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POSITIVE SUPERSOLUTIONS OF NON-AUTONOMOUS
QUASILINEAR ELLIPTIC EQUATIONS WITH MIXED

REACTION

by Asadollah AGHAJANI & Vicenţiu D. RĂDULESCU (*)

Abstract. — We provide a simple method for obtaining new Liouville-type
theorems for positive supersolutions of the elliptic problem −∆pu+b(x)|∇u|

pq
q+1 =

c(x)uq in Ω, where Ω is an exterior domain in RN with N ⩾ p > 1 and q ⩾ p − 1.
In the case q ̸= p − 1, we mainly deal with potentials of the type b(x) = |x|a,
c(x) = λ|x|σ , where λ > 0 and a, σ ∈ R. We show that positive supersolutions do
not exist in some ranges of the parameters p, q, a, σ, which turn out to be optimal.
When q = p − 1, we consider the above problem with general weights b(x) ⩾ 0,
c(x) > 0 and we assume that c(x)− bp(x)

pp > 0 for large |x|, but we also allow the case

lim|x|→∞[c(x) − bp(x)
pp ] = 0. The weights b and c are allowed to be unbounded. We

prove that if this equation has a positive supersolution, then the potentials must
satisfy a related differential inequality not depending on the supersolution. We
also establish sufficient conditions for the nonexistence of positive supersolutions
in relationship with the values of τ := lim sup|x|→∞ |x|b(x) ⩽ ∞. A key ingredient
in the proofs is a generalized Hardy-type inequality associated to the p-Laplace
operator.

Résumé. — Nous proposons une méthode simple pour obtenir de nouveaux
théorèmes du type Liouville pour les supersolutions positives du problème ellip-
tique −∆pu + b(x)|∇u|

pq
q+1 = c(x)uq dans Ω, où Ω est un domaine extérieur dans

RN avec N ⩾ p > 1 et q ⩾ p−1. Dans le cas q ̸= p−1, on traite principalement des
potentiels du type b(x) = |x|a, c(x) = λ|x|σ , où λ > 0 et a, σ ∈ R. Nous montrons
que les supersolutions positives n’existent pas dans certaines gammes de paramètres
p, q, a, σ, qui s’avèrent optimales. Si q = p − 1, on considère le problème ci-dessus
avec des poids généraux b(x) ⩾ 0, c(x) > 0 et on suppose que c(x)− bp(x)

pp > 0 si |x|

est assez large, mais on admet aussi le cas lim|x|→∞[c(x)− bp(x)
pp ] = 0. Les potentiels

b et c sont autorisés à être non bornés. Nous prouvons que si cette équation a une
supersolution positive, alors les potentiels doivent satisfaire une certaine inégalité
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différentielle ne dépendant pas de la supersolution. Nous établissons également des
conditions suffisantes pour la non-existence de supersolutions positives en relation
avec les valeurs de τ := lim sup|x|→∞ |x|b(x) ⩽ ∞. Un ingrédient clé des preuves
est une inégalité généralisée de type Hardy associée à l’opérateur p-Laplace.

1. Introduction

Consider the quasilinear elliptic equation

(1.1) −∆pu+ b(x)|∇u|
pq

q+1 = c(x)uq in Ω,

where Ω ⊂ RN is an exterior domain, ∆pu := div(|∇u|p−2∇u), 1 < p ⩽ N ,
and q ⩾ p − 1. We are concerned with the existence or non-existence of
solutions u ∈ C2(Ω,R+), but without assuming neither any hypothesis on
the asymptotic behavior of the supersolutions near infinity, nor that they
are bounded or radial.

In the case q > p − 1, we shall be mainly concerned with potentials of
the type b(x) = |x|a, c(x) = λ|x|σ, hence we study the problem

(Pλ) −∆pu+ |x|a|∇u|
pq

q+1 = λ|x|σuq in Ω,

where a, σ are real numbers and λ is a positive parameter.
In the case q = p− 1, we consider Eq. (1.1) with general weights b(x) ⩾

0, c(x) > 0, hence we study the problem

(Q) −∆pu+ b(x)|∇u|p−1 = c(x)up−1 in Ω.

Before we summarize our results, we give a brief history of the problem.
Problem (1.1) in the semilinear autonomous case without convection cor-
responding to p = 2, b(x) ≡ 0, c(x) ≡ 1 and Ω = RN does not admit any
positive solution provided that q < (N+2)/(N−2) (N ⩾ 3), see Gidas and
Spruck [30]. It was later proved by Gidas and Spruck [31] that even posi-
tive supersolutions of this equation cannot exist with the more restrictive
assumption q ⩽ N/(N − 2) (see Quittner and Souplet [36, Theorem 8.4]
for a simple proof of this assertion; this restriction on the exponent is opti-
mal). In the autonomous quasilinear case corresponding to b(x) ≡ c(x) ≡ 1,
problem (1.1) reduces to the following elliptic equation with convection

(1.2) −∆pu+ |∇u|s = λuq in Ω.

The semilinear case

(1.3) −∆u+ |∇u|s = λuq in Ω,

where s > 1, has been the subject of many works, where a basic observa-
tion is that the two terms λuq and |∇u|s are in competition; see Serrin and
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Zou [38]. However, Serrin and Zou [38] were interested in the existence and
nonexistence of radial solutions in RN . The general case corresponding to
problem (1.2) has been much less considered in the literature, see for ex-
ample [26, 27]). In particular, Galakhov [27] studied the quasilinear elliptic
equation

−∆pu = uq − |∇u|s in RN ,

and considered the existence or nonexistence of positive classical solutions
with radial symmetry such that u(x) → 0 as |x| → ∞. If s > 1, then under
the scaling transformation uµ := µ

p−s
s−1 u(µx) for µ > 0 (see [15, 16] for the

case p = 2), the equation (1.2) becomes

−∆puµ + |∇uµ|s = µ
s(p+q−1)−pq

s−1 λuq
µ.

