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WILD MONODROMY OF THE FIFTH PAINLEVÉ
EQUATION AND ITS ACTION ON WILD

CHARACTER VARIETY: AN APPROACH OF
CONFLUENCE

by Martin KLIMEŠ

Abstract. — The article studies the nonlinear Stokes phenomenon at the irreg-
ular singularity of the Fifth Painlevé equation from the point of view of confluence
from the Sixth Painlevé equation. This approach is developed separately on both
sides of the Riemann–Hilbert correspondence. On the side of the Painlevé–Okamoto
foliation, the relation between the nonlinear monodromy group of Painlevé VI and
the “nonlinear wild monodromy pseudogroup” of Painlevé V (the pseudogroup
generated by nonlinear Stokes operators and nonlinear exponential torus) is ex-
plained. On the side of the associated linear isomonodromic problems, the “wild”
character variety (the space of the linear monodromy and Stokes data) of Painlevé
V is constructed through a birational transformation from the one of Painlevé VI.
Explicit formulas for the action of the “nonlinear wild monodromy” of Painlevé V
on its character variety are then obtained by transporting the description of the
action of the nonlinear monodromy of Painlevé VI on its character variety to that
of Painlevé V.

Résumé. — L’article étudie le phénomène de Stokes non linéaire à la singularité
irrégulière de la Cinquième équation de Painlevé du point de vue de la confluence
à partir de la Sixième équation de Painlevé. Cette approche est développée sé-
parément des deux côtés de la correspondance de Riemann–Hilbert. Du côté du
feuilletage de Painlevé–Okamoto, la relation entre le groupe de monodromie non-
linéaire de Painlevé VI et le « pseudogroupe de monodromie sauvage non-linéaire »
de Painlevé V (le pseudogroupe engendré par les opérateurs de Stokes non-linéaires
et le tore exponentiel non-linéaire) est expliquée. Du côté des problèmes isomono-
dromiques linéaires associés, la variété de caractères « sauvages » (l’espace de la
monodromie linéaire et des données de Stokes) de Painlevé V est construite par
une transformation birationnelle à partir de celle de Painlevé VI. On obtient alors
des formules explicites de l’action de la « monodromie sauvage non-linéaire » de
Painlevé V sur sa variété de caractères en transportant la description de l’action
de la monodromie non-linéaire de Painlevé VI sur sa variété de caractères à celle
de Painlevé V.

Keywords: Painlevé equations, wild character variety, confluence, nonlinear Stokes
phenomenon.
2020 Mathematics Subject Classification: 34M40, 34M55, 34M56.
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1. Introduction

The six families of Painlevé equations PI , . . . , PVI can be written in the
form of non-autonomous Hamiltonian systems

dq
dt = ∂H•(q, p, t)

∂p
,

dp
dt = −∂H•(q, p, t)

∂q
, • = I, . . . ,VI,

the solutions of which define a foliation in the (q, p, t)-space (or better, in
the Okamoto’s semi-compactification of it). By virtue of the Painlevé prop-
erty, there are well-defined nonlinear monodromy operators acting on the
foliation by analytic continuation of solutions along loops in the t-variable.
In the case of the sixth Painlevé equation PVI the associated monodromy
group carries a great deal of information about the foliation and hence
about the equation. The other Painlevé equations PI , . . . , PV are obtained
from PVI by a limiting process through confluences of singularities and
other degenerations. When different singularities merge, as is the case in
the degeneration PVI → PV , one loses some of the monodromy. It is known
that the lost information should reappear in some way as a nonlinear Stokes
phenomenon at the confluent irregular singularity. Roughly speaking, the
source of this nonlinear phenomenon is the existence of local normalizing
transformations above certain sectors at the singularity and therefore of
canonical 2-parameter families of solutions with well-behaved exponential
asymptotics over the sectors. This was proved originally in the works of
Takano [63, 64] and Yoshida [65, 66], and recently also by Bittmann [3].
Passing from one sector to a neighboring one the family changes – this is
encoded by nonlinear Stokes operators. The “good” analogue of the nonlin-
ear monodromy group for the equations PI , . . . , PV is the, so called, “wild
monodromy pseudogroup”, which is generated not only by the nonlinear
monodromy operators but also by the nonlinear Stokes operators and non-
linear exponential tori (Lie groups of bounded sectorial symmetries) associ-
ated to each irregular singularity. This is a non-linear equivalent to the wild
monodromy group of meromorphic linear differential systems (or meromor-
phic connections over Riemann surfaces) of Martinet and Ramis [41, 55],
whose closure is the differential Galois group [54]. The main goal of this
paper is to describe in explicit terms the dynamics of this wild monodromy
pseudogroup in the case of the non-degenerated fifth Painlevé equation PV .

In the paper [33], the author has shown that in the case of confluence
of two regular singularities to an irregular one in non-autonomous Hamil-
tonian systems, such as is the case of the degeneration PVI → PV , both
the nonlinear Stokes phenomenon and the wild monodromy pseudogroup
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WILD MONODROMY OF PAINLEVÉ V 3

can be reconstructed from a parametric family of limit “wild monodromy
operators” to which the usual nonlinear monodromy operators accumulate
along certain discrete sequences of the parameter of confluence. We will use
this confluence approach to describe the nonlinear Stokes phenomenon in
the fifth Painlevé equation PV on the other side of the Riemann–Hilbert
correspondence: as operators acting on a “wild character variety”. This ar-
ticle provides one of the very first results in the general program of study of
such wild monodromy actions on the character varieties of isomonodromic
deformations of linear differential systems, that was sketched in [52].

The approach to Painlevé equations through a Riemann–Hilbert corre-
spondence is a well established and fruitful method based on the fact that
these equations govern isomonodromic (and iso-Stokes) deformations of cer-
tain linear differential systems with meromorphic coefficients on CP1. This
means that the usual Riemann–Hilbert correspondence between linear sys-
tems and their generalized linear monodromy representations (consisting
of monodromy and Stokes data), can be interpreted as a map between the
space of local solutions of the given Painlevé equation with fixed values of
parameters, and the space of generalized monodromy representations with
fixed local multipliers. This latter space is called the wild character vari-
ety [6]. In this setting, the Riemann–Hilbert correspondence conjugates the
transcendental flow of the Painlevé equations to a locally constant flow on
the corresponding character variety [25]. The nonlinear monodromy of the
sixth Painlevé equation PVI is represented by an action of the a pure-braid
group B3 on the character variety of PVI [13, 15, 26, 27].

Our goal is to use the confluence from PVI to PV in order to describe the
action of the nonlinear wild monodromy pseudogroup of PV on the associ-
ated wild character variety of PV . In order to do that, we will need to de-
scribe the confluence procedure on both sides of the Riemann–Hilbert cor-
respondence: on the Painlevé–Okamoto foliation and on the linear isomon-
odromic problem on one side and on the associated character variety on
the other side. This obviously brings certain level technicality to this pa-
per. The part dealing with the Painlevé–Okamoto foliation has been already
treated in [33]. We will recall these results in Section 2, where we introduce
the nonlinear monodromy group of PVI and the nonlinear wild monodromy
pseudogroup of PV , and in Section 3, where we explain the confluence and
the relation between these nonlinear monodromy (pseudo)groups.

The main part of this paper is devoted to the study of the confluence in
the associated linear isomonodromy problem, and of the dynamics on the
wild character variety. In Section 4 we recall the usual approach to PVI as an
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4 Martin KLIMEŠ

equation governing the isomonodromic deformations of 2×2 linear systems
with four Fuchsian singularities at 0, 1, t,∞ ∈ CP1, and some classical
results concerning the geometry of the character variety SVI of PVI and the
braid group action on it. In Section 5 we will study in detail the confluence
PVI → PV through the viewpoint of isomonodromic deformations. We show
that the wild character variety SV of PV is obtained from the character
varieties of PVI by birational changes of coordinates (in fact, a blow-down)
depending on the parameter of confluence. This part is fundamentally based
on the theory of confluence of singularities in linear systems of Hurtubise,
Lambert & Rousseau [23, 36].

An alternative approach is provided in the Appendix using isomon-
odromic deformations of 3×3 linear systems in Birkhoff normal form with
an irregular singularity of Poincaré rank 1 at the origin (of eigenvalues
0, 1, t) and a Fuchsian singularity at infinity, where the degeneration from
PVI to PV happens through a confluence of eigenvalues t → 1, the descrip-
tion of which is based on the author’s work [34]. Ultimately this leads to the
same picture as the approach of Section 5 (this is not surprising since the
2×2 and 3×3 systems are related one to the other by a middle convolution
and a Laplace transform, or by a Harnad duality [4, 21, 22, 43]).

Using the birational transformation between the character varieties we
transfer the known actions of pure-braid group from SVI to SV , and then
push them to the limit along discrete sequences of the parameter of conflu-
ence. This leads to our main result Theorem 6.5, which gives explicit for-
mulas for the action of the nonlinear monodromy, of the nonlinear Stokes
operators and of the nonlinear exponential torus of PV on the wild charac-
ter variety.

It is expected that the nonlinear wild monodromy pseudogroup described
in this paper should have a natural interpretation in terms of a differential
Galois theory (e.g. the differential Galois groupoid of Malgrange [10, 39]),
perhaps in a similar way to [9], and that our results could be applied to
construct and classify certain special type solutions of PV in an analogy
with the construction and classification of algebraic solutions of PVI [4, 5,
15, 37]. However this is well beyond the scope of this paper.

While the main motivation of this paper is to describe in precise terms
the confluence PVI → PV , and to recover the nonlinear action of the wild
monodromy pseudogroup, there are several side results that are obtained
along the way which are worth of independent attention since they hint to
more general phenomena regarding the whole hierarchy of Painlevé equa-
tions. For example, it is known that the irregular singularity of PV has a

ANNALES DE L’INSTITUT FOURIER



WILD MONODROMY OF PAINLEVÉ V 5

special pole free solution, “tronquée” solution, on each of the two sectors
of normalizations, which correspond to the sectorial center manifold of the
saddle-node singularity of the foliation. We show is that this pair of secto-
rial center manifold solutions unfolds to a single solution in the confluent
family of PVI, characterized by its asymptotics at both of the two con-
fluent singularities, and which is pole free on certain “unfolded sectorial”
domain attached to the two singularities. This solution, both in PVI and
at the limit in PV , corresponds through the Riemann–Hilbert correspon-
dence to a point on the intersection of two lines on the character variety
(which is a cubic surface containing up to 27 lines in case of PVI, resp. up
to 21 lines in case of PV ). These kind of solutions, which seem to be new,
might be expected to play a special role in physics, similar to the one that
the “tronquée” solutions play. Another side result worth of mentioning are
Propositions 4.5 and 5.6 which give explicit formulas for all the lines on
the character varieties of PVI and PV and their interpretations in terms of
the isomonodromic problem.

Finally, let us remark that our confluence approach can be well extended
to the other Painlevé equations (with increasing complexity of the descrip-
tion, the further the equation is from PVI in the degeneration process), and
some of this shall be done in future works. As of now, a general theory
of confluence in linear systems has been developed only for non-resonant
irregular singularities [23], therefore allowing to deal with only about half
of the isomonodromic systems associated to Painlevé equations. However,
in the case of traceless linear 2×2 systems with resonant irregular singu-
larities, this theory has a natural generalization along the lines of [34]: this
is a subject of a paper in preparation by the author.
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of this paper, and for their great hospitality during my stay in Toulouse.
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6 Martin KLIMEŠ

2. Nonlinear monodromy and Stokes phenomenon in PVI
and PV

2.1. The Painlevé equations

The Painlevé equations originated from the effort of Painlevé [50] and
Gambier [17] to classify all second order ordinary differential equations of
type q′′ = R(q′, q, t), with R rational, possessing the so called Painlevé
property which controls the ramification points of solutions:

Painlevé property. — Each germ of a solution can be meromorphi-
cally continued along any path avoiding the singular points of the equation
(fixed singularities). In other words, solutions cannot have any other mov-
able singularities other than poles.

Painlevé and Gambier [17] produced a list of 50 canonical forms of equa-
tions to which any such equation can be reduced. Aside of equations solv-
able in terms of classical special functions, the list contained six new fami-
lies of equations, PI , . . . , PVI, whose general solutions provided a new kind
of special functions. In many aspects they may be regarded as nonlinear
analogues of the hypergeometric equations [28].

In a modern approach to the Painlevé equations, following on Okamoto’s
works, the traditional families PII, PIII, PV are further divided to subfamilies
by specification of some redundant parameters, and are classified according
to the affine Weyl group of their Bäcklund symmetries [44, 49, 57], as well
as according to the type of the isomonodromic problem they control [12, 46,
53]. The equation PVI is a mother equation for the other Painlevé equations,
which can be obtained through degeneration and confluence following the
diagram [46]

PD6
III → PD7

III → PD8
III

↗ ↗↘ ↘
PVI → PV → P deg

V P JM
II → PI

↘ ↘↗ ↗
PIV → PF N

II
according to which also the associated isomonodromy problems degener-
ate. A good understanding of the degeneration procedures should allow to
transfer information along the diagram. The main obstacle is that as the
nature of the singularities changes at the limit, it causes the naive limit of
most local objects to diverge – this is a common rule in confluence problems.
One therefore needs to find for each of the arrows in the above diagram
a description that allows to deal with this divergence. This article studies
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some aspects of the confluence PVI → PV through the Riemann–Hilbert
correspondence.

Each of the Painlevé equations is equivalent to a time dependent Hamil-
tonian system

dq
dt = ∂

∂p
H•(q, p, t), dp

dt = − ∂

∂q
H•(q, p, t), • = I, . . . ,VI,(2.1)

from which it is obtained by reduction to the q-variable [48].
The general form of the sixth Painlevé equation is [30]

PVI(ϑ) : q′′ = 1
2

(1
q

+ 1
q − 1 + 1

q − t

)
(q′)2 −

(1
t

+ 1
t− 1 + 1

q − t

)
q′

+ q(q−1)(q−t)
2 t2(t−1)2

[
(ϑ∞−1)2 − ϑ2

0
t

q2 + ϑ2
1

(t−1)
(q−1)2 + (1−ϑ2

t ) t(t−1)
(q−t)2

]
,

where ( · )′ = d
dt , and where ϑ = (ϑ0, ϑt, ϑ1, ϑ∞) ∈ C4 are complex con-

stants related to the eigenvalues of the associated isomonodromic prob-
lem (4.1). The Hamiltonian function HVI(q, p, t) of its associated Hamil-
tonian system (2.1) is given by

(2.2) HVI = q(q − 1)(q − t)
t(t− 1)

[
p2 −

(ϑ0

q
+ ϑ1

q − 1 + ϑt − 1
q − t

)
p

+ (ϑ0 + ϑ1 + ϑt − 1)2 − (ϑ∞ − 1)2

4q(q − 1)

]
.

The Hamiltonian system of PVI has three simple (regular) singular points
on the Riemann sphere CP1 at t = 0, 1,∞.

The non-degenerate fifth Painlevé equation PV (more precisely the fifth
Painlevé equation with a parameter η1 = −1, the general form is obtained
by scaling t 7→ − t

η1
) is

PV (ϑ̃) : q′′ =
( 1

2q + 1
q − 1

)
(q′)2 − 1

t̃
q′

+ (q − 1)2

2t̃2

(
(ϑ∞−1)2q − ϑ2

0
q

)
+ ϑ̃1

q

t̃
− q(q + 1)

2(q − 1) ,

where ()′ = d
dt̃

and ϑ̃ = (ϑ0, ϑ̃1, ϑ∞). It is obtained from PVI as a limit
ϵ → 0 after the change of the independent variable and a substitution of
the parameters

(2.3) t = 1 + ϵt̃, ϑt = 1
ϵ
, ϑ1 = −1

ϵ
+ ϑ̃1,

which sends the three singularities to t̃ = − 1
ϵ , 0,∞. At the limit, the two

simple singular points − 1
ϵ and ∞ merge into a double (irregular) singularity
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8 Martin KLIMEŠ

at the infinity. The change of variables (2.3), changes the function ϵ · HVI
to

Hconf
VI = q(q− 1)(q− 1 − ϵt̃)

t̃(1 + ϵt̃)

[
p2 −

(
ϑ0

q
+ ϑ̃1 − 1

q− 1 + (1 − ϵ)t̃
(q− 1)(q− 1 − ϵt̃)

)
p

+ (ϑ0 + ϑ̃1 − 1)2 − (ϑ∞ − 1)2

4q(q − 1)

]
,

and the Hamiltonian system to
dq
dt̃

= ∂

∂p
Hconf

VI (q, p, t̃), dp
dt̃

= − ∂

∂q
Hconf

VI (q, p, t̃),(2.4)

whose limit ϵ → 0 is the Hamiltonian system of PV , HV = limϵ→0 H
conf
VI .

2.2. Nonlinear monodromy of PVI

Consider the foliation in the (q, p, t)-space given by the solutions of the
Hamiltonian system of Pj(ϑ), j = I, . . . ,VI. As general solutions may have
many poles the flow of Pj on C2 × (CP1 ∖ Sing(Pj)), where Sing(Pj) ⊆
{0, 1,∞} is the set of fixed singularities of Pj(ϑ), is not complete.
Okamoto [47] has constructed a semi-compactification Mj(ϑ) of this space
in form of a fibration over CP1 ∖Sing(Pj) (corresponding to the projection
(q, p, t) 7→ t) on which the foliation is analytic and transverse to the fibers.
We will skip the details of this construction as we won’t need them. We
will denote

(2.5) Mj,t(ϑ) := the Okamoto space of initial conditions of Pj(ϑ),

the fiber of Mj(ϑ) above a point t ∈ CP1 ∖ Sing(Pj). It is a complex
surface sitting inside a compact rational surface as a complement of some
anti-canonical divisor [47, 57], and endowed with a symplectic structure
given by the standard symplectic form

(2.6) ω = dq ∧ dp,

in the local coordinate (q, p).
The Painlevé property of Pj means that for each path t0

γ−→ t1 in the
t-space CP1∖Sing(Pj) the flow induces a symplectomorphisms Mj,t0(ϑ) →
Mj,t1(ϑ) between the fibers corresponding to analytic continuation of the
solutions of (2.1) along the path (see Figure 2.1). In particular, for any given
base-point t0 ∈ CP1∖Sing(Pj) the loops γ ∈ π1

(
CP1∖Sing(Pj), t0

)
induce

ANNALES DE L’INSTITUT FOURIER



WILD MONODROMY OF PAINLEVÉ V 9

Figure 2.1. The Painlevé flow and its monodromy in case of PVI.

a nonlinear monodromy action which is a representation of the fundamental
group of the base space into the group of symplectomorphisms of Mj,t0(ϑ),

π1(CP1 ∖ Sing(Pj), t0) −→ Autω(Mj,t0(ϑ)),
γ 7−→ Mγ( · , t0).

