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HYPOELLIPTIC LAPLACIAN AND TWISTED TRACE
FORMULA

by Bingxiao LIU

Abstract. — We give an explicit geometric formula for the twisted orbital in-
tegrals using the method of the hypoelliptic Laplacian developed by Bismut. Com-
bining with the twisted trace formula, we can evaluate the equivariant trace of the
heat operators of the Laplacians on a compact locally symmetric space. In partic-
ular, we revisit the equivariant local index theorems and twisted L2-torsions for
locally symmetric spaces.

Résumé. — On donne une formule géométrique explicite pour les intégrales or-
bitales semisimples tordues du noyau de la chaleur sur un espace symétrique, en
utilisant la méthode du laplacien hypoelliptique développée par Bismut. Alors en
combinant avec la formule des traces tordue, on peut évaluer les traces équivariantes
de l’opérateur de la chaleur du laplacien sur un espace localement symétrique com-
pact. En particulier, on revisite les théorèmes de l’indice équivariant local et de la
torsion L2 équivariante pour les espaces localement symétriques.

1. Introduction

The purpose of this paper is to give an explicit geometric formula for the
semisimple twisted orbital integrals associated with the Casimir operator
on symmetric spaces, which extends an important result of Bismut for
semisimple orbital integrals [9, Chapter 6]. The method that we use is the
theory of hypoelliptic Laplacian developed by Bismut [9]. Here, we start
with establishing a geometric formulation for the twisted orbital integral.
Then we explain how to adapt Bismut’s method to get our explicit formula.
In the context of cyclic base change theory, we also exploit our formula by
typical examples.

To explore the power of our formula, we use it to revisit the local equi-
variant index theorems for compact locally symmetric space, and especially,

Keywords: Twisted orbital integral, Casimir operator, Hypoelliptic Laplacian, Symmet-
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1910 Bingxiao LIU

we exhibit the computations on the twisted orbital integrals using represen-
tation theory of compact Lie groups. In the last subsection, we also discuss
briefly the equivariant real analytic torsion. For further study on this topic
using our explicit formula, we refer to the author’s paper [36].

Let us now give more details on the content of this paper.

1.1. Real reductive group and symmetric space

Let G be a connected real reductive Lie group ([29, §7.2]) with Lie algebra
g, and let θ ∈ Aut(G) be a Cartan involution. Let K be the fixed point set
of θ in G. Then K is a maximal compact subgroup of G with Lie algebra
k. The Cartan decomposition of g associated with θ is given by

(1.1) g = p ⊕ k.

Put m = dim p, n = dim k.
Let B be a G and θ-invariant nondegenerate bilinear symmetric form

on g, which is positive on p and negative on k. Let Ug be the enveloping
algebra of g, and let Cg ∈ Ug be the Casimir operator associated with B.

Let X = G/K be the associated symmetric space. Then the projection p :
G → X is a K-principal bundle. The bilinear form B induces a Riemannian
metric gT X on X with nonpositive sectional curvature. Let d(· , ·) denote
the Riemannian distance on X.

If (E, ρE) is a unitary representation of K, then F = G ×K E is a Her-
mitian vector bundle on X. Moreover, Cg descends to an elliptic operator
Cg,X acting on C∞(X, F ). Our main object is to study the operator LX

acting on C∞(X, F ), which is defined as the sum of 1
2 Cg,X with an explicit

real constant (Definition 4.3). For t > 0, let exp(−tLX) be the associated
heat operator.

1.2. Twisted orbital integrals

We introduce the geometric characterization for semisimple elements.
Let Isom(X) be the Lie group of isometries of X. If ϕ ∈ Isom(X), set
dϕ(x) = d(x, ϕ(x)), x ∈ X. As in [21], ϕ is called semisimple if dϕ reaches
its infimum value mϕ in X, and ϕ is called elliptic if ϕ has fixed points in
X. If ϕ is semisimple, let X(ϕ) ⊂ X be the minimizing set of dϕ, which is
a convex submanifold of X.
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TWISTED TRACE FORMULA 1911

In [9, Chapter 3], given a semisimple element γ ∈ G (viewed as an isom-
etry of X), X(γ) is a symmetric space associated with Z0(γ), the identity
component of the centralizer of γ. Then Bismut gave a geometric interpre-
tation for the associated orbital integrals Tr[γ][exp(−tLX)], so that they
can be written as integrals along the fibres of the normal bundle NX(γ)/X .
This geometric formulation plays a central role in Bismut’s approach to his
explicit geometric formula of Tr[γ][exp(−tLX)]. Using Bismut’s formula,
Shen [45, 46] gave a full proof of the Fried conjecture for compact locally
symmetric spaces, completing the work of Moscovici and Stanton [41].

In this paper, we extend Bismut’s result to the case of twisted orbital in-
tegrals. Let Σ be the compact Lie group of the automorphisms of (G, B, θ).
If σ ∈ Σ, let Σσ be the closure of the subgroup of Σ generated by σ. Put
Gσ = G ⋊ Σσ, Kσ = K ⋊ Σσ. We do not assume σ to have finite order.

If σ ∈ Σ, we define the σ-twisted conjugation Cσ so that if h, γ ∈ G,

(1.2) Cσ(h)γ = hγσ(h−1).

Let Zσ(γ) ⊂ G be the σ-twisted centralizer of γ ∈ G. Then σ-twisted
conjugacy class of γ in G can be identified with Zσ(γ)\G. The twisted
orbital integral, defined as a certain integral on Zσ(γ)\G, has been vastly
studied in cyclic base change theory (cf. [1, 4, 15, 32], etc).

Due to the possible nontrivial large center of G, the Lie group G ⋊ Σ,
even Gσ, may fail to be reductive. A typical example is Rm ⋊ O(m). In
Subsection 2.4, we explain the key point that the above groups do not
displace very far from a reductive one. In particular, if γ ∈ G is such
that γσ is semisimple as an isometry of X, we establish, via a geometric
argument, a decomposition theorem for Zσ(γ). Then we show that X(γσ)
is a symmetric space associated with Z0

σ(γ), the identity component of
Zσ(γ). This way, in Subsection 3.2, we give a geometric interpretation for
the twisted orbital integrals, as an extension of [9, Definition 4.2.2].

We now assume (E, ρE) to be a unitary representation of Kσ. Then the
action of Gσ on X lifts to F . The operator LX commutes with Gσ. For
t > 0, let Tr[γσ][exp(−tLX)] denote the σ-twisted orbital integral of the
kernel of exp(−tLX) associated with γ.

1.3. Statement of the main results

If γσ is semisimple, after conjugation, we may and we will assume that
γ = ea k−1 with a ∈ p, k ∈ K and Ad(k)a = σa. Then θ acts on Zσ(γ). Let
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1912 Bingxiao LIU

zσ(γ) ⊂ g be the Lie algebra of Zσ(γ), and let kσ(γ) be the Lie algebra of
Kσ(γ) = Zσ(γ) ∩ K. As in (1.1), we have the Cartan decomposition

(1.3) zσ(γ) = pσ(γ) ⊕ kσ(γ).

Put p = dim pσ(γ), q = dim kσ(γ).
The analytic function Jγσ(Y k

0 ) in Y k
0 ∈ kσ(γ) will be defined in Defini-

tion 4.1 by an explicit formula. The main result of this paper is as follows.

Theorem 1.1. — For t > 0, the following identity holds:

(1.4) Tr[γσ][exp(−tLX)
]

= exp(−|a|2/2t)
(2πt)p/2

·
∫
kσ(γ)

Jγσ(Y k
0 ) TrE

[
ρE(k−1σ) exp(−iρE(Y k

0 ))
]

exp(−|Y k
0 |2/2t) dY k

0
(2πt)q/2 .

If σ = IdG, it is just Bismut’s formula given in [9, Theorem 6.1.1]. In [9,
Sections 8.1 and 10.6], Bismut explained that a formula like (1.4) holds for
the cases such as G = K non-connected, and G = Rm, σ ∈ O(m). Our
theorem here confirms his observation in a more general setting. We will
restate the above theorem in Subsection 4.2, and the proof will be given in
Section 6, which is partly derived from [9, Chapter 9]. In Subsection 4.5,
we exploit the formula (1.4) in the context of cyclic base change theory
over R, so that we only need elementary computation from linear algebra
to establish some nontrivial identities.

Let p⊥
σ (γ) ⊂ p be the orthogonal space of pσ(γ) in p with respect to B.

Let P ⊥
σ (γ) ⊂ X be the image of p⊥

σ (γ) by the map f → p ef . Put

(1.5) ∆γσ
X = {(x, γσ(x)) : x ∈ P ⊥

σ (γ)} ⊂ X × X.

Let (a, kσ(γ)) denote the affine subspace of zσ(γ) = pσ(γ) ⊕ kσ(γ). Set

(1.6) Hγ
σ = {0} ×

(
a, kσ(γ)

)
⊂ zσ(γ) × zσ(γ).

Let ∆zσ(γ) denote the standard Laplacian on zσ(γ).
In Subsection 4.3, using Theorem 1.1, we get an extension of [9, Theo-

rem 6.3.2] for the twisted orbital integrals for wave operators.

Theorem 1.2. — We have the identity of even distributions on R (de-
fined in Subsection 4.3) supported on {s ∈ R : |s| ⩾

√
2|a|} with singular

support included in ±
√

2|a|,

(1.7)
∫

∆γσ
X

TrF
[
γσ cos

(
s
√

LX
)]

=
∫

Hγ
σ

TrE
[
cos
(

s
√

−∆zσ(γ)/2
)

Jγσ(Y k
0 )ρE(k−1σ) exp

(
−iρE(Y k

0 )
) ]

.
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TWISTED TRACE FORMULA 1913

1.4. Hypoelliptic Laplacian on symmetric spaces

Let us briefly recall the theory of hypoelliptic Laplacian developed by
Bismut in [9]. We also refer to [38] for an introduction to this theory.

Put N = G×Kk. Then TX⊕N is canonically trivial on X. Let π̂ : X̂ → X

be the total space of TX⊕N , so that X̂ = X×g. The hypoelliptic Laplacian
is defined as a family of hypoelliptic differential operators {LX

b }b>0 acting
on C∞(X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )).

Let ∆T X⊕N be the standard Laplace along the fibre TX ⊕ N . Then LX
b

is given as follows [9, Section 2.13],

(1.8) LX
b = 1

2
∣∣[Y N , Y T X ]

∣∣2 + 1
2b2

(
−∆T X⊕N + |Y |2 − m − n

)
+ NΛ•(T ∗X⊕N∗)

b2 + 1
b

(
∇C∞(T X⊕N,π̂∗(Λ•(T ∗X⊕N∗)⊗F ))

Y T X + ĉ
(
ad(Y T X)

)
− c
(
ad(Y T X) + iθ ad(Y N )

)
− iρE(Y N )

)
.

The structure of LX
b is close to the structure of the hypoelliptic Laplacian

studied by Bismut [7, 8], and by Bismut–Lebeau [10].
In [9], the proper functional analytic machinery was developed in order

to obtain the analytic properties of the resolvent and of the heat kernel
of LX

b . Let exp(−tLX
b ) be the heat operator associated with LX

b . In [9,
Chapters 11, 14], Bismut proved that there is a smooth kernel qX

b,t associated
with exp(−tLX

b ), and that as b → 0, qX
b,t converges in the proper sense to

the kernel of exp(−tLX).
In (1.8), the term ∇C∞(T X⊕N,π̂∗(Λ•(T ∗X⊕N∗)⊗F ))

Y T X represents the left ac-
tion of the generator of the geodesic flow. If we forget the first quartic term
in the right-hand side of (1.8), then after rescaling, as b → +∞, LX

b con-
verges in a naïve sense to the generator of the geodesic flow. More precisely,
the diffusion associated with the scalar part of LX

b tends to propagate along
the geodesic flow. In [9, Chapters 12, 15], Bismut established the uniform
estimates on qX

b,t for b large, from which he gave a quantitative estimate on
how much this diffusion differs from the geodesic flow.

In Subsection 3.3, we also define the σ-twisted orbital integral for the
(hypoelliptic) heat kernel of LX

b . Then in Theorem 6.1, we establish an
identity which says that, for b > 0, t > 0,

(1.9) Tr[γσ][exp(−tLX)] = Trs
[γσ][exp(−tLX

b )].

Theorem 1.1 is obtained by evaluating the right-hand side of (1.9) as b →
+∞. As we will explain in Subsection 6.3, this evaluation can be localized
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1914 Bingxiao LIU

near X(γσ), more precisely, the γσ-periodic points of the geodesic flow on
X̂ . Then, using methods of local index theory, we can explicitly work out
its limit as b → +∞ and obtain (1.4).

1.5. Local equivariant index theorems

Let Γ be a cocompact torsion-free discrete subgroup of G such that
σ(Γ) = Γ. Then Z = Γ\X is a compact smooth manifold equipped with
an isometric action of Σσ. The vector bundle F descends to one on Z, so
that the action of Σσ on Z lifts to F → Z. Moreover, LX descends to a
Bochner-like Laplacian LZ on Z, whose heat operators are trace class.

The twisted trace formula shows,

(1.10) Tr
[
σZ exp(−tLZ)

]
=

∑
[γ]

σ
∈[Γ]σ

Vol
(
Γ ∩ Zσ(γ)\X(γσ)

)
Tr[γσ][exp(−tLX)

]
,

where [Γ]σ is the set of σ-twisted conjugacy classes in Γ.
Under the geometric setting in Section 7, the operator LZ can be replaced

by the Laplacian for spinors, or the Hodge Laplacian for a Hermitian flat
vector bundle (F is defined by a Gσ-representation (E, ρE)). Then, com-
bining (1.4) with (1.10), we get a formula for the σ-equivariant heat trace,
from which we can evaluate the equivariant Dirac index or σ-equivariant
real analytic torsion.

For the example of equivariant Euler characteristic number χσ(Z, F ) with
a flat vector bundle F (LZ is the Hodge Laplacian DZ,F,2 up to a parallel
endomorphism of F ), we will show that all the term Tr[γσ][exp(−tDX,F,2)]
in (1.10) vanish except for the elliptic class [γ]

σ
(i.e., γσ has fixed points in

X). Let Eσ ⊂ [Γ]σ denote the finite set of elliptic classes, and let σZ ⊂ Z

denote the fixed point set of isometry σ. Then, in Subsection 2.6, we get

(1.11) σZ =
disjoint⋃

[γ]
σ

∈Eσ

Γ ∩ Zσ(γ)\X(γσ),

where X(γσ) is just the fixed point set of γσ in X.
In Subsections 7.2 and 7.4, we exhibit how to proceed a further eval-

uation on the integral in the right-hand side of (1.4) by analyzing the
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representation (E, ρE). In particular, if [γ]
σ

∈ Eσ,

(1.12) Tr[γσ][exp(−tDX,F,2)
]

=
[
e
(
TX(γσ), ∇T X(γσ))]max

TrE
[
ρE(γσ)

]
,

where e
(
TX(γσ), ∇T X(γσ)) denotes the Euler form of X(γσ), hence iden-

tified locally with the Euler form of σZ. Finally, we assembly together the
above computations, we get

(1.13) χσ(Z, F ) =
∑

[γ]
σ

∈E
σ

χ
(

Γ ∩ Zσ(γ)\X(γσ)
)

TrE
[
ρE(γσ)

]
,

where χ(· · ·) denotes the corresponding Euler characteristic number. This
is clearly a specialization of the local equivariant index theorem (cf. [6,
Chapter 6]) for the locally symmetric space Z.

In the last subsection, we introduce the σ-twisted L2-torsion Tσ,L2(Z, F ),
as an extension of the definition in [4]. We explain briefly that Tσ,L2(Z, F )
plays a similar role as the ordinary L2-torsions ([37, 39]), but associated
with the fixed point set σZ.

1.6. The organization of the paper

This paper is organized as follows. In Section 2, we introduce the real
reductive Lie group G and the twist σ, and we explain the associated geo-
metric structure for X(γσ) when γσ is semisimple.

In Section 3, we establish the geometric formulation for the σ-twisted
orbital integrals associated with γ.

In Section 4, we restate Theorem 1.1 as Theorem 4.6, and we give a
vanishing theorem by classifying the representations of Kσ. We also explain
our formula for the examples from cyclic base change theory.

In Section 5, we recall the construction of the hypoelliptic Laplacian LX
b

of Bismut and the properties of its heat kernel [9].
In Section 6, we prove Theorem 4.6.
Finally, in Section 7, we show the compatibility of our formula (1.4) with

the local equivariant index theorems for compact locally symmetric spaces.
In the last part, we discuss briefly the twisted L2-torsion introduced in [4].

This paper is mainly the first part of the author’s thesis [34], and the
main results were announced in [35].
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1916 Bingxiao LIU

In the sequel, if V is a real vector space and if E is a complex vector
space, we will denote by V ⊗ E the complex vector space V ⊗R E. We use
the same convention for the tensor product of vector bundles.

If H is a Lie group, let H0 denote the connected component of identity.
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2. The symmetric space X = G/K and semisimple
isometries

In this section, we consider a connected real reductive Lie group G, and
let X be the associated symmetric space. We introduce a compact sub-
group Σ of Aut(G) which acts on X isometrically, then for each semisimple
element γσ := (γ, σ) ∈ G⋊Σ, we construct a symmetric space X(γσ) ⊂ X

associated with the σ-twisted centralizer of γ in G. Our results here are
direct extensions of the results obtained in [9, Chapter 3]. They are neces-
sary to establish the geometric formulation of the twisted orbital integrals
in Section 3.

2.1. Symmetric spaces and homogeneous vector bundles

Let G be a connected real reductive Lie group [29, §7.2] with a Cartan
involution θ. Let K ⊂ G be the fixed point set of θ, which is a connected
maximal compact subgroup. Let g, k be the Lie algebras of G, K respec-
tively. Let p ⊂ g be the eigenspace of θ associated with the eigenvalue −1.
Then the Cartan decomposition of g is given by

(2.1) g = p ⊕ k.

ANNALES DE L’INSTITUT FOURIER



TWISTED TRACE FORMULA 1917

Moreover,

(2.2) [k, p] ⊂ p, [k, k] ⊂ k, [p, p] ⊂ k.

Put m = dim p, n = dim k. Then dim g = m + n

Let B be a nondegenerate bilinear symmetric form on g which is positive-
definite on p and negative-definite on k. We also assume that B is invariant
under the action of θ and the adjoint action of G. Let ⟨· , ·⟩ be the scalar
product on g defined by −B(·, θ·). Then the splitting (2.1) is orthogonal
with respect to B and ⟨· , ·⟩.

For g, g′ ∈ G, put

(2.3) C(g)g′ = gg′g−1 ∈ G.

Let Ad(·), ad(·) denote respectively the adjoint actions of G, g on g. We
also use Ad(g) abusively to denote the conjugation C(g) on G.

Let ωg = ωp +ωk be the canonical left-invariant 1-form on G with values
in g = p ⊕ k. Then by (2.1), (2.2), we get

(2.4) dωp = −[ωk, ωp], dωk = −1
2 [ωk, ωk] − 1

2 [ωp, ωp].

Let X = G/K be the associated symmetric space. The projection p :
G → G/K defines a K-principal bundle on X, then the splitting (2.1)
gives it a connection with the connection form ωk. Let Ω be the associated
curvature, then by (2.4),

(2.5) Ω = −1
2 [ωp, ωp] ∈ Λ2(p∗) ⊗ k.

If (E, ρE , hE) is a finite dimensional orthogonal (resp. unitary) repre-
sentation of K, then (F = G ×K E, hF ) is a Euclidean (resp. Hermitian)
vector bundle on X. The connection form ωk induces a Euclidean (resp.
Hermitian) connection ∇F on F . The actions of G and θ on X lift to F .

Note that K acts on p via adjoint action. Then we have the identification

(2.6) TX = G ×K p.

Moreover, B|p induces a Riemannian metric gT X on TX. Then G and θ

act on X isometrically. Let d(· , ·) denote the Riemannian distance on X.
By (2.4), (2.6), ωk induces the Levi–Civita connection ∇T X on (TX, gT X).
Let RT X denote its curvature. Then X has nonpositive sectional curvature.
If x0 = p1 ∈ X, the exponential map expx0 : p → X given by Y p ∈ p →
expx0(Y p) = exp(Y p) · x0 is a diffeomorphism between p and X.

Put

(2.7) N = G ×K k.

TOME 73 (2023), FASCICULE 5
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Let ∇N be the connection on N associated with ωk. By (2.6), eqrefeq:1.1.6n,

(2.8) TX ⊕ N = G ×K g.

Let ∇T X⊕N be the connection on TX ⊕N associated with ωk, equivalently,
∇T X⊕N = ∇T X ⊕ ∇N .

In the sequel, let π : X → X be the total space of TX to X, and let
π̂ : X̂ → X be the total space of TX ⊕N to X. The map (g, a) ∈ G×K g →
(pg, Ad(g)a) ∈ X × g identifies TX ⊕ N with the trivial vector bundle g

over X. Then

(2.9) X̂ ≃ X × g.

We now go back to the Hermitian vector bundle F on X associated
with a unitary representation (E, ρE) of K. Let C∞(G, E) denote the set
of smooth functions on G valued in E. The right multiplication of K on
G induces a dot-action of K on C∞(G, E), such that for k ∈ K, s ∈
C∞(G, E),

(2.10) (k.s)(g) = ρE(k)s(gk).

Let C∞
K (G, E) be the subspace of C∞(G, E) of the sections fixed by K-

dot-action. Let C∞(X, F ) be the vector space of the smooth sections of F

over X. Then

(2.11) C∞(X, F ) = C∞
K (G, E).

The left action of G on itself induces an equivariant action of G on
C∞(X, F ) such that if s ∈ C∞

K (G, E), if g, h ∈ G, then

(2.12) (hs)(g) = s(h−1g).

Moreover, ∇F is G-invariant.

2.2. Semisimple isometries of X

Let Isom(X) be the Lie group of isometries of (X, gT X). Then we have
an obvious group homomorphism G → Isom(X).

Definition 2.1. — If ϕ ∈ Isom(X), the displacement function dϕ asso-
ciated with ϕ is the function on X defined as

(2.13) dϕ(x) = d(x, ϕx) , x ∈ X.

Put mϕ = infx∈X dϕ(x) ∈ R⩾0.

Since X has nonpositive sectional curvature, by [21, Chapter 1, Exam-
ple 1.6.6], d2

ϕ is a smooth convex function on X.

ANNALES DE L’INSTITUT FOURIER



TWISTED TRACE FORMULA 1919

Definition 2.2. — We say that ϕ ∈ Isom(X) is semisimple if dϕ(x)
reaches its infimum mϕ in X. A semisimple isometry ϕ is called elliptic if
it has fixed points in X, i.e. mϕ = 0. If ϕ is semisimple, put X(ϕ) = {x ∈
X | dϕ(x) = mϕ}.