Therefore, if s ̸= pq
p+q−1 , then problem (1.2) reduces to

−∆pu+ |∇u|s = uq.

If s > pq
p+q+1 then the limit equation obtained as µ → 0 is the Riccati

equation
−∆puµ + |∇uµ|s = 0,

where the exponent s is dominant. The other scaling transformation vµ :=
µ

p
q−1u(µx) for µ > 0, transforms equation (1.2) into

−∆pvµ + µ
pq−s(p+q−1)

q−1 |∇vµ|s = λvq
µ.

Moreover, when s < pq
p+q−1 , the limit equation when µ → 0 is the gener-

alized Lane–Emden equation

−∆pv = λvq,

where the exponent q is dominant.
In most of the above mentioned works (studied in the semilinear case p =

2) the analysis deals with the case s ̸= 2q
q+1 . In the critical case s = 2q

q+1 , then
the value of λ plays a fundamental role, with a delicate interaction with the
exponents p, q. Bidaut-Véron, Garcia-Huidobro and Véron [15] studied local
and global properties of positive solutions of problem (1.3) in Ω = Ω′ \ {0}
where Ω′ is an open subset of RN , and existence or non-existence of entire
positive solutions in RN . A related analysis was developed in [16] in the
framework of radial solutions to problem (1.3) in Ω = RN or RN \ {0}
for s, q > 1 and λ is a real parameter. Alarcon, García-Melián and Quaas
in [2] considered problem (1.3) with s > 1 and obtained Liouville-type
theorems for positive classical supersolutions in exterior domains without
making any assumption about boundedness or asymptotic behavior of the
supersolutions near infinity.
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Consider problem (Pλ) and observe that a supersolution for some value
of λ̄ is also a supersolution for every value λ < λ̄. Thus, we can define

λ∗ = λ∗(p, q, σ, a)

:= inf
{
λ > 0; there are no positive supersolutions for problem (Pλ)

}
.

If p = 2, a = σ = 0 and Ω = RN \BR0 , it is proved in [2] that

(1.4) λ∗ =
(

2
N − q(N − 2)

)q
qq

(q + 1)q+1

and that for any λ ∈ (0, λ∗) there are positive supersolutions which do not
blow up at infinity. The method relies in analyzing the function m(R) =
min|x|=R u(x). By means of a device introduced in [11] but slightly different
and more involved approach (due to the nonhomogeneity of the left-hand
side in (Pλ) that makes hard to obtain a Hadamard-type property), Alar-
con, García-Melián and Quaas in [2] obtained some suitable upper and
lower bounds for m(R). These estimates are useful to get nonexistence
results.

In this paper we first consider problem (Pλ) in an exterior domain Ω for
all p > 1 and determine the exact value of λ∗ for which the problem does
not admit any positive supersolution for λ > λ∗ while for λ ⩽ λ∗ there
always exist a positive supersolution for (Pλ).

In the case q = p− 1, the problem of existence or nonexistence of super-
solution for problem (Q) has been studied in the literature, mostly in the
case p = 2, namely

(1.5) −∆u+ b(x)|∇u| = c(x)u in Ω,

where Ω is an exterior domain RN , N ⩾ 3.
As a consequence of the study of eigenvalue problems in RN , Berestycki,

Hamel and Nadirashvili [11] proved that if the vector field b and the function
c are continuous, then the problem

(1.6) −∆u+ b(x) · ∇u ⩾ c(x)u in RN

does not admit any positive solution provided that b and c are bounded
and satisfy

(1.7) lim inf
|x|→∞

(
c(x) − |b(x)|2

4

)
> 0.

Berestycki, Hamel and Rossi [12] extended the results of [11] to
non-autonomous elliptic equations of the type

(1.8) −tr (A(x)D2u) − b(x) ·Du ⩾ c(x)u in RN .

ANNALES DE L’INSTITUT FOURIER
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They showed that if A(x) is a smooth uniformly elliptic matrix field, b :
RN → RN and c : RN → R are bounded and smooth and

lim inf
|x|→∞

(4λ(x)c(x) − |b(x)|2) > 0,

where λ(x) := min|ξ|=1 A(x)ξ · ξ, then the only nonnegative function u

satisfying (1.8) in the classical sense is u ≡ 0.
Rossi [37] generalized the above nonexistence results to the framework of

fully nonlinear elliptic operators, showing that the above assumption can
be relaxed (by applying the result to a subdomain); in particular, the case

lim inf
|x|→∞

(
c(x) − |b(x)|2

4

)
< 0

is allowed. However, all the above results require that

(1.9) lim sup
|x|→∞

(
c(x) − |b(x)|2

4

)
> 0.

Aghajani and Cowan [1] refined some of these results by using a nontrivial
application of a generalized Hardy inequality obtained by Cowan [24]. In
particular, the case

lim
|x|→∞

(
c(x) − |b(x)|2

4

)
= 0

is allowed. We also refer to [20] and [21], where the authors proved some
Hadamard and Liouville type properties for nonnegative viscosity superso-
lutions of fully non linear uniformly elliptic partial differential inequalities
in the whole space or in an exterior domain; see [2, 3, 4, 5, 6, 19, 20, 21,
22, 23, 25]. Alarcon, García-Melián and Quaas [4] considered positive clas-
sical supersolutions of problem (1.5) for more general unbounded weights
b and c. They proved that if b, c ∈ C(RN \ BR0) verify (1.7) and satisfy
a further restriction related to the fundamental solutions of the homoge-
neous problem (see Theorems 1.1 and 1.2 in [4]) then there are no classical
positive supersolutions to (1.5) which do (or do not) blow up at infin-
ity. Their proof of nonexistence results depends on properties of the func-
tion m(R) = inf |x|=R u(x) and the fundamental solution of the equation
−∆v + b̃(|x|)|∇v| = 0 in RN \BR0 , where b̃(r) := sup|x|=r b(x).

