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ON THE MOYAL STAR PRODUCT OF RESURGENT
SERIES

by Yong LI, David SAUZIN & Shanzhong SUN (*)

Abstract. — We analyze the Moyal star product in deformation quantization
from the resurgence theory perspective. By putting algebraic conditions on Borel
transforms, one can define the space of “algebro-resurgent series” (a subspace of
1-Gevrey formal series in iℏ with coefficients in C{x1, . . . , xd}), which we show is
stable under Moyal star product.

Résumé. — Nous analysons le star produit de Moyal de la quantification par
déformation sous l’angle de la théorie de la résurgence. En imposant des condi-
tions algébriques sur les transformées de Borel, on peut définir l’espace des « séries
algébro-résurgentes » (un sous-espace des séries formelles Gevrey-1 en l’indétermi-
née iℏ à coefficients dans C{x1, . . . , xd}), dont nous montrons qu’il est stable par
star-produit de Moyal.

1. Introduction

1.1. Main results

Given a Poisson structure with constant coefficients in d dimensions

(1.1) π =
∑

1⩽i<j⩽d
πi,j∂xi ∧ ∂xj , πj,i = −πi,j ∈ R,
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the corresponding Poisson bracket can be written

(1.2) {f, g} = µ◦P (f⊗g), P :=
∑

1⩽i,j⩽d
πi,j∂xi

⊗∂xj
, µ := multiplication.

The corresponding Moyal star product is then

(1.3)

f̃ ⋆M g̃ = µ ◦ exp
(
tP

2

)(
f̃ ⊗ g̃

)
= f̃ g̃ + t

2
∑
i,j

πi,j ∂xi

(
f̃
)
∂xj

(
g̃
)

+ 1
2!

(
t

2

)2 ∑
i,j,k,ℓ

πi,jπk,ℓ ∂xi
∂xk

(
f̃
)
∂xj

∂xℓ

(
g̃
)

+ · · ·

for any formal series f̃ , g̃ in t, x1, . . . , xd with complex coefficients. One gets
a non-commutative associative algebra

(
CJt, x1, . . . , xdK, ⋆M

)
, the unit of

which is the constant series 1 and the product of which can be viewed as
a non-commutative deformation of ordinary multiplication in the direction
of π, in the sense that

(1.4) f̃ ⋆M g̃ = f̃ g̃ +O(t), f̃ ⋆M g̃ − g̃ ⋆M f̃ = t{f̃ , g̃} +O(t2).

The main result of this paper is

Theorem 1.1. — If f̃ and g̃ are algebro-resurgent series in the 1 + d

variables t, x1, . . . , xd, then so is their Moyal star product f̃ ⋆M g̃.

Here, “algebro-resurgence” is a property of a formal series f̃(t, x1, . . . , xd)
defined in terms of its formal Borel transform f̂(ξ, x1, . . . , xd) with respect
to the first variable, which is required to be convergent, i.e. f̂(ξ,x1, . . . ,xd) ∈
C{ξ, x1, . . . , xd}, and to admit analytic continuation along all the paths
which start close enough to the origin of C1+d and avoid a proper algebraic
subvariety (which depends on f̃). More details will be given in due time.

This variant of Écalle’s definition of resurgence [8, 9] was introduced by
M. Garay, A. de Goursac and D. van Straten in their pioneering work on
resurgent deformation quantization [12], where they state the

Theorem 1.2. — If f̃ and g̃ are algebro-resurgent series in the 1 + 2N
variables t, q1, . . . , qN , p1, . . . , pN , then so is their standard star product

(1.5) f̃ ⋆S g̃ :=
∑

k1,...,kN⩾0

tk1+···+kN

k1! · · · kN !

(
∂k1
p1

· · · ∂kN
pN
f̃
)(
∂k1
q1

· · · ∂kN
qN
g̃
)
.

However, their proof of Theorem 1.2 is not valid, due to a flaw in one of
the key formulas presented in [12]. In this paper, we will give the correct
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formula and develop somewhat different arguments that lead to a proof of
Theorem 1.2.

We will go from Theorem 1.2 to Theorem 1.1 by means of a linear change
of variables and a further result on the stability of algebro-resurgence under
the “transition operator” introduced in (1.7) infra. Indeed, since the Poisson
structure π we started with has constant coefficients, we can pass from the
initial coordinates x1, . . . , xd to canonical coordinates: setting 2N := rank
of the antisymmetric matrix [πi,j ] and s := d − 2N ⩾ 0, a linear change
leads us to coordinates q1, . . . , qN , p1, . . . , pN , y1, . . . , ys in which π is the
standard Poisson structure in N degrees of freedom,

(1.6) π =
∑

1⩽i<j⩽N
∂pi

∧ ∂qi
.

Forgetting about the “inert” variables y1, . . . , ys, we are now dealing with
the Poisson bracket {· , ·} associated with the standard symplectic structure
dp1 ∧ dq1 + · · · + dpN ∧ dqN , and the corresponding Moyal star product ⋆M
is known to be the image of the standard star product ⋆S by the transition
operator

(1.7) T := exp

− t

2
∑

1⩽j⩽N
∂qj∂pj


in the sense that T (f̃ ⋆S g̃) = (T f̃) ⋆M (T g̃). We will establish

Theorem 1.3. — If f̃ is an algebro-resurgent series in the 1 + 2N vari-
ables t, q1, . . . , qN , p1, . . . , pN , then so are T f̃ and T−1f̃ .

Theorem 1.1 will follow from Theorems 1.2 and 1.3.

1.2. Background and motivation

We now give some background and motivation.
Ever since quantum mechanics started in the 1920s, quantization and

semiclassical limit have become a central theme among a variety of areas
in mathematics such as functional analysis, geometry and topology, repre-
sentation theory, pseudo-differential operators and microlocal analysis and
symplectic geometry, to name a few.

Conventional quantum mechanics is formulated in terms of linear opera-
tors on Hilbert space that realize the fundamental Canonical Commutation
Relations, or of Feynman’s path integrals as conceived by Dirac and de-
veloped by Feynman to make the quantum picture more compatible with
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the classical one. Built upon Wigner, Weyl and Groenewold’s insights and
pioneered by Moyal, deformation quantization is a third formulation, in full
phase space, which evolved gradually into an autonomous theory with its
own internal logic, that is conceptually very appealing.

The idea of deformation quantization is to achieve Heisenberg’s Canoni-
cal Commutation Relations by deforming the commutative algebra of func-
tions on the phase space (classical observables) to a non-commutative as-
sociative algebra.

In [18], in the case of the standard Poisson structure, Moyal introduced
his star product ⋆M in relation with statistical properties of quantum me-
chanics. For one degree of freedom, the standard Poisson structure for func-
tions f(q, p) and g(q, p) in R2 being

{f, g} = ∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
= µ ◦P (f ⊗ g), with P := ∂

∂p
⊗ ∂

∂q
− ∂

∂q
⊗ ∂

∂p
,

where µ is the usual pointwise product of functions (or more accurately
the restriction to the diagonal when viewing the tensor product of two
functions as a function on R2 ×R2), the Moyal star product of two classical
observables is the formal series in t obtained as

(1.8) f ⋆M g = µ ◦ exp
(
tP

2

)
(f ⊗ g) = µ ◦

Id +
∑
k⩾1

tk

2kk!P
k

 (f ⊗ g)

with

P k =
k∑

n=0
(−1)k−n

(
k

n

)
(∂p ⊗ ∂q)n(∂q ⊗ ∂p)k−n

=
k∑

n=0
(−1)k−n

(
k

n

)
∂np ∂

k−n
q ⊗ ∂k−n

p ∂nq ,

i.e.

(1.9) f ⋆M g = fg +
∑
k⩾1

tk

2kk!

k∑
n=0

(−1)k−n
(
k

n

)(
∂np ∂

k−n
q f

)(
∂k−n
p ∂nq g

)
.

Here, t is the deformation parameter, taken to be iℏ in quantum mechanics.
The extension to N ⩾ 1 degrees of fredom is obtained by replacing P by

(1.10) P =
N∑
j=1

(
∂

∂pj
⊗ ∂

∂qj
− ∂

∂qj
⊗ ∂

∂pj

)
in (2.1). When extended to C∞(R2N )JtK, the Moyal star product is a non-
commutative associative product. We have f ⋆M g = fg+ t

2 {f, g} +O(t2),
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hence

(1.11) [f, g]M := 1
t
(f ⋆M g − g ⋆M f) = {f, g} +O(t),

we thus recover the Poisson algebra structure of the classical observables
in the limit ℏ = t/i → 0. Moreover, the Canonical Commutation Relations
are realized:

(1.12) [pj , qj ]M = 1 and [pj , qk]M = [pj , pk]M = [qj , qk]M = 0 for j ̸= k.

The Moyal star product can be viewed as a non-commutative asso-
ciative deformation of the usual product of functions in the direction of
the Poisson structure. The idea to view Quantum Mechanics as a defor-
mation of Classical Mechanics was promoted by Bayen–Flato–Fronsdal–
Lichnerowicz–Sternheimer [2, 3] in the 1970s and led to what is now called
Deformation Quantization Theory.

For general symplectic manifolds, the existence of a star product that
satisfies the analogue of (1.11) was proved in [5] and [10, 11]. In particular,
Fedosov recursively constructed a star product through a canonical flat
connection on the Weyl bundle.