2.3. A compact subgroup of Aut(G)

Let Aut(G) be the Lie group of automorphism of G [23, Theorem 2].

Definition 2.3. — The semidirect product of G and Aut(G) is defined
as

(2.14) G ⋊ Aut(G) := {(g, ϕ) : g ∈ G, ϕ ∈ Aut(G)},

with the group multiplication:

(2.15) (g1, ϕ1) · (g2, ϕ2) =
(
g1ϕ1(g2), ϕ1ϕ2

)
.

The unit element is (1, IdG). Also (g, ϕ)−1 = (ϕ−1(g−1), ϕ−1).

We will often write gϕ instead of (g, ϕ) for an element in G ⋊ Aut(G).

Definition 2.4. — Put

(2.16) Σ := {ϕ ∈ Aut(G) : ϕθ = θϕ, ϕ preserves the bilinear form B}.

Then Σ is a compact Lie subgroup of Aut(G). Let e be its Lie algebra.
The action of Σ on g preserves the splitting (2.1) and the scalar product of
g. Note that Σ contains all the inner automorphisms defined by elements
in K.

Set

(2.17) G̃ = G ⋊ Σ, K̃ = K ⋊ Σ.

They are closed subgroups of G⋊Aut(G). Let g̃, k̃ denote their Lie algebras
respectively. As vector spaces, we have g̃ = g ⊕ e, k̃ = k ⊕ e. Then we have
the Cartan splitting of g̃ (associated with the conjugation of θ),

(2.18) g̃ = p ⊕ k̃.

Moreover, we also have the global Cartan decomposition for p × K̃ ≃ G̃,
where the diffeomorphism is given by (f, k̃) 7→ exp(f)k̃ ∈ G̃.

Remark 2.5. — The group G̃ is not necessarily reductive. An example
is the case Rm. In this case G̃ = Rm ⋊ O(m) and the corresponding Lie
algebra is g̃ = Rm ⊕ so(m) with a twisted Lie bracket.
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Given σ ∈ Σ, the map g ∈ G → σ(g) ∈ G descends to a diffeomorphism
of X: x ∈ X → σ(x) ∈ X. By (2.6), (2.16), the derivative of σ is given by
(g, f) → (σ(g), σ(f)) with g ∈ G, f ∈ p. Then G̃ acts on X isometrically.
Then

(2.19) X = G̃/K̃.

Fix σ ∈ Σ, let Σσ be the closure of the subgroup of Σ generated by σ.
Set

(2.20) Gσ = G ⋊ Σσ, Kσ = K ⋊ Σσ.

Similarly to (2.19),

(2.21) X = Gσ/Kσ.

Moreover, we have

(2.22) TX = G̃ ×
K̃
p = Gσ ×Kσ p.

In the sequel, p denotes both the projections G̃ → X and Gσ → X.
If the representation ρE : K → Aut(E) extends to a representation

ρE : Kσ → Aut(E), then we have the identification of vector bundles
over X,

(2.23) F = Gσ ×Kσ E.

The question on such extensions is studied in Subsection 4.4. In this case,
the equivariant action of σ on F is represented by σ(g, f) → (σ(g), ρE(σ)f).
Moreover, as in (2.11), we have

(2.24) C∞(X, F ) = C∞
Kσ (Gσ, E).

Then Gσ acts on C∞(X, F ). Also ∇F is invariant under the action of Gσ.

2.4. The decomposition of semisimple elements in G̃

Definition 2.6. — An element of G̃ is semisimple (resp. elliptic) if its
isometric action on X is semisimple (resp. elliptic).

If γ ∈ G̃, let Z̃(γ) be the centralizer of γ in G̃. Then dγ is Z̃(γ)-invariant.
Recall that if γ is semisimple, X(γ) is the minimizing set of dγ .

Using instead the identification (2.19), and by the geometric properties
of (X, gT X), the same arguments in the proof of [9, Theorem 3.1.2] give
the following criterion on the set X(γ).
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Theorem 2.7. — Assume that γ ∈ G̃ is semisimple. If g ∈ G̃, x =
pg ∈ X, then x ∈ X(γ) if and only if there exist a ∈ p, k ∈ K̃ such that
Ad(k)a = a and γ = C(g)(ea k−1). If gt = g eta, then t ∈ [0, 1] → xt = pgt

is the unique geodesic connecting x and γx. Moreover, mγ = |a|, and k ∈ K̃

is the parallel transport along the above geodesic.

By Theorem 2.7, γ ∈ G̃ is elliptic if and only if it is conjugate in G̃ to an
element of K̃. An element γ ∈ G̃ is said to be hyperbolic if it is conjugate in
G̃ to ea, a ∈ p, which is always semisimple. Moreover, a hyperbolic element
always lies in G, and can be conjugate to exp(p) by an element in G.

If a ∈ g, let Z(a) ⊂ G, Z̃(a) ⊂ G̃ be the stabilizers of a, and let z(a) ⊂ g,
z̃(a) ⊂ g̃ be their Lie algebras. If a ∈ p, by the same arguments as in the
proof to [9, Proposition 3.2.8], we have

(2.25) Z(a) = Z(ea), Z̃(a) = Z̃(ea).

Also we have,

(2.26) z̃(a) = {f ∈ g̃ : [f, a] = 0}, z(a) = z̃(a) ∩ g,

The group G̃ may fail to be a reductive Lie group, but it is not far from
it (twisted by a compact group), so that G̃ still has the properties of a
connected reductive Lie group discussed in [21, Theorem 2.19.23] and [9,
Subsection 3.1]. For the sake of completeness, we include proofs to these
properties.

Proposition 2.8. — Assume that γ ∈ G̃ is such that

(2.27) γ = ea k−1, a ∈ p, k ∈ K̃, Ad(k)a = a.

Then we have

(2.28) Z̃(γ) = Z̃(ea) ∩ Z̃(k−1).

Proof. — By Theorem 2.7, γ is semisimple, and x0 = p1 ∈ X(γ). We only
need to prove that Z̃(ea) ∩ Z̃(k−1) ⊃ Z̃(γ). We will adapt the arguments
of [9, Theorem 3.2.6 and Proposition 3.2.8].

Take h ∈ Z̃(γ). Then there exists unique f ∈ p and k′ ∈ K̃ such that
h = ef k′. Then γx0, hx0 = p ef , γhx0 ∈ X(γ).

Let ys = p esa, s ∈ [0, 1] be the unique geodesic in X joining x0 and γx0.
Let xt = p etf , t ∈ [0, 1] be the unique geodesic connecting x0 and hx0.
Since X(γ) is geodesically convex, then the paths y·, x· lie in X(γ). Also
we have two other geodesics γx·, hy· in X(γ). These four geodesics form a
geodesic rectangle in X(γ) with the vertexes x0, γx0, hx0, γhx0 = hγx0.
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Let ct(s), 0 ⩽ s ⩽ 1 be the geodesic connecting xt and γxt for all t. If
t ∈ [0, 1], let Ef (t) be the energy function associated with ct(·), i.e.,

(2.29) Ef (t) = 1
2d2

γ(xt).

In particular, Ef (t) is a constant function in t, so that

(2.30) E′′
f (0) = 0.

Put Js = ∂
∂t |t=0ct(s) the Jacobi field along c0(s). In the trivialization by

parallel transport,

(2.31)
J̈s − ad2(a)Js = 0,

J0 = f, J1 = Ad(k−1)f,

where J̇ , J̈ are taken with respect to the Levi–Civita connection along y·.
We also have

(2.32) E′′
f (0) =

∫ 1

0

(
|J̇s|2 +

∣∣[a, Js]
∣∣2)ds.

By (2.30), (2.31), (2.32), we get

(2.33) f ∈ z(a) ∩ p, Ad(k)f = f.

Applying (2.33) to h = ef k′, hγ = γh, we obtain

(2.34) eAd(k′)a k′k−1 = ea k−1k′.

Using the uniqueness of global Cartan decomposition of G, we get

(2.35) Ad(k′)a = a, k′k−1 = k−1k′.

By (2.33), (2.35), we get h ∈ Z̃(ea)∩Z̃(k−1). This completes our proof. □

In general, if γ ∈ G̃ is semisimple, then by Theorem 2.7, there exist
g ∈ G̃, a ∈ p, k ∈ K̃ such that

(2.36) γ = g ea k−1g−1, Ad(k)a = a.

Put

(2.37) γh = g ea g−1, γe = gk−1g−1.

The element γh (resp. γe) is called the hyperbolic (resp. elliptic) part of γ.
Then γ = γhγe = γeγh. By Proposition 2.8,

(2.38) Z̃(γ) = Z̃(γe) ∩ Z̃(γh).

Lemma 2.9. — If γ ∈ G̃ is semisimple, then the decomposition of γ as
the commuting product of a hyperbolic element and an elliptic element in
G̃ is unique.
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Proof. — It is enough to prove our lemma for γ given in (2.27), where
we have

(2.39) γh = ea ∈ G, γe = k−1 ∈ K̃.

Now suppose that γ′
h ∈ G, γ′

e ∈ G̃ are respectively hyperbolic, elliptic
elements such that

(2.40) γ = γ′
hγ′

e = γ′
eγ′

h.

Then we only need to prove that

(2.41) γ′
h = γh, γ′

e = γe.

Note that the conjugation of G̃ preserves G, then γ′
h ∈ G. Set

(2.42) H = ker(Ad : G̃ → Aut(g)).

Then H ∩ G is just the center of G.
Then the uniqueness of the Jordan decomposition of Ad(γ) implies

(2.43) Ad(γ′
h) = Ad(γh), Ad(γ′

e) = Ad(γe) ∈ Aut(g).

This implies that there exists h ∈ H ∩ G ∩ Z̃(γ′
e) ∩ Z̃(γe) such that

(2.44) γ′
h = hγh, γ′

e = h−1γe.

Write h = ef k′′ ∈ G with f ∈ p, k′′ ∈ K. Then by Theorem 2.7 and the
assumption that γ′

e is elliptic, we get f = 0, so that h ∈ K and γ′
e ∈ K.

Since γ′
h is hyperbolic, then there exist g′ ∈ G, a′ ∈ p such that γ′

h =
g ea′

g−1. Then we rewrite the first identity of (2.44) as follows

(2.45) g ea′
g−1 = ea h ∈ G, Ad(h)a = a.

Using the uniqueness of the elliptic part of a semisimple element in G

(cf. [21, Theorem 2.19.23]), we get h = 1, which implies exactly (2.41).
This completes the proof of our lemma. □

2.5. The minimizing set

Take γ ∈ G, σ ∈ Σ such that γσ ∈ G̃ is semisimple. For g ∈ G, we have

(2.46) C(g)(γσ) = gγσ(g−1)σ ∈ Gσ.

Let Cσ : G → G be such that if g, h ∈ G,

(2.47) Cσ(g)h = ghσ(g−1) ∈ G.

If g ∈ G, Cσ(g) acts on the left on G, and moreover, Cσ(g)Cσ(g′) =
Cσ(gg′).
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Definition 2.10. — If γ ∈ G, let Zσ(γ) ⊂ G be the stabilizer of γ

under the action of G by Cσ, which is also called the σ-twisted centralizer
of γ in G. Then

(2.48) Zσ(γ) = G ∩ Z̃(γσ).

The orbit of γ under this action is called σ-twisted conjugacy class of γ

in G.

Fix g ∈ G such that x = pg ∈ X(γσ). By Theorem 2.7, there exists
a ∈ p, k ∈ K such that

(2.49) Ad(k)a = σa, γ = Cσ(g)(ea k−1).

We have X(γσ) = gX(ea k−1σ). Then it is enough to consider the case

(2.50) γ = ea k−1 ∈ G, a ∈ p, k ∈ K, Ad(k)a = σa.

In the sequel, we always take γ as in (2.50).
By (2.38), we have

(2.51) Zσ(γ) = Z(ea) ∩ Zσ(k−1).

Let zσ(γ), zσ(k−1) be the Lie algebras of Zσ(γ), Zσ(k−1). Then

(2.52) zσ(k−1) = {f ∈ g : Ad(k)f = σf}.

By (2.25), (2.51), we get

(2.53) zσ(γ) = z(a) ∩ zσ(k−1).

Put

(2.54) pσ(γ) := zσ(γ) ∩ p, kσ(γ) := zσ(γ) ∩ k.

Since σ preserves the splitting (2.1), by (2.52), (2.53), we get

(2.55) zσ(γ) = pσ(γ) ⊕ kσ(γ).

Put

(2.56) Kσ(γ) = Zσ(γ) ∩ K.

Then kσ(γ) is the Lie algebra of Kσ(γ).
Let Z0

σ(γ) denote the identity component of Zσ(γ). The following result
extends [9, Theorem 3.3.1]. Note that x0 = p1 ∈ X(γσ).

Theorem 2.11. — We have

(2.57) X(γσ) = X(ea) ∩ X(k−1σ) ⊂ X.

In the coordinate system (p, expx0), we have

(2.58) X(ea) = p(a) = z(a) ∩ p, X(k−1σ) = pσ(k−1).
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Then

(2.59) X(γσ) = pσ(γ).

The action of Z0
σ(γ) on X(γσ) is transitive, and the stabilizer of x = p1 ∈

X(γσ) is given by Z0
σ(γ) ∩ K. Then we have the following identifications,

(2.60) X(γσ) ≃ Zσ(γ)/Kσ(γ) ≃ Z0
σ(γ)/(Z0

σ(γ) ∩ K).

Moreover, Z0
σ(γ) ∩ K coincides with the identity component K0

σ(γ) of
Kσ(γ). The embedding Kσ(γ) → Zσ(γ) induces the isomorphism of finite
groups,

(2.61) K0
σ(γ)\Kσ(γ) ≃ Z0

σ(γ)\Z(γ).

Proof. — We only prove (2.57) and (2.58), since other results, as their
consequences, follow from the standard arguments on symmetric spaces.

Note that p : G → X is surjective. For y ∈ X(γσ), there exists g ∈ G such
that y = pg. By Theorem 2.7, there exists a′ ∈ p, k′ ∈ K such that γσ =
C(g)(ea′(k′)−1σ). By Lemma 2.9, ea = g ea′

g−1, k−1σ = g(k′)−1σg−1, thus
from Theorem 2.7, we get

(2.62) y = pg ∈ X(ea) ∩ X(k−1σ).

Then

(2.63) X(γσ) ⊂ X(ea) ∩ X(k−1σ).

If y = pg ∈ X(ea) ∩ X(k−1σ). By Theorem 2.7, there exist a′ ∈ p,
k1, k2 ∈ K such that

(2.64) ea = C(g)(ea′
k−1

1 ) , Ad(k1)a′ = a′ , k−1 = Cσ(g)(k−1
2 ).

By (2.38), (2.49), we have k−1
2 σ ∈ C(g−1)Z̃(ea) = Z̃(a′) ∩ Z̃(k1). Put

k′ = k2k1 ∈ K, then ea k−1σ = g ea′(k′)−1σg−1 with Ad(k′)a′ = σa′. Thus
y = pg ∈ X(ea k−1σ) = X(γσ). This proves (2.57).

The first identification in (2.58) is proved in [9, Theorem 3.2.6]. We only
prove the second one. Clearly, pσ(k−1) ⊂ X(k−1σ) under the coordinate
(p, expx0). If b ∈ p is such that expx0(b) ∈ X(k−1σ), then there exists
k′ ∈ K such that

(2.65) k−1 exp(σ(b)) = exp(b)k′.

We can rewrite (2.65) as

(2.66) exp
(
Ad(k−1)σ(b)

)
k−1 = exp(b)k′.

Then we get

(2.67) Ad(k−1σ)b = b , k′ = k−1.
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This means exactly b ∈ pσ(k−1). Then the proof to (2.58) is completed. □

Remark 2.12. — Note that θ acts on Z0
σ(γ) as an automorphism so that

Z0
σ(γ) is a real reductive Lie group, in the sense of [29, §7.2], equipped with

the Cartan involution θ|Z0
σ(γ) and the invariant bilinear form B|zσ(γ).

By (2.60), as in (2.22), the tangent bundle of X(γσ) is given as follows

(2.68) TX(γσ) = Zσ(γ) ×Kσ(γ) pσ(γ).

Let z⊥
σ (γ) be the orthogonal subspace of zσ(γ) in g with respect to B. Put

(2.69) p⊥
σ (γ) = z⊥

σ (γ) ∩ p, k⊥
σ (γ) = z⊥

σ (γ) ∩ k.

By (2.55), we get

(2.70) z⊥
σ (γ) = p⊥

σ (γ) ⊕ k⊥
σ (γ).

If NX(γσ)/X is the normal vector bundle of X(γσ) in X, by (2.68), then

(2.71) NX(γσ)/X = Zσ(γ) ×Kσ(γ) p
⊥
σ (γ).

Let NX(γσ)/X be the total space of NX(γσ)/X → X(γσ).
Let Pγσ : X → X(γσ) be the orthogonal projection from X into

X(γσ) [21, Proposition 1.6.3]. Due to the geometric structures established
in Theorem 2.11, the same proof (using essentially the convexity of dis-
placement functions) of [9, Theorems 3.4.1 and 3.4.3] gives the following
estimates for the displacement function dγσ along the normal vector space
of X(γσ). It will guarantee the convergence of the twisted orbital integrals
defined in Section 3.

Theorem 2.13. — We have the diffeomorphism of Zσ(γ)-manifolds,

(2.72) ργσ : (g, f) ∈ NX(γσ)/X −→ p(g exp(f)) ∈ X.

The action of γσ on X, through the above diffeomorphism, is represented
by the map (g, f) 7→ (exp(a)g, Ad(k−1)σ(f) ), and the projection Pγσ is
given by Pγσ(g, f) = (g, 0).

There exists cγσ > 0, such that if f ∈ p⊥
σ (γ), |f | ⩾ 1, then

(2.73) dγσ(ργσ(1, f)) ⩾ |a| + cγσ|f |.

There exist C ′
γσ > 0, C ′′

γσ > 0 such that, for f ∈ p⊥
σ (γ), if |f | ⩾ 1,

(2.74)
∣∣∇dγσ(ργσ(1, f))

∣∣ ⩾ C ′
γσ,

and if |f | ⩽ 1,

(2.75)
∣∣∇d2

γσ(ργσ(1, f))/2
∣∣ ⩾ C ′′

γσ|f |.
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The group Kσ(γ) acts on the left on K and on p⊥
σ (γ). Let p⊥

σ (γ)Kσ(γ)×K

be the vector bundle on Kσ(γ)\K given by the relation, for f ∈ p⊥
σ (γ),

k ∈ K and h ∈ Kσ(γ),

(2.76) (f, k) ∼ (Ad(h)f, hk).

Right multiplication by K lifts to p⊥
σ (γ)Kσ(γ) × K. By Theorem 2.13, we

get a diffeomorphism,

(2.77) ϱγσ : (g, f, k) ∈ Zσ(γ) ×Kσ(γ) (p⊥
σ (γ) × K) → g ef k ∈ G.

As a consequence, we have

(2.78) p⊥
σ (γ)Kσ(γ) × K = Zσ(γ)\G.

Similarly, by taking the identity components of the twisted centralizers, we
get

(2.79) p⊥
σ (γ)K0

σ(γ) × K = Z0
σ(γ)\G.

Remark 2.14. — Let Zσ(γσ), Kσ(γσ) denote the centralizers of γσ in
Gσ, Kσ respectively. In Theorems 2.13 and (2.78), if we replace Zσ(γ),
Kσ(γ), G, and K by Zσ(γσ), Kσ(γσ), Gσ, and Kσ respectively, we still
have analogue results. The reason is that our proof to them relies on the
identities obtained in Proposition 2.8 and Lemma 2.9, which holds for group
Gσ, Kσ.

The following result is classical for linear algebraic groups, such as [27,
18.2 Proposition p. 117], [13, III. Theorem 9.2], [1, Chapter 1, p. 22], etc.
Here in our setting, we reproduce a proof using the above geometric con-
structions.

Proposition 2.15. — For γ ∈ G, the element γσ is semisimple if and
only if the σ-conjugacy class of γ in G is a closed subset.

Proof. — At first, we assume that γσ is semisimple, moreover, we may
and we will assume that γ is given as in (2.50), and let [γ]σ ⊂ G denote
the σ-conjugacy class of γ. Let {γi}i∈N ⊂ [γ]σ be a Cauchy sequence in G

with the limit h0 ∈ G. In particular, we have, as i → +∞,

(2.80) d
(
pγi, ph0

)
→ 0.

By (2.78), for i ∈ N, there exists gi = efi ki, fi ∈ p⊥
σ (γ), ki ∈ K such

that

(2.81) γi = g−1
i γσ(gi).

Then we get, as i → +∞,

(2.82) d
(
γσp efi , giph0

)
→ 0.
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Using the triangle inequality for the distance d on X, by (2.82), we get, as
i → +∞,

(2.83) dγσ(efi) = d
(
γσp efi , p efi

)
→ d

(
p1, ph0

)
.

Then by the estimate (2.73), we get the set {fi}i∈N is a bounded set in
p⊥

σ (γ). Then we can assume that there exist f ′ ∈ p⊥
σ (γ), k′ ∈ K such that,

by extracting a sub-sequence, as i → +∞,

(2.84) fi → f ′, ki → k′.

Put g′ = ef ′
k′ ∈ G̃, then as i → +∞,

(2.85) gi → g′.

By (2.81), we get

(2.86) h0 = (g′)−1γσ(g′) ∈ [γ]σ,

so that [γ]σ is a closed subset of G.
Now we prove another direction, and assume that [γ]σ is a closed subset.

For the semisimplicity of γσ, it is enough to find x ∈ X such that dγσ(x) =
mγσ. Let {gi}i∈N ⊂ G be such that as i → +∞,

(2.87) dγσ(pgi) = d(pgi, γσpgi) → mγσ.

Set γi = g−1
i γσ(gi) ∈ [γ]σ. Then (2.87) is equivalent to d(p1, pγi) → mγσ.

As a consequence, the set {γi} lies in a bounded subset of G, hence there
exists a subsequence {γki}i∈N which converges to an element h0 ∈ G as
i → +∞. The closedness of [γ]σ infers that h0 = g−1γσ(g) for some g ∈ G.
Taking x = pg ∈ X, then dγσ(x) = mγσ and γσ is semisimple by definition.
This completes the proof of our proposition. □

2.6. The locally symmetric space Z

We fix σ ∈ Σ and fix a discrete torsion-free cocompact subgroup Γ ⊂ G

such that σ(Γ) = Γ. The following lemma is given by [44, Lemmas 1 and 2].

Lemma 2.16. — If γ ∈ Γ, then γσ ∈ G̃ is semisimple, and Γ ∩ Zσ(γ) is
a cocompact discrete subgroup of Zσ(γ).

