
p = 0

for any 1 ⩽ p ⩽ n since wpp = 0.

Lemma 4.2. — For k ⩾ 1, we have

(4.10) ∂k(f/s)
∂xk

p

= (−1)k+1k! vol(p)k−1

sk+1

(
s
∂f

∂xp
− vol(p)f

)
Proof. — Induction. □

Lemma 4.3. — Let G be a loopless weighted graph whose fractional
Cheeger constant is strictly less than its Cheeger constant. Then the frac-
tional Cheeger constant of G can be achieved at a fractional partition (ρ, η)
such that ∥ρ∥ = ∥η∥.

Proof. — Suppose that the fractional Cheeger constant of G is achieved
at a fractional partition (ρ, η) such that ∥ρ∥ < ∥η∥ and write ai = ρ(i).
Without loss of generality, assume a1 ⩽ · · · ⩽ an. Some ai must be strictly
between 0 and 1, for otherwise the fractional Cheeger constant of G would
be equal to the Cheeger constant of G. Say p ∈ [n] is such that 0 < ap < 1.
Now

(4.11) ∂(f/s)
∂xp

= 1
s2

(
s
∂f

∂xp
− vol(p)f

)
If this quantity were not zero, then we could perturb ap slightly to de-
crease the value of f/s, which would mean that the fractional Cheeger
constant of G could be reduced, contrary to the choice of (ρ, η). But this
would contradict the fact that the fractional Cheeger constant is realized
at (x1, . . . , xn) = (a1, . . . , an). But then by Lemma 4.2, we see that all the
partial derivatives of f/s with respect to xp vanish at the point (a1, . . . , ap).
Since the function f/s is analytic, this means that the function f/s does
not change when we perturb the p-th coordinate. So we may increase it as
much as we can, that is, we may push it all the way up to 1 if s does not
cross vol(G)/2 in the process, or stop as soon as s hits the value vol(G)/2.
If we hit s = vol(G)/2 we stop since we have proved our claim. Otherwise
we can set xp = 1, and repeat the process for the remaining q’s for which
0 < aq < 1. It cannot be the case that all xi will be either 0 or 1 at the end
of this process, since if that were so then the fractional Cheeger constant of
G would be equal to the Cheeger constant of G, contrary to the hypothesis
of the lemma, completing the proof. □
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4.1.2. Comparing the Cheeger constants

Lemma 4.4. — Let G = (V = [n], w) be a loopless weighted graph.
Then for all 1 > ε > 0, we have that

(4.12) h̃G

hG
⩾

(
1 − 2γ

ε2n

)
(1 − ε)

where

(4.13) γ = max{vol(i) : 1 ⩽ i ⩽ n}
min{vol(i) : 1 ⩽ i ⩽ n}

Proof. — Let h be the Cheeger constant of G and δh be the fractional
Cheeger constant of G, where 0 ⩽ δ ⩽ 1. If δ = 1 then there is nothing
to prove. So we assume that δ < 1. Then from Lemma 4.3 we can find
a fractional partition(ρ, η) of V which realizes the fractional Cheeger con-
stant of G and has the property that ∥ρ∥ = ∥η∥. Write pi = ρ(i), so that
p1 vol(1)+ · · ·+pn vol(n) = vol(G)/2. Since the fractional Cheeger constant
of G is δh, we have f(p1, . . . , pn) = δh vol(G)/2.

Let R1, . . . , Rn be independent random variables such that Ri takes the
value 1 with probability pi and takes the value 0 with probability 1 − pi.
Write Lj to denote 1 − Rj for each 1 ⩽ j ⩽ n. (3) Let Y =

∑n
i,j=1 Ri(1 −

Rj)wij , and Z =
∑n

i=1 Ri vol(i). It is clear that

(4.14) E[Y ] = f(p1, . . . , pn) = δh vol(G)/2 and E[Z] = vol(G)/2

The variance of Z is given by

Var(Z) =
n∑

i=1
E[R2

i ] vol(i)2 − E[Ri]2 vol(i)2

=
n∑

i=1
pi vol(i)2 − p2

i vol(i)2

⩽ volmax

n∑
i=1

pi vol(i)

= volmax vol(G)/2

(4.15)

where volmax = max{vol(i) : 1 ⩽ i ⩽ n}

(3) We can think of the tuple (R1, . . . , Rn) as a random true partition: If Ri = 1 then
the i-th vertex goes “right” and if Li = 1 then the i-th vertex goes “left.”
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Now let ε be a positive number between 0 and 1. By Chebyshev’s in-
equality we have

P
(
|Z − vol(G)/2| ⩾ ε vol(G)/2

)
= P

(
|Z − E[Z]| ⩾ εE[Z]

)
⩽

Var(Z)
ε2E[Z]2

⩽
volmax vol(G)/2
ε2 vol(G)2/4 = 2 volmax

ε2 vol(G)

⩽
volmax

volmin

2
ε2n

(4.16)

Write γ to denote volmax / volmin. So we have from the above equation that

(4.17) P (|Z − vol(G)/2| ⩾ ε vol(G)/2) ⩽ 2γ
ε2n

Thus with probability at least 1 − 2γ/(ε2n) we have that |Z − vol(G)/2| ⩽
ε vol(G)/2. But whenever |Z − vol(G)/2| ⩽ ε vol(G)/2, we have that

(4.18) Y

(1 − ε) vol(G)/2 ⩾
Y

min{Z, vol(G) − Z}
⩾ hG = h

So with probability at least 1 − 2γ/(ε2n) we have Y ⩾ (1 − ε)h vol(G)/2.
Therefore, since Y takes only positive values, we have

(4.19)
(

1 − 2γ
ε2n

)
(1 − ε)h vol(G)

2

⩽ P

[
Y ⩾

(1 − ε)h vol(G)
2

]
(1 − ε)h vol(G)

2

⩽ E[Y ] = δh vol(G)
2

This yields

(4.20)
(

1 − 2γ
ε2n

)
(1 − ε) ⩽ δ

and we are done. □

Remark 4.5. — If Kn denotes the complete graph on n vertices then
hKn

↓ 1/2. Thus it is natural to ask if there is an expander family with
Cheeger constant 1/2 + Ω(1). The above result shows that there is no
family G1, G2, G3, . . . of graphs with dmin/dmax = Ω(1) such that hGn

⩾
1/2 + Ω(1). This is because hWGn

⩽ 1/2 for all n by Lemma 3.2.

Remark 4.6. — The bound obtained in the above result is poor if γ is of
the order of n. However, if G is a regular graph (more generally, a regular
weighted loopless graph) with a large vertex set, then the above bound
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shows that the Cheeger constant of the graphon corresponding to G is a
good proxy for the Cheeger constant of G.

Remark 4.7. — If G is a regular weighted loopless graph, then using
Azuma’s inequality instead of Chebyshev’s, one gets an improved bound
for δ, namely

(4.21)
(

1 − 2
enε2/8

)
(1 − ε) ⩽ δ, ∀ ε > 0

4.2. Bottom of the Spectrum of a graph versus that of the
corresponding graphon

Let G = (V = [n], w) be a connected weighted graph and W be the
corresponding graphon. We will show that λW is at least half of the second
eigenvalue of the normalized Laplacian of G. In fact what we will show
is that λW ⩾ min{1, λG}. Since λG ⩽ 2 for any weighted graph G, it
immediately follows that λW ⩾ λG/2.