In case of PVI this nonlinear monodromy π1(CP1 ∖ {0, 1,∞}, t0) →
Autω(MVI,t0(ϑ)) carries (together with the analytic invariants of the sin-
gular fibers t = 0, 1,∞ which are determined by the parameter ϑ) a com-
plete information about the foliation and thus about the equation. For
example, algebraic solutions of PVI correspond to finite orbits of the mon-
odromy action (see e.g. [5, 15, 37])). The nonlinear monodromy also plays
an important role in the differential Galois theory: the Malgrange–Galois
groupoid of the foliation is “generated” by the monodromy. Cantat and
Loray [9] have showed the irreducibility of PVI in the sense of Malgrange
(i.e. maximality of the Malgrange–Galois groupoid), which then implies
transcendentness of general solutions [10], by studying the action of this
monodromy. The important fact on which these studies are based is that
the nonlinear monodromy of PVI has a well known explicit representation
as a braid group action on an SL2(C)-character variety (more about this
in Section 4).

On the other hand, for the other Painlevé equations the nonlinear mon-
odromy operator doesn’t carry enough information: it is cyclic for PV ,
P deg

V , PDi

III , and trivial for PIV, PF N
II , P JM

II , PI . In case of the confluence
PVI → PV , the merging of the two singularities − 1

ϵ ,∞ in the confluent fam-
ily (2.4) of PVI into a single singularity ∞ of PV means that an important
part of the monodromy group is lost and therefore also the information
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10 Martin KLIMEŠ

carried by it. This lost information reappears in the nonlinear Stokes phe-
nomenon at the irregular singularity.

2.3. Nonlinear Stokes phenomenon of PV

In the local coordinate x = t̃−1 near t̃ = ∞, the Hamiltonian system (2.1)
of PV has the form

(2.7)

x2 d
dxq = xϑ0 +

(
1 − x(2ϑ0+ϑ̃1−1)

)
q

+ x
(
(ϑ0+ϑ̃1−1)q2 − 2pq + 4pq2 − 2pq3),

x2 d
dxp = x

(ϑ0 + ϑ̃1 − 1)2 − (ϑ∞ − 1)2

4 −
(
1 − x(2ϑ0+ϑ̃1−1)

)
p

+ x
(
−2(ϑ0+ϑ̃1−1)pq + p2 − 4p2q + 3p2q2),

with an irregular singularity at x = 0.

Theorem 2.1 (Takano [63, 64], Shimomura [61, 62], Yoshida [66]).

(i) Formal normalization: The above system (2.7) can be brought to a
formal normal form

(2.8) x2 d
dxu =

(
1 − (2ϑ0 + ϑ̃1 − 1)x+ 4u1u2x

) ( 1 0
0 −1

)
u, u =

(
u1

u2

)
,

by means of a formal transversely symplectic (w.r.t. the canonical
forms (2.6) and du1 ∧ du2) change of coordinates(

q

p

)
= Ψ̂(u, x, 0) =

∑
k⩾0

ψ(k0)(u)xk,

where ψ(k0)(u) are analytic on some polydisc U = {|u1|, |u2| < δu},
δu > 0.

(ii) Sectorial normalization: The formal series Ψ̂ of x is divergent
but Borel summable, with a pair of Borel sums ΨGG(u, x, 0) and
Ψ GG(u, x, 0) defined respectively above the sectors

x ∈

{
XGG(0) = {|arg x− π

2 | < π − η, |x| < δx},
X GG(0) = {|arg x+ π

2 | < π − η, |x| < δx},

for some 0 < η < π
2 arbitrarily small and some δx > 0 (depending

on η), and u ∈ U. The sectorial transformations
(

q

p

)
= Ψ•(u, x, 0),

• = GG, GG, bring the system (2.7) to its formal normal form (2.8).

ANNALES DE L’INSTITUT FOURIER



WILD MONODROMY OF PAINLEVÉ V 11

In particular, the formal transformation Ψ̂(u, x, 0) and the sec-
torial transformations Ψ•(u, x, 0) satisfy the same ( ∂

∂u ,
∂

∂x )-differ-
ential relations over the field of germs of meromorphic functions.

Figure 2.2. The sectorial domains XGG(0) and X GG(0) in the x-coordinate
and the connecting transformations between the canonical solutions(
q
GG
, p

GG)(x, 0; c) and
(
q GG, p GG

)
(x, 0; c) on the left X∩

1 (0) and right X∩
2 (0)

intersection sectors.

Canonical 2-parameter family of solutions

The system (2.8), which is Hamiltonian for the time-x-dependent Hamil-
tonian function (

1 − (2ϑ0 + ϑ̃1 − 1)x
)
u1u2 + 2

(
u1u2

)2

x2

with respect to the standard symplectic form du1 ∧ du2, has a canonical
2-parameter family of solutions

(2.9)
u1(x, 0; c) = c1 e− 1

xx−(2ϑ0+ϑ̃1−1)+4c1c2 ,

u2(x, 0; c) = c2 e 1
xx(2ϑ0+ϑ̃1−1)−4c1c2 ,

c = t(c1, c2) ∈ C2,

and an analytic first integral

(2.10) h = u1u2 = c1c2.

Let uG
G
(x, 0; c), resp. u GG(x, 0; c), be fixed branches of (2.9) restricted to

XGG(0), resp. X GG(0), then we define(1)

(2.11)
(

q•

p•

)
(x, 0; c) = Ψ•( · , x, 0) ◦ u•(x, 0; c), • = GG, GG,

(1) The notation Ψ•( · , x, 0) stands for the function u 7→ Ψ•(u, x, 0), i.e. Ψ•( · , x, 0) ◦
u•(x, 0; c) denotes the substitution Ψ•(u, x, 0)

∣∣
u=u•(x,0;c)

.
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12 Martin KLIMEŠ

as the corresponding canonical 2-parameter family of solutions to the
Hamiltonian Painlevé system (2.7). We call the parameter c = t(c1, c2)
an initial condition.

Sectorial center manifold solutions

Corollary 2.2. — The system (2.7) has a unique bounded analytic
solution on each of the two sectors X•(0), • = GG, GG, given by

(
q•

p•

)
(x, 0; 0) =

Ψ•(0, x, 0), corresponding to the initial condition c = 0.

We call these solutions the “sectorial center manifold” solutions, since
they correspond to a sectorial center manifold of the saddle-node singularity
of the foliation. Each of them can be characterized as the pole-free solution
on its respective sector. These solutions are also known as the “bi-tronquée”
(double-truncated) solutions of PV [1].

Nonlinear exponential torus

Definition 2.3. — A (fibered) symmetry of the system (2.8) is a sym-
plectic transformation u 7→ ϕ(u, x) that preserves the system.

Proposition 2.4 ([33, Proposition 31]). — Any symmetry of (2.8) that
is bounded and analytic above one of the sectors x ∈ X•(0), • = GG, GG, u ∈ U,
is in fact independent of x. It is given by the time-1 flow

(2.12) Tα : u 7−→
(

eα(u1u2) 0
0 e−α(u1u2)

)
u,

of a Hamiltonian vector field

(2.13) ξ = α(u1u2)
(
u1

∂

∂u1
− u2

∂

∂u2

)
, with α(h) an analytic germ.

The Lie group of these symmetries is commutative and connected.

Following the terminology of the differential Galois theory of linear sys-
tems, the Lie group of symmetries (2.12) is called the nonlinear exponential
torus. Its Lie algebra of infinitesimal symmetries (2.13) is called the non-
linear infinitesimal torus.

Corollary 2.5. — The normalizing sectorial transformations Ψ̂ and
Ψ• of Theorem 2.1 are unique up to a right composition with the same
analytic symmetry Tα(u).
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The nonlinear exponential torus (2.12) acts on the Painlevé system (2.7)
by the sectorial isotropies

T•
α(q, p, x) := Ψ•( · , x, 0) ◦ Tα(u), • = GG, GG,

given by the time-1-flow of the vector field which is the sectorial pullback
of (2.13) by (Ψ•)◦(−1). Its right action on the canonical solutions T•

α( · , x)◦(
q•

p•

)
(x, 0; c) =

(
q•

p•

)
(x, 0; · ) ◦ Tα(c) is given by the corresponding action of

Tα on the initial condition parameter c,

(2.14) Tα : c 7−→
(

eα(c1c2) 0
0 e−α(c1c2)

)
c, α ∈ O(C, 0).

In particular, the nonlinear formal monodromy (monodromy of the formal
solution Ψ̂( · , x, 0) ◦ u(x, 0; c)), acting on the initial condition c as

(2.15) N(c) = T2πi(−2ϑ0−ϑ̃1+1+4h)(c) =
(

e2πi(−2ϑ0−ϑ̃1+4c1c2) 0
0 e−2πi(−2ϑ0−ϑ̃1+4c1c2)

)
c,

is an element of the exponential torus.

Nonlinear Stokes operators

Let

X∩
1 (0) =

{
|arg x| < π

2 − η, |x| < δx

}
⊂ XGG(0),

X∩
2 (0) =

{
|arg x+ π| < π

2 − η, |x| < δx

}
⊂ X GG(0),

be the left and right intersection sectors of the overlapping sectors XGG(0),
X GG(0) (see Figure 2.2). The two transition maps

(2.16)
S1(q, p, x, 0) = Ψ GG( · , x, 0) ◦ (ΨGG)◦(−1)(q, p, x, 0), x ∈ X∩

1 (0),

S2(q, p, x, 0) = ΨGG( · , x, 0) ◦ (Ψ GG)◦(−1)(q, p, x, 0), x ∈ X∩
2 (0),

are called the nonlinear Stokes operators of the Painlevé system acting on
the foliation (2.7) while preserving the fibers x = const. They are expo-
nentially close to identity on the sectors of their definition X∩

1 (0), resp.
X∩

2 (0). Let us remark, that unlike the monodromy, these Stokes operators
are defined only locally on the foliation. Their action on the canonical solu-
tions (2.11) is represented by a pair of transformations S̃1(c), S̃2(c) of the
initial condition c defined by

(2.17)
S1( · , x, 0) ◦

(
q
GG

p
GG

)
(x, 0; c) =

(
q
GG

p
GG

)
(x, 0; · ) ◦ S̃1(c),

S2( · , x, 0) ◦
(

q GG

p GG

)
(x, 0; c) =

(
q GG

p GG

)
(x, 0; · ) ◦ S̃2(c),
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which are symplectic w.r.t. the canonical form dc1 ∧ dc2 and independent
of x. This pair

(
S̃1(c), S̃2(c)

)
is well defined up to a simultaneous con-

jugation by some symmetry Tα. It provides a local analytic invariant of
the system (2.7) with respect to fiber-preserving transversely symplectic
transformations (e.g. [33, Theorem 36]).

Remark 2.6. — The operators S̃1, resp. S̃2, are the nonlinear Stokes
operators corresponding to the singular directions −π, resp. 0, whereas
N◦(−1) ◦ S̃2 ◦ N is the nonlinear Stokes operator corresponding to the sin-
gular direction π.

Nonlinear monodromy operator:

Analytic continuation of solutions along a simple positive loop around
the origin in the x-coordinate acts locally on the space of solutions as the
nonlinear monodromy operator M(q, p, x, 0). Its representation by its action
M̃•(c) on the initial condition of either of the solutions

(
q•

p•

)
, • = GG, GG,

(2.18) M( · , x, 0)◦
(

q•

p•

)
(x, 0; c) =

(
q•

p•

)
(e2πix, 0; c) =

(
q•

p•

)
(x, 0; · )◦M̃•(c),

is expressed (see [33]) as the composition

(2.19) M̃GG= S̃2 ◦ S̃1 ◦ N, M̃ GG= S̃1 ◦ N ◦ S̃2.

Note that M̃GG(c) and M̃ GG(c) are conjugated, being two representations of
the same monodromy map M(q, p, x, 0).

Nonlinear wild monodromy pseudogroup

Definition 2.7. — The pseudogroup action on the foliation of PV that
is generated by both the Stokes operators, the monodromy operator, and
the exponential torus〈

S1,S2,M, {TGG

α,T
GG
α | α ∈ O(C, 0)}

〉
is called the nonlinear wild monodromy pseudo-group. Its representation
on the c-space of initial conditions is generated by〈

S̃1, S̃2, {Tα | α ∈ O(C, 0)}
〉
.

The central problem of this paper is to relate this wild monodromy of
PV to the monodromy of PVI and to describe its dynamics.
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3. Unfolding of the nonlinear Stokes phenomenon

It is not very surprising that the only monodromy operators of the con-
fluent family of PVI that converge when ϵ → 0 are those corresponding
to the loops in π1

(
CP1 ∖ {− 1

ϵ , 0,∞}, t0
)

that persist to the limit as loops
in π1

(
CP1 ∖ {0,∞}, t0

)
, while those corresponding to the vanishing loops

diverge. In fact, for each ϵ ̸= 0 the nonlinear monodromy group of PVI is
discretely generated, while for ϵ = 0 the nonlinear wild monodromy group
of PV is generated by a continuous family. However, the author’s paper [33]
shows that generators of the wild monodromy pseudogroup can be obtained
through the accumulation of monodromy when ϵ → 0 along the sequences
{ϵn}n∈±N,

1
ϵn

= 1
ϵ0

+ n.

In this section we will summarize the results of [33] on the confluence
PVI → PV .

3.1. Sectorial normalization and the unfolded nonlinear Stokes
operators

In the coordinate
x = t̃ −1 + ϵ,

the confluent Painlevé system (2.4) is written as

(3.1) x(x− ϵ) dq
dx = ∂

∂p
H(q, p, x, ϵ), x(x− ϵ) dp

dx = − ∂

∂q
H(q, p, x, ϵ),

with

(3.2)

H(q, p, x, ϵ) = −(1 + ϵt̃ )Hconf
VI (q, p, t̃, ϵ)

=
(
1− ϵ− (x− ϵ)ϑ0 − x(ϑ0+ϑ̃1−1)

)
qp+ (2x− ϵ)(qp)2

+ (ϑ0 + ϑ̃1 − 1)2 − (ϑ∞ − 1)2

4
(
(x− ϵ)q − x

)
+ xϑ0p

+ (x− ϵ)(ϑ0+ϑ̃1−1)q2p− xqp2 − (x− ϵ)q3p2.

An essential tool in understanding the relation between the monodromy
of this system for ϵ ̸= 0 and the wild monodromy of the limit system
with ϵ = 0 is the following theorem which is an unfolded generalization of
Theorem 2.1.

TOME 0 (0), FASCICULE 0
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Theorem 3.1 ([33, Theorems 17 & 43]).

(i) Formal normalization: The confluent Painlevé system (3.1) can be
brought to a formal normal form

(3.3) x(x−ϵ) du
dx =

(
1−ϵ−(x−ϵ)ϑ0−x(ϑ0+ϑ̃1−1)+2(2x−ϵ)u1u2

)( 1 0
0 −1

)
u.

by means of a formal transversely symplectic change of coordinates

(3.4)
(

q

p

)
= Ψ̂(u, x, ϵ) =

∑
k,l⩾0

ψ(kl)(u)xkϵl,

where ψ(kl)(u) are analytic on some fixed polydisc U = {|u1|,
|u2| < δu}, δu > 0.

The restriction of Ψ̂(u, x, ϵ) to the strong invariant manifolds
x = 0: Ψ̂(u, 0, ϵ) =

∑
l⩾0 ψ

(0l)(u) ϵl, and x = ϵ: Ψ̂(u, ϵ, ϵ) =∑
k,l⩾0 ψ

(kl)(u) ϵk+l, are convergent for (u, ϵ) ∈ U × {|ϵ| < δϵ} for
some δϵ > 0.

(ii) Unfolded sectorial normalization: Let η > 0 be some arbitrarily
small constant, and let δx >> δϵ > 0 denote the radii of small discs
at the origin in the x-and ϵ-space (depending on η). Let

(3.5) E± := {|ϵ| < δϵ, |arg(±ϵ)| < π − 2η}

be two sectors in the ϵ-space. For ϵ ∈ E±, define a “spiraling do-
main” X±(ϵ) (see Figure 3.1) as a simply connected ramified domain
spanned by the complete real-time trajectories of the vector fields

(3.6) eiω±x(x− ϵ) ∂
∂x

that never leave the disc of radius δx, where ω± is varying in the
interval

(3.7)


max{0, arg(±ϵ)} − π

2 + η < ω± < min{0, arg(±ϵ)} + π
2 − η,

for ϵ ̸= 0,

|ω±| < π
2 − η, for ϵ = 0.

On this domain, there exists a bounded transversely symplectic
change of coordinates(

q

p

)
= Ψ±(u, x, ϵ), u ∈ U, x ∈ X±(ϵ), ϵ ∈ E±,

analytic on the interior of the domain, which brings the confluent
Painlevé system (3.1) to its formal normal form (3.3).

When ϵ tends radially to 0 with arg ϵ = β, then Ψ±(u, x, ϵ) con-
verges to Ψ±(u, x, 0) uniformly on compact sets of the sub-domains
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Figure 3.1. Connecting transformation between the general solutions(
q•

±, p
•
±
)
(x, ϵ; c) = Ψ±(u•(x, ϵ; c), x, ϵ), on the two parts X

GG

±(ϵ),X GG
±(ϵ)

of the domain X±(ϵ).

lim ϵ→0
arg ϵ=β

X±(ϵ) ⊆ X±(0). The limit domain X+(0) = X−(0) consists

of a pair of sectors XGG(0), X GG(0) with a common point at 0, and the
transformation Ψ+(u, x, 0) = Ψ−(u, x, 0) consists in fact of a pair
of sectorial transformations ΨGG(u, x, 0), Ψ GG(u, x, 0) of Theorem 2.1
(it is a functional cochain in the terminology of [40]).

The transformations Ψ±(u, x, ϵ) are asymptotic to Ψ̂(u, x, ϵ)
when (x, ϵ) → 0 inside the domain

∐
ϵ∈E±

X±(ϵ) ∋, and they sat-
isfy the same ( ∂

∂u ,
∂

∂x ,
∂
∂ϵ )-differential relations with meromorphic

coefficients.

Remark 3.2.

(1) Strictly speaking, the domains X±(ϵ) are defined on the universal
covering of {|x| < δx} ∖ {0, ϵ}.
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(2) The definition of the domains X±(ϵ) in Theorem 3.1 is such that
when x approaches a singular point xi±(ϵ), where

(3.8) x1+(ϵ) = x2−(ϵ) = 0, x1−(ϵ) = x2+(ϵ) = ϵ,

from within the domain, then the corresponding components of the
general solution (3.9) tend to

ui(x, ϵ) −→ ∞, u3−i(x, ϵ) = h

ui(x, ϵ)
−→ 0,

when x → xi±(ϵ) along a real trajectory of (3.6).
(3) Alternatively, the form of the domains X±(ϵ) could be also under-

stood from the point of view of exact WKB analysis of the sys-
tem (3.1) after a change of variable x = ϵz.

Canonical 2-parameter family of solutions

The Hamiltonian (3.2) satisfies H ◦ Ψ̂(u, x, ϵ) = G(u, x, ϵ) +O(x(x−ϵ)),
where

G(u, x, ϵ) = (ϑ0 + ϑ̃1 − 1)2 − (ϑ∞ − 1)2

4 x

+
(
1−ϵ−(x−ϵ)ϑ0 − x(ϑ0+ϑ̃1−1)

)
u1u2 + (2x−ϵ)(u1u2)2,

and G(u,x,ϵ)
x(x−ϵ) is a time-x-dependent Hamiltonian for the normal form (3.3).