For the deformation quantization of an arbitrary Poisson structure π

in Rd, Kontsevich constructed in 1997 an intriguing explicit formula for a
star product that satisfies the analogue of (1.11) ([14]):

(1.13) f ⋆K g = fg +
∑
k⩾1

tk
∑

Γ∈Gk

cΓBΓ,π(f, g),

where each Gk is a suitable collection of graphs, the cΓ’s are universal
coefficients, and the BΓ,π’s are polydifferential operators depending on the
graph Γ and the Poisson structure π. Recently, a deep connection between
these universal coefficients cΓ and multiple zeta values(1) has been brought
to light [1].

For a general Poisson manifold (M,π), the existence of a star product
that satisfies the analogue of (1.11) is a consequence of the formality the-
orem which establishes an L∞ quasi-isomorphism between two differential
graded Lie algebras (DGLAs): the Hochschild complex of the associative
algebra A = C∞(M) and its cohomology.

(1) Interestingly, multiple zeta values are themselves deeply related to Resurgence Theory
– see e.g. [23].
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1.3. Resurgence theory

It is known after Dyson [6] and others that, in quantum field theory,
almost all the series in ℏ describing physical quantities are divergent and
must be interpreted as giving asymptotic information. In quantum mechan-
ics, this can even be traced back to as early as Birkhoff. When Voros devel-
oped the exact WKB theory [21] to study the spectrum of Sturm–Liouville
operators, he already conjectured the resurgent character of these series.
Resurgence Theory was then a new perspective, initiated by Écalle [7, 9],
to deal with asymptotic series. Écalle immediately clarified and confirmed
Voros’ conjecture in [8] and [9]. Pham and his collaborators devoted a lot
of energy to make the whole picture complete in [19] and a series of papers
in the 1990s, culminating in the proof of the conjectural formula proposed
by Zinn–Justin [24] on multi-instanton expansions in quantum mechanics
(however they had to rely on a resurgence conjecture stated in [8], the proof
of which has not yet been given in detail).

In a nutshell, in Resurgence Theory, one considers formal series φ̃(t) =∑
n⩾0 ant

n (in applications to physics, the coefficients an may be func-
tions on the configuration space or the phase space) and their formal Borel
transforms φ̂(ξ) defined by(2)

(1.14) formal Borel transform β : φ̃(t) =
∑
n⩾0

ant
n 7→ φ̂(ξ) =

∑
n⩾0

an
ξn

n! ,

and one imposes the convergence of φ̂(ξ) for |ξ| small enough and suitable
conditions on its analytic continuation, so as to be able to analyse the
various “Borel–Laplace sums” S θφ̃(t) =

∫ eiθ∞
0 e−ξ/tφ̂(ξ)dt/t for all non-

singular directions θ: the functions S θφ̃ all are asymptotic to φ̃(t) as |t| →
0 but differ by exponentially small quantities. The analytic continuation of
the convergent germ φ̂(ξ) is required to have at worse isolated singularities.
More precisely (in order of increasing generality): to be “Ω-continuable”
with a certain prescribed set Ω of potentially singular points [7, 20]; or
“endlessly continuable” [4]; or “continuable without a cut” [9].

(2) In this article, we depart from the usual convention of Resurgence Theory, which is to
define the formal Borel transform as B

(∑
n⩾1 antn

)
=
∑

n⩾1 an
ξn−1

(n−1)! and to handle
the constant term a0 separately by setting B(1) = δ (a symbol that can be identified
with the Dirac mass at 0). Obviously, formula (1.14) yields β(φ̃) = B(tφ̃). The advantage
of B over β is that it gives rise to slightly simpler formula for convolution and Laplace
transform. However, β has other advantages, e.g. not to force us to deal separately the
t-independent term. Note that the choice of β as formal Borel transform is also the one
favored by Voros.

ANNALES DE L’INSTITUT FOURIER
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Another variant of this property of continuability in the Borel plane was
introduced in [12] under the name “algebro-resurgence”. It was designed for
situations where the coefficients an depend analytically on affine variables
x = (x1, . . . , xd) ∈ Cd: the singular locus of φ̂(ξ, x) is required to be a
proper algebraic subvariety of C1+d, the germ φ̂(ξ, x) should have analytic
continuation along all the paths that avoid it; in particular, for fixed x,
only finitely many singular points can exist in the Borel plane. It is with
this version of resurgence that we will work throughout this article.

The present article does not require any familiarity with Resurgence The-
ory on the part of the reader. But let us mention that, from the viewpoint
of Resurgence Theory, stability properties like those indicated in our main
results are reminiscent of the stability of the space of resurgent series under
multiplication and other nonlinear operations [7, 4, 20]. The possibility of
doing nonlinear analysis with resurgent series has always been emphasized
by J. Écalle and, ultimately, is responsible for the success of Resurgence
Theory in nonlinear dynamics, its initial area of application in mathemat-
ics. The success of the theory in WKB analysis also has recently aroused
renewed interest for its applicability to mathematical physics, as testified
e.g. by the resurgence conjecture of the recent article [15].

1.4. Algebro-resurgent Moyal product

Our initial motivation was to understand Deformation Quantization and
the explicit construction (1.13) of Kontsevich from the viewpoint of Resur-
gence Theory. But already at the level of the Moyal star product (1.3),
even with N = 1 and analytic classical observables that do not depend
on t, one can see that the star product is generically divergent as a series
in t, but with at most factorial growth due to the Cauchy inequalities—see
the examples in Section 2.2. It is thus natural to consider the Moyal star
product of two elements of f̃ and g̃ of C{q1, . . . , qN , p1, . . . , pN}JtK and to
enquire on β(f̃ ⋆M g̃) in terms of βf̃ and βg̃, i.e. to investigate the Borel
counterpart of the Moyal star product:

(1.15) f̂ ∗M ĝ := β
(
β−1f̂ ⋆M β−1ĝ

)
.

This is what Garay, de Goursac and van Straten did in [12] with the
“standard star product” ⋆S defined by (1.5), which is a star product equiv-
alent to the Moyal one via the transition operator T . They considered

(1.16) f̂ ∗S ĝ := β
(
β−1f̂ ⋆S β

−1ĝ
)

TOME 73 (2023), FASCICULE 5
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with a view to proving Theorem 1.2: supposing that f̃ and g̃ are algebro-
resurgent series, i.e. that f̂ and ĝ are algebro-resurgent germs, is it true
that f̂ ∗S ĝ is an algebro-resurgent germ (and hence that f̃ ⋆S g̃ is an
algebro-resurgent series)?

However, the analysis in [12] relies on an integral representation of ∗S
that is flawed (Proposition 3.3 of that article), thus invalidating the pur-
ported proof of Theorem 1.2. In Section 2, we will give another integral
representation of ∗S , formula (2.30). The correct formula is more intricate
than that of [12]; therefore, following the analytic continuation of f̂ ∗S ĝ
(where both factors are supposed to be algebro-resurgent) requires consid-
erably more work.

For the sake of clarity, we will begin in Section 2 with the case of one de-
gree of freedom and give in Lemma 2.6 the formula for ∗S for that case. It is
a mixture of convolution(3) and Hadamard product (which has the classical
integral representation given as (6.2) infra); more specifically, the formula
involves the Hadamard product with respect to ζ of the Taylor expansions
f̂(ξ1, q, p+ ζ) ⊙ ĝ(ξ2, q + ζ, p) and then a convolution-like integration with
respect to ζ, ξ1 and ξ2.

Analytic continuation of convolution is a classical topic in Resurgence
Theory [7, 4, 20, 17]. We will adapt these techniques to our more intricate
situation in Section 5. The analytic continuation of the Hadamard product
of two Ω-continuable germs has been treated in [16], with a possibly infinite
singular locus Ω; our situation is simpler inasmuch as it involves only finite
singular loci in the Borel plane, as we will see in Section 6 devoted to the
Hadamard part of the formula for ∗S .

The technique for following the analytic continuation of f̂ ∗S ĝ in the case
of N degrees of freedom is indicated in Section 7. This will lead us to a
proof of Theorem 1.2 that follows a path rather different than that of [12].
Then, using the concrete form of the equivalence T between the Moyal and
standard star products ⋆M and ⋆S , we will be able to relate ∗M and ∗S by
an integral transform T̂ , prove that

f̂ algebro-resurgent germ ⇒ T̂ f̂ and T̂−1f̂ algebro-resurgent germs

(3) “Convolution” is the operation that corresponds to the multiplication of formal series
via formal Borel transform. Beware that Resurgence Theory usually makes use of the
formula corresponding to B, rather than β, in accordance with Footnote 2. The image
by B of the product (B−1φ̂)(B−1ψ̂) is the function

∫ ξ

0 φ̂(ξ1)ψ̂(ξ − ξ1) dξ1, whereas the

image by β of (β−1φ̂)(β−1ψ̂) is ∂
∂ξ

( ∫ ξ

0 φ̂(ξ1)ψ̂(ξ − ξ1) dξ1
)

.
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(which is equivalent to Theorem 1.3) and deduce that

f̂ and ĝ algebro-resurgent germs ⇒ f̂ ∗M ĝ algebro-resurgent germ

(which is equivalent to Theorem 1.1).
Hence, algebro-resurgent series form a subalgebra of the associative alge-

bras
(
C{q1, . . . , qN,p1, . . . ,pN}JtK, ⋆S

)
or
(
C{q1, . . . , qN , p1, . . . , pN}JtK, ⋆M

)
or, in the case of a general constant-coefficient Poisson structure π,(
C{x1, . . . , xd}JtK, ⋆M

)
.