Define the partition P of I as

P =
{[

0, 1
n

)
,

[
1
n
,

2
n

)
,

[
2
n
,

3
n

)
, . . . ,

[
n− 2
n

,
n− 1
n

)
,

[
n− 1
n

, 1
]}

and let A be the σ-algebra on I generated by P. Also define inner product
⟨ · , · ⟩V on the vector space of all functions V → R by declaring

(4.22) ⟨g, h⟩V =
∑
u∈V

g(u)h(u) vol(u)

Recall that the bottom of the spectrum of the Laplacian ∆W ofW is defined
as

(4.23) λW = inf
f∈1⊥

v :f ̸=0

⟨∆W f, f⟩v

⟨f, f⟩v
= inf

f∈1⊥
v :f ̸=0

∥df∥2
e

∥f∥2
v

On the other hand, the smallest non-zero eigenvalue of the (normalized)
Laplacian ∆G of the graph G is

(4.24) λG = inf ⟨∆Gg, g⟩V

⟨g, g⟩V

where the infimum is taken over all nonzero g : V → R such that ⟨g,1⟩V =
0. It is easy to see that if f : I → R is any map such that f |P is constant
for each P ∈ P and satisfies ⟨f,1⟩v = 0, then

(4.25) ⟨∆W f, f⟩v

⟨f, f⟩v
⩾ λG
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and taking infimum over all such functions f leads to an equality in the
above. So it is clear that λG ⩾ λW .

Let f ∈ 1⊥
v be an arbitrary nonzero map in L2(I, ν), where recall that ν is

a measure on I defined by setting ν(A) =
∫

A
dW (x) dx for each Borel set A

in I. Further assume that ∥f∥2
v = 1. It is enough to show that ∥df∥2

e ⩾ λG.
Let F : I → R be the function defined as F = E[f |A]. Now we have

∥df∥2
e = 1

2

∫
I

∫
I

(f(y) − f(x))2W (x, y) dxdy

=
∫

I

f2dW dµL −
∫

I

∫
I

f(x)f(y)W (x, y) dxdy

= 1 −
∫

I

∫
I

f(x)f(y)W (x, y) dxdy

(4.26)

A simple computation shows that

(4.27)
∫

I

∫
I

f(x)f(y)W (x, y) dxdy =
∫

I

∫
I

F (x)F (y)W (x, y) dxdy

So from (4.26) we have

(4.28) ∥df∥2
e = 1 −

∫
I

∫
I

F (x)F (y)W (x, y) dxdy

Further, since dW is A-measurable, we have

(4.29) E[fdW |A] = dWE[f |A] = FdW

Therefore
∫

I
FdW dµL = 0, that is, ⟨F,1⟩v = 0. Also, since F is constant

on each member of P, we have

(4.30) ∥df∥2
e

∥F∥2
v

⩾ λG

provided F is not identically zero. Therefore, whether or not F is identically
zero, we have

(4.31)

∥df∥2
e ⩾ λG∥F∥2

v

⇒ 1
2

∫
I

∫
I

(F (y) − F (x))2W (x, y) dxdy ⩾ λG

∫
I

F 2dW dµL

⇒
∫

I

F 2dW dµL −
∫

I

∫
I

F (x)F (y)W (x, y) dxdy ⩾ λG

∫
I

F 2dW dµL

If λG ⩾ 1, then from the above inequality we have that

(4.32) ∥df∥2
e = 1 −

∫
I

∫
I

F (x)F (y) dxdy ⩾ 1
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and thus λW ⩾ 1. So we may assume that λG ⩽ 1. From (4.31) we have

(4.33) 1 −
∫

I

∫
I

F (x)F (y) dxdy ⩾ 1 − (1 − λG)
∫

I

F 2dW dµL

Note that

E[f2dW |A] = dWE[f2|A] ⩾ dWE[f |A]2 = F 2dW(4.34)

and hence

(4.35) 1 =
∫

I

f2dW dµL ⩾
∫

I

F 2dW dµL

So we get

(4.36) ∥df∥2
e = 1 −

∫
I

∫
I

F (x)F (y) dxdy ⩾ 1 − (1 − λG) = λG

So we have shown is that λW ⩾ min{1, λG} and we are done.

Remark 4.8. — In conjunction with Lemma 4.4 it follows that one can
recover Cheeger–Buser type inequalities for regular graphs once we have
proven the same for graphons.

5. The Cheeger–Buser Inequalities for Graphons

5.1. Convergence of Cheeger constants

The aim of this subsection is to provide an example of a sequence of
graphons Wn converging to a graphon W such that the corresponding
Cheeger constants do not converge. This preempts the possibility of de-
ducing the Cheeger inequality for graphons directly from that of finite
weighted graphs.

A kernel is a bounded symmetric measurable function U : I2 → R. Thus
a graphon is nothing but a kernel taking values in the unit interval. The
set of all kernels W is naturally a vector space over R. The cut norm of a
kernel U ∈ W is defined as

(5.1) ∥U∥□ = sup
A,B⊆I

∣∣∣∣∫
A×B

U

∣∣∣∣
This makes W into a normed linear space. Note that the cut norm of a
kernel is dominated by the L1 norm with respect to the Lebesgue measure.

A natural approach to proving the Cheeger–Buser inequalities is the
following. Let W be a graphon and assume for simplicity that the degree

ANNALES DE L’INSTITUT FOURIER



CHEEGER INEQUALITIES FOR GRAPH LIMITS 25

of W is bounded away from 0, i.e, there is d > 0 such that dW ⩾ d µL-a.e.
Let Pn be the partition of I defined as

(5.2) Pn = {[0, 1/2n), [1/2n, 2/2n), . . . , [(2n − 1)/2n, 1]}

and define the partition Qn of I2 as Qn = {P×P ′ : P, P ′ ∈ Pn}. Let Fn be
the σ-algebra on I generated by the partition Qn. Let Un = E[W |Fn] and
Hn be the weighted graph on {1, . . . , 2n} which gives rise to the graphon
Un. Finally, define Gn as the weighted graph on {1, . . . , 2n} obtained by
“making Hn loopless”, that is, by assigning zero weights to the loops in Hn

and keeping all other weights intact. Let Wn be the graphon corresponding
to Gn. Note that ∥Wn − Un∥1 ⩽ 1/2n. By the martingale convergence
theorem ([14, Theorem 5.5]) we have that the sequence (Un) converges to
W in the L1-norm, and hence so does the sequence (Wn).