In this paper, we consider the more general problem (Q) in exterior
domains with continuous functions b, c satisfying c(x) − bp(x)

pp ⩾ 0 for |x|
large. Using a different approach, by employing a generalized version of the
Hardy inequality, we obtain new Liouville-type results, that seems to be
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sharp in some sense. In particular, we may allow the degenerate case

lim
|x|→∞

(
c(x) − bp(x)

pp

)
= 0,

and without the boundedness assumption on the weights b and c.

2. Statement of main results

We now describe the main results of this paper and consider both prob-
lems (Pλ) and (Q).

2.1. Results for problem (Pλ)

Here we formulate our first main result for problem (Pλ) with q > p− 1
in exterior domains.

Define

(2.1) Qσ := (N + σ)(p− 1)
N − p

.

First note that every solution of the inequality

(2.2) −∆pu ⩾ λ|x|σuq,

is also a supersolution of (Pλ). When q > Qσ, by the results of Bidaut-Véron
and Pohozaev [17] or Bidaut-Véron [13], there exists a nontrivial solution of
problem (2.2) in exterior domains (see Theorem 4.1 in Appendix), hence in
this case we simply get λ∗ = 0. The following theorem gives a rather com-
plete description of existence and nonexistence of positive supersolutions
of problem (Pλ) for p− 1 < q < Qσ.

Theorem 2.1. — Consider problem (Pλ) in an exterior domain Ω =
RN \BR0 . Assume that 1 < p ⩽ N and p−1 < q < Qσ. Then the following
properties hold.

(i) If σ = a(q + 1) then

λ∗ =
(
Qσ − p+ 1
Qσ − q

)q
qq

(p− 1)q(q + 1)q+1 .

ANNALES DE L’INSTITUT FOURIER
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Moreover, for all λ ∈ (0, λ∗] there exist positive supersolutions of
problem (Pλ) and every positive supersolution satisfies

(2.3)

lim sup
|x|→∞

|∇u|p

uq+1 ⩾ T1

(
Qσ − p+ 1
q − p+ 1

)q+1

and

lim inf
|x|→∞

|∇u|p

uq+1 ⩽ T2

(
Qσ − p+ 1
q − p+ 1

)q+1
,

where 0 < T1 < T2 are two roots of the following equation in [0,∞)

λ

(
q − p+ 1
Qσ − p+ 1

)q

+ (p− 1)(Qσ − q)
q − p+ 1 T − T

q
q+1 = 0.

(ii) If σ > a(q + 1), then λ∗ = 0.
(iii) If σ < a(q+1), then for any λ < ∞ a positive supersolution of (Pλ)

can always be constructed for suitable large R0.

Remark. — Note that by the above theorem, in the special case when
a = σ = 0 and if Ω is an exterior domain, we obtain

λ∗ =
(

p(p− 1)
N(p− 1) − q(N − p)

)q
qq

(q + 1)q+1 , when p− 1 < q <
N(p− 1)
N − p

.

In particular, if p = 2 we have

λ∗ =
(

2
N − q(N − 2)

)q
qq

(q + 1)q+1 , when 1 < q <
N

N − 2 ,

which coincides with (1.4) obtained in [2].

2.2. Results for problem (Q)

As we have already pointed out, when q = p−1 we consider problem (Q)
with general weights b(x) ⩾ 0, c(x) > 0.

Theorem 2.2. — Let 1 < p < N , b, c ∈ C(RN \BR0) with c(x)− b(x)p

pp >

0 for large |x|. Then problem (Q) does not have any positive supersolutions
if

(2.4) lim inf
|x|→∞

|x|p
[

c(x)
(k + 1)p−1 − b(x)p

ppkp−1

]
> (N − p

p
)p, for some k > 0,

TOME 73 (2023), FASCICULE 6
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or

(2.5) inf
R
2 <|x|<2γR

(1 − b(x)
p p
√
c(x)

)p inf
R<|x|<γR

|x|pc(x)

>
2(β + 4)p ln 2

ln γ + βp, where β := N − p

p
,

for some γ > 1 and R > 2R0. In particular, if τ := lim sup|x|→∞ |x|b(x) <
∞ then problem (Q) does not have any positive supersolution if

(2.6) lim inf
|x|→∞

|x|pc(x) >
(
N − p+ τ

p

)p

.

Moreover, if

(2.7) lim sup
|x|→∞

|x|pc(x) <
(
N − p+ τ

p

)p

,

then problem (Q) has a positive supersolution in RN \BR1 forR1 sufficiently
large. Furthermore, when N = p we have the same nonexistence result if

(2.8) lim inf
|x|→∞

|x|δ
[

c(x)
(k + 1)p−1 − b(x)p

ppkp−1

]
> 0,

for some δ < p and k > 0.

Corollary 2.3. — Assume that N > p, p > 1. Consider the equation

(2.9) ∆pu+ b|x|a|∇u|p−1 = c|x|σup−1 in Ω,

where Ω is an exterior domain, b, c ∈ R, c > 0. Then the above equation
does not admit any positive supersolution in the following four sets of
parameters

[σ > −p, σ > ap, c > 0], [σ > −p, σ = ap, c > (bp/pp]

[σ = −p, σ > ap, c > (N − p)p/pp]
or

[σ = −p, σ = ap, c > (N − p+ b)p/pp].