1.5. Fundamental open problem in deformation quantization

The formal parameter ℏ = t/i corresponds to the Planck constant, which
is a nonzero fundamental constant of nature, and hence can hardly be
treated as formal and dimensionless in applications to physics. A question
thus naturally arises as to the “convergence of formal deformation quanti-
zation”, in the sense of giving an analytic meaning to formal star products
(recall that all the corresponding power series in t are expected to be gener-
ically divergent, so it cannot be “convergence” in the usual sense).

In fact, this question is considered to be one of the fundamental remaining
open problems e.g. in [22] and there still is no general theory to answer it.
The approach to Deformation Quantization taken in this paper may give
hope to reach an answer, at least in some cases, by means of a Borel–
Laplace summation of some sort (the usual Borel–Laplace summation S θ

or one of the “Borel–Laplace averages” conceived by J. Écalle as a tool to
be used when S θφ̃ is ill-defined due to the presence of singularities of φ̂(ξ)
on the integration ray eiθR>0). We have not pursued the question of Borel
summability in this article – see however Remark 2.5.

1.6. Organization of the paper

The paper is organized as follows.
• Section 2 deals with definitions, examples and elementary proper-

ties for the Moyal and standard star products, ⋆M and ⋆S , and their
Borel counterparts ∗M and ∗S . It also contains the integral repre-
sentation formulas for ∗S , T̂ and T̂−1 that will be used in the rest
of the article.

• Section 3 deals with the definition of algebro-resurgent series and
algebro-resurgent germs, and states three lemmas that are instru-
mental in our proof of Theorems 1.2 and 1.3.

TOME 73 (2023), FASCICULE 5
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• Section 4 introduces the notion of a multivariate polynomial that is
“simple with respect to one of its variables”, as an algebraic prepa-
ration to handle more conveniently the algebraic varieties which
appear in the singular loci in the Borel plane.

• Section 5 deals with the “convolution part” of our formula for ∗S .
• Section 6 deals with the “Hadamard part” of the formula.
• Section 7 explains how to adapt the proof from N = 1 to N arbi-

trary.

2. Borel counterparts of the Moyal and standard star
products

2.1. Moyal and standard star products

As explained at the end of § 1.1, we can assume without loss of generality
that the Poisson structure π is the standard one (1.6), with 2N variables
q1, . . . , qN , p1, . . . , pN . The formula (1.3) for the star product ⋆M is thus

(2.1) f̃ ⋆M g̃ = µ ◦ exp

 t

2

N∑
j=1

(
∂

∂pj
⊗ ∂

∂qj
− ∂

∂qj
⊗ ∂

∂pj

) (f̃ ⊗ g̃).

Formula (2.1) (which boils down to (1.9) when N = 1) makes sense in
C{q1, . . . , qN , p1, . . . , pN}JtK as well as in

Q̃2N+1 := CJq1, . . . , qN , p1, . . . , pN KJtK = CJt, q1, . . . , qN , p1, . . . , pN K.

The same is true for ⋆S , which is defined by the formula (1.5) or, equiva-
lently

(2.2) f̃ ⋆S g̃ = µ ◦ exp

t N∑
j=1

(
∂

∂pj
⊗ ∂

∂qj

) (f̃ ⊗ g̃).

Recall that the formal deformation parameter is t = iℏ.
It is well-known that ⋆S and ⋆M are equivalent under the transition

operator T defined by (1.7): T (f̃ ⋆S g̃) = (T f̃) ⋆M (T g̃) with

T = exp
(

− t

2
∑

∂qj∂pj

)
and T−1 = exp

(
t

2
∑

∂qj∂pj

)
.

In other words, we have

T :
(
Q̃2N+1, ⋆S

)
→
(
Q̃2N+1, ⋆M

)
isomorphism of associative algebras.

It is with ⋆S that we will work most of the time, because the formulas are
simpler with it than with ⋆M , hence we use abbreviations:
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Notation 2.1. — From now on, we set ⋆ = ⋆S for the standard star
product, and ∗ = ∗S for its Borel counterpart (1.16). We will call ∗ the
“Borel-star product”.

Example 2.2. — With one degree of freedom, N = 1, the definition (1.5)
boils down to

(2.3) f̃ ⋆S g̃ = f̃ ⋆ g̃ =
∑
k⩾0

tk

k!

(
∂kp f̃

) (
∂kq g̃

)
.

Here is a simple example in that case:

(2.4)
(tp) ⋆ (tq) = t2pq + t3, (tq) ⋆ (tp) = t2pq,

(tp) ⋆M (tq) = t2pq + t3

2 , (tq) ⋆M (tp) = t2pq − t3

2 .

Note that T (t2pq) = t2pq − t3

2 .

2.2. Stability of 1-Gevrey series

We are mostly interested in the subspace C{q1, . . . , qN , p1, . . . , pN}JtK of
Q̃2N+1. However, it is important to realize that we cannot restrict our-
selves to the too narrow subspace(4) C{t, q1, . . . , qN , p1, . . . , pN} consisting
of formal series which converge in a neighbourhood of the origin in C2N+1,
because even if f and g do not depend on t, their star product or their
images by T may be divergent. Here is a simple example taken from [12],
and a variant:

Example 2.3. — Take N = 1 as in (2.3). The geometric series (1 − p)−1

and (1 − q)−1 give rise to a divergent series

(2.5) (1 − p)−1 ⋆ (1 − q)−1 =
∑
k⩾0

k! tk
(
(1 − p)(1 − q)

)−k−1
.

The logarithm series log(1 −p) and log(1 − q) give rise to a divergent series

(2.6) log(1 − p) ⋆ log(1 − q)

= log(1 − p) log(1 − q) +
∑
k⩾1

(k − 1)!
k

tk
(
(1 − p)(1 − q)

)−k
.

(4) However, the even smaller subspace of polynomials C[t, q1, . . . , qN , p1, . . . , pN ] is sta-
ble under ⋆M and ⋆.
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The transition operator T and its inverse map (1−p−q)−1 to the divergent
series

(2.7) T±1((1 − p− q)−1) =
∑
k⩾0

(2k)!
k!

(
∓ t

2
)k(1 − p− q)−2k−1.

Note however the 1-Gevrey character with respect to t of these exam-
ples: the coefficient of tk essentially has at most factorial growth, hence
convergence is restored when tk is replaced by ξk/k!, i.e. their image by
the formal Borel transform (1.14) belongs to the space of convergent series
C{ξ, q, p}. This is a general phenomenon. Let us extend the definition of
the formal Borel transform by the formula

(2.8) β : φ̃ =
∑
n⩾0

an(z1, . . . , zr)tn ∈ CJt, z1, . . . , zrK

7→ φ̂ =
∑
n⩾0

an(z1, . . . , zr)
ξn

n! ∈ CJξ, z1, . . . , zrK,

and call 1-Gevrey formal series with respect to t the elements of Q̃G
r+1,

where

(2.9) Q̃G
r+1 := β−1(Q̂r+1

)
⊂ CJt, z1, . . . , zrK, Q̂r+1 := C{ξ, z1, . . . , zr}.

We then have, as noted in [12] in the case of the standard star product,

Theorem 2.4. — The subspace Q̃G
2N+1 is stable under the Moyal star

product ⋆M and the standard product ⋆ = ⋆S , as well as under the transi-
tion operators T and T−1.

The proof is a consequence of (2.33) in Lemma 2.11.
Examples (2.5)–(2.7) are thus elements of Q̃G

3 ; their images by β are the
following elements of Q̂3:

β
(
(1 − p)−1 ⋆ (1 − q)−1)(2.10)

= (1 − p)−1(1 − q)−1
(

1 − ξ
(
(1 − p)(1 − q)

)−1
)−1

,

β
(

log(1 − p) ⋆ log(1 − q)
)

(2.11)

= log(1 − p) log(1 − q) + Li2
(
ξ
(
(1 − p)(1 − q)

)−1
)
,

where

Li2(z) =
∑
k⩾1

zk

k2 = −
∫ z

0

log(1 − ζ)
ζ

dζ(2.12)
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(the famous dilogarithm function, which plays an ubiquitous role in math-
ematical physics along with its quantum variant), and

(2.13) β ◦ T±1((1 − p− q)−1) = (1 − p− q)−1(1 ± 2ξ(1 − p− q)−2)−1/2
.

In fact, the divergent series (2.5) is essentially the famous Euler series, a
paradigmatic example of 1-Gevrey series, and the most elementary example
of resurgent series (see e.g. [17]).

Remark 2.5. — The above examples can be further generalized: for any
g̃ = g̃(t, q, p) ∈ Q̃G

3 , one has (1−p)−1 ⋆ g̃ =
∑
n⩾0(1−p)−n−1 tn ∂nq g̃(t, q, p),

hence ĝ = β g̃ ∈ Q̂3 satisfies

(1 − p)−1 ∗ ĝ = β
(
(1 − p)−1 ⋆ g̃

)
(2.14)

= (1 − p)−1 ∂

∂ξ

(∫ ξ

0
ĝ
(
ξ − ζ, q + ζ(1 − p)−1, p

)
dζ
)
,

and there is a similar formula for (1 − q)−1 ⋆ g̃. Note that if θ ∈ R and U

is a subset of {(q, p) ∈ C × C | |p − 1| ⩾ ε} (for some ε > 0) such that g̃
is Borel-summable in the direction θ when (q, p) ∈ U , i.e. ĝ(ξ, q, p) extends
analytically in Sθ,ε′ × U with at most exponential growth at infinity,

(2.15) |ĝ(ξ, q, p)| ⩽ C exp
(
A1|ξ| +A2|q| +A3|p|

)
(for some C,A1, A2, A3 ⩾ 0), where Sθ,ε′ is a half-strip {dist(ξ,R⩾0 eiθ) <
ε′} (for some ε′ > 0), then (1−p)−1⋆g̃ is Borel-summable in the direction θ
when (q, p) ∈ U ′, where

(2.16) U ′ :=
{

(q, p) ∈ U |
(
q + ξ(1 − p)−1, p

)
∈ U for all ξ ∈ Sθ,ε′

}
.

