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LAMINATIONS AND 2-FILLING RAYS ON INFINITE
TYPE SURFACES

by Lvzhou CHEN & Alexander J. RASMUSSEN

Abstract. — The loop graph of an infinite type surface is an infinite diameter
hyperbolic graph first studied in detail by Juliette Bavard. An important open
problem in the study of infinite type surfaces is to describe the boundary of the loop
graph as a space of geodesic laminations. We approach this problem by constructing
the first examples of 2-filling rays on infinite type surfaces. Such rays have strong
filling properties while failing to correspond to points on the boundary of the loop
graph. As such they may be thought of as “fake boundary points.” We give multiple
constructions using both a hands-on combinatorial approach and an approach using
train tracks and automorphisms of flat surfaces. In addition, our approaches are
sufficiently robust to describe all 2-filling rays with certain other basic properties
as well as to produce uncountably many distinct mapping class group orbits.

Résumé. — Le graphe des lacets d’une surface de type infini est un graphe hy-
perbolique de diamètre infini étudié en détail pour la première fois par Juliette
Bavard. Un problème ouvert important dans l’étude des surfaces de type infini est
de décrire le bord du graphe des lacets comme un espace de laminations géodé-
siques. Nous abordons ce problème en construisant les premiers exemples de rayons
de 2-remplissage sur des surfaces de type infini. De tels rayons ont des propriétés
fortes de remplissage tout en ne correspondant pas à des points au bord du graphe
des lacets. En tant que tels, ils peuvent être considérés comme des « faux points au
bord ». Nous donnons plusieurs constructions en utilisant à la fois une approche
combinatoire pratique et une autre approche en utilisant les voies ferrées et les
automorphismes des surfaces planes. En outre, nos approches sont suffisamment
robustes pour décrire tous les rayons de 2-remplissage avec certaines autres pro-
priétés de base ainsi que pour produire un ensemble infini non dénombrable de
l’orbite de groupe modulaire.

1. Introduction

Mapping class groups of infinite type surfaces (so-called big mapping
class groups) have recently become an object of intense study, in part ow-
ing to their connections to dynamics and foliations of 3-manifolds. A key
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tool for studying big mapping class groups has been the loop graphs. In-
troduced by Danny Calegari on his blog [6] and first studied in detail by
Juliette Bavard in [1], the loop graph L(S; p) of a surface S with an isolated
puncture p is an infinite diameter hyperbolic graph (see [1] and [4]). See
below for the definition. The graph L(S; p) is acted on by the subgroup
MCG(S; p) of the mapping class group consisting of the mapping classes
stabilizing p. It is in many ways analogous to the curve graph C(S) of a
finite-type surface S. Bavard in [1] and Bavard–Walker in [4] have success-
fully applied the action MCG(S; p) ↷ L(S; p) to study the second bounded
cohomology of MCG(S; p). Recently, Schaffer-Cohen has shown in [14] that
L(S; p) is an optimally strong model for the geometry of MCG(S; p) in the
case that S is the plane minus a Cantor set — the two are quasi-isometric.

An obstacle to fully harnessing the power of the action MCG(S; p) ↷
L(S; p) has been a non-trivial amount of mystery surrounding the Gromov
boundary ∂L(S; p). In the finite-type case, the Gromov boundary ∂C(S)
may be identified with the space of ending laminations on S with the coarse
Hausdorff topology ([11]). Ideally, in the infinite-type case one would like
to have an analogous description of ∂L(S; p) as a space of geodesic lami-
nations. In this paper we shed some light on the problem of understanding
∂L(S; p), while at the same time pointing to even more mystery than was
previously known.

Our main goal in this paper is to prove the existence of 2-filling rays
on infinite type surfaces. We recall the definition. Let S be an infinite type
surface with an isolated puncture p and fix a complete hyperbolic metric on
S. A simple geodesic ray on S is a loop if it is asymptotic to p at both ends.
The graph L(S; p) has as vertices the loops on S and edges joining disjoint
loops. It is a subgraph of a larger graph R(S; p), called the completed
ray-and-loop graph. We call a simple geodesic ray which is proper and
asymptotic to p at exactly one end a short ray. We call a simple geodesic ray
long if it is asymptotic to p and is neither short nor a loop. The vertex set of
R(S; p) consists of all of the long rays, short rays, and loops on S with edges
joining disjoint pairs. From the definition, L(S; p) is naturally a subgraph
of R(S; p). It is shown in [3] and [4] that the graph R(S; p) consists of
uncountably many components. One of these components contains L(S; p)
and is quasi-isometric to it. The other components are cliques of rays and
we call the members of these cliques high-filling. The Gromov boundary
∂L(S; p) is naturally identified with the set of cliques of high-filling rays
on S. From the definitions, a high-filling ray in particular is filling in the
sense that it intersects every short ray and loop.

ANNALES DE L’INSTITUT FOURIER



2-FILLING RAYS 2307

We define a ray to be 2-filling if it is filling but not high-filling. Bavard–
Walker showed in [4] that this is equivalent to the following: the ray γ is
2-filling if it intersects every loop, but is disjoint from a long ray τ which is
in turn disjoint from a loop. Thus, 2-filling rays just slightly fail to be high-
filling. Wondering if all filling rays are high-filling, Bavard–Walker asked
the following in [3]:

Question 1.1 ([3, Question 2.7.7]). — Does there exist an example of
a surface S with an isolated puncture and a 2-filling ray on S?

We answer their question in the positive by explicitly constructing many
examples of 2-filling rays on S when S is the plane minus a Cantor set.

Theorem 1.2. — There are uncountably many distinct mapping class
group orbits of 2-filling rays on S.

This is in stark contrast to the finite-type case. In fact, when S is of
finite type a filling geodesic ray γ necessarily accumulates onto a minimal
lamination filling a subsurface of S containing the puncture. In our sit-
uation, the limiting laminations are in some sense filling and have many
dense leaves, yet still do not have strong enough properties to correspond
to points of ∂L(S; p).

We give two different approaches to the construction of 2-filling rays. One
is a hands-on combinatorial approach (Section 5). The other uses geodesic
laminations, train tracks, and flat surface automorphisms (Sections 9–12).
In Section 13 we show that these two different approaches actually produce
the same 2-filling rays.

In Lemma 2.2 we show that 2-filling rays naturally lie in cliques of mutu-
ally disjoint rays, some of which are 2-filling and some of which are not 2-
filling. One may naturally wonder then what the structure of these cliques
may be and in particular if there is any constraint on the number of 2-
filling rays and non-2-filling rays in a given clique. We give partial answers
to this question. In Section 5 we construct cliques containing any given
finite number of 2-filling rays together with exactly one non-2-filling ray.
In Section 14 we construct for each n ⩾ 1 a clique — this time on a surface
with 2n nonplanar ends — consisting of exactly n 2-filling rays and exactly
n non-2-filling rays.

Finally, our constructions are quite robust. In Section 6, we show that
there are uncountably many distinct mapping class group orbits of 2-filling
rays on the plane minus a Cantor set. In Section 7, we show that any finite
clique of 2-filling rays disjoint from a single non-2-filling ray arises from the
construction of Section 5.

TOME 73 (2023), FASCICULE 6
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At the end of the paper we give a list of open problems that we hope
might help to guide future research into geodesic rays on infinite type sur-
faces and the boundary of the loop graph.

1.1. Organization of the paper

In Section 2 we introduce the basic concepts and set up notation. We in-
troduce two-side approachable long rays and establish fundamental results
in Section 4, and then use them to give the first construction of 2-filling
rays in Section 5. We further show that 2-filling rays abound in Section 6
and prove that the construction is sometimes unique in Section 7.

The second construction is given in Sections 8–12. Background and basic
concepts of this part are given in Section 3. This construction relies on a
geodesic lamination with desired properties listed in Section 8. We start by
constructing an abstract weighted train track in Section 9 and establishing
properties of the associated foliation in Sections 10 and 11. Then in Sec-
tion 12 we embed this train track in the plane minus a Cantor set to obtain
the desired geodesic lamination. A nice property of the embedding that we
need is proved in the appendix (Section 16).

In Section 13 we show the correspondence of the two constructions. In
Section 14 we give an example to show that there could be more than one
non-filling ray disjoint from a 2-filling ray on a surface of infinite genus.

Finally in Section 15 we give a list of open questions about 2-filling rays.

Acknowledgements

We thank the following people for invaluable conversations about lam-
inations and rays on infinite type surfaces: Danny Calegari, Yair Minsky,
Rodrigo Treviño, Pat Hooper, Ethan Farber, Kathryn Lindsey, and Anja
Randecker. Special thanks to Yan Mary He and Kasra Rafi for insightful
questions and suggestions.

2. Background on rays and loops

Throughout this paper, let Ω be the plane minus a Cantor set. We often
think of Ω as the sphere with a Cantor set and another isolated point ∞
removed. Fix an orientation on Ω. We equip it with a complete hyperbolic
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metric in the following way. Choose a pants decomposition of Ω and let P
be the resulting set of pants curves. If c1, c2, c3 ∈ P bound a pair of pants
then we equip it with the unique complete hyperbolic metric in which the
pants curves are geodesics of length one. If c1 and c2 bound a pair of pants
together with ∞ then we equip it with the unique complete hyperbolic
metric in which c1 and c2 are geodesics of length one. The resulting pairs
of pants may be glued together by any desired isometries.

We are interested in geodesic rays starting at ∞. A ray is simple if it does
not self-intersect. Simple rays fall into three classes: loops, short rays, and
long rays. Here a loop is an oriented geodesic ray that starts and ends at ∞.
We assume loops to be simple unless stated otherwise. The same geodesic
ray with reversed orientation is a different loop. We use γ to denote the
geodesic γ with reversed orientation. A short ray is a proper simple ray
that escapes to a certain point in the Cantor set of ends. All simple rays
other than loops and short rays are non-proper, i.e. have nontrivial limit
sets in Ω. We refer to these rays as long rays. As usual, the limit set of a
geodesic γ is cl(γ) \ γ, where cl(γ) denotes the closure of γ. See the lower
half of Figure 2.1 for examples.

It is convenient to think of a loop (respectively a short ray) topologically
as an isotopy class of embedded arcs on S2 that are disjoint from the Cantor
set and ∞ in their interiors and that go from ∞ to ∞ (resp. from ∞ to some
point in the Cantor set). The mapping class group of Ω acts transitively on
the set of loops and the set of short rays. In contrast, there is a continuum
of different orbits of long rays.

The conical circle S1
C , which we now define, is a space naturally pa-

rameterizing all geodesic rays starting at ∞. The conical cover ΩC is the
covering space of Ω corresponding to the Z subgroup of π1(Ω) generated by
a simple closed curve around ∞. It inherits a hyperbolic metric from that
of Ω, by pullback. Its Gromov boundary consists of a disjoint union of a
point and a circle. The conical circle S1

C is this circle boundary component
of ΩC ; See the upper right of Figure 2.1.

In other words, if ∞̃ is the fixed point on ∂H2 of a generator z of the
Z subgroup, and r̃ is a lift of any fixed ray r to H2 that starts at ∞̃,
then the region between r̃ and zr̃ is a fundamental domain of ΩC . The
corresponding segment on ∂H2 with two endpoints identified is a copy of
the conical circle S1

C .
We often think of a simple ray as a point on the conical circle. In par-

ticular we have a topology on the set of rays, where two rays are close if
they fellow travel for a long time in the beginning. In this topology, the

TOME 73 (2023), FASCICULE 6



2310 Lvzhou CHEN & Alexander J. RASMUSSEN

∞

Ω

ΩC
S1

C

H2 Ω̃
∞̃

τ̃1 τ̃2 = zτ̃1α̃ β̃

L

Figure 2.1. Bottom: Examples of a short ray, a loop, and a long ray
in Ω; Upper right: The conical cover and conical circle; Upper left: A
fundamental domain Ω̃ of ΩC and the geodesic L.

property of a ray having a (transverse) self-intersection is open. Thus the
set of simple rays is closed on S1

C , and is also nowhere dense [7, Lemma 3.3].
For any simple ray τ , the set of rays disjoint from τ (including itself) is a

closed set Dτ on the conical circle. For each complementary interval (α, β),
there is a corresponding bi-infinite geodesic p(L) on Ω going from the end
of α to the end of β. More precisely, pick a lift ∞̃ of ∞ on ∂H2 and two con-
secutive lifts τ̃1, τ̃2 of τ starting at ∞̃, which bound a fundamental domain
Ω̃ of ΩC on H2. Let α̃, β̃ be the unique lifts of α, β in Ω̃ starting at ∞̃. Let L

be the unique bi-infinite geodesic on Ω̃ going from the endpoint of α̃ to that
of β̃; See the upper left of Figure 2.1. Then p(L) is the projection of L on Ω.

Lemma 2.1. — There are lifts of τ converging to L. In particular, the
geodesic p(L) is simple on Ω. If neither α nor β is a loop, then L cannot
be a lift of τ , and p(L) lies in the limit set of τ .

Proof. — Let Ω̃, α̃ and β̃ be as above. Let a and b be the endpoints of
α̃ and β̃ respectively. Let Ωαβ be the sector bounded by α̃ and β̃ in the
fundamental domain for ΩC . Then (α, β) corresponds to the boundary of
Ωαβ . For each lift of τ contained in Ωαβ , its two ends bound an open sub-
interval of (α, β). Any two such sub-intervals are either disjoint or nested
since τ is simple. The union of such open sub-intervals is the entire (α, β).

ANNALES DE L’INSTITUT FOURIER
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Indeed, for any γ ∈ (α, β), it has a lift γ̃ starting at ∞̃ which lies in Ωαβ .
The lift γ̃ must intersect some lift τ̃ of τ , and any such τ̃ lies in Ωαβ since τ

is disjoint from α, β. The open sub-interval corresponding to τ̃ contains γ.
Unless L itself is a lift of τ , no such open sub-interval is maximal, and

there is an increasing nested sequence of them converging to (α, β). This
proves the first assertion. Thus p(L) is simple since τ is. If neither α nor β

is a loop, the endpoints of α̃, β̃ are not lifts of ∞, and thus L cannot be a
lift of τ , so p(L) lies in the limit set of τ . □

Given a ray τ , the circular order on S1
C induces a total order < on

S1
C \ {τ}, where x < y if and only if (x, y, τ) is positively oriented on S1

C .
We say a sequence of rays τn converges to a given ray τ from its left if τn

eventually converges to the left side (i.e. the small side under the order <)
of S1

C \{τ}. Alternatively, if an ant is moving on τ in the positive direction,
then it will see τn converging to τ from its left-hand side. Convergence from
the right is defined similarly.

There is another space related to simple rays, namely the completed
ray-and-loop graph R. It is the graph whose vertices correspond to the
simple rays and loops on Ω and whose edges join disjoint geodesics. It
is shown by Bavard–Walker [3, Theorem 2.8.1] that R has a connected
component (which we call major) containing all loops and short rays, which
is δ-hyperbolic and infinite diameter. Each other component is a clique (i.e.
a complete subgraph), and such cliques correspond to points on the Gromov
boundary of the major component (and hence also to points on the Gromov
boundary of the loop graph L(Ω; ∞)).

Each ray outside the major component is called high-filling. Here a ray is
(loop- and ray-) filling if it intersects all loops and short rays. It is known
that any filling ray γ is either high-filling or has distance at most 2 to some
loop. See [3, Lemma 2.7.6]. We say that a long ray is 2-filling if its minimal
distance to the set of loops and short rays on R is 2. In other words, a long
ray is 2-filling if it intersects every loop and short ray, but is disjoint from
some long ray which is in turn disjoint from a short ray or loop.

The following lemma is the analog for 2-filling rays of the fact that any
component in the ray-and-loop graph R containing a high-filling ray is a
clique.

Lemma 2.2. — For any 2-filling ray γ, its star in the ray-and-loop graph
R is a clique. In addition, all 2-filling rays in the clique have the same star.