So we have a sequence (Gn) of loopless weighted graphs such that

(1) Gn has 2n vertices.
(2) volmax(Gn)/ volmin(Gn) ⩽ d/2 for all large enough n.
(3) ∥W −Wn∥1, and hence ∥W −Wn∥□, approaches 0 as n approaches

∞, where Wn is the graphon corresponding to Gn

By Lemma 4.4 it follows that the Cheeger constant of Wn is a good
proxy for the Cheeger constant of Gn. Also, from Section 4.2, we know
that λGn

= λWn
. It is shown in [5, 6] that if Wn → W in the cut-norm

then the bottom of the spectrum of the unnormalized Laplacian of Wn

converges to that of W . This suggests a similar convergence result for the
normalized Laplacian at least with a uniform lower bound on the degree
dW (x).

If we were to try to deduce the Cheeger–Buser inequalities for the graphon
W from the classical Cheeger–Buser inequalities for weighted graphs, we
would thus need to establish the following:

Let Wn be a sequence of graphons converging to a graphon
W in the cut norm. Then hWn

→ hW as n → ∞.

But the above statement is not necessarily true. We will in fact give a
counterexample to the following statement.

Let Wn be a sequence of graphons converging to a graphon
W in the L1-norm. Then hWn → hW as n → ∞.
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For each n define a graphon Wn as (see the following figure)

Wn(x, y) =



1 if 0 ⩽ x ⩽ 1/2 − 1/n
1/2 + 1/n ⩽ y ⩽ 1,

1 if 1/2 + 1/n ⩽ x ⩽ 1
0 ⩽ y ⩽ 1/2 − 1/n

1 if 1/2 − e−n − 1/n ⩽ x ⩽ 1/2 + e−n + 1/n
1/2 − e−n − 1/n ⩽ y ⩽ 1/2 + e−n + 1/n

0 otherwise

Figure 5.1. The graphon Wn.

Note that each Wn is connected. Let W be the graphon corresponding
to the complete graph on 2 vertices. It is clear that Wn converges to W in
the L1-norm. Let us estimate the Cheeger constant of Wn. Define An as
the interval (1/2 − e−n − 1/n, 1/2 + e−n + 1/n). Then

(5.3) hWn
⩽ hWn

(An) =
2 × e−n × 2

n
2
n ×

( 2
n + 2e−n

)
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Thus hWn
→ 0 as n → ∞. But hW = 1/2 and thus we see that the Cheeger

constant of Wn does not converge to that of W .

5.2. Buser Inequality for Graphons

Theorem 5.1 (Buser Inequality). — Let W be a connected graphon.
Then

(5.4) λW ⩽ 2hW and λW ⩽ gW

Proof. — We adapt the proof of Lemma 2.1 in [11]. Let A ⊔ B form a
measurable partition of I with 0 < µL(A) < 1. Define f : I → R as

(5.5) f(x) =
{

1
vol(A) if x ∈ A

− 1
vol(B) if x ∈ B

Then f ∈ 1⊥
v . Now

(5.6) λW ⩽
∥df∥2

e

∥f∥2
v

=
∫

E
(f(x) − f(y))2W (x, y) dydx∫ 1

0 f(x)2dW (x) dx

=
∫

I×I
(f(x) − f(y))2W (x, y) dydx

2
∫ 1

0 f(x)2dW (x) dx

=
∫

A×B
(f(x)−f(y))2W (x, y) dydx+

∫
B×A

(f(x)−f(y))2W (x, y) dydx
2
[∫

A
f(x)2dW (x) dx+

∫
B
f(x)2dW (x) dx

]
=

(
1

vol(A) + 1
vol(B)

)2 (∫
A×B

W (x, y) dxdy +
∫

B×A
W (x, y) dxdy

)
2
[

1
vol(A)2 vol(A) + 1

vol(B)2 vol(B)
]

=
(

1
vol(A) + 1

vol(B)

)∫
A×B

W (x, y) dxdy ⩽ 2
∫

A×B
W

min{vol(A), vol(B)}
Since B = Ac, and since the above holds for all choices of A with 0 <

µL(A) < 1, we have λW ⩽ 2hW . From the penultimate inequality above
we also get

(5.7) λW ⩽

∫
A×B

W (x, y) dxdy
vol(A) vol(B)

since vol(A) + vol(B) ⩽ 1. This leads to λW ⩽ gW . □
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5.3. The Co-area Formula for Graphons

Consider a finite graph G = (V,E) and let f : V → R be any map.
Orient the edges of G in such a way that for each oriented edge e we have
f(e+) ⩾ f(e−). Let γ0 < γ1 < · · · < γk be all the reals in the image of f .
Define Si = {v ∈ V : f(v) ⩾ γi}. Then we have

(5.8)
∑
e∈E

df(e) =
m∑

i=1
(γi − γi−1)|E(Sc

i , Si)|

where E(Sc
i , Si) denotes the set of all the edges in G which have their tails

in Sc
i and heads in Si. To see why (5.8) is true, we fix an edge e and see

how much it contributes to the sum on the RHS. We add γi −γi−1 for each
i such that e− ∈ Sc

i and e+ ∈ Si. This adds up to a total of df(e), which is
the same as the contribution of e to the LHS.

If G were a weighted graph with weight function w : E → R+, (5.8)
takes the form

(5.9)
∑
e∈E

df(e)w(e) =
m∑

i=1
(γi − γi−1)ew(Sc

i , Si)

where ew(Sc
i , Si) denotes the sum of weights of all the edges which have

their tails in Sc
i and heads in Si.

Let us see how (5.9) generalizes for graphons. Let W be a graphon and
f : I → R be in L2(I, ν). Define Ef to be the set {(x, y) ∈ I2 : f(y) >
f(x)}. Let St denote the set f−1(t,∞). Then

(5.10)
∫

Ef

df(x, y)W (x, y) dxdy =
∫ ∞

−∞
eW (Sc

t , St) dt

This can be easily proved using Fubini’s theorem. We shall however need
a slight variant of this formula in order to establish Cheeger’s inequality.

Theorem 5.2 (Co-area formula for graphons). — Let W be a graphon
and f : I → R be an arbitrary map in L2(I, ν). Define f+ : I → R and
f− : I → R as f+ = max{f, 0} and f− = − min{f, 0}. Let St = f−1(t,∞).
Then ∫

Ef

|df2
+|W =

∫ ∞

0
eW (Sc√

t
, S√

t) dt =
∫ ∞

0
2teW (Sc

t , St) dt, and∫
Ef

|df2
−|W =

∫ ∞

0
eW (Sc

−
√

t
, S−

√
t) =

∫ ∞

0
2teW (Sc

−t, S−t) dt
(5.11)
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Proof. — We prove the first one. The second one is similar. We have by
change of variables that

(5.12)
∫ ∞

0
eW (Sc√

t
, S√

t) dt =
∫ ∞

0
2teW (Sc

t , St) dt

Now

(5.13)

∫ ∞

0
2teW (Sc

t , St) dt =
∫ ∞

0
2t
[∫

Sc
t ×St

W (x, y) dxdy
]
dt

=
∫ ∞

0

[∫
I2

2tχSc
t ×St(x, y)W (x, y) dxdy

]
dt

=
∫

I2

[∫ ∞

0
2tχSc

t ×St
(x, y)W (x, y) dt

]
dxdy

=
∫

I2

[∫ ∞

0
2tχSc

t ×St
(x, y) dt

]
W (x, y) dxdy

=
∫

Ef

[∫ ∞

0
2tχSc

t ×St(x, y) dt
]
W (x, y) dxdy

=
∫

Ef

[∫ f+(y)

f+(x)
2t dt

]
W (x, y)dxdy

=
∫

Ef

(f2
+(y) − f2

+(x))W (x, y) dxdy

=
∫

Ef

|df2
+|W

as desired. □

5.4. Cheeger’s Inequality for Graphons

In this subsection we will prove the following.