The general solutions of (3.3) are of the form

(3.9)
u1(x, ϵ; c) = c1E(c1c2, x, ϵ),

u2(x, ϵ; c) = c2E(c1c2, x, ϵ)−1,
c = t(c1, c2) ∈ C2,

where

(3.10) E(h, x, ϵ) =
{
x− 1

ϵ +1−ϑ0+2h(x− ϵ) 1
ϵ −ϑ0−ϑ̃1+2h, for ϵ ̸= 0,

e− 1
xx−2ϑ0−ϑ̃1+1+4h, for ϵ = 0.

In order for a branch of the solution u(x, ϵ; c) (3.9) to have a limit when
ϵ → 0, one needs to further cut the domains X±(ϵ), ϵ ̸= 0, to two parts

(3.11) an upper part X
GG

±(ϵ), and a lower part X GG
±(ϵ),

corresponding to the two parts XGG(0) and X GG(0) of X+(0) = X−(0), by
a cut in between the singular points 0 and ϵ along a suitable trajectory
of (3.6) (see Figure 3.1). The two parts of X±(ϵ) then intersect in two
outer spiraling sectors

X∩
i±(ϵ) = {x ∈ X±(ϵ) : xi± + e2πi(x− xi±) ∈ X±(ϵ)}, i = 1, 2,
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attached to the singularities xi± (3.8), and along the central cut between
the singularities {x1±, x2±} = {0, ϵ}.

We now take E
GG

±(h, x, ϵ) and E GG
±(h, x, ϵ) as two branches of E(h, x, ϵ)

(3.10) on the two parts (3.11) of the domain, that agree on the right inter-
section sector X∩

2±, and have a limit when ϵ → 0. They determine a pair of
general solutions (3.9) of the model system

u•
±(x, ϵ; c), • = GG, GG,

and a pair of canonical 2-parameter families of solutions of the original
system (3.1)

(3.12)
(

q•
±

p•
±

)
(x, ϵ; c) := Ψ±(u•

±(x, ϵ; c), x, ϵ), • = GG, GG.

Unfolded center manifold solution

Corollary 3.3. — The system (3.1) has a unique bounded analytic
solution on the domain X•

±(ϵ), ϵ ∈ E±, • = GG, GG, given by
(

q•
±

p•
±

)
(x, ϵ; 0) =

Ψ±(0, x, ϵ) (which agrees between X
GG

±(ϵ) and X GG
±(ϵ) along the central inter-

section). We call it the “unfolded sectorial center manifold” of the foliation.

Remark 3.4. — This kind of solution seems to be new in the literature. In
our opinion this is an analogue of the bi-tronquée solution for PVI. While we
have obtained it by the confluence, this solution is simply characterized by
the fact that it is bounded at both of the singular points when approached
along certain logarithmic spiral. Due to the overall symmetry of PVI there
should be in general one such solution for every selection of a pair of singular
points together with suitable paths of approach.

Unfolded exponential torus

Proposition 3.5 ([33, Proposition 31]). — For ϵ ∈ E±, any symmetry
of (3.3) that is bounded and analytic on (u, x) ∈ U × X±(ϵ) is of the form
Taϵ

(2.12) with aϵ(h) analytic.

Corollary 3.6 ([33, Corollary 32]). — The normalizing transforma-
tions Ψ̂ and Ψ± of Theorem 3.1 are unique up to a right composition with
the same analytic symmetry Tα(u, ϵ) where α(h, ϵ) is an analytic germ in
(h, ϵ) at the origin which is uniquely determined by the convergent series
Ψ̂(u, 0, ϵ).
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Unfolded nonlinear Stokes operators

The connecting transformations between the 2-parameter families of so-
lutions (3.12)

(
q•

±
p•

±

)
on the 3 intersections between X

GG

±(ϵ) and X GG
±(ϵ), when

represented by an action on the initial condition c, are as in Figure 3.1.
There, the operators S1±(c, ϵ), S2±(c, ϵ) are the representations of un-

folded Stokes operators S1( · , x, ϵ), S2( · , x, ϵ), defined in the same way as
in (2.16), (2.17) on the intersection sectors X∩

i±(ϵ), i = 1, 2, and converge
to the Stokes operators (2.17) when ϵ → 0 in the sector E±

Si±(c, ϵ) −→ Si±(c, 0) = S̃i(c) as E± ∋ ϵ −→ 0.

On the other hand the formal monodromies (corresponding to the mon-
odromies of the solutions (3.9) of the formal normal form (3.3))

(3.13)
N0(c, ϵ) = T2πi(− 1

ϵ −ϑ0+2h)(c) =
(

e2πi(− 1
ϵ

−ϑ0+2c1c2) 0

0 e2πi( 1
ϵ

+ϑ0−2c1c2)

)
c,

Nϵ(c, ϵ) = T2πi( 1
ϵ −ϑ0−ϑ̃1+1+2h)(c) =

(
e2πi( 1

ϵ
−ϑ0−ϑ̃1+2c1c2) 0

0 e2πi(− 1
ϵ

+ϑ0+ϑ̃1−2c1c2)

)
c,

diverge when ϵ → 0, except for the formal monodromy operator

(3.14) N = N0 ◦ Nϵ = T2πi(−2ϑ0−ϑ̃1+4h).

Decomposition of nonlinear monodromy operators

For ϵ ̸= 0, one can represent the action of the nonlinear monodromy
operators M0(q, p, x, ϵ) and Mϵ(q, p, x, ϵ) around the singular points 0 and
ϵ in positive direction by their action on the initial condition c of the general
solutions (3.12),

Mxi±( · , x, ϵ) ◦
(

q•
±

p•
±

)
(x, ϵ; c) =

(
q•

±

p•
±

)
(x, ϵ; · ) ◦ M•

xi±
(c, ϵ), • = GG, GG,

and express it as

(3.15)
MGG

x1±
= N◦(−1)

x2±
◦ S1± ◦ N, M GG

x1±
= S1± ◦ Nx1± ,

MGG

x2±
= S2± ◦ Nx2± , M GG

x2±
= Nx2± ◦ S2±,

see Figure 3.1.
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3.2. Accumulation of monodromy

We can now formulate the essential result of [33] which allows to obtain
a representation of the wild monodromy pseudogroup of the limit system
as an accumulation of the monodromy pseudogroup of the system when
ϵ → 0.

Let {ϵn}n∈±N be sequence in E± ∖ {0} defined by

(3.16) 1
ϵn

= 1
ϵ0

+ n, ϵ0 ∈ E± ∖ {0}, n ∈ ±N,

along which the divergent exponential factor e 2πi
ϵ in the formal monodromy

(3.13) stays constant. Let

M̃xi±(q, p, x;κ) := lim
n→±∞

Mxi±(q, p, x, ϵn), κ := e
2πi
ϵ0 ,

and let M̃•
xi±

(c;κ) be the corresponding limit action (2.18) on the initial

conditions of the general solution
(

q•
±

p•
±

)
(x, 0; c). Then

(3.17)

M̃
GG

0+(c;κ) = Ñϵ( · ;κ)◦(−1)◦S̃1◦N(c), M̃ GG
0+(c;κ) = S̃1 ◦ Ñ0(c;κ),

M̃
GG

ϵ+(c;κ) = S̃2 ◦ Ñϵ(c;κ), M̃ GG
ϵ+(c;κ) = Ñϵ( · ;κ)◦S̃2(c),

M̃
GG

ϵ−(c;κ) = Ñ0( · ;κ)◦(−1)◦S̃1◦N(c), M̃ GG
ϵ−(c;κ) = S̃1 ◦ Ñϵ(c;κ),

M̃
GG

0−(c;κ) = S̃2 ◦ Ñ0(c;κ), M̃ GG
0−(c;κ) = Ñ0( · ;κ)◦S̃2(c),

where

(3.18)
Ñ0(c;κ) = T2πi(−ϑ0+2h)−log κ(c) =

(
1
κ e2πi(−ϑ0+2c1c2) 0

0 κe2πi(ϑ0−2c1c2)

)
c,

Ñϵ(c;κ) = T2πi(−ϑ0−ϑ̃1+2h)+log κ(c) =
(

κe2πi(−ϑ0−ϑ̃1+2c1c2) 0
0 1

κ e2πi(ϑ0+ϑ̃1−2c1c2)

)
c,

and N(c) = Ñ0( · ;κ) ◦ Ñϵ(c;κ), are elements of the nonlinear exponential
torus. (The subscripts 0±, ϵ± in (3.17), (3.18) are purely symbolical and
no longer related to the parameter ϵ.)

In order to express the nonlinear Stokes operators from the monodromy
one can substitute in (3.17) e2πi(−ϑ0+2c1c2) for κ in M̃•

0± to kill the factor
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Ñ0(κ), resp. e2πi(ϑ0+ϑ̃1−2c1c2) in M̃•
ϵ± to kill the factor Ñϵ, hence e.g.

(3.19)

S̃1(c) = M̃ GG
0+
(
c; e2πi(−ϑ0+2h(c))),

S̃2(c) = M̃ GG
ϵ+
(
c; e2πi(ϑ0+ϑ̃1−2h(c)))

= M̃
GG

ϵ+
(
c; e2πi(ϑ0+ϑ̃1−2h(c))),

N◦(−1)◦ S̃1 ◦ N(c) = M̃
GG

0+
(
c; e2πi(−ϑ0+2h(c))),

where h(c) = c1c2.

Proposition 3.7. — The wild monodromy pseudogroup of PV (Defi-
nition 2.7) is generated by the limit operators〈

M̃0±(q, p, x; eα(h•)), M̃ϵ±(q, p, x; eα(h•))
∣∣α ∈ O(C, 0)

〉
,

where h• is defined by h• ◦ Ψ• = u1u2. Its representation on the c-space of
initial conditions over X•(0), • = GG, GG, is generated by,〈

M̃•
0±(c; eα(h(c))), M̃•

ϵ±(c; eα(h(c)))
∣∣α ∈ O(C, 0)

〉
, where h(c) = c1c2.

Proof. — Let for example X•
± = X

GG

+. Then by (3.17), (3.18) both maps
M̃

GG

0+(c; eα(h)) and M̃
GG

ϵ+(c; eα(h)) belong to the representation of the wild
monodromy pseudogroup. Conversely, one can express

Tα = M̃
GG

0+( · ; e−α( · )) ◦ (M̃
GG

0+)◦(−1)(c; eα(h)),

and S̃1(c), S̃2(c) using (3.19). □

The vector field (c1
∂

∂c1
− c2

∂
∂c2

), which is in a sense an “infinitesimal
generator” of the exponential torus (2.14), is Hamiltonian vector field of
h = c1c2 with respect to dc1 ∧ dc2. It can be expressed as e.g.

(3.20)
ċ = −

(
κ

d
dκÑ0( · ;κ)

)
◦ Ñ0(c;κ)◦(−1)

= −
(
κ

d
dκM̃

GG

0+( · ;κ)
)

◦ M̃
GG

0+(c;κ)◦(−1).

Among its Hamiltonians, which are determined only up to an additive
constant, the function h = c1c2 is characterized by vanishing on the center
manifold solution of Corollary 3.3.

4. The character variety of PVI and the nonlinear
monodromy action on it

In this section we recall the usual approach to PVI through isomon-
odromic deformations of 2×2 traceless linear systems with four Fuchsian
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singularities on CP1, the Riemann–Hilbert correspondence between Fuch-
sian systems and their monodromy representations, the character variety
of PVI and the modular group action on it, and gather some facts that
will serve us later. Our main reference for this part are the articles of
Iwasaki [27] and of Inaba, Iwasaki and Saito [25].

Notation 4.1. — A triple of indices (i, j, k) will always denote a permu-
tation of (0, t, 1), and a quadruple (i, j, k, l) will denote a permutation of
(0, t, 1,∞).

4.1. Isomonodromic deformations of 2×2 systems and the
Riemann–Hilbert correspondence

The sixth Painlevé equation PVI(ϑ) with a parameter

ϑ = (ϑ0, ϑt, ϑ1, ϑ∞) ∈ C4

governs isomonodromic deformations of traceless 2×2 linear differential
systems with four Fuchsian singularities on CP1

(4.1) dϕ
dz =

[
A0(t)
z

+ At(t)
z − t

+ A1(t)
z − 1

]
ϕ

with the residue matrices Al ∈ sl2(C) having ± ϑl

2 as eigenvalues. In general
(if each Al is semi-simple and the system is irreducible), one can write

Ai =
(

vi+ ϑi
2 −uivi

vi+ϑi
ui

−vi− ϑi
2

)
, i = 0, t, 1, −A0 −At −A1 = A∞ =

( ϑ∞
2 0
0 − ϑ∞

2

)
,

for some functions ui(t), vi(t). The isomonodromicity of such system is
expressed by the Schlesinger equations

(4.2) dA0

dt = [At, A0]
t

,
dAt

dt = [A0, At]
t

+ [A1, At]
t− 1 ,

dA1

dt = [At, A1]
t− 1 ,

corresponding to the integrability conditions on the logarithmic connection
in variables (z, t)

(4.3) ∇(z, t) = d −
[
A0(t) d log(z) +At(t) d log(z−t) +A1(t) d log(z−1)

]
on the trivial rank 2 vector bundle. Denoting [A(z, t)]ij the (i, j)-component
of the matrix of the system (4.1), then if the system is irreducible the 1-
form [A(z, t)]12 dz is non-null, and so it must have a unique zero at some
point z = q(t)

q(t) = −t[A0]12

t[At]12 + [A1]12
.
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This point is an apparent singularity of the second order linear ODE solved
by the first component of any solution ϕ(z, t) of (4.1). Denoting

p(t) = [A(q, t)]11 + ϑ0

2q + ϑt

2(q − t) + ϑ1

2(q − 1) ,

then the Schlesinger equations (4.2) are equivalent to the Hamiltonian sys-
tem (2.1) of PVI [29, 30], whose the Hamiltonian function (2.2) is given by

HVI
(
q(t), p(t), t

)
= tr

[(
A0(t)
t

+ A1(t)
t− 1

)
At(t)

]
− ϑ0ϑt

2t − ϑtϑ1

2(t− 1) .

The tau function τVI of PVI is defined by

d
dt log τVI(t) = tr

[(
A0(t)
t

+ A1(t)
t− 1

)
At(t)

]
,

which is the coefficient of 1
z−t in 1

2 trA(z, t)2.
Choosing a germ of a fundamental matrix solution Φ(z, t) of the sys-

tem (4.1) near some nonsingular point z0, one has a linear monodromy
representation (anti-homomorphism)

ρ : π1
(
CP1 ∖ {0, t, 1,∞}, z0

)
−→ SL2(C),

such that the analytic continuation Φ(z, t) along a path γ defines another
fundamental matrix solution Φ(z, t)ρ(γ). The conjugation class of such
monodromy representation in SL2(C) is independent of the choice of Φ.
The isomonodromic condition (4.2) on the system (4.1) is equivalent to the
conjugation class of the monodromy being locally constant with respect to
t, or equivalently to the existence of a fundamental matrix solution Φ(z, t)
whose actual monodromy is locally independent of t [7].

The Riemann–Hilbert correspondence in this setting is given by the mon-
odromy map between the space of linear systems (4.1) with prescribed poles
and local eigenvalue data ± ϑl

2 modulo global gauge transformations (conju-
gation by SL2(C)) on one side, and the space of monodromy representations
with prescribed local exponents el, e

−1
l

(4.4) el := eπϑl , l ∈ {0, t, 1,∞},

modulo the adjoint action (conjugation) of SL2(C) on the other side (see [25]
for much more precise setting of the correspondence). Therefore it can be
also translated as a correspondence between solutions of PVI and equiva-
lence classes of monodromy representations.
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z0

0 t 1 ∞

Figure 4.1. The loops γ0, γt, γ1, γ∞ ∈ π1(CP1 ∖ {0, t, 1,∞}, z0).

4.2. The character variety of PVI

Given a representation (anti-homomorphism)

(4.5) ρ : π1(CP1 ∖ {0, t, 1,∞}, z0) −→ SL2(C), ρ(γiγj) = ρ(γj)ρ(γi),

(where γiγj denotes the concatenation of paths, i.e. the path following first
γi and then γj), let γ0, γt, γ1, γ∞ be simple loops in the z-space around
0, t, 1,∞ respectively such that γ0γtγ1γ∞ = id (see Figure 4.1), and denote
Ml = ρ(γl) the corresponding monodromy matrices

M∞M1MtM0 = I.

The conjugacy class of an irreducible monodromy representation is com-
pletely determined by its trace coordinates by a theorem of Fricke, Klein
and Vogt (cf. [38]). These coordinates are given by the four parameters

(4.6) al = tr(Ml) = el + 1
el

= 2 cos(πϑl), l = 0, t, 1,∞,

and the three variables

(4.7) X0 = tr(M1Mt), Xt = tr(M0M1), X1 = tr(MtM0),

satisfying the Fricke relation

(4.8) F (X, θ(a)) = 0,

where

(4.9) F (X, θ) := X0XtX1 +X2
0 +X2

t +X2
1 − θ0X0 − θtXt − θ1X1 + θ∞,

with

θi(a) = aia∞+ajak, i = 0, t, 1, θ∞(a) = a0ata1a∞+a2
0+a2

t +a2
1+a2

∞−4.

Definition 4.2. — We call the character variety of PVI the complex
cubic surface

(4.10) SVI(θ) = {X ∈ C3 : F (X, θ) = 0}.
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In this setting, the Riemann–Hilbert correspondence can be seen as a
map between the Hamiltonian flow of the Painlevé system (defined on the
Okamoto fibration MVI(ϑ) → CP1 ∖ {0, 1,∞}) on one side and a locally
constant flow on the character variety on the other side

RHVI,t : MVI,t(ϑ) −→ SVI(θ).

Under this correspondence the Okamoto space of initial conditions MVI,t(ϑ)
is a minimal resolution of singularities of SVI(θ) [25].

The character variety SVI(θ) is equipped with a natural algebraic sym-
plectic form

(4.11) ωSVI = dXt ∧ dX0

2πiFX1

= dX1 ∧ dXt

2πiFX0

= dX0 ∧ dX1

2πiFXt

,

where

FXi
= dF

dXi
= XjXk + 2Xi − θi.

The Poisson bracket associated to −2πi ωSVI is the Goldman bracket

{Xi, Xj} = FXk
, (i, j, k) a cyclic permutation of (0, t, 1).

Proposition 4.3. — The standard symplectic form ω (2.6) on the
(q, p)-space corresponds through the Riemann–Hilbert correspondence to
the symplectic form (4.11).