Proof. — Since γ is 2-filling, any point in the star represents a long ray.
Let r1, r2 be two long rays disjoint from γ. Then r1 and r2 are disjoint
by [3, Lemma 2.7.4]. If r1 is also 2-filling, then this shows that any r2

TOME 73 (2023), FASCICULE 6
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disjoint from γ is also disjoint from r1 and vice versa, thus γ and r1 have
the same star. □

Finally, we introduce a piece of notation. Let α be an oriented ray or
loop and p, q ∈ α with p < q in the orientation on α (possibly with p = ∞
and/or q = ∞). Then we denote by α|[p, q] the subarc of α which is oriented
from p to q. If α is a simple compact arc and p, q ∈ α then α|[p, q] similarly
denotes the subarc of α between p and q.

3. Background on train tracks, laminations, and foliations

For us, a train track will denote a locally finite graph with the following
structure. At any vertex v the set B(v) of incident edges at v is partitioned
into nonempty sets Bi(v) and Bo(v) which we call incoming and outgoing,
respectively. Moreover, the sets Bi(v) and Bo(v) carry total orders <i and
<o, respectively. If T is a train track then the vertices of T will be called
switches and the edges will be called branches. The set of branches of T

will be denoted by B(T ). A train path on T is a (finite or infinite) edge
path on T with the following property. Any two consecutive branches are
incident to a common switch v and we require one of the branches to be
incoming and the other to be outgoing at v. As usual, we may consider T as
a topological 1-complex endowed with the structure of a smooth manifold
away from the switches and at any switch v the structure of a well-defined
tangent line so that

• all of the branches incident to v are tangent,
• if all incident branches are oriented to point towards v, then the

tangent vectors to the incoming (respectively outgoing) branches
all point in the same direction,

• the tangent vectors to the incoming branches and outgoing branches
point in opposite directions.

A train path on T is then a smooth immersion of an interval into T .
A weight system on T is a function w : B(T ) → R⩾0 with the following

property. If v is a switch then we have that the sum of the weights of the
incoming branches incident to v is equal to the sum of the weights of the
outgoing branches incident to v. We will call a weighted train track a pair
(T, w) where T is a train track and w is a weight system on T .

Associated to a weighted train track (T, w) there is a union of foliated
rectangles defined as follows. For each branch b ∈ B(T ) we consider the
rectangle R(b) = [0, 1] × [0, w(b)]. These rectangles are glued together as

ANNALES DE L’INSTITUT FOURIER
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follows. Any switch v defines an interval I(v) = [0, ℓ] where we set

ℓ =
∑

b∈Bi(v)

w(b) =
∑

b∈Bo(v)

w(b).

If b1 <o b2 <o · · · <o bn are the outgoing edges at v then I(v) is divided
into consecutive closed subintervals I1, . . . , In of lengths w(b1), . . . , w(bn),
respectively and where 0 ∈ I1. The left vertical side {0}× [0, w(bi)] of R(bi)
is glued isometrically to the interval Ii. Similarly, the right vertical sides
of the rectangles corresponding to the incoming branches at v are glued to
I(v) isometrically according to the total order <i.

Denote the union of foliated rectangles by G. Each rectangle R(b) of G

is foliated by the horizontal line segments [0, 1]×{h} for h ∈ [0, w(b)]. This
endows G with the structure of a singular foliation. That is, G is foliated
by horizontal lines away from a discrete set of points (the singularities of
the foliation, where at least three rectangles meet) and its boundary ∂G

which is defined to be the union of the horizontal boundary components
[0, 1] × {0} and [0, 1] × {w(b)} of the rectangles R(b). For the rest of the
discussion, endow the topological space underlying G with an orientation.

A saddle connection of G is an embedding of a compact interval into
G which is a union of horizontal line segments, having singularities at its
endpoints and no singularities in its interior. A singular ray of G is an
embedding of the half-line [0, ∞) into G which is a union of horizontal line
segments with a singularity at its endpoint and no singularity in its interior.

A leaf l of G is an embedding of R into G which is the union of a sequence

. . . σ−2σ−1σ0σ1σ2 . . .

of horizontal line segments of G and satisfies the following properties. First
of all, each σi traverses a rectangle Rbi in G and we require that

. . . b−2b−1b0b1b2 . . .

is a train path on T . Secondly, there is a choice of left or right (assume
left for simplicity) such that the following condition is satisfied. Suppose
that some σi has endpoints pi ∈ Rbi−1 ∩ Rbi and qi ∈ Rbi ∩ Rbi+1 . Suppose
that σi is contained in the interior of Rbi

but that qi is a singularity. Then
the rectangle Rbi+1 traversed by σi+1 lies to the left at qi as we traverse σi

from pi to qi. If on the other hand, σi is contained in the interior of Rbi

but pi is a singularity, orienting σi from qi to pi, we have that Rbi−1 lies
to the right at pi. A half leaf of l is an equivalence class of rays contained
in l, where two sub-rays are considered to be equivalent if their symmetric
difference is compact.

TOME 73 (2023), FASCICULE 6
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A leaf will be called singular if it contains a singularity and non-singular
otherwise. The leaves of G define train paths on T and we denote by
T P(T, w) the resulting set of train paths. If t is the train path defined
by some singular leaf, we will call it a boundary path.

We say that a train path t ∈ T P(T, w) accumulates onto the path t′ ∈
T P(T, w) if every finite sub-train path b1 · · · bk of t′ is contained in t. We
say that t is dense in T P(T, w) if it accumulates onto every t′ ∈ T P(T, w).
There is a (typically non-Hausdorff) topology on T P(T, w) with sub-basis
consisting of all sets of the form

{t ∈ T P(T, w) : b1 · · · bk is contained in t}

where b1 · · · bk is a finite train path on T . With this topology, t accumulates
onto t′ if and only if every neighborhood of t′ contains t.

Finally, we define a flat surface to consist of the following data:
• a topological surface Σ;
• a countable closed subset P of Σ;
• an atlas of charts from open subsets U ⊂ Σ \ P to C such that all

transition functions between these charts have the form z 7→ ±z + c

in coordinates, where c ∈ C is a constant.
The surface Σ \ P inherits a Euclidean metric. This metric is typically
incomplete and we require it to extend to P , so that P is identified with a
subset of the completion of Σ \ P . The points of P are called singularities
of the flat surface Σ.

The surface Σ also inherits a horizontal foliation Fh defined as follows.
If U ⊂ Σ \ P and ϕ : U → C is one of the charts defined above, then the
line segments Im(z) = y in ϕ(U) pull back to a family of line segments on
U . The leaves of Fh are the maximal concatenations of such line segments.
Similarly, the vertical line segments Re(z) = x in ϕ(U) pull back to line
segments on U and the leaves of the vertical foliation Fv are the maximal
concatenations of these line segments. Since all transition functions have
the form z 7→ ±z + c, both Fh and Fv are well-defined and are indeed
foliations of Σ.

4. Two-side approachable long rays

In this section we introduce the so-called two-side approachable long
rays. Given such a long ray, we will construct 2-filling rays disjoint from it
in the next section.

ANNALES DE L’INSTITUT FOURIER
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Definition 4.1. — A long ray τ is two-side approachable if there are
loops ℓi and ri converging to τ such that ℓi converges to τ from the left, ri

converges to τ from the right, and such that ℓi and ri are all disjoint from τ .

Example 4.2. — Figure 4.1 depicts a simple example of a two-side ap-
proachable long ray τ that spirals and limits to a geodesic arc α connecting
two points in the Cantor set. There are geodesics that follow τ for a long
time and then turn around to the left to form a loop disjoint from τ and
slightly to the left of τ . See the loop ℓ in Figure 4.1. Similarly there are
loops disjoint from τ and sightly to the right of τ . Thus τ is indeed two-side
approachable.

See Section 6 for more complicated examples, where we construct a con-
tinuum of mapping class group orbits of two-side approachable long rays.

∞

α

τℓ

Figure 4.1. A two-side approachable long ray τ with a disjoint loop ℓ

slightly on its left

Given a two-side approachable long ray τ , a priori the loops ℓi, ri as in the
definition might intersect each other, but one can apply surgeries to make
them pairwise disjoint and have other nice properties for our construction
in the next section.

To state these properties, let Iτ be the closed interval obtained from
cutting the conical circle S1

C at τ . Recall that the circular order on S1
C

induces a total order < on Iτ , where x < y if and only if (x, y, τ) is positively
oriented. Then {ℓi} and {ri} represent sequences on Iτ converging to the
left and right endpoints of Iτ , respectively.

We refer to the component of Ω \ ℓi (resp. Ω \ ri) not containing τ as the
interior of ℓi (resp. ri), and refer to the other component as the exterior.
We will further make ℓi decreasing, ri increasing, and together satisfy

(4.1) · · · < ℓi < ℓi < · · · < ℓ1 < ℓ1 < r1 < r1 < · · · < ri < ri < · · · ,
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where ℓi and ri represent loops ℓi and ri with the reversed orientation
respectively. Geometrically, given that the loops ℓi and ri are disjoint, the
order guarantees them to have mutually disjoint interiors. See Figure 4.2.

∞̃

τ̃1

ℓ2

ℓ2

ℓ1

ℓ1

τ̃2

r2

r2

r1
r1

τ

∞
ℓ2

ℓ1
r1

r2

Figure 4.2. On the right we have loops ℓi, ri with disjoint interiors
that converge to and are disjoint from a two-side approachable long
ray τ , where black dots indicate Cantor subsets. The figure on the left
depicts their lifts to H2, where τ̃1 and τ̃2 are consecutive lifts of τ .

The surgery to promote ℓi and ri is based on the following lemmas.
Consider two geodesics r1 and r2 intersecting transversely at a point p.
Let r be a piecewise geodesic which first traverses r1 to the point p and
then traverses r2. We say that r is making a right (resp. left) turn if the
positive unit vector of r2 at p is on the right (resp. left) of r1. See the left
of Figure 4.3 for an example of a right turn, where we further straighten r

to a geodesic.

Lemma 4.3. — Let τ be a simple ray, and let r1, r2 be geodesics disjoint
from τ so that r1 starts from ∞. Let r be the straightening of a piecewise
geodesic that first follows r1 to an intersection p of r1 and r2 and then
follows r2. Then r is disjoint from τ and r < r1 (resp. r > r1) on Iτ if r

makes a right (resp. left) turn at p. Moreover,
(1) if r1, r2 are simple and the initial arc of r1 up to p does not intersect

r2 then r is simple;
(2) a bi-infinite geodesic ℓ is disjoint from r if it is disjoint from r1 and

r2;
(3) if ℓ /∈ {τ, r, r1} is a geodesic starting from ∞ that does not intersect

r2 transversely, then r > ℓ on Iτ if and only if r1 > ℓ.
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Proof. — Consider a fundamental domain Ω̃ of the conical cover in the
universal cover with boundary geodesics being consecutive lifts of τ starting
at the same lift ∞̃ of ∞. See the left of Figure 4.3. Let r̃1 be the unique lift
of r1 in Ω̃ starting at ∞̃, and let r̃2 be the unique lift of r2 intersecting r̃1
at the unique lift of p along r̃1. Then r̃2 stays in Ω̃ since r2 is disjoint from
τ . Now a lift r̃ of r is given by the third side of the geodesic triangle with
two sides on r̃1, r̃2 shown in Figure 4.3. Note that any infinite geodesic
intersecting r̃ must intersect one of the other two sides of the geodesic
triangle. The result easily follows from this. □

∞̃

τ̃1

Ω̃

r̃

τ̃2

r̃1

r̃2 p

∞̃

Ω̃

r̃

r̃1
τ̃

τ̃ ′

r̃1

r̃2

τ̃1

τ̃2

∞̃1

Figure 4.3. The figure on the left shows the concatenation of r1, r2 at
their intersection p by making a right turn, and r is the straightening.
The figure on the right shows the concatenation of r1, r2 at ∞ locally
disjoint from τ by making a right turn, and r is the straightening.

For two loops r1 and r2 disjoint from a simple ray τ , there is a unique
(possibly non-simple) loop r whose homotopy class represents their product
in π1(Ω̂, ∞) (where Ω̂ denotes the filled-in surface Ω ∪ {∞}) such that r is
disjoint from τ near ∞. An example is shown in Figure 5.2 where γ

(2)
2k is

the straightened concatenation α
(2)
2k ·α(3)

2k . We say r is making a right (resp.
left) turn if r2 > r1 (resp. r2 < r1) on Iτ ; see the right side of Figure 4.3 for
an illustration of a right turn on the universal cover. We have the following
analog of Lemma 4.3 for this kind of surgery.

Lemma 4.4. — Let r1 and r2 be loops disjoint from τ , and let r be the
straightening of the unique concatenation of r1, r2 at ∞ locally disjoint
from τ . Then r is (globally) disjoint from τ , and we have r < r1 (resp.
r > r1) on Iτ if r makes a right (resp. left) turn at the concatenation.
Moreover,
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(1) if r1, r2 are disjoint and r2, r1 are adjacent among the four points
r1, r1, r2, r2 on Iτ , then r is simple;

(2) a bi-infinite geodesic ℓ is disjoint from r if it does not intersect r1
or r2 transversely and is not a ray starting from ∞ so that ℓ is
between r1 and r2 on Iτ ;

(3) if ℓ /∈ {τ, r, r1} is a geodesic starting from ∞ disjoint from r2, then
r > ℓ on Iτ if and only if r1 > ℓ.

Proof. — The proof is similar to the previous one. We first visualize the
lift of r in the fundamental domain Ω̃ in this setting. Let Ω̃, ∞̃ and r̃1
be as before. Then the endpoint of r̃1 is another lift ∞̃1 of ∞, viewing
from which r̃1 is a lift of r1. Then there are two consecutive lifts τ̃ , τ̃ ′ of τ

starting from ∞̃1 so that (τ̃ , r̃1, τ̃ ′) has positive circular order. See the right
of Figure 4.3. Now there is a unique lift r̃2 of r2 starting at ∞̃1 so that
(τ̃ , r̃2, τ̃ ′) has positive circular order, and it is to the left of r̃1 if and only
if r2 > r1 on Iτ . Then a lift r̃ of r is the third side of the ideal geodesic
triangle with sides r̃1 and r̃2 as shown on the right of Figure 4.3, from
which the last claim easily follows. The additional assumption that r2 and
r1 are adjacent ensures a simple isotopy representative of the concatenation
when r1, r2 are disjoint, which implies that r is simple. Finally, a bi-infinite
geodesic ℓ intersecting r transversely must have a lift ℓ̃ entering the ideal
geodesic triangle above from the side r̃. Thus the only case where ℓ̃ avoids
r̃1 and r̃2 is when ∞̃1 is an end of ℓ̃. In this case, with the appropriate
orientation ℓ is a ray starting from ∞ sitting in between r1 and r2 on Iτ .
This proves the second claim. □

Lemma 4.5. — Let τ be a two-side approachable long ray. With the
notation above, we can choose the sequences of loops ℓi and ri so that they
are mutually disjoint and their order on Iτ satisfies (4.1).

Proof. — We start with two sequences of loops Li, Ri as in the definition
converging to the left and right endpoints of Iτ respectively. Up to taking
subsequences, we may assume Li, Ri to be monotone on Iτ with L1 < R1.

We will first inductively obtain mutually disjoint loops ℓ′
i, r′

i that con-
verge to the two endpoints and satisfy a different order

(4.2) · · · < ℓ′
i < r′

i < · · · < ℓ′
1 < r′

1 < r′
1 < ℓ′

1 < · · · < r′
i < ℓ′

i < · · · .

Geometrically this order makes the interiors of ℓi and ri nested. See Fig-
ure 4.4 for an illustration.

To this end, let r′
1 be R1 with a suitable orientation so that r′

1 < r′
1.