Definition 2.17. — We denote by [Γ]σ the set of σ-twisted conjugacy
classes in Γ. If γ ∈ Γ, let [γ]

σ
be the σ-twisted conjugacy class of γ in Γ.

If γσ is elliptic, we say that [γ]
σ

is an elliptic class. Let Eσ be the set of
elliptic classes in [Γ]σ.

The map γ′ ∈ Γ 7→ (γ′)−1γσ(γ′) ∈ [γ]
σ

induces the identification

(2.88) [γ]
σ

≃ Γ ∩ Zσ(γ)\Γ.
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Lemma 2.18. — The set Eσ is finite.

Proof. — Let U ⊂ G be a compact fundamental domain for the left
action of Γ on G such that G = ∪γ∈ΓγU . Note that p : G → X is a proper
map. Put

(2.89) V = p−1(p(U)) = U · K.

Then V is a compact subset of G. We denote by V −1 the set of the inverses
of elements in V , both V −1 and V · σ(V −1) are compact.

For any [γ]
σ

∈ Eσ, there exists γ′ ∈ [γ]
σ

such that γ′σ has fixed points
in p(V ) = p(U). Let gγ ∈ U be such that pgγ is fixed by γ′σ. Then we get

(2.90) γ′ ∈ UKσ(U−1) ∩ Γ ⊂ V · σ(V −1) ∩ Γ.

Since V · σ(V −1) is compact, V · σ(V −1) ∩ Γ is a finite set, and the lemma
follows. □

Put Z = Γ\X = Γ\G/K, then Z is a compact locally symmetric man-
ifold. The homogeneous vector bundle (F, hF , ∇F ) on X defined in Sub-
section 2.1 descends to a vector bundle on Z, which we still denote by
(F, hF , ∇F ). In particular, the tangent bundle TX descends to the tangent
bundle TZ, and N also descends to a Euclidean vector bundle, which we
still denote it by N .

Since σ(Γ) = Γ. Then σ acts isometrically on Z. Let σZ ⊂ Z be the fixed
point set of σ in Z. If g ∈ G (resp. x ∈ X), we denote by [g]Z (resp. [x]Z)
the corresponding point in Z.

Lemma 2.19. — If γ1, γ2 ∈ Γ are σ-twisted conjugate in Γ, then

(2.91) [X(γ1σ)]Z = [X(γ2σ)]Z ⊂ Z.

If g ∈ G, then [g]Z ∈ σZ if and only if there is γ ∈ Γ such that γσ is
elliptic and that pg ∈ X(γσ) ⊂ X. If [γ1]

σ
, [γ2]

σ
∈ Eσ are distinct classes,

then

(2.92) [X(γ1σ)]Z ∩ [X(γ2σ)]Z = ∅.

Proof. — The first part of our lemma is clear. If [g]Z ∈ σZ, then there
are γ0 ∈ Γ, k0 ∈ K such that

(2.93) σ(g) = γ0gk0.

Then γ−1
0 σ(g) = gk0, so that pg ∈ X is a fixed point of γ−1

0 σ, and γ−1
0 σ

is elliptic. If x ∈ X and γσ(x) = x with some γ ∈ Γ, then [x]Z ∈ σZ by
definition.
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Suppose that [γ1]
σ
, [γ2]

σ
∈ Eσ. If [X(γ1σ)]Z ∩ [X(γ2σ)]Z ̸= ∅ in Z, since

γ1σ, γ2σ are elliptic, there exists γ ∈ Γ and x ∈ X such that

(2.94) γ−1γ1σ(γ)σ(x) = γ2σ(x) = x.

Then
γ−1

2 γ−1γ1σ(γ)σ(x) = σ(x).

Since Γ is torsion-free, then γ2 = γ−1γ1σ(γ), i.e., [γ1]
σ

= [γ2]
σ
. Then we

get (2.92). This completes our proof. □

Using Lemma 2.19, we get that

(2.95) σZ =
⋃

[γ]
σ

∈E
σ

[X(γσ)]Z .

Moreover, the right-hand side in (2.95) is a finite disjoint union. By
Lemma 2.16, Γ ∩ Zσ(γ) is a cocompact torsion-free discrete subgroup of
Zσ(γ), so that Γ ∩ Zσ(γ)\X(γσ) is a compact smooth manifold

Take [γ]
σ

∈ Eσ, let γ ∈ Γ be one representative of [γ]
σ
. If x ∈ X(γσ), if

γ0 ∈ Γ is such that γ0x ∈ X(γσ), then an argument like (2.94) gives that
γ0 ∈ Zσ(γ). Thus the projection X → Z induces an identification between
Γ ∩ Zσ(γ)\X(γσ) and [X(γσ)]Z ⊂ Z. Then (2.95) can be rewritten as

(2.96) σZ =
⋃

[γ]
σ

∈E
σ

Γ ∩ Zσ(γ)\X(γσ),

Let C(Z, F ) be the vector space of continuous sections of F on Z, which
can be identified with the subspace of C(X, F ) of Γ-invariant sections over
X, i.e.,

(2.97) C(Z, F ) = C(X, F )Γ.

Then by (2.24), we get

(2.98) C(Z, F ) = CK(G, E)Γ.

Assume now that the vector bundle F is defined via a Kσ-representation
(E, ρE). Since σ preserves Γ, the action of σ descends to F → Z.

Proposition 2.20. — Take [γ]
σ

∈ Eσ. Under the identification (2.96),
the action of σ on the bundle F restricted to [X(γσ)]Z ⊂ σZ is given by
the action of γσ on the vector bundle F over Γ ∩ Zσ(γ)\X(γσ).

Proof. — Take x0 = pg0 ∈ X(γσ). There is k ∈ K such that

(2.99) γ = Cσ(g0)(k−1).
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By Proposition 2.11 and (2.99), we have

(2.100) X(γσ) = g0(X(k−1σ)).

By (2.23), (2.100), we have the identification of vector bundles,

(2.101) F |[X(γσ)]Z
≃ Γ ∩ Zσ(γ)\ g0

(
Zσ(k−1) ×Kσ(k−1) E

)
.

If g ∈ Zσ(k−1), by (2.99), we get

(2.102) σ(g0g) = γ−1g0gk−1.

Put x = p(g0g) ∈ X(γσ) and z = [g0g]Z ∈ [X(γσ)]Z . If v ∈ Fz ≃ E, then

(2.103)

σ(z, v) = (σ(z), σv)

= [(σ(g0g), ρE(σ)v)]Z
= [(g0g, ρE(k−1σ)v)]Z ∈ Fσ(z).

Take the lift of [(g0g, ρE(k−1σ)v)]Z around x, as gk−1σ = k−1σg, we have

(2.104) [(g0g, ρE(k−1σE)v)]Z = g0k−1σg−1
0 (x, v) = γσ(x, v).

This completes the proof of our proposition. □

3. The twisted orbital integrals

In this section, we give a geometric interpretation for the twisted orbital
integrals associated with a semisimple element in G̃. The constructions
given here generalize the results of [9, Chapter 4]. We fix one element
σ ∈ Σ.

3.1. An algebra of invariant kernels on X

Recall that (E, ρE) is a unitary representation of Kσ, and that F =
G ×K E is the associated Hermitian vector bundle on X. We introduce a
vector space Qσ of continuous invariant kernels as follows.

Definition 3.1. — Let Qσ be the vector space of maps q ∈ C(G,End(E))
which satisfy that

• There exist C, C ′ > 0, such that

(3.1) |q(g)| ⩽ C exp
(
−C ′d2(p1, pg)

)
, ∀ g ∈ G.

• For k, k′ ∈ K, we have

(3.2) q(kgk′) = ρE(k)q(g)ρE(k′).
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• Set σE = ρE(σ) ∈ Aut(E),

(3.3) q(σ(g)) = σEq(g)(σE)−1 ∈ End(E).

Let Cb(G, E) be the set of bounded continuous functions on G valued in
E. For q ∈ Qσ and g, g′ ∈ G, put

(3.4) q(g, g′) = q(g−1g′) ∈ End(E).

By (3.2), q(g, g′) defines an integral operator Q acting on Cb(G, E), which
is K-equivariant. Then it descends to an operator acting on Cb(X, F ). Let
q(x, x′) ∈ Hom(Fx′ , Fx) be the corresponding continuous kernel on X × X,
which is just the descent of q(g, g′) to X ×X. Moreover, the condition (3.3)
is equivalent to say that, for x, x′ ∈ X,

(3.5) qX (σ(x), σ(x′)) = σqX(x, x′)σ−1 ∈ Hom(Fσ(x′), Fσ(x)).

By (3.4), and (3.5), Q commutes with Gσ-action.

Remark 3.2. — The vector space Qσ with the convolution of kernel func-
tions becomes an associative algebra, it is a subalgebra of the one defined
in [9, Definition 4.1.1].

We can extend q ∈ Qσ to a continuous map q̃ ∈ C(Gσ, End(E)) by
setting

(3.6) q̃(gµ) = q(g)ρE(µ) ∈ End(E) , g ∈ G, µ ∈ Σσ.

Then it lifts to a continuous kernel defined on Gσ × Gσ such that

(3.7) q̃(gµ, hµ′) = q̃((gµ)−1hµ′) ∈ End(E).

The operator Q can be also expressed as the integral operator on Cb
Kσ(Gσ,E)

associated with kernel q̃.
Since we are going to define the twisted orbital integral in next subsec-

tion, we need to introduce the volume measures which are involved here.
Let dx be the volume element on X induced by the Riemannian metric.
Let dk be the normalized Haar measure of K. Put

(3.8) dg = dx dk.

Then dg is a left-invariant Haar measure on G. Since G is unimodular, dg

is also right-invariant.
Let dy be the volume element on X(γσ) induced by Riemannian metric,

let df be the volume element on the Euclidean space p⊥
σ (γ). Then dy df

is a volume element on Zσ(γ) ×Kσ(γ) p
⊥
σ (γ) which is Zσ(γ)-invariant. By
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Theorem 2.13, there is a smooth positive Kσ(γ)-invariant function r(f) on
p⊥

σ (γ) such that we have the identity of volume elements on X,

(3.9) dx = r(f) dy df,

with r(0) = 1. Moreover, there exist C > 0, C ′ > 0 such that for f ∈ p⊥
σ (γ)

(cf. [22, Chapter IV, Theorem 4.1]),

(3.10) r(f) ⩽ C exp
(
C ′|f |

)
.

Let dk′ be the Haar measure on Kσ(γ) that gives volume 1 to Kσ(γ),
and let du be the K-invariant volume form on Kσ(γ)\K, so that

(3.11) dk = dk′du.

Then dy dk′ defines an invariant Haar measure on the reductive Lie group
Zσ(γ) such that

(3.12) dg = dy dk′ · r(f) df du.

By (2.78), (3.12), dv = r(f) df du is a G-invariant measure on Zσ(γ)\G.

3.2. Twisted orbital integrals

Let γ ∈ G be as follows

(3.13) γ = ea k−1 ∈ G, a ∈ p, k ∈ K, Ad(k)a = σa.

Then γσ is semisimple.
If q ∈ Qσ, then for x ∈ X, we have γσq

(
x, γσ(x)

)
∈ End(Fγσ(x)). There-

fore, TrF
[
γσq

(
x, γσ(x)

)]
is well-defined function on X. Let h(y) be a com-

pactly supported bounded measurable function on X(γσ).

Proposition 3.3. — The function TrF
[
γσq

(
x, γσ(x)

)]
h(pγσx) is inte-

grable on X. Moreover,

(3.14)
∫

X

TrF
[
γσq

(
x, γσ(x)

)]
h(pγσx) dx

=
∫
p⊥

σ (γ)
TrE

[
σEq(e−f γ eσf )

]
r(f) df

∫
X(γσ)

h(y) dy.

Proof. — By (2.73) and (3.1), the function TrE [σEq(e−f γ eσf )] is
bounded by C ′ exp(−C|f |2) with some constants C, C ′ > 0 for f ∈ p⊥

σ (γ).
By (3.10), the integrals in the right-hand side of (3.14) are well-defined.
By the identification ργσ defined in (2.72) and using the Fubini’s theorem,
we get exactly (3.14). □
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By (2.78), and using the fact that the Haar measures of K, Kσ(γ) have
volume 1, we have

(3.15)
∫
p⊥

σ (γ)
TrE

[
σEq(e−f γ eσf )

]
r(f) df

=
∫

Zσ(γ)\G

TrE
[
σEq

(
v−1γσ(v)

)]
dv.

Recall that Zσ(γσ) denotes the centralizer of γσ in Gσ. As said in Re-
mark 2.14, an analogue of (2.78) for the pair (Gσ, Kσ, Zσ(γσ)) still holds.
Then the above integrals can be rewritten as integrals on the quotient
Zσ(γσ)\Gσ with the kernel q̃ defined in (3.6). More precisely, put

(3.16) dk̃ = dk dµ.

Then dk̃ is the normalized Haar measure on Kσ. Let dk̃σ be the normalized
Haar measure on Kσ(γσ), and let dµ̃σ be the Kσ-invariant measure on
Kσ(γσ)\Kσ such that

(3.17) dk̃ = dk̃σdµ̃σ.

Then by (2.78), we get that

(3.18) dṽσ = r(f) df dµ̃σ

is a measure on Zσ(γσ)\Gσ. Then

(3.19)
∫
p⊥

σ (γ)
TrE [σEq(e−f γeσf )]r(f) df =

∫
Zσ(γσ)\Gσ

TrE [q̃(ṽ−1γσṽ] dṽσ.

Let [γσ] denote the conjugation class of γσ in Gσ.

Definition 3.4. — For q ∈ Qσ, set

(3.20)
Tr[γσ][Q] =

∫
Zσ(γ)\G

TrE
[
σEq(v−1γσ(v))

]
dv

=
∫
p⊥

σ (γ)
TrE

[
σEq(e−f γ eσf )

]
r(f) df.

Integrals like (3.15), (3.19), (3.20) are called twisted orbital integrals.
By (3.19), we see that Tr[γσ][Q] only depends on the conjugacy class
of γσ in Gσ. In particular, if γ′ ∈ G is σ-twisted conjugate to γ, then
Tr[γ′σ][Q] = Tr[γσ][Q].

If taking σ = IdG in (3.20), we get the ordinary (un-twisted) orbital inte-
gral Tr[γ][Q] (cf. [9, Definition 4.2.2]) associated with a semisimple element
γ ∈ G.

The following proposition extends [9, Theorem 4.2.3].
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Proposition 3.5. — For Q, Q′ ∈ Qσ, we have

(3.21) Tr[γσ] [[Q, Q′]
]

= 0.

Equivalently, Tr[γσ][·] is a trace on the algebra Qσ.

Proof. — Let R be an integral operator defined by a kernel function in
Qσ, and let R′ be an integral operator associated with a bounded contin-
uous invariant kernel function in Cb(Gσ, End(E)). They act on continuous
sections of F over X with compact support. The operators RR′, R′R also
have integral kernels which are bounded on Gσ. We have

(3.22) Tr[1] [[R, R′]
]

= 0.

Let δγσ be the current on Gσ so that

(3.23)
∫

Gσ

fδγσ =
∫

Zσ(γσ)\Gσ

f((ṽ)−1γσṽ) dṽσ.

Since dṽσ is invariant under the right action of Gσ on Zσ(γσ)\Gσ, δγσ

is invariant by conjugation. For q ∈ Qσ, q̃ is defined by (3.6). By (3.19),
(3.20),

(3.24) Tr[γσ][Q] =
∫

Gσ

TrE [q̃]δγσ = TrE [q̃ ∗ δ(γσ)−1(1)],

where ∗ denotes the convolution on Gσ.
The current δ(γσ)−1 defines a linear operator R(γσ)−1 acting on Cb(X, F ).

If Q ∈ Qσ, we have

(3.25) QR(γσ)−1 = R(γσ)−1Q.

The operator QR(γσ)−1 is an integral operator with a bounded continuous
invariant kernel.

Then we can rewrite (3.24) as

(3.26) Tr[γσ][Q] = Tr[1][QR(γσ)−1 ].

By (3.22), (3.25) and (3.26), we get

(3.27) Tr[γσ][[Q, Q′]
]

= Tr[1][[Q, Q′]R(γσ)−1
]

= Tr[1][[Q, Q′R(γσ)−1 ]
]

= 0.

This completes the proof of our proposition. □
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3.3. Infinite dimensional orbital integrals

Let dY p, dY k denote the volume elements on the Euclidean spaces p, k.
Then these volume elements are Kσ-invariant. Moreover, dY = dY pdY k

is a Gσ-invariant volume element on g. Let dY T X , dY N , dY be the corre-
sponding volume elements on the fibres of TX, N, TX ⊕ N over X.

Let C∞,b(g,R) be the vector space of real valued smooth bounded func-
tions on g. We replace the finite-dimensional vector space E by the infinite
dimensional space

E = Λ•(p∗ ⊕ k∗) ⊗ C∞,b(g,R) ⊗ E

equipped with the natural action of Kσ. Then the vector bundle F on X

is replaced by

(3.28) F = Λ•(T ∗X ⊕ N∗) ⊗ C∞,b(TX ⊕ N,R) ⊗ F.

Let Cb(X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )) be the space of continuous bounded
sections of π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F ) over X̂ .

The group Kσ acts on Cb(Gσ ×g, Λ•(p∗ ⊕k∗)⊗E), so that if s ∈ Cb(Gσ ×
g, Λ•(p∗ ⊕ k∗) ⊗ E) then for k̃ ∈ Kσ

(3.29) (k̃ · s)(g̃, Y ) = ρΛ•(p∗⊕k∗)⊗E(k̃)s(g̃k̃, Ad(k̃−1)Y ).

Let Cb
Kσ (Gσ × g, Λ•(p∗ ⊕ k∗) ⊗ E) be the vector space of Kσ-invariant

continuous bounded function on Gσ × g with values in Λ•(p∗ ⊕ k∗) ⊗ E.
Then we have

(3.30)
Cb
(
X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )

)
= Cb

Kσ

(
Gσ × g, Λ•(p∗ ⊕ k∗) ⊗ E

)
= Cb

K

(
G × g, Λ•(p∗ ⊕ k∗) ⊗ E

)
.

Definition 3.6. — Let Qσ be the vector space of continuous kernels
q(g, Y, Y ′) defined on G × g × g with values in End(Λ•(p∗ ⊕ k∗) ⊗ E) such
that

• If g ∈ G, k, k′ ∈ K, Y, Y ′ ∈ g, then

(3.31) q
(
kgk′, Y, Y ′)
= ρΛ•(p∗⊕k∗)⊗E(k)q

(
g, Ad(k−1)Y, Ad(k′)Y ′)ρΛ•(p∗⊕k∗)⊗E(k′).

• Put σΛ•(p∗⊕k∗)⊗E = ρΛ•(p∗⊕k∗)⊗E(σ) ∈ Aut(Λ•(p∗ ⊕ k∗) ⊗ E), then

(3.32) q(σ(g), σY, σY ′) = σΛ•(p∗⊕k∗)⊗Eq(g, Y, Y ′)(σΛ•(p∗⊕k∗)⊗E)−1.

• There exist C, C ′ > 0 such that

(3.33) |q(g, Y, Y ′)| ⩽ C exp
(

− C ′(d2(p1, pg) + |Y |2 + |Y ′|2
))

.
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We will denote by Qσ,∞ the subspace of Qσ consisting of smooth kernels.

If q ∈ Qσ, put q((g, Y ), (g′, Y ′)) = q(g−1g′, Y, Y ′). If s ∈ Cb
K(G ×

g, Λ•(p∗ ⊕ k∗) ⊗ E), put

(3.34) (Qs)(g, Y ) =
∫

G×g

q
(
(g, Y ), (g′, Y ′)

)
s(g′, Y ′)dg′dY ′.

By (3.31), (3.33), Q is an operator acting on Cb
K(G × g, Λ•(p∗ ⊕ k∗) ⊗ E).

Equivalently, the operator Q acts on Cb(X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )) with
a continuous kernel q((x, Y ), (x′, Y ′)).

The action of σ on Cb
K(G × g, Λ•(p∗ ⊕ k∗) ⊗ E) is represented by

(3.35) (σs)(g, Y ) = σΛ•(p∗⊕k∗)⊗Es(σ−1(g), σ−1Y ).

Then (3.32) is equivalent to Qσ = σQ. Therefore, Q commutes with Gσ.
By [9, Proposition 4.3.2] and using the fact that σ preserves dxdY , Qσ

is an algebra with respect to the convolution of kernels. Let [·, ·] denote the
supercommutator with respect to the Z2-graded structure of End(Λ•(p∗ ⊕
k∗)⊗E), and let Trs

Λ•(p∗⊕k∗)⊗E [·] be the supertrace on End(Λ•(p∗⊕k∗)⊗E).
If g ∈ G, let q(g) be the operator on E defined by the kernel q(g, Y, Y ′).

Let σE ∈ End(E) denote the action of σ on E . Then for g ∈ G, the inte-
gral operator σEq(g−1γσ(g)) acting on E is given by the continuous ker-
nel σΛ•(p∗⊕k∗)⊗Eq(g−1γσ(g), σ−1Y, Y ′) on g × g. By (3.33), the function
g ∋ Y 7→ Trs

Λ•(p∗⊕k∗)⊗E [σΛ•(p∗⊕k∗)⊗Eq(g−1γσ(g), σ−1Y, Y )] is integrable
on g.

If σEq(g−1γσ(g)) is trace class, by [19, Proposition 3.1.1], we get

(3.36) Trs
E [σEq(g−1γσ(g))

]
=
∫
g

Trs
Λ•(p∗⊕k∗)⊗E

[
σΛ•(p∗⊕k∗)⊗Eq

(
g−1γσ(g), σ−1Y, Y

) ]
dY.

Remark 3.7. — A sufficient condition for our operator to be trace class
is that the kernel together with its derivatives in Y, Y ′ of arbitrary orders
lie in the Schwartz space of g × g.

By (3.33), there exists Cγσ > 0 such that

(3.37)
∣∣∣∣ ∫

g

Trs
Λ•(p∗⊕k∗)⊗E

[
σΛ•(p∗⊕k∗)⊗Eq(g−1γσ(g), σ−1Y, Y )

]
dY

∣∣∣∣
⩽ Cγσ exp

(
−C ′d2(pg, γσpg)

)
.

By (2.73), the arguments in the proof of Proposition 3.3 show that the
left-hand side of (3.37) is integrable on p⊥

σ (γ).
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We extend the notion of the twisted orbital integrals to the infinite di-
mensional case, which is a twisted version of [9, Definition 4.3.3].