Proposition 4.4 (Jimbo’s asymptotic formula [29]). — Given a mon-
odromy representation ρ as above and its associated coordinate X (4.7)
on the character variety, then the solution of PVI(ϑ) corresponding to a
point X ∈ SVI(θ) has the following asymptotics when t → 0 in the sector
|arg t| < π:

(4.12)
tσ1−1q = α(X,ϑ) +O(tσ1) +O(t1−σ1)

t1−σ1p = ϑ0 + ϑt − σ1

2α(X,ϑ) +O(tσ1) +O(t1−σ1),

where σ1 ̸= 0 is such that 2 cosπσ1 = X1 and 0 ⩽ ℜσ1 < 1,

α = (ϑ0 + ϑt + σ1)(−ϑ0 + ϑt + σ1)(ϑ∞ + ϑ1 + σ1) · d(σ1, ϑ)
4σ2

1 (ϑ∞ + ϑ1 − σ1) · c(σ1, ϑ)
(
a(σ1, X0, ϑ) + b(σ1, X1, ϑ)

) ,
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with

a = 1
4 eπiσ1

(
2i sin πσ1 ·X0 − θt

)
= 1

4
(
(eπiσ1X1 − 2)X0 − θt

)
,

b = 1
4
(
2i sin πσ1 ·Xt + θ0

)
= 1

4
(
(2eπiσ1 −X1)Xt + θ0

)
,

c =
Γ
(2+ϑ0+ϑt+σ1

2
)
Γ
(2−ϑ0+ϑt+σ1

2
)
Γ
(2+ϑ∞+ϑ1+σ1

2
)
Γ
(2−ϑ∞+ϑ1+σ1

2
)
Γ(1−σ1)2

Γ
(2+ϑ0+ϑt−σ1

2
)
Γ
(2−ϑ0+ϑt−σ1

2
)
Γ
(2+ϑ∞+ϑ1−σ1

2
)
Γ
(2−ϑ∞+ϑ1−σ1

2
)
Γ(1+σ1)2

,

d = 4 sin π(ϑ0 + ϑt − σ1)
2 sin π(−ϑ0 + ϑt − σ1)

2 sin π(ϑ∞ + ϑ1 − σ1)
2

× sin π(−ϑ∞ + ϑ1 − σ1)
2 ,

under the assumption that

ϑ0, ϑt, ϑ1, ϑ∞,
ϑ0 + ϑt ± σ1

2 ,
−ϑ0 + ϑt ± σ1

2 ,

ϑ∞ + ϑ1 ± σ1

2 ,
−ϑ∞ + ϑ1 ± σ1

2 /∈ Z,

see [4, p. 191].

Proof of Proposition 4.3. — We will use the Jimbo’s asymptotic for-
mula (4.12). Since the point X ∈ SVI(θ) corresponding to a given solution
(q(t), p(t)) of PVI is locally independent of t, we can take limit t → 0 and
ignore higher order terms. Restricting to the subvariety where ℜσ1 ̸= 0, we
have

ω = dq ∧ dp = dσ1 ∧ dα
2α = dX1 ∧ (da+ db)

4(a+ b)π sin πσ1

= − dX1 ∧ (eπiσ1 dX0 + dXt)
2πi(eπiσ1FXt

− FX0) = dX1 ∧ dXt

2πiFX0

,

using that

(4.13) 4(a+ b) = eπiσ1FXt
− FX0 ,

and the identity dX1∧dX0
FXt

= dXt∧dX1
FX0

. □
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4.3. Lines and singularities of SVI(θ)

The projective completion of the character variety SVI(θ) in CP3 is a
compact cubic surface. In the classical theory of classification of cubic sur-
faces a major role is played by the configurations of complex lines inside
the surface.(2) We have:

Proposition 4.5 (Lines of SVI(θ)). — The Fricke polynomial F (X, θ)
(4.9) can be decomposed as

F =
(
Xk − ei

ej
− ej

ei

)(
FXk

−Xk + ei

ej
+ ej

ei

)
+ 1
eiej

(eiXi + ejXj − a∞ − eiejak)(eiXj + ejXi − ak − eieja∞),

=
(
Xk − eiej − 1

eiej

)(
FXk

−Xk + eiej + 1
eiej

)
+ 1
eiej

(eiejXi +Xj − eja∞ − eiak)(eiejXj +Xi − ejak − eia∞),

=
(
Xk − ek

e∞
− e∞

ek

)(
FXk

−Xk + ek

e∞
+ e∞

ek

)
+ 1
eke∞

(e∞Xi + ekXj − ai − eke∞aj)(ekXi + e∞Xj − aj − eke∞ai),

=
(
Xk − eke∞ − 1

eke∞

)(
FXk

−Xk + eke∞ + 1
eke∞

)
+ 1
eke∞

(Xj + eke∞Xi − ekai − e∞aj)(Xi + eke∞Xj − ekaj − e∞ai).

In particular, the following 24 lines (counted with multiplicity) are con-
tained in SVI(θ):{

Xk = ei

ej
+ ej

ei
, eiXi + ejXj = a∞ + eiejak

}
,{

Xk = ei

ej
+ ej

ei
, eiXj + ejXi = ak + eieja∞

}
,{

Xk = eiej + 1
eiej

, Xi + eiejXj = ejak + eia∞

}
,{

Xk = eiej + 1
eiej

, Xj + eiejXi = eja∞ + eiak

}
,

(2) The author is grateful to E. Paul and J.P. Ramis for pointing out the major signifi-
cance of these lines in the theory of Painlevé equations and for illuminating discussions
on this subject.
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Xk = ek

e∞
+ e∞

ek
, e∞Xi + ekXj = ai + eke∞aj

}
,{

Xk = ek

e∞
+ e∞

ek
, ekXi + e∞Xj = aj + eke∞ai

}
,{

Xk = eke∞ + 1
eke∞

, Xi + eke∞Xj = ekaj + e∞ai

}
,{

Xk = eke∞ + 1
eke∞

, Xj + eke∞Xi = ekai + e∞aj

}
.

For each pair l,m ∈ {0, t, 1,∞} each of the two planes

(4.14)
{
Xn = elem + 1

elem
,

Xn = el

em
+ em

el
,

with (l,m, n) =
{

(i, j, k)
(k,∞, k),

intersects SVI(θ) at 2 lines. The resulting 4 lines correspond to the re-
ducibility of the pair of matrices {Ml,Mm}, i.e. to the existence of common
invariant space for the pair.

Remark 4.6. — To be more precise, if for each l = 0, t, 1,∞ the mon-
odromy matrix Ml is diagonalizable, then there exists a pair of invariant
subspaces of the space of solutions of (4.1), giving rise to a basis of solu-
tions (sometimes called Levelt basis) with respect to which Ml is diagonal.
When each of these basic solutions is analytically continued towards the
base-point z0 of π1(CP1 ∖ {0, t, 1,∞}, z0) along the path encircled by the
loop γi defining the monodromy (Figure 4.1), then for every pair {Ml,Mm}
there are 4 different possibilities how one can form a mixed basis out of
the two pairs of solutions. Each of the 4 lines at the intersection of SVI(θ)
with the planes (4.14) correspond to the degeneracy of one of these 4 mixed
bases.

The projective completion of SVI(θ) in CP3 contains 3 additional lines at
infinity, giving the total of 27 lines provided by the classical Cayley–Salmon
theorem [8, 11]. They are all distinct if and only if SVI(θ) is non-singular.

Remark 4.7. — By the classic theory of cubic surfaces, there are 45 tri-
tangent planes, i.e. containing 3 lines forming a triangle, and each line
belongs to exactly 5 of these planes. The above 12 decompositions of the
cubic corresponds to the 3 × 4 planes that contain one of the 3 lines at
infinity, the fifth plane being the plane at infinity.
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Singular points of SVI(θ)

The surface SVI(θ) is simply connected (cf. [9]), and it may or may not
have singular points depending on a, but it never has more than 4 singu-
lar points [45, Corollary 4.6]. The singularities that appear correspond to
unstable monodromy representations, which are of two kinds:

• Either Ml = ±I for some l ∈ {0, t, 1,∞}, hence el = ±1.
If l = i∈ {0, t, 1}, then ai = ±2, Xi = ±a∞, Xj = ±ak, Xk = ±aj .

If l = ∞, then a∞ = ±2, Xi = ±ai, i = 0, t, 1.

• Or the representation is reducible, in which case Ml =
(

e
δl
l

∗
0 e

−δl
l

)
,

l = 0, t, 1,∞, for some quadruple of signs (δ0, δt, δ1)∈{±1}3, δ∞ =1,
and

eδ0
0 e

δt
t e

δ1
1 e∞ = 1, Xi = e

δj

j e
δk

k + e
−δj

j e−δk

k .

The surface is therefore singular if and only if∏
l∈{0,t,1,∞}

(a2
l − 4) · w(a) = 0,

where

w(a) :=
∏

{j,k}⊂{0,t,1}

(ai− aj − ak + a∞) −
∏

i∈{0,t,1}

(aia∞ − ajak)

= 1
e4

∞

∏
(δ0,δt,δ1)∈{±1}3

(eδ0
0 e

δt
t e

δ1
1 e∞ − 1),

see [26]. All the singularities of the projective completion of SVI(θ) are
contained in its finite part, where they are situated on the intersection of
several lines.

The singular locus of SVI(θ) corresponds through the Riemann–Hilbert
correspondence to so called Riccati solutions of PVI [25].

4.4. The braid group action on SVI(θ)

The nonlinear monodromy action on the space of SL2(C)-monodromy
representations, is given by the action of moving t along loops in CP1 ∖
{0, 1,∞} while keeping the representation constant. When t returns to the
initial position t0, the loops generating π1(CP1 ∖ {0, t, 1,∞}, z0) will not
be the same as before. It induces an automorphism of the fundamental
group through which it acts on the space of monodromy representations.
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The movement of t can be also seen as an action of the pure-braid group
P3 on three strands (0, t, 1), generated by the pure braids β2

0t, β
2
t1 ∈ P3

(Figure 4.2). These actions were considered by Dubrovin [13, 14] and de-

β2
0t :

0 t 1

0 t 1

β2
t1 :

0 t 1

0 t 1

Figure 4.2. Elementary pure braids.

scribed in detail by Dubrovin and Mazzocco [15, 42] and Iwasaki [27], and
their dynamics was further studied by Cantat & Loray [9] in connection to
the problem of transcendentness of PVI.

It is advantageous to consider the elementary monodromy actions as
square iterates of “half-monodromy” actions, and to investigate the action
of the whole braid group B3 on three strands (0, t, 1), generated by two
braids β0t, βt1 (Figure 4.3). However such “half-monodromy” actions don’t
act on the given Painlevé foliation, but rather on a whole set of such folia-
tions since they change the parameter ϑ by permuting its components. As
such there are different possible ways how to define such actions and how
to interpret them.

Instead of the four singularities (0, t, 1,∞), let us consider an ordered
quadruple of distinct points (ti, tj , tl, tm) in CP1, where (i, j, l,m) is a cyclic
permutation of (0, t, 1,∞). The action of the braid βij consists in turning
the two points ti, tj , around each other by a half turn while fixing tl, tm.

βij :

ti tj tl tm

t′j t′i t′l t
′
m

Figure 4.3. Elementary braid βij , (i, j, l,m) is a cyclic permutation of
(0, t, 1,∞).
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The braids act on the fundamental group π1(CP1 ∖ {ti, tj , tl, tm}, z0) by
transforming the loops, β : γ 7→ γβ ,

ti tj tl tm

z0

βij

t′j t′i t
′
l t

′
m

z0
βij : γi 7−→ γ′

i = γiγjγ
−1
i ,

γj 7−→ γ′
j = γi,

γl 7−→ γ′
l = γl,

γm 7−→ γ′
m = γm,

(in the above picture we draw just the connecting paths from z0 to the sin-
gularities i, j that are encircled by the loops γi, γj), preserving the relation
γiγjγlγm = id.

This in turn induces an action β∗ : ρ 7→ ρβ on the monodromy represen-
tation (4.5) defined by ρβ(γβ) = ρ(γ), and satisfying (ββ′)∗ = β∗ ◦ β′

∗ :
ρ 7→ ρββ′ = (ρβ)β′ ,

(4.15)

(βij)∗ : Mi 7−→ ρβij (γi) = Mj ,

Mj 7−→ ρβij (γj) = MjMiM
−1
j ,

Ml 7−→ ρβij (γl) = Ml,

Mm 7−→ ρβij (γm) = Mm.

The pure braid actions of the two square iterates β◦2
ij and β◦2

lm are con-
jugated, and therefore induce the same action on the character variety.
However the braid actions of βij and βlm are different.

Now for each of {i, j} =
{

{0,t}
{t,1} let k be the third finite index, {i, j, k} =

{0, t, 1}. Then the map between the character varieties induced by βij is
given by gij : SVI(θ) → SVI

(
gij(θ)

)

(4.16)

gij : θi 7−→ θj , Xi 7−→ Xj − FXj , FXi 7−→ −FXj ,

θj 7−→ θi, Xj 7−→ Xi, FXj
7−→ FXi

− FXj
Xk,

θk 7−→ θk, Xk 7−→ Xk, FXk
7−→ FXk

− FXj
Xi,

θ∞ 7−→ θ∞,

where the action on the trace parameters is

gij : (ai, aj , ak, a∞) 7−→ (aj , ai, ak, a∞).

Moreover in this notation:
g◦−1

ij = gji.

On the other hand for each of {l,m} =
{

{1,∞}
{∞,0} let k =

{1
0 be the

corresponding finite index and {i, j} =
{

{0,t}
{t,1} the remaining two indices.
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Then the induced map by βlm between the character varieties is given by
glm : SVI(θ) → SVI

(
glm(θ)

)

(4.17)

glm : θi 7−→ θj , Xi 7−→ Xj − FXj , FXi 7−→ −FXj ,

θj 7−→ θi, Xj 7−→ Xi, FXj
7−→ FXi

− FXj
Xk,

θk 7−→ θk, Xk 7−→ Xk, FXk
7−→ FXk

− FXj
Xi,

θ∞ 7−→ θ∞,

which is the same as gij (4.16) except for the way it acts on a,

glm : (ai, aj , al, am) 7−→ (ai, aj , am, al).

It differs from gij by composition with the involutive permutation

(ai, aj , al, am) 7−→ (aj , ai, am, al)

which preserves θ(a) and commutes with both gij and glm. This subtle
difference between gij (4.16) and glm (4.17) will be amplified during the
confluence. Nevertheless, the square iterates of both actions are equal,

g◦2
0t = g◦2

1∞, g◦2
t1 = g◦2

∞0.

Proposition 4.8 (Dubrovin & Mazzocco [15], Iwasaki [26, 27]).

(1) For any permutation (i, j, k) of (0, t, 1) the above half-monodromy
actions gij : SVI(θ) → SVI

(
gij(θ)

)
preserve the Fricke relation (4.8),

F ◦ gij = F , and the 2-form ωSVI . The group Γ = ⟨g0t, gt1⟩ gener-
ated by the actions of the braids β0t and βt1 (generators of B3)
is isomorphic to the modular group PSL2(Z), with the standard
generators

S = g◦2
0t ◦ gt1, T = g

◦(−1)
0t , satisfying S◦2 = id = (T ◦ S)◦3.

(2) The action of the monodromy group of PVI on the character variety
SVI(θ) is induced by the action of the pure braids β2

0t, β
2
t1 ∈ P3 on

the monodromy representations. It is isomorphic to the principal
congruence subgroup of the modular group

Γ(2) = ⟨g◦2
0t , g

◦2
t1 ⟩ ⊆ AutωSVI

(SVI(θ)),
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t=0g◦2
0t t=1

g◦2
t10 t 1

z0

0 1 t

z0

t 0 1

z0

t 0 1

z0

0 1 t

z0

Figure 4.4. The paths around which are taken the loops γ0, γt, γ1 defin-
ing the monodromy representation ρ and therefore the coordinate X
on SVI(θ) in dependence on t ∈ CP1∖{0, 1,∞}, and the corresponding
transition maps g◦2

0t , g
◦2
t1 : SVI(θ) → SVI(θ).

where

(4.18)

g◦2
ij : Xi 7−→ Xi − FXi +XkFXj ,

Xj 7−→ Xj − FXj
,

Xk 7−→ Xk,

FXi 7−→ −FXi +XkFXj ,

FXj
7−→ −FXj

−XkFXi
+X2

kFXj
,

FXk
7−→ FXk

−XiFXj
−XjFXi

+ FXj
FXi

+XkXjFXj
−XkF

2
Xj
.

while preserving the parameter a = (a0, at, a1, a∞).
The fixed points of this Γ(2)-action are exactly the singularities

of SVI, and its restriction on the smooth locus of SVI(θ) represents
faithfully the nonlinear monodromy action on the non-Riccati locus
of space of initial conditions MVI,t0(ϑ) (i.e. on the initial conditions
corresponding to non-Riccati solutions of PVI).

As t varies in CP1 ∖ {0, 1,∞} the character varieties define a fibration
above CP1 ∖ {0, 1,∞} with fibers SVI(θ), for which the coordinates X =
(X0, Xt, X1) (4.7) are local trivializations. The transformation g◦2

0t , g◦2
t1 are

the gluing maps when t makes a round around 0 or 1, see Figure 4.4.
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5. The confluence PVI → PV and the character varieties

We will study the degeneration of the SL2(C)-isomonodromic problem
(4.1) of PVI to the one of PV [30] using the description of confluence in linear
systems by Hurtubise, Lambert & Rousseau [23, 36] in order to understand
the degeneration of the character variety of PVI to the wild character variety
of PV . The goal is to be able to consider the sequential limits (3.16) in the
parameter ϵ of the braid group actions on the character varieties of PVI,
in order to apply the results of Section 3.2 on their accumulation to the
generators of the wild monodromy pseudogroup of PV , which will be done
in Section 6.

The wild character variety of PV in the form of a generalized Fricke
formula was constructed by van der Put & Saito [53], as well as by Chekhov,
Mazzocco & Rubtsov [12] who also describe the confluence but from a very
different point of view. The idea of sequential limits (discretization) in
the parameter ϵ from PVI to PV was previously exploited by Kitaev [32] in
relation to the asymptotics of the corresponding Riemann–Hilbert problem
and the tau function. But our approach is different.

5.1. Confluence of isomonodromic systems

The substitution

(5.1) t = 1 + ϵt̃, ϑt = 1
ϵ
, ϑ1 = −1

ϵ
+ ϑ̃1,

in the system (4.1) with

(5.2)
vt = ṽ1

ϵt̃
, v1 = − ṽ1

ϵt̃
− v0 + κ2,

ut = ũ1, u1 = ũ1 + ϵt̃
u0v0 − ũ1(v0 − κ2)
ṽ1 + ϵt̃(v0 − κ2)

,

where κ2 = −ϑ0 + ϑ̃1 + ϑ∞

2 ,

gives a parametric family (depending on the parameter ϵ) of isomonodromic
deformations:

(5.3) dϕ
dz =

[
Ã0(t̃)
z

+ Ã
(0)
1 (t̃) + (z −1−ϵt̃)Ã(1)

1 (t̃)
(z −1)(z −1−ϵt̃)

]
ϕ,
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where

Ã0 = A0,

Ã
(0)
1 = ϵt̃At =

(
ṽ1+ t̃

2 −ũ1ṽ1

ṽ1+t
ũ1

−ṽ1− t̃
2

)
,

Ã
(1)
1 = At +A1 = −A0 −A∞ =

(
−v0− ϑ0+ϑ∞

2 u0v0

− v0+ϑ0
u0

v0+ ϑ0+ϑ∞
2

)
,

which then have well defined limits when ϵ → 0. The matrix Ã
(0)
1 has

eigenvalues ± t̃
2 , therefore the matrix function Ã

(0)
1 (t̃)+(z−1−ϵt̃)Ã

(1)
1 (t̃)

(z−1)(z−1−ϵt̃) can be
diagonalized on a uniform neighborhood of z = 1 for ϵ small (for fixed
t̃ ̸= 0), with eigenvalues

(5.4) ±1
2

(
ϑ1

z − 1 + ϑt

z − t

)
+O(1) = ± t̃+ ϑ̃1(z − 1 − ϵt̃)

2(z − 1)(z − 1 − ϵt̃)
+O(1),

which form the set of local formal invariants for the confluent pair of sin-
gularities at z = 1 and z = 1 + ϵt̃.