Suppose we have obtained r′
i for 1 ⩽ i ⩽ n and ℓ′

i for 1 ⩽ i ⩽ n − 1
such that they are mutually disjoint and satisfy the order (4.2). Since Lj
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∞̃

τ̃

ℓ′
2

r′
2

ℓ′
1

r′
1

τ̃ ′

ℓ′
2

r′
2

ℓ′
1r′

1

τ

∞

ℓ′
2

ℓ′
1

r′
1

r′
2

Figure 4.4. Loops ℓ′
i, r′

i with nested interiors that converge to and are
disjoint from a two-side approachable long ray τ , where dots indicate
Cantor subsets

converges to the left endpoint of Iτ , we may choose j large enough so that
Lj < r′

n.
There are two cases:

(1) If Lj intersects some of the already chosen ℓ′
i or r′

i, then the first
intersection p of Lj with this collection of loops lies on r′

n since the
interiors are nested. Let ℓ′

n be the straightening of the piecewise
geodesic that first follows Lj up to p and then follows r′

n. See L
(1)
j

and ℓ′
n in Figure 4.5 for an illustration. Applying Lemma 4.3 to ℓ′

n

and ℓ′
n, we observe that ℓ′

n is a loop disjoint from τ and r′
n such

that r′
n < ℓ′

n and ℓ′
n < Lj < r′

n.
(2) If Lj is disjoint from all the already chosen ℓ′

i or r′
i, then we have ei-

ther Lj < r′
n < r′

n < Lj or Lj < Lj < r′
n < r′

n. In the former case,
we simply let ℓ′

n = Lj . In the latter case, let ℓ′
n be the straight-

ening of the unique concatenation of Lj , r′
n at ∞ locally disjoint

from τ . See L
(2)
j and ℓ′

n in Figure 4.5 for an illustration. Applying
Lemma 4.4 to ℓ′

n and ℓ′
n, we observe that ℓ′

n is a loop disjoint from
τ and r′

n such that r′
n < ℓ′

n and ℓ′
n < Lj < r′

n.

In either case, we obtain a loop ℓ′
n with the desired properties and ℓ′

n <

Lj . A symmetric surgery to some Rk for a large k gives us the next loop r′
n+1

with the desired properties and r′
n+1 > Rk. Hence by induction we obtain

two sequences of mutually disjoint loops ℓ′
i, r′

i in the desired order (4.2) and
they converge to the two endpoints of Iτ respectively.
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τ

∞

L
(1)
j

L
(2)
j

ℓ′
n

p

ℓ′
n−1

r′
n

Figure 4.5. Two potential Lj ’s that give rise to ℓ′
n after surgery

Now we modify ℓ′
i, r′

i to get the desired ℓi, ri satisfying order (4.1). Let
rn be the concatenation of r′

n with ℓ′
n locally disjoint from τ for n ⩾ 1.

Similarly let ℓn be the concatenation of ℓ′
n with r′

n+1 locally disjoint from
τ for n ⩾ 1. Then by Lemma 4.4, we have ℓ′

n > rn > rn > r′
n and

r′
n+1 < ℓn < ℓn < ℓ′

n for all n. It follows that the sequences of loops ℓi, ri

are mutually disjoint, converge to the two endpoints of Iτ , and satisfy the
desired order (4.1) on Iτ . □

Remark 4.6. — It is not even necessary to insist that ℓk and rk are simple
in the definition of a two-side approachable ray τ . This is because there are
similar surgeries that eliminate self-intersections of any ℓk (resp. rk) while
keeping it disjoint from τ and making it closer to τ . We give a sketch.

Suppose rk self-intersects. Let p be the first self-intersection point on
rk as one starts out from ∞ following rk. This point p cuts rk into the
concatenation of geodesics α, β, γ, where α (resp. γ) is the starting (resp.
ending) geodesic path of rk from ∞ to p (resp. from p to ∞) and β is
the geodesic loop in between. There are two possible modifications: the
straightening of r′

k = α · β · α or r′′
k = α · β · α. Both are disjoint from τ

and have self-intersection numbers no more than that of β and strictly less
than that of rk. Moreover, one of the two modifications makes a left turn
at p and the other makes a right turn. Hence one of them is greater than
rk on Iτ . Continuing such modifications provides a (simple) loop disjoint
from τ and gets even closer.
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5. 2-filling rays disjoint from two-side approachable long
rays

The goal of this section is to give an explicit and straightforward con-
struction of 2-filling rays and prove the following theorem.

Theorem 5.1. — For any two-side approachable long ray τ , there is a
2-filling ray γ such that τ is the only ray disjoint from γ. Moreover, for any
n ⩾ 1, there is a set γ = {γ(1), . . . , γ(n)} of n mutually disjoint 2-filling
rays such that the set of rays disjoint from any γ(i) is {τ} ∪ (γ \ {γ(i)}).
Equivalently, the star of each γ(i) on the ray-and-loop graph R is a clique
with vertex set {τ} ∪ γ.

We first describe the construction of γ for each n ⩾ 1. Let ℓm, rm be
disjoint loops converging to τ as in Lemma 4.5. Choose two increasing
sequences of positive integers pk and qk such that pk+1 − pk ⩾ n and
qk+1−qk ⩾ n. We repeat the following two steps, depending on the parity of
j, to inductively define n sequences of loops γ

(1)
j , . . . , γ

(n)
j . In the following,

· denotes the concatenation near ∞ locally disjoint from τ introduced in
Section 4.

Step 1. — Let α
(n−i)
2k := γ

(n−i)
2k−1 · ℓpk+i · γ

(n−i)
2k−1 for all 0 ⩽ i ⩽ n − 1, and

let α
(i)
2k−1 := γ

(i)
2k−2 · rqk+i−1 · γ

(i)
2k−2 for all 1 ⩽ i ⩽ n; or let α

(i)
1 := rq1+i−1

for all 1 ⩽ i ⩽ n for the initial case when 2k − 1 = 1.

Step 2. — Let γ
(n)
2k := α

(n)
2k and γ

(n−i)
2k := α

(n−i)
2k · γ(n−i+1)

2k for all 1 ⩽ i ⩽

n − 1, and let γ
(1)
2k−1 := α

(1)
2k−1 and γ

(i)
2k−1 := α

(i)
2k−1 · γ

(i−1)
2k−1 for all 2 ⩽ i ⩽ n.

The constructions of α
(n−i)
2k and γ

(n−i)
2k as in the two steps above are

depicted in Figures 5.1 and 5.2 respectively. When pk and qk are large
enough for all k, we will show that γ

(1)
j , . . . , γ

(n)
j converge to simple rays

γ(1), . . . , γ(n) with the desired properties as j → ∞.
Before we proceed to show that the construction gives us the desired 2-

filling rays, we explain how this intuitively works in the case n = 1, where
we take pk = qk = k. Figure 5.3 shows the ray γ right before it starts to
follow ℓ2 for the first time. One key property of γ is that when it starts to
follow some ℓk (resp. rk) for the first time it is in the middle slightly to the
left (resp. right) of τ . Such segments get close to the starting segments of τ

and γ on both sides, and thus force any ray other than γ and τ to intersect
γ transversely.

In later sections we will give another construction of 2-filling rays using
train tracks and laminations (see Theorem 8.1). That construction is similar
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ℓpk+2

ℓpk+1

ℓpk

τ

γ
(1)
2k−1

γ
(2)
2k−1

γ
(3)
2k−1

ℓpk+2

ℓpk+1

ℓpk

τ

α
(1)
2k

α
(2)
2k

α
(3)
2k

Figure 5.1. Constructing α
(n−i)
2k from γ

(n−i)
2k−1 when n = 3 as in Step 1.

τ

α
(1)
2k

α
(2)
2k

α
(3)
2k

τ

α
(1)
2k

α
(2)
2k

γ
(3)
2k = α

(3)
2k

γ
(1)
2k

γ
(2)
2k

Figure 5.2. Constructing γ
(n−i)
2k from α

(n−i)
2k when n = 3 as in Step 2.

to the construction here with n = 1, and one can almost see a train track
in Figure 5.3 by collapsing parallel strands. Compare with Figure 8.1. See
Section 13 for a detailed discussion on the correspondence.

To prove Theorem 5.1, we first prove some properties of the loops α
(i)
k

and γ
(i)
k .
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∞
τ

ℓ1 ℓ2

r1γ

r2

Figure 5.3. The 2-filling ray γ only disjoint from τ in our construction
after the first few steps.

Lemma 5.2. — The sequences of loops γ
(1)
j , . . . , γ

(n)
j and α

(1)
j , . . . , α

(n)
j

constructed above have the following properties:
(1) For any given j, the loops γ

(i)
j (resp. α

(i)
j ) as we vary i are mutually

disjoint and disjoint from τ ;
(2) For any 1 ⩽ i ⩽ n, we have

γ
(i)
2k−1 < γ

(i)
2k ⩽ α

(i)
2k < α

(i)
2k < γ

(i)
2k−2,

on Iτ for all k > 1 and similarly

γ
(i)
2k−1 < α

(i)
2k+1 < α

(i)
2k+1 ⩽ γ

(i)
2k+1 < γ

(i)
2k ,

on Iτ for all k ⩾ 1;
(3) For all k ⩾ 1 and any 1 ⩽ i ⩽ n, γ

(i)
2k+1 and γ

(i)
2k (resp. γ

(i)
2k and

γ
(i)
2k−1) can be made arbitrarily close on Iτ by choosing pk (resp. qk)

large enough;
(4) For all k ⩾ 1 we have ℓpk+n < α

(1)
2k < α

(1)
2k < α

(2)
2k < · · · < α

(n)
2k <

α
(n)
2k < rqk+1 on Iτ , and ℓpk+n < γ

(1)
2k < · · · < γ

(n)
2k < γ

(n)
2k < · · · <

γ
(1)
2k < rqk+1 . Similarly ℓpk

< α
(1)
2k−1 < α

(1)
2k−1 < α

(2)
2k−1 < · · · <

α
(n)
2k−1 < α

(n)
2k−1 < rqk+n, and ℓpk

< γ
(n)
2k−1 < · · · < γ

(1)
2k−1 < γ

(1)
2k−1 <

· · · < γ
(n)
2k−1 < rqk+n.

(5) Both α
(i)
2k−1 and γ

(i)
2k−1 are disjoint from ℓs and rt for all s ⩾ pk and

t ⩾ qk + i, and similarly α
(n−i)
2k and γ

(n−i)
2k are disjoint from ℓs and

rt for all s ⩾ pk + i + 1 and t ⩾ qk+1.

Proof. — We prove bullets (1), (2), (4) and (5) together by induction
on j.
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For j = 1, we have α
(i)
1 := rq1+i−1 mutually disjoint and satisfying (4.1).

We verify these statements about α
(i)
1 and γ

(i)
1 . By Lemma 4.4 we see that

the γ
(i)
1 ’s are mutually disjoint simple loops since the α

(i)
1 ’s are disjoint and

satisfy (4.1). The second claim in Lemma 4.4 also implies that each γ
(i)
1

is disjoint from τ , ℓs, and rt for all s ⩾ p1 and t ⩾ q1 + i. This verifies
bullets (1) and (5). Bullet (4) follows from (4.1) and the last claim in
Lemma 4.4, where we treat each γ

(i)
1 as the concatenation γ

(i−1)
1 · α

(i)
1 for

i ⩾ 2. Finally, bullet (2) is vacuous for α
(i)
1 and γ

(i)
1 .

Suppose the statements about loops up to α
(i)
j and γ

(i)
j for all 1 ⩽ i ⩽ n

and some j ⩾ 1 are all correct. We verify the results as we add α
(i)
j+1 and

γ
(i)
j+1 for all 1 ⩽ i ⩽ n to the list. We assume j = 2k − 1 for some k ⩾ 1 in

the sequel. The case where j is even can be proved similarly in a symmetric
way.

By the induction hypothesis and (4.1), γ
(n−i)
2k−1 is disjoint from τ , ℓs and

rt for s ⩾ pk and t ⩾ qk+1 ⩾ qk + n, and we have ℓpk+i < ℓpk+i < γ
(n−i)
2k−1 <

γ
(n−i)
2k−1 . Applying Lemma 4.4 twice to α

(n−i)
2k := γ

(n−i)
2k−1 · (ℓpk+i · γ

(n−i)
2k−1 ) as

the result of two concatenations, we see that α
(n−i)
2k is a loop disjoint from

τ , ℓs and rt for all s ⩾ pk + i + 1 and t ⩾ qk+1 as in bullets (1) and (5).
Lemma 4.4 also implies that ℓpk+n < α

(n−i)
2k , α

(n−i)
2k < rqk+1 as in bullet (4).

Next we show that α
(n−i)
2k and α

(n−j)
2k are disjoint for any i < j. This

can be seen by observing the disjoint representatives in Figure 5.1. Alter-
natively, note that γ

(n−j)
2k−1 and ℓpk+j are disjoint from ℓpk+i and γ

(n−i)
2k−1 ,

and that neither γ
(n−j)
2k−1 nor ℓpk+j sits between ℓpk+i and γ

(n−i)
2k−1 . So we de-

duce from Lemma 4.4 that ℓpk+i · γ
(n−i)
2k−1 is disjoint from γ

(n−j)
2k−1 and ℓpk+j ,

and that neither γ
(n−j)
2k−1 nor ℓpk+j sits between γ

(n−i)
2k−1 and ℓpk+i · γ

(n−i)
2k−1 .

Thus by applying Lemma 4.4 again, we see that α
(n−i)
2k is also disjoint from

γ
(n−j)
2k−1 and ℓpk+j , and that ℓpk+j < ℓpk+j < γ

(n−j)
2k−1 < γ

(n−j)
2k−1 < α

(n−i)
2k .

By a similar process, we can further deduce that α
(n−i)
2k and α

(n−j)
2k =

γ
(n−j)
2k−1 · (ℓpk+j · γ

(n−j)
2k−1 ) are disjoint.

Now we prove γ
(n−i)
2k−1 < γ

(n−i)
2k ⩽ α

(n−i)
2k < α

(n−i)
2k < γ

(n−i)
2k−2 as in bul-

let (2) by finding suitable lifts of γ
(n−i)
2k , α

(n−i)
2k , and α

(n−i)
2k . The induction

hypothesis already guarantees γ
(n−i)
2k−1 < γ

(n−i)
2k−2 . On a fundamental domain

Ω̃ of ΩC between two consecutive lifts of τ starting from a chosen ∞̃, we
have the lifts of γ

(n−i)
2k−2 , γ

(n−i)
2k−1 starting at ∞̃ shown in Figure 5.4. Then we
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have lifts of ℓpk+i and ℓpk+i starting at the endpoint of the lift of γ
(n−i)
2k−1 .

Their relative positions are correct since ℓpk+i < ℓpk+i < γ
(n−i)
2k−1 , and they

do not intersect the lift of γ
(n−i)
2k−2 since ℓpk+i is disjoint from γ

(n−i)
2k−2 . Then

we have lifts of γ
(n−i)
2k−1 starting at the endpoints of the lifts of ℓpk+i and

ℓpk+i respectively. They both go to the left as shown in Figure 5.4 since
ℓpk+i < ℓpk+i < γ

(n−i)
2k−1 . From this, we obtain the lifts of α

(n−i)
2k and α

(n−i)
2k

starting from ∞̃. This shows that γ
(n−i)
2k−1 < α

(n−i)
2k < α

(n−i)
2k < γ

(n−i)
2k−2 . It

remains to find the lift of γ
(n−i)
2k .