Corollary 2.4. — Assume N > p > 1. Consider the problem

(2.10) ∆pu+ bea|x||∇u|p−1 = ceσ|x|up−1 in Ω,

where Ω is an exterior domain, b, c ∈ R, σ, a > 0. Then the above equation
does not admit any positive supersolution when σ > ap and c > 0 or σ = ap

and c > bp/pp.

Here we give an example of a Problem (Q) where c(x) − b(x)p

pp > 0 but

lim inf |x|→∞

[
c(x) − b(x)p

pp

]
= 0.
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Example 2.5. — Consider the problem

(2.11) −∆pu+ |x|a|∇u|p−1 =
(

|x|pa

pp
+ 1

|x|µ

)
up−1, x ∈ RN \B1

where µ, a > 0 and (p− 1)a+ µ < 1. Notice that we have

lim
|x|→∞

[
c(x) − b(x)p

pp

]
= lim

|x|→∞

1
|x|µ

= 0.

However, for a fixed γ > 1, it is not hard to see that

inf
R
2 <|x|<2γR

(
1 − b(x)

p p
√
c(x)

)p

inf
R<|x|<γR

|x|pc(x) = O(Rp(1−µ−(p−1)a)).

Hence, condition (2.5) of Theorem 2.2 holds and the problem does not
admit any positive supersolution.

The proof of Theorem 2.2 relies on Lemma 3.1 and the following results,
which have their own interest. The first one is a generalized form of the
Hardy inequality.

Proposition 2.6. — Let E > 0 be a smooth function on a domain Ω
of RN , then we have

(2.12)
∫

Ω

−∆pE

Ep−1 |ϕ|p ⩽
∫

Ω
|∇ϕ|p,

for every ϕ ∈ C∞
c (Ω).

Remark. — Note that when 1 < p < N if we take E(x) = (|x| + ε)
p−N

p

in (2.12) and then we set ε → 0 we get the Hardy inequality(
N − p

p

)p ∫
Ω

|ϕ|p

|x|p
⩽
∫

Ω
|∇ϕ|p, ϕ ∈ C∞

c (Ω).

Also note that the above general Hardy-type inequality (2.12) for the case
p = 2 and with the restriction that −∆E > 0 is well-known; see Cowan [24]
or the book of Ghoussoub–Moradifam [28] and Ghoussoub–Robert [29].

Proposition 2.7. — Assume problem (Q) has a positive supersolution
in an arbitrary domain Ω in RN . Then the functions b(x) and c(x) must
satisfy the inequality

(2.13) p

√∫
Ω
c(x)|ϕ|p ⩽ p

√∫
Ω

|∇ϕ|p + p

√∫
Ω

b(x)p

pp
|ϕ|p,

for every ϕ ∈ C∞
c (Ω), which also implies that

(2.14) inf
supp ϕ

(
1 − b(x)

p p
√
c(x)

)p ∫
Ω
c(x)|ϕ|p ⩽

∫
Ω

|∇ϕ|p,

TOME 73 (2023), FASCICULE 6
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and

(2.15)
∫

Ω

(
c(x) − β1−p b(x)p

pp

)
|ϕ|p ⩽ α1−p

∫
Ω

|∇ϕ|p,

with α+ β = 1, α, β > 0.

In order to apply the results of Proposition 2.7 to the problem (Q) we
need the following property.

Theorem 2.8. — Let 1 < p < N . If a function c(x) ⩾ 0 satisfies

(2.16)
∫

Ω
c(x)ϕp ⩽

∫
Ω

|∇ϕ|p,

for every 0 ⩽ ϕ ∈ C∞
c (Ω), where Ω is an exterior domain in RN , then we

have

(2.17) inf
R<|x|<γR

(|x|pc(x)) ⩽ 2(β + 4)p ln 2
ln γ + βp, with β := N − p

p
,

for all γ > 1 and R sufficiently large. In particular, we have

(2.18) lim inf
x→∞

|x|pc(x) ⩽
(
N − p

p

)p

.

As a consequence, the inequality problem

(2.19) −∆pw ⩾ c(x)wp−1, in Ω,

does not admit any positive solution if

(2.20) lim inf
x→∞

|x|pc(x) >
(
N − p

p

)p

.

Corollary 2.9. — Let E be a positive smooth function in an exterior
domain Ω of RN (N ⩾ 3) with −∆pE ⩾ 0. Then

(2.21) lim inf
|x|→∞

|x|p −∆pE

Ep−1 ⩽

(
N − p

p

)p

.

Example 2.10. — As an application of the above property, consider the
equation

(2.22) −∆pu = |x|auq in Ω,

where a ∈ R, q > p − 1 and Ω is an exterior domain in RN (N ⩾ 3).
If u is a positive classical supersolution of this equation then we get, by
Corollary 2.9,

lim inf
|x|→∞

|x|p −∆pu

up−1 = lim inf
|x|→∞

|x|a+puq−p+1 ⩽

(
N − p

p

)p

.
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However, we know that a super p-harmonic function u satisfies u(x) ⩾

C|x|
p−N
p−1 in Ω (see [7] or [38]), hence we must have

a+ p+ (q − p+ 1)p−N

p− 1 ⩽ 0

Thus, the above equation does not admit any positive supersolution if q <
(N+a)(p−1)

N−p , which is a known result. Also, by a similar argument from
Corollary 2.9 we see that the equation

−∆pu = µu

|x|p
(µ > 0)

does not admit any positive supersolution in an exterior domain if µ >

(N − p)p/pp.