2.3. Key formula for the Borel-star product

Recall that we have defined the Borel counterpart ∗M of the Moyal star
product ⋆M by (1.15), and the Borel-star product ∗ = ∗S , counterpart of
the standard star product ⋆ = ⋆S , by (1.16). We will now give general
integral representations for them.

For the sake of clarity, we begin with the case of one degree of freedom,
N = 1.

Lemma 2.6. — For any f̂ , ĝ ∈ CJξ, q, pK,

(2.17) f̂ ∗ ĝ(ξ, q, p) = d3

dξ3

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3

∫ 2π

0

dθ
2π

× f̂(ξ1, q, p+
√
ξ3e−iθ)ĝ(ξ2, q +

√
ξ3eiθ, p),
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where the integrand is considered as element of C[e±iθ]Jq, p, ξ1, ξ2,
√
ξ3K and

integration in θ is performed termwise.
Moreover, if both factors are convergent, then so is their Borel-star prod-

uct:

(2.18) f̂ , ĝ ∈ Q̂3 ⇒ f̂ ∗ ĝ ∈ Q̂3.

Proof. — We expand f̂ and ĝ in powers of ξ as f̂ =
∑
fm(q, p) ξ

m

m! , ĝ =∑
gn(q, p) ξ

n

n! , so that (2.3) allows us to compute f̂ ∗ ĝ(ξ, q, p) as the image
by β of

∑
m,n,k⩾0

1
k! (∂

k
pfm)(∂kq gn)tm+n+k:

f̂ ∗ ĝ(ξ, q, p) =
∑

m,n,k⩾0

1
k! (∂

k
pfm)(∂kq gn) ξm+n+k

(n+m+ k)! .

The identity ξm+n+k+3

(n+m+k+3)! =
∫ ξ

0 dξ1
∫ ξ−ξ1

0 dξ2
∫ ξ−ξ1−ξ2

0 dξ3
ξm

1
m!

ξn
2
n!
ξk

3
k! differen-

tiated three times yields

(2.19) f̂ ∗ ĝ(ξ, q, p) = d3

dξ3

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3

×
∑

n,m,k⩾0
(∂kpfm)(∂kq gn)ξ

m
1
m!

ξn2
n!

ξk3
k!2 .

For each (m,n), with the notations ak = 1
k!∂

k
pfm, bk = 1

k!∂
k
q gm, the se-

ries
∑
akbkξ

k
3 can be interpreted as the evaluation at ξ3 of the Hadamard

product ϕ⊙ ψ of

ϕ(ξ) =
∑

akξ
k = fm(q, p+ ξ) and ψ(ξ) =

∑
bkξ

k = gn(q + ξ, p).

According to Section 6.1, ϕ⊙ ψ(ξ) =
∑
akbkξ

k can be rewritten as∫ 2π

0
ϕ
(√

ξe−iθ
)
ψ
(√

ξeiθ
) dθ

2π

with termwise integration in C[e±iθ]J
√
ξK (see (6.3) infra), thus

f̂ ∗ ĝ(ξ, q, p) = d3

dξ3

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3∑

m,n⩾0

∫ 2π

0

dθ
2πfm

(
q, p+

√
ξ3e−iθ

)
gn

(
q +

√
ξ3eiθ, p

) ξm1
m!

ξn2
n!

= d3

dξ3

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3∫ 2π

0

dθ
2π f̂

(
ξ1, q, p+

√
ξ3e−iθ

)
ĝ
(
ξ2, q +

√
ξ3eiθ, p

)
.
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Now, suppose f̂ , ĝ ∈ Q̂3 = C{ξ, q, p}. The right hand side of (2.17) in-
volves a function G(ξ1, ξ2, s, q, p) :=

∫ 2π
0 f̂(ξ1, q, p+se−iθ)ĝ(ξ2, q+seiθ, p) dθ

2π ,
which clearly belongs to C{ξ1, ξ2, s, q, p} and is even in s. Consequently,
F (ξ1, ξ2, ξ3, q, p) := G(ξ1, ξ2,±

√
ξ3, q, p) is a well-defined germ that belongs

to C{ξ1, ξ2, ξ3, q, p}. The right-hand side of (2.17) can be written as

(2.20) d3

dξ3

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3 F (ξ1, ξ2, ξ3, q, p),

hence it defines a holomorphic germ in C{ξ, q, p}. □

Remark 2.7. — The integral formula (2.17) differs from the one given in
Proposition 3.3 of [12], which is not correct. Take for instance f̂ = ξp and
ĝ = ξq: we know by the first equation in (2.4) that we must find

(2.21) (ξp) ∗ (ξq) = pq
ξ2

2! + ξ3

3! ,

and the reader may check that our formula produces the right outcome,
but not the formula from [12], which yields a term ξ3

2! instead of ξ3

3! .

Remark 2.8. — Instead of writing the Hadamard product ϕ⊙ψ(ξ) as we
did in our proof, we could have used the integration variable ζ =

√
ξeiθ and

then the Cauchy theorem, which yields

(2.22) ϕ⊙ ψ(ξ) = 1
2πi

∮
C

ϕ

(
ξ

z

)
ψ(z)dz

z

with any circle C : θ 7→ c eiθ of radius c ∈
(

|ξ|
Rϕ

, Rψ

)
,

where Rϕ and Rψ are the radii of convergence of ϕ and ψ, and |ξ| < RϕRψ
(see (6.2) infra). Correspondingly, Formula (2.17) can be rewritten

(2.23) f̂ ∗ ĝ(ξ, q, p) = d3

dξ3

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3

∮
C

dz
2πiz

× f̂
(
ξ1, q, p+ ξ3

z

)
ĝ(ξ2, q + z, p),

where C is an appropriate circle: supposing f̂ and ĝ holomorphic in D3
τ

with notation (3.1) and taking ε ∈ (0, τ), ε′ ∈ (0, ε2) and c ∈ ( ε
′

ε , ε),
formula (2.23) holds for (ξ, q, p) ∈ Dε′ × Dτ−ε × Dτ−ε.
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Lemma 2.9. — If f̂ , ĝ ∈ CJξ, q, pK, then

(2.24) f̂ ∗M ĝ(ξ, q, p) = d4

dξ4

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3

×
∫ ξ−ξ1−ξ2−ξ3

0
dξ4

∮
C1

dz1

2πiz1

∮
C2

dz2

2πiz2

× f̂(ξ1, q + z1, p+ z2) ĝ
(
ξ2, q + ξ4

2z2
, p− ξ3

2z1

)
with integration on appropriate circles C1 and C2: supposing f̂ and ĝ holo-
morphic in D3

τ with notation (3.1) and taking ε ∈ (0, τ), ε′ ∈ (0, ε2), for-
mula (2.24) holds for (ξ, q, p) ∈ Dε′ ×Dτ−ε ×Dτ−ε provided C1 and C2 are
any anticlockwise circles centred at 0 with radii in ( ε

′

ε , ε).
Moreover, if both factors are convergent, i.e. f̂ , ĝ ∈ Q̂3, then so is f̂ ∗M ĝ.

Proof. — Using the same kind of argument as in the proof of Lemma 2.6,
we compare the right-hand side and the left-hand side of (2.24):

RHS = d4

dξ4

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3

∫ ξ−ξ1−ξ2−ξ3

0
dξ4

×
∑
n,m

(
∂np ∂

m
q f̂(ξ1, q, p)

)(
∂mp ∂

n
q ĝ(ξ2, q, p)

) (−1)m ξm3 ξn4
2m+nm!2 n!2

= d4

dξ4

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2

∫ ξ−ξ1−ξ2

0
dξ3

∫ ξ−ξ1−ξ2−ξ3

0
dξ4

×
∑

n,m,α,β

(
∂np ∂

m
q fα(q, p)

)(
∂mp ∂

n
q gβ(q, p)

) (−1)m ξα1 ξ
β
2 ξ

m
3 ξn4

2m+n α!β!m!2 n!2

=
∑

n,m,α,β

(
∂np ∂

m
q fα(q, p)

)(
∂mp ∂

n
q gβ(q, p)

) (−1)m ξα+β+m+n

2m+nm!n! (α+ β +m+ n)!

= LHS,

because the LHS is the Borel image of the Moyal star product of f̃ =∑
α fα(q, p)tα and g̃ =

∑
β gβ(q, p)tβ , which, according to (1.9), can be

written

f̃ ⋆M g̃ =
∑
n,m⩾0

(−1)m tn+m

2n+m n!m!
(
∂np ∂

m
q f
)(
∂mp ∂nq g

)
(2.25)

=
∑

n,m,α,β

(−1)m tα+β+n+m

2n+m n!m!
(
∂np ∂

m
q fα

)(
∂mp ∂nq gβ

)
.
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The discussion of convergence is the same as in the proof of Lemma 2.6. □

We could also have derived Lemma 2.9 from Lemma 2.6 and the following
integral representations of the Borel counterparts of T and T−1,

(2.26) T̂ f̂ := βTβ−1f̂ , T̂−1f̂ = βT−1β−1f̂ .