For any 1 ⩽ i < j ⩽ n, since γ
(n−j)
2k−1 < γ

(n−i)
2k−1 and γ

(n−i)
2k−1 is disjoint from

ℓpk+j , the above configuration implies that α
(n−j)
2k < α

(n−i)
2k . Based on this

relation, the lift of α
(n−i+1)
2k starting at the end of the lift of α

(n−i)
2k must

head to the left as shown in Figure 5.4. It must stay inside the half-disk
bounded by the lift of ℓpk+i since α

(n−i+1)
2k is disjoint from ℓpk+i. Continuing

this process, we obtain lifts of α
(n−i+1)
2k , . . . , α

(n)
2k this way to construct a

lift of γ
(n−i)
2k starting from ∞̃, shown in Figure 5.4. This implies that

γ
(i)
2k−1 < γ

(i)
2k ⩽ α

(i)
2k < α

(i)
2k < γ

(i)
2k−2

as in bullet (2).
Note that we also proved the inequality α

(1)
2k < α

(1)
2k < α

(2)
2k < · · · <

α
(n)
2k < α

(n)
2k as in bullet (4) along the way. The inequalities about α

(n−i)
2k ’s

that we have established, together with Lemma 4.4, implies that the γ
(n−i)
2k ’s

are simple loops and satisfy the disjointness in bullets (1) and (5). The in-
equalities in bullet (4) concerning γ

(n−i)
2k ’s also follow this way; also see

Figure 5.2 for an illustration.
This completes the inductive step and proves bullets (1), (2), (4) and (5).
To see bullet (3), note that by bullet (2), γ

(n−i)
2k+1 sits in between γ

(n−i)
2k−1

and γ
(n−i)
2k . Since γ

(n−i)
2k+1 is disjoint from τ by bullet (1), in Figure 5.4, the

lift of γ
(n−i)
2k+1 starting from ∞̃ must have endpoint between ∞̃1 and ∞̃2,

and thus between ∞̃1 and ∞̃3. As pk → ∞, the loop ℓpk+i converges to τ

and ∞̃3 converges to ∞̃1, thus γ
(n−i)
2k+1 and γ

(n−i)
2k can be made arbitrarily

close by choosing pk large. □

Lemma 5.3. — For all k > 1 and any 1 ⩽ i ⩽ j ⩽ n we have

α
(j)
2k < α

(j−1)
2k · α

(j)
2k < · · · < α

(i)
2k · · · α

(j)
2k < γ

(j)
2k−2
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∞̃
Ω̃

τ γ
(n−i)
2k−1

τ

ℓpk+i

ℓpk+i

τ

∞̃1

γ
(n−i)
2k

∞̃2

α
(n)
2k

· · ·

α
(n−i)
2k α

(n−i)
2k

α
(n−i+1)
2k

∞̃3

γ
(n−i)
2k−1

γ
(n−i)
2k−1

γ
(n−i)
2k−2 τ

Figure 5.4. Obtaining the lifts of α
(n−i)
2k , α

(n−i)
2k and γ

(n−i)
2k starting

from ∞̃ in Ω̃, shown on the upper half-plane with the point at infinity
being ∞̃.

on Iτ and similarly for all k ⩾ 1 we have

α
(i)
2k+1 > α

(i+1)
2k+1 · α

(i)
2k+1 > · · · > α

(j)
2k+1 · · · α

(i)
2k+1 > γ

(i)
2k−1.

Proof. — Recall the construction of the lift of α
(j)
2k = γ

(j)
2k−1 · ℓpk+n−j ·

γ
(j)
2k−1 starting from ∞̃ in Figure 5.4. Denote its endpoint as ∞̃(j) in Fig-

ure 5.5. To obtain the lift of α
(j−1)
2k · α

(j)
2k = α

(j)
2k · α

(j−1)
2k starting from ∞̃,

we first visualize the lift of α
(j−1)
2k starting from ∞̃(j). Note that α

(j−1)
2k is

the concatenation of γ
(j−1)
2k−1 , ℓpk+n−j+1 and γ

(j−1)
2k−1 , all of which are disjoint

from γ
(j)
2k−1. Thus the lift of α

(j−1)
2k starting from ∞̃(j) is shown as in Fig-

ure 5.5, which stays inside the semicircle corresponding to γ
(j)
2k−1. Here we

have used that γ
(j−1)
2k−1 < γ

(j)
2k−1 < α

(j)
2k as in Lemma 5.2.

By concatenating the lift of α
(j)
2k from ∞̃ and the lift of α

(j−1)
2k starting

from ∞̃(j), we get the lift of α
(j−1)
2k · α

(j)
2k starting from ∞̃, and observe that

α
(j)
2k < α

(j−1)
2k · α

(j)
2k < γ

(j)
2k−2.

We can continue lifting α
(m)
2k for all j − 1 < m ⩽ i. The same approach

proves the first inequality in the lemma. A symmetric argument proves the
other claimed inequality. □
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∞̃

Ω̃

τ γ
(j)
2k−1

τ

ℓpk+n−j

ℓpk+n−j+1

τ

α
(j−1)
2k · α

(j)
2k

α
(j)
2k

α
(j−1)
2k

γ
(j−1)
2k−1

γ
(j)
2k−1

γ
(j−1)
2k−1

∞̃(j)

α
(j−2)
2k

· · ·
α

(i)
2k

α
(i)
2k · · · α

(j)
2k

γ
(j)
2k−2 τ

Figure 5.5. Visualizing the lifts of α
(j−1)
2k · α

(j)
2k and α

(i)
2k · · · α

(j)
2k starting

from ∞̃, shown on the upper half-plane with the point at infinity
being ∞̃.

Corollary 5.4. — We have γ
(1)
2k−1 < γ

(i)
2k+1 ⩽ γ

(1)
2k+1 < γ

(1)
2k+1 on Iτ for

any 1 ⩽ i ⩽ n and any k ⩾ 1, and similarly γ
(n)
2k < γ

(n)
2k ⩽ γ

(i)
2k < γ

(n)
2k−2 for

all k > 1.

Proof. — We have γ
(n)
2k < γ

(n)
2k by bullet (4) of Lemma 5.2. Since γ

(i)
2k =

α
(i)
2k · · · α

(n)
2k , the rest of the inequality with even subscripts follows from

this and the first inequality in Lemma 5.3 by taking j = n. Similarly the
inequality with odd subscripts also follows from Lemmas 5.3 and 5.2. □

Lemma 5.5. — By choosing pk and qk large enough for all k, the se-
quence γ

(i)
k converges to a simple ray γ(i) disjoint from τ for all 1 ⩽ i ⩽ n.

In this case, we have
(1) γ(1) < γ(2) < · · · < γ(n);
(2) the γ(i)’s are mutually disjoint; and
(3) γ

(i)
2k−1 (resp. γ

(i)
2k ) converges to γ(1) (resp. γ(n)) as k → ∞ for all

1 ⩽ i ⩽ n.

Proof. — By bullet (2) of Lemma 5.2, for each i, the sequence γ
(i)
2k (resp.

γ
(i)
2k−1) is decreasing (resp. increasing) in k, and γ

(i)
2k−1 < γ

(i)
2k for all k. Thus

the sequence {γ
(i)
2k } is convergent provided that γ

(i)
2k−1 and γ

(i)
2k get close as
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k increases, which can be done by choosing pk and qk large; see bullet (3)
of Lemma 5.2.

Given the convergence, we have γ(1) < γ(2) < · · · < γ(n) by bul-
let (4) of Lemma 5.2. Since γ

(i)
k and γ

(j)
k are disjoint for any k, so are

γ(i) and γ(j). Finally, since γ
(1)
2k−3 < γ

(i)
2k−1 < γ

(1)
2k−1 and γ

(n)
2k < γ

(i)
2k <

γ
(n)
2k−2 by Corollary 5.4, we see that γ

(i)
2k−1 (resp. γ

(i)
2k ) converges to γ(1)

(resp. γ(n)). □

We are now in a place to prove Theorem 5.1.

Proof of Theorem 5.1. — Since τ is two-side approachable, by
Lemma 4.5, we obtain disjoint loops ℓi, ri converging to τ on the two sides
and satisfying (4.1). Construct n sequences of loops {γ

(i)
k } with 1 ⩽ i ⩽ n

as above and choose the constants pk, qk properly so that the sequences of
loops {γ

(i)
k } converge to disjoint rays γ(i) by Lemma 5.5.

Let γ = {γ(i)}n
i=1. It remains to show that any ray α other than τ or

those in γ intersects each γ(i).
We first show that α intersects γ(i) for any 1 ⩽ i ⩽ j if we have γ(j) <

α < γ(j+1) for some j ⩽ n − 1. Recall that γ
(i)
2k = α

(i)
2k · γ

(i+1)
2k = · · · =

(α(i)
2k · α

(i+1)
2k · · · α

(j)
2k ) · γ

(j+1)
2k . We have γ

(j)
2k ⩽ α

(j)
2k < α

(i)
2k · α

(i+1)
2k · · · α

(j)
2k <

γ
(j)
2k−2 by Lemma 5.3 and bullet (2) of Lemma 5.2. Thus α

(i)
2k · α

(i+1)
2k · · · α

(j)
2k

converges to γ(j) as k goes to infinity. Combining this with the fact that
γ

(j+1)
2k converges to γ(j+1), we see lifts of γ

(i)
2k with the starting point and

endpoint converging to the endpoints of γ̃(j) and γ̃(j+1) respectively as
k → ∞, where γ̃(j) (resp. γ̃(j+1)) is the lift of γ(j) (resp. γ(j+1)) starting
from ∞̃, a chosen lift of ∞; see Figure 5.6.

Based on this lift of γ
(i)
2k , we obtain a lift of α

(i)
2k+1 = γ

(i)
2k · rqk+1+i−1 · γ

(i)
2k

starting at the same point ∞̃1, shown in Figure 5.6. Since γ
(i)
2k < rqk+1 ⩽

rqk+1+i−1 and rqk+1+i−1 is disjoint from γ
(j+1)
2k−1 , the endpoint of this lift of

α
(i)
2k+1 must sit in between those of γ̃

(j+1)
2k−1 and γ̃

(j+1)
2k , where γ̃

(j+1)
2k−1 (resp.

γ̃
(j+1)
2k ) is the lift of γ

(j+1)
2k−1 (resp. γ

(j+1)
2k ) starting from ∞̃.

Since α
(i)
2k+1 < γ

(i)
2k+1 < γ(i) < γ

(i)
2k by bullet (2) of Lemma 5.2, the lift of

γ(i) starting at ∞̃1 sits in between the above lifts of γ
(i)
2k and α

(i)
2k+1. As k

goes to infinity, this process provides lifts of γ(i) converging to the geodesic
starting from the endpoint of γ̃(j) to the endpoint of γ̃(j+1). Thus any ray
γ(j) < α < γ(j+1) intersects γ(i) for all j ⩾ i.

A symmetric argument using lifts of γ
(i)
2k−1 and α

(i)
2k shows that any ray

γ(j−1) < α < γ(j) intersects γ(i) for all j ⩽ i.
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∞̃

Ω̃

τ γ(j)

∞̃1

γ
(j)
2k−2

α
(i)
2k · · · α

(j)
2k

α
(i)
2k · · · α

(j)
2k

α
(i)
2k+1

γ(i)

γ
(i)
2k

γ
(j+1)
2k−1 γ(j+1) γ

(j+1)
2k

τ

γ
(i)
2k

rqk+1+i−1

Figure 5.6. Visualizing lifts of γ
(i)
2k , α

(i)
2k+1 and γ(i) starting from ∞̃1.

So it remains to show that γ(i) intersects any ray α satisfying α < γ(1)

or α > γ(n) on Iτ . We will focus on the case where α < γ(1). The other
case can be proved in a symmetric way.

Recall that γ
(i)
2k = α

(i)
2k · γ

(i+1)
2k = γ

(i)
2k−1 · ℓpk+n−i · γ

(i)
2k−1 · γ

(i+1)
2k . By

Lemma 5.2, we have γ
(i)
2k−1 < γ

(1)
2k−1 < γ(1), ℓpk+n−i < ℓpk+n−i < γ

(i)
2k−1 and

γ
(i)
2k−1 < γ

(i)
2k < γ

(i+1)
2k . Thus we obtain a lift of γ

(i)
2k as shown in Figure 5.7,

whose endpoint converges to the lift of τ on the left boundary of the fun-
damental domain Ω̃ as k → ∞. By Lemma 5.5, as k goes to infinity, the
starting point ∞̃1 of this lift converges to the endpoint of γ̃(1), the lift of
γ(1) starting from ∞̃. Since γ(i) < γ

(i)
2k , the same convergence of endpoint

holds true for the lift of γ(i) starting from ∞̃1. This provides lifts of γ(i)

that intersect any ray α satisfying α < γ(1) and completes the proof. □

Remark 5.6. — By changing the subsurface in the interior of each ℓi and
ri suitably, the construction gives rise to 2-filling rays on other surfaces of
infinite type.

The construction above only produces 2-filling rays that have finite va-
lence in R, i.e. their stars in R are finite cliques. We do not know the
answer to the following question, which is seemingly related to the analo-
gous question for high-filling rays recently solved by Juliette Bavard [2].

Question 5.7. — Is there an infinite clique of 2-filling rays in R?
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∞̃

Ω̃

τ ℓpk+n−i γ
(i)
2k−1

γ
(i)
2k−1

γ(1)

γ
(i)
2k

γ
(i)
2k−1γ

(i+1)
2k

∞̃1

τ

Figure 5.7. Visualizing a lift of γ
(i)
2k .

The finite cliques of 2-filling rays constructed above are only disjoint
from a single non-filling long ray τ . In Section 7 we will show that in such
a situation, the long ray τ must be two-side approachable, and thus in this
sense all 2-filling rays of this type come from our construction.

In general, one could also have a finite clique of 2-filling rays that are
disjoint from several different non-filling long rays. This certainly can be
done on surfaces with non-planar ends. See Section 14.

As the existence of 2-filling rays makes it more complicated to check
whether a ray is high-filling (and thus contributes to a point on the Gromov
boundary of the loop graph), it is natural to ask for a (relatively simple)
sufficient condition that guarantees a ray to be high-filling. Yan Mary He
and Kasra Rafi asked whether a ray is high-filling if it is filling in some
stronger sense.

We believe only further requiring a filling ray to intersect all closed
geodesics does not rule out the possibility that it is 2-filling. We will explain
below a modification of the construction above that gives rise to a 2-filling
ray that is filling in this strong sense.

However, the answer might become positive if we require the ray to inter-
sect all proper geodesics (e.g. including geodesics from a point in the Cantor
set to another), as 2-filling rays might always contain proper geodesics in
their limit sets.
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Question 5.8. — Does the limit set of a 2-filling ray always contain a
proper leaf?

In the original construction with n = 1, the 2-filling ray γ we obtain is
disjoint from all closed geodesics in the interior of each ri or ℓi. In general
there could be other disjoint closed geodesics if the interiors of ri, ℓi do not
eventually “cover” the entire Cantor set. However, one can avoid this by
choosing the two-side approachable long ray τ and ri, ℓi appropriately.

Thus the key is to modify the construction so that γ intersects all closed
geodesics in the interior of each ri and ℓi. We explain the modification
near r1 below. This same strategy may be applied to the other loops ri

and ℓi as well. To chop up the interior of r1, we repeatedly cut this disk
and the Cantor subset in it into two halves by introducing infinitely many
loops, where the new segments correspond to dyadic rational numbers; see
Figure 5.8.

∞ r1 1

3
4

1
2

1
4

0

Figure 5.8. Loops corresponding to dyadic numbers that cut up the
Cantor subset in the interior of r1

In the iterative construction of a 2-filling ray γ through γk’s (we drop the
superscripts as we take n = 1), when we follow γ2k to fold back and obtain
γ2k+1, we modify it and let some of the segments go inside the interior of r1
following some of the new segments corresponding to dyadic numbers, so
that in the end γ traverses all these segments corresponding to the dyadic
numbers and thus intersects all closed geodesics in the interior of r1.

An explicit way is to do the fold-back as in the original construction
except that, for the strands “carried” by the segment corresponding to each
positive dyadic number, pull the lowest strand down to traverse the segment
corresponding to the closest dyadic number with twice the denominator.
Figure 5.9 illustrates this in the case of γ3 and γ5. One can verify that this
modification only affects the part where we fold back following γ2k (the red
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portion in the figure). Thus it does not affect the previous γi’s. Adopting
this modification to curves near each ri and ℓi simultaneously, we should
obtain in the limit a 2-filling ray that also intersects all closed geodesics.

old γ3

1
ℓ1

r2

1
2

0
new γ3

1
ℓ1

r2

1
2

0

old γ5

1

ℓ1

ℓ2

r2
r3

3
4
1
2
1
4

0
new γ5

1

ℓ1

ℓ2

r2
r3

3
4
1
2
1
4

0

Figure 5.9. Comparison of γ3 and γ5 in original construction (left)
and in the modified construction (right) near r1. The portion in red
represents the part obtained in the iterative construction when the
curve folds back. The dotted line in each blue box indicates that the
ray is away from r1 and near the loop labeled.

6. 2-filling rays abound

In this section we apply the construction introduced in Section 5 to
different two-side approachable long rays, and give a continuum of mapping
class group orbits of 2-filling rays as well as two-side approachable long rays.

Theorem 6.1. — The set of two-side approachable long rays is invariant
under the action of the mapping class group Γ, and there is a continuum
of orbits. In particular, there is a continuum of mapping class group orbits
of 2-filling rays.