Theorem 5.3. — Let W be a connected graphon. Then

(5.14) λW ⩾
h2

W

8
Before we prove Cheeger’s inequality above, we first obtain a more conve-

nient formula (Lemma 5.4 below) for λW . Consider the map I : L2(I, ν) →
R defined as

(5.15) I(f) =
∫ 1

0
f(x)dW (x) dx = ⟨f,1⟩v

TOME 0 (0), FASCICULE 0



30 Abhishek KHETAN & Mahan MJ

We show that L∞(I) ∩ 1⊥
v is dense in 1⊥

v . Let P : L2(I, ν) → L2(I, ν) be
the map defined as P (f) = f − I(f). Then P is a bounded linear operator.
Also, we have

(5.16) P 2(f) = P (f − I(f)) = f − I(f) = P (f)

So P 2 = P . Further,
⟨Pf, g⟩v − ⟨f, Pg⟩v = ⟨f − I(f), g⟩v − ⟨f, g − I(g)⟩v

= −⟨I(f), g⟩v + ⟨f, I(g)⟩v

= −I(f)I(g) + I(f)I(g)
= 0

(5.17)

Therefore P is self-adjoint. This means that P is the orthogonal projection
onto its image. It is clear that Im(P ) ⊆ 1⊥

v , and also that P behaves as the
identity when restricted to 1⊥

v . Therefore P is the orthogonal projection
onto 1⊥

v . It is also clear that P (L∞(I)) ⊆ L∞(I). We conclude that L∞(I)∩
1⊥

v is dense in 1⊥
v .

Now let g ∈ 1⊥
v be an arbitrary nonzero vector. Then both ∥dg∥e and

∥g∥v are nonzero.(4) Let M > 0 be such that ∥dg∥e, ∥g∥v ⩾ M . Let ε > 0
be arbitrary and choose g′ ∈ L∞(I)∩1⊥

v such that ∥g−g′∥v < εM . We had
shown in the proof of Lemma 3.3, ∥df∥e ⩽ 2∥f∥v for all f ∈ L2(I, ν). So

∥d(g − g′)∥e = ∥dg − dg′∥e < 2εM.

Thus we have

|∥g∥v − ∥g′∥v| < εM and |∥dg∥e − ∥dg′∥e| < 2εM

Hence we can approximate ∥dg∥e/∥g∥v arbitrarily well by the expressions
of the form ∥dg′∥e/∥g′∥v by choosing a suitable g′ ∈ L∞(I) ∩ 1⊥

v . We have
proved

Lemma 5.4. — Let W be a connected graphon. Then

(5.18) λW = inf
g∈1⊥

v : g ̸=0

∥dg∥2
e

∥g∥2
v

= inf
g∈1⊥

v : g ̸=0,
g∈L∞(I)

∥dg∥2
e

∥g∥2
v

Now we are ready to prove Theorem 5.3. Let g : I → R be an arbitrary
map in L∞(I) with ∥g∥v = 1 and ⟨g,1⟩v = 0. To prove Theorem 5.3 it
suffices to show that ∥dg∥2

e ⩾ 1
8h

2
W . Let

(5.19) t0 = sup{t ∈ R : volW (g−1(−∞, t)) ⩽ 1
2 volW (I)}

(4) If ∥dg∥e were equal to 0 then g would be an essentially constant function, which
would force g = 0 since g ∈ 1⊥

v .
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The number t0 exists since g is L∞. Define f = g − t0. Then both the sets
{f < 0} and {f > 0} have volumes at most half of volW (I). Also

(5.20) ∥f∥2
v = ∥g − t0∥2

v = ∥g∥2
v + ∥t0∥2

v − 2t0⟨g,1⟩v = 1 + ∥t0∥2
v ⩾ 1

Clearly, df = dg. Therefore

(5.21) ∥dg∥2
e ⩾

∥df∥2
e

∥f∥2
v

Lemma 5.5.

(5.22) ∥df∥2
e ⩾

1
8∥f∥2

v

[∫
Ef

|df2
+|W +

∫
Ef

|df2
−|W

]2

Proof. — Note that

(5.23) ∥df∥2
e =

∫
E

|df |2W =
∫

Ef

|df |2W

where Ef = {(x, y) ∈ I2 : f(y) > f(x)}. Also

(5.24)
∫

Ef

|df |2W ⩾
∫

Ef

|df+|2W +
∫

Ef

|df−|2W

This is because |df |2 ⩾ |df+|2 + |df−|2 is true pointwise in Ef . By Cauchy–
Schwarz we have

(5.25)
[∫

Ef

|df+|2W

]1/2 [∫
I2

(|f(x)| + |f(y)|)2W (x, y) dxdy
]1/2

⩾
∫

Ef

|df2
+|W

Using Cauchy–Schwarz again, we can show that

(5.26) 4∥f∥2
v ⩾

∫
I2

(|f(x)| + |f(y)|)2W (x, y) dxdy

which gives

(5.27) 2∥f∥v

[∫
Ef

|df+|2W

]1/2

⩾
∫

Ef

|df2
+|W

⇒
∫

Ef

|df+|2W ⩾
1

4∥f∥2
v

(∫
Ef

|df2
+|W

)2
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Similarly,

(5.28)
∫

Ef

|df−|2W ⩾
1

4∥f∥2
v

(∫
Ef

|df2
−|W

)2

Using these in (5.24) gives

∫
Ef

|df |2W ⩾
1

4∥f∥2
v

(∫
Ef

|df2
+|W

)2

+
(∫

Ef

|df2
−|W

)2


⩾
1

8∥f∥2
v

[∫
Ef

|df2
+|W +

∫
Ef

|df2
−|W

]2
(5.29)

and we have proved the lemma. □

We now proceed to complete the proof of Theorem 5.3.