Lemma 2.10. — For any f̂ ∈ CJξ, q, pK,

T̂ f̂ = d
dξ

∫ ξ

0
dξ1

∮
C

dz
2πiz f̂

(
ξ − ξ1, q + z, p− ξ1

2z

)
,(2.27)

T̂−1f̂ = d
dξ

∫ ξ

0
dξ1

∮
C

dz
2πiz f̂

(
ξ − ξ1, q + z, p+ ξ1

2z

)
,(2.28)

with integration on appropriate circle C.
Moreover, if f̂ is convergent, i.e. f̂ ∈ Q̂3, then so is T̂ f̂ .

Proof. — Let us compare the right-hand side and the left-hand side
of (2.27):

RHS = d
dξ

∫ ξ

0
dξ1

∮
C

dz
2πi

∑
n,m

∂nq ∂
m
p f̂(ξ − ξ1, q, p)

n!m!

(
−ξ1

2

)m
zn−m−1

= d
dξ

∫ ξ

0
dξ1

∑
n

∂nq ∂
n
p f̂(ξ − ξ1, q, p)

n!2

(
−ξ1

2

)n
= β

(∑
n

∂nq ∂
n
p f̃(t, q, p)
n! ·

(
− t

2

)n)
= LHS.

The proof of (2.28) is analogous. □

2.4. More degrees of freedom

We now consider the case of an abitrary number of degrees of free-
dom, say N . We set q = (q1, . . . , qN ) and p = (p1, . . . , pN ). If f̂(ξ, q, p) =∑∞
m=0 fm(q, p) ξ

m

m! , ĝ(ξ, q, p) =
∑∞
n=0 gn(q, p) ξ

n

n! , then it follows from (1.5)
that

(2.29) f̂ ∗ ĝ(ξ, q, p) =
∑

m,n,k1,...,kN⩾0

1
k1! · · · kN !

× (∂k1
p1

· · · ∂kN
pN
fm)(∂k1

q1
· · · ∂kN

qN
gn) ξk1+···+kN +n+m

(k1 + · · · + kN + n+m)! .
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Lemma 2.11. — There are integral representation formulas in N de-
grees of freedom analogous to those of Lemma 2.6/Remark 2.8, Lemma 2.9
and Lemma 2.10. Specifically, for f̂ , ĝ ∈ CJξ, q1, . . . , qN , p1, . . . , pN K, a for-
mula generalising (2.23) is

(2.30)

f̂ ∗ ĝ(ξ, q, p) = dN+2

dξN+2

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2 · · ·

×
∫ ξ−ξ1−···−ξN+1

0
dξN+2

∮
C1

dz1

2πiz1
· · ·
∮
CN

dzN
2πizN

× f̂

(
ξN+1, q1, . . . , qN , p1 + ξ1

z1
, . . . , pN + ξN

zN

)
× ĝ(ξN+2, q1 + z1, . . . , qN + zN , p1, . . . , pN ),

a formula generalising (2.24) is

f̂ ∗M ĝ(ξ, q, p) = d2N+2

dξ2N+2

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2 · · ·

×
∫ ξ−ξ1−···−ξ2N+1

0
dξ2N+2

∮
C1

dz1

2πiz1
· · ·
∮
C2N

dz2N

2πiz2N

× f̂(ξ2N+1, q1 + z1, . . . , qN + zN , p1 + zN+1, . . . , pN + z2N )
(2.31)

× ĝ

(
ξ2N+2, q1 + ξN+1

2zN+1
, . . . , qN + ξ2N

2z2N
, p1 − ξ1

2z1
, . . . , pN − ξN

2zN

)
,

and a formula generalising (2.27)–(2.28) is

T̂±1f̂(ξ, q, p) = dN+1

dξN+1

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2 · · ·

×
∫ ξ−ξ1−···−ξN

0
dξN+1

∮
C1

dz1

2πiz1
· · ·
∮
CN

dzN
2πizN

(2.32)

× f̂

(
ξN+1, q1 +z1, . . . , qN +zN , p1 ∓ ξ1

2z1
, . . . , pN ∓ ξN

2z2N

)
.

In each of these formulas, supposing f̂ and ĝ holomorphic in D2N+1
τ with

notation (3.1) and taking ε ∈ (0, τ), ε′ ∈ (0, ε2), it is understood that
(ξ, q, p) ∈ Dε′ × DNτ−ε × DNτ−ε and the Cj ’s are any anticlockwise circles
centred at 0 with radii in ( ε

′

ε , ε)—alternatively, Cj can be taken to be the
parametrized circle θj ∈ [0, 2π] 7→

√
ξj eiθj , where

√
ξj is any square root

of ξj .
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These formulas entail that

(2.33) f̂ , ĝ ∈ Q̂2N+1 ⇒ f̂ ∗ ĝ, f̂ ∗M ĝ, T̂ f̂ , T̂−1f̂ ∈ Q̂2N+1.

We leave it to the reader to work out the details of the proof of
Lemma 2.11.

As already mentioned, Theorem 2.4 is a mere consequence of (2.33).

3. Algebro-resurgent germs

We shall use the notation

(3.1) Dτ := {z ∈ C | |z| < τ}.

We know that if f ∈ C{z1, . . . , zn}, then there exists τ > 0, such that f is
the germ of a function holomorphic in the polydisc Dnτ ⊂ Cn. Following [12],
we set

Definition 3.1. — For any n ⩾ 0, we define the set of “algebro-resur-
gent germs in n+ 1 variables” by

(3.2) Q̂A
n+1

:=


f ∈C{ξ, z1, . . . , zn}

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ proper algebraic subvariety

V ⊂Cn+1, such that f admits analytic

continuation along any C1 path γ

contained in Cn+1 − V and having
initial point γ(0)close enough to 0


.

Here “γ(0) close enough to 0” means that γ(0) ∈ Dn+1
τ where Dn+1

τ is a
polydisc where f induces a holomorphic function. We then called “avoidant
set” for f any proper algebraic subvariety V satisfying the property indi-
cated above.

Example 3.2. — Formulas (2.10), (2.11) and (2.13) define
algebro-resurgent germs in 3 variables, with avoidant sets {(1 − q)(1 −p) =
0 or ξ}, resp. {(1 − q)(1 − p) = 0 or ξ} ∪ {ξ = 0}, resp. {(1 − p − q)2 =
0 or 2 ξ or − 2 ξ}.

Recall that we have defined β : CJt, z1, . . . , zrK → CJξ, z1, . . . , zrK as the
formal Borel transform with respect to the first variable – cf. (2.8).
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Definition 3.3. — We define Q̃A
n+1 to be the preimage by β of Q̂A

n+1:

Q̃A
n+1 := β−1(Q̂A

n+1) ⊂ CJt, z1, . . . , znK.

This is the set of all “algebro-resurgent series in n+ 1 variables”.

Obviously, since Q̂A
n+1 ⊂ C{ξ, z1, . . . , zn} = Q̂n+1, we have Q̃A

n+1 ⊂
Q̃G
n+1: algebro-resurgent series are 1-Gevrey with respect to t. We may also

consider the disjoint union of the spaces of algebro-resurgent germs or series
in any number of variables:

Q̂A :=
⊔
n⩾0

Q̂A
n+1, Q̃A :=

⊔
n⩾0

Q̃A
n+1.

The 1-degree-of-freedom version of Theorem 1.2 is

Theorem 3.4. — If f̃(t, q, p), g̃(t, q, p) ∈ Q̃A
3 , then f̃ ⋆ g̃(t, q, p) ∈ Q̃A

3 .
Equivalently,

(3.3) f̂(t, q, p), ĝ(t, q, p) ∈ Q̂A
3 ⇒ f̂ ∗ ĝ(t, q, p) ∈ Q̂A

3 .

Sections 4–6 are devoted to the proof of Theorem 3.4. (Then Section 7
will show how to prove Theorem 1.2, and also Theorems 1.3 and 1.1.) Using
formula (2.17), the proof will be divided into the following three lemmas.

Lemma 3.5. — If f̂(ξ, q, p), ĝ(ξ, q, p) ∈ Q̂A
3 , then

(3.4) F (ξ1, ξ2, ξ3, q, p)

:= 1
2π

∫ 2π

0
f̂(ξ1, q, p+

√
ξ3e−iθ)ĝ(ξ2, q +

√
ξ3eiθ, p)dθ

is an algebro-resurgent germ in 5 variables.

The proof will be found in Section 6, which is treated as the “Hadamard
product part” of formula (2.17).

Lemma 3.6. — If F (z1, . . . , zn) ∈ Q̂A
n and P is a polynomial in n vari-

ables vanishing at (0, . . . , 0), then

(3.5) f(z, z2, . . . , zn) :=
∫ P (z,z2,...,zn)

0
F (z1, z2, . . . , zn)dz1

is an algebro-resurgent germ in n variables.

The proof will be found in Section 5, which is treated as the “convolution
product part” of formula (2.17).
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Lemma 3.7. — If F (z1, . . . , zn) ∈ Q̂A
n and P is a polynomial in n − 1

variables vanishing at (0, . . . , 0), then

(3.6) f(z2, . . . , zn) :=
∫ P (z2,...,zn)

0
F (z1, z2, . . . , zn) dz1

is an algebro-resurgent germ in n− 1 variables.

Lemma 3.7 follows almost directly from Lemma 3.6, as will be shown at
the end of Section 5.