Proof. — To see that the set of two-side approachable long rays is in-
variant, suppose that φ ∈ Γ and that the long ray τ is disjoint from the
loops ℓi and ri which limit to τ on the left and right, respectively. Then
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φτ is disjoint from the loops φℓi and φri, which limit to φτ on the left
and right, respectively, since φ acts on the conical circle S1

C by orientation-
preserving homeomorphisms. It suffices to construct a continuum of orbits.
Since for each two-side approachable long ray τ there is a 2-filling ray only
disjoint from τ by Theorem 5.1, this would also give a continuum of orbits
of 2-filling rays.

We will distinguish the two-side approachable long rays we construct by
their limit sets, which we now describe. Fix an infinite increasing sequence
of integers 1 ⩽ n1 < n2 · · · . For each k there is some ideal geodesic nk-gon
Pk on Ω, where the interior possibly contains points in the Cantor set. We
arrange {Pk} so that

• they have disjoint interiors and distinct vertices,
• they limit to a single point in the Cantor set, and
• each vertex of Pk is accumulated by points of the Cantor set in the

exterior of Pk.
See Figure 6.1 for an example in the case nk = k for all k.

∞

γ1

P1γ2 P2P3
P4

Figure 6.1. The closed set L, which contains the sequence of sets Pk

converging to a point in the Cantor set, and also contains bi-infinite
geodesics γk with only γ1 and γ2 shown in the figure.

For each k, add a bi-infinite geodesic γk spiraling and limiting to Pk

and Pk+1 respectively at the two ends. We arrange {γk} so that they are
mutually disjoint and also disjoint from

⋃
k Pk. See Figure 6.1.

Let L be the union of all γk and Pk. Then L is a lamination in Ω. The
union of all Pk is the set of leaves in L that are accumulated onto by other
leaves. Thus for each sequence {nk}, the set of non-isolated leaves of L

combinatorially is an infinite subset of {n-gon}n⩾1, and any infinite subset
appears this way. Hence by taking all possible choices of the sequence {nk},
we obtain a continuum of mutually nonequivalent geodesic laminations L.
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So it suffices to construct a two-side approachable long ray τ so that its
limit set is a given lamination L constructed above. The construction is not
sensitive to the choice of {nk}, so we will assume nk = k for simplicity.

By the property of Pk, near each end of any γk we repeatedly see points in
the Cantor set to the left (resp. right) of γk. We will use these points in our
construction to turn the ray τ around to the left-hand (resp. right-hand)
side after following γk for a while.

The ray τ starts out following γ1 to spiral around P1. Then turn around to
the right-hand side to follow γ1 in the opposite direction and spiral around
P2. This time turn around to the left-hand side to go back following γ1 and
spiral around P1 again for a longer time than the first time. Turn around
to the right-hand side again following γ1 and spiral around P2 for a longer
time, and then turn around to the right-hand side following γ2 to spiral
around P3. The ray we obtain up to this step is shown in Figure 6.2.

∞

γ1

P1γ2 P2P3
P4

Figure 6.2. The ray τ we construct after the first few steps.

To continue the construction in general, once the ray follows some γk to
spiral around Pk+1 (e.g. P2 as above) for the first time, we turn it around
to the left-hand side to follow γk in the opposite direction and go back all
the way until we are spiraling around P1, where we spiral for a longer time
than any previous time. Then there is nothing between τ up to this point
and γ1, so we can turn around to the right-hand side and follow γ1 to spiral
around P2 for a longer time than any previous time, and then follow γ2 to
spiral around P3 etc, until we follow γk+1 and spiral around Pk+2 for the
first time. Now repeat the construction to continue.
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In the construction, since the ray τ spirals around each previously visited
Pk along γk for a longer time than before and γk limits to Pk, we can see
that the limit set of τ is L.

Since every time we turn τ around in the construction using a set of
points in the Cantor set, there are perturbations slightly to the left and
right that turn around in the same way but go back all the way to ∞.
These perturbations can be chosen to be disjoint from τ . Such loops can
follow τ for any desired long time, so they limit to τ on both sides. This
shows that τ is two-side approachable. □

The proof shows that a two-side approachable ray could have various
kinds of limit sets. We are curious about the following question.

Question 6.2. — Which kind of geodesic laminations can appear as
the limit set of some two-side approachable long ray? What about 2-filling
rays?

We do know that the limit set of a 2-filling ray properly contains the limit
set of some long ray disjoint from it. We first prove the following lemma.

Lemma 6.3. — For any filling ray γ on Ω, its limit set Λ contains the
limit set of any long ray τ disjoint from γ.

Proof. — The set Dγ of (long) rays disjoint from (or coinciding with) γ

is a closed subset on the conical circle, and it contains at least two elements
if τ exists. Moreover, Dγ is nowhere dense since it is a set of simple rays
(see Section 2).

Let (α, β) be any complementary interval of Dγ , where we possibly have
α or β being γ. Fix a lift ∞̃ of ∞ on the universal cover, and fix two
consecutive lifts γ̃1, γ̃2 of γ starting at ∞̃. Between these two lifts, there
is a unique lift α̃ (resp. β̃) of α (resp. β) starting at ∞̃. Let a, b be the
endpoints of α̃, β̃ respectively. Let L be the unique bi-infinite geodesic going
from a to b. Let p(L) be its projection to Ω.

Since γ intersects all rays in (α, β), there are lifts of γ converging to L

by Lemma 2.1. Thus the closure of p(L) lies in the limit set Λ of γ, which
contains the limit sets of α and β since L and α̃ (resp. β̃) start (resp. end)
at the same point on the boundary.

Now suppose τ is disjoint from γ and is not on the boundary of any com-
plementary interval of Dγ . Remove the closed half-disk bounded by L from
the region between γ̃1 and γ̃2 for all L associated to complementary inter-
vals (α, β). Denote the resulting set by Ωγ , which is geodesically convex and
thus contractible. Note that the lift τ̃ of τ starting from ∞̃ lies inside Ωγ .
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Consider the limit set cl(τ) \ τ of τ as a geodesic lamination. For any
point x in it, let ℓx be the leaf through x. Then any lift of ℓx does not
intersect any L associated to a complementary interval (α, β) since τ is
disjoint from γ. This implies that any lift of x lies outside Ωγ .

Now for any ϵ > 0, there is some y on τ and a geodesic segment s of
length less than ϵ connecting x, y. Let ỹ be the lift of y on τ̃ and s̃, x̃ the
corresponding lifts of s and x. Then s̃ connects ỹ ∈ Ωγ and x̃ /∈ Ωγ , so it
must intersect some L associated to a complementary interval (α, β). The
intersection point has distance to x̃ less than ϵ. Since each p(L) lies in Λ,
this shows that x ∈ Λ. As x is arbitrary, we conclude that the limit set Λ
of γ also contains the limit set of τ . □

Proposition 6.4. — For any 2-filling ray γ and any long ray τ that is
not filling and disjoint from γ, the limit set Λ of γ contains the limit set of
τ as a proper subset. In particular, Λ cannot be minimal.

Proof. — We use the notation as in the proof of Lemma 6.3. If γ is 2-
filling, then there is some long ray τ that is not filling and disjoint from
γ. For any such τ its limit set cannot contain p(L) for all complementary
intervals, where L is the geodesic constructed above associated to the com-
plementary interval (α, β) of Dγ . This is because otherwise the set of rays
disjoint from τ is a subset of Dγ , contradicting that τ is not filling. This
shows that the limit set of τ is properly contained in Λ. This limit set is
non-empty since τ is not proper. □

7. 2-filling rays disjoint from a single non-filling ray

In this section we show the construction in Section 5 using two-side
approachable long rays is in some sense the unique way to obtain a finite
clique of 2-filling rays that have a single non-filling ray disjoint from them.
In general, if a 2-filling ray is only disjoint from finitely many rays, then it
is disjoint from an approachable long ray.

Definition 7.1. — A long ray τ is approachable if there is a sequence
of loops ℓi disjoint from τ that converges to τ .

One can apply surgeries to the sequence of loops ℓi in the definition to
make them pairwise disjoint and put them in a standard form analogously
to Lemma 4.5.

Clearly two-side approachable long rays are approachable. We believe the
two notions are not equivalent. In Figure 7.1, we have two infinite sequences
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of Cantor subsets converging to certain points in the Cantor set so that at
each horizontal level there are two Cantor subsets, a left one and a right
one. The depicted ray τ eventually reaches each level. When τ visits each
level for the first time, the left (resp. right) Cantor set is accessible from the
left (resp. right) of τ , which yields a loop slightly to the left (resp. right)
of τ that is disjoint from the previous part of τ . The ray τ is constructed
to fold back later and revisit this level in a way that blocks the access to
the right Cantor set from the first visit of τ without blocking the access to
the left Cantor set. Continuing this process, we believe the ray τ obtained
is approachable from its left but not from its right.

∞

τ

Figure 7.1. A ray that is approachable from its left but seemingly not
approachable from its right.

Theorem 7.2. — Let γ be a 2-filling ray that is disjoint from finitely
many rays. Then γ is disjoint from an approachable long ray. In addition, if
only one ray τ disjoint from γ is not filling, then τ is two-side approachable.

Proof. — Let Dγ be the set of rays disjoint from γ including itself. By
Lemma 2.2 all rays in Dγ are disjoint from each other. Now we think of Dγ

as a subset of the conical circle, equipped with the induced cyclic order.
Since Dγ is finite by our assumption, we can enumerate it in the cyclic order
as τ, γ1, . . . , γn for some n ⩾ 1 so that τ is non-filling and γ1 is 2-filling.

Pick a fundamental domain Ω̃ of the conical cover ΩC on H2 bounded
by two consecutive lifts τ̃1, τ̃2 of τ starting from ∞̃, a lift of ∞ on ∂H2. Let
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γ̃i be the lift of γi starting from ∞̃ that sits in between τ̃1 and τ̃2. Then
(τ̃1, γ̃1, . . . , γ̃n, τ̃2) is positively oriented.

For any 0 ⩽ i ⩽ n, let Li be the bi-infinite geodesic on Ω̃ that travels
from the endpoint of γ̃i to the endpoint of γ̃i+1, where γ̃0 and γ̃n+1 denote
τ̃1 and τ̃2 respectively. For each ray γj that is 2-filling, it is only disjoint
from rays in Dγ by Lemma 2.2. Thus there are lifts of γj converging to
each Li by Lemma 2.1.

Claim 7.3. — There is a sequence of lifts gkγ̃1 of γ1 where gk ∈ π1(Ω),
such that gkγ̃1 converges to L0 (on compact sets) and the starting points
gk∞̃ converge to the endpoint of τ̃1. See Figure 7.2.

Proof. — Fix any p ∈ L0. There is some gk ∈ π1(Ω) and pk ∈ γ̃1 such
that the unit tangent vector vk of gkγ̃1 at gkpk is arbitrarily close to either
the unit tangent vector v of L0 at p or −v, as points in the unit tangent
bundle of H2. Our claim holds if it happens infinitely often that vk is close
to v instead of −v. We show this actually is the case as follows, illustrated
as in Figure 7.3.

...

τ̃1 ℓ̃k ℓ̃k−1 ℓ̃k−2

gk∞̃
gk−1∞̃ gk−2∞̃

L0

τ̃k

γ̃1

gkγ̃1

gk−1γ̃1

∞̃

gk−2γ̃1

L1
Ln

γ̃2 γ̃n τ̃2

Figure 7.2. The sequence gkγ̃1 converging to L0 with gk∞̃ converging
to the endpoint of τ̃1. Any lift of τ intersecting ℓ̃k has to be in the
position of τ̃k.

Suppose vk is very close to −v instead of v whenever gkpk is close to p.
Then pk must be very close to the endpoint of γ̃1, as g−1

k L0 fellow travels
with γ̃1 on a very large neighborhood of pk but cannot get close to ∞̃ since
the projection of L0 to Ω is simple (as a limiting geodesic of a simple ray
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γ1). Hence there is some qk on L0 very close to pk for k large and the unit
tangent vector uk is very close to g−1

k vk. It follows that gkuk is slightly to
the right of vk as shown in Figure 7.3. It must sit in between gkγ̃1 and L0
as in the figure since gkL0 cannot intersect any lifts of τ or γ1. Now for
k′ large enough, there is some rk′ on gk′ γ̃1 so that the unit tangent vector
w at rk′ is arbitrarily close to −uk. Hence the unit tangent vector gkw on
gkgk′ γ̃1 is very close to −gkuk and −vk, and thus close to v instead of −v.
This contradicts our assumption and proves the claim. □

τ̃1

L0

p v
γ̃1

pk

g−1
k

vk

qk

uk

rk′

w

gkγ̃1
gkL0

gkgk′ γ̃1

gk′ γ̃1

gkpk

vk gkqk

gkuk

gkrk′
gkw

∞̃

Figure 7.3. Construction of a lift gkgk′ γ̃1 of γ1 that is close to L0 and
going in the “same” direction.

Now we have a sequence of geodesics ℓ̃k connecting ∞̃ to gk∞̃ and con-
verging to τ̃1 from its left. Each ℓ̃k projects to a (not necessarily simple)
loop ℓk on Ω.

Claim 7.4. — τ is disjoint from ℓk for all k sufficiently large.

This would imply that τ is approachable as we can in addition make ℓk

simple in a way similar to Remark 4.6.
If γn is also 2-filling, which is the case if τ is the only non-filling ray in

Dγ , then by a symmetric argument, using Ln in place of L0, there is also a
sequence of loops rk converging to τ from its right. In this case τ is two-side
approachable since rk and ℓk can be made simple by Remark 4.6, which
completes the proof of the theorem. □

Proof of Claim 7.4. — Suppose that infinitely many ℓk intersect τ . We
will exhibit lifts of τ converging to Li for each 0 ⩽ i ⩽ n, from which it
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follows that τ is only disjoint from rays in Dγ , contradicting the fact that
τ is non-filling.

For each k such that ℓk intersects τ , some lift τ̃k of τ intersects ℓ̃k. Note
that τ̃k is disjoint from L0 and gkγ̃1, thus τ̃k must be a geodesic in the
region between L0 and gkγ̃1 and isotopic to both. See Figure 7.2. Thus
letting such k go to infinity, we obtain lifts τ̃k of τ converging to L0.

Now for each 1 ⩽ i ⩽ n, fix a point p on Li. There are lifts hmγ̃1 of γ1
and points pm on γ̃1 such that hmpm converges to p and the tangent lines
of hmγ̃1 at hmpm become almost parallel to the tangent line of Li at p. As
we explained in the proof of Claim 7.3, the point pm must be very close to
the endpoint of γ̃1 for m large. Hence there is some qm on L0 very close
to pm. Combining with the fact that there is some lift τ̃k of τ very close
to L0, there is some rk on τ̃k very close to qm and pm and such that the
tangent lines of τ̃k and γ̃1 at rk and pm respectively are almost parallel.
See Figure 7.4. Hence hmrk is very close to p and the tangent lines of hmτ̃k

and Li at hmrk and p respectively are almost parallel. This exhibits lifts
of τ converging to Li. This completes the proof. □

... ...

τ̃1

L0

τ̃k

γ̃1

pm
qm

rk

γ̃i

p
hmpm

hmγ̃1

hmrk

hmτ̃k

Li

γ̃i+1 τ̃2

Figure 7.4. The sequence hmτ̃k converging to Li

In many cases when the star of a 2-filling ray γ is infinite, we can still
find an approachable ray disjoint from γ. We wonder if this is always the
case.

Question 7.5. — Is every 2-filling ray disjoint from some approachable
long ray?
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8. Geodesic laminations from train tracks

In this section we define a geodesic lamination Λ on Ω using a train track.
For the statement of Theorem 8.1, recall that a geodesic ray γ spirals onto
a lamination Λ if cl(γ) \ γ = Λ, where cl(γ) denotes the closure.

Theorem 8.1. — There exists a geodesic lamination Λ on Ω with the
following properties:

(1) Λ has three boundary leaves;
(2) the region of Ω \ Λ containing ∞ is a once-punctured ideal bigon b

with ends e+ and e−;
(3) every leaf of Λ is dense except for a single proper leaf m;
(4) every half leaf of Λ is dense except for the two half leaves of m, and

the two half leaves of Λ asymptotic to e+;
(5) if τ is a ray from ∞ to e+ then τ spirals onto m;
(6) if γ is a ray from ∞ to e− then γ spirals onto Λ.

Corollary 8.2. — The ray γ is 2-filling.