3. Proof of main results

The following simple observation is crucial for the proof of the main
results.

Lemma 3.1. — Let u be a classical positive supersolution of
problem (1.1) in an arbitrary domain Ω. Then for any k > 0 the func-
tion wk defined by u(x) = wk+1

k

k+1 is a solution of

(3.1) ∆pwk ⩾ Λk(x)wk(q−p+1)+q
k in Ω,

where

(3.2) Λk(x) := c(x)
(k + 1)q

−
( b(x)

q+1 )q+1( q
p−1 )q

kq
.

Proof. — We set w = wk, then substituting u = wk+1

k+1 in (1.1), using the
formulas ∇u = wk∇w and

∆pu = k(p− 1)wk(p−1)−1|∇w|p + wk(p−1)∆pw,

we deduce that w satisfies

− ∆pw ⩾
c(x)

(k + 1)q
wk(q−p+1)+q + k(p− 1) |∇w|p

w
− b(x)w

k(q−p+1)
q+1 |∇w|

pq
q+1

= wk(q−p+1)+q

[
c(x)

(k+1)q
+k(p−1) |∇w|p

wk(q−p+1)+q+1 −b(x) |∇w|
pq

q+1

w
qk(q−p+1)

q+1 +q

]
.

Now taking
T (x) := |∇w|p

wk(q−p+1)+q+1 ,
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we see that the equation above turns into

(3.3)
−∆pw ⩾ wk(q−p+1)+q

[
c(x)

(k + 1)q
+ k(p− 1)T (x) − b(x)T (x)

q
q+1

]
:= wk(q−p+1)+qHk(x).

Set f(T ) := A+BT − CT
q

q+1 with A,B > 0, C ⩾ 0. Then

min
T⩾0

f(T ) = A−
(

C

q + 1

)q+1 ( q
B

)q

,

hence

Hk(x) ⩾
[

c(x)
(k + 1)q

−
(
b(x)
q + 1

)q+1(
q

k(p− 1)

)q
]

= Λk(x),

hence w satisfies (3.1). □

3.1. Proof of Theorem 2.1

Let u be a supersolution of (Pλ) in an exterior domain Ω, and define
the function wk on Ω via u = wk+1

k

k+1 , k > 0. Then by Proposition 2.6 (with
b(x) = |x|a and c(x) = λ|x|σ) we see that wk satisfies

(3.4) −∆wk ⩾ Λk(x)wk(q−p+1)+q
k , in Ω,

where

Λk(x) := λ|x|σ

(k + 1)q
−
(

|x|a

q + 1

)q+1(
q

k(p− 1)

)q

(3.5) = |x|σ
[

λ

(k + 1)q
−
(

1
q + 1

)q+1(
q

k(p− 1)

)q

|x|a(q+1)−σ

]
.

Now assume that we are in the case (i), that is, σ = a(q + 1). Then we
have

(3.6) Λk(x) = |x|σ
(

λ

(k + 1)q
−
(

1
q + 1

)q+1(
q

k(p− 1)

)q
)
.

Thus, by Theorem4.1 in Appendix, if k(q−p+1)+q ⩽ Qσ, or equivalently
k ⩽ Qσ−q

q−p+1 , this is impossible if the term inside the parentheses in (3.6) is
positive. This happens if

(3.7) λ >

(
1 + 1

k

)q
qq

(q + 1)q+1(p− 1)q
.
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Taking k := Qσ−q
q−p+1 we see that the right-hand side of (3.7) becomes λ∗.

Thus, we proved that for all λ > λ∗, problem (Pλ) does not admit a positive
supersolution. Note that in the above case we used the fact that if q > p−1,
then k(q − p+ 1) + q > q > p− 1 for any k > 0, hence we need q < Qσ in
order to have k > 0.

Now we construct a positive supersolution for any λ ∈ (0, λ∗], provided
that p− 1 < q < Qσ. Set

u(x) = A|x|−β , β > 0.

Then
−∆pu+ |x|a|∇u|s ⩾ λ|x|σuq in Ω

is equivalent to

(3.8) γAp−1−q|x|t1 +As−qβs|x|t2 ⩾ λ in Ω,

where
γ := βp

(
N − p

β
− p+ 1

)
,

t1 := β(q − p+ 1) − p− σ, and t2 := a− σ + β(q − s) − s.

We now observe that if s = pq
q+1 then taking β := p+σ

q−p+1 (which is positive
by the assumption p− 1 < q < Qσ) we get t1 = 0, t2 = a− σ

q+1 . If we set
T := Ap−1−qβp then relation (3.8) becomes

(3.9)
(
N − p

β
− p+ 1

)
T + T

q
q+1 |x|a− σ

q+1 ⩾ λ in Ω.

Now assume that a = σ
q+1 . Then relation (3.9) is equivalent to

f(T ) :=
(
N − p

β
− p+ 1

)
T + T

q
q+1 ⩾ λ.

By the assumption p− 1 < q < Qσ we have
N − p

β
− p+ 1 = −(Qσ − q)

Qσ − p+ 1 < 0.

Then we see that the function f(T ) attains its maximum at the point

T0 =
(

q

(q + 1)(p− 1 − N−p
β )

)q+1

= (qλ∗)
q+1

q

with

f(T0) = qq

(q + 1)q+1

(
1

p− 1 − N−p
β

)q

= λ∗.