Definition 3.8. — If Q is given by q ∈ Qσ, we define Trs
[γσ][Q] as

follows,

(3.38) Trs
[γσ][Q]

=
∫

(Zσ(γ)\G)×g

Trs
Λ•(p∗⊕k∗)⊗E

[
σΛ•(p∗⊕k∗)⊗Eq(v−1γσ(v), Y, σY )

]
dv dY

=
∫
p⊥

σ (γ)×g

Trs
Λ•(p∗⊕k∗)⊗E

[
σΛ•(p∗⊕k∗)⊗Eq(e−f γ eσf , Y, σY )

]
r(f) df dY.

Expressions such as (3.38) are called twisted orbital supertraces.

If σEq(g−1γσ(g)) is trace class for g ∈ G, then we can rewrite (3.38) as

(3.39) Trs
[γσ][Q] =

∫
p⊥

σ (γ)
Trs

E [σEq(e−f γ eσf )]r(f) df.

Proposition 3.9. — If Q, Q′ ∈ Qσ, then

(3.40) Trs
[γσ] [[Q, Q′]

]
= 0.

Proof. — By the above constructions, the proof of our proposition is just
a modification of the proof of Proposition 3.5. □

3.4. Twisted trace formula for locally symmetric spaces

Let Γ be a cocompact torsion-free discrete subgroup of G such that
σ(Γ) = Γ. We still assume that F is associated with a finite-dimensional
unitary representation (E, ρE) of Kσ. Put Z = Γ\X = Γ\G/K. We use
the notation in Subsection 2.6. Recall that Σσ acts isometrically on Z and
its action lifts to an action on the bundles TZ, F .

Let dz be the volume element of Z induced by the Riemannian metric.
We still denote by dg the volume element on Γ\G induced by dg.

Let Q be an operator with kernel q ∈ Qσ. Then Q descends to an operator
QZ acting on C(Z, F ). Let qZ(z, z′), z, z′ ∈ Z be the continuous kernel of
QZ over Z. We also denote by z, z′ their arbitrary lifts in X. Then

(3.41) qZ(z, z′) =
∑
γ∈Γ

γqX(γ−1z, z′) =
∑
γ∈Γ

qX(z, γz′)γ.

The convergence of the above sums are guaranteed by the cocompactness
of Γ and the condition (3.1) for q.
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Note that σ acts on C∞(Z, F ), we will denote it by σZ . Then σQ descends
to σZQZ . By (3.5), (3.41), the kernel of σZQZ is given by

(3.42) (σZQZ)(z, z′) =
∑
γ∈Γ

qX(z, γσ(z′))γσ.

By (2.98), (σZQZ)(z, z′) lifts to G × G, so that

(3.43) (σZQZ)(g, g′) =
∑
γ∈Γ

q(g−1γσ(g′))σE ∈ End(E).

Assume that QZ is trace class, so is σZQZ , then

(3.44)
Tr[σZQZ ] =

∫
Z

TrF
[
(σZQZ)(z, z)

]
dz

=
∫

Γ\G

TrE
[
(σZQZ)(g, g)

]
dg.

By Lemma 2.16, if γ ∈ Γ, Γ∩Zσ(γ)\Zσ(γ) is a compact smooth manifold.
Recall that [Γ]σ is the set of σ-twisted conjugacy classes in Γ. The twisted
trace formula is given as follows,

(3.45) Tr[σZQZ ] =
∑

[γ]
σ

∈[Γ]σ

Vol
(
Γ ∩ Zσ(γ)\X(γσ)

)
Tr[γσ][Q].

4. A formula for semisimple twisted orbital integrals

The purpose of this section is to present the main results in this paper. We
get an explicit geometric formula for the twisted orbital integrals associated
with heat kernels of the Casimir operator, which is an extension of Bismut’s
formula for semisimple orbital integrals [9, Theorem 6.1.1]. The proof of this
formula is deferred to Section 6. In the last subsection, we will apply our
formula and explain its consequences in typical examples from cyclic base
change theory.

4.1. The J-function Jγσ(Y k
0 ) on kσ(γ)

The function Â(x) is given by

(4.1) Â(x) = x/2
sinh(x/2) .
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Let H be a finite-dimensional Hermitian vector space. If B ∈ End(H) is
self-adjoint, then B/2

sinh(B/2) is a self-adjoint positive endomorphism. Put

(4.2) Â(B) = det 1/2
[

B/2
sinh(B/2)

]
.

If γ ∈ G, σ ∈ Σ are such that γσ is semisimple, as in Sections 2 and 3,
we may and we will assume that γ = ea k−1 with a ∈ p, k ∈ K, and
Ad(k)a = σa.

Set z0 = z(a) = p0 ⊕ k0, then zσ(γ) is a Lie subalgebra of z0. Let z⊥
0 , p⊥

0 ,
k⊥
0 be the orthogonal vector spaces to z0, p0, k0 in g, p, k, and let z⊥

σ,0(γ),
p⊥

σ,0(γ), k⊥
σ,0(γ) be the orthogonal spaces to zσ(γ), pσ(γ), kσ(γ) in z0, p0, k0.

We have

(4.3) z⊥
σ,0(γ) = p⊥

σ,0(γ) ⊕ k⊥
σ,0(γ).

For Y k
0 ∈ kσ(γ), ad(Y k

0 ) preserves pσ(γ), kσ(γ), p⊥
σ,0(γ), k⊥

σ,0(γ), and it is an
antisymmetric endomorphism with respect to the scalar product.

As explain in [9, p. 105], the following function A(Y k
0 ) in Y k

0 ∈ kσ(γ) has
a natural square root that is analytic,

(4.4) A(Y k
0 ) = 1

det(1 − Ad(k−1σ))|z⊥
σ,0(γ)

×
det
(
1 − exp(−i ad(Y k

0 )) Ad(k−1σ)
)
|k⊥

σ,0(γ)

det
(
1 − exp(−i ad(Y k

0 )) Ad(k−1σ)
)
|p⊥

σ,0(γ)
.

Its square root is denoted by
(4.5)[

1
det(1−Ad(k−1σ))|z⊥

σ,0(γ)
·

det
(
1 − exp(−i ad(Y k

0 )) Ad(k−1σ)
)
|k⊥

σ,0(γ)

det
(
1 − exp(−i ad(Y k

0 )) Ad(k−1σ)
)
|p⊥

σ,0(γ)

]1/2

.

If Y k
0 = 0, this square root has the value 1/ det(1 − Ad(k−1σ))|p⊥

σ,0(γ).
The following definition is a direct generalization of the function Jγ de-

fined by [9, (5.5.5)], we often call them the J-functions.

Definition 4.1. — Let Jγσ(Y k
0 ) be the analytic function of Y k

0 ∈ kσ(γ)
given by

(4.6) Jγσ(Y k
0 ) = 1∣∣det(1 − Ad(γσ))|z⊥

0

∣∣1/2
Â
(
i ad(Y k

0 )|pσ(γ)
)

Â
(
i ad(Y k

0 )|kσ(γ)
)

×

[
1

det(1−Ad(k−1σ))|z⊥
σ,0(γ)

det
(
1−exp(−iad(Y k

0 )) Ad(k−1σ)
)
|k⊥

σ,0(γ)

det
(
1−exp(−iad(Y k

0 )) Ad(k−1σ)
)
|p⊥

σ,0(γ)

]1/2

.
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By (4.6), there exist cγσ, Cγσ > 0 such that,

(4.7)
∣∣Jγσ(Y k

0 )
∣∣ ⩽ cγσ exp

(
Cγσ|Y k

0 |
)
.

Remark 4.2. — If t > 0, if we replace B by B/t, the function Jγσ is
unchanged.

4.2. A formula for the twisted orbital integrals for the heat
kernel

Let Ug be the universal enveloping algebra of g. If we identify g to the
vector space of left-invariant vector fields on G, then the enveloping algebra
Ug is identified with the algebra of left-invariant differential operators on G.

Let Cg ∈ Ug be the Casimir element of G associated with the bilinear
form B. If e1, . . . , em+n is a basis of g and if e∗

1, . . . , e∗
m+n is the dual basis

of g with respect to B, then

(4.8) Cg = −
m+n∑
i=1

e∗
i ei.

Also Cg lies in the center of Ug and commutes with G̃.
The scalar product ⟨· , ·⟩ of g is given by −B(·, θ·). If e1, . . . , em is an

orthonormal basis of p, and if em+1, . . . , em+n is an orthonormal basis of k,
by (4.8), we have

(4.9) Cg = −
m∑

i=1
e2

i +
m+n∑

i=m+1
e2

i .

Set

(4.10) Cg,H = −
m∑

i=1
e2

i , Ck =
m+n∑

i=m+1
e2

i .

Note that Ck ∈ Uk is just the Casimir element of K associated with B|k.
By (4.8)–(4.10), we have

(4.11) Cg = Cg,H + Ck.

Let F = G ×K E be a homogeneous vector bundle on X defined from a
unitary finite-dimensional Kσ-representation (E, ρE).

The operator Cg acts on C∞(X, F ) via the identification (2.11). Let
Cg,X denote the action of Cg on C∞(X, F ), which commutes with Gσ.
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Let ∆H,X denote the Bochner Laplacian acting on C∞(X, F ). Then Cg,H

descends to −∆H,X . Let Ck,E ∈ End(E) denote the action of Ck on E given
by

(4.12) Ck,E =
m+n∑

i=m+1
ρE,2(ei).

Then Ck,E descends to an invariant parallel section Ck,F of End(F ).
By (4.11),

(4.13) Cg,X = −∆H,X + Ck,F .

Let κg ∈ Λ3(g∗) be such that if a, b, c ∈ g,

(4.14) κg(a, b, c) = B([a, b], c).

The form κg is invariant by the adjoint action of G ⋊ Σ. We can view κg

as a closed left and right invariant 3-form on G.
Let B∗ be the bilinear form on Λ•(g∗) induced by B. Let Ck,k ∈ End(k),

Ck,p ∈ End(p) be the actions of Ck on k, p respectively via the adjoint
actions of k as in (4.12). By [9, (2.6.4), (2.6.11)],

(4.15) B∗(κg, κg) = 1
6

m+n∑
i,j=1

B
(
[ei, ej ], [e∗

i , e∗
j ]
)

= 1
2 Trp[Ck,p]+ 1

6 Trk[Ck,k].

Definition 4.3. — Let LX be the operator acting on C∞(X, F ),

(4.16) LX = 1
2Cg,X + 1

8B∗(κg, κg).

Then LX commutes with Gσ.

Let A be a self-adjoint element of End(E) which commutes with the
action of Kσ. Then A descends to a self-adjoint parallel section of End(F )
which commutes with Gσ.

Definition 4.4. — Let LX
A be the operator acting on C∞(X, F ),

(4.17) LX
A = LX + A.

It is clear that LX
A is a Bochner-like Laplacian. For t > 0, the heat

operator exp(−tLX
A ) has a smooth kernel pX

t (x, x′) with respect to dx on X.

Proposition 4.5. — For t > 0, pX
t ∈ Qσ.

Proof. — This follows from [9, Proposition 4.4.2] and from the fact that
LX commutes with the action of σ. □

ANNALES DE L’INSTITUT FOURIER



TWISTED TRACE FORMULA 1943

It follows from Subsection 3.2 and Proposition 4.5 that for t > 0, the
twisted orbital integral Tr[γσ][exp(−tLX

A )] is well-defined. Recall that p =
dim pσ(γ), q = dim kσ(γ).

Theorem 4.6. — For any t > 0, the following identity holds:

(4.18) Tr[γσ][exp(−tLX
A )
]

= exp(−|a|2/2t)
(2πt)p/2

·
∫
kσ(γ)

Jγσ(Y k
0 ) TrE

[
ρE(k−1σ) exp(−iρE(Y k

0 ) − tA)
]

e−|Y k
0 |2/2t dY k

0
(2πt)q/2 .

Proof. — The proof of our theorem will be given in Section 6. □

As we explained in Subsection 3.2, our twisted orbital integral has an
expression as an ordinary (un-twisted) orbital integral for a larger group
Gσ (cf. (3.19)), whose Lie algebra is the semi-direct sum of g and the Lie
algebra of Σσ. One surprising point here is that in our formula (4.18),
only the Lie subalgebras of g appears, specially for the cases where σ is
not of finite order. Indeed, in our setting, the twist σ plays a role of an
equivariant action on the vector bundles, so that when we apply the local
index techniques to prove (4.18), the Lie algebra of Σσ, as we will see, is
not involved through the computations.

In Section 7, we will look into some geometric operators on X, such as
Laplacians for spinors and Hodge Laplacians for flat vector bundles. They
all can be written as LX

A with suitable A’s. Therefore, we can evaluate the
corresponding equivariant heat traces via (3.45) and (4.18) for Z = Γ\X.

4.3. The twisted orbital integrals of wave operators

Let ∆zσ(γ) be the standard Laplacian on zσ(γ) with respect to the scalar
product on zσ(γ). For t > 0, let exp(t∆zσ(γ)/2) be the corresponding
heat operator. Let y, Y k

0 denote the generic elements in pσ(γ), kσ(γ) re-
spectively. Let dy dY k

0 be the Euclidean volume element of zσ(γ), and let
exp(t∆zσ(γ)/2)((y, Y k

0 ), (y′, Y k′

0 )) denote the smooth kernel of exp(t∆zσ(γ)/2)
with respect to dy′ dY k′

0 .
Let δy=a be a distribution on zσ(γ) = pσ(γ) ⊕ kσ(γ) associated with the

affine subspace {y = a}. Then Jγσ(Y k
0 )ρE(k−1σ) exp(−iρE(Y k

0 ))δy=a is a
distribution on zσ(γ) with values in End(E). Applying the heat operator
exp(t∆zσ(γ)/2− tA) to this distribution, we get a smooth function on zσ(γ)
with values in End(E). It can be evaluated at 0 ∈ zσ(γ). Then Theorem 4.6
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can be rewritten as follows,

(4.19) Tr[γσ][exp(−tLX
A )
]

= TrE
[
exp

(
t∆zσ(γ)/2 − tA

)
[
Jγσ(Y k

0 )ρE(k−1σ) exp
(
−iρE(Y k

0 )
)
δy=a

] ]
(0).

Let S(R) be the Schwartz space of R, let Seven(R) be the space of even
functions in S(R). The Fourier transform of µ ∈ S(R) is given by

(4.20) µ̂(y) =
∫
R

e−2iπyx µ(x)dx.

Take µ ∈ Seven(R), then µ̂ ∈ Seven(R). We now assume that there exists
C > 0 such that for any k ∈ N, there exists ck > 0 such that

(4.21) |µ̂(k)(y)| ⩽ ck exp(−C|y|2).

Then µ(
√

LX + A) is a self-adjoint operator with a smooth kernel. We
denote its smooth kernel by µ(

√
LX + A)(x, x′) ∈ Hom(Fx′ , Fx), x, x′ ∈ X.

As explained in [9, Section 6.2], we have

(4.22) µ
(√

LX + A
)

∈ Q.

This is a consequence of the finite propagation speed for wave operators.
We refer to [47, Section 4.4] for more details.

Since σ commutes with LX + A, we can get µ(
√

LX + A) ∈ Qσ. Then
the twisted orbital integral Tr[γσ][µ(

√
LX + A)] is well-defined. Similarly,

the kernel of µ(
√

−∆zσ(γ)/2 + A) on zσ(γ) also has a Gaussian-like decay.
Using Theorem 4.6 and by (4.7), (4.19), (4.21), a modification of the

proof to [9, Theorem 6.2.2], using essentially the denseness of y2k e−ty2/2,
k ∈ N in Seven(R), shows the following result.

Theorem 4.7. — The following identity holds:

(4.23) Tr[γσ]
[
µ
(√

LX + A
)]

= TrE
[
µ
(√

−∆zσ(γ)/2 + A
)

Jγσ(Y k
0 )

× ρE(k−1σ) exp
(
−iρE(Y k

0 )
)
δy=a

]
(0).

Let Tr[γσ][cos(s
√

LX + A)] be the even distribution on s ∈ R such that
for any µ ∈ Seven(R) with µ̂ having compact support,

(4.24) Tr[γσ]
[
µ
(√

LX + A
)]

=
∫
R

µ̂(s) Tr[γσ]
[
cos
(

s
√

LX + A
)]

ds.

Let P ⊥
σ (γ) ⊂ X be the image of p⊥

σ (γ) by the map f → p ef . Put

(4.25) ∆γσ
X = {(x, γσ(x)) : x ∈ P ⊥

σ (γ)}.
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Then ∆γσ
X is a submanifold of X × X. We view R × ∆γσ

X as a distribution
on R × X × X. By analyzing the wave front sets for both cos(s

√
LX + A)

and R× ∆γσ
X ([25, Theorem 8.2.10], [26, Theorem 23.1.4]), we get that the

distribution γσ cos(s
√

LX + A)(R × ∆γσ
X ) is well-defined on R × X × X.

Using again the finite propagation speed of cos(s
√

LX + A), we see that
the push-forward of TrF [γσ cos(s

√
LX + A)](R × ∆γσ

X ) by the projection
R × X × X → R is well-defined, which will be denoted by

(4.26)
∫

∆γσ
X

TrF
[
γσ cos

(
s
√

LX + A
)]

.

By (3.20), (4.24), (4.25), we have the identity of even distributions on R,

(4.27) Tr[γσ]
[
cos
(

s
√

LX + A
)]

=
∫

∆γσ
X

TrF
[
γσ cos

(
s
√

LX + A
)]

.

The even distribution on R,

(4.28) TrE
[
cos
(
s
√

−∆zσ(γ)/2+A
)

Jγσ(Y k
0)ρE(k−1σ)exp

(
−iρE(Y k

0 )
)
δy=a

]
(0)

is defined by

(4.29) TrE
[
µ
(√

−∆zσ(γ)/2+A
)
Jγσ(Y k

0 )ρE(k−1σ) exp
(
−iρE(Y k

0 )
)
δy=a

]
(0)

=
∫
R

µ̂(s) TrE
[
cos
(

2πs
√

−∆zσ(γ)/2 + A
)

Jγσ(Y k
0 )

ρE(k−1σ) exp
(
−iρE(Y k

0 )
)
δy=a

]
(0).

Let (a, kσ(γ)) denote the affine subspace of zσ(γ) = pσ(γ) ⊕ kσ(γ). Set

(4.30) Hγ
σ = {0} × (a, kσ(γ)) ⊂ zσ(γ) × zσ(γ).

Then we have the tautological identification of even distributions on R,

(4.31) TrE
[
cos
(
s
√

−∆zσ(γ)/2+A
)
Jγσ(Y k

0 )ρE(k−1σ) exp
(
−iρE(Y k

0 )
)
δy=a

]
(0)

=
∫

Hγ
σ

TrE
[
cos
(
s
√

−∆zσ(γ)/2 + A
)

Jγσ(Y k
0 )ρE(k−1σ) exp

(
−iρE(Y k

0 )
)]

.

This is an analogue of (4.27).
Following the above constructions, we extend [9, Theorem 6.3.2] for the

twisted orbital integrals, where the supports and singular supports of the
above distributions are obtained as in [9, Proposition 6.3.1].
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Theorem 4.8. — We have the identity of even distributions on R sup-
ported on {s ∈ R : |s| ⩾

√
2|a|} with singular support included in ±

√
2|a|,

(4.32)
∫

∆γσ
X

TrF
[
γσ cos

(
s
√

LX + A
)]

=
∫

Hγ
σ

TrE
[
cos
(

s
√

−∆zσ(γ)/2+A
)

Jγσ(Y k
0 )ρE(k−1σ) exp

(
− iρE(Y k

0 )
)]

.

4.4. Representation of Kσ and vanishing of twisted orbital
integrals

In Subsections 3.1 and 3.2, for the twisted orbital integral, we always start
with a Kσ-representation ρE . Now we study the irreducible representations
of Kσ and show that only σ-stable irreducible representations of K give
the non-vanishing twisted orbital integrals. Let Irr(·) denote the set of
equivalent classes of irreducible (complex) representations of a compact
Lie group.

Proposition 4.9. — If (E, ρE) ∈ Irr(Kσ) and if the restriction of
(E, ρE) to K is not irreducible, then for k ∈ K, we have

(4.33) TrE [ρE(σ)ρE(k)] = 0.

Proof. — At first, we assume that K is semisimple. Let Inn(K) denote
the inner automorphism group of K. The outer automorphism group of K

is

(4.34) Out(K) = Aut(K)/ Inn(K).

By fixing a maximal torus T of K and an associated positive root system
R+, Out(K) can be realized as a finite subgroup of Aut(K) whose ele-
ments preserve T and R+ [16, Chapter VIII, §4.4 and Chapter IX, §4.10].
Moreover,

(4.35) Aut(K) = Inn(K) ⋊ Out(K).

Take k0 ∈ K, τ ∈ Out(K) such that for k ∈ K,

(4.36) σ(k) = k0τ(k)k−1
0 .

Let Kτ be the subgroup of K ⋊ Out(K) generated by K and τ . We claim
that there exists cτ ∈ C such that if set

(4.37) ρE,′(τ) = cτ ρE(k−1
0 )ρE(σ), ρE,′(k) = ρE(k),
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then (E, ρE,′) is an irreducible representation of Kτ . Note that such number
cτ is not unique, it depends on the order of τ and the choice of k0.

Indeed, set

(4.38) A = ρE(k−1
0 )ρE(σ) ∈ End(E).

Let N0 ⩾ 1 be the order of τ in Out(K). Set

(4.39) k̂ = k0τ(k0) · · · τN0−1(k0) ∈ K.

Then

(4.40) σ(k̂) = k̂ ∈ K, σN0 = Ad(k̂) ∈ Inn(K).

Also we have

(4.41) AN0 = ρE(k̂−1)ρE(σN0).

We can verify directly that AN0 commutes with Kσ. Since (E, ρE) is irre-
ducible as Kσ-representation, then AN0 is a non-zero scalar endomorphism
of E, then we take cτ ∈ C∗ such that cN0

τ AN0 = IdE .
We define ρE,′ as in (4.37). Then for k ∈ K,

(4.42) ρE,′(τ)ρE,′(k)ρE,′(τ−1) = ρE,′(τ(k)).

Therefore, (E, ρE,′) become an irreducible representation of Kτ .
By (4.37), for any k ∈ K, we have

(4.43)
TrE [ρE,′(τ)ρE,′(k)] = TrE [cτ ρE(k−1

0 )ρE(σ)ρE(k)]

= cτ TrE [ρE(σ)ρE(kk−1
0 )].

Note that cτ ̸= 0. Then for proving (4.33), it is equivalent to prove that for
all k ∈ K,

(4.44) TrE [ρE,′(τ)ρE,′(k)] = 0.

In the sequel, we prove (4.44). Let P++ be the dominant weights for
the pair (K, T ) with respect to R+. Then τ acts on P++. If λ ∈ P++, let
Vλ ∈ Irr(K) denote the one with the highest weight λ.