Proof of Corollary 8.2. — Since γ spirals onto Λ, its link in R consists
only of the ray τ . In particular, γ is not disjoint from any loop or short ray.
Hence, to show that γ is 2-filling, it suffices to show that τ is disjoint from
a loop. We may choose a loop α disjoint from the leaf m of Λ. Then since τ

spirals onto m, it intersects α at most finitely many times. If τ ∩α = ∅ then
we have shown that τ is disjoint from a loop and the proof is complete.
Otherwise, orient α and τ . We may choose a point p ∈ α ∩ τ such that
α|[p, ∞] is disjoint from τ . Then the concatenation τ |[∞, p] ∪ α|[p, ∞] is
simple. It is not homotopic into a neighborhood of ∞ since τ and α are
in minimal position. Moreover, it is disjoint from τ up to homotopy. This
completes the proof. □

In this section we introduce the construction of Λ via a train track. We
will prove Theorem 8.1 in the following sections. In Section 13 we show
that the ray γ described in Theorem 8.1 is actually an instance of one of
the 2-filling rays constructed in Section 5.

We define an abstract train track T with branches labeled as in Fig-
ure 8.1. We define a weight function w : B(T ) → [0, ∞) as follows. We set
w(e1) = 1

3 , w(e2) = 2
3 , w(b−1) = w(b0) = 1, and

w(bn) = w(cn) = 1
2n

for n ⩾ 1, w(dn) = 1
2n+1 for n ⩾ 0.
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e2

e1

b0

d1

b1

c2

c1

d2

b2 b3
c3

d3

c4

d4

b4b−1d0

Figure 8.1. The train track T with branches labeled. The track has
infinitely many branches stretching to the right in the picture.

We associate to the weighted train track (T, w) a corresponding union
of foliated rectangles G. Namely, for each branch b ∈ B(T ) we associate
a rectangle R(b) of width 1 and height w(b), which is endowed with its
natural foliation by horizontal line segments. These rectangles are glued by
isometries along their vertical sides in a pattern determined by the train
track.

Figure 8.2. The union of foliated rectangles G.

The foliation G determines a space of train paths T P(T, w) as described
in Section 3. We note that for each n ⩾ 0 exactly two distinct points
of R(dn) are identified with each other in G (whereas the natural map
R(dn) → G is injective on the complement of these two points). We denote
by Pn the resulting point. Furthermore, for n ⩾ 0, R(bn+1) and R(cn+1)
are joined at a single point of G. We denote by Qn this point. The points
Pn and Qn are 3-pronged singularities of G.
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9. An abstract foliation

In this section we define an abstract foliation and investigate its dynam-
ical properties. This will be used in later sections to define a geodesic lam-
ination on the plane minus a Cantor set Ω. Finally, we use this lamination
to define a 2-filling ray which spirals onto it.

We consider the unit square U = [0, 1]2. It is foliated by the horizontal
line segments [0, 1] × {y} for y ∈ [0, 1]. We will define a singular foliation
F by identifying certain segments of the vertical sides of U . If p and q are
points of U which both lie on a common vertical or horizontal side of U ,
then we denote by [p, q] the subsegment of that side between p and q.

We will now describe the side identifications on U . First we define a
sequence of numbers yi ∈ [0, 1] as follows. We set y−2 = 1, y−1 = 0, and

yn = 1
2(yn−1 + yn−2) for n ⩾ 0.

We also define x0 = 1
2 and

xn = 1
2(yn−1 + yn−3) for n ⩾ 1.

To define the side identifications on the right side {1} × [0, 1] of U we set
p0 = (1, x0) = (1, 1

2 ). We identify the segments [(1, 0), p0] and [p0, (1, 1)] by
a rotation of π about the point p0.

To define the side identifications on the left side of U , we set pn = (0, xn)
for n ⩾ 1. Furthermore, we set qn = (0, yn) for n ⩾ −2. Note that for each
n ⩾ 1, pn lies midway between qn−1 and qn−3 on the left side {0} × [0, 1]
of U . We identify the segments [pn, qn−1] and [pn, qn−3] by a rotation of π

about the point pn. See Figure 9.1.
We may also write

y2n = y2n−1 + 1
22n+1 , y2n+1 = y2n − 1

22n+2

and
x2n = y2n−1 − 1

22n+1 , x2n+1 = y2n + 1
22n+2 .

From these facts we easily see that yn → 1
3 and xn → 1

3 as n → ∞.
Note that,

• the sequences {pn} and {qn} both converge to the point r = (0, 1
3 ),

and
• q−1, q1, q3, . . . have been identified to a single point in the quotient,

and
• q−2, q0, q2, . . . have also been identified to a single point.
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p1

p2

p3

p0

Figure 9.1. The foliation F . Dotted lines indicate side identifications
by rotation by π about the point pn. The leaf through the accumulation
point r is shown in blue.

We finally identify r with the common image of all the qi to form the
topological space F , which is Hausdorff. It is homeomorphic to a closed disk
by a theorem of Moore ([12], see also [8, Section 7]). This fact may also be
seen directly. The foliation of U by horizontal lines [0, 1]×{y} projects to a
singular foliation of F . The points pn each project to 1-pronged singularities
of F whereas the point r projects to an “∞-pronged” singularity of F . We
denote by π : U → F the quotient map. Thus π(pn) = pn is a 1-pronged
singularity of F and π(r) = π(q−2) = π(q−1) = π(q0) = π(q1) = · · · = r is
an ∞-pronged singularity of F .

10. A flat surface and a pseudo-Anosov automorphism

In this section we introduce a flat surface Σ which is a quotient of F

and a pseudo-Anosov automorphism of it. We will use this pseudo-Anosov
automorphism to prove facts about the foliation F .

The flat surface Σ is defined as follows. We consider the unit square U

and points pn and qn on vertical sides of U , defined in the previous section.
As before, we identify [(1, 0), p0] and [p0, (1, 1)] by a rotation by π and
[pn, qn−1] and [pn, qn−3] also by rotations by π. The qn are also identified
with the limit point r.
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We also consider sequences of numbers zn and wn defined by zn = 1−xn

for each n ⩾ 0 and wn = 1 − yn for each n ⩾ −2. We define a point
a0 = (z0, 0) = ( 1

2 , 0) and identify the two segments on the bottom side of U ,
[(0, 0), a0] and [a0, (1, 0)] by a rotation of π about the point a0. We identify
segments of the top side of U as follows. For n ⩾ 1 we set an = (zn, 1) and
for n ⩾ −2 we set bn = (wn, 1). We identify the segments [an, bn−1] and
[an, bn−3] by a rotation of π about the point an. The points an and bn are
simply the image of the points pn and qn (respectively) under the reflection
of U across the diagonal line from (0, 1) to (1, 0). Finally, we identify all
the bn with the limit point ( 2

3 , 1).
The surface Σ is the quotient of U under all the above identifications. It

is indeed a surface and in fact homeomorphic to a sphere (again, see [12]
and [8, Section 7]). The quotient Σ inherits a flat metric away from the
singularities and vertical and horizontal foliations Fv and Fh, respectively,
from the foliations of U by vertical and horizontal line segments. There is
an obvious quotient ρ : F → Σ as well. See Figure 10.1 for a picture of Σ.

CBA D

D

A

B

C

ϕ =
(

4 0
0 1

4

)

Figure 10.1. The surface Σ together with the pseudo-Anosov automor-
phism ϕ. Here, adjacent arrows which point away from each other are
identified by a rotation by π.

The horizontal foliation of Σ is essentially the same as the foliation F .
The only difference is that one of the singular leaves of F (the singular leaf
containing the quotient of the horizontal sides [0, 1]×{0} and [0, 1]×{1} of
U) in the quotient Σ consists of infinitely many saddle connections joining
1-pronged singularities to the ∞-pronged singularity.
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The surface Σ admits a pseudo-Anosov automorphism ϕ defined as fol-
lows. Consider the four sets

A =
[
0,

1
4

]
× [0, 1], B =

[
1
4 ,

1
2

]
× [0, 1],

C =
[

1
2 ,

3
4

]
× [0, 1], D =

[
3
4 , 1

]
× [0, 1].

These are subrectangles of U meeting along their vertical sides. Consider
the following operations:

• cut U into the subrectangles A, B, C, D,

• apply the matrix
(

4 0
0 1

4

)
to each subrectangle A, B, C, D,

• apply a rotation by π to the subrectangles B and D,
• stack C on top of B on top of A on top of D.

It is shown in Figure 10.1 that this descends to a well-defined automorphism
ϕ of Σ.

We remark that ϕ arises from the generalized pseudo-Anosov construc-
tion of de Carvalho–Hall; see [8] (however, our automorphism ϕ arises from
an interval endomorphism which is not unimodal).

Lemma 10.1. — There is a saddle connection on F from pn to r for
each n ⩾ 0 (see Figure 10.2).

Figure 10.2. The horizontal saddle connections of the foliation F .

Proof. — In this proof we will conflate an, bn, pn, and qn with their im-
ages under ρ ◦ π in Σ. The orbit of singularities of Σ under iteration of ϕ

is illustrated in Figure 10.3.

ANNALES DE L’INSTITUT FOURIER



2-FILLING RAYS 2347

q−2

q−1

q0

q1

p0

p1

p2
a0

b0 b1a1 a2

p3

b−1

q2

b2

Figure 10.3. The orbits of singularities under ϕ.

In particular we see that, under iteration of ϕ,

· · · a5 7→ a3 7→ a1 7→ p0 7→ p2 7→ p4 7→ p6 7→ · · ·

and
· · · a4 7→ a2 7→ a0 7→ p1 7→ p3 7→ p5 7→ · · · .

We also see that

· · · b2 7→ b0 7→ b−2 = q−2 7→ q0 7→ q2 7→ q4 7→ · · ·

and
· · · b1 7→ b−1 7→ q−1 7→ q1 7→ q3 7→ q5 7→ · · · .

The horizontal foliation of Σ clearly contains a saddle connection from p0
to q0. Since ϕk(p0) = p2k, ϕk(q0) = q2k for all k ⩾ 0 and ϕ preserves the
horizontal foliation of Σ, we see that there is a saddle connection from pn

to qn whenever n ⩾ 0 is even. There is also clearly a horizontal saddle
connection from a0 to q−1. Since ϕk(a0) = p2k−1 and ϕk(q−1) = q2k−1 for
all k ⩾ 1, this shows that there is a horizontal saddle connection from pn

to qn whenever n ⩾ 0 is odd.
It is easy to see that each of the above described saddle connections

from ρ(π(pn)) to ρ(π(qn)) is the image of a saddle connection of F . Since
r = q−2 = q−1 = q0 = q1 = · · · on F this implies that there is a saddle
connection from pn to r for each n. □

Lemma 10.2. — The union of the singular leaves of F is dense in F .
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Easy proof of Lemma 10.2. — The saddle connection from p0 to r is the
horizontal line segment π([0, 1]×{1/2}). By an easy induction, using the de-
scription of ϕ via cutting and restacking, we see that the saddle connection
from pi to r is the union of the horizontal line segments π([0, 1] × { j

2i+1 })
where j ranges over the odd integers between 0 and 2i+1 (see Figure 10.2
for the first few of these saddle connections). Thus, every horizontal line
segment of F of the form π([0, 1] × {y}) where y is a dyadic rational be-
tween 0 and 1 lies on a singular leaf of F . Since the dyadic rationals are
dense in [0, 1], this proves the statement. □

We also include a less explicit, more dynamical proof of Lemma 10.2 that
may be of use to readers interested in generalizing the constructions of this
paper.

Dynamical proof of Lemma 10.2. — It suffices to prove the following:
For an arbitrary transversal t, there exists a singular leaf which intersects t.

For convenience, we may choose t to be a subsegment of the transversal
s = {1/2} × [0, 1]. First, we claim that there exists a nonsingular leaf l

of F which intersects t at least twice. For this, we consider the following
interval exchange transformation (IET) f : [0, 1] → [0, 1]. For each n ⩾ 2
f is defined by sending the interval between yn and yn+2 by a translation
to the interval between 1 − yn and 1 − yn+2. The IET f may be extended
in an arbitrary way to the endpoints yn and their accumulation point 1/3.
See Figure 10.4. The resulting map f preserves the Lebesgue measure on
[0, 1]. Thus we may apply Poincaré Recurrence to it.

We flow the leaves of F to the right from s. Note that every nonsingular
leaf of F intersects s infinitely many times. Moreover, if the leaf through
a point (1/2, x) of s is nonsingular, then the second return under this flow
of (1/2, x) to s is given by

(1/2, x) 7→ (1/2, f(x)).

We may write t = {1/2} × [a, b]. By Poincaré Recurrence, almost every
point of [a, b] with respect to Lebesgue measure returns to [a, b] infinitely
many times under iteration of f . Since only countably many points of t

intersect singular leaves of F , this implies that there is a point x ∈ [a, b]
such that the leaf of F through (1/2, x) is nonsingular and x returns to [a, b]
infinitely many times under iteration of f . Consequently, the nonsingular
leaf l of F through (1/2, x) returns to t infinitely many times.

Now consider a subsegment l0 ⊂ l which intersects t at its endpoints
v and w and nowhere in its interior. Then c = t|[v, w] ∪ l0 is a simple
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y−2y−1 y0y1 y2y3

f

Figure 10.4. The IET f described in the proof of Lemma 10.2.

closed curve. It bounds a disk in F containing some finite number of 1-
pronged singularities and not containing the ∞-pronged singularity in its
interior. The winding number of the foliation about c is 1/2, 1, or 3/2.
By the Poincaré–Hopf Index Theorem, this is equal to half the number
of 1-pronged singularities inside the disk bounded by c. In particular, this
disk contains at least one 1-pronged singularity pn. Since this disk does
not contain r, the saddle connection from pn to r must intersect c. Since
this saddle connection does not intersect l, it must intersect t|[v, w]. This
completes the proof. □

Recall that a transverse measure to F assigns to each arc s transverse
to the foliation a finite Borel measure µ | s. It is required to be invariant
under leaf-preserving isotopies. See for instance [9] for more information.

Lemma 10.3. — Let µ be a transverse measure to the horizontal folia-
tion of Σ. Then either µ has an atom along a horizontal saddle connection
of Σ or µ is a multiple of Lebesgue measure.

Proof. — The sets A, B, C, D form a Markov partition for the automor-
phism ϕ. Using the fact that ϕ admits a finite Markov partition, a proof
identical to that of [10, Theorem 12.1] shows that if µ is a transverse mea-
sure to Fh and µ has no atoms, then µ is a multiple of Lebesgue measure.

It remains to show that if µ is a transverse measure to Fh and µ has
an atom then it has an atom along a singular leaf. It is easy to see that if
µ has an atom then µ | s has an atom where s is the vertical transversal
π({1/2} × [0, 1]). If π(1/2, x) is such an atom of µ | s and π(1/2, x) lies on
a nonsingular leaf l of Fh then µ | s is infinite since l intersects s infinitely
many times. This is a contradiction. □

11. Train path properties

Recall that G is the union of foliated rectangles constructed from the
weighted train track (T, w). In this section we investigate properties of the
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train paths T P(T, w). There is a Lipschitz quotient map Π : G → F ,
sending leaves of G to leaves of F , defined as follows:

• the leaves of the rectangles R(bn), R(cn), and R(dn) are collapsed
to points for each n ⩾ 1,

• the rectangles R(b−1), R(b0), R(e1), and R(e2) are shrunk horizon-
tally to a width of 1

3 ,
• the upper horizontal side of R(e1) is identified isometrically with

the lower horizontal side of R(e2).
We see immediately that Π(Pn) = pn and Π(Qn) = r for each n ⩾ 0.

By Lemma 10.1 and its proof we immediately obtain:

Corollary 11.1. — For each n ⩾ 0 there is a saddle connection in G

from Pn to Qn.

By Lemma 10.2 we immediately obtain:

Corollary 11.2. — Saddle connections are dense in G.

Finally, the following is clear by inspection:

Lemma 11.3. — There is a saddle connection from Q1 to Q0. Moreover,
for each n ⩾ 2 there is a saddle connection from Qn to Qn−2. Finally, there
is a saddle connection from Pn to itself for each n ⩾ 0.

Lemma 11.4. — The system of train paths T P(T, w) contains three
boundary paths.