Hence, choosing A so that Ap−1−qβp = T0, we see then that the function
u(x) = A|x|−β is a supersolution of (Pλ) for λ ⩽ λ∗.
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To prove the estimates (2.3), let λ ∈ (0, λ∗] and uλ be a positive su-
persolution of (Pλ). Then, by (3.3), the function w = ((k + 1)u)

1
k+1 with

k := Qσ−q
q−p+! satisfies

(3.10) −∆pw ⩾ |x|σwQσH(T (x)),

where
T (x) := |∇w|p

wQσ+1

and
H(T ) = λ

(
q − p+ 1
Qσ − p+ 1

)q

+ (p− 1)(Qσ − q)
q − p+ 1 T − T

q
q+1 .

Note that when λ ⩽ λ∗, then H has exactly two roots in [0,∞), say T1 <

T2, and H(T ) ⩽ 0 in [T1, T2] and positive for other T ’s. By Theorem 4.1
in Appendix, if H(T (x)) is positive at infinity, bounded away from zero,
then (3.10) has not any positive solution, a contradiction. It follows that
H(T (xn)) ⩽ 0 for a sequence xn → ∞ as n → ∞, hence T (xn) ∈ [T1, T2]
for every n. We deduce that

lim sup
x→∞

T (x) ⩾ T1 and lim inf
x→∞

T (x) ⩽ T2,

and writing this out in terms of u we get the estimate (2.3).
Now consider the case (ii), that is, σ > a(q + 1) and fixed λ > 0. If u is

a positive supersolition of (Pλ), we define again the function wk on Ω via
u = wk+1

k

k+1 (k > 0). With similar arguments we deduce that wk satisfies

−∆wk ⩾ Λk(x)wk(q−p+1)+q
k in Ω,

where Λk(x) is given in (3.5). However, since a(q+ 1) − σ < 0 then for any
k > 0 we have Λk(x) ⩾ λ

2(k+1)q |x|σ in RN \ {BR1} for R1 > R0 sufficiently
large depending on k. But by Theorem 4.1 in Appendix this is impossible
if we choose k small so that k(q − p+ 1) + q ⩽ Qσ.

Finally, assume we are in the case (iii), that is, σ < a(q+1). To construct
a positive supersolution we set again u = A|x|−β with β = p+σ

q−p−1 , as in the
first part above. Recall that u is a supersolution if it satisfies (3.9). Since
in this case we have a > σ

q+1 , then for a given λ < ∞ the inequality (3.9)
holds for a suitable large R0 that depends on λ. □

3.2. Proof of Theorem 2.2

First we prove the result under the condition (2.4). Taking u = wk+1

k+1
with k > 0 and applying Proposition 2.6, we see that w satisfies

(3.11) −∆pw ⩾ Λk(x)wp−1 in Ω,
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where

(3.12) Λk(x) :=
[

c(x)
(k + 1)p−1 −

(
b(x)
p

)p 1
kp−1

]
.

If N > p then by Theorem 2.8 we see that problem (1.1) does not admit
any positive supersolution if for some k > 0 we have

lim inf
|x|→∞

|x|p
[

c(x)
(k + 1)p−1 −

(
b(x)
p

)p 1
kp−1

]
>

(
N − p

p

)p

.

Note that we can also get the above result by using Proposition 2.7. Indeed,
by (2.15), the potentials b and c must satisfy

(3.13)
∫

Ω

(
c(x) − β1−p b(x)p

pp

)
|ϕ|p

⩽ α1−p

∫
Ω

|∇ϕ|p with α+ β = 1, α, β > 0.

Dividing both sides of (3.13) by α1−p and then setting α := 1
k+1 for k > 0

we get ∫
Ω

Λk(x)|ϕ|p ⩽
∫

Ω
|∇ϕ|p,

where Λk is given in (3.12), hence the result follows by Theorem 2.8.
Now we prove the result under condition (2.5). Note that by Proposi-

tion 2.7, if problem (Q) has a solution u > 0 then we have for all ϕ ∈ C∞
c (Ω)

(3.14) inf
supp ϕ

(
1 − b(x)

p p
√
c(x)

)p ∫
Ω
c(x)|ϕ|p ⩽

∫
Ω

|∇ϕ|p.

Now consider the same test function ϕ as in the proof of Theorem 2.8.
Since we have suppϕ = [ R

2 ⩽ |x| ⩽ 2γR] then
(3.15)

inf
R
2 <|x|<2γR

(
1 − b(x)

p p
√
c(x)

)p

inf
R<|x|<γR

|x|pc(x) ⩽ 2(β + 4)p ln 2
ln γ + βp,

hence the problem does not admit any positive solution if the above in-
equality does not hold.

To prove the second part, let τ := lim sup|x|→∞ |x|b(x) < ∞ and set

α := lim inf
|x|→∞

|x|pc(x).

If α = +∞, then (2.6) obviously holds. Thus, we assume α < ∞. Then we
see that (2.4) holds if

α

(k + 1)p−1 − τp

ppkp−1 >

(
N − p

p

)p
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for some k > 0. Taking k = τ
(
pα

1
p − τ

)−1
we see that the above inequality

holds if

α >

(
N − p+ τ

p

)p

.

Now set α := lim sup|x|→∞ |x|pc(x) and assuming that α < (N − p +
τ)p/pp, we construct a positive supersolution. Choose α1 < α and τ1 < τ

so that

(3.16) α1 ⩽

(
N − p+ τ1

p

)p

.