The meromorphic connection (4.3) becomes

d − Ã(z, t)dz + Ã
(0)
1 (t)

t̃(z − 1 − ϵt̃)
dt̃,

the flatness of which is the isomonodromicity condition on (5.3). The vari-
ables (q, p) of the confluent Painlevé system (2.4) are defined as before by

q = −(1 + ϵt̃) [Ã0]12

[Ã0
1]12 + [Ã1

1]12
,

p = [Ã(q, t)]11 + ϑ0

2q + t̃

2(q − 1)(q − 1 − ϵt̃)
+ ϑ̃1

2(q − 1) .

5.2. Confluence on character varieties

The confluence of singularities in linear systems has been studied by
many authors, including Garnier [18], Ramis [56], Schäfke [59], Duval [16],
Glutsyuk [19, 20], Zhang [67], etc.. Here we will use a description following
from a theorem of sectorial normalization for unfolding of non-resonant
irregular singularities due to Hurtubise, Lambert and Rousseau [23, 36]
and Parise [51].

The local analytic invariants of the limit system (5.3) with ϵ = 0 are
usually expressed in terms of a pair of Stokes matrices. The work [23, 36]
shows that one can define “unfolded Stokes matrices” also for small ϵ ̸= 0.
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More precisely, for ϵ in each of the sectors E+,E− (3.5) (the same sectors
as those for normalization of the confluent family of nonlinear Painlevé
equations!), the system (5.3) has certain privileged fundamental solution
matrix with respect to which the two monodromies Mt,M1 are one upper
triangular and the other lower triangular. This allows to decompose each
of the matrices Mt,M1 as a product of a diagonal “formal monodromy
matrix” (with divergent limit ϵ → 0) and of a unipotent “unfolded Stokes
matrix” (with convergent limit ϵ → 0).

In fact the two columns of this privileged fundamental solution matrix
form a mixed basis of solutions (cf. Remark 4.6): the first column, which
is an “eigensolution” for the eigenvalue et of Mt, is characterized as a sub-
dominant solution which vanishes when z approaches t = 1+ ϵt̃ along some
suitable curve, while the second column, which is an “eigensolution” for
the eigenvalue e1 of M1, is a subdominant solution which vanishes when
z approaches 1 along some suitable curve. Here the suitable curves of ap-
proach of the singular points 1 + ϵt̃ and 1 are the real time trajectories of
the vector field

dz
dt̃

= eiω±
(z − 1)(z − 1 − ϵt̃)
t̃+ ϑ̃1(z − 1 − ϵt̃)

, t̃ ∈ R,

or equivalently, leaves of the horizontal foliation of the meromorphic dif-
ferential form e−iω± t̃+ϑ̃1(z−1−ϵt̃)

(z−1)(z−1−ϵt̃) dz which expresses the formal invariants
(5.4), where ω± is as in (3.7) (in particular, for ϵ ∈ {|arg(±ϵ)| < π

2 −η} ⊂ E±
one can take ω± = 0). When appropriately normalized, such mixed solution
basis has a well-defined limit when ϵ → 0, ϵ ∈ E±, which is the canonical
sectorial basis of solutions at the limit irregular singularity.

For simplicity we will consider only the confluence in the sector ϵ ∈ E+.
Then for 0 ̸= ϵ we have a monodromy representation

ρ+ : π1
(
C∖ {0, 1 + ϵt̃, 1}, z0

)
−→ SL2(C)

with respect to this privileged mixed basis of solutions, which takes the
form:

(5.5)

M0+ =
(

α β
γ δ

)
,

Mt+ = NtS2+ =
(

et ets2+
0 1

et

)
,

M1+ = S1+N1 =
(

e1 0
e1s1+

1
e1

)
,

M∞+ =
(

ete1(βs1++δs1+s2+)+ δ+
ete1

, −ete1(β+δs2+)
−ete1(αs1++γs1+s2+)− γ

ete1
, ete1(α+γs2+)

)
,
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Figure 5.1. Monodromy of the system (5.3) when ϵ → 0+.

see Figure 5.1, where

S1+(ϵ) =
(

1 0
s1+(ϵ) 1

)
, S2+(ϵ) =

(
1 s2+(ϵ)
0 1

)
,

are unfolded Stokes matrices of the family (5.3), which tend to the Stokes
matrices of the limit system limE+∋ϵ→0 Si+(ϵ) = Si(0), i = 1, 2, and where

Ni(ϵ) =
(

ei 0
0 1

ei

)
, i = t, 1, N = NtN1 =

(
ete1 0

0 1
ete1

)
,

with
et = (Mt+)11 = e πi

ϵ , e1 = (M1+)11 = eπiϑ̃1− πi
ϵ ,

are the formal monodromy matrices around the points t = 1 + ϵt and 1
for ϵ ̸= 0. Such monodromy representation is determined uniquely up to
conjugation by diagonal matrices.

The monodromy matrices are subject to the conditions

1 = det M0+ = αδ − γβ,

a0 = tr M0+ = α+ δ,

a∞ = tr M∞+ = δ

ete1
+ ete1(α+ βs1+ + γs2+ + δs1+s2+),

ẽ1 := eπiϑ̃1 = [M1+Mt+]11 = ete1.

The trace coordinates Xi (4.7) for 0 ̸= ϵ ∈ E+ are given by

(5.6)

X0 = tr(M1+Mt+) = ete1 + 1
ete1

+ ete1s1+s2+,

Xt = tr(M1+M0+) = e1(α+ βs1+) + δ

e1
,

X1 = tr(M0+Mt+) = et(α+ γs2+) + δ

et
,
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Only the parameters

a0 = 2 cos(πϑ0), ẽ1 = ete1 = eπiϑ̃1 , a∞ = 2 cos(πϑ∞),

have well defined limits when ϵ → 0, while et = e πi
ϵ and e1 = eπiϑ̃1− πi

ϵ

diverge. Therefore the coordinateX0 passes well to the limit, but notXt, X1
which need be replaced by new coordinates. The new coordinates should
be functions of M0+, S1+, S2+, N,M∞+ invariant by diagonal conjugation
(since the decomposition (5.5) for ϵ ̸= 0, as well as the pair of Stokes
matrices S1+, S2+ for ϵ = 0, are determined only up to conjugation by
diagonal matrices). Following [53], we choose them as the lower diagonal
elements of M∞+ and M0+:

(5.7)

X̃1 = tr(M1+Mt+0) = X0,

X̃0 = [M0+]22 = δ,

X̃∞ = [M∞+]22 = ete1(α+ γs2+).

A substitution in the identity

(ete1)2s1+s2+(αδ − βγ − 1) = 0,

gives the Fricke relation in the new coordinates X̃ = (X̃0, X̃1, X̃∞)

F̃ (X̃, θ̃(ã)) = 0,

where

(5.8) F̃ (X̃, θ̃) := X̃0X̃1X̃∞ + X̃2
0 + X̃2

∞ − θ̃0X̃0 − θ̃1X̃1 − θ̃∞X̃∞ + θ̃t = 0

where θ̃ = (θ̃0, θ̃1, θ̃∞, θ̃t) is a function of the parameter ã = (a0, ẽ1, a∞),
independent of ϵ,

(5.9) θ̃0 = a0+ẽ1a∞, θ̃1 = ẽ1, θ̃∞ = a∞+ẽ1a0, θ̃t = 1+ẽ1a0a∞+ẽ2
1.

For ϵ = 0, the relation (5.8) for the character variety of PV was derived
in [53, Section 3.2].

Definition 5.1. — The wild character variety of PV is the complex
cubic surface

(5.10) SV (θ̃) = {X̃ ∈ C3 : F̃ (X̃, θ̃) = 0},

where F̃ is (5.8), endowed with the algebraic symplectic form

(5.11) ω̃SV
= dX̃0 ∧ dX̃1

2πiF̃X̃∞

= dX̃∞ ∧ dX̃0

2πiF̃X̃1

= dX̃1 ∧ dX̃∞

2πiF̃X̃0

,
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where

F̃X̃1
:= ∂F̃

∂X̃1
= X̃∞X̃0 − θ̃1,

F̃X̃0
:= ∂F̃

∂X̃0
= X̃1X̃∞ + 2X̃0 − θ̃0,

F̃X̃∞
:= ∂F̃

∂X̃∞
= X̃1X̃0 + 2X̃∞ − θ̃∞.

The trace coordinates X (5.6) on the character variety SVI(θ) for ϵ ̸= 0
and the new coordinates X̃ (5.7) on the wild character variety SV (θ̃) are
related by the following birational transformations:

Theorem 5.2 (ϵ ̸= 0). — The cubic surfaces SVI(θ) and SV (θ̃) are
birationally equivalent through the change of variables

X = Φ+(X̃),

where

Φ+( · , a0, et, e1, a∞) : SV (θ̃) −→ SVI(θ)

X̃ 7−→ X

is given by
(5.12)

X0 = X̃1, FX0 ◦ Φ+ = X̃0

et

(
F̃X̃0

e1
−
F̃X̃∞

et

)
−
F̃X̃1

ete1

(
X̃1 − et

e1
− e1

et

)

Xt = X̃0

e1
+
X̃∞ − F̃X̃∞

et
, FXt

◦ Φ+ =
F̃X̃0

e1
−
F̃X̃∞

et
,

X1 = X̃∞

e1
+ X̃0

et
, FX1 ◦ Φ+ =

F̃X̃0

et
+
F̃X̃∞

e1
−
X̃1F̃X̃∞

et
.

The inverse map Φ◦(−1)
+ : SVI(θ) 99K SV (θ̃), X 7→ X̃+, is given by

(5.13)

X̃0 = −etXt + e1X1 − a∞ − ete1a0

X0 − et

e1
− e1

et

= −
ete1

(
X0 − et

e1
− e1

et
− FX0

)
e1Xt + etX1 − a0 − ete1a∞

,

X̃1 = X0,

X̃∞ = −e1Xt + etX1 − a0 − ete1a∞ − e1FXt

X0 − et

e1
− e1

et

,
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and is singular on the line:

(5.14) L0 :=
{
X0 = et

e1
+ e1

et
, e1Xt + etX1 = θ̃0

}
.

The two Fricke relations are related by F ◦ Φ+ = −1
ete1

(X0 − et

e1
− e1

et
) · F̃ .

The restriction

Φ+ : SV (θ̃) −→ SVI(θ) ∖ L0

is an isomorphism. The pull-back of the symplectic form ωSVI (4.11) by Φ+
is the symplectic form (5.11).

Proof. — From (5.6) and (5.7) by a direct calculation. □

Remark 5.3 (ϵ ̸= 0). — In the trace coordinates (4.6) on the space of
monodromy representations, the eigenvalues ei and 1

ei
of Mi are inter-

changeable. On the other hand in the above confluent description of the
monodromy data this is no longer true for i = t, 1. Indeed, during the con-
fluence we are fixing an appropriately normalized mixed basis of solutions
consisting of one “eigensolution” for the eigenvalue et of Mt and another for
e1 of M1. The general theory of confluence [23] tells us that this mixed basis
tends, when ϵ → 0 in the sector E+, to the appropriate sectorial basis at the
irregular singularity of the limit system. This means that, for small enough
ϵ, the chosen mixed basis can never be degenerate. On the other hand, the
singular line L0 (5.14) for ϵ ̸= 0 corresponds by Remark 4.6 precisely to
the monodromy representations for which our mixed basis degenerates, so
there is no place for it in the confluent picture.

Remark 5.4. — A very simple way to obtain the coordinates X̃ on the
wild character variety SV (θ̃) is by taking the following limit:

(i) When ϵ → 0 in a sector η < arg ϵ < π − η, η > 0, then et → ∞,
e1 → 0, hence at

a1
→ ẽ1,(

Xt

a1
, X0,

X1

a1

)
−→

(
X̃0, X̃1, X̃∞

)
,(

θt

a1
,
θ0

a2
1
,
θ1

a1
,
θ∞

a2
1

)
−→

(
θ̃0, θ̃1, θ̃∞, θ̃t

)
,

and 1
a2

1
F (X, θ) → F̃ (X̃, θ̃).
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(ii) When ϵ → 0 in a sector −π + η < arg ϵ < −η, η > 0, then et → 0,
e1 → ∞, hence a1

at
→ ẽ1,

(
X1

at
, X0,

Xt − FXt

at

)
−→

(
X̃0, X̃1, X̃∞

)
,(

θ1

at
,
θ0

a2
t

,
θt

at
,
θ∞

a2
t

)
−→

(
θ̃0, θ̃1, θ̃∞, θ̃t

)
,

Xt

at
→ X̃∞ − F̃X̃∞

, and 1
a2

t
F (X, θ) → F̃ (X̃, θ̃).

These two limits are related by the action of the half-monodromy operator
g1t = g

◦(−1)
t1 (4.16) on the left side (and identity on the right side). This

limiting procedure should be related to Glutsyuk’s description of conflu-
ence [19, 20] and has been well known (for example [12]). Whenever it leads
to a convergent limit it can be used as a simple way to obtain limit formu-
las. However it doesn’t allow to treat the confluence when ϵ → 0 along the
sequences {ϵn}n∈N with 1

ϵn
= 1

ϵ0
+ n, that accumulate to 0 asymptotically

tangent to R>0, which is essential for us in order to obtain the generators
of the wild monodromy.

5.3. The monodromy action on SV (θ̃)

Both of the two different half-monodromy operators gt1 and g∞0 (4.16),
(4.17), satisfying g◦2

t1 = g◦2
∞0, and acting on the space of monodromy rep-

resentations associated to PVI, pass well to the confluent limit if properly
interpreted. However, the action g∞0 (which differs from gt1 in how it acts
on (a0, at, a1, a∞)) seems to be the one that is better suited: this has to
do with the fact that its action is on the points z = 0,∞, thus away from
where the confluence happens.

Proposition 5.5.

(i) The pullback of the half-monodromy operators gij : SVI(θ) →
SVI(gij(θ)), (i, j) = (t, 1), (∞, 0), and their inverses gji = g

◦(−1)
ij ,

by the transformation Φ+ (5.13) is given by

g̃ij = Φ◦(−1)
+ ◦ gij ◦ Φ+ : SV (θ̃) −→ SV (g̃ij(θ̃))
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g̃t1 : θ̃0 7−→ θ̃∞

θ̃1
, X̃0 7−→ 1

θ̃1

(
X̃∞ − F̃X̃∞

)
, F̃X̃0

7−→ − 1
θ̃1
F̃X̃∞

,

θ̃1 7−→ 1
θ̃1
, X̃1 7−→ X̃1, F̃X̃1

7−→ F̃X̃1
− F̃X̃∞

X̃0,

θ̃∞ 7−→ θ̃0

θ̃1
, X̃∞ 7−→ 1

θ̃1
X̃0, F̃X̃∞

7−→ 1
θ̃1

(
F̃X̃0

− F̃X̃∞
X̃1
)
,

θ̃t 7−→ θ̃t

θ̃2
1
.

g̃1t : θ̃0 7−→ θ̃∞

θ̃1
, X̃0 7−→ 1

θ̃1
X̃∞, F̃X̃0

7−→ 1
θ̃1

(
F̃X̃∞

− F̃X̃0
X̃1
)
,

θ̃1 7−→ 1
θ̃1
, X̃1 7−→ X̃1, F̃X̃1

7−→ F̃X̃1
− F̃X̃0

X̃∞,

θ̃∞ 7−→ θ̃0

θ̃1
, X̃∞ 7−→ 1

θ̃1

(
X̃0 − F̃X̃0

)
, F̃X̃∞

7−→ − 1
θ̃1
F̃X̃0

θ̃t 7−→ θ̃t

θ̃2
1
.

g̃∞0 : θ̃0 7−→ θ̃∞, X̃0 7−→ X̃∞ − F̃X̃∞
, F̃X̃0

7−→ −F̃X̃∞
,

θ̃1 7−→ θ̃1, X̃1 7−→ X̃1, F̃X̃1
7−→ F̃X̃1

− F̃X̃∞
X̃0,

θ̃∞ 7−→ θ̃0, X̃∞ 7−→ X̃0, F̃X̃∞
7−→ F̃X̃0

− F̃X̃∞
X̃1

θ̃t 7−→ θ̃t.

g̃0∞ : θ̃0 7−→ θ̃∞, X̃0 7−→ X̃∞, F̃X̃0
7−→ F̃X̃∞

− F̃X̃0
X̃1,

θ̃1 7−→ θ̃1, X̃1 7−→ X̃1, F̃X̃1
7−→ F̃X̃1

− F̃X̃0
X̃∞,

θ̃∞ 7−→ θ̃0, X̃∞ 7−→ X̃0 − F̃X̃0
, F̃X̃∞

7−→ −F̃X̃0

θ̃t 7−→ θ̃t.

(ii) The pullback g̃◦2
t1 = g̃◦2

∞0 ∈ AutωSV
(SV (θ̃)) of the monodromy oper-

ator g◦2
t1 = g◦2

∞0 ∈ AutωSVI
(SVI(θ)) by the transformation Φ+ (5.13)

is given by the square iterate of the above operators g̃t1, g̃∞0

g̃◦2
∞0 : X̃0 7−→ X̃0 − F̃X̃0

+ X̃1F̃X̃∞
,

X̃1 7−→ X̃1,

X̃∞ 7−→ X̃∞ − F̃X̃∞
,
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F̃X̃0
7−→ −F̃X̃0

+ X̃1F̃X̃∞
,

F̃X̃1
7−→ F̃X̃1

−X̃0F̃X̃∞
−X̃∞F̃X̃0

+F̃X̃0
F̃X̃∞

+X̃1X̃∞F̃X̃∞
−X̃1F̃

2
X̃∞

,

F̃X̃∞
7−→ −F̃X̃∞

− X̃1F̃X̃0
+ X̃2

1F̃X̃∞
,

and its inverse

g̃◦2
0∞ : X̃0 7−→ X̃0 − F̃X̃0

,

X̃1 7−→ X̃1,

X̃∞ 7−→ X̃∞ − F̃X̃∞
+ X̃1F̃X̃0

,

F̃X̃0
7−→ −F̃X̃0

− X̃1F̃X̃∞
+ X̃2

1F̃X̃0
,

F̃X̃1
7−→ F̃X̃1

−X̃0F̃X̃∞
−X̃∞F̃X̃0

+ F̃X̃0
F̃X̃∞

+X̃1X̃0F̃X̃0
−X̃1F̃

2
X̃0
,

F̃X̃∞
7−→ −F̃X̃∞

+ X̃1F̃X̃0
.