Now we take a dominant weight λ ∈ P++ such that Vλ embeds into
(E, ρE) as a K-subrepresentation. Let {τ i(λ)}d−1

i=0 ⊂ P++ be the orbit of λ

under the action of τ . Note that d ⩾ 1 is the length of the orbit and d | N0.
By the description of all the irreducible representations of non-connected
compact Lie groups in [20, Corollary 4.13.2 and Proposition 4.13.3], we get
that the representation (E, ρE,′) restricting on K is of the form

(4.45)
d−1⊕
i=0

Vτ i(λ).
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Moreover, the action ρE,′(τ) on E sends the component Vτ i(λ) to Vτ i+1(λ).
As a consequence, we get (4.44).

If K is not semisimple (but always reductive), let Z0
K be the identity

component of the center of K, and let Kss be the analytic subgroup of K

associated with kss = [k, k]. Then Z0
K × Kss is a finite cover of K. Note

that Z0
K is a torus, the action of σ on it is of finite order. Then if we

proceed as in the above for Kss, we can still apply [20, Corollary 4.13.2 and
Proposition 4.13.3] to get (4.45) and then (4.44). This completes the proof
of our proposition. □

By our formula in Theorem 4.6, the integrand contains a ρE-trace term
TrE [ρE(σ) · · · ]. Then we get the following result.

Corollary 4.10. — Let F be the Hermitian vector bundle on X de-
fined from (E, ρE) ∈ Irr(Kσ) which is not irreducible as K-representation.
Then for semisimple γσ as before, and for t > 0,

(4.46) Tr[γσ][exp(−tLX
A )] = 0.

Moreover, if µ ∈ Seven(R) is such that (4.21) holds, then

(4.47) Tr[γσ]
[
µ
(√

LX + A
)]

= 0.

Remark 4.11. — In [20, Section 4.13], a Weyl character formula for the
non-connected compact Lie group (such as Kτ ) was established. Then,
via (4.37), the trace term TrE [ρE(σ) · · · ] in (4.18) can be written in terms
of λ and the root data associated with (K, T ). In Subsection 7.2, we use
this observation to evaluate the twisted orbital integrals more explicitly in
the geometric context.

The proof of Proposition 4.9 also gives a correspondence between Irr(Kσ)
and τ -orbits in P++. For simplicity, we assume K to be semisimple. Note
that τ generates a finite group ⟨τ⟩ in Out(K). The set Irr(⟨τ⟩) can be
viewed as a finite abelian group (≃ Z/N0Z), it acts on Irr(Kτ ) by tensor
product of representations. By [20, Corollary 4.13.2 and Proposition 4.13.3],
we have the canonical bijection,

(4.48) Irr(⟨τ⟩)\ Irr(Kτ ) ≃ ⟨τ⟩\P++.

Similarly, Irr(Σσ) acts on Irr(Kσ). Then the construction given by (4.37)
implies an injective map

(4.49) Irr(Σσ)\ Irr(Kσ) → Irr(⟨τ⟩)\ Irr(Kτ ).

Now we explain that the map in (4.49) is also a bijection. By (4.48), we
consider a τ -orbit in P++, and let λ be one element in this orbit. Let
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IndKσ

K (Vλ) be the induced Kσ-representation, and let (E, ρE) be a Kσ-
irreducible component of it, which contains a Vλ-component when restrict-
ing to K. Then, by the arguments as in (4.37)–(4.45), we get the represen-
tation (E, ρE) ∈ Irr(Kσ) corresponds exactly to the τ -orbit of λ in P++.
Therefore, the map in (4.49) is surjective, then a bijection.

Proposition 4.12. — If (E, ρE) is a finite dimensional unitary K-
representation, then it can extend to an irreducible representation of Kσ

if and only if the highest weights of its K-irreducible components form
exactly one τ -orbit in P++. Therefore, an irreducible Kσ-representation is
also K-irreducible if and only if its highest weight is fixed by τ .

4.5. Examples from cyclic base change theory

The twisted orbital integral plays an important role in the cyclic base
change theory, where σ is of finite order. The typical examples are as follows,

• a connected semisimple complex linear Lie group GC, where σ is
taken to be the conjugation of a matrix and its fixed point set is
just the the real matrix subgroup GR;

• the product case where G = Gℓ
0 is given as ℓ-copies of a connected

real semisimple Lie group G0 and σ is given as the cyclic permuta-
tion of the copies. The simplest case is ℓ = 2.

In this subsection, we focus on such examples and explain how to make
use of our formula in Theorem 4.6. In particular, we show via elementary
computations how the twisted orbital integrals (for GC or Gℓ

0) relate to
the ordinary orbital integrals (for GR or G0). Note that we have no any
regularity condition on the semisimple element γσ.

Example 4.13 (Complex semisimple Lie group and matrix conjugation).
Let N ∈ N be large integer. Let G = GC ⊂ GL(N,C) be a connected
and simply connected semisimple linear algebraic group which is invariant
under transpose and conjugation. Then the Cartan involution is given as
θ(A) = (AT )−1, where (·)T denotes the matrix transpose.

We also view GC as a real semisimple Lie group with (real) Lie algebra g,
the bilinear form B on g is taken to be the real trace form, which is equal
to the real part of the complex Killing form on gC up a positive multiple.
Let σ ∈ Aut(GC) be such that σ(A) = A. Then its fixed points are exactly
the real points of GC, denoted by GR, the subgroup of real matrices in
GC. Alternatively speaking, GR is a split real form of GC, and GC is the
complexification of GR. We will put XC = GC/K, XR = GR/KR.
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Let gR = pR ⊕ kR denote the Cartan decomposition of Lie algebra of GR,
and let KR ⊂ GR be the maximal compact subgroup corresponding kR.
Then

(4.50) g = gR ⊕ igR,

and the Cartan decomposition is given by

(4.51) g = p ⊕ k, p = pR ⊕ ikR, k = kR ⊕ ipR.

Then the maximal compact subgroup K (with Lie algebra k) of GC is
just the compact real form of GC, and also the compact form of GR. More-
over, it is simply connected. For γ ∈ GC, if γσ is semisimple if and only if
γσ(γ) ∈ GC is semisimple (cf. [17, Lemme 2.2]). Here, we consider the ellip-
tic element σ itself, for which the associated twisted orbital integral Tr[σ][·]
has been studied vastly (cf. [18, §8], [15], [4], etc). In previous notation, we
have Zσ(1) = GR, Kσ(1) = KR. Set p = dim pR, q = dim kR.

We consider the following representations of GC. Let (E0, ρ0) be a finite
dimensional holomorphic representation of GC, the unitary trick implies
that the restriction of ρ0 to K or GR determines uniquely ρ0. Let (Eσ

0 :=
E0, ρσ

0 ) be the representation of GC twisted by σ, i.e., ρσ
0 (g) = ρ0(σ(g)),

g ∈ GC. For v1, v2 ∈ E0, set

(4.52) ρE(σ)(v1 ⊗ v2) = v2 ⊗ v1 ∈ E0 ⊗ Eσ
0 .

This way, we get a representation (E, ρE) := (E0 ⊗Eσ
0 , ρ0 ⊗ρσ

0 ) of (GC)σ =
GC⋊{1, σ}. Taking a K-invariant Hermitian metric on E0, we make (E, ρE)
as a unitary representation of Kσ = K ⋊{1, σ}. We consider the Laplacian
LXC,F acting on C∞(XC, F = GC ×K E) defined in (4.16).

For Y ∈ kR, the J-function JGR
1 for the identity element 1 ∈ GR is

(4.53) JGR
1 (Y ) =

Â
(
i ad(Y )|pR

)
Â
(
i ad(Y )|kR

) .

Note that one should not confuse the imaginary unit i appearing in the
J-functions with the one in the Lie algebra g.

An elementary computation shows that as a function in Y ∈ kR,

(4.54) Â
(
i ad(Y )|pR

) [ 1
det(1 + e−i ad(Y ))|pR

]1/2
= 1

2p/2 Â
(
i ad(2Y )|pR

)
.

Similar for Â
(
i ad(Y )|kR

)
. The twist σ acts on ipR ⊕ ikR as −1. Let Jσ be

the J-function associated with σ and GC, then for Y ∈ kR = kσ(1),

(4.55) Jσ(Y ) = 1
2p

JGR
1 (2Y )

[
det(1 + e−i ad(Y ))|pR

det(1 + e−i ad(Y ))|kR

]
.
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For the trace of ρE , we have, for Y ∈ kR,

(4.56) TrE
[
ρE(σ) exp(−iρE(Y ))

]
= TrE0

[
exp(−iρE0(2Y ))

]
.

By (4.18) in our theorem, we have, for t > 0,

(4.57) Tr[σ][exp(−tLXC,F )] = 1
(8πt)p/2

∫
kR

JGR
1 (2Y )

×
[

det(1 + e−i ad(Y ))|pR

det(1 + e−i ad(Y ))|kR

]
TrE0

[
e−iρE0 (2Y ) ] e− |Y |2

2t
dY

(2πt)q/2 .

As we will see in Section 7, after twisting (E, ρE) with the graded (vir-
tual) Kσ-representations ρΛ•(p∗) on

∑
j(−1)jΛj(p∗) or

∑
j(−1)jjΛj(p∗),

the denominator det(1 + e−i ad(Y ))|kR can be canceled out properly. Such
constructions, in geometric setting, appear in the evaluations of Lefschetz
numbers or equivariant real analytic torsions. We will use Trs

[•][· · ·] with
the subscript s to denote the (twisted) orbital integrals which take the
supertrace of the endomorphisms of the Z2-graded vector bundles.

If tR is a Cartan subalgebra of kR, put

bR = {f ∈ pR : [f, v] = 0, for all v ∈ tR}.

Then tR⊕bR is Cartan subalgebra of gR ([28, p. 129]), and the fundamental
rank δ(GR) is defined as dimR bR. Let NΛ•(p∗) denote the number operator
on Λ•(p∗) which acts on Λj(p∗) as multiplication by j. Then we have the
following identities for Y ∈ kR,

(4.58)
[

det(1 + e−i ad(Y ))|pR

det(1 + e−i ad(Y ))|kR

]
Trs

Λ•(p∗) [ρΛ•(p∗)(σ) e−iρΛ•(p∗)(Y ) ]
=
{

Trs
Λ•(p∗

R)[e−iρΛ•(p∗
R)(2Y ) ] if δ(GR) = 0;

0 if δ(GR) ⩾ 1,

and

(4.59)
[

det(1 + e−i ad(Y ))|pR

det(1 + e−i ad(Y ))|kR

]
Trs

Λ•(p∗) [NΛ•(p∗)ρΛ•(p∗)(σ) e−iρΛ•(p∗)(Y ) ]

=


(

p+q
2
)

Trs
Λ•(p∗

R)[e−iρΛ•(p∗
R)(2Y ) ] if δ(GR) = 0;

2 Trs
Λ•(p∗

R) [NΛ•(p∗
R) e−iρΛ•(p∗

R)(2Y ) ] if δ(GR) = 1;
0 if δ(GR) ⩾ 2.
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We briefly explain how to obtain the above identities. Note that if g is an
isometry of a finite dimensional Euclidean space V , then

(4.60)
Trs

Λ•(V ∗)[g] = det(1 − g−1)|V ,

Trs
Λ•(V ∗) [NΛ•(V ∗)g

]
= ∂

∂s
|s=0 det(1 − g−1 es)|V .

Moreover, if V is even-dimensional and g preserves the orientation, or if V

is odd-dimensional and g reverses the orientation, then

(4.61) Trs
Λ•(V ∗)

[(
NΛ•(V ∗) − dim V

2

)
g

]
= 0.

Due to the invariance by adjoint action of KR, we only need to prove (4.58),
(4.59) for Y ∈ tR. In this case, ad(Y ) acts bR as zero. Note that p = pR⊕ikR,
then the first part of (4.58) follows directly from the first identity in (4.60).
Using further (4.61), we get the first case (δ(GR) = 0) in (4.59). The case
where δ(GR) = dimR bR ⩾ 2 follows from the second identity in (4.60).
Finally, when δ(GR) = 1, bR is a real line, then, by taking the orthogonal
splitting pR = bR ⊕ b⊥

R , the corresponding result in (4.59) follows from

(4.62) Trs
Λ•(p∗

R) [NΛ•(p∗
R) e−iρΛ•(p∗

R)(Y ) ] = − det(1 − e−i ad(Y ))|b⊥
R

.

As a consequence, if δ(GR) = 0,

(4.63) Trs
[σ][exp(−tLXC,Λ•(T ∗XC)⊗F )

]
= Trs

[1][exp(−4tLXR,Λ•(T ∗XR)⊗F0)
]
,

and if δ(GR) = 1,

(4.64) Trs
[σ] [NΛ•(T ∗XC) exp(−tLXC,Λ•(T ∗XC)⊗F )

]
= 2 Trs

[1] [NΛ•(T ∗XR) exp(−4tLXR,Λ•(T ∗XR)⊗F0)
]
.

The other identities in (4.59) will imply the vanishing of Lefschetz numbers
or equivariant analytic torsions, we refer to Section 7 and also [36, Theo-
rem 3.3.2] for such results.

Example 4.14 (Product case). — Let (G0, K0, θ0, B0) be a connected real
reductive Lie group. Put

(4.65) (G, K, θ) = (G0, K0, θ0) × (G0, K0, θ0).

Let g0 = kG0 ⊕ pG0 denote the Cartan decomposition of the Lie algebra of
G0. Then

(4.66) g = g0 ⊕ g0, k = kG0 ⊕ kG0 , p = pG0 ⊕ pG0 .
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We define the bilinear form on g by

(4.67) B = B0 ⊕ B0.

The symmetric space X is identify with X0 × X0, where X0 = G0/K0.
The twist σ is defined as follows, for (g1, g2) ∈ G = G0 × G0,

(4.68) σ(g1, g2) = (g2, g1).

The fixed point set of σ, i.e. the σ-twisted centralizer Zσ(1) of 1 ∈ G, is
exactly the diagonal of the product G0 ×G0. Then Zσ(1) ≃ G0 canonically,
and the induced Cartan involution on Zσ(1) from θ is just θ0. By (4.67),
the bilinear form B restricting to zσ(1) ≃ g0 coincides with 2B0.

Let (E0, ρ0) be a unitary representation of K0. Set (E, ρE) = (E0, ρ0) ⊗
(E0, ρ0), a unitary representation of K. For v1, v2 ∈ E0, set ρE(σ)(v1⊗v2) =
v2 ⊗ v1. Then (E, ρE) extends as a representation of Kσ. We define the
vector bundles F , F0 on X, X0 respectively. Let LX,F , LX0,F0 denote the
operators as in (4.16) acting on C∞(X, F ), C∞(X0, F0) respectively. In
particular, we have

(4.69) LX,F = LX0,F0 ⊗ 1 + 1 ⊗ LX0,F0 .

In [32, §8], under the above setting, Langlands deduced an identity be-
tween the σ-twisted orbitals integrals and the ordinary orbital integrals,
where the matching functions are given via convolution. We specialize his
result in our simple example here. For γ1, γ2 ∈ G0, take γ = (γ1, γ2) ∈ G

such that γσ semisimple. We may assume that

(4.70) γ1 = ea1 k−1
1 , γ2 = ea2 k−1

2 a1, a2 ∈ pG0 , k1, k2 ∈ K0,

and by Theorem 2.7, Ad(k−1
1 )a2 = a1, Ad(k−1

2 )a1 = a2. The norm of γ is
defined as Nγ = γ1γ2 ∈ G0, which has the form

(4.71) γ1γ2 = ea k−1, a = 2a1, k = k2k1, Ad(k)a = a.

Then γ1γ2 is a semisimple element in G0.
Let Z0(Nγ) be the centralizer of Nγ in G0 with Lie algebra zG0(Nγ) =

pG0(Nγ) ⊕ kG0(Nγ) ⊂ g0. Then by (2.51), we have

(4.72) Zσ(γ) = {(g, k1gk−1
1 ) ∈ G : g ∈ Z0(Nγ)} ≃ Z0(Nγ).

The diffeomorphism (g1, g2) ∈ G 7→ (g1, g−1
2 γ2g1) ∈ G induces an identifi-

cation

(4.73) Zσ(γ)\G ≃ (Z0(Nγ)\G0) × G0.

The result in [32, §8], as a consequence of (4.73), says that for t > 0,

(4.74) Tr[γσ][exp(−tLX,F )] = 1
2p/2 Tr[Nγ][exp(−2tLX0,F0)],
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where the right-hand side is the ordinary orbital integrals for (G0, B0),
and the factor 2p/2 comes from the volume conventions with B|zσ(γ) =
2B0|zG0 (Nγ).

Now we explain how our formula (4.18) is compatible with (4.74). We
start with the J-function Jγσ. Set p = dim pG0(Nγ), q = dim kG0(Nγ).
For Y ∈ kG0(Nγ), (Y, Ad(k1)Y ) ∈ kσ(γ). In this case, z0 = z((a1, a2)) =
zG0,0 ⊕ Ad(k1)zG0,0, where zG0,0 = zG0(a) ⊂ g0. Then we have

(4.75) k⊥
σ,0(γ) ≃

(
k⊥
G0,0(Nγ), Ad(k1)k⊥

G0,0(Nγ)
)

⊕ kG0(Nγ).

As a consequence, we get

(4.76) det
(
1 − exp(−i ad(Y, Ad(k1)Y )) Ad((k1, k2)−1σ)

)
|k⊥

σ,0(γ)

= det
(
1 − exp(−i ad(2Y )) Ad(k−1)

)
|k⊥

G0,0(Nγ)

· det
(
1 + exp(−i ad(Y ))

)
|kG0 (Nγ).

Similar computations hold for p⊥
σ,0(γ) and z⊥

σ,0(γ). Then by (4.6) and (4.54),

(4.77) Jγσ(Y, Ad(k1)Y ) = 1
2p

JG0
Nγ(2Y ),

where JG0
Nγ is the corresponding J-function defined with Nγ and G0.

Moreover, a direct computation shows,

(4.78) TrE
[
ρE((k1, k2)−1σ) exp

(
−iρE(Y, Ad(k1)Y )

)]
= TrE0

[
ρ0(k−1) exp (−i2ρ0(Y ))

]
.

Note that |(Y, Ad(k1)Y )|2B = 2|Y |2B0
, where the subscripts indicate the

corresponding norms. Then by (4.18), we get

(4.79) Tr[γσ][exp(−tLX,F )] = 1
2p/2

exp(−|a|2B0
/4t)

(4πt)p/2

·
∫
kG0 (Nγ)

JG0
Nγ(2Y ) TrE0

[
ρ0(k−1) exp(−iρ0(2Y ))

]
e−2|Y |2

B0 /2t 2q|dY |B0

(4πt)q/2 .

After the coordinate change 2Y → Y in the above integral, we get exactly
1

2p/2 Tr[Nγ][exp(−2tLX0,F0)].
One can consider generally ℓ ⩾ 2 copies of G0 with cyclic permutation σ,

the above computations are still applicable with suitable change. Using the
formula (4.32) for wave operators, one can also verify the identity (4.74)
for a general class of integral kernel functions.
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5. The hypoelliptic Laplacian on X

The purpose of this section is to recall the construction of the hypoelliptic
Laplacian of Bismut [9, Chapter 2].

5.1. Clifford algebras

Let V be a real vector space of dimension m equipped with a real-valued
nondegenerate symmetric bilinear form B. The Clifford algebra c(V ) of V

with respect to B is the algebra generated by 1 and a ∈ V and the relations,

(5.1) ab + ba = −2B(a, b), a, b ∈ V.

We will denote by ĉ(V ) the Clifford algebra of V associated with −B. Also
they are Z2-graded algebras, we write

(5.2) c(V ) = c+(V ) ⊕ c−(V ), ĉ(V ) = ĉ+(V ) ⊕ ĉ−(V ).

Since B is nondegenerate, it induces an isomorphism φ between V and
V ∗ such that if a, b ∈ V , then

(5.3) ⟨φ(a), b⟩ = B(a, b).

Let B∗ be the corresponding bilinear form on V ∗, which also extends to a
nondegenerate symmetric bilinear form on Λ•(V ∗).

If α ∈ V ∗, a ∈ V , let α ∧ denote the exterior product of α acting on
Λ•(V ∗), and let ia denote the interior product (or the contraction) of a

acting on Λ•(V ∗). If a ∈ V , let c(a), ĉ(a) ∈ End(Λ•(V ∗)) be given by

(5.4) c(a) = φ(a) ∧ − ia, ĉ(a) = φ(a) ∧ + ia.

Then c(a), ĉ(a) are odd operators, which are respectively antisymmetric,
symmetric with respect to B∗. If a, b ∈ V , then

(5.5) [c(a), c(b)] = −2B(a, b), [ĉ(a), ĉ(b)] = 2B(a, b), [c(a), ĉ(b)] = 0.

By (5.5), Λ•(V ∗) is a c(V )⊗̂ĉ(V )-module. If D ∈ c(V ) or ĉ(V ), then we de-
note by c(D) or ĉ(D) the corresponding actions on Λ•(V ∗) defined by (5.4).

Let e1, . . . , em be a basis of V , and let e∗
1, . . . , e∗

m be the dual basis of V

with respect to B, so that B(ei, e∗
j ) = δij . Let e1, . . . , em be the basis of

V ∗ which is dual to the basis e1, . . . , em. Then ei = φ(e∗
i ).

Note that 1 ∈ R = Λ0(V ∗). The symbol map σ : D ∈ ĉ(V ) 7→ ĉ(D) · 1 ∈
Λ•(V ∗) is an isomorphism of Z2-graded vector spaces. If α ∈ Λp(V ∗), then
the inverse map of σ is given by

(5.6) ĉ(α) = 1
p!

∑
1⩽i1,...,ip⩽m

α(e∗
i1

, . . . , e∗
ip

)ĉ(ei1) · · · ĉ(eip
) ∈ ĉ(V ).
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If A ∈ End(V ) is antisymmetric with respect to B, set

(5.7) ĉ(A) = −1
4
∑
i,j

B(e∗
i , e∗

j )ĉ(ei)ĉ(ej).

Definition 5.1. — The number operator NΛ•(V ∗) on Λ•(V ∗) is such
that, if α ∈ Λp(V ∗), then

(5.8) NΛ•(V ∗)α = pα.

One verifies easily that

(5.9) NΛ•(V ∗) = 1
2

m∑
i=1

c(e∗
i )ĉ(ei) + m

2 .

We refer to [33, Chapter I], [6, Chapter 3] for more detailed discussions
on Clifford algebras.