Proof. — Refer to Figures 8.1 and 8.2 for the proof. The upper horizontal
side of R(e1) and the lower horizontal side of R(e2) form a bigon and give
rise to two boundary paths in T P(T, w).

Since there is a loop based at P0 there is a single boundary train path
of T P(T, w) corresponding to the monogon with vertex at P0. This train
path corresponds to a leaf l0 in G which decomposes as ll ∗ lb ∗ lr where lb
is the loop based at P0. The path ll has the form

· · · → Q3 → P3 → P3 → Q3 → Q1 → P1 → P1 → Q1 → Q0 → P0

where each arrow → denotes a saddle connection. Similarly, lr has the form

P0 → Q0 → Q2 → P2 → P2 → Q2 → Q4 → P4 → P4 → Q4 → · · ·

Thus l0 visits each singularity Pn and Qn exactly twice.
For each singularity Pn or Qn, there are at most two boundary paths

corresponding to leaves in G which pass through that singularity. Moreover,
there is exactly one if there is a boundary path corresponding to a path
in G which passes through that singularity twice. Since l0 passes through
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each singularity Pn and Qn exactly twice, the train path corresponding to
it is the only boundary path besides the two already mentioned. □

We continue to denote by l0 the leaf in G which passes through all the
singularities Pn and Qn. We denote by l+ and l− the leaves corresponding
to the sides of the bigon of G. Denote by L0, L+, and L− the corresponding
train paths in T P(T, w), respectively.

Lemma 11.5. — The path l0 is dense in G.

Proof. — This is clear since saddle connections are dense in G and l0
traverses each saddle connection. □

Lemma 11.6. — Every half train path of T P(T, w) is dense except for
a half train path of L+ and a half train path of L−. For these half train
paths, they simply traverse the branches b0, b1, b2, . . . in order.

Proof. — If l is either:
• one of the boundary leaves l+ or l− or
• a nonsingular leaf of G,

then Π(l) is a non-singular leaf of the foliation F . We consider the vertical
transversal s = π({ 1

2 } × [0, 1]) to F . The leaf Π(l) contains a ray which
intersects s infinitely many times. We consider the subsequent points of
intersection v1, v2, v3, . . . and the sequence of counting measures

µn = 1
n

n∑
i=1

δvi

on s, where δv is the Dirac unit mass at the point v. Up to taking a
subsequence, the sequence µn converges to a measure µ on s. We see that
if two subsegments u1 and u2 of s are isotopic via a leaf-preserving isotopy
then µ(u1) = µ(u2). Thus, by translating arbitrary transversals to s via
leaf-preserving isotopies, we see that µ induces a transverse measure to F .
Furthermore, by taking the quotient ρ : F → Σ, we see that µ induces a
transverse measure ρ∗µ to the horizontal foliation of Σ.

There are two possibilities by Lemma 10.3. If ρ∗µ has no atoms along a
horizontal saddle connection of Σ then it is a multiple of Lebesgue measure.
Hence µ itself is a multiple of Lebesgue measure along s. This proves that
l ∩ s is a dense subset and therefore l is dense in G. Otherwise, ρ∗µ has
an atom along a horizontal saddle connection of Σ. We see immediately
that l accumulates onto a saddle connection of G. Thus in particular l

accumulates onto the leaf l0. But the leaf l0 is dense in G and therefore l

itself is dense.
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Now, if l is not l+, l− or l0, then we could define the hitting measure
µ by using either half leaf of l. This implies that both half leaves of l are
dense. In case l is l+ or l− then we see that one half leaf of l is dense.
The other half leaf corresponds to a train path that simply traverses the
branches b0, b1, b2, . . ..

Finally, we already know that l0 is dense. It remains to be shown that
each half leaf of l0 is dense. To see this, note that any half leaf of l0 traverses
a saddle connection Pn → Qn for n arbitrarily large. This shows that this
half leaf accumulates onto either l+ or l− and therefore this half leaf is also
dense. □

12. Lamination properties

Recall that Ω is the plane minus a Cantor set. We embed the train track
T on Ω as shown on the left of Figure 12.1. The blue curves in the middle of
Figure 12.1 are chosen to lie in the pants decomposition P from Section 2.
In particular, there are sequences of these curves, . . . C−2, C−1, C0, C1, . . .

such that:
• for each i, Ci separates from Ci−1 and Ci+1,
• for each i /∈ {−1, 0}, Ci−1 and Ci+1 are separated by no other

element of P,
• C−1 and C0 bound a four-holed sphere together with ∞ and one

other element of P.
Collapsing parallel branches of T yields a locally finite train track T ∗ as

shown in the middle of Figure 12.1. There is also a carrying map ζ which
assigns to each branch of T a finite train path of T ∗.

We label the branches of T ∗ as shown on the right of Figure 12.1. Thus
we see that

ζ(en) = e∗
n, ζ(dn) = d∗

n.

We also have

ζ(c1) = c∗
1, ζ(cn) = c∗

n for n even, and ζ(cn) = f∗
−n+1c∗

n for n ⩾ 3 odd.

Finally, we have

ζ(b−1) = b∗
−1, ζ(b0) = b∗

0, ζ(b1) = b∗
1f∗

0 ,

ζ(b2) = f∗
1 h∗

1f∗
1 f∗

0 f∗
−1, ζ(b3) = h∗

2f∗
−1f∗

0 f∗
1 f∗

2 , . . . .

In general,

ζ(bn) = f∗
n−1h∗

n−1f∗
n−1f∗

n−2 . . . f∗
0 f∗

−1 . . . f∗
−n+1
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f
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∗−
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∗2

h
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e ∗2
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h
∗3

d
∗0

d
∗1

d
∗2

d
∗3

d
∗4

d
∗5

b ∗−
1

c ∗1
c ∗2

c ∗4

c ∗3
c ∗5

b ∗0

f
∗0

f
∗1

f
∗2

f
∗3

b ∗1

Figure 12.1. Left: the train track T embedded in the surface Ω. Here
each boundary component bounds a disk minus a Cantor set in Ω.
Middle: collapsing parallel branches yields a (locally finite) track T ∗.
Right: we name the branches of T ∗ with the labels shown.
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for n ̸= 0 even and

ζ(bn) = h∗
n−1f∗

−n+2f∗
−n+3 . . . f∗

0 f∗
1 . . . f∗

n−1

for n ̸= −1, 1 odd.
The weights w on B(T ) induce a system of weights w∗ on B(T ∗) via

w∗(b∗) =
∑

b∈B(T )

(# of occurrences of b∗ in ζ(b)) · w(b).

Thus we have

w∗(e∗
1) = w(e1) = 1

3 , w∗(e∗
2) = w(e2) = 2

3 ,

w∗(b∗
−1) = w(b−1) = 1, w∗(b∗

0) = w(b0) = 1, w∗(b∗
1) = w(b1) = 1

2
and

w∗(c∗
n) = w(cn) = 1

2n
, w∗(d∗

n) = w(dn) = 1
2n+1 .

Finally we have w∗(f∗
0 ) = 1,

w∗(f∗
1 ) = 3

4 , w∗(f∗
2 ) = 1

4 , w∗(f∗
3 ) = 3

16 , w∗(f∗
4 ) = 1

16 , w∗(f∗
5 ) = 3

64 , . . .

and
w∗(f∗

−n) = 1
2n

, w∗(h∗
n) = 1

2n+1

for each n ⩾ 1. Denote by G∗ the union of foliated rectangles defined by
(T ∗, w∗).

Now we will describe a continuous injection ξ : T P(T, w) → T P(T ∗, w∗).
For this purpose, consider the preimages of the switches of T ∗ under ζ. The
preimages induce a partition of each rectangle R(b) = [0, 1] × [0, w(b)] into
#ζ(b) vertical subrectangles of equal width 1/#ζ(b). Each switch preim-
age is either a switch of T or lies in the interior of a branch of T . For
convenience, we will consider each preimage as a (possibly new, valence
two) switch of T . These switches partition T into a set of branches, each of
which is mapped homeomorphically by ζ to a branch of T ∗. Thus we may
consider ζ as a surjection B(T ) → B(T ∗). Moreover, each new branch of T

corresponds to one of the rectangles in the partition of the old rectangles
described before. By abuse of notation, we will denote by G the union of
foliated rectangles corresponding to (T, w) considered as a train track with
the new switches. It is obtained from the old G by rescaling rectangles
horizontally.

For a branch b∗ ∈ B(T ∗), its preimage ζ−1(b∗) is a possibly infinite subset
of B(T ) and

w∗(b∗) =
∑

b∈ζ−1(b∗)

w(b).

ANNALES DE L’INSTITUT FOURIER



2-FILLING RAYS 2355

Moreover, ζ−1(b∗) inherits a total order <b∗ where we order parallel
branches on the left of Figure 12.1 from left to right. For a branch b∗ ∈
B(T ∗), the rectangle R(b∗) = [0, 1] × [0, w∗(b∗)] is divided into horizon-
tal subrectangles as follows. For a branch b ∈ ζ−1(b∗), we consider the
horizontal subrectangle

R∗(b) = [0, 1] ×

 ∑
b′∈ζ−1(b∗)

b′<b∗ b

w(b′),

 ∑
b′∈ζ−1(b∗)

b′<b∗ b

w(b′)

 + w(b)


of height w(b). The map χ : G → G∗ is defined by sending R(b) = [0, 1] ×
[0, w(b)] isometrically to R∗(b) in the natural way.

The injection ξ : T P(T, w) → T P(T ∗, w∗) is defined by replacing each
branch b in the train path t with the branch ζ(b). That the image ξ(t)
actually lies in T P(T ∗, w∗) follows from the fact that χ is a map sending
leaves to leaves.

Lemma 12.1. — The image of ξ consists of all of T P(T ∗, w∗) except for
a single path which has the form

t0 = . . . f∗
−2f∗

−1f∗
0 f∗

1 f∗
2 . . . .

Proof. — Except for the rectangles R(f∗
i ), every rectangle of G∗ is the

homeomorphic image under χ of a single subrectangle from the foliation G.
On the other hand, each rectangle R(f∗

i ) contains the homeomorphic im-
ages of infinitely many subrectangles from G∗. These images are concate-
nated into two stacks. Identifying R(f∗

i ) with [0, 1] × [0, w∗(f∗
i )], one stack

consists of rectangles whose heights decrease with increasing y-coordinate.
The other stack consists of rectangles whose heights increase with increas-
ing y-coordinate. See Figure 12.2.

Since w∗(f∗
i ) is the sum of the heights of the rectangles in these two

stacks, we see that the images of these rectangles consist of all of R(f∗
i )

except for a single horizontal leaf segment which we call li. Consider the
intersection of li with the vertical boundary component of R(f∗

i ) which
meets R(f∗

i+1). We claim that li meets this boundary component in an
endpoint of li+1. For otherwise, li meets this vertical boundary component
in a point which lies in the image of a subrectangle of G. Therefore li itself
is in the image of a subrectangle of G. This is a contradiction. Thus,

. . . l−1l0l1 . . .

is a (nonsingular) leaf of G∗ and

. . . f∗
−1f∗

0 f∗
1 . . .
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···

Figure 12.2. Each subrectangle R(f∗
i ) consists of infinitely many sub-

rectangles of G stacked together, limiting to a single non-singular leaf
of the foliation G∗ (shown here in green).

is an element of T P(T ∗, w∗). It is not in the image of ξ because it does not
pass through some of the branches of T ∗, whereas every train path in the
image of ξ passes through every branch of T ∗.

On the other hand, every other train path in T P(T ∗, w∗) is represented
by a leaf of G∗ possibly passing through singularities, which intersects the
image of χ. It is therefore the image of a leaf of G. Therefore the train path
is the image under ξ of a train path in T P(T, w). □

Corollary 12.2. — The space T P(T ∗, w∗) has the following proper-
ties:

(1) every path of T P(T ∗, w∗) is dense except for the train path t0 from
Lemma 12.1,

(2) T P(T ∗, w∗) contains exactly three boundary paths.

Proof. — For (1), we note that since ξ : T P(T, w) → T P(T ∗, w∗) is
continuous and every train path in T P(T, w) is dense, every element of
T P(T ∗, w∗) \ {t0} accumulates onto every other element. We must show
that every element of T P(T ∗, w∗) also accumulates onto t0. Since ξ :
T P(T, w) → T P(T ∗, w∗) \ {t0} is surjective, we may write such a train
path as ξ(t) where t ∈ T P(T, w). Since t is dense, it contains the branch bn

for each n. Thus, f∗
−mf∗

−m+1 . . . f∗
m−1f∗

m is a subpath of ξ(t) for arbitrarily
large m. Thus ξ(t) accumulates onto t0.

Of course, t0 itself is not dense.
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Since ζ : T → T ∗ is a local homeomorphism, a non-boundary path in
T P(T, w) is sent by ξ to a non-boundary path in T P(T ∗, w∗). On the
other hand, it is easy to see that ξ sends the paths on the boundary of the
complementary bigon to G to paths on the boundary of the complemen-
tary bigon to G∗. Finally, T P(T ∗, w∗) clearly contains at least one more
boundary path corresponding to the remaining singular leaves of G∗. Since
ξ sends non-boundary paths to non-boundary paths, this boundary path
in T P(T ∗, w∗) must be the image of the third boundary path of T P(T, w).
This proves (2). □

We define a union of geodesics on Ω as follows. Recall that each element
of P, and in particular every blue curve in Figure 12.1, has length one.
We lift the embedded train track T ∗ to the universal cover Ω̃, which is
isometric to the hyperbolic plane when given the pullback metric induced
by the cover Ω̃ → Ω. In Section 16, we verify the following lemma:

Lemma 12.3. — Let t̃ be a lift of a train path t ∈ T P(T ∗, w∗) to Ω̃.
Then t̃ has well-defined (distinct) endpoints on ∂Ω̃.

Letting t̃+ and t̃− be the endpoints of t̃ on ∂Ω̃, there is a unique geodesic
[t̃+, t̃−] in Ω̃ from one endpoint to the other. We define Λ̃ to be the union of
all such geodesics [t̃+, t̃−], where t ranges over train paths in T P(T ∗, w∗)
and t̃ ranges over the lifts of t. We define Λ to be the image of Λ̃ in Ω.

Lemma 12.4. — The sets Λ̃ and Λ are closed. Hence, they are geodesic
laminations in Ω̃ and Ω, respectively.

The proof of Lemma 12.4 follows from Lemma 12.3 and the fact that the
embedding of T ∗ on Ω is locally finite. The proof is essentially the same as
the one given in [5, Section 1.8] “Geodesic laminations weakly carried by
train tracks.” Therefore we omit it. Furthermore, a leaf l of Λ defined by
the train path t accumulates onto the leaf l′ of Λ defined by the train path
t′ if and only if t accumulates onto t′ in the sense of Section 3. We refer
the reader again to [5, Section 1.8].

Theorem 8.1 is now a quick corollary. Recall the statement:

Theorem 8.1. — There exists a geodesic lamination Λ on Ω with the
following properties:

(1) Λ has three boundary leaves;
(2) the region of Ω \ Λ containing ∞ is a once-punctured ideal bigon b

with ends e+ and e−;
(3) every leaf of Λ is dense except for a single proper leaf m;

TOME 73 (2023), FASCICULE 6



2358 Lvzhou CHEN & Alexander J. RASMUSSEN

(4) every half leaf of Λ is dense except for the two half leaves of m, and
the two half leaves of Λ asymptotic to e+;

(5) if τ is a ray from ∞ to e+ then τ spirals onto m;
(6) if γ is a ray from ∞ to e− then γ spirals onto Λ.

Proof of Theorem 8.1. — The leaf m of Λ corresponds to the train
path t0 described in Lemma 12.1 and is clearly not dense. Since the leaf
space of Λ is identical to T P(T ∗, w∗), Points (1), (2), and (3) follow from
Corollary 12.2.