4. Simple polynomials with respect to a variable

In this section, we shall work in Cn with variables z1, . . . , zn and give
the definition of z1-simple polynomial. The proposition 4.2 is very useful
in the following sections and we will prove it carefully. The reason we use
the definition “z1-simple polynomial” is that we want the set (4.2) to be
non-trivial.

Any non-zero polynomial P ∈ C[z1, . . . , zn] can be written in a unique
way as

P (z1, . . . , zn) =
M∑
i=0

bi(z2, . . . , zn) zi1 ∈ C[z1, . . . , zn] = C[z2, . . . , zn][z1],

with M ⩾ 0, b1, . . . , bM ∈ C[z2, . . . , zn] and bM ̸= 0. We denote by F
the fraction field of C[z2, . . . , zn] and F the algebraic closure of F. Thus,
P (z1, . . . , zn) can be written as

(4.1) bM (z2, . . . , zn)
M∏
α=1

(
z1 − ωα(z2, . . . , zn)

)
with ωα(z2, . . . , zn) ∈ F.

Definition 4.1. — A non-zero polynomial F (z1, . . . , zn) ∈ C[z1, . . . , zn]
is called a z1-simple polynomial if, for any α1, α2, 1 ⩽ α1 < α2 ⩽ M , we
have ωα1(z2, . . . , zn) ̸= ωα2(z2, . . . , zn) in the representation (4.1) of F .
In particular, if the degree M of F in z1 is zero, then F is a z1-simple
polynomial.

Proposition 4.2. — Any proper algebraic subvariety V of Cn can be
written as V =

⋂K
J=1 P

−1
J (0), where K is a positive integer and P1, . . . , PK

are z1-simple polynomials.
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Proof. — Hilbert’s basis theorem states that every algebraic variety can
be described as a common zero locus of finitely many polynomials. Thus
we assume

V =
K⋂
J=1

V J , V J := {(z1, . . . , zn) ∈ Cn | QJ(z1, . . . , zn) = 0},

where QJ , J = 1, . . . ,K, are non-zero polynomials over Cn. We want to
prove that, for each QJ , there exists a z1-simple polynomial P J s.t.

Q−1(0) = P−1(0).

From now on we use the abridged notations Q or P . Suppose Q(z1, . . . , zn) =∑M
i=0 bi(z2, . . . , zn)zi1 with b0, b1, . . . , bM polynomials of variables z2, . . . , zn

and bM non-zero, then it has the following factorization in F[z1]:

bM (z2, . . . , zn)
N∏
α=1

(
z1 − ωα(z2, . . . , zn)

)sα
,

where ωα ∈ F, ωα1(z2, . . . , zn) ̸= ωα2(z2, . . . , zn) for 1 ⩽ α1 < α2 ⩽ N ,
integer multiplicities sα ⩾ 1 and

∑N
α=1 sα = M . Let us suppose that for

some α, sα > 1 (if not, the proof is trivial). We shall use the following
notation:

R(z1, . . . , zn) := Q(z1, . . . , zn)
bM (z2, . . . , zn) =

N∏
α=1

(
z1 − ωα(z2, . . . , zn)

)sα
,

R̃(z1, . . . , zn) :=
N∏
α=1

(
z1 − ωα(z2, . . . , zn)

)
.

First, we shall prove R̃(z1, . . . , zn) ∈ F[z1]. In fact, R(z1, . . . , zn) is reducible
in F[z1] (irreducible polynomials are separable polynomials). If we consider
the minimal polynomial of each root ωi(y), with Abel’s irreducibility the-
orem, then we get:

R̃ = R1 · · ·Rm, R = (R1)σ1 · · · (Rm)σm

with R1, . . . , Rm ∈ F[z1] and σi’s are chosen from {s1, . . . , sN}. The idea
would be to construct inductively R1 as the minimal polynomial in F[z1]
of ω1 ∈ F, then σ1 = s1 and R1 is a product of some of the factors z1 −
ωi(z2, . . . , zn) including i = 1, and we go on with R2 minimal polynomial
of one of the ωJi ’s which has not been included in RJ1 , etc.

Up to now, we have R̃ ∈ F[z1] as announced, and we have a decomposition
of Q in F[z1]:

Q(z1, . . . , zn) = bM (z2, . . . , zn)R1(z1, . . . , zn)σ1 · · ·Rm(z1, . . . , zn)σm .
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Each factor Rj (j = 1, . . . ,m) can be written as

Rj(z1, . . . , zn) = 1
Lj(z2, . . . , zn) R̂j(z1, . . . , zn)

taking for Lj the l.c.m. of the denominators of the coefficients of Rj in F,
and R̂j(z1, . . . , zn) is a primitive polynomial in C[z2, . . . , zn][z1]. Gauss’s
lemma implies that the coefficients of R̂σ1

1 · · · R̂σm
m are relatively prime in

C[z2, . . . , zn]. Hence the coefficients of Q are also in C[z2, . . . , zn], which
implies that bM

(L1)σ1 ···(Lm)σm ∈ C[z2, . . . , zn]. We define

P = bM

Lσ1−1
1 · · ·Lσm−1

m

R1 · · ·Rm = bM
Lσ1

1 · · ·Lσm
m
R̂1 · · · R̂m

which is the desired z1-simple polynomial since R1 · · ·Rm have distinct root
in z1 by the construction. Finally, P−1(0) = Q−1(0) is obvious because
both P and Q have common factors bM

L
σ1
1 ···Lσm

m
, R̂1, · · · , R̂m which are all

polynomials in C[z2, . . . , zn][z1]. □

Lemma 4.3. — Let F (z1, . . . , zn) ∈ C[z1, . . . , zn] be a z1-simple polyno-
mial, and denote by M its highest power of z1. Then

• G(p, z, z2, . . . , zn) := F (p+z, z2, . . . , zn) ∈ C[p, z, z2, . . . , zn] is both
p-simple and z-simple;

• G(ξ, z, z2, . . . , zn) := zMF ( ξz , z2, . . . , zn) ∈ C[ξ, z, z2, . . . , zn] is both
ξ-simple and z-simple.

Proof. — The proof is standard and left to the reader. □

Lemma 4.4. — If F (z1, . . . , zn) is a z1-simple polynomial, which means
that

F (z1, . . . , zn) = bM (z2, . . . , zn)
M∏
α=1

(
z1 − ωα(z2, . . . , zn)

)
with bM ̸= 0 and ωα1 ̸= ωα2 for 1 ⩽ α1 < α2 ⩽M , then

(4.2)
{

(z2, . . . , zn)

∣∣∣∣∣ωα1(z2, . . . , zn) = ωα2(z2, . . . , zn)
for some 1 ⩽ α1 < α2 ⩽M

}
is an algebraic variety.

Proof. — The set (4.2) is actually {(z2, . . . , zn) | Syl(F, ∂z1F ) = 0},
where Syl(·, ·) means the Sylvester matrix, considering F and ∂z1F as poly-
nomials in z1 with coefficients in C[z2, . . . , zn]. The set (4.2) is thus an al-
gebraic variety, since every element in the Sylvester matrix is a polynomial
of z2, . . . , zn. See [13] for details. □
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5. Convolution Product

In this section, our goal is to prove Lemma 3.6. Let F (z1, . . . , zn) ∈ Q̂n
A,

which means it is holomorphic at origin and there exists an algebraic variety
VF ⊂ Cn such that F admits analytic continuation along any path which
starts near origin and avoids VF . From the definition of f(z, z2, . . . , zn) in
formula (3.5), it is obvious that f(z, z2, . . . , zn) ∈ C{z, z2, . . . , zn} since
F (z1, . . . , zn) ∈ C{z1, . . . , zn} and P is a polynomial which vanishes at
origin. The remaining part will be proved by constructing an algebraic
variety Vf which can be taken as an avoidant set for f .

By Proposition 4.2, we assume

VF =
K⋂
J=1

V JF , V JF := {(z1, . . . , zn) ∈ Cn | P JF (z1, . . . , zn) = 0},

where P JF , J = 1, . . . ,K, are z1-simple polynomials over Cn.
We shall construct algebraic varieties V Jf , J = 1, . . . ,K, s.t. if F admits

analytic continuation along any path which avoids the set (P JF )−1(0), then
f admits analytic continuation along any path which avoids the set V Jf .
Thus finally, the avoidant set of f is an algebraic variety

Vf :=
K⋂
J=1

V Jf .

Let us write

(5.1) P JF (z1, . . . , zn) = bM (z2, . . . , zn)
M∏
α=1

(
z1 − ωα(z2, . . . , zn)

)
with bM ̸= 0, ω1, . . . , ωM ∈ F and ωα1 ̸= ωα2 if 1 ⩽ α1 < α2 ⩽ M . One
may keep in mind that M , bM and the ωα’s actually depend on J .

Definition 5.1. — We define V Jf as follows:
Case 1. — If

(5.2) P JF (P (z, z2, . . . , zn), z2, . . . , zn) ̸= 0

for some (z, z2, . . . , zn), then

(5.3) V Jf :=Cn−

{
(z, z2, . . . , zn) ∈Cn

∣∣∣∣∣(P
J
F )(z2,...,zn)(z1) has M distinct

non-zero roots and (5.2) holds

}
,

where (P JF )(z2,...,zn)(z1) := P JF (z1, . . . , zn) is treated as a polynomial in z1
with coefficients in C[z2, . . . , zn].
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Case 2. — If

(5.4) P JF (P (z, z2, . . . , zn), z2, . . . , zn) = 0 for all z, z2, . . . , zn,

then

(5.5) V Jf := Cn −

{
(z, z2, . . . , zn) ∈ Cn

∣∣∣∣∣ (P
J
F )(z2,...,zn)(z1) has

M distinct non-zero roots

}
.