They preserve the Fricke relation: F̃ ◦ g̃◦2
∞0 = F̃ .

The “half-monodromy” action g̃t1 was previously described in [52], and
the monodromy action g◦2

t1 = g◦2
∞0 was considered in [52, 53].

Proof. — One way to obtain the action g̃t1 is by the limiting procedure
of Remark 5.4. For example in (i), for ℑϵ > 0:

(
Xt

a1
, X0,

X1
a1

) � gt1 //

ϵ→0
��

(X1−FX1
at

, X0,
Xt

at

)
ϵ→0
��(

X̃0, X̃1, X̃∞
) � g̃t1 //

(
X̃∞−F̃X̃∞

ẽ1
, X̃1,

X̃0
ẽ1

)
,

and similarly in (ii), for ℑϵ < 0.
A different wayto obtain the action g̃t1 is to look on how the braid βt1

acts on the monodromy representation ρ+ (5.5). After a conjugation by a
matrix PM−1

1+ the action (4.15) is written as

(βt1)∗ : M0+ 7−→ ρβt1(γ0) = PM−1
1+M0+M1+P,

Mt+ 7−→ ρβt1(γt) = PM1+P,

M1+ 7−→ ρβt1(γ1) = PM0+P,

M∞+ 7−→ ρβt1(γ0) = PM−1
1+M∞+M1+P,
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where P = ( 0 1
1 0 ), so that ρβt1(γt) is upper-triangular, and ρβt1(γ1) is lower-

triangular. Therefore gt1 maps (et, e1) 7→ ( 1
e1
, 1

et
), and we have

ẽ1 7−→ 1
ẽ1
,

X̃1 7−→ X̃1,

X̃0 7−→
(
M−1

1+M0+M1+
)

11 = α+ βs1+ =
X̃∞ − F̃X̃∞

ẽ1
,

X̃∞ 7−→
(
M−1

1+M∞+M1+
)

11 = δ

ete1
= X̃0

ẽ1
.

Likewise, the formula for the action of g̃∞0 can be obtained from g∞0 by
the limiting procedure of Remark 5.4. □

5.4. Lines and singularities of SV (θ̃)

Proposition 5.6 (Lines of SV (θ̃)). — The polynomial F̃ (X̃, θ̃) (5.8)
can be decomposed as

F̃ = (X̃1 − ẽ1 − 1
ẽ1

)F̃X̃1
+ ẽ1(X̃∞ + X̃0

ẽ1
− a∞)(X̃0 + X̃∞

ẽ1
− a0),

= (X̃1 − e0e∞ − 1
e0e∞

)F̃X̃1

+ (e0X̃∞ + X̃0
e∞

− ẽ1 − e0
e∞

)( X̃∞
e0

+ e∞X̃0 − ẽ1 − e∞
e0

),

= (X̃1 − e0
e∞

− e∞
e0

)F̃X̃1

+ (e0X̃∞ + e∞X̃0 − ẽ1 − e0e∞)( X̃∞
e0

+ X̃0
e∞

− ẽ1 − 1
e0e∞

),

= (X̃0 − e0)(F̃X̃0
− X̃0 + e0) + (X̃∞ − ẽ1

e0
)(e0X̃1 + X̃∞ − ẽ1e0 − a∞),

= (X̃0 − e0)( ẽ1
e0
X̃1 + X̃0 − 1

e0
− ẽ1a∞) + (X̃∞ − ẽ1

e0
)(F̃X̃∞

− X̃∞ + ẽ1
e0

),

= (X̃0 − 1
e0

)(F̃X̃0
− X̃0 + 1

e0
) + (X̃∞ − ẽ1e0)( X̃1

e0
+ X̃∞ − ẽ1

e0
− a∞),

= (X̃0− 1
e0

)(ẽ1e0X̃1+X̃0−e0−ẽ1a∞)+(X̃∞−ẽ1e0)(F̃X̃∞
−X̃∞+ẽ1e0),

= (X̃∞ − e∞)(F̃X̃∞
−X̃∞ +e∞)+(X̃0 − ẽ1

e∞
)(e∞X̃1 +X̃0 − ẽ1e∞ − a0),

= (X̃∞ − e∞)( ẽ1
e∞
X̃1 +X̃∞ − 1

e∞
− ẽ1a0)+(X̃0 − ẽ1

e∞
)(F̃X̃0

−X̃0 + ẽ1
e∞

),

= (X̃∞ − 1
e∞

)(F̃X̃∞
− X̃∞ + 1

e∞
) + (X̃0 − ẽ1e∞)( X̃1

e∞
+ X̃0 − ẽ1

e∞
− a0),

= (X̃∞ − 1
e∞

)(ẽ1e∞X̃1 + X̃∞ − e∞ − ẽ1a0)

+ (X̃0 − ẽ1e∞)(F̃X̃0
− X̃0 + ẽ1e∞).

TOME 0 (0), FASCICULE 0



46 Martin KLIMEŠ

defining thus 18 lines on SV (θ̃) (note that some lines appear twice in the
above decomposition).

Remark 5.7. — Each of the monodromies M0,M∞ (assuming diagonal-
izable) define a pair of invariant eigenspaces of solutions, while each of
the Stokes matrices S1+, S2+ (assuming nontrivial) define one invariant
eigenspace of solutions. As in Remark 4.6, the lines in SV (θ̃) correspond to
degeneration of some associated mixed bases of solutions. More about this
in a future work.

The projective completion of SV (θ̃) in CP3 contains 3 additional lines
at infinity, giving a total 21 lines, and there is a singularity of type A1 at
the infinity (see [8]). The surface SV (θ̃) can have additional singularities,
which happens if and only if some the 18 lines coincide.

Proposition 5.8 (Singular points of SV (θ̃)). — The affine cubic variety
SV (θ̃) has singular points if and only if

(a2
0 − 4)(a2

∞ − 4)w̃(θ̃) = 0,

where

w̃(ã) = (a2
0 + ã2

1 + a2
∞ − a0ã1a∞ − 4), with ã1 = ẽ1 + 1

ẽ1
,

= 1
ẽ2

1

∏
(δ0,δ∞)∈{±1}2

(eδ0
0 ẽ1e

δ∞
∞ − 1),

(cf. [53, Section 3.2.2]). The corresponding possible singularities are the
following:

• if a∞ = ±2: X̃0 = ±ẽ1, X̃1 = ±a0, X̃∞ = ±1,
• if a0 = ±2: X̃0 = ±1, X̃1 = ±a∞, X̃∞ = ±ẽ1,
• if ẽ1 = eδ0

0 e
δ∞
∞ , (δ0, δ∞) ∈ {±1}2: X̃0 = eδ0

0 , X̃1 = ẽ1 + 1
ẽ1

, X̃∞ = eδ∞
∞ .

Setting X̃ = ( x0
v ,

x1
v ,

x∞
v ), the projective completion of SV (θ̃) in CP3 has

also a singularity at the point (x0 : x1 : x∞ : v) = (0 : 1 : 0 : 0) for any
value of the parameters.

Proof. — By Theorem 5.2, the surface SV (θ̃) is isomorphic to SVI(θ)∖L0,
one can therefore use the description of the singular points of SVI(θ) given
in Section 4.3. □

5.5. The center manifold solution

Proposition 5.9. — For ϵ ∈ E+ let X̃ be the coordinate (5.7) on SV (θ̃)
which for ϵ ̸= 0 is given by the monodromy representation ρ+ depending
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on x = 1
t̃

+ ϵ = ϵt
t−1 as in Figure 5.2. Then the upper “sectorial center

manifold” solution Ψ
GG

+(0, x, ϵ) of Corollaries 3.3 and 2.2 over the domain
X
GG

+ corresponds to the point

(5.15) (X̃0, X̃1, X̃∞) =
(

1
e0
, ẽ1 + e0a∞ − e2

0ẽ1, e0ẽ1

)
for x ∈ X

GG

+(ϵ), ϵ ∈ E+.

The proof of Proposition 5.9 is based on the following reformulation of
the Jimbo’s asymptotic formula.

Proposition 5.10 (Jimbo’s formula for the confluent system). — For
ϵ ∈ E+ ∖ {0} let X̃ be the coordinate (5.7) on SV (θ̃) given by the mon-
odromy representation ρ+ depending on x = 1

t̃
+ ϵ = ϵt

t−1 as in Figure 5.2.
Let t(q(x), p(x)) = t(q

GG

+(x), p
GG

+(x)) be the solution of the confluent Painlevé
system (3.1) corresponding to a point X̃ ∈ SV (θ̃) over the domain x ∈ X

GG

+,
which corresponds (up to analytic extension) to the upper half-plane in
Figure 5.2.

(1) When x → 0, x ∈ X
GG

+(ϵ), ϵ ∈ E+:

q ∼ α(ϑ,X)
(

x

x− ϵ

)1−σ1

+ O

((
x

x− ϵ

)2−2σ1)
,

p ∼ ϑ0 + ϑt − σ1

2α(ϑ,X)

(
x

x− ϵ

)σ1−1
+ O(1),

where σ1, defined by X1 = eπiσ1 + e−πiσ1 , and α(X,ϑ) are as in
Proposition 4.4, and (X,ϑ) is related to (X̃, ϑ̃, ϵ) by the birational
transformation (5.12) and (5.1).

(2) When x → ϵ, x ∈ X
GG

+(ϵ), ϵ ∈ E+:

q ∼ 1
α(ϑ′, X ′)

(
x− ϵ

x

)σ′
1−1

+ O(1),

p ∼ α(ϑ′, X ′)ϑ0 + ϑ1 + σ′
1 − 2

2

(
x− ϵ

x

)1−σ′
1

+ O

((
x− ϵ

x

)2−2σ′
1
)
,

where (X ′, ϑ′) = g∞0(X, θ), i.e.

ϑ′ = (ϑ∞, ϑt, ϑ1, ϑ0), X ′ = (X0, X1 − FX1 , Xt),

and (X,ϑ) are related to (X̃, ϑ̃, ϵ) by (5.12) and (5.1).

Proof of Proposition 5.9. — By Proposition 5.10, in order for the solu-
tion t(q

GG

+(x), p
GG

+(x)) to be bounded at x = 0 we need to have σ1 = ϑ0 + ϑt,
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while α(ϑ,X) ̸= 0,∞. Using (4.13) let us write α(ϑ,X) = A(ϑ,σ1)
eπiσ1 FXt −FX0

for
some function A. This gives us the following condition:

(5.16) X1 = e0et + 1
e0et

, e0etFXt
− FX0 ̸= 0.

Similarly, in order for the solution t(q
GG

+(x), p
GG

+(x)) to be bounded at x = ϵ

we need to have σ′
1 = 2 − ϑ0 − ϑ1, while α(ϑ′, X ′) ̸= 0,∞, meaning that

eπiσ′
1F ′

X′
t

− F ′
X′

0
̸= 0. This gives us the following condition:

(5.17) Xt = e0e1 + 1
e0e1

, e0e1FX1 − FX0 ̸= 0.

By Proposition 4.5, the identity in (5.17) means that either{
(a) e0e1X0 +X1 − e1a∞ − e0at = 0,
(b) e0e1X1 +X0 − e0a∞ − e1at = 0,

from which we have respectively{
(a) X0 = 1

ete1
+ a∞

e0
− 1

e2
0ete1

,

(b) X0 = ete1 + e0a∞ − e2
0ete1.

The case (a) doesn’t satisfy neither the condition (5.16) nor (5.17). In the
case (b) using the formulas (5.13) we obtain that

X̃0 = 1
e0
, X̃1 = ete1 + e0a∞ − e2

0ete1, X̃∞ = e0ete1. □

Proof of Proposition 5.10. — The asymptotics at x = 0 is simply the
Jimbo’s formula of Proposition 4.4, which for ϵ ∈ R>0 is defined on the
sector |arg(−x)| < π.

The asymptotics at x = ϵ is obtained from the Jimbo’s formula using
the Okamoto’s transformation

t′ = t−1, q′ = q−1, p′ = q ·
(
ϑ0 + ϑt + ϑ1 + ϑ∞

2 − 1 − qp

)
,

ϑ′ = (ϑ∞, ϑt, ϑ1, ϑ0),

which preserves the Hamiltonian system of PVI, i.e.

(5.18) x′ = ϵ− x, q′ = q−1, p′ = q ·
(
ϑ0 + ϑ̃1 + ϑ∞

2 − 1 − qp

)
,

which preserves the system (3.1). This corresponds to the transformation

z′ = z−1, t′ = t−1, (A′
0, A

′
t′ , A′

1, A
′
∞) = (A∞, At, A1, A0),
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x=0 x=ϵ

id g̃◦2
0t

g̃◦2
t1 = g̃◦2

∞0

0 t 1 ∞

z0

t 0 1 ∞

z0

0 1 t ∞

z0

0 t 1 ∞

z0

t 0 1 ∞

z0

0 1 t ∞

z0

Figure 5.2. The paths around which are taken the loops γ0, γt, γ1
defining the confluent monodromy representation ρ+ and therefore
the coordinate X̃ on SV (θ̃) for ϵ ∈ E+ ∖ {0} in dependence on
x = ϵt

t−1 ∈ C ∖ {0, ϵ} (cf. Figure 4.4), and the corresponding tran-
sition maps g̃◦2

0t , g̃
◦2
∞0(e 2πi

ϵ ) : SV (θ̃) → SV (θ̃).

of the isomonodromic problem (4.1). It transforms the monodromy rep-
resentation ρ+ (Figure 5.2) to ρ′, ρ′(γ′

j′) = Mj , j = 0, t, 1,∞, where for
x ∈ X

GG

+(ϵ), ϵ ∈ E+, one has up to a conjugation (see Figure 5.3)

γ′
0′ = γ∞, γ′

t′ = γt, γ′
1′ = γ1, γ′

∞′ = γ∞γ0γ
−1
∞ .

This means that up to a conjugation

M ′
0 = ρ′(γ0) = M0M∞M

−1
0 ,

M ′
t = ρ′(γt) = Mt,

M ′
1 = ρ′(γ1) = M1,

M ′
∞ = ρ′(γ∞) = M0,

i.e. ρ′ = (β∞0)∗ρ+ (4.15), and hence (4.17)

X ′ = g∞0(X) = (X0, X1 − FX1 , Xt). □

6. The wild monodromy action on SV (θ̃)

The only nonlinear monodromy actions (pure braid actions) on SV (θ̃)
that converge during the confluence are those generated by g̃◦2

∞0 (in Propo-
sition 5.5). As was explained in Section 3.2, for the other actions we need
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x′ =0 x′ =ϵ idg̃◦2
0t

g̃◦2
t1 = g̃◦2

∞0

z′
0

∞′ t′ 1′ 0′

z′
0

t′ ∞′ 1′ 0′

z′
0

∞′ 1′ t′ 0′

z′
0

∞′ t′ 1′ 0′

z′
0

t′ ∞′ 1′ 0′

z′
0

∞′ 1′ t′ 0′

≃

z0

∞′ t′ 1′ 0′

≃

z0

t′ ∞′ 1′ 0′

≃

z0

∞′ 1′ t′ 0′

Figure 5.3. The transform of the Figure 5.2 by x′ = ϵ − x, z′ = z−1,
(0′, t′, 1′,∞′) = (∞, t−1, 1, 0), showing the paths around which are
taken the loops γ′

0′ , γ′
t′ , γ′

1′ , γ′
∞′ defining the confluent monodromy rep-

resentation ρ′ and therefore the coordinate X ′ on x. We are only inter-
ested in the lower half-plane part of this picture. The diagrams in the
bottom row (red) are conjugated to those above (black) by moving the
basepoint from z′

0 to z0 in order to compare with those in Figure 5.2.

instead to consider limits of their pullbacks by Φ+ (5.12) along the se-
quences

(ϵn)n∈±N,
1
ϵn

= 1
ϵ0

+ n

along which the divergent parameter e2
t = e 2πi

ϵ stays constant. This amounts
to replacing e2

t by a new independent parameter κ ∈ C∗, i.e. writing

(6.1) ete1 = ẽ1,
et

e1
= κ

ẽ1
.

The idea of taking the limit of the Riemann–Hilbert correspondence for
the isomonodromic problem (5.3) along such discrete sequences (ϵn) was
already considered by Kitaev [32] but with a different aim. The limit of
a nonlinear monodromy operator accumulating towards a one-parameter
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family of wild monodromy operators acting on the wild character variety
have not been studied before.

Proposition 6.1. — For ϵ ̸= 0, let Φ+ be the transformation (5.12),
and let

g̃◦2
ij ( · ;κ) := Φ−1

+ ◦ g◦2
ij ◦ Φ+ : SV (θ̃) −→ SV (θ̃), {i, j} = {0, t},

be the pullback of the monodromy action g◦2
ij ,composed with the substitu-

tion (6.1). Then

g̃◦2
0t ( · ;κ) : X̃0 7−→ ẽ1

X̃∞
,

X̃1 7−→ X̃1+ 1
ẽ1

(X̃1F̃X̃1
−X̃∞F̃X̃∞

) + κ

ẽ2
1
X̃∞F̃X̃0

− F̃X̃1

(
1
κ

+ κ

ẽ2
1

)
,

X̃∞ 7−→ X̃∞ + ẽ1

κX̃∞
F̃X̃1

,

g̃◦2
t0 ( · ;κ) : X̃0 7−→ X̃0 + κ

ẽ1X̃0
F̃X̃1

,

X̃1 7−→ X̃1 + 1
ẽ1

(X̃1F̃X̃1
− X̃0F̃X̃0

) + 1
κ
X̃0F̃X̃∞

− F̃X̃1

(
1
κ

+ κ

ẽ2
1

)
,

X̃∞ 7−→ ẽ1

X̃0
.

They preserve the symplectic form ω̃SV
, and change the Fricke relation by

a factor:

F̃ ◦ g̃◦2
t0 (X̃;κ) =

(X̃1 − ẽ1
κ − κ

ẽ1
)(

X̃1 − ẽ1
κ − κ

ẽ1
− (FX0 ◦ Φ+)

) F̃ (X̃, θ̃).