5.2. Harmonic oscillators

Now we consider the Lie algebra g of G equipped with the bilinear form
B introduced in Subsection 2.1. Let c(g), ĉ(g) be the Clifford algebras
associated with (g, B), (g, −B). By restricting B to p, k, we get the Clifford
algebras c(p), ĉ(p), c(k), ĉ(k). By (2.1),

(5.10) c(g) = c(p)⊗̂c(k), ĉ(g) = ĉ(p)⊗̂ĉ(k).

If a ∈ g, let ∇a denote the corresponding differentiation operator along
g. Let e1, . . . , em be an orthonormal basis of p, and let em+1, . . . , em+n be
an orthonormal basis of k. If Y ∈ g, we split Y in the form Y = Y p + Y k

with Y p ∈ p, Y k ∈ k. Set

(5.11)

Dp =
m∑

j=1
c(ej)∇ej

, Ep = ĉ(Y p),

Dk = −
m+n∑

j=m+1
c(ej)∇ej , Ek = ĉ(Y k).

Since K preserves the scalar products on p and k, the above construc-
tions are K-equivariant. The operators Dp, Ep, Dk, Ek are linear differential
operators acting on Λ•(g∗) ⊗ C∞(g). Moreover,

(5.12) [Dp + Ep, −iDk + iEk] = 0.
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Let ∆g be the Euclidean Laplacian of (g, ⟨· , ·⟩). Then by (5.5), (5.9), we
get

(5.13) 1
2
(
Dp +Ep − iDk +iEk

)2 = 1
2
(
−∆g + |Y |2 −(m + n)

)
+ NΛ•(g∗).

The kernel of the unbounded operator in (5.13) is one-dimensional line
spanned by the function exp(−|Y |2/2)/π(m+n)/4.

5.3. The Dirac operator of Kostant

Recall that Cg ∈ Ug is defined in (4.8) and that κg ∈ Λ3(g∗) is defined
in (4.14). Let κk ∈ Λ3(k∗) be the element defined by the same formula as
in (4.14) with respect to (k, B|k). Then by (4.15), we get

(5.14) B∗(κk, κk) = 1
6 Trk[Ck,k].

The Clifford elements c(κg), ĉ(−κg), c(κk), ĉ(−κk) are defined as in (5.6).
If e ∈ k, let ad(e)|p be the restriction of ad(e) to p. Then ĉ(ad(e)|p) ∈ ĉ(p).
By [9, (2.7.4)], we have

(5.15) ĉ(−κg) = −2
m+n∑

i=m+1
ĉ(ei)ĉ(ad(ei)|p) + ĉ(−κk).

Definition 5.2. — Let D̂g ∈ ĉ(g) ⊗ Ug be the Dirac operator,

(5.16) D̂g =
m+n∑
i=1

ĉ(e∗
i )ei + 1

2 ĉ(−κg).

The operator D̂g is called the Dirac operators of Kostant [31].

By [31] (cf. [9, Theorem 2.7.2]), we have

(5.17) D̂g,2 = −Cg − 1
4B∗(κg, κg).

5.4. The operator DX
b

As we saw in Subsection 5.3, D̂g acts on C∞(G, Λ•(g∗)). Recall that
Dp + Ep − iDk + iEk is a differential operator acting on C∞(g, Λ•(g∗)).

Definition 5.3. — For b > 0, let Db be the differential operator,

(5.18) Db = D̂g + ic([Y k, Y p]) + 1
b

(Dp + Ep − iDk + iEk).

Then Db acts on C∞(G × g, Λ•(g∗)).
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If Y ∈ g, let Y p, Y k denote the tangent vector fields on G associated
with Y p, Y k ∈ g. Let ∇g

[Y k,Y p] denote the differentiation operator in the
direction [Y k, Y p] ∈ p along the vector space g. The following identity is
obtained in [9, Section 2.11].

Theorem 5.4. — We have the following formula for D2
b ,

(5.19) D2
b

2 = D̂g,2

2 + 1
2
∣∣[Y k, Y p]

∣∣2
+ 1

2b2

(
−∆p⊕k + |Y |2 − m − n

)
+ NΛ•(g∗)

b2

+ 1
b

(
Y p + iY k − i∇g

[Y k,Y p] + ĉ(ad(Y p + iY k))

+ 2ic(ad(Y k)|p) − c(ad(Y p))
)

.

Recall that (E, ρE) is a unitary representation of Kσ. Let C∞
K (G ×

g, Λ•(g∗)⊗E) denote the set of K-invariant sections. Recall that π̂ : X̂ → X

is the total space of TX ⊕ N . Then we have

(5.20) C∞
K

(
G × g, Λ•(g∗) ⊗ E

)
= C∞(X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )

)
.

Let Y = Y T X + Y N , Y T X ∈ TX, Y N ∈ N be the tautological section of
π̂∗(TX ⊕ N) over X̂ .

Definition 5.5. — Let H be the vector space of smooth sections over
X of the vector bundle C∞(TX ⊕ N, π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )

)
.

We can identify H with C∞(X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )
)
. Let ∇H be the

connection on H induced by the connection form ωk on X.
Let e ∈ k, then the vector field [e, Y ] on g is a Killing vector field. Let

LV
[e,Y ] be the Lie derivative acting on C∞(g, Λ•(g∗)). Then by [9, (2.12.4)],

(5.21) LV
[e,Y ] = ∇[e,Y ] − (c + ĉ)(ad(e)).

Note that D̂g is K-invariant. Let D̂g,X be the corresponding differential
operators on the smooth sections of H. By [9, Theorem 2.12.2],
(5.22)

D̂g,X =
m∑

i=1
ĉ(ei)∇H

ei
−

m+n∑
j=m+1

ĉ(ej)
(
LV

[ej ,Y ]+ĉ(ad(ej)|p)−ρE(ej)
)
+ 1

2 ĉ(−κk).

Let DT X , ET X , DN , EN be the operators acting on π̂∗(Λ•(T ∗X⊕N∗)⊗F )
along the fibre X̂ induced by Dp, Ep, Dk, Ek. Then Db defined in (5.18)
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descends to an operator DX
b on C∞(TX ⊕ N, π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )).

Then

(5.23) DX
b = D̂g,X + ic([Y N , Y T X ]) + 1

b
(DT X + ET X − iDN + iEN ).

5.5. The hypoelliptic Laplacian

Recall that A ∈ End(E) is a Kσ-invariant such that it gives a parallel
section of End(F ) on X. Recall that for t > 0, pX

t (x, x′) is the heat kernel
of LX

A .
Let (· , ·) denote the Hermitian metric on Λ•(T ∗X ⊕ N∗) ⊗ F associated

with ⟨· , ·⟩ and gF . The Cartan involution θ acts on X̂ , so that

(5.24) θ(Y T X + Y N ) = −Y T X + Y N .

Let dvX̂ be the volume form on X̂ coming from the Riemann metric on X

and the Euclidean scalar product on TX ⊕ N . Let η(· , ·) be the Hermitian
form on the space of smooth compactly supported sections of π̂∗(Λ•(T ∗X ⊕
N∗) ⊗ F ) over X̂ ,

(5.25) η(s, s′) =
∫

X̂
(s ◦ θ, s′)dvX̂ .

As in [9, Sections 2.12 and 2.13], for b > 0, we put

(5.26) LX
b = −1

2D̂g,X,2 + 1
2D

X,2
b .

It acts on C∞(X̂ , π̂∗(Λ•(T ∗X⊕N∗)⊗F )
)
, whose formula is given as follows,

(5.27) LX
b = 1

2
∣∣[Y N , Y T X ]

∣∣2
+ 1

2b2

(
−∆T X⊕N + |Y |2 − m − n

)
+ NΛ•(T ∗X⊕N∗)

b2

+ 1
b

(
∇H

Y T X + ĉ
(
ad(Y T X)

)
−c
(
ad(Y T X)+iθ ad(Y N )

)
− iρE(Y N )

)
.

By Hörmander’s theorem [24], both LX
b and ∂

∂t + LX
b are hypoelliptic. The

operator LX
b is called the hypoelliptic Laplacian associated with (G, K).

Moreover, it is formally self-adjoint with respect to η(· , ·).
By [9, Proposition 2.15.1], we have the identity

(5.28) [DX
b , LX

b ] = 0.
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Since σ preserves B and the splitting (2.1), both D̂g,X and DX
b commute

with Gσ, so that LX
b commutes with Gσ. The section A lifts to X̂ . Let LX

A,b

be the operator acting on C∞(X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )) given by

(5.29) LX
A,b = LX

b + A.

In [9, Sections 4.5 and 11.8], the heat operator exp(−tLX
A,b)) is well-defined

for b > 0, t > 0 with a smooth kernel qX
b,t((x, Y ), (x′, Y ′)).

Let P be the projection from Λ•(T ∗X ⊕ e∗) ⊗ F on Λ0(T ∗X ⊕ e∗) ⊗ F .
For t > 0 and (x, Y ), (x′, Y ′) ∈ X̂ , put

(5.30) qX
0,t

(
(x, Y ), (x′, Y ′)

)
= PpX

t (x, x′)π−(m+n)/2 exp
(

−1
2
(
|Y |2 + |Y ′|2

))
P.

We recall a result established in [9, Theorem 4.5.2 and Chapter 14].

Theorem 5.6. — Given M ⩾ ϵ > 0, there exist C, C ′ > 0 such that for
0 < b ⩽ M, ϵ ⩽ t ⩽ M, (x, Y ), (x′, Y ′) ∈ X̂ ,

(5.31)
∣∣∣qX

b,t

(
(x, Y ), (x′, Y ′)

)∣∣∣ ⩽ C exp
(

− C ′(d2(x, x′) + |Y |2 + |Y ′|2
))

.

As b → 0, we have the uniform convergence on compact subsets of X̂ × X̂ ,

(5.32) qX
b,t

(
(x, Y ), (x′, Y ′)

)
→ qX

0,t

(
(x, Y ), (x′, Y ′)

)
.

Example 5.7 (A simple example of the hypoelliptic Laplacian). — A sim-
ple example of our setting is the real line R with additive Lie group struc-
ture. In this case, G = R, K = 0, so that X = R with the standard
Euclidean metric. Let x ∈ R denote the global coordinate of X, and let
y = y ∂

∂x denote the coordinate along the tangent vector space of X. Then
X̂ = X = Rx × Ry is just the total space of TR, where the subscripts x, y

indicate the respective coordinates. By (5.27), the operator LR
b acting on

C∞(Rx × Ry, Λ•(R∗
y)) is given by

(5.33) LR
b = 1

2b2 (−∆y + y2 − 1) + NΛ•(R∗
y)

b2 + 1
b

y
∂

∂x
.

Note that ∂
∂t + LR

b is just the Kolmogorov operator ([30], up to a conjuga-
tion). The heat kernel of LR

b has an explicit expression given in [9, Subsec-
tion 10.5], so that the convergence (5.32) can be verified directly. Here, we
would like to give another straightforward computation to understand this
convergence.

The geodesic flow φt, t ∈ R on X is given by φt(x, y) = (x + ty, y).
For f ∈ C∞(Rx,R), we identify it with the section f(x) 1

π1/4 exp(−y2/2) ∈
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C∞(Rx × Ry, Λ•(R∗
y)). This identification preserves the L2-metrics for L2-

functions. A direct computation shows that for b > 0,

(5.34) LR
b φ∗

−b

(
f(x) 1

π1/4 e−y2/2
)

= φ∗
−b

(
−1

2∆x(f) 1
π1/4 e−y2/2

)
.

This gives an explicit relation, conjugation by the geodesic flow, between
the hypoelliptic Laplacian LR

b and the elliptic Laplacian − 1
2 ∆x on X = R.

If we take b → 0 in (5.34), it explains well the convergence in (5.32).

6. A proof of Theorem 4.6

The purpose of this section is to establish Theorem 4.6. The geometric
constructions in Sections 2 and 3 play important roles in the proof. In par-
ticular, due to the geometric formulations of the twisted orbital supertrace
Trs

[γσ][exp(−tLX
A,b)], the local index techniques used in [9, Chapter 9] are

still applicable to compute explicitly its limit as b → ∞. Therefore, our
proof to Theorem 4.6 is partly derived from [9, Chapter 9].

6.1. A fundamental identity for twisted orbital supertraces

Recall that LX
A , LX

A,b were defined in Subsections 4.2 and 5.5, and that
pX

t , qX
b,t are the associated elliptic and hypoelliptic heat kernels. Using (5.31)

and the fact that LX
A,b commutes with σ, for b > 0, t > 0, qX

b,t ∈ Qσ,∞ (cf.
Definition 3.6). By the results of Subsection 3.3, Trs

[γσ][exp(−tLX
A,b)] is

well-defined. The following theorem extends [9, Theorem 4.6.1].

Theorem 6.1. — For any b > 0, t > 0, the following identity holds,

(6.1) Trs
[γσ] [exp(−tLX

A,b)
]

= Tr[γσ] [exp(−tLX
A )
]

.

Proof. — By (3.38) and using Proposition 3.9, we get

(6.2) ∂

∂b
Trs

[γσ][exp(−tLX
A,b)] = −t Trs

[γσ]
[(

∂

∂b
LX

A,b

)
exp(−tLX

A,b)
]

.

By (5.26) and (5.28), we have

(6.3) ∂

∂b
LX

A,b = 1
2

[
DX

b ,
∂

∂b
DX

b

]
, [DX

b , LX
A,b] = 0.
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Then we get

(6.4) ∂

∂b
Trs

[γσ][exp(−tLX
A,b)]

= − t

2 Trs
[γσ]

[[
DX

b ,
∂

∂b
DX

b

]
exp(−tLX

A,b)
]

= − t

2 Trs
[γσ]

[[
DX

b ,

(
∂

∂b
DX

b

)
exp(−tLX

A,b)
]]

.

Applying again Proposition 3.9, we get

(6.5) ∂

∂b
Trs

[γσ][exp(−tLX
A,b)] = 0.

Now we only need to prove that

(6.6) lim
b→0

Trs
[γσ] [exp(−tLX

A,b)
]

= Tr[γσ] [exp(−tLX
A )
]

.

By (2.73) and Theorem 5.6, given t > 0, there exist C, C ′ > 0 such that
for 0 < b ⩽ 1, f ∈ p⊥

σ (γ), Y ∈ (TX ⊕ N)ef p1,

(6.7)
∣∣∣qX

b,t

(
(ef p1, Y ), γσ(ef p1, Y )

)∣∣∣ ⩽ C exp
(
−C ′(|f |2 + |Y |2)

)
Using (3.20), (3.38), (5.32) and dominated convergence, we get (6.6). The

proof of our theorem is completed. □

6.2. An identity for Jγσ(Y k
0 )

Recall that p = dim pσ(γ), q = dim kσ(γ), r = dim zσ(γ) = p + q. Let
e1, . . . , ep be an orthonormal basis of pσ(γ), and let ep+1, . . . , er be an or-
thonormal basis of kσ(γ). Let e1, . . . , er be the corresponding dual basis
of zσ(γ)∗. Let zσ(γ), zσ(γ)∗ be another copies of zσ(γ), zσ(γ)∗. We under-
line the obvious objects associated with zσ(γ), zσ(γ)∗. Let c(zσ(γ)) denote
the Clifford algebra associated with (zσ(γ), B|zσ(γ)), we also identify the
elements in c(zσ(γ)) with their actions on Λ•(g∗) given in (5.4).

By (2.1), we get

(6.8) p × g = p × (p ⊕ k).

We denote by y the tautological section of the first copy of p in the right-
hand side of (6.8), and by Y g = Y p+Y k the tautological section of g = p⊕k.
We also denote by dy, dY g = dY pdY k the volume forms on p, g respec-
tively. Recall that ∆p⊕k is the standard Laplacian on g = p ⊕ k, i.e., the
second factor in the right-hand side of (6.8). Let ∇H denote differentiation
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in the variable y ∈ p, and let ∇V denote the differentiation in the variable
Y g ∈ g.

Put

(6.9) α =
r∑

i=1
c(ei)ei ∈ c(zσ(γ))⊗̂Λ•(zσ(γ)∗).

As an analogue in [9, Section 5.1], if Y k
0 ∈ kσ(γ), let Pa,Y k

0
be the differential

operator acting on C∞(p × g, Λ•(g∗)⊗̂Λ•(zσ(γ)∗)) defined as follows,

(6.10) Pa,Y k
0

= 1
2
∣∣[Y k, a] + [Y k

0 , Y p]
∣∣2 − 1

2∆p⊕k + α − ∇H
Y p

− ∇V
[a+Y k

0 ,[a,y]] − ĉ(ad(a)) + c
(
ad(a) + iθ ad(Y k

0 )
)

.

By Hörmander’s theorem [24], both Pa,Y k
0

, ∂
∂t + Pa,Y k

0
are hypoelliptic.

Let RY k
0

be the smooth kernel of exp(−Pa,Y k
0

) with respect to the volume
dy dY g on p × g. Then by [9, (5.1.10)], for (y, Y g), (y′, Y g′) ∈ p × g,

(6.11) RY k
0

(
(y, Y g), (y′, Y g′)

)
∈ End(Λ•(z⊥

σ (γ)∗))⊗̂c(zσ(γ))⊗̂Λ•(zσ(γ)∗).

Definition 6.2. — Let T̂rs denote the supertrace (linear) functional on
c(zσ(γ))⊗̂Λ•(zσ(γ)∗) such that it vanishes on monomials of nonmaximal
length, and gives the value (−1)r to the monomial c(e1)e1 · · · c(er)er. It
also extends to a supertrace functional on

End(Λ•(z⊥
σ (γ)∗))⊗̂c(zσ(γ))⊗̂Λ•(zσ(γ)∗)

by tensoring with the supertrace on End(Λ•(z⊥
σ (γ)∗)). We still denote it

by T̂rs.

Now we give the important result established in [9, Theorem 5.5.1].

Proposition 6.3. — For Y k
0 ∈ kσ(γ), we have

(6.12) Jγσ(Y k
0 ) = (2π)r/2

∫
y∈p⊥

σ (γ),Y g∈p⊕k⊥
σ (γ)

T̂rs

[
Ad(k−1σ)

RY k
0

(
(y, Y g), Ad(k−1σ)(y, Y g)

)]
dy dY g.

Proof. — In the proof of [9, Theorem 5.5.1], the computations of the
supertrace functional in the right-hand side of (6.12) only depend on the
adjoint actions of γ, k−1 and a and the fact that they commute with each
other. Therefore, when replacing γ, k−1 by γσ, k−1σ, the computations
in [9, Chapter 5] still hold, so that (6.12) holds. □
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6.3. A proof of Theorem 4.6

Recall that X̂ is the total space of the vector bundle TX ⊕ N → X,
which can be canonically identified with X × g as in (2.9). For b ̸= 0,
s(x, Y ) ∈ C∞(X̂ , π̂∗(Λ•(T ∗X ⊕ N∗) ⊗ F )

)
, set

(6.13) Fbs(x, Y ) = s(x, bY ).

For t > 0, we denote with an extra subscript t the hypoelliptic Laplacian
defined in Subsection 5.5 associated with the bilinear form B/t. By (5.27),
we have

(6.14) F√
tt

NΛ•(T ∗X⊕N∗)/2
LX

b,tt
−NΛ•(T ∗X⊕N∗)/2

F −1√
t

= tLX√
tb

.

By Remark (4.2) and (6.14), it is enough to prove (4.18) with t = 1. When
t = 1, we will drop the subscript t in the corresponding notation of heat
kernels, such as qX

b = qX
b,1.

By (6.1), we will make b → +∞ in Trs
[γσ][exp(−LX

A,b)]. Generally speak-
ing, all the analytic and geometric constructions of [9] only depend on the
fact that G acts on X as a group of isometries, replacing G by Gσ does
not change anything from that point of view. This is why we will freely use
the arguments in [9, Chapter 9]. We sketch the main steps of the proof as
follows.

At first, we introduce the γσ-periodic points of the geodesic flow on X̂ .
Let {φt}t∈R denote the geodesic flow on X associated with gT X . The flow
{φt}t∈R lifts to a flow of diffeomorphisms of X̂ . If (x, Y T X , Y N ) ∈ X̂ , set

(6.15) (xt, Y T X
t , Y N

t ) = φt(x, Y T X , Y N ).

Then xt is just the geodesic starting at x with speed Y T X
t , and Y N

t is the
parallel transport of Y N along xt. Set

(6.16) F̂γσ = {z ∈ X̂ : (γσ)−1φ1z = z}.

The vector a ∈ p defines a constant section of X × g. By (2.9), we can
view a as a smooth section of TX ⊕ N . Let aT X , aN the correspond-
ing parts of this section in TX, N respectively. In the global coordinate
system (p, expx0) of X defined in Subsection 2.1, for Y p ∈ p, by [9, Propo-
sition 3.2.4], we have

(6.17) aT X(Y p) = cosh(ad(Y p))a.

Set

(6.18)
Nσ(k−1) = Z0

σ(γ) ×K0
σ(γ) kσ(k−1)

= {Y N ∈ N |X(γσ) : Ad(k−1σ)Y N = Y N }
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Then we have

(6.19) F̂γσ =
{(

x, aT X(x), Y N
)

∈ X̂ : (x, Y N ) ∈ Nσ(k−1), x ∈ X(γσ)
}

.

Put

(6.20) LX
A,b = F−bLX

A,bF −1
−b .

Let qX
b

be the kernel associated with exp(−LX
A,b) with respect to dxdY .

By (3.38), we can use qX
b

instead of qX
b to define Trs

[γσ][exp(−LX
A,b)].

An important property of the hypoelliptic heat kernel proved in [9, The-
orem 9.1.1], after adapting to our twisted case, is that for the points
(x, Y ) ∈ X̂ away from F̂γσ, the norm of qX

b
((x, Y ), γσ(x, Y )) decays to 0

exponentially with respect to dγσ(x) and |Y | (cf. (5.31)). As a consequence,
by the arguments in [9, Section 9.2], if β ∈ ]0, 1] is fixed, Trs

[γσ][exp(−LX
A,b)]

is given by the limit as b → +∞ of the following integral,

(6.21)
∫

f∈p⊥
σ (γ), |f |⩽β;

Y ∈ g,

|Y T X −aT X |⩽β.

Trs
Λ•(T ∗X⊕N∗)⊗F

[
γσqX

b

(
(p ef , Y ),

γσ(p ef , Y )
)]

r(f) df dY.

Recall that dY = dY T XdY N . Put Nσ(γ) = Z0
σ(γ) ×K0

σ(γ) kσ(γ) the
vector bundle on X(γσ). Let N⊥

σ (γ) be the orthogonal bundle of Nσ(γ)
in N |X(γσ), then N⊥

σ (γ) = Z0
σ(γ) ×K0

σ(γ) k
⊥
σ (γ). Recall that the projection

Pγσ : X → X(γσ) is described in Theorem 2.13.
We trivialize the vector bundles TX, N by parallel transport along the

geodesics orthogonal to X(γσ) with respect to ∇T X , ∇N , then the vector
bundles TX, N on X can be identified with P ∗

γσ(TX|X(γσ)), P ∗
γσ(N |X(γσ)).