Proof of Theorem 5.3. — The Co-area Formula Theorem 5.2 gives

(5.30)

∫
Ef

|df2
+|W =

∫ ∞

0
2teW (Sc

t , St) dt

and
∫

Ef

|df2
−|W =

∫ ∞

0
2teW (Sc

−t, S−t) dt

But

(5.31)
∫ ∞

0
2teW (Sc

t , St) dt ⩾ hW

∫ ∞

0
2t vol(St) dt

= hW

∫ ∞

0
2t
[∫

I2
χI×St(x, y)W (x, y) dxdy

]
dt

= hW

∫
I2

[∫ ∞

0
2tχI×St

(x, y) dt
]
W (x, y) dxdy

= hW

∫
I2

[∫ ∞

0
2tχI×St

(x, y) dt
]
W (x, y) dxdy

= hW

∫
I2

[∫ f+(y)

0
2t dt

]
W (x, y) dxdy

= hW

∫
I2
f2

+(y)W (x, y) dxdy
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Similarly

(5.32)
∫ ∞

0
2teW (Sc

−t, S−t) dt ⩾ hW

∫ ∞

0
2t vol(Sc

−t) dt

= hW

∫ ∞

0
2t
[∫

I2
χI×Sc

−t
(x, y)W (x, y) dxdy

]
dt

= hW

∫
I2

[∫ ∞

0
2tχI×Sc

−t
(x, y) dt

]
W (x, y) dxdy

= hW

∫
I2

[∫ ∞

0
2tχI×Sc

−t
(x, y) dt

]
W (x, y) dxdy

= hW

∫
I2

[∫ f−(y)

0
2t dt

]
W (x, y)dxdy

= hW

∫
I2
f2

−(y)W (x, y) dxdy

Therefore

(5.33)
∫

Ef

|df2
+|W +

∫
Ef

|df2
−|W

⩾ hW

[∫
I2
f2

+(y)W (x, y) dxdy +
∫

I2
f2

−(y)W (x, y) dxdy
]

= hW

[∫
I2

(f2
+(y) + f2

−(y))W (x, y) dxdy
]

= hW

[∫
I2
f2(y)W (x, y) dxdy

]
= hW

[∫
I

f2(y)dW (y) dy
]

= hW ∥f∥2
v

Combining this with Lemma 5.5, we have

(5.34) ∥df∥2
e ⩾

1
8∥f∥2

v

h2
W ∥f∥4

v

and thus

(5.35) ∥df∥2
e

∥f∥2
v

⩾
1
8h

2
W

Lastly, using (5.21) we have

(5.36) ∥dg∥2
e ⩾

1
8h

2
W

and we are done. □

TOME 0 (0), FASCICULE 0



34 Abhishek KHETAN & Mahan MJ

6. Cheeger Constant for Graphings and the
Cheeger–Buser Inequalities

We now turn to graphings. For the purposes of this section G = (I, µ,E)
will denote a graphing. As discussed in Section 2.2, graphings are substan-
tially different from graphons in terms of their structure. In spite of this
difference, Lemma 2.4 will allow us to furnish proofs that are, at least at
a formal level, extremely similar to the proofs in Section 3 above. How-
ever, the actual intuition and idea behind the proofs will really go back to
Theorem 2.3. In this section, we shall therefore try to convey to the reader
both the formal similarity with the proofs in Section 3 as well as the actual
structural idea going back to Theorem 2.3.

6.1. Cheeger Constant for Graphings

For two measurable subsets A and B of I, we define

(6.1) eG(A,B) = η(A,B) =
∫

A

degB(x) dµ(x)

For a measurable subset A of I, the volume of G over A is defined as

(6.2) vol(A) =
∫

A

deg(x) dµ(x) = eG(A, I)

A graphing is said to be connected if for all measurable subsets A of I with
0 < µ(A) < 1 we have eG(A,Ac) ̸= 0. Note that if G is connected then
deg > 0 a.e.

Given a graphing G, we define the Cheeger constant of G as

(6.3) hG = inf
A⊆I : 0<µ(A)<1

eG(A,Ac)
min{vol(A), vol(Ac)}

A symmetrized version of the above constant which we will be referred to
as the symmetric Cheeger constant is defined as

(6.4) gG = inf
A⊆I : 0<µ(A)<1

eG(A,B)
vol(A) vol(Ac)

Note that the above defined constants exist for connected graphings.
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6.2. Buser Inequality for Graphings

We first observe that the multiplicity of the singular value 0 of the Lapla-
cian of a connected graphing (I, µ,E) is 1. For f ∈ L2(I, µ), we have ∆f = 0
if and only if df = 0. As in the case of graphons it now suffices to show the
following: df = 0 if and only if f is constant (up to a set of measure zero).
Of course, df = 0 for constant f . Conversely, assume that df = 0. Then

(6.5)
∫

E+
(df)2 dη = 0

which implies that

(6.6)
∫

E+
(f(y) − f(x))2 dη(x, y) = 0.

Since

(6.7)
∫

E+
(f(y) − f(x))2 dη(x, y) =

∫
E−

(f(y) − f(x))2 dη(x, y).

it follows that

(6.8)
∫

I2
(f(y) − f(x))2 dη(x, y) = 0

For each t ∈ R, let St = f−1(t,∞). Therefore,

(6.9)
∫

Sc
t ×St

(f(y) − f(x))2 dη(x, y) = 0.

It follows that (f(y)−f(x))2 is η-a.e. 0 on Sc
t ×St. But f(y)−f(x) ̸= 0 for

all (x, y) ∈ St ×Sc
t . So η(Sc

t , St) = 0 for all t. The connectedness of G then
implies that either St or Sc

t has µ-measure 0. So our claim follows from
the following lemma whose proof is an exact replica of Lemma 3.5 and we
omit it.

Lemma 6.1. — Let f : I → R be a measurable function such that for
all t ∈ R we have either f−1(−∞, t] or f−1(t,∞) has µ-measure 0. Then
f is constant µ-a.e.

The eigenfunctions corresponding to 0 are thus the essentially constant
functions: the 0−eigenspace of ∆ is generated by 1. Define

(6.10) λG = inf
g∈1⊥

v : g ̸=0

⟨g,∆g⟩v

⟨g, g⟩v
= inf

g∈1⊥
v : g ̸=0

∥dg∥2
e

∥g∥2
v

(Here, 1⊥
v denotes the orthogonal complement of 1 with respect to the

inner product ⟨ · , · ⟩v).
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Theorem 6.2 (Buser Inequality). — Let G = (I, µ,E) be a connected
graphing. Then

(6.11) λG ⩽ 2hG and λG ⩽ gG

Proof. — In the proof of Theorem 5.1 replace W (x, y)dxdy formally with
dη(x, y). □

6.3. Co-area Formula for Graphings

Let G = (I, E, µ) be a graphing and f : I → R be any L∞-map. Let Ef

be defined as

(6.12) Ef = {(x, y) ∈ E : f(y) > f(x)}

The set Ef will be referred to as the f - oriented edges of G. Let St denote
the set f−1(t,∞). Then

(6.13)
∫

Ef

dfdη =
∫ ∞

−∞
eG(Sc

t , St) dt

Let us see the proof in the special case when E is given by a single measure
preserving involution φ : A → A where A is a measurable subset of I. Define
R = {x ∈ A : (x, φ(x)) ∈ Ef }. Then the RHS of the above equation is

(6.14)
∫ ∞

−∞
eG(Sc

t , St) dt

=
∫ ∞

−∞

∫
Sc

t

degSt
(x) dµ(x) dt =

∫ ∞

−∞

∫ 1

0
χSc

t
(x) degSt

(x) dµ(x) dt

=
∫ 1

0

∫ ∞

−∞
χSc

t
(x) degSt

(x) dt dµ(x) =
∫ 1

0

∫ ∞

f(x)
degSt

(x) dt dµ(x)