Proof. — The formulas are obtained by plugging (5.12), (5.13) to g◦2
0t

and g◦2
t0 (4.18), where the action of g◦2

0t fixes (et, e1), and hence also (ẽ1, κ).
Alternatively, the action (4.15) of (β2

0t)∗ on the monodromy representa-
tion ρ+ is

(β2
0t)∗ : M0+ 7−→ (Mt+M0+)M0+(Mt+M0+)−1,

Mt+ 7−→ (Mt+M0+)Mt+(Mt+M0+)−1,

M1+ 7−→ M1+,

M∞+ 7−→ M∞+,

where by (5.5) Mt+M0+ = NtS2+M0+. Decompose S2+M0+ = LU with

L =
(

α+γs2+ 0
γ δ−γ

β+δs2+
α+γs2+

)
, U =

(
1 β+δs2+

α+γs2+
0 1

)
,
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and conjugate the above monodromy representation by NtL, so that the
image of Mt+ = NtS2+, resp. M1+ = S1+N1, is again upper, resp. lower,
triangular:

M0+ 7−→ UM0+U
−1,

Mt+ 7−→ UMt+U
−1, S2+ 7−→ N−1

t UNtS2+U
−1

M1+ 7−→ L−1N−1
t M1+NtL, S1+ 7−→ L−1N−1

t S1+NLN
−1Nt,

M∞+ 7−→ L−1N−1
t M∞+NtL,

where

Nt(κ) =
(

κ
1
2 0

0 κ− 1
2

)
, N =

(
ẽ1 0
0 ẽ−1

1

)
,

and in particular the images of Mt+ and M1+ have the same diagonal parts
as Mt+ and M1+ have. From this one can express the action of g̃◦2

0t (κ) on
X̃ (5.7) in terms of α, β, γ, δ, s1+, s2+ and then re-express it in terms of
X̃, θ̃. Similarly for the inverse g̃◦2

t0 (κ). □

The initial condition c = (c1, c2) of the canonical sectorial solutions of PV

of Section 2.3 define through the map (x, c) 7→ t(qG
G
(x; c), pG

G
(x; c)) (2.11)

local coordinates on the space of leaves of the Painlevé foliation over the
sector x ∈ XGG(0), |c| < δc. Therefore, c defines local coordinates also on the
Okamoto space of initial conditions MV,t̃ (2.5) of PV for each x = t̃−1 ∈
XGG(0) on a neighborhood of the point which corresponds to the sectorial
center manifold c = 0. The Okamoto space MV,t̃ and the wild character
variety SV (θ̃) are isomorphic on some Zariski open set

MV,t̃(ϑ̃) 99K SV (θ̃).

It has been conjectured in [53] that in fact MV,t̃ is a isomorphic to a
minimal strict resolution of MV,t̃ if singular (for PVI this is known to be
true, see [25] and the references there). Anyway, it means that the wild
monodromy pseudogroup of Definition 2.7 acts locally on SV (θ̃) near the
point (5.15). It turns out that this action is in fact global (Proposition 6.2
below). By Proposition 3.7, the wild monodromy pseudogroup is obtained
as a limit of the nonlinear monodromy group through the accumulation
along the discrete sequences (3.16) of the parameter ϵ.

Proposition 6.2. — For ϵ = 0, the action of the nonlinear wild mon-
odromy operators M̃

GG

0+(c;κ) and M̃
GG

ϵ+(c;κ) (3.17), which are defined lo-
cally near the point corresponding to c = 0 on the Okamoto fiber MV,t̃

over x = t̃−1 ∈ XGG(0), extend as bimeromorphic maps to the whole fiber.
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In the coordinate X̃ (5.7) on SV (θ̃) over t̃−1 ∈ XGG(0) the nonlinear wild
monodromy operator

• M̃
GG

0+(c;κ) corresponds to the action of g̃◦2
0t (X̃;κ) on SV (θ̃),

• M̃
GG

ϵ+(c;κ) corresponds to the action of g̃◦2
0∞ ◦ g̃◦2

t0 (X̃;κ) on SV (θ̃).

Proof. — In fact, for all 0 ̸= ϵ ∈ E+ the corresponding action of the
nonlinear monodromy of PVI(ϑ) around 0, resp. ϵ, from some base-point
x0 ∈ X

GG

+(0) on the character variety SV (θ̃) is given by g̃◦2
0t (X̃; e2

t ), resp. g̃◦2
0∞◦

g̃◦2
t0 (X̃; e2

t ), see Figure 5.2 (compare also with the right side of Figure 3.1).
In particular, by Propositions 5.5 and 6.1 it is rational on all SV (θ̃). □

Lemma 6.3. — The vector field c1
∂

∂c1
− c2

∂
∂c2

which is Hamiltonian for
h(c) = c1c2 with respect to dc1 ∧ dc2 corresponds to the vector field

(6.2) 1
X̃0

(
F̃X̃1

∂

∂X̃∞
− F̃X̃∞

∂

∂X̃1

)
,

on the wild character variety SV (θ̃). It is Hamiltonian with respect to
ω̃SV

(5.11) for the Hamiltonian function

(6.3) H̃0(X̃) = 1
2πi log X̃0 + ϑ0

2 ,

which corresponds to h.

Proof. — By (3.20) and Proposition 6.2 the vector field c1
∂

∂c1
− c2

∂
∂c2

corresponds to
˙̃
X = −

(
κ
∂

∂κ
g̃◦2

0t ( · , κ)
)

◦ g̃◦2
t0 (X̃, κ)

which can be calculated as (6.2) using the formulas of Proposition 6.1
(note that the ∂

∂X̃0
component is clearly null, and it is enough to calculate

the ∂
∂X̃∞

component only, because then the ∂
∂X̃1

component is uniquely
determined by the relation of tangency dF̃ = 0).

Now calculating in the local coordinate (X̃1, X̃∞) on SV (θ̃) one has
dX̃0 = − F̃X̃1

F̃X̃0
dX̃1 − F̃X̃∞

F̃X̃0
dX̃∞, and therefore

dH̃0 = 1
2πiF̃X̃0

(
−
F̃X̃1

X̃0
dX̃1 −

F̃X̃∞

X̃0
dX̃∞

)
,

so H̃0 (6.3) is the Hamiltonian of (6.2) with respect to ω̃SV
= dX̃1∧dX̃∞

2πiF̃X̃0
(5.11). Such Hamiltonian is defined up to a constant, and we know that
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h(c) = c1c2 vanishes on the “sectorial center manifold” over X
GG

+(0) (Corol-
laries 2.2 and 3.3), which is given by the initial condition c = 0. So our cor-
responding Hamiltonian H̃0 is uniquely determined by the condition that it
vanishes on this “sectorial center manifold”, which by Proposition 5.9 cor-
responds to the point (X̃0, X̃1, X̃∞) = ( 1

e0
, ẽ1 + e0a∞ − e2

0ẽ1, e0ẽ1). □

Remark 6.4. — The point (c1, c2) = (0, 0) is fixed by c1
∂

∂c1
− c2

∂
∂c2

and
correspondingly the point (5.15) is fixed by (6.2) – in fact it is easy to verify
that both F̃X̃1

and F̃X̃∞
vanish at this point.

Using the formulas (3.19) we can now express also the Stokes operators.

Theorem 6.5 (Wild monodromy action on SV (θ̃)).

(i) The time-α-flow map of the vector field (6.2), α ∈ C, is given by

(6.4) t(X̃; eα) = g̃◦2
0t ( · ; e−α) ◦ g̃◦2

t0 (X̃; 1).

It factors through the exponential α 7→ eα ∈ C∗ = C ∖ {0} as a
multiplicative action of C∗:

(6.5)

t( · ; eα) : X̃0 7−→ X̃0,

X̃1 7−→ X̃1 − (1 − e−α)
F̃X̃∞

X̃0
+ (2 − eα − e−α)

F̃X̃1

X̃2
0
,

X̃∞ 7−→ X̃∞ − (1 − eα)
F̃X̃1

X̃0
.

The action of the nonlinear exponential torus (2.14) of PV on SV (θ̃)
is given by the composition of t(X̃; eα) with any analytic germ
α(H̃0(X̃)) of H̃0(X̃) (6.3).

(ii) The action of the nonlinear formal monodromy N (2.15) on SV (θ̃)
is given by

(6.6) n(X̃) := t
(
X̃; X̃

4
0

ẽ2
1

)
,

where t( · ; · ) is as above (6.5).
(iii) The action of the nonlinear Stokes operator N◦(−1) ◦ S̃1 ◦ N (2.17)

on SV (θ̃) is given by

(6.7) n◦−1 ◦ s̃1 ◦ n(X̃) := g̃◦2
0t (X̃; X̃2

0),

and the action of the nonlinear Stokes operator S̃2 (2.17) on SV (θ̃)
is given by

(6.8) s̃2(X̃) := g̃◦2
0∞ ◦ g̃◦2

t0

(
X̃; ẽ

2
1

X̃2
0

)
,
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where g̃◦2
0t , g̃◦2

t0 are as in Proposition 6.1, and g̃◦2
0∞ given by (6.9) is

as in Proposition 5.5.
(iv) The action of the monodromy operator M̃GG= S̃2 ◦ S̃1 ◦ N (2.19) on

SV (θ̃) is given by

(6.9)

s̃2 ◦ s̃1 ◦ n = g̃◦2
0∞ : X̃0 7−→ X̃0 − F̃X̃0

,

X̃1 7−→ X̃1,

X̃∞ 7−→ X̃∞ − F̃X̃∞
+ X̃1F̃X̃0

.

(v) The action of the wild monodromy pseudogroup of PV on SV (θ̃) is
generated by〈

g̃◦2
0∞, g̃

◦2
0t ( · ; e−α(H̃0))

∣∣∣α( · ) analytic germ
〉
,

or equivalently by〈
s̃1, s̃2, t( · ; eα(H̃0))

∣∣∣α( · ) analytic germ
〉
.

It fixes the singularities of SV (θ̃), and its restriction to the smooth
locus of SV (θ̃) represents faithfully the nonlinear action of the wild
monodromy pseudogroup on the “non-Riccati solutions” of PV (ϑ̃).

Proof.
(i). — By direct calculation one verifies easily that (6.5) is indeed the

time-α-flow map of (6.2).
(ii). — From (3.14),

n(X̃) = t(X̃; e2πi(−2ϑ0−ϑ̃1+4H̃0)),

where H0(X̃) is (6.3) meaning that e2πi(−2ϑ0−ϑ̃1+4H̃0(X̃)) = X̃4
0

ẽ2
1

.
(iii). — From (3.19) and Proposition 6.2 and Lemma 6.3,

n◦−1 ◦ s̃1 ◦ n(X̃) = g̃◦2
0t (X̃; e2πi(−ϑ0+2H̃0)),

where e2πi(−ϑ0+2H̃0(X̃)) = X̃2
0, and

s̃2(X̃) = g̃◦2
0∞ ◦ g̃◦2

t0 (X̃; e2πi(ϑ0+ϑ̃1−2H̃0)),

where e2πi(ϑ0+ϑ̃1−2H̃0(X̃)) = ẽ2
1

X̃2
0
.

(iv). — We know from Proposition 5.5 that M̃GG= M̃
GG

ϵ ◦M̃
GG

0 corresponds
to the monodromy operator g̃◦2

0∞ around x = t̃−1 = 0 (cf. Proposition 6.2)
and is independent of κ. But let us calculate the composition s̃2 ◦ s̃1 ◦ n for
the sake of clarity. From (6.4)

g̃◦2
t0 (X̃; eα) = g̃◦2

t0 ( · ; 1) ◦ t(X̃; eα), g̃◦2
0t (X̃; eα) = t( · ; e−α) ◦ g̃◦2

t0 (X̃; 1),
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and plugging in (6.6), (6.7) and (6.8) we have

s̃2 ◦ s̃1 ◦ n(X̃) = g̃◦2
0∞(X̃) ◦ g̃◦2

t0

(
X̃; ẽ

2
1

X̃2
0

)
◦ t
(
X̃; X̃

4
0

ẽ2
1

)
◦ g̃◦2

0t (X̃; X̃2
0)

= g̃◦2
0∞(X̃) ◦ g̃◦2

t0 (X̃; 1) ◦ t
(
X̃; ẽ

2
1

X̃2
0

)
◦ t
(
X̃; X̃

4
0

ẽ2
1

)
◦ t
(
X̃; 1

X̃2
0

)
◦ g̃◦2

0t (X̃; 1)

= g̃◦2
0∞(X̃),

since X̃0 is a first integral of t. □

Appendix. Painlevé equations as isomonodromic
deformations of 3×3 systems

This section exposes first how to derive the Fricke formula (4.9) for the
character variety SVI(θ) of PVI(ϑ) as the space of Stokes data correspond-
ing to isomonodromic deformations of 3×3 systems in Okubo and Birkhoff
canonical forms, and describes the braid group action on the Stokes data.
Most of this can be also found in a bit different form in the article of
Boalch [4, Sections 2 & 3]. This description is then used to study the con-
fluence of eigenvalues in these systems in order to show how the Stokes
data of the limit system for ϵ = 0 are connected with those for ϵ ̸= 0 (Fig-
ure A.4), providing thus another derivation of the wild character SV (θ̃)
variety of PV (ϑ̃) (5.8) and of the formulas of the birational change of vari-
ables Φ+ (5.13).

A.1. Systems in Okubo and Birkhoff forms

Aside of the 2×2 systems (4.1), the sixth Painlevé equation PVI governs
also the isomonodromic deformations 3×3 linear differential systems in an
Okubo form

(A.1)
(
zI −

(
0 0 0
0 t 0
0 0 1

))
dψ
dz =

[
B(t) + λI

]
ψ,

where the matrix B(t) can be written as

B(t) =

 ϑ0 w0utvt − vt w0u1v1 − v1
wtu0v0 − v0 ϑt wtu1v1 − v1
w1u0v0 − v0 w1utvt − vt ϑ1

 , wi = vi + ϑi

uivi
,
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where ϑi are the parameters of PVI, and the matrix B(t) has eigenvalues

(A.2) 0, −κ1 = 1
2(ϑ0 + ϑt + ϑ1 − ϑ∞), −κ2 = 1

2(ϑ0 + ϑt + ϑ1 + ϑ∞).

The isomonodromic deformation of such systems in relation to PVI was
first considered in the papers of Harnad [22], Dubrovin [13, 14] and Maz-
zocco [43]. The system (A.1) can be obtained from the 2×2 system (4.1) by
the addition of 1

2 ( ϑ0
z + ϑt

z−t + ϑ1
z−1 )I to A(z, t) (this corresponds to a gauge

transformation ϕ 7→ z− ϑ0
2 (z − t)− ϑt

2 (z − 1)− ϑ1
2 ϕ), followed by the Katz’s

operation of middle convolution mcλ with a generic parameter λ different
from 0, κ1, κ2 [21] (see also [4, 43]).

Equivalently, one may also consider the generalized isomonodromic prob-
lem for systems in a Birkhoff canonical form

(A.3) ξ2 dy
dξ =

[(
0 0 0
0 t 0
0 0 1

)
+ ξB(t)

]
y,

with a non-resonant irregular singularity at the origin. These are dual to
the Okubo systems (A.1) through the Laplace transform

(A.4) y(ξ) = ξ−1−λ

∫ ∞

0
ψ(z) e− z

ξ dz, |arg(ξ) − arg(z)| < π

2 .

All three kinds of systems (4.1), (A.1), (A.3), and their isomonodromy
problems are essentially equivalent (at least on the Zariski open set of
irreducible systems (4.1)). Under an additional assumption that no ϑi is
an integer, the condition on (generalized) isomonodromicity of the each of
the above linear systems is equivalent to the Painlevé equation PVI(ϑ) [21].

Notation A.1. — The entries of 3×3 matrices will be indexed by (0, t, 1)
rather than (1, 2, 3), in a correspondence to the eigenvalues of the matrix(

0 0 0
0 t 0
0 0 1

)
. As before, the triple of indices (i, j, k) will always denote a per-

mutation of (0, t, 1), and (i, j, k, l) will denote a permutation of (0, t, 1,∞).

A.2. Stokes matrices of the Birkhoff system

The Birkhoff system (A.3) posses a canonical formal solution

Ŷ (ξ, t) = T̂ (ξ, t)
(

ξϑ0 0 0

0 e− t
ξ ξϑt 0

0 0 e− 1
ξ ξϑ1

)
,

with T̂ (ξ, t) an invertible formal series in ξ (with coefficients locally analytic
in t ∈ CP1 ∖ {0, 1,∞}), which is unique up to right multiplication by
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an invertible diagonal matrix, and unique if one demands that T̂ (0, t) =
I [60]. It is well known that this series is Borel summable in each non-
singular direction α (we remind that a direction α ∈ R is singular for the
system (A.3) if (i− j) ∈ eiαR+ for some i, j ∈ {0, t, 1}, i ̸= j). This means
that for each non-singular direction α, there is an associated canonical
fundamental matrix solution

(A.5) Yα(ξ, t) = Tα(ξ, t)
(

ξϑ0 0 0

0 e− t
ξ ξϑt 0

0 0 e− 1
ξ ξϑ1

)
, |arg(ξ) − α| < π,

where Tα is the Borel sum in ξ of T̂ in the direction α given by the Laplace
integral

Tα(ξ, t) = 1
ξ

∫ +∞eiα

0
U(z, t) e− z

ξ dz,

where U(z, t) =
∑+∞

k=0
Tk(t)

k! zk is the formal Borel transform of ξ T̂ (ξ, t) =∑+∞
k=0 Tk(t)ξk+1. This solution does not depend on α as long as α does not

cross any singular direction [2, 24, 41].
Let us restrict to α ∈ ]−π, π[, and suppose for a moment that 0, t, 1 are

not collinear, i.e. that there are six distinct singular rays (i − j)R+ as in
Figure A.1(a). When α crosses some singular direction (in clockwise sense)
the corresponding sectorial basis Yα changes in a way that corresponds to
a multiplication by a constant (with respect to ξ) invertible matrix, called
Stokes matrix, of the form

(A.6) Sij = I + sijEij ,

where Eij denotes the matrix with 1 at the position (i, j) and zero else-
where. For the singular ray (0 − 1)R+, one needs to take in account also
the jump in the argument of ξ between −π and π, therefore the change
of basis is provided by a matrix NS01, where N is the formal monodromy
of Ŷ :

(A.7) N =
(

e2
0 0 0
0 e2

t 0
0 0 e2

1

)
, where ej := eπiϑj .

See Figure A.1(a).
Since in general the formal transformation T̂ (ξ, t), and therefore also the

collection of the sectorial bases Yα(ξ, t) (A.5), are unique only up to right
multiplication by invertible diagonal matrices, the collection of the Stokes
matrices Sij is defined only up a simultaneous conjugation by diagonal
matrices. The obvious invariants with respect to such conjugation are

(A.8) s0tst0, st1s1t, s10s01, s0tst1s10, s1tst0s01,
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(a) Birkhoff system (b) Okubo system

Figure A.1. Singular directions and Stokes matrices.

where sij are as in (A.6), subject to the relation

(A.9) s0tst0 · st1s1t · s10s01 − s0tst1s10 · s1tst0s01 = 0.

The isomonodromic condition on the family (A.3) demands that the
collection of Stokes matrices is independent of t up to conjugacy by diagonal
matrices, i.e. that (A.8) are constant.

A.3. Monodromy of the Okubo system

Now let us consider the Okubo system (A.1), where we chose for sim-
plicity

λ = 0.

Corresponding to the canonical sectorial solutions bases Yα =
(
Yα,ij

)
i,j

of (A.3), there are canonical sectorial solutions bases Ψα =
(
Ψα,ij

)
i,j

of (A.1), given by the convolution integral

Ψα,ij(z, t) = 1
Γ(ϑj + λ)

∫ z

j

Uij(ζ − j, t)(z − ζ)ϑj+λ−1dζ,

where U(z, t) =
∑+∞

k=0
Tk(t)

k! zk is the formal Borel transform of ξT̂ (ξ, t) =∑+∞
k=0 Tk(t)ξk [35, 58]. They are related to Yα(ξ, t) by the Laplace trans-

form (A.4)

Yα,ij(ξ, t) = 1
ξ

∫ +∞eiα

j

Ψα,ij(z, t) e− z
ξ dz, i, j ∈ {0, t, 1}.
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The sectors on which they are defined (see Figure A.1(b)) are the different
components of the complement in C of⋃

i,j∈{0,t,1}

(
i+ (i−j)R+) ∪ [0, 1] ∪ [0, t].