If f ∈ p⊥
σ (γ), at ργσ(1, f), we may write Y N ∈ N in the form

(6.22) Y N = Y k
0 + Y N,⊥, Y k

0 ∈ kσ(γ), Y N,⊥ ∈ k⊥
σ (γ).

Let dY k
0 , dY N,⊥ be the volume elements on kσ(γ), k⊥

σ (γ), so that dY N =
dY k

0 dY N,⊥. We rewrite the integral in (6.21) as follows,

(6.23) b−4m−2n+2r

∫
f∈p⊥

σ (γ), |f |⩽b2β

Y ∈ g, |Y T X |⩽b2β

Trs
Λ•(T ∗X⊕N∗)⊗F

[
γσqX

b

((
p ef/b2

, aT X + Y T X

b2 , Y k
0 + Y N,⊥

b2

)
,

γσ

(
p ef/b2

, aT X + Y T X

b2 , Y k
0 + Y N,⊥

b2

))]
r

(
f

b2

)
dfdY T XdY k

0 dY N,⊥.
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Now we deal with the factor b2r in (6.23) as in [9, Sections 9.3–9.5]. Recall
that α is defined in (6.9). By (2.9), TX ⊕ N is identified with the trivial
vector bundle g on X. Let (TX ⊕ N)σ(γ) be the subbundle of TX ⊕ N

corresponding zσ(γ) ⊂ g, and let (TX ⊕ N)σ(γ)∗ be one copy of the dual
bundle of (TX ⊕ N)σ(γ). We regard α as a constant section of the trivial
bundle c(g) ⊗ zσ(γ)∗, hence a section of c(TX ⊕ N) ⊗ (TX ⊕ N)σ(γ)∗.

Set

(6.24) LX
A,b = LX

A,b + α.

It acts on C∞(X̂ , π̂∗(Λ•(T ∗X⊕N∗)⊗F ⊗̂Λ•((TX ⊕ N)σ(γ)∗)
))

. Note that
LX

A,b commutes with the action of γσ, ea and k−1σ. Let qX
b be the smooth

kernel of exp(−LX
A,b) with respect to the volume dxdY .

We extend the basis {ei}r
i=1 of zσ(γ) to an orthonormal basis {ei}m+n

i=1
of (g, ⟨· , ·⟩). Since End(Λ•(g∗)) = c(g)⊗̂ĉ(g), we can extend T̂rs in Defi-
nition 6.2 to a linear functional on End(Λ•(g∗))⊗̂Λ•(zσ(γ)∗) by making it
vanish on all the monomials in the c(ei), ĉ(ei), ek, 1 ⩽ i ⩽ m+n, 1 ⩽ k ⩽ r

except on

(6.25) c(e1)e1 · · · c(er)erc(er+1)ĉ(er+1) · · · c(em+n)ĉ(em+n).

Moreover,

(6.26) T̂rs
[
c(e1)e1 · · · c(er)erc(er+1)ĉ(er+1) · · · c(em+n)ĉ(em+n)

]
= (−1)r+n−q(−2)m+n−r.

The map T̂rs also extends to a linear functional on

End(Λ•(g∗))⊗̂Λ•(zσ(γ)∗) ⊗ End(E)

by tensoring with TrE [·].
By [9, Theorem 9.5.2 and Proposition 9.5.4], the operator LX

A,b is conju-
gate to LX

A,b, and if (x, Y ) ∈ X̂ , then

(6.27) Trs
[
γσqX

b

(
(x, Y ), γσ(x, Y )

)]
= b−2rT̂rs

[
γσqX

b

(
(x, Y ), γσ(x, Y )

)]
.

Now we proceed as in [9, Sections 9.8–9.11], we can establish an analog
of [9, Theorem 9.6.1], which says that as b → +∞,

(6.28) b−4m−2nγσqX
b

((
p ef/b2

, aT X + Y T X/b2, Y k
0 + Y N,⊥/b2),

γσ
(
p ef/b2

, aT X + Y T X/b2, Y k
0 + Y N,⊥/b2))

→ exp
(
−|a|2/2 − |Y k

0 |2/2
)

Ad(k−1σ)RY 0
k

(
(f, Y ), Ad(k−1σ)(f, Y )

)
· ρE(k−1σ) exp

(
−iρE(Y k

0 ) − A
)
.
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As in [9, Theorem 9.5.6], there exist Cβ > 0, Cγσ,β > 0 such that for
b ⩾ 1, f ∈ p⊥

σ (γ), |f | ⩽ b2β, |Y T X | ⩽ b2β, then left-hand side of (6.28) is
bounded by

(6.29) Cβ exp
(

−Cγσ,β

(
|f |2 + |Y T X |2 + |Y k

0 |2 + |Y N,⊥|
))

.

Combining (6.23) and (6.27)–(6.29), we get

(6.30) lim
b→+∞

Trs
[γσ][exp(−LX

A,b)] = exp(−|a|2/2)
∫

(y,Y g,Y k
0 )

∈p⊥
σ (γ)×

(
p⊕k⊥

σ (γ)
)

×kσ(γ)

T̂rs

[
Ad(k−1σ)RY k

0

(
(f, Y g), Ad(k−1σ)(f, Y g)

)]
TrE

[
ρE(k−1σ) exp

(
−iρE(Y k

0 ) − A
)]

exp(−|Y k
0 |2/2) dy dY g dY k

0 .

By (6.12), (6.30), we get (4.18). This completes the proof of Theorem 4.6.

7. Connections with the local equivariant index theory

In this section, we show that our formula in (4.18) is compatible with the
local equivariant index theorems for compact locally symmetric spaces. We
also apply our formula to study the twisted L2-torsions introduced in [4]
for compact locally symmetric spaces.

7.1. The classical Dirac operator on X

In this subsection, we will assume p to be even dimensional and oriented,
and K to be semisimple and simply connected. Recall that m = dim p.

Let Spin(p) be the Spin group of Euclidean space p, then the adjoint
representation K → SO(p) lifts to a homomorphism K → Spin(p). Let
Sp = Sp

+ ⊕ Sp
− be the Z2-graded Hermitian vector space of p-spinors. To

avoid confusion with the notation in Subsection 5.1, let c(p) denote the
Clifford algebra of (p, B|p) acting on Sp. Therefore, K acts on Sp

± via the
spin representation ρSp

± .
Set

(7.1) PSO(X) = G ×K SO(p), PSpin(X) = G ×K Spin(p),

where K acts on SO(p), Spin(p) by conjugation. Then we get a double
covering PSpin(X) → PSO(X), which defines a spin structure on X. More-
over, Sp descends to the Hermitian vector bundle ST X = ST X

+ ⊕ ST X
− of
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(TX, gT X)-spinors. Let ∇ST X denote the induced Clifford connection on
ST X by ωk.

We fix σ ∈ Σ, and we assume that its action on p preserves the ori-
entation. Then Kσ acts naturally on PSO(X). We also assume that the
homomorphism K → Spin(p) can be extended to a homomorphism Kσ →
Spin(p), so that the action of Kσ on PSO(X) lifts to an action on PSpin(X).
By [33, Definition 14.10 in Chapter 3], this is equivalent to say that Kσ

preserves the spin structure.
Take (E, ρE) a unitary representation of Kσ. Now Gσ acts on ST X ⊗ F

over X preserving ∇ST X ⊗F . Let DX be the classical Dirac operator acting
on C∞(X, ST X ⊗ F ). If e1, . . . , em is an orthogonal basis of TX, then

(7.2) DX =
m∑

i=1
c(ei)∇ST X ⊗F

ei
.

Let LX be the operator defined in (4.16), with E replaced by Sp ⊗ E.
Put

(7.3) A = − 1
48 Trk[Ck,k] − 1

2Ck,E ∈ End(E).

It is clear that A commutes with Kσ. Then by [9, Theorem 7.2.1],

(7.4) 1
2DX,2 = LX

A .

The integral kernel of exp(−tDX,2/2), t > 0, lies in Qσ, so that, by
taking the supertrace with respect to the Z2-grading of ST X , the twisted
orbital integral Trs

[γσ][exp(−tDX,2/2)] is well-defined.
Let γ ∈ G be such that γσ is semisimple. We still assume that

(7.5) γ = ea k−1, a ∈ p, k ∈ K, Ad(k)a = σa.

Theorem 7.1. — If γσ is non-elliptic, i.e., if a ̸= 0, for Y k
0 ∈ kσ(γ),

(7.6) Trs
Sp
[
ρSp

(k−1σ) exp(−iρSp

(Y k
0 ))
]

= 0.

For any t > 0, we have

(7.7) Trs
[γσ][exp(−tDX,2/2)] = 0.

Proof. — By [6, Proposition 3.23], we have

(7.8) (−1)m/2
(

Trs
Sp [

ρSp

(k−1σ) exp(−iρSp

(Y k
0 ))
])2

= det
(
1 − Ad(k−1σ) exp(−i ad(Y k

0 ))
)

|p.

If a ̸= 0, then a is an eigenvector in p of Ad(k−1σ) exp(−i ad(Y k
0 )) asso-

ciated with the eigenvalue 1, so that (7.6) holds.
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Note that

(7.9) Trs
Sp⊗E

[
ρSp⊗E(k−1σ) exp

(
−iρSp⊗E(Y k

0 ) − tA
)]

= Trs
Sp
[
ρSp

(k−1σ) exp
(

−iρSp

(Y k
0 )
)]

· TrE
[
ρE(k−1σ) exp

(
−iρE(Y k

0 ) − tA
)]

.

Using Theorem 4.6, and combining (7.6) and (7.9), we get (7.7). □

7.2. The case of elliptic γσ

We use the same assumptions as in Subsection 7.1. Now we fix an elliptic
element γσ, i.e. γ = k−1 ∈ K. Recall that p = dim pσ(γ).

Recall that NX(γσ)/X is the normal vector bundle of X(γσ) in X. Then

(7.10) TX|X(γσ) = TX(γσ) ⊕ NX(γσ)/X .

Note that

(7.11) rank TX(γσ) = p, rank NX(γσ)/X = m − p.

Since we assume that σ preserves the orientation of p, both p and m−p are
even. Also the action of γσ on TX|X(γσ) preserves the splitting in (7.10).

Let Âγσ(TX|X(γσ), ∇T X|X(γσ)), Âγσ(N |X(γσ), ∇N |X(γσ)) be the equivari-
ant Â-genus given in [9, Subsection 7.7] for vector bundles TX|X(γσ),
N |X(γσ). Note that there are questions of signs to be taken care of in
these forms, we refer to [2, 3] and also [33, Theorem 14.11 in Chapter 3],
[6, Chapter 6] for more detail. Let o(TX(γσ)), o(NX(γσ)/X) be the orien-
tation lines of TX(γσ), NX(γσ)/X respectively. Because of the aforemen-
tioned sign ambiguity, Âγσ(TX|X(γσ), ∇T X|X(γσ)) should be regarded as a
section of Λ•(T ∗X(γσ)) ⊗ o(NX(γσ)/X). Since p is oriented by assumption,
Âγσ(TX|X(γσ), ∇T X|X(γσ)) can be viewed as a section of Λ•(T ∗X(γσ)) ⊗
o(TX(γσ)). A similar consideration can be made for Âγσ(N |X(γσ), ∇N |X(γσ)).

Let Âγσ|p(0) be the degree 0 component of Âγσ(TX|X(γσ), ∇T X|X(γσ)),
and let Âγσ|k(0) be the degree 0 component of Âγσ(N |X(γσ), ∇N |X(γσ)).
These are constants on X(γσ). Put

(7.12) Âγσ(0) = Âγσ|p(0) · Âγσ|k(0).

The equivariant Chern character form of the bundle (F, ∇F ) is given by

(7.13) chγσ
(
F |X(γσ), ∇F |X(γσ)

)
= Tr

[
ρE(k−1σ) exp

(
−

RF |X(γσ)

2πi

)]
.
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The above closed forms on X(γσ) are exactly the ones that appear in the
Lefschetz fixed point formula of Atiyah–Bott [2, 3].

Let ωzσ(γ) = ωkσ(γ) +ωpσ(γ) be the left-invariant 1-form on Z0
σ(γ) valued

in zσ(γ). Let Ωzσ(γ) be the curvature form of the connection form ωkσ(γ)

on the principal bundle Z0
σ(γ) → X(γσ). As in (2.5), we have

(7.14) Ωzσ(γ) = −1
2 [ωpσ(γ), ωpσ(γ)] ∈ Λ2(pσ(γ)∗) ⊗ kσ(γ).

Then the curvatures RF , RT X restricting to X(γσ) are represented by the
equivariant actions of Ωzσ(γ).

Using the same arguments as in the proof of [9, Proposition 7.1.1]
and (7.14), we get the following identities of differential forms on X(γσ),

(7.15)
Âγσ

(
TX|X(γσ), ∇T X|X(γσ)

)
Âγσ

(
N |X(γσ), ∇N |X(γσ)

)
= Âγσ(0).

chγσ
(
TX|X(γσ), ∇T X|X(γσ)

)
+ chγσ

(
N |X(γσ), ∇N |X(γσ)

)
= Trg

[
Ad(k−1σ)

]
.

Let Ψ be the canonical element of norm 1 in Λp(pσ(γ)∗) ⊗ o(pσ(γ))
(respectively, a section of norm 1 of Λp(T ∗X(γσ)) ⊗ o(TX(γσ))). For
α ∈ Λ•(pσ(γ)∗) ⊗ o(pσ(γ)) (respectively Λ•(T ∗X(γσ)) ⊗ o(TX(γσ))), for
0 ⩽ l ⩽ p, let α(l) be the component of α of degree l. We define αmax ∈ R by

(7.16) α(p) = αmaxΨ.

If A ∈ End(pσ(γ)) is antisymmetric, let Pf[A] be the Pfaffian of A. It is
a polynomial function of A (with values twisted by o(pσ(γ))), which is a
square root of A. The form ωA ∈ Λ2(p∗

σ(γ)) associated with A is given by
U, V ∈ pσ(γ) 7→ ⟨U, AV ⟩. Then

(7.17) Pf[A] = [exp(ωA)]max
.

Theorem 7.2. — If γ = k−1 ∈ K, for any t > 0,

(7.18) Trs
[γσ][exp(−tDX,2/2)]

= 1
(2πt)p/2

∫
kσ(γ)

Jγσ(Y k
0 ) Trs

Sp⊗E
[
ρSp⊗E(k−1σ)

· exp
(

−iρSp⊗E(Y k
0 ) − tA

) ]
· exp(−|Y k

0 |2/2t) dY k
0

(2πt)q/2

=
[
Âγσ

(
TX|X(γσ), ∇T X|X(γσ)

)
chγσ

(
F |X(γσ), ∇F |X(γσ)

)]max
.
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Proof. — The first identity in (7.18) follows from Theorem 4.6 and (7.4).
If (E, ρE) is an irreducible unitary representation of Kσ which is not irre-
ducible when restricting to K, then by (2.5), (4.33) and (7.13), we get

(7.19) chγσ(F |X(γσ), ∇F |X(γσ)) = 0.

Then the second identity of (7.18) follows from (4.46).
We only need to prove the second identity in (7.18) for the case where

(E, ρE) is irreducible for both groups Kσ and K. Recall that Kσ(1) ⊂ K

is just the fixed point set of σ action on K.
Since K is semisimple and simply connected, by [20, Lemma (3.15.4),

Corollary (3.15.5)], Kσ(1) is a connected subgroup of K, and there exists
v ∈ kσ(1) such that v is regular in k. Then t = k(v) is a Cartan subalgebra
of k. Let T be the maximal torus of K corresponding to t, and let R+ be
the positive root system of (K, T ) corresponding to the Weyl chamber of
v. Then we get a decomposition of Aut(K) as in (4.35) with respect to
(T, R+). There exists k0 ∈ T , τ ∈ Out(K) such that the action of σ on K

is given by C(k0) ◦ τ . Moreover, s = t ∩ kσ(1) is a Cartan subalgebra of
kτ (1), which is just the fixed point set of τ in t. Let S be the corresponded
maximal torus of Kτ (1).

We extend τ ∈ Out(K) to a τ̂ ∈ Σ, so that if g ∈ G, then

(7.20) τ̂(g) = k−1
0 σ(g)k0 ∈ G.

Note that τ̂ may not be of finite order. When acting on g, p, k, the adjoint
action of k−1σ is the same as the adjoint action of k−1k0τ̂ . Following the
same constructions as in the proof of Proposition 4.9, we may assume that
E is an irreducible representation for both K τ̂ and K. The group K τ̂

also acts on Sp, so that the analogue of (4.37) holds. Then we will prove
the second identity in (7.18) for k−1τ̂ instead of k−1σ with k ∈ K. By [43,
Proposition I.4], and using the fact that the both sides of the second identity
in (7.18) are invariant by conjugations of K, we can continue to assume
that k ∈ S. Thus S is also a maximal torus of Kτ̂ (k−1).

Since (E, ρE) is an irreducible representation of K, then its highest
weight λ ∈ P++ is fixed by τ . Set

(7.21) ρk = 1
2
∑

α∈R+

α.

It is also fixed by τ . Then

(7.22) λ, ρk, λ + ρk ∈ s∗.
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By [9, Proposition 7.5.2], we have

(7.23) A = 2π2|ρk + λ|2.

As in [9, (7.7.7)], if y ∈ kτ̂ (k−1),

(7.24) Trs
Sp
[
ρSp

(k−1τ̂) exp(−ic(ad(y)))
]

= Pf
[
ad(y)|pτ̂ (k−1)

]
Â−1(i ad(y)|pτ̂ (k−1)

)(
Â

τ̂−1k eiy |
p⊥

τ̂
(k−1)(0)

)−1
.

Then by (4.6), we have

(7.25) J
k−1τ̂

(y) Trs
Sp
[
ρSp

(k−1τ̂) exp
(
−ic(ad(y))

)]
= (−1)dim p⊥

τ̂ (k−1)/2 Pf
[
ad(y)|pτ̂ (k−1)

]
Â−1(i ad(y)|kτ (k−1)

)
Â

τ̂−1k|
p⊥

τ̂
(k−1)(0)

{
det(1 − exp(−i ad(y)) Ad(k−1τ))|k⊥

τ (k−1)

det(1 − Ad(k−1τ))|k⊥
τ (k−1)

}1/2

.

Combining (4.18) with (7.25), we get

(7.26) Trs
[k−1τ̂ ][exp(−tDX,2/2)

]
= (−1)dim p⊥

τ̂ (k−1)/2

(2πt)p/2 e−2π2t|λ+ρk|2

∫
kτ (k−1)

Pf
[
ad(y)|pτ̂ (k−1)

]
Â−1(i ad(y)|kτ (k−1)

)
Â

τ̂−1k|
p⊥

τ̂
(k−1)(0)

{
det(1 − exp(−i ad(y)) Ad(k−1τ))|k⊥

τ (k−1)

det(1 − Ad(k−1τ))|k⊥
τ (k−1)

}1/2

· TrE
[
ρE(k−1τ) exp(−iρE(y))

]
exp(−|y|2/2t) dy

(2πt)q/2 .

Let Ωzτ̂ (k−1) be the curvature form associated with Z0
τ̂ (k−1) → X(k−1τ̂)

as an analogue of Ω in (2.5), when replacing g by zτ̂ (k−1). In particular,

(7.27) Ωzτ̂ (k−1) ∈ Λ2(pτ̂ (k−1)∗)⊗ kτ (k−1).

If α, β ∈ Λ•(pτ̂ (k−1)∗), a, b ∈ kτ (k−1), we define

(7.28) ⟨α ⊗ a, β ⊗ b⟩′ = α ∧ β⟨a, b⟩ ∈ Λ•(pτ̂ (k−1)∗).
A direct calculation shows that

(7.29)
∣∣Ωzτ̂ (k−1)∣∣′,2 = 0.

By [9, (7.5.17)], we have

(7.30) Pf
[
ad(y)|pτ̂ (k−1)

]
=
[
exp
(
−⟨y, Ωzτ̂ (k−1)⟩′)]max

.
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Let ∆kτ (k−1) and ∆s be the standard (negative) Laplacian in kτ (k−1)
and s respectively. Using the integral kernel of exp(t∆kτ (k−1)/2) and (7.29),
(7.30), we can rewrite (7.26) as follows,

(7.31) Trs
[k−1τ̂ ][exp(−tDX,2/2)

]
= (−1)dim p⊥

τ̂ (k−1)/2

(2πt)p/2 e−2π2t|λ+ρk|2

[
exp

(
t∆kτ (k−1)/2

){
Â−1(i ad(y)|kτ (k−1)

)
Â

τ̂−1k|
p⊥

τ̂
(k−1)(0)

{
det(1 − exp(−i ad(y)) Ad(k−1τ))|k⊥

τ (k−1)

det(1 − Ad(k−1τ))|k⊥
τ (k−1)

}1/2

· TrE
[
ρE(k−1τ) exp(−iρE(y))

]} (
−tΩzτ̂ (k−1))]max

.

Let R′ be the root system of (kτ (k−1), s) and let R′
+ be a positive root sys-

tem in R′. Let πkτ (k−1)(y), y ∈ s be the functions defined as Πβ∈R′
+

⟨2πiβ, y⟩.
Note that the function contained in {· · ·} in (7.31) is invariant by adjoint
action of Kτ (k−1). Then, we have

(7.32) exp(t∆kτ (k−1)/2)
{

· · ·
}

(y)

= 1
πkτ (k−1)(y) exp(t∆s/2)

[
πkτ (k−1)(y)

{
· · ·
}]

(y).

The function in the right-hand side of (7.32) is viewed as a function in
y ∈ s, which is invariant by the Weyl group W (K0

τ (k−1), S), and lifts to a
central function on kτ (k−1). Then it can be evaluated at −tΩzτ̂ (k−1).

If α ∈ R+, let kα ⊂ kC be the associated root space. Put

(7.33) n =
∑

α∈R+

kα.