=
∫

R

∫ ∞

f(x)
degSt

(x) dt dµ(x) =
∫

R

(f ◦ φ(x) − f(x)) dµ(x)

On the other hand the LHS of (6.13) is∫
Ef

df dη =
∫

I2
dfχEf

dη =
∫

I

∑
y

df(x, y)χEf
(x, y) dµ(x)

=
∫

R

df(x, φ(x)) dµ(x)

=
∫

R

(f ◦ φ(x) − f(x)) dµ(x)

(6.15)
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and therefore (6.13) holds. Just as in the case of graphons, we need a slightly
different lemma

Theorem 6.3. — Let G = (I, E, µ) be a graphing and f : I → R be
an arbitrary L2-map. Define f+ : I → R and f− : I → R as the map
f+ = max{f, 0} and f− = − min{f, 0}. Let St = f−1(t,∞). Then∫

Ef

|df2
+| dη =

∫ ∞

0
eG(Sc√

t
, S√

t) dt =
∫ ∞

0
2teG(Sc

t , St) dt, and∫
Ef

|df2
−| dη =

∫ ∞

0
eG(Sc

−
√

t
, S−

√
t) =

∫ ∞

0
2teG(Sc

−t, S−t) dt
(6.16)

Proof. — We prove only the first one. Further, as in the proof of Lem-
ma 2.4 (see also (2.17)) we first assume that the edge set E is determined
by a single µ-measure preserving involutions φ : A → A defined on a
measurable subset A of I. Define Ef = {(x, y) ∈ E : f(y) > f(x)}. Let
R = {x ∈ I : (x, φ(x)) ∈ Ef }. We have by change of variables that

(6.17)
∫ ∞

0
eG(Sc√

t
, S√

t) dt =
∫ ∞

0
2teG(Sc

t , St) dt

Now ∫ ∞

0
2teG(Sc

t , St) dt =
∫ ∞

0
2tη(Sc

t × St) dt

=
∫ ∞

0
2t
[∫ 1

0
χSc

t
(x) degSt

(x) dµ(x)
]

dt

=
∫ ∞

0

[∫ 1

0
2tχSc

t
(x) degSt

(x) dµ(x)
]

dt

=
∫ 1

0

[∫ ∞

0
2tχSc

t
(x) degSt

(x) dt
]

dµ(x)

=
∫ 1

0

[∫ ∞

f+(x)
2tdegSt

(x) dt
]

dµ(x)

=
∫

R

[∫ ∞

f+(x)
2tdegSt

(x) dt
]

dµ(x)

=
∫

R

[∫ f+(φ(x))

f+(x)
2t dt

]
dµ(x)

=
∫

R

(f2
+(φ(x)) − f2

+(x))dµ(x)

(6.18)
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On the other hand∫
Ef

|df2
+| dη =

∫
I2

|df2
+(x, y)|χEf

(x, y) dη(x, y)

=
∫

I

∑
y

|df2
+(x, y)|χEf

(x, y) dµ(x)

=
∫

R

|df2
+(x, φ(x))| dµ(x)

=
∫

R

(f2
+(φ(x)) − f2

+(x)) dµ(x),

(6.19)

completing the proof for the special case of a single strand.
We now deal with the general case where there may be multiple strands.

Let φi : Ai → Ai, 1 ⩽ i ⩽ k, be µ-measure preserving involutions such that
E =

⊔k
i=1{(x, φi(x)) : x ∈ Ai}. Let Gi be the graphing corresponding to

φi. So G =
⊔k

i=1 Gi. Then∫ ∞

0
2teG(Sc

t , St) dt =
k∑

i=1

∫ ∞

0
2teGi

(Sc
t , St) dt(6.20)

and ∫
Ef

|df2
+| dη =

k∑
i=1

∫
Ei

f

|df2
+| dηi(6.21)

where Ei
f are the f -oriented edges of Gi and ηi is the edge measure of Gi.

Thus the general case follows from the special case. □

6.4. Cheeger Inequality for Graphings

In this subsection we will prove the following Cheeger inequality for
graphings.

Theorem 6.4. — Let G be a connected graphing. Then

(6.22) λG ⩾
h2

G

8
The proof of Lemma 5.4 goes through mutatis mutandis to give:

Lemma 6.5. — Let G be a connected graphing. Then

(6.23) λG = inf
g∈1⊥

v : g ̸=0

∥dg∥2
e

∥g∥2
v

= inf
g∈1⊥

v : g ̸=0,
g∈L∞(I,µ)

∥dg∥2
e

∥g∥2
v
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We proceed with the proof of Theorem 6.4 for graphings. Let g : I → R
be an arbitrary L∞-map with ∥g∥v = 1 and ⟨g,1⟩v = 0. To prove Cheeger’s
inequality it is enough to show that ∥dg∥2

e ⩾ 1
8h

2
G. Let

(6.24) t0 = sup{t ∈ R : volG(g−1(−∞, t)) ⩽ 1
2 volG(I)}

and define f = g − t0. Then both the sets {f < 0} and {f > 0} have
volumes at most half of volG(I). Also

(6.25) ∥f∥2
v = ∥g − t0∥2

v = ∥g∥2
v + ∥t0∥2

v − 2t0⟨g,1⟩v = 1 + ∥t0∥2
v ⩾ 1

Clearly, df = dg. Therefore

(6.26) ∥dg∥2
e ⩾

∥df∥2
e

∥f∥2
v

Lemma 6.6.

(6.27)
∫

Ef

|df |2 dη ⩾
1

8∥f∥2
v

[∫
Ef

|df2
+| dη +

∫
Ef

|df2
−| dη

]2

Proof. — As in Lemma 5.5, we start by observing that

(6.28)
∫

E+
|df |2 dη =

∫
Ef

|df |2 dη

The proof of Lemma 6.6 is now an exact replica of that of Lemma 5.5: the
only extra point to note being that

(6.29)
∫

I2
f(x)2 dη(x, y) =

∫
I

∑
y

f(x)2χE(x, y) dµ(x)

=
∫

I

f(x)2 deg(x) dµ(x) = ∥f∥2
v

We omit the details. □

The rest of the proof of Theorem 6.4 is quite similar to that of Theo-
rem 5.3. We sketch the proof below.