Now we look for some m > 0 so that the function u(x) = |x|−m is a
supersolution of Problem (Q) in RN \BR1 for R1 sufficiently large. For this
purpose we need

− ∆pu+ b(x)|∇u|p−1 − c(x)up−1

= |x|−p−m(p−1) (mp−1(−m(p− 1) +N − p) +mp−1|x|b(x) − |x|pc(x)
)

⩾ 0

for |x| sufficiently large. By the definition of α, τ we have

mp−1(−m(p− 1) +N − p) +mp−1|x|b(x) − |x|pc(x)

⩾ mp−1(−m(p− 1) +N − p) +mp−1τ1 − α1

= −(p− 1)mp + (N − p+ τ1)mp−1 − α1

for |x| sufficiently large. Note the last term is nonnegative for some m > 0
if and only if (3.16) holds. The proof is now complete. □

Proof of Corollaries 2.3 and 2.4. — Consider the equation (2.9). By
Theorem 2.2, we see that this equation does not have any positive super-
solution if

lim inf
|x|→∞

|x|p+σ

[
c

(k + 1)p−1 − bp|x|ap−σ

ppkp−1

]
>

(
N − p

p

)p

for some k > 0.

We first assume that σ > −p. If ap < σ and c > 0, then (2.10) obviously
holds. If σ = ap then we need

c

(k + 1)p−1 − bp

ppkp−1 > 0

or, equivalently,
ppc

bp
>

(
1 + 1

k

)p−1

for some k > 0. This is the case if cpp > bp.
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Now let σ = −p. If ap < σ, then (2.10) holds if

c

(k + 1)p−1 >

(
N − p

p

)p

,

for some k > 0, and this is the case if cpp > (N − p)p. Note that in this
situation the result can be also followed by the last part of Theorem 2.2 as
in this case we must have a < −1 hence τ := limx→∞ |x|(b|x|a) = 0.

If σ = ap (that is, a = −1) then we have τ := limx→∞ |x|(b|x|a) = b and
the result follows by the last part of Theorem 2.2.

The proof of Corollary 2.4 can be done in a similar way by the fact
that, by Theorem 2.2, Equation (2.10) does not admit any positive super-
solution if

lim inf
|x|→∞

|x|peσ|x|
[

c

(k + 1)p−1 − bpe(ap−σ)|x|

ppkp−1

]
>

(
N − p

p

)p

for some k > 0.

Also, when N = p then for some δ < p we can rewrite (3.11) as

−∆pw ⩾
(
|x|δΛk(x)

)
|x|−δwp−1.

If C := lim inf |x|→∞ |x|δΛk(x) > 0 we see that w is a solution of the problem

−∆pw ⩾
C

2 |x|−δwp−1

in an exterior domain. Since −δ > −p we can then use part (ii) of Theo-
rem 4.1 in Appendix. The proof is now complete. □

Proof of Proposition 2.6. — First let F : Ω → R be a smooth function
and ϕ ∈ C∞

c (Ω). For simplicity take ϕ ⩾ 0. Using the divergence theorem
we have∫

Ω
∆pFϕ

p = −p
∫

Ω
(|∇F |p−2∇Fϕp−1) · ∇ϕ ⩽ p

∫
Ω

(|∇F |ϕ)p−1|∇ϕ|.

By the Young inequality we have

(|∇F |ϕ)p−1|∇ϕ| ⩽ p− 1
p

(|∇F |ϕ)p + |∇ϕ|p

p

and use this in the first inequality we get∫
Ω

|∇ϕ|p ⩾
∫

Ω
(∆pF − (p− 1)|∇F |p) |ϕ|p.

Now setting F = lnE (E > 0) we obtain∫
Ω

|∇ϕ|p ⩾
∫

Ω

−∆pE

Ep−1 |ϕ|p.

This completes the proof. □
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Proof of Proposition 2.7. — Let u > 0 be a positive supersolution of
problem (Q), hence

(3.17) −∆pu+ b(x)|∇u|p−1 ⩾ c(x)up−1 in Ω.

For t > 1 set v := (tu) 1
t or equivalently, u = vt

t . Then from (3.17) and
using the formula

∆pu = (t− 1)(p− 1)v(t−1)(p−1)−1|∇v|p + v(t−1)(p−1)∆pv,

we obtain

− (p− 1)(t− 1)v(p−1)(t−1)−1|∇v|p − v(p−1)(t−1)∆pv + b(x)vp(t−1)|∇v|p

⩾ c(x)v
t(p−1)

tp−1 .

Dividing both sides of the above inequality by vt(p−1), we get

−∆pv

vp−1 ⩾
c(x)
tp−1 + (p− 1)(t− 1) |∇v|p

vp
− b(x) |∇v|p−1

vp−1 .

Since for all A,B > 0 we have

min
t>0

(AT p −BT p−1) = − (p− 1)p−1

pp

Bp

Ap−1

we obtain

(3.18) −∆pv

vp−1 ⩾
c(x)
tp−1 − |b(x)|p

pp(t− 1)p−1 .

Multiplying both sides of (3.18) by |ϕ|p, integrating over Ω and applying
the Hardy-type inequality (2.12) in Proposition 2.6 we obtain∫

Ω
c(x)|ϕ|p ⩽ tp−1

∫
Ω

|∇ϕ|p + tp−1

pp(t− 1)p−1

∫
Ω
b(x)p|ϕ|p.

Now we set

t = 1 +
(∫

Ω b(x)p|ϕ|p∫
Ω |∇ϕ|p

) 1
p

to get ∫
Ω
c(x)|ϕ|p ⩽

(
p

√∫
Ω

|∇ϕ|p + p

√∫
Ω
b(x)p|ϕ|p

)p

or

p

√∫
Ω
c(x)|ϕ|p ⩽ p

√∫
Ω

|∇ϕ|p + p

√∫
Ω

b(x)p

pp
|ϕ|p,

which is the desired result.
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To see (2.14) it suffices to write∫
Ω

b(x)p

pp
|ϕ|p =

∫
Ω

b(x)p

ppc(x)c(x)|ϕ|p ⩽

(
sup

supp ϕ

b(x)p

ppc(x)

)∫
Ω
c(x)|ϕ|p.