Then τ preserves n. For t ∈ T , set δ(tτ) = det(1 − Ad(τ−1t−1))|n. Note
that up to multiplication by some constant, for y ∈ s, the analytic function
e2π⟨ρk,y⟩ δ(e−iy k−1τ) coincides with

(7.34) πkτ (k−1)(y)Â−1(i ad(y)|kτ (k−1)
)

×
[
det(1 − exp(−i ad(y)) Ad(k−1τ))|k⊥

τ (k−1)

]1/2
.
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A Weyl character formula for the non-connected compact Lie group Kτ

was given in [20, Section 4.13, Proposition 4.13.1], we apply it to the Kτ -
representation (E, ρE), we get that for y ∈ s,

(7.35) e2π⟨ρk,y⟩ δ(k−1τ e−iy) TrE
[
k−1τ exp(−iy)

]
=

∑
ω∈W (τ)

det(ω) det
(

Ad(τ−1k)
)
|kR+\ω·R+

× Tr
[
ρE(k−1τ)|Eω·λ

]
e2π⟨ω·(ρk+λ),y⟩,

where W (τ) is a subgroup of Weyl group W (K, T ), and we refer to [20,
Section 4.13] for the precise meaning of other notation. We only use this
formula to make an observation that, by (7.22), (7.34) and (7.35), the
function πkτ (k−1)(y){· · ·}, y ∈ s, in the right-hand side of (7.32), is an
eigenfunction of ∆s associated with the eigenvalue 2A = 4π2|ρk + λ|2.

Then by (7.31), we get

(7.36) Trs
[k−1τ̂ ][exp(−tDX,2/2)] = 1

(2πt)p/2

×
[
Âk−1τ̂ (0)

(
Âk−1τ̂

)−1(
i ad(tΩzτ̂ (k−1))|k

)
TrE

[
k−1τ eitΩzτ̂ (k−1) ]]max

.

Also the parameter t is killed automatically in the right-hand side of (7.36).
Note that the curvatures RN |X(k−1τ̂) , RT X|X(k−1τ̂) , RF |X(k−1τ̂) are given

by the actions of the curvature form Ωzτ̂ (k−1) associated with Z0
τ̂ (k−1) →

X(k−1τ̂). Then the right-hand side in (7.36) is just

(7.37)
[

Âk−1τ̂ (0)
(

Âk−1τ̂
)−1(

N |X(k−1τ̂), ∇N |X(k−1τ̂)
)

· TrE

[
ρE(k−1τ) exp

(
−

RF |X(k−1τ̂)

2πi

)]]max

Then by (7.13), (7.15), (7.37), we get the second identity in (7.18) for the
semisimple element k−1τ̂ . This completes the proof of our theorem. □

7.3. The local equivariant index theorem on Z

In this subsection, we make the same assumptions as in Subsections 2.6,
3.4 and 7.1. In particular, Γ is a cocompact torsion-free discrete subgroup of
G such that σ(Γ) = Γ. Then Z = Γ\X is a compact manifold on which Σσ

acts isometrically. The bundle ST X descends to the bundle of TZ-spinors
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ST Z . The assumptions in Subsection 7.1 make ST Z ⊗ F an equivariant
Clifford module over Z equipped with the equivariant action of Σσ.

The operator DX descends to the Dirac operator DZ , which acts on
C∞(Z, ST Z ⊗ F ) and commutes with Σσ, and the operator LX

A descends
to LZ

A. By (7.4),

(7.38) 1
2DZ,2 = LZ

A.

Let ker DZ ⊂ C∞(Z, ST Z ⊗ F ) be the kernel of DZ , which is a finite-
dimensional representation of Σσ. The equivariant index of DZ (or the
Lefschetz number) associated with σ is defined as

(7.39) IndΣσ

(
σ, DZ

)
= Trs

ker DZ

[σ].

By McKean–Singer formula ([40], [6, Proposition 6.3]), for t > 0,

(7.40) IndΣσ

(
σ, DZ

)
= Trs

[
σZ exp

(
−tDZ,2/2

)]
.

Recall that σZ ⊂ Z is the fixed point set of σ. By (2.95), it is a
finite disjoint union of [X(γσ)]Z , [γ]

σ
∈ Eσ. Let Âσ(TZ|σZ , ∇T Z|σZ ),

chσ
(
F |σZ , ∇F |σZ

)
be the closed differential forms on σZ defined as in Sub-

section 7.2.
By [2, 3] and [33, Theorem 14.11 in Chapter 3], IndΣσ (σ, DZ) can be

computed by the Lefschetz fixed point formula of Atiyah–Bott, so that

(7.41) IndΣσ

(
σ, DZ

)
=
∫

σZ

Âσ
(
TZ|σZ , ∇T Z|σZ

)
chσ

(
F |σZ , ∇F |σZ

)
.

By Proposition 2.20, if [γ]
σ

∈ Eσ, the action of σ on ST Z ⊗ F |[X(γσ)]Z

is equivalent to the action of k−1σ on the corresponding vector bundle
ST X ⊗ F over Γ ∩ Z(k−1σ)\X(k−1σ). Then on each component [X(γσ)]Z
of σZ, the following function is constant,

(7.42)
[
Âσ
(
TZ|σZ , ∇T Z|σZ

)
chσ

(
F |σZ , ∇F |σZ

)]max

and it is equal to

(7.43)
[
Âk−1σ

(
TX|X(k−1σ),∇TX|X(k−1σ)

)
chk−1σ

(
F |X(k−1σ),∇F |X(k−1σ)

)]max
.

Then by (3.45) and using Theorems 7.1, 7.2, we get

(7.44) Trs
[
σZ e−tDZ,2/2 ]
=

∑
[γ]

σ
∈E

σ

∫
[X(γσ)]Z

Âσ
(
TZ|σZ , ∇T Z|σZ

)
chσ

(
F |σZ , ∇F |σZ

)
.

By (2.96) and (7.40), we see that (7.44) is equivalent to (7.41).
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7.4. The de Rham operator associated with a flat bundle

From now on, we assume that G is a connected linear reductive Lie group
with compact center. Then the center zg of g is included in k. We do not
assume anymore that K is semisimple or simply connected. We do not
assume that σ preserves the orientation of p either.

Put

(7.45) gC = g ⊗R C, u =
√

−1p ⊕ k.

Then u is a real Lie algebra, which is called the compact form of g. It is
clear that

(7.46) uC = gC.

The form B extends to an invariant negative definite bilinear form on u and
to an invariant C-bilinear form on gC. Let GC be the connected group of
complex matrices associated with gC, and let U be the analytic subgroup of
GC associated with u. Since G has compact center, by [28, Proposition 5.3],
U is a compact Lie group. By [28, Proposition 5.6], GC is still reductive, and
G, U are closed subgroups of GC. In particular, U is a maximal compact
subgroup of GC.

Let Uu, UgC be the enveloping algebras of u, gC respectively. Then UgC
can be identified with the left-invariant holomorphic differential operators
on GC. Let Cu be the Casimir operator of U associated with B, by (4.9),
we have

(7.47) Cu = Cg ∈ Ug ∩ Uu.

We extend the action σ to gC as a complex linear isomorphism of gC. We
assume that σ extends to an automorphism of U , then it also acts on GC
holomorphically. Set

(7.48) Uσ = U ⋊ Σσ.

In the sequel, we fix a (E, ρE) ∈ Irr(Uσ) with an invariant Hermitian
metric hE . By Weyl’s unitary trick [28, Proposition 5.7], it extends uniquely
to an irreducible representation of Gσ. We use the same notation ρE for
the restrictions of this representation to G, to K and to Kσ. By (7.47), we
have

(7.49) Cu,E = Cg,E ∈ End(E).

Put F = G ×K E. Let ∇F be the Hermitian connection induced by the
connection form ωk. Then the map (g, v) ∈ G ×K E → ρE(g)v ∈ E gives a
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canonical identification of vector bundles on X,

(7.50) G ×K E = X × E.

Then F is equipped with a canonical flat connection ∇F,f so that

(7.51) ∇F,f = ∇F + ρE(ωp).

Let (Ω•
c(X, F ), dX,F ) be the (compactly supported) de Rham complex

associated with (F, ∇F,f ). Let dX,F,∗ be the adjoint operator of dX,F with
respect to the L2 metric on Ω•

c(X, F ). The Dirac operator DX,F of this de
Rham complex is given by

(7.52) DX,F = dX,F + dX,F,∗.

As in (5.4), c(TX), ĉ(TX) act on Λ•(T ∗X). We still use e1, . . . , em to
denote an orthonormal basis of p or TX, and let e1, . . . , em be the corre-
sponding dual basis of p∗ or T ∗X. Let ∇Λ•(T ∗X)⊗F,u be the connection on
Λ•(T ∗X) ⊗ F induced by ∇T X and ∇F . Then the standard Dirac operator
is given by

(7.53) DX,F =
m∑

j=1
c(ej)∇Λ•(T ∗X)⊗F,u

ej
.

By [12, (8.42)], we have

(7.54) DX,F = DX,F +
m∑

j=1
ĉ(ej)ρE(ej).

Note that Cg,E defines an invariant parallel section of endomorphism of
F . Recall that the operator LX acting on Ω•(X, F ) is defined as in (4.16).
By [12, Proposition 8.4] and (4.15), (4.16), we have

(7.55)
DX,F,2

2 = LX − 1
2Cg,E − 1

8B∗(κg, κg)

= 1
2Cg,X − 1

2Cg,E .

Moreover, DX,F,2 commutes with the action of Gσ.
The real rank (resp. complex rank) rkR G (resp. rkC G) of G is defined as

the real dimension of the maximal abelian subspace of p (resp. the Cartan
subalgebra of g). The fundamental rank of G is defined as

(7.56) δ(G) = rkC G − rkC K ∈ N.

We still assume that γσ is a semisimple element given by (7.5). As explain
in Remark 2.12, Z0

σ(γ) is real reductive equipped with a Cartan involution
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θ|Z0
σ(γ). Let S be a maximal torus of K0

σ(γ) with Lie algebra s ⊂ kσ(γ). Set

(7.57) bσ(γ) = {f ∈ pσ(k−1) : [f, s] = 0}.

Then

(7.58) a ∈ bσ(γ), dimR bσ(γ) ⩾ δ(Z0
σ(γ)).

The quantity dimR bσ(γ) only depends on the σ-conjugacy class of γ in G.
If γσ is elliptic, then dimR bσ(γ) = δ(Z0

σ(γ)).
Let e

(
TX(γσ), ∇T X(γσ)) be the Euler form of TX(γσ) associated with

the Levi–Civita connection ∇T X(γσ). If dim pσ(γ) is even, then

(7.59) e
(
TX(γσ), ∇T X(γσ)) = Pf

[
RT X(γσ)

2π

]
.

If dim pσ(γ) is odd, then e
(
TX(γσ), ∇T X(γσ)) vanishes identically.

Recall that the notation [·]max refers to the forms on X(γσ). The follow-
ing theorem extends [9, Theorem 7.8.2].

Theorem 7.3. — For t > 0, the following identity holds:

(7.60) Trs
[γσ][exp(−tDX,F,2/2)

]
= exp(−|a|2/2t)

(2πt)p/2 exp
(

t

8B∗(κg, κg)
)∫

kσ(γ)
Jγσ(Y k

0 )

Trs
Λ•(p∗)⊗E

[
ρΛ•(p∗)⊗E(k−1σ) exp

(
−iρΛ•(p∗)⊗E(Y k

0 ) + t

2Cg,E
)]

exp
(
−|Y k

0 |2/2t
) dY k

0
(2πt)q/2 .

If dim bσ(γ) ⩾ 1, then

(7.61) Trs
[γσ][exp(−tDX,F,2/2)

]
= 0.

If γσ is elliptic, then

(7.62) Trs
[γσ][exp(−tDX,F,2/2)

]
=
[
e
(
TX(γσ), ∇T X(γσ))]max

TrE
[
ρE(γσ)

]
.

Proof. — The identity in (7.60) follows from (4.15), (4.18), (7.55). As
in (7.9), the integrand in (7.60) contains the following factor

(7.63) Trs
Λ•(p∗)

[
ρΛ•(p∗)(k−1σ) e−iρΛ•(p∗)(Y k

0 )
]

= det
(
1 − exp(i ad(Y k

0 )) Ad(σ−1k)
)
|p.
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If dim bσ(γ) ⩾ 1, then the right-hand side in (7.63) vanishes identically for
Y k

0 ∈ kσ(γ). Then (7.61) follows.
Now take γ = k−1 ∈ K. Then

(7.64) bσ(γ) ⊂ pσ(γ).

Moreover, by [28, p. 129], bσ(γ) ⊕ s is a Cartan subalgebra of zσ(γ). In this
case, dim pσ(γ) − dim bσ(γ) is even. Note that Ωzσ(γ) is the curvature form
given in (7.14).

By (7.14), as an analogue of (7.15), we have the following identities

(7.65) Â−1(i ad(−tΩzσ(γ))|zσ(γ)
)

×

[
det(1−e−i ad(−tΩzσ(γ))Ad(k−1σ))z⊥

σ (γ)

det(1 − Ad(k−1σ))z⊥
σ (γ)

]1/2

= 1,

TrE
[
ρE(k−1σ) exp(−iρE(−tΩzσ(γ)))

]
= TrE

[
ρE(k−1σ)

]
.

Note that if dim bσ(γ) ⩾ 1, if Y k
0 ∈ kσ(γ), then

(7.66) Pf
[
ad(Y k

0 )
]

= 0.

By (7.14), (7.59), (7.66), we get that e
(
TX(γσ), ∇T X(γσ)) = 0. Then (7.61)

is compatible with (7.62). We only need to consider the case where
dim bσ(γ) = 0, so that s is also a Cartan subalgebra of zσ(γ).

If we make the same assumptions on K, p and σ as in Subsection 7.1,
then (7.62) is a special case of Theorem 7.2. In general, we can proceed as
in the proof of Theorem 7.2 with the group U instead of K. Note that the
Lie algebra of Aut(U) is isomorphic to [u, u]. By [20, Lemma (3.15.4)], if
σ ∈ Aut(U), then [u, u](σ) contains regular elements in [u, u], so that there
always exists v ∈ u(σ) ∩ureg. Then we fix the corresponding maximal torus
and a positive root system R+ for U as in the proof of Theorem 7.2. Let
ρu denote the element defined as in (7.21).

We may suppose that (E, ρE) is irreducible for both U and Uσ, so that
Cg,E is scalar. Let λ be the highest weight for this U -representation. By [9,
Proposition 7.5.2], we have

(7.67) −Cg,E − 1
4B∗(κg, κg) = 4π2|ρu + λ|2.

Based on the above constructions, the arguments in the proof of The-
orem 7.2 still work without assuming U to be semisimple or simply con-
nected. Using instead (7.65) and (7.67), we can prove (7.62) in full gener-
ality. This completes the proof of our theorem. □
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7.5. Twisted L2-torsion

Following the idea in last subsection, our formula for twisted orbital in-
tegrals is quite promising in studying the equivariant real analytic torsions
for compact locally symmetric spaces. We refer to another publication of
the author [36] for a detailed investigation on this topic. Here, we give
a brief discussion on the twisted L2-torsion introduced by Bergeron and
Lipnowski [4].

We make the same assumptions as in Subsections 2.6, 3.4 and 7.4. In
particular, G is linear reductive and with compact center, Γ is a cocompact
torsion-free discrete subgroup of G such that σ(Γ) = Γ. Let (E, ρE) be
an irreducible unitary representation for both U and Uσ. Furthermore, we
make an assumption on the representation (E, ρE): as G-representations,
(E, ρE) ≇ (E, ρE ◦ θ). By [14, §VI, Theorem 5.3] and [5, Lemma 4.1], the
flat vector bundle F → Z = Γ\X is (strongly) acyclic.

Let σ ∈ Aut(Γ) be the induced isomorphism of σ. Then σ is of finite
order N0 ∈ N∗ (since Γ is always finitely generated).

Lemma 7.4. — The action of σN0 on X is the identity map. Then for
γ ∈ Γ, γσ is elliptic if and only if (γσ)N0 = 1.

Proof. — The first statement is equivalent to that σN0 acts on p as
identity. In fact, if a nonzero a ∈ p is such that a′ = σN0(a), then the
function t ∈ R 7→ d(p eta, p eta′) is either constant 0 or tending to infin-
ity as t → +∞ (cf. [21, Proposition 1.4.1, p. 19]). For any γ ∈ Γ, we have
d(p eta, γ) = d(p eta′

, γ) since σN0 fixes γ. Then d(p eta, p eta′) ⩽ 2d(p eta, γ),
the cocompactness of Γ infers that d(p eta, p eta′) is bounded hence must be
constant 0, we conclude that a = a′ = σN0(a).

For γ ∈ Γ, γσ is semisimple, we can take g ∈ G such that σN0(g) = g,
and γ = g ea k−1σ(g−1) where a ∈ p, k ∈ K and Ad(k)a = σ(a). Then the
second part follows directly from

(γσ)N0 = g eN0a k−1σ(k−1) · · · σN0−1(k−1)g−1σN0 . □

Recall that Eσ denotes the finite set of elliptic classes in [Γ]σ = [Γ]σ.
Set Z1(σ, Γ) = {γ ∈ Γ : (γσ)N0 = 1 ∈ Γ}, and let H1(σ, Γ) denote the
quotient of Z1(σ, Γ) by the equivalent relation defined by the σ-conjugation
by elements in Γ. The above lemma implies the identification

(7.68) H1(σ, Γ) = Eσ.
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Let NΛ•(p∗), NΛ•(T ∗X) be the number operators of Λ•(p∗), Λ•(T ∗X).
For [γ]

σ
∈ Eσ, t > 0, set

(7.69) EX,γσ(F, t) = Trs
[γσ]

[(
NΛ•(T ∗X) − m

2

)
exp
(
−tDX,F,2/2

)]
.

Since γσ is elliptic, there exist g ∈ G such that k = gγσ(g−1) ∈ K. Let λ

still denote the highest weight for the U -representation ρE as in the proof
of Theorem 7.3. By (4.18), (7.67), we have

(7.70) EX,γσ(F, t) = 1
(2πt)p/2 exp

(
−2π2t|λ + ρu|2

)
·
∫
kσ(k)

Jkσ(Y k
0 ) Trs

Λ•(p∗)
[(

NΛ•(p∗) − m

2

)
ρΛ•(p∗)(kσ) e−iρΛ•(p∗)(Y k

0 )
]

TrE
[
ρE(kσ) exp(−iρE(Y k

0 ))
]

e−|Y k
0 |2/2t dY k

0
(2πt)q/2 .

Set

(7.71) Trs
Γ,′ [σZ e−tDZ,F,2/2 ]=

∑
[γ]

σ
∈Eσ

Vol(Γ ∩ Zσ(γ)\X(γσ))EX,γσ(F, t),

where the prime (′) refers to the number operator NΛ•(p∗) involved.

Proposition 7.5. — If δ(Z0
σ(γ)) ̸= 1, then for t > 0,

(7.72) EX,γσ(F, t) = 0.

For non-vanishing cases, there exists a constant C > 0 such that for t ∈
]0, 1]

(7.73)

∣∣√tEX,γσ(F, t)
∣∣ ⩽ C,∣∣∣∣(1 + 2t

∂

∂t

)
EX,γσ(F, t)

∣∣∣∣ ⩽ C
√

t.

Then, as t → 0, EX,γσ(F, t) has the asymptotic expansion in the form of

(7.74) 1√
t

+∞∑
j=0

aγσ
j tj , with aγσ

j ∈ C for j ∈ N.

There exist constants C ′ > 0, c′ > 0 such that for t ≫ 0, we have

(7.75)
∣∣EX,γσ(F, t)

∣∣ ⩽ C ′ e−c′t .

Proof. — Note that (7.72) was proved in [36, Proposition 3.3.3 and Corol-
lary 3.3.4], it follows from the identities as in (4.59). The estimates (7.73)
were proved in [36, (4.4.5) in Theorem 4.4.1], and as a consequence, we get
the asymptotic expansion (7.75).
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In the context of cyclic base change with γ = 1, the estimate (7.75)
was proved in [4, Lemma 4.10]. For general setting as here, it was proved in
[36, (4.4.6) in Theorem 4.4.1]. Note that for this conclusion, the assumption
on ρE ◦ θ is crucial (called a nondegeneracy condition for ρE). □

Definition 7.6. — We define the σ-twisted L2-torsion for Z = Γ\X

associated with the flat vector bundle F as follows,

(7.76) Tσ,L2(Z, F ) = −1
2

∫ +∞

0

(
1 + 2t

∂

∂t

)
Trs

Γ,′
[
σZ e−tDZ,F,2/2

]dt

t
.

By Proposition 7.5 and (7.71), Tσ,L2(Z, F ) is well-defined as a number.
In particular, only the elliptic class [γ]

σ
such that δ(Z0

σ(γ)) = 1 contributes
to Tσ,L2(Z, F ). If there is no such elliptic class, we get Tσ,L2(Z, F ) = 0.

Example 7.7. — As in [4], assume that σ has finite order, and that
H1(σ, G) = 1 (which implies that for γ ∈ H1(σ, Γ), it is σ-conjugate to
1 by elements in G). Recall that σZ ⊂ Z is the fixed point set of σ in Z,
then

(7.77) Trs
Γ,′ [σZ e−tDZ,F,2/2 ]

= Vol(σZ) Trs
[σ]
[(

NΛ•(T ∗X) − m

2

)
exp

(
−tDX,F,2/2

)]
.

By [4, Theorem 4.11], Tσ,L2(Z, F ) appeared as the limit of the σ-equivariant
analytic torsions under a tower of finite coverings of Z = Γ\X.

As explained in Subsection 4.5, if we write further the twisted orbital
integral Trs

[σ][· · ·] in terms of the ordinary identity orbital integral associ-
ated with the subgroup Zσ(1), fixed point set of σ in G. Then Tσ,L2(Z, F )
is actually a linear combination of the ordinary L2-torsions ([37, 39]) of σZ.

Example 7.8. — In [11, 12], Bismut, Ma and Zhang showed that for a
universally constructed sequence of flat vector bundles Fd, d ∈ N over a
closed manifold Z, under the nondegeneracy condition, as d → +∞,

(7.78) T (Z, Fd) = TL2(Z, Fd) + O(e−cd),

where T (Z, Fd), TL2(Z, Fd) denote the real analytic torsions, L2-torsions re-
spectively. In the context of a locally symmetric space, a new proof of (7.78)
using Selberg trace formula was given in [42].

In [36, Section 4], the author considered the asymptotic expansion of σ-
equivariant analytic torsions Tσ(Z, Fd) as d → +∞ for the compact locally
symmetric space Z = Γ\X. We fix a nondegenerate unitary representation
(E, ρE) ∈ Irr(Uσ)∩ Irr(U) which has the highest weight λ. Associated with
it, in [36, Subsection 4.2], the author constructed a canonical sequence
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(Ed, ρEd) ∈ Irr(Uσ) ∩ Irr(U), d ∈ N∗, such that ρEd has highest weight dλ.
By [36, Proposition 4.6.1], as d → +∞,

(7.79) Tσ(Z, Fd) = Tσ,L2(Z, Fd) + O(e−cd),

The main result of [36, Section 4] showed that the leading term (in d) of
Tσ,L2(Z, Fd) is given in terms of W -invariants, for the fixed point set σZ,
introduced in [11, 12].
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