The Co-area Formula Theorem 6.3 gives:

(6.30)

∫
Ef

|df2
+| dη =

∫ ∞

0
2teG(Sc

t , St) dt,

and
∫

Ef

|df2
−| dη =

∫ ∞

0
2teG(Sc

−t, S−t) dt
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As before, we obtain∫ ∞

0
2teG(St, St) dt ⩾ hG

∫ ∞

0
2t vol(St) dt

= hG

∫ ∞

0
2t
[∫

St

deg(x) dµ(x)
]

dt

= hG

∫
I

f2
+(y) deg(x) dµ(x)

(6.31)

Similarly ∫ ∞

0
2teG(Sc

−t, S−t) dt ⩾ hG

∫ ∞

0
2t vol(Sc

−t) dt

= hG

∫ ∞

0
2t
[∫

Sc
−t

deg(x) dµ(x)
]

dt

= hG

∫
I

f2
−(x) deg(x) dµ(x, y)

(6.32)

Therefore

(6.33)
∫

Ef

|df2
+| dη +

∫
Ef

|df2
−| dη

⩾ hG

[∫
I

f2
+(x) deg(x) dµ(x) +

∫
I

f2
−(x) deg(x) dµ(x)

]
= hG∥f∥2

v

Combining this successively with Equations 6.27, 6.28 and 6.26 we have:∫
Ef

|df |2 dη ⩾
1

8∥f∥2
v

h2
G∥f∥4

v

∥df∥2
e

∥f∥2
v

=
∫

E
|df |2 dη
∥f∥2

v

⩾
1
8h

2
G

∥dg∥2
e ⩾

1
8h

2
G

(6.34)

and Theorem 6.4 follows. □

7. Cheeger constant and connectedness

7.1. A connected graphon with zero Cheeger constant

Recall that a graphon is connected if for all measurable subsets A of
I with 0 < µL(A) < 1 we have eW (A,Ac) ̸= 0. More generally, given a
graphon W and a measurable subset S of I, we say that the restriction W |S
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is connected if for all measurable subsets A of S with 0 < µL(A) < µL(S),
we have

(7.1)
∫

A×(S\A)
W > 0

Lemma 7.1. — Let W be a graphon and S and T be measurable subsets
of I such that S ∪ T = I and S ∩ T has positive measure. Further assume
that W |S and W |T are connected. Then W is connected.

Proof. — Assume that W is disconnected and let A be a measurable
subset of I such that 0 < µL(A) < 1 and eW (A,Ac) = 0. Then in particular
we have

(7.2)
∫

(A∩S)×(Ac∩S)
W = 0 and

∫
(A∩T )×(Ac∩T )

W = 0

The connectedness of W |S implies that either A ∩ S or Ac ∩ S has full
measure in S. Without loss of generality assume that A∩S has full measure
in S. Again, by the connectedness of W |T we have that A ∩ T or Ac ∩ T

has full measure in T . In the former case we would have that A has full
measure in I since I = S∪T . In the latter case the measure of S∩T would
be 0. In any case we get a contradiction. □

Example 7.2. — Consider the graphon W given by the following figure.

Figure 7.1. Example of a connected graphon.

The graphon takes the value 1 at all the shaded points and 0 at all other
points. It follows by repeated use of Lemma 7.1 that W is connected.

Let W be a graphon taking values in {0, 1}. We call such a graphon a
neighborhood graphon if W−1(1) contains an open neighborhood of the
diagonal of the open square (0, 1) × (0, 1). Note that the graphon in Exam-
ple 7.2 contains instead an open neighborhood of the diagonal of the closed
square I2.

Lemma 7.3. — Every neighborhood graphon is connected.
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Proof. — Let W be a neighborhood graphon. For each n > 2 let Sn

denote the interval (1/n, 1−1/n). Each W |Sn
is connected. This is because

a copy of the graphon shown in Figure 7.1 is embedded in the restriction
of W over Sn × Sn.

We argue by contradiction. Suppose that W is disconnected. The there
is A ⊆ I with 0 < µL(A) < 1 such that eW (A,Ac) = 0. Therefore for each
n we have

∫
(A∩Sn)×(Sn\A) W = 0. By connectedness of W |Sn , we must have

that for any n > 2, either µL(A ⊆ Sn) = µL(Sn) or µL(A∩ Sn) = 0. If the
former happens for some n, then it must happen for all n, and consequently
A is of full measure in I. The other possibility is that µL(A∩Sn) = 0 for all
n, but then A has measure 0. So in any case, we have a contradiction. □

Example 7.4. — A particular way of constructing a neighborhood
graphon is the following. Let f : I → I be a continuous map such that
f(x) > x for all 0 < x < 1. Define a graphon Wf as

Wf (x, y) =


1 if x ⩽ y ⩽ f(x)
0 if f(x) < y

W (y, x) if x > y

In other words, Wf takes the value 1 in the region trapped between the
graph of f and the reflection of the graph of f about the y = x line, and is
0 everywhere else. For example, let f(x) =

√
x. Then the following diagram

illustrates what Wf looks like.

Figure 7.2. An example of a neighborhood graphon: Wf corresponding
to f(x) =

√
x.

The graphon shown in Figure 7.1 is also an example of a neighborhood
graphon arising as Wf for a suitably chosen continuous map f : I → I.

Example 7.5. — Unlike in the case of finite graphs, the Cheeger constant
of a connected graphon may be zero, as illustrated by Figure 7.3. The
graphon takes the value 1 at all the shaded points, either gray or black,
and the value 0 at all the unshaded points. Call this graphon W .
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Figure 7.3. Example of a connected graphon whose Cheeger constant
vanishes.

The bottom left endpoints of the black squares in the above figure have
coordinates (1/2n, 1/2n), n = 1, 2, 3, . . . . The lengths of horizontal edges of
the gray triangles above the y = x line are 1/22n+1, n = 1, 2, 3, . . . . Let An

be the interval [0, 1/2n]. Then e(An, A
c
n) equals the measure of the gray

region in An × Ac
n. But there is only one gray triangle in this region. The

sides of this right triangle (other than the hypotenuse) have lengths 1/22n+1

and 1/2n. Thus e(An, A
c
n) = 1/23n+2. Let V denote the total measure of

the points shaded black. Then vol(An) ⩾ V/4n + e(An, A
c
n) because the

measure of the black region inside An × I is exactly V/4n. For large n we
have vol(An) is at most half the total volume. Thus for large n we have

(7.3) hW (An) = e(An, A
c
n)

vol(An) ⩽
1/23n+2

V/4n + 1/23n+2 = 1/2n+2

V + 1/2n+2

This is zero in the limit and thus the Cheeger constant of this graphon is
zero. This graphon is connected by Lemma 7.3 because it is a neighborhood
graphon.
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7.2. A connected graphing with zero Cheeger constant

We prove in this section that the irrational cyclic graphing [20, Exam-
ple 18.17] has zero Cheeger constant.

Let a0 be an irrational number. We get a bounded degree Borel graph
(I, E) on I by joining two points x and y if |x−y| = a0. The triple (I, E, µL)
then becomes a graphing (recall that µL denotes the Lebesgue measure).

An equivalent way of thinking of this graphing is as follows: Let T :
S1 → S1 be the rotation of the unit circle by an angle which is an irrational
multiple of 2π. We get a Borel graph on S1 by declaring (x, y) ∈ S1 × S1

to be an edge if and only if T (x) = y or T−1(x) = y. Equipping the circle
with the Haar measure µH , this Borel graph is in fact a graphing [20,
Example 18.17]. We will denote this graphing by G. This is a connected
graphing because if A is a measurable subset of S1 such that eG(A,Ac) =
0, then we would have that T−1(A) ∩ Ac has measure 0 and hence A is
T−invariant. By ergodicity of the action of T on (S1, µH), we infer that A
is either of zero or full measure.