The fact that all but four half leaves are dense in Λ follows from
Lemma 11.6. Clearly neither half leaf of m is dense. On the other hand,
consider the two leaves of Λ bounding the bigon with ends e+ and e−. The
two leaves are both asymptotic to e+ on one end and to e− on the other end.
We define e+ to be the end such that either half leaf on the boundary of
the bigon asymptotic to e+ corresponds to a train path ζ(b0)ζ(b1)ζ(b2) . . ..
Such a train path contains subtrain paths

f∗
nf∗

n−1 . . . f∗
0 . . . f∗

−n+1f∗
−n

for n arbitrarily large, proving that the corresponding leaf accumulates onto
m. However, the train path doesn’t accumulate onto any other train path,
since every other train path traverses every single branch of T ∗ whereas
the train path ζ(b0)ζ(b1)ζ(b2) . . . traverses only branches f∗

i and h∗
i . This

proves both (4) and (5).
On the other hand, the two half leaves of Λ asymptotic to e− are dense,

again by Lemma 11.6. This proves (6). □

13. Correspondence of the constructions

In this section we prove that the 2-filling ray γ constructed in Section 8
in fact has the form of one of the 2-filling rays constructed in Section 5. In
particular, the lamination Λ is the ω-limit set of one of the 2-filling rays
constructed in Section 5. For this purpose, we explicitly demonstrate that
the ray τ of Theorem 8.1 is two-side approachable.

Consider the embedding of T in the plane minus a Cantor set Ω. Define
a sequence of loops ri in Ω approaching τ from the right as follows. The
loop r1 is homotopic to the (non-simple) path given by traveling within
the bigon containing ∞ to the branch b−1 of T , traversing the branch d0
clockwise, traversing b−1 backwards to the bigon containing ∞, and then
returning to ∞ within the bigon. Similarly, for i > 1, ri is homotopic to
the path which

ANNALES DE L’INSTITUT FOURIER



2-FILLING RAYS 2359

• travels from ∞ to the branch b0, staying within the bigon of T

containing ∞,
• traverses the branches b0, b1, . . . , b2i−3, c2i−2,
• traverses the branch d2i−2 in the clockwise direction,
• traverses the branches c2i−2, b2i−3, . . . , b1, b0 backwards to the bigon

containing ∞,
• and finally returns to ∞ within the bigon.

Similarly, we define a sequence of loops li approaching τ from the left as
follows. The loop li is homotopic to the path which

• travels from ∞ to the branch b0, staying within the bigon of T

containing ∞,
• traverses the branches b0, b1, . . . , b2i−2, c2i−1,
• traverses the branch d2i−1 in the counterclockwise direction,
• traverses the branches c2i−1, b2i−2, . . . , b1, b0 backwards to the bigon

containing ∞,
• and finally returns to ∞ within the bigon.

It is easy to see that τ is two-side approachable using the loops ri and
li. We claim that γ is homotopic to the concatenation

r1 · l1 · r1 · r2 · r1 · l1 · r1 · l2 · r1 · l1 · r1 · r2 · r1 · l1 · r1 · r3 · · ·

which is a fixed word of the substitution

f : r1 7→ r1·l1·r1·r2·r1·l1·r1, f : ri 7→ ri+1 for i ⩾ 2, f : li 7→ li+1 for i ⩾ 1

on the infinite alphabet {r1, l1, r2, l2, . . .}. The claim follows by studying
the singular leaf of the horizontal foliation of Σ through the point (0, 1

3 ).
This leaf is fixed by the pseudo-Anosov ϕ and hence its trajectory can be
determined by iterating ϕ on the horizontal line segment [0, 1] × { 1

3 }. One
sees that a short horizontal line segment traveling around p2k+1 is sent to
one traveling around p2k+3 and a horizontal line segment traveling around
p2k for k ⩾ 1 is sent to one traveling around p2k+2. On the other hand, a
horizontal line segment traveling across the square to the right, then around
p0, then across the square to the left is sent to one of the following form.
The image of the segment first travels around p0, then p1, then p0 again,
then p2, then p0, then p1, and then p0 again, traversing the square a total
of eight times. The claim follows from these facts.

Now, the 2-filling ray constructed using the sequences of loops {ri} and
{li} and the numbers pk = qk = k is the limit of the sequence of loops {αk}
where α1 = r1, α2k = α2k−1 · lk · α2k−1, and α2k−1 = α2k−2 · rk · α2k−2.
Note that

α3 = r1 · l1 · r1 · r2 · r1 · l1 · r1 = f(α1).
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An easy induction establishes immediately that f(αk) = αk+2 for all k.
Thus, the sequence {α1, α3, α5, . . .} = {α1, f(α1), f2(α1), . . .} approaches
the limiting concatenation

r1 · l1 · r1 · r2 · r1 · l1 · r1 · l2 · r1 · l1 · r1 · r2 · r1 · l1 · r1 · r3 · · ·

as claimed.

14. Cliques with multiple non-filling rays

In this section we prove the following theorem:

Theorem 14.1. — Let Ψn be the surface with a single planar end and
exactly 2n non-planar ends. Then R(Ψn) contains a clique containing ex-
actly n 2-filling rays and n non-filling rays.

To prove the theorem we will follow the methods of Sections 8–12. Thus,
we explicitly produce a lamination Λn on Ψn using a train track. The
complementary region of Λn containing the planar end p will be a 2n-gon.
There are rays to each end of this 2n-gon and we will show that n of these
rays are 2-filling and the other n rays are not 2-filling.

As it turns out, the construction relies in an essential way on the fact
that Ψn has infinite genus. At the present time, we do not know a way
to get around this. Since the methods of this section are similar to the
methods of Sections 8–12, we will only give the construction and sketch
the proofs that the claimed properties of the construction hold.

First we define an infinite train track T1 and a system of weights w1 on
T1. See Figure 14.1. The weights of various of the branches are displayed
and the weights of the remaining branches of T1 may be inferred from these
using the switch conditions. Note that there are infinitely many branches
which are loops based at trivalent switches and these have weights 1

8·4k for

1
3

2
3

1
8

1
4

1
32

1
16

1
128

1
2

Figure 14.1. The track T1 with weights w given by labels adjacent to
branches.
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k ⩾ 0. There are also infinitely many branches which are loops based at
quadrivalent switches and these have weights 1

4k for k ⩾ 1.
The track T1 has a bigon which we denote by c consisting of the branches

of weights 1
3 and 2

3 . For any n ⩾ 2, there is a cyclic cover πn : Tn → T1 with
the property that c has a unique lift c̃n to Tn with respect to which the
restriction πn|c̃n : c̃n → c is a degree n cover of the circle c. See Figure 14.2
for a picture of the tracks T2 and T3.

Figure 14.2. The tracks T2 and T3.

The tracks Tn carry weights wn induced by pulling back the weights w1
on T1. Namely, wn(b) = w1(πn(b)) for any branch b of Tn. For each n,
the weighted train track (Tn, wn) defines a union of foliated rectangles Gn.
These foliations are pictured in Figures 14.3 and 14.4. Please note that in
these figures a number of rectangles have been contracted to vertical line
segments for ease of drawing. This has no effect on the dynamics of the
foliations.

We will first study the dynamics of the foliation G1 and then leverage
this to study the foliations Gn. First we claim that every half leaf of G1
is dense except for a single singular half leaf. For this, we introduce the
pseudo-Anosov homeomorphism shown in Figure 14.5. As before, we see
that the fixed horizontal foliation of this homeomorphism has the same
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α β

Figure 14.3. The foliation G1.

Figure 14.4. The foliations G2 and G3.

dynamics as the foliation G1. We use the pseudo-Anosov ϕ to study the
dynamics of G1.

Analogously to Lemma 10.2, we use the orbits of singularities of ϕ to
prove that the union of singular leaves of G1 is dense. By studying trans-
verse measures, we prove, using Lemma 10.3 that every non-singular half-
leaf of G1 is dense. Moreover, as in Lemma 11.4 we see that the singularities
of G1 are joined by saddle connections to each other in such a way that
T P(T1, w1) contains three boundary paths. One of these boundary paths
has both half leaves dense while exactly one half leaf of each of the other
two boundary leaves is dense.

We now leverage these claims to prove the following result:

Theorem 14.2. — Every train path T P(Tn, wn) is dense. Furthermore,
every half train path of T P(Tn, wn) is dense except for 2n half train paths.
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A B C D

A

B

C

D

Figure 14.5. A pseudo-Anosov homeomorphism. Again, arrows based
at a common vertex and pointing in opposite directions are identified
by a rotation by π about the common vertex.

As before, the argument of [10, Theorem 12.1] shows that every half
leaf of G1 is dense except for a single ray which has an endpoint on the
complementary bigon. The ray α, pictured in Figure 14.3 is also dense in
G1. On the other hand, the other ray beginning from an endpoint of the
bigon, which we call β is not dense.

We now consider the union of foliated rectangles Gn. The ray α has ex-
actly n lifts α1, . . . , αn to Gn, each with an endpoint on the complementary
2n-gon to Gn. Similarly, β has n lifts β1, . . . , βn. Since every half leaf of G1
is dense except for β, we have in particular that every half leaf besides β

accumulates onto α, and that α itself is dense. Transporting these facts to
Gn, we see that the union α1 ∪ · · · ∪ αn is dense and moreover that every
half leaf of Gn not lying in {β1, . . . , βn} accumulates onto some αi. If we
can show that αi accumulates onto αj for each i, j, then we will have that
each αi is dense, and thus every half leaf of Gn not lying in {β1, . . . , βn} is
also dense.

For this, we unzip the foliation Gn along the union of the red saddle
connections shown in Figure 14.6 (see [13, Chapter 1.7] for the notion of
unzipping, which is called splitting there). We notice that the unzipped
foliation G′

n is isomorphic to Gn. Each rectangle has been replaced by a
rectangle of 1

4 the same height. Denote by Ri the first rectangle which αi

enters (see Figure 14.6). We see by unzipping that αi enters Ri+1 for each
i = 1, . . . , n (indices being taken modulo n).
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R1

α1

R3

R2

α3

α2

Figure 14.6. The singular rays αi and the rectangles Ri that they pass
through.

The foliation G′
n contains n rays α′

1, . . . , α′
n defined similarly to

α1, . . . , αn, which first pass through the rectangles R′
1, . . . , R′

n of G′
n, re-

spectively. By the isomorphism of G′
n with Gn, we see that α′

i enters R′
i+1

for each i. However, R′
i is identified with a subrectangle of Ri, of 1

4 the
height, intersecting αi for each i. Thus we see that αi enters not only Ri+1
but this subrectangle of 1

4 the height intersecting αi+1. Repeating the un-
zipping process infinitely many times, we see that αi accumulates onto αi+1
for each i. Consequently, each αi accumulates onto αj for any j, as desired.

Finally, since the union of saddle connections of G1 is dense, we see that
each boundary path of T P(Tn, wn) accumulates onto the train path in-
duced by some αi and therefore each boundary path is also dense. We have
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that T P(Tn, wn) contains 3n boundary paths, 2n of which correspond to
sides of the complementary 2n-gon of Gn. These 2n boundary paths each
have one dense and one non-dense half path since each αi is dense and no βi

is dense. On the other hand, each half path of one of the n remaining bound-
ary paths of T P(Tn, wn) accumulates onto the train path corresponding to
αi for some i, and thus is also dense. This proves Theorem 14.2.

Finally, we define the lamination Λn. The train track Tn may be embed-
ded on the surface Ψn. We illustrate how to do this on the surface Ψ2 with
four non-planar ends in Figure 14.7.

Figure 14.7. The train track T2 embedded in the surface Ψ2.
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Collapsing parallel branches of Tn gives a locally finite train track on Ψn

with a system of weights induced by wn. We check as in Section 16 that
the train paths resulting from this locally finite train track and system of
weights can be straightened to geodesics on Ψn. We verify as in Lemma 12.4
that the union is closed. This union of geodesics is the lamination Λn. We
verify that:

• The lamination Λn contains n proper geodesics m1, . . . , mn (these
are where the branches of Tn accumulate).

• The complementary region to Λn containing the planar end p is a
2n-gon.

• Rays to n of the ends of this polygon spiral onto Λn whereas rays to
the other n ends of the polygon each spiral onto one of the proper
geodesics mi.

Finally then, we form a clique of rays in R(Ψn, p) consisting of the rays
to the ends of the 2n-gon containing p. Exactly n of these are 2-filling and
the other n are not 2-filling, as desired.

15. Open questions

Here is a list of open questions about 2-filling rays.

(1) Is there a collection of infinitely many disjoint 2-filling rays on the
plane minus a Cantor set? See Question 5.7.

(2) More generally, is there any restriction on the clique of rays disjoint
from a 2-filling ray? Can the clique contain more than one non-filling
ray if the ambient surface is the plane minus a Cantor set?

(3) Does the limit set of a 2-filling ray always contain a proper leaf?
See Question 5.8.

(4) Is a ray intersecting all proper geodesics necessarily high-filling?
This is asked by Yan Mary He and Kasra Rafi.

(5) Which kind of geodesic laminations can appear as the limit set of
some two-side approachable long ray? What about 2-filling rays?
See Question 6.2.

(6) Is every 2-filling ray disjoint from some approachable long ray? See
Question 7.5.

ANNALES DE L’INSTITUT FOURIER



2-FILLING RAYS 2367

16. Appendix: construction of the lamination from the
train track with weights

In this section, we verify Lemma 12.3. To do this, we show that lifts of
train paths on T to Ω̃ are uniform-quality quasi-geodesics.

We consider again the middle of Figure 12.1. The blue curves pictured
divide Ω into a sphere V with three boundary components and the puncture
∞ as well as infinitely many spheres with three boundary components. We
denote the spheres with three boundary components by Ui, i ∈ Z. The
numbering is chosen such that if we consider the bi-infinite sequence

. . . U−2, U−1, V, U0, U1, U2, . . .

then each surface in the sequence is joined to each of the adjacent surfaces
by a boundary component.

Notice that T intersects each three-holed sphere Ui with i ̸= 0 in the
same subtrack. Each Ui is endowed with an isometric hyperbolic metric
with boundary components of length one. In each Ui with i ̸= 0 we isotope
T so that there is an isometry Ui → Uj for each i, j ̸= 0 taking the inter-
section T ∩Ui to T ∩Uj . The components U0 and V are also equipped with
hyperbolic metrics with boundary components of length one. We glue the
surfaces Ui and V together by isometries along the boundary components
such that the tracks Ui ∩ T and V ∩ T glue together to give T . Although a
gluing was fixed at the beginning of the paper, any choices of gluing give
quasi-isometric surfaces, so whether or not train paths are uniform-quality
quasi-geodesics does not depend on the choice of gluing.

Note that there are exactly 17 possible train paths through the train
track T ∩ V (up to possibly changing the orientation of the path). Eight of
these join one of the boundary components of V to itself. They are homo-
topic, keeping the endpoints on the boundary, to the eight paths drawn in
Figure 16.1. The other nine possible train paths join one boundary compo-
nent of V to another. In particular we note the following by inspection: no
train path in T ∩ V is homotopic into ∂V .

Similarly we analyze train paths through the train tracks with stops
T ∩ Ui. For each i, there are three possible train paths through T ∩ Ui up
to changing the orientation of the path, none of which is homotopic into
∂Ui.

These facts imply the following. For any train path t ∈ T P(T, w), t

consists of a concatenation

t = . . . t−1t0t1 . . .
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Figure 16.1. The eight possible train paths through V joining a bound-
ary component to itself.

where each ti is a train path through Wi ∩ T where Wi ∈ {Uj}j∈Z ∪ {V },
with endpoints on the boundary. The choice of metric on the pieces of Ω,
the isotopic representative chosen for T , and the upper bound of 17 on the
number of train paths in T ∩ Wi imply that there is an upper bound κ on
the length of each segment ti. Furthermore, no ti is homotopic into ∂Wi.
Let

t̃ = . . . t̃−1t̃0t̃1 . . .

be a lift of t to Ω̃, where each t̃i covers the segment ti. Let L be the collection
of the lifts of the curves Ci on Ω to Ω̃. Then there is a lower bound η on
the distance between any distinct L1, L2 ∈ L.

Consider a subpath s of t̃ of length D. Then s contains at least ⌊D/κ −
1⌋ ⩾ D/κ − 2 segments t̃i. By the fact that no ti is homotopic into ∂Wi, s

crosses at least D/κ − 2 distinct elements of L each of which is distance at
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least η from the next. Hence the distance between the endpoints of s is at
least

(D/κ − 2)η = Dη/κ − 2η.

This proves that t̃ is a (κ/η, 2η)-quasi-geodesic.
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