More precisely, the definition (5.3) is equivalent to

(5.6) V Jf

=

(z, z2, . . . , zn) ∈ Cn

∣∣∣∣∣∣∣∣∣∣

bM (z2, . . . , zn) = 0 or

P JF (0, z2, . . . , zn) = 0 or

(P JF )(z2,...,zn)(z1) has a multiple root or

P JF (P , z2, . . . , zn) = 0

 ,

and the definition (5.5) is equivalent to

(5.7) V Jf

=

(z, z2, . . . , zn) ∈ Cn

∣∣∣∣∣∣∣∣
bM (z2, . . . , zn) = 0 or

P JF (0, z2, . . . , zn) = 0 or

(P JF )(z2,...,zn)(z1) has a multiple root

 .

In both cases, one may observe that V Jf is an algebraic variety, by as-
sumption (5.1) and Lemma 4.4.

From the discussion above, to prove Lemma 3.6, we just need the follow-
ing

Lemma 5.2. — Suppose that F is holomorphic at the origin and admits
analytic continuation along any path which avoids the algebraic variety
V JF = {(z1, . . . , zn) ∈ Cn | P JF (z1, . . . , zn) = 0}. Then f(z, z2, . . . , zn) :=∫ P (z,z2,...,zn)

0 F (z1, . . . , zn) dz1 is holomorphic at the origin and admits an-
alytic continuation along any path γ which avoids V Jf defined above.

We now focus on Case 1. Case 2 will be discussed at the end of this
section. We begin with the definition of a γ-homotopy.

Definition 5.3. — For a path γ(t) := (γz(t), γz2(t), . . . , γzn
(t)) ∈ Cn,

a continuous map H : [0, 1] × [0, 1] → C, (t, s) 7→ Ht(s) := H(t, s) is called
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a γ-homotopy if, for any s, t ∈ [0, 1],

(5.8) Ht(0) = 0, H0(s) = s · P (γ(0)), Ht(1) = P (γ(t)),

P JF (Ht(s), γz2(t), . . . , γzn
(t)) ̸= 0.

To prove Lemma 5.2 in Case 1, it is sufficient to prove the following two
claims.

Claim 5.4. — Let γ : [0, 1] → Cn − V Jf be a path such that γ(0) is
near the origin. If there exists a γ-homotopy, then f can be analytically
continued along γ.

Claim 5.5. — For any path γ : [0, 1] → Cn − V Jf such that γ(0) is near
the origin, there exists a γ-homotopy.

Notation 5.6. — For each t ∈ [0, 1], we denote by γ|t the truncated path
defined as follows:

γ|t : τ ∈ [0, t] 7→ γ(τ) ∈ Cn.
We denote by contγ|t

f the holomorphic germ at γ(t) obtained from f by
analytic continuation along γ|t.

Proof of Claim 5.4. — One can check that, if there exists γ-homotopy,
then the analytic germ at γ(t) of f is

(5.9)
(
contγ|t

f
)
(z, z2, . . . , zn)

=
∫
Ht

(
cont(H|t(s),γz2 |t,...,γzn |t) F

)
(z1, . . . , zn) dz1

+
∫ P (z,z2,...,zn)

P (γ(t))

(
cont(H|t(1),γz2 |t,...,γzn |t) F

)
(z1, . . . , zn) dz1,

where H|t(s) is the truncated path of t 7→ Ht(s) for fixed s ∈ [0, 1].
Note that (contγ|t1

f)(z, z2, . . . , zn) = (contγ|t2
f)(z, z2, . . . , zn) for t1 and

t2 close enough to one another, by using Cauchy integral. See [17] for de-
tails. □

Proof of Claim 5.5. — To continue analytically f along a path γ

that starts near the origin and avoids V Jf , we need a γ-homotopy Ht(s)
that avoids some moving points, so that the germ of F at
(Ht(s), γz2(t), . . . , γzn(t)) should be well-defined (see formula (5.9)). From
the last condition of (5.8) and the form of P JF (see formula (5.1)), we know
these moving points are

(5.10) ωi(t) := ωi(γz2(t), . . . , γzn(t)) ∈ C, for i = 1, . . . ,M.
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In the set (5.6), the first and third conditions mean that there are always
M distinguished moving points ωi(t). The second and fourth conditions
mean that these ωi(t)’s will not touch the starting point of the homotopy
Ht(0) = 0 nor its ending point Ht(1) = P (γz(t), γz2(t), . . . , γzn

(t)).
Now we want to find the γ-homotopy Ht(s). The idea is to find a fam-

ily of maps (Ψt)t∈[0,1] : C × R → C × R such that, for any s, Ht(s) :=
ΠC(Ψt(H0(s))) yield the desired homotopy, where ΠC is the projection from
C×R to C. Let ω0(t) := P (γ(t)). If γ(t) avoids V Jf , thanks to our assump-
tion (5.2), we have

(5.11) ωi(t) ̸= ω0(t), ωi(t) ̸= 0, ωi(t) ̸= ωj(t)

for all t ∈ [0, 1] and 1 ⩽ i ̸= j ⩽M . See Figure 5.1.

Figure 5.1. Upper-left: f is holomorphic in Dnτ which contains γ(0).
Upper-right: F is integrated over a line segment H0(s) contained in
Dτ ′ . When f is continued analytically along γ|t in the lower-left pic-
ture, the corresponding homotopy Ht(s) (red curve in lower-right) al-
ways exists thanks to the conditions (5.11).
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To find the γ-homotopy, it suffices to find injective maps Ψt : C × R →
C × R satisfying the following conditions:

(1◦) : Ψ0 = id,
(2◦) : Ψt(0, 0) = (0, 0),

(3◦) : Ψt(ω0(0), 0) = (ω0(t),Lω0(t)), where Lω0(t) :=
∫ t

0
|ω′

0(s)| ds

(4◦) : Ψt(ωi(0), λ) = (ωi(t), λ+ Lωi(t)), for i = 1, . . . ,M.

(5.12)

Such maps Ψt can be generated by the flow of a non-autonomous vector
field X(ξ, λ, t) of C × R defined as follows:

X(ξ, λ, t) :=
N∑
i=0

Ni(ξ, λ, t)
Ni(ξ, λ, t) + ηi(ξ, λ, t)

(
ω′
i(t), |ω′

i(t)|
)
,

where, for i = 1, . . . , N ,

N0(ξ, λ, t) := dist((ξ, λ), (S(t),R) ∪ {(0, 0)}),

Ni(ξ, λ, t) := dist((ξ, λ), (Si(t),R) ∪ {(0, 0)} ∪ {(ω0(t),Lω0(t))}),

η0(ξ, λ, t) := dist((ξ, λ), (ω0(t),Lω0(t))),

ηi(ξ, λ, t) := |ξ − ωi(t)|,

with S(t) := {ω1(t), . . . , ωn(t)} and Si(t) := S(t) − {ωi(t)}.
One can check that Ni + ηi ̸= 0 for i = 1, . . . , N . The Cauchy–Lipschitz

theorem on the existence and uniqueness of solutions to differential equa-
tions applies to d

dt (ξ, λ) = X(ξ, λ, t): for every (ξ, λ) ∈ C×R and t0 ∈ [0, 1]
there is a unique solution t 7→ Ψt0,t(ξ, λ) such that Ψt0,t0 = id.

Let us set t0 = 0 and Ψt := Ψ0,t for t ∈ [0, 1]. It is easy to see that this
family of maps are injective and satisfy the conditions (5.12) of Ψ. This
concludes the proof of Lemma 5.2 in Case 1.

Here are two simple examples in Case 1.

Example 5.7. — f(z, z2) :=
∫ z

0
1

z2z1+1 dz1 = 1
z2

log(z2z+1). One can find
a path in C2 to prove that the singular set of f is {(z, z2) | z2(z2z+1) = 0}.
Actually, {z2 = 0} is the first condition in (5.6), {z2z+1 = 0} is the fourth
condition.

Example 5.8. — f(z, z2) :=
∫ z

0
1

(z1+1)(z1+z2+1) dz1 = 1
z2

(
log(z + 1) −

log(z + z2 + 1) + log(z2 + 1)
)
. The singular set of f is {(z, z2) | z2(z +

1)(z + z2 + 1)(z2 + 1) = 0}. Actually, {z2 = 0} is the third condition
in (5.6), {(z+ 1)(z+ z2 + 1) = 0} is the fourth condition, and {z2 + 1 = 0}
is the second condition.
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Remark 5.9. — Although the definition V Jf gives the possibly singular
set, which means that maybe a subset of V Jf is regular, from these two
simple examples, one can observe that all the conditions in (5.6) make
sense.

Now we discuss Lemma 5.2 in Case 2. The following example helps us to
understand how Case 2 happens.

Example 5.10. — Consider

f(z, z2) :=
∫ z2

0

1
z2 − z1

log
(
1 − (z2 − z1)

)
dz1.

We know that F (z1, z2) := 1
z2−z1

log
(
1 − (z2 − z1)

)
is holomorphic at (0, 0)

and has singular set Vf = {(z1, z2) | (z1 − z2)
(
z1 − (z2 − 1)

)
= 0}. We thus

have ω1(z2) = z2 = P (z2) and ω2(z2) = z2 − 1. The change of variable
u = z2 − z1 yields

(5.13) f(z, z2) =
∫ z2

0

1
u

log(1 − u) du = − Li2(z2).