To prove (2.15), first note that by the concavity of the function p
√
t

(p > 1) on (0,∞) we have

α p
√
t1 + β p

√
t2 ⩽ p

√
αt1 + βt2, α, β, t1, t2 > 0, with α+ β = 1,

and then by changing t1 → t1
αp and t2 → t2

βp in the inequality above we get

(3.19) p
√
t1 + p

√
t2 ⩽ p

√
α1−pt1 + β1−pt2.

Now by using (3.19) in (2.13) we obtain∫
Ω
c(x)|ϕ|p ⩽ α1−p

∫
Ω

|∇ϕ|p + β1−p

∫
Ω

b(x)p

pp
|ϕ|p

or ∫
Ω

(
c(x) − β1−p b(x)p

pp

)
|ϕ|p ⩽ α1−p

∫
Ω

|∇ϕ|p,

which is the desired result. □

3.3. Proof of Theorem 2.8

Assume c(x) satisfies (2.16) and for simplicity take Ω = RN \ BR0 . Let
γ > 1, R > 2R0 and take a smooth function ψ in Ω with ψ = 0 for
R0 < |x| < R

2 and |x| > 2γR, ψ = 1 in R < |x| < γR, 0 ⩽ ψ ⩽ 1 and
|∇ψ| ⩽ 4

R . Now we consider ϕ := |x|−βψ as a test function in (2.16), where
β := N−p

p . We write∫
Ω

|∇ϕ|p =
∫

R
2 <|x|<2γR

|∇ϕ|p

=
∫

R
2 <|x|<R

|∇ϕ|p +
∫

R<|x|<γR

|∇ϕ|p +
∫

γR<|x|<2γR

|∇ϕ|p

:= I1(R) + I2(R) + I3(R).

Since I3(R) = I1(2γR) we get∫
Ω

|∇ϕ|p ⩽ 2I1(R) + I2(R).

We have
∇ϕ = −β|x|−β−2ψx+ |x|−β∇ψ,
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which yields

|∇ϕ|2 = β2|x|−2β−2ψ2 − 2β|x|−2β−2ψx.∇ψ + |x|−2β |∇ψ|2.

Then by the assumptions on ψ and ∇ψ we have the estimate

|∇ϕ|2 ⩽ β2|x|−N + 8β
R

|x|1−N + 16
R2 |x|2−N

= |x|−2β−2
(
β + 4|x|

R

)2
,
R

2 < |x| < R.

Therefore

|∇ϕ|p ⩽ |x|(−β−1)p

(
β + 4|x|

R

)p

= |x|−N

(
β + 4|x|

R

)p

,

⩽ (β + 4)p|x|−N ,
R

2 < |x| < R.

Also, by the definition of ϕ we have

|∇ϕ|p = βp|x|−N , R < |x| < γR.

By the estimates above and using the fact that if α+N ̸= 0 we have∫
R<|x|<T

|x|α dx = KN

∫ T

R

rα+N−1 dr = KN
Tα+N −Rα+N

α+N
,

and, if α+N = 0 we have∫
R<|x|<T

|x|α dx = KN

∫ T

R

rα+N−1 dr = KN ln T
R

(we set KN = 1 as it appears the same in both sides of the inequality), we
compute

I1(R) ⩽ (β + 4)p ln 2, I2(R) = βp ln γ.
Hence, we proved that

(3.20)
∫

Ω
|∇ϕ|p ⩽ 2(β + 4)p ln 2 + βp ln γ.

Also note that we have∫
Ω
c(x)|ϕ|p ⩾

∫
R<|x|<γR

c(x)|ϕ|p

=
∫

R<|x|<γR

c(x)|x|−βp =
∫

R<|x|<γR

(|x|pc(x))|x|−βp−p

=
∫

R<|x|<γR

(|x|pc(x))|x|−N ⩾ inf
R<|x|<γR

(|x|pc(x)) ln γ
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Thus by the inequality above and (3.20) we obtain

(3.21) inf
R<|x|<γR

(|x|pc(x)) ⩽ 2(β + 4)p ln 2
ln γ + βp,

which proves (2.17). Also by letting γ → ∞ and then R → ∞ in (3.21) we
get

lim inf
x→∞

|x|pc(x) ⩽ βp,

which proves (2.18).
Now if the inequality (2.19) has a positive solution u then∫

Ω

−∆pu

up−1 |ϕ|p ⩾
∫

Ω
c(x)|ϕ|p.

Thus, by Proposition 2.6,∫
Ω

|∇ϕ|p ⩾
∫

Ω
c(x)|ϕ|p.

Next, by Proposition 2.6, we see that c(x) must satisfy (2.16), hence from
the first part, there is no positive solution if

lim inf
x→∞

|x|pc(x) >
(
N − p

p

)p

.

The proof is now complete.

4. Appendix

Consider the inequality

(4.1) −∆pw ⩾ |x|σwQ, x ∈ Ωe,

where Ωe is an exterior domain. The proof of the following result can be
found in [17].

Theorem 4.1. — Assume that N ⩾ p > 1 and let Qσ be as defined
in (2.1). Then the following properties hold.

(i) If Q > p− 1 then problem (4.1) has only the solution w ≡ 0 if and
only if Q ⩽ Qσ.

(ii) Assume Q ⩽ p − 1. If σ > −p, then problem (4.1) has only the
solution w ≡ 0. This is also true in the case σ = −p, provided that
Q ̸= p− 1.
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