We show that the Cheeger constant of this graphing is zero. Let X be a
small arc of the circle with one end-point at (1, 0).

X

Y

Figure 7.4. Graphing corresponding to an irrational rotation of the circle.
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Given N > 0, we can choose X small enough so that
(1) T i(X) ∩ T j(X) = ∅, for 0 ⩽ i < j ⩽ N ,
(2) For A := X ⊔ T (X) ⊔ · · · ⊔ TN (X), µH(A) ⩽ 1

2 .
Write Y = TN (X). The only edges that contribute to eG(A,Ac) are the

ones going from Y to T (Y ) and the ones going from T−1(X) to X. These
are shown in red in the above figure. Thus eG(A,Ac) ⩽ 2µH(X). Therefore
we have

(7.4) hG ⩽ hG(A) ⩽ eG(A,Ac)
volG(A) ⩽ 2 µH(A)

(N + 1)µH(A) = 2/(N + 1)

Since N is arbitrary, we conclude that hG = 0.

Remark 7.6. — An example of a connected graphing G with positive
λ(G) and hence (by Theorem 6.4) positive Cheeger constant hG has been
described by Lovasz in [20, Example 21.5] under the rubric of “expander
graphings”.

7.3. A necessary and sufficient condition for connectedness of a
graphon

In the special case that a graphon W has degree of every vertex uniformly
bounded below, we shall now proceed to give a necessary and sufficient
condition in terms of the Cheeger constant for W to be connected. This is
analogous to the statement that a finite graph is connected if and only if
its Cheeger constant is positive.

Proposition 7.7. — Let ε > 0 and W be a graphon such that the
degree dW (x) ⩾ ε for all x ∈ I. Then W is connected if and only if hW > 0.

We provide two proofs of the above result. The first is an application
of Theorem 5.1 the Buser inequality for graphons and is essentially self-
contained using some basic facts about compact operators. The second
proof uses a structural lemma about connected graphons proved in [3].

Definition 7.8 ([19, p. 196]). — We say that λ ∈ R is an approximate
eigenvalue of a bounded linear operator T : H → H of a Hilbert space H
if the image of T − λI is not bounded below.

Lemma 7.9 ([19, Lemma 27.5(a)]). — For any bounded linear self-
adjoint operator T : H → H on a Hilbert space H, we have that

(7.5) inf
x∈H: ∥x∥=1

⟨Tx, x⟩

is an approximate eigenvalue of T .
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Lemma 7.10 ([19, Lemma 28.4]). — If T : H → H is a compact operator
then every approximate eigenvalue of T is an actual eigenvalue of T .

Lemma 7.11. — LetW be a connected graphon with dW bounded below
by a positive real. Then the map (1/dW )TW : L2(I, ν) → L2(I, ν) is a
compact operator.

Proof. — Since dW is bounded below, it follows that L2(I, µL) and
L2(I, ν) have comparable norms. Therefore I : L2(I, µL) → L2(I, ν) is
a bounded linear isomorphism. The operator TW : L2(I, µL) → L2(I, µL)
is compact [20, Section 7.5]. Since dW is bounded below, i.e. 1/dW is L∞,
it follows that the operator (1/dW )TW : L2(I, µL) → L2(I, µL) is also
compact.

Take any bounded sequence (fn) in L2(I, ν). Then (fn) is bounded
in L2(I, µL) too because of comparability of norms. Since (1/dW )TW :
L2(I, µL) → L2(I, µL) is compact, there exists a subsequence (fnk

) such
that (1/dW )(TW fnk

) converges in L2(I, µL). Again, the comparability of
norms give that (1/dW )(TW fnk

) converges in L2(I, ν) as required. □

Note that for any graphon W , the Laplacian ∆W : L2(I, ν) → L2(I, ν)
restricts to a linear operator ∆W : 1⊥

v → 1⊥
v .

Proof of Proposition 7.7. — If hW > 0 then clearly W is connected. So
we need to prove the other direction. Let W be a connected graphon with
dW (x) ⩾ ε for all x ∈ I. Lemma 7.11 ensures that (1/dW )TW is a compact
operator on L2(I, ν) and it is easy to check that it restricts to a linear
operator from 1⊥

v to itself. Throughout we will think of ∆W and (1/dW )TW

as linear operators in 1⊥
v . Now by Lemma 5.18 λW is an approximate

eigenvalue of ∆W . Thus the image of ∆W −λW I = (1−λW )I− (1/dW )TW

is not bounded below in 1⊥
v . Hence 1 − λW is an approximate eigenvalue

of (1/dW )TW . But (1/dW )TW : 1⊥
v → 1⊥

v is a compact operator, and thus
by Lemma 7.10 we have that 1 −λW is in fact an eigenvalue of (1/dW )TW .
Therefore λW is an eigenvalue of ∆W . Let f ∈ 1⊥

v be nonzero such that
∆W f = λW f . If hW were equal to 0, then by the Buser inequality (Theorem
5.1) we have that λW = 0. Thus ∆W f = 0, which is equivalent to saying
that df = 0. But as observed in the first paragraph of Section 5.2 we then
have that f is a constant function and hence the only way it can belong to
1⊥

v is that f = 0–a contradiction. □

Now we give the second proof of Proposition 7.7.

Definition 7.12 ([3]). — Let W be a graphon and 0 < a, b < 1 be real
numbers. An (a, b)-cut in W is a partition {A,Ac} of I with a < µL(A) <
1 − a such that eW (A,Ac) ⩽ b.
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Note that a graphon is connected if and only if it admits no (a, 0)-cut
for any 0 < a ⩽ 1/2.

Lemma 7.13 ([3, Lemma 7]). — Let W be a connected graphon and
0 < a < 1/2. Then there is some b > 0 such that W admits no (a, b)-cut.

Alternate proof of Proposition 7.7 using Lemma 7.13. — Let W be a
graphon with dW (x) ⩾ ε for all x. We prove the non-trivial direction. As-
sume W is connected. We will show that hW > 0. Assume on the contrary
that hW = 0. Then for each n ⩾ 1 there is a measurable subset An of I with
0 < µL(An) < 1 such that hW (An) < 1/n. After passing to a subsequence,
there are two cases to consider.

Case 1: µL(An) → 0 as n → ∞. — In this case we have for large n that

(7.6)

hW (An) = e(An, A
c
n)

vol(An) =
vol(An) −

∫
An×An

W

vol(An)

= 1 −
∫

An×An
W

vol(An) ⩾ 1 − µL(An)2

εµL(An)
⩾ 1 − µL(An)/ε

But this contradicts the assumption that hW (An) < 1/n for all n.
Case 2: µL(An) → t for some t > 0. — Let 0 < a < 1/2 be such that

a < t < 1 − a. Now by Lemma 7.13, there is a b > 0 such that W admits
no (a, b)-cut. Therefore for all n large enough we have

(7.7)
hW (An) = e(An, A

c
n)

min{vol(An), vol(Ac
n)}

⩾
b

εmin{µL(An), µL(Ac
n)} ⩾

b

ε(1 − a)
which again contradicts the assumption that hW (An) < 1/n for all n. □
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