When crossing one of the rays i+ (i− j)R+ in clockwise sense the solution
basis Ψα(z, t) changes by the same Stokes matrix Sij (A.6) as before, except
for the ray −R+, where it again changes by NS01 (cf. [35]). When crossing
the segments [0, t] the basis changes by N t, and on [0, 1] by N1, where

N i = I + (e2
i − 1)Eii, ei = eπiϑi ,

is the monodromy matrix of
(

zϑ0 0 0
0 (z−t)ϑt 0
0 0 (z−1)ϑ1

)
around the point i ∈

{0, t, 1}, and N = N1N tN0 (A.7). See Figure A.1(b).
Fixing a base-point z0 and three simple loops γ0, γt, γ1 in positive di-

rection around the points 0, t, 1 respectively, such that their composition
γ0γtγ1 = γ−1

∞ gives a simple loop around the infinity as in Figure A.1(b),
let M l, l = 0, t, 1,∞, be the associated monodromy matrices along γl:

(A.10) M0 = N0S01S0t, M t = N−1
1 St0St1N tN1, M1 = S1tS10N1,

determined up to a simultaneous conjugation in GL3(C). We have

tr(M i) = e2
i + 2, i ∈ {0, t, 1}.

Denoting

Xi = tr(M jMk) − 1
ejek

,

and sij as in (A.6), we have

(A.11) X0 = e2
t + e2

1 + e2
1st1s1t

ete1
, Xt = e2

0 + e2
1 + e2

0s10s01

e0e1
,

X1 = e2
0 + e2

t + e2
0s0tst0

e0et
.

The monodromy around all the three points equals

M−1
∞ = M1M tM0 = S1tS10St0St1NS01S0t

=

 e2
0 e2

0s0t e2
0s01

e2
0st0 e2

t +e2
0st0s0t e2

1st1+e2
0st0s01

e2
0s10+e2

0s1tst0 e2
t s1t+e2

0s10s0t+e2
0s1tst0s0t e2

1+e2
1s1tst1+e2

0s10s01+e2
0s1tst0s01


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From (A.2), we know that its eigenvalues are 1, e−2πiκ1 = e0ete1
e∞

and
e−2πiκ2 = e0ete1e∞. Expressing the coefficients of the linear term E and
the quadratic term E′ of the characteristic polynomial of M−1

∞ leads to

(A.12) ete1X0 + e0e1Xt + e0etX1 + e2
0s1tst0s01 − e2

0 − e2
t − e2

1

= 1 + e0ete1

e∞
+ e0ete1e∞ := E,

(A.13) e2
0ete1X0 + e2

t e0e1Xt + e2
1e0etX1

− e2
0e

2
1s0tst1s10 − e2

0e
2
t − e2

t e
2
1 − e2

1e
2
0

= e0ete1

e∞
+ e0ete1e∞ + e2

0e
2
t e

2
1 := E′.

Inserting the expression for s1tst0s01 (A.12) and for s0tst1s10 (A.13) into
the relation (A.9) gives the Fricke relation (4.9)

X0XtX1 +X2
0 +X2

t +X2
1 − θ0X0 − θtXt − θ1X1 + θ∞ = 0,

with

θi =
e2

j + e2
k + E

ejek
+ E′

e2
i ejek

= aia∞ + ajak,

θ∞ = 1 + E

e0
+ E

et
+ E

e1
+ E′

e0et
+ E′

ete1
+ E′

e1e0

= a0ata1a∞ + a2
0 + a2

t + a2
1 + a2

∞ − 4.

Let us remark that for (i, j, k) a cyclic permutation of (0, t, 1), the line{
Xk = ei

ej
+ ej

ei
, eiXi + ejXj = a∞ + eiejak

}
of Proposition 4.5 corresponds to sij = 0 in (A.13), while the line{

Xk = ei

ej
+ ej

ei
, eiXj + ejXi = ak + eieja∞

}
corresponds to sji = 0 in (A.12).

We will now derive the induced action of the braids β0t and βt1 (Fig-
ure A.2) on the Stokes matrices Sij , providing an alternative proof of Propo-
sition 4.8. The induced action of β0t, resp. βt1, on the Stokes matrices is
obtained by:

(1) Tracing the connection matrices of the Okubo system (A.1) as the
two corresponding points turn around each other according to the
braid β0t, resp. βt1, and see how they change when the three points
0, t, 1 align. See Figure A.2. We use the fact that SijSkl = SklSij if
j ̸= k and l ̸= i.
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(a) Action of β0t. (b) Action of βt1.

Figure A.2. Braid actions on the Stokes matrices. The monodromy
along each loop stays the same as the points 0, t, 1 move.

(2) Swapping the names of the points 0 ↔ t, resp. t ↔ 1. This permutes
also the corresponding positions of all the matrices, i.e. acts on them

by conjugation by P0t =
(

0 1 0
1 0 0
0 0 1

)
, resp. Pt1 =

(
1 0 0
0 0 1
0 1 0

)
.

It follows from Figure A.2 that the action on the Stokes matrices is given
(up to a simultaneous conjugation by diagonal matrices) by

(β0t)∗ : N 7−→ P0tNP0t,

S0t 7−→ P0tSt0P0t,

S1t 7−→ P0tS
−1
t0 S1tS10St0S

−1
1t P0t,

S10 7−→ P0tS1tP0t,

St0 7−→ P0tS0tP0t,

St1 7−→ P0tS
−1
0t St1NS01S0tN

−1S−1
t1 P0t,

S01 7−→ P0tN
−1St1NP0t,

(βt1)∗ : N 7−→ Pt1NPt1,

S0t 7−→ Pt1S01Pt1,

S1t 7−→ Pt1St1Pt1,

S10 7−→ Pt1S
−1
t1 S10St0St1S

−1
10 Pt1,

St0 7−→ Pt1S10Pt1,

St1 7−→ Pt1NS1tN
−1Pt1,

S01 7−→ Pt1S
−1
1t S01S0tS1tS

−1
01 Pt1.
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From this the corresponding action of g0t, resp. gt1, on the invariant ele-
ments (A.8) can be easily expressed, and subsequently re-expressed in terms
of the coordinates X0, Xt, X1 (A.11). Or equivalently, one can express the
induced action on the monodromy matrices (A.10):
(β0t)∗ : M0 7−→ P0tS

−1
t0 M tSt0P0t,

M t 7−→ P0tS
−1
t0 M tM0M

−1
t St0P0t,

M1 7−→ P0tS
−1
t0 M1St0P0t,

(βt1)∗ : M0 7−→ Pt1S
−1
1t M0S1tPt1,

M t 7−→ Pt1S
−1
1t M1S1tPt1,

M1 7−→ Pt1S
−1
1t M1M tM

−1
1 S1tPt1.

A.4. Confluence of the Birkhoff systems and their character
varieties

The substitution (5.1), (5.2) in the Birkhoff system (A.3) and a conju-

gation by Q =
(

ϵt̃ 0 0
0 1 −1
0 0 ϵt̃

)
, corresponding to the change of variable ỹ = Qy,

gives a parametric family of isomonodromic systems

(A.14) ξ2 dỹ
dξ =

[(
0 0 0
0 1+ϵt̃ 1
0 0 1

)
+ ξB̃(t̃, ϵ)

]
ỹ,

with

B̃ = QBQ−1 =
(

ϑ0 ϵt̃(w0utvt−vt) −w0u0v0−v1−vt

1
ϵt̃

(wt−w1)u0v0 ϑt+vt−w1utvt − 1
ϵt̃

(wt−w1)u0v0

w1u0v0−v0 ϵt̃(w1utvt−vt) ϑ1−vt+w1utvt

)

=
( ϑ0 ũ1ṽ1w0−ṽ1 −κ2−ϑ0

−b̃t1 ϑ̃1+κ2+b̃10 b̃t1

b̃10 t̃−ϵt̃[ϑ̃1+κ2+b̃10] −κ2−b̃10

)
,

where κ2 = − ϑ0+ϑ̃1+ϑ∞
2 and ũ1, ṽ1 are as in (5.2), and

b̃10 = u0v0
ṽ1 + t̃+ ϵt̃(v0 − κ2 − ϑ̃1)

ũ1ṽ1 + ϵt̃u0v0
− v0,

b̃t1 = u0v0
v0 − ϑ̃1 − κ2 − u0v0

ũ1ṽ1
(t̃+ ϑ̃1)

ũ1ṽ1 + ϵt̃u0v0
.

When ϵ ̸= 0 the irregular singular point at the origin is non-resonant
and the local description of the Stokes phenomenon is the same as in the
precedent section with the six Stokes matrices Sij (A.6). But for ϵ = 0 the
singularity becomes resonant and the description changes.

For |ϵt| small, there is a formal transformation

(A.15) ỹ = T̂ (ξ, ϵ)
(

ỹ′

ỹ′′

)
, (ỹ′, ỹ′′) ∈ C×C2,
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written as a formal power series in ξ with coefficients analytic in ϵ, that
splits the system in two diagonal blocks, one corresponding to the eigen-
value 0, other corresponding to the other eigenvalues {1 + ϵt̃, 1} (cf. [2]):

ξ2 dỹ′

dξ = ξϑ0 ỹ
′,(A.16)

ξ2 dỹ′′

dξ =
[(

1+ϵt̃ 1
0 1

)
+ ξB̃′′(ϵ) +O(ξ2)

]
ỹ′′,(A.17)

where B̃′′ =
(

b̃tt b̃t1
b̃1t b̃11

)
is the submatrix of B̃ =

(
bij

)
. This formal transfor-

mation T̂ (ξ, ϵ) is Borel summable in ξ all directions except of the coalescing
singular directions ±R+ and ±(1+ϵt̃)R+. Therefore it possesses Borel sums
Tα(ξ, ϵ) on four sectors: two large sectors which persist to the limit ϵ → 0,
and two small ones that disappear whenever ϵt̃ ∈ R. Only the Borel sums
on the large sectors will be considered.

Confluence of eigenvalues in the subsystem (A.17)

The phenomenon of confluence of eigenvalues in 2×2 parametric systems
at an irregular singular point of Poincaré rank 1 was studied previously by
the author [34]. This paragraph applies some of the results to the sys-
tem (A.17).

The matrix of the right side of the system has its eigenvalues equal to

λ(0) + ξλ(1) ±
√
α(0) + ξα(1) (mod ξ2),

where

λ(0) = 1 + ϵt̃

2 , λ(1) = b̃tt + b̃11

2 = ϑ̃1

2 ,

α(0) =
(
ϵt̃

2

)2

, α(1) = b̃1t + ϵt̃(̃btt − b̃11)
2 = ϵt̃

ϑt − ϑ1

2 = t̃− ϵt̃
ϑ̃1

2 ,

constitute the formal invariants of the system. In [34], it has been shown
that (A.17) possess a fundamental matrix solutions of the form

Ỹ ′′
• = R′′

•(ξ, t, ϵ) · e− λ(0)
ξ ξλ(1)

((
α(0)+ξα(1)

)− 1
4 0

0
(

α(0)+ξα(1)
) 1

4

)(
1 1

1 −1

)(
eΘ 0

0 e−Θ

)
,
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α(0)

α(1) R+

−R+

O

I+
I− 0

− α(0)

α(1)

ete1I N ′′

S′′
1t

S′′
t1

S̃′′
t

C ′′
−

1
ete1

C ′′
−N

′′ C ′′
+

C ′′
+

Figure A.3. The inner domains I± (white) and the outer domain O
(grey), and the connection matrices of the system (A.17). Note that
for ϵt̃ ̸= the point − α(0)

α(1) ̸= 0 is not a singularity of (A.17) thus solutions
are regular there.

where

Θ(ξ, ϵ, t̃) =
∫ ξ

∞

√
α(0) + ζα(1)

ζ2 dζ

=

−
√

α(0)+ξα(1)

ξ − α(1)

2
√

α(0) log
√

α(0)+ξα(1)+
√

α(0)√
α(0)+ξα(1)−

√
α(0)

, ϵ ̸= 0,

− 2α(0)

ξ , ϵ = 0,

andR′′
• , • = I±,O, are invertible analytic transformations defined on certain

domains in the ξ-space. These domains are delimited by the so called Stokes
curves (in the sense of exact WKB analysis [31]): the separatrix curves of
the foliation by real-time trajectories of the vector field

eiω ξ2

2
√
α(0) + ξα(1)

∂

∂ξ
, with some ω ∈

]
−π

2 + η,
π

2 − η
[
, η > 0,

emanating either from ∞ or from the “turning point” at ξ = − α(0)

α(1) , if ϵ ̸= 0.
There are two kinds of such sectorial domains (see Figure A.3), whose shape
in the coordinate ξ

α(1) depends only on a parameter µ = α(0)

(α(1))2 =
(

ϵ
2−ϵϑ̃1

)2:
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• A pair of inner domains I± for ϵ ̸= 0: these are sectors at 0 of ra-
dius proportionate to µ ∼ ϵ2

4 , separated one from another by the
singular directions ±ϵtR+. They disappear at the limit. The con-
nection matrices between Ỹ ′′

I+ and Ỹ ′′
I− are given by S′′

1t =
(

1 0
s1t 1

)
,

S′′
t1 =

(
1 st1

0 1

)
, the submatrices of the Stokes matrices S1t, St1 (A.6),

and needs to take into account also the formal monodromy N ′′ =(
e2

t 0

0 e2
1

)
, the submatrix of N (A.7). See Figure A.3.

• An outer domain O covering a complement of I+ ∪ I− in a disc of
a fixed radius with a cut in the direction α(0)

α(1) R+ ∼ ϵ2tR+. We
are mainly interested in the limit when ϵ → 0 along the sequences
1
ϵ ∈ 1

ϵ0
± 2N, hence the cut can be assumed to be in the direction

tR+. The connection matrix on this cut is S̃′′
t =

(
X0 −i

−i 0

)
with

X0 (A.11) the trace of monodromy of the subsystem (A.17) around
0. See Figure A.3.

• The connection matrices between the outer and the inner solution
bases can be expressed as

C ′′
+ =

(
1 1

s1t

0 −i
et

e1s1t

)
, C ′′

− =
(

0 et
e1s1t

i −i
e2

t
e2

1s1t

)
.

Returning now to the full system (A.14), one must intersect the do-
mains I±,O with the sectors of the Borel summability of the transforma-
tion T̂ (A.15). The full picture is therefore that of Figure A.4. There are
four inner Stokes matrices S1t, St1 and S10St0, S01S0t (A.6) between the
canonical solutions on the inner domains, and three outer Stokes matrices
S̃0, S̃t, S̃1 between the canonical solutions on the outer domains of the
form:
(A.18)

S̃0 =
( 1 s̃0t s̃01

0 1 0
0 0 1

)
, S̃t =

(
1 0 0
0 X0 −i

0 −i 0

)
, S̃1 =

( 1 0 0
s̃t0 1 0
s̃10 0 1

)
, Ñ =

(
e2

0 0 0
0 ete1 0
0 0 ete1

)
.

The connection matrices between the canonical bases on the inner and
outer domains are provided by:

(A.19) C+ =
( 1 0 0

0 1 1
s1t

0 0 −i et
e1s1t

)
, C− =

 1 0 0
0 0 et

e1s1t

0 i
−i e2

t
e2

1s1t

 .
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α(0)

α(1) R+

−R+
−(1 + ϵt̃)R+

0

− α(0)

α(1)

Ñ S̃0

S̃1

NS01S0tNS01S0t

S10St0
S1t

St1

S̃t

C−

C−NÑ
−1 C+

C+

Figure A.4. The connection matrices between different canonical so-
lution bases of the confluent system (A.14) with N (A.7), Sij (A.6),
S̃i, Ñ (A.18) and C± (A.19).

Lemma A.2. — The coefficients of the outer Stokes matrices are equal
to

(A.20)
s̃0t = s0t + s01s1t, s̃01 = −ie1

et
s0t,

s̃t0 = st0 + s10

s1t
, s̃10 = −i et

e1

s10

s1t
.

Proof. — We have

S̃0 = Ñ−1C−NS01S0tN
−1Ñ(C−)−1,

S̃1 = C+S10St0(C+)−1,

see Figure A.4. □

Remark A.3. — The inner Stokes matrices Sij are determined only up

to conjugation by diagonal matrices
(

d0 0 0
0 dt 0
0 0 d1

)
. This corresponds through

(A.20) to conjugation of the outer Stokes matrices S̃i by
(

d0 0 0
0 dt 0
0 0 dt

)
.

The monodromy matrix of an outer solution around the origin is given
by

(A.21) M̃−1
∞ = S̃1S̃tÑ S̃0 =

 e2
0 e2

0s̃0t e2
0s̃01

e2
0s̃t0 ete1X0+e2

0s̃t0s̃0t −iete1+e2
0s̃t0s̃01

e2
0s̃10 −iete1+e2

0s̃10s̃0t e2
0s̃10s̃01

,
and we know that its eigenvalues are 1, e−2πiκ1 = e0ete1

e∞
and e−2πiκ2 =

e0ete1e∞.

TOME 0 (0), FASCICULE 0



68 Martin KLIMEŠ

The new variables X̃ (5.7) are defined by

(A.22) X̃1 = X0, X̃0 = e0s̃10s̃01 + e0, X̃∞ = ie0s̃t0s̃01 + ete1

e0
.

They are invariant with respect to the conjugation of Remark A.3.
Expressing the coefficients of the linear and the quadratic term of the

characteristic polynomial of M̃−1
∞ (A.21) gives

ete1X̃1 + e0X̃0 + e2
0s̃0ts̃t0 = 1 + e0ete1

e∞
+ e0ete1e∞ := E,

e0ete1X̃1X̃0+e0ete1X̃∞+ie2
0ete1s̃0ts̃10 = e0ete1

e∞
+e0ete1e∞+e2

0e
2
t e

2
1 := E′.

Inserting these two identities into the identity

0 = e2
0 · s̃0ts̃10 · s̃t0s̃01 − e2

0 · s̃0ts̃t0 · s̃10s̃01

= −is̃0ts̃10(e0X̃∞ + ete1) − s̃0ts̃t0(e0X̃0 − e2
0) = 0,

gives the Fricke relation (5.8)

0 = X̃1X̃0X̃∞ + X̃2
0 + X̃2

∞ − θ̃1X̃1 − θ̃0X̃0 − θ̃∞X̃∞ + θ̃t,

with

θ̃1 = ete1, θ̃0 = ete1

e0
+ E′

e0ete1
= a∞+ete1a0,

θ̃t = E+ E′

e2
0

= 1+ete1a0a∞+e2
t e

2
1, θ̃∞ = e0 + E

e0
= a0 + ete1a∞.

The formulas of change of variables (5.13), (5.12) of Theorem 5.2 between
(X, θ) and (X̃, θ̃) are obtained from (A.22), (A.20) and (A.11). As remarked
on page 61, the singular line L0 (5.14) corresponds to s1t = 0, i.e. to the
triviality of the Stokes matrix S1t (A.6).
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