It is obvious that the singular set of f is {z2 = 0 or 1} (compute the partial
derivative ∂f

∂z2
).

In Case 2, we will use the following

Definition 5.11. — For a path γ(t) := (γz(t), γz2(t), . . . , γzn(t)) ∈ Cn,
a continuous map H : [0, 1] × [0, 1] → C, (t, s) 7→ Ht(s) := H(t, s) is called
a γ′-homotopy if, for any s, t ∈ [0, 1],

(5.14) Ht(0) = 0, H0(s) = s · P (γ(0)), Ht(1) = P (γ(t)),

s ̸= 1 ⇒ P JF (Ht(s), γz2(t), . . . , γzn(t)) ̸= 0.

In order to prove Lemma 5.2, we will use the same procedure as in Case 1.
We shall use the same formula (5.9) to write down the analytic continuation
of f along γ(t). The only difference between γ′-homotopy and γ-homotopy
is the ending points (when s = 1) of the fourth condition in (5.8) and (5.14).
Thus we shall prove that the germs(

cont(H|t(1),γz2 |t,...,γzn |t) F
)

(z1, . . . , zn)

inside integral representation (5.9) are well-defined.
Let ωi(t) := ωi(γz2(t), . . . , γzn

(t)) ∈ C, for i = 1, . . . ,M and P (γ(t)) =
ω1(t).
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Actually, ω1(t) is not a singular point for γ′-homotopy because the vari-
able (z1 − P ) always lies in the principle sheet when we move along γ. It
will be clear after we change the variable:

f(z, z2, . . . , zn) = P (z, z2, . . . , zn)
∫ 0

−1
G(ζ, z2, . . . , zn) dζ

with G(ζ, z2, . . . , zn) := F
(
P (z, z2, . . . , zn)(1 + ζ), z2, . . . , zn

)
. We can find

sufficient small R > 0 s.t.

G(ζ, z2, . . . , zn) = 1
2πi

∮
∂DR

G(ξ, z2, . . . , zn)
ξ − ζ

dξ.

Indeed, the set (5.5) which γ(t) should avoid implies that the moving sin-
gular points of G

ηi(t) := ωi(t)
ω1(t) − 1, for i = 2, . . . ,M

never touch 0. This allows us to choose sufficient small R s.t. ηi(t) al-
ways lie outside DR. One can prove that such G is always holomorphic at
(0, γz2(t), . . . , γzn

(t)). This concludes the proof of Lemma 5.2 in Case 2. □

Proof of Lemma 3.7. — Given P (z2, . . . , zn) ∈ C[z2, . . . , zn], we may
apply lemma 3.6 treating P as an element of C[z1, . . . , zn]: f(z2, . . . , zn) =
g(z, z2, . . . , zn) with g ∈ Q̂A

n . We observe that formulas (5.6) and (5.7) yield
Vg = C × Vf , hence f ∈ Q̂A

n−1. □

6. Hadamard Product

6.1. Introduction to Hadamard product on C

In this section, we study the analytic continuation of the Hadamard
product.

Definition 6.1. — Let f(ξ) =
∑∞
n=0 anξ

n and g(ξ) =
∑∞
m=0 bmξ

m be
two formal series in CJξK. Their Hadamard product is defined to be the
formal series

(6.1) f ⊙ g(ξ) =
∞∑
n=0

anbnξ
n.

If f, g ∈ C{ξ}, then, denoting by Rf and Rg their positive radii of con-
vergence, we have f ⊙ g ∈ C{ξ} with radius of convergence Rf⊙g ⩾ RfRg.
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Indeed, for any positive c < Rf , we have the integral representation (using
notation (3.1))

(6.2) ξ ∈ DcRg ⇒ f ⊙ g(ξ) =
∮
C

f(z)g
(
ξ

z

)
dz

2πiz =
∮
C

f

(
ξ

z

)
g(z) dz

2πiz ,

where C is the parametrized circle s ∈ [0, 2π] 7→ c eis.

Note that if |ξ| < min{R2
f , R

2
g} then one can use C = parametrized circle

θ ∈ [0, 2π] 7→
√
ξ eiθ, where

√
ξ is any square root of ξ, which yields

(6.3)
f ⊙ g(ξ) =

∫ 2π

0
f
(√

ξeiθ
)
g
(√

ξe−iθ
) dθ

2π

=
∫ 2π

0
f
(√

ξe−iθ
)
g
(√

ξeiθ
) dθ

2π .

The following theorem is related to the classical “Hadamard multiplica-
tion theorem”, and is in fact a weaker version of a theorem proved in [16].

Theorem 6.2. — If f, g ∈ Q̂A
1 , which means, f, g ∈ C{ξ} and they

admit analytic continuation along any path which avoids finite sets Sf and
Sg respectively, then f ⊙ g ∈ Q̂A

1 and it admits analytic continuation along
any path which starts near origin and avoids {0} ∪ Sf · Sg.

Example 6.3. — If f(ξ) = log(1 − ξ), then one can compute
d
dξ (f ⊙ f)(ξ) = −1

ξ
log(1 − ξ),

which means the singular points of f ⊙ f are 0 and 1. In fact f ⊙ f = Li2
as in (2.12).

Although a more general statement is proved in [16], for the sake of
completeness, let us mention here how Theorem 6.2 can be proved. Let us
introduce the following

Definition 6.4. — A γC-homotopy for the one-dimensional case is a
continuous map H : (t, s) ∈ [0, 1] × [0, 2π] 7→ Ht(s) ∈ C such that:

H0(s) = c eis, Ht(s) ̸= 0, Ht(s) ∩ Sf = ∅, γ(t)
Ht(s)

∩ Sg = ∅.

Claim 6.5. — If there exists a γC-homotopy, then we can do analytic
continuation in the following way:

(6.4) (contγ|t
f ⊙ g)(ξ) = 1

2πi

∮
Ht

(contH|t(s) f)(z)(cont γ|t
H|t(s)

g)
(
ξ

z

)
dz
z
.

Proof. — Similar to the proof of claim 5.4. □
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Claim 6.6. — If γ starts near origin and avoids {0}∪Sf ·Sg, then there
exists a γC-homotopy.

Proof. — Suppose Sf = {f1, . . . , fs}, Sg = {g1, . . . , gr}. Without loss of
generality, we assume gi ̸= 0 for all i = 1, . . . , r. Indeed, if g1 = 0, it has no
influence on the γC-homotopy because γ(t) never touches 0. Let

ωi(t) = γ(t)
gi

, i = 1, . . . , r,

be the moving singular points of the homotopy to be found. By the as-
sumption, γ(t) ̸= 0 implies that ωi(t) ̸= ωj(t) for i ̸= j and ωi(t) ̸= 0,
γ(t) /∈ Sf · Sg implies that ωj(t) ̸= fi.

To find the homotopy, it is sufficient to find a flow Ψt : C → C that
satisfies:

Ψ0 = id,
Ψt(0) = 0,

Ψt(fi) = fi for i = 1, . . . , s,
Ψt(ωj(0)) = ωj(t) for j = 1, . . . , r.

(See Figure 6.1.)
To that end, we use the non-autonomous vector field

X(ξ, t) :=
r∑
i=1

ηi(ξ, t)
ηi(ξ, t) + τi(ξ, t)

ω′
i(t),

with

ηi(ξ, t) := dist

ξ, {0} ∪ Sf ∪
⋃
i ̸=j

ωj(t)

 , τi(ξ, t) := dist(ξ, ωi(t)).

The Cauchy–Lipschitz theorem on the existence and uniqueness of solutions
to differential equations applies to dξ

dt = X(ξ, t): for every ξ ∈ C and
t0 ∈ [0, 1] there is a unique solution t → Φt0,t(ξ) such that Φt0,t0(ξ) = ξ.
Then we define our flow as Ψt := Φ0,t for t ∈ [0, 1] and the sought γC-
homotopy as Ht(s) := Ψt(H0(s)). □

6.2. Proof of lemma 3.5

Suppose f̂(ξ, q, p), ĝ(ξ, q, p) ∈ Q̂A
3 . We thus may assume that f̂ and ĝ are

holomorphic on D3
τ for some τ > 0 and that there are avoidant algebraic
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Figure 6.1. Upper-left: f ⊙ g is holomorphic in DRf ·Rg
which con-

tains γ(0). Upper-right: Using C to be the integral curve when t = 0,
we notice that the singular points of f are outside DRf ·Rg

and the
“moving singular points” of the homotopy are inside DRf ·Rg . When
f ⊙ g is continued analytically along γ|t in the lower-left picture, the
corresponding homotopy Ht(s)(red curve in lower-right) always exists
thanks to the conditions on the ω(t)’s.

sets of the form

Vf :=
R⋂
J=1

V Jf , V Jf := {(ξ, q, p) ∈ C3 | P Jf (ξ, q, p) = 0}, for J = 1, . . . , R,

Vg :=
S⋂

K=1
V Kg , V Kg := {(ξ, q, p) ∈ C3 | QKg (ξ, q, p) = 0}, for K = 1, . . . , S,

where the P Jf ’s are p-simple polynomials and the QKg ’s are q-simple poly-
nomials.

For each J = 1, . . . , R,K = 1, . . . , S, we shall construct algebraic variety
V JKF , s.t. if f avoids the set {x ∈ Cn | x ∈ (P Jf )−1(0)}, and g avoids the
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set {x ∈ Cn | x ∈ (QKg )−1(0)}, then F admits analytic continuation along
any γ which avoids the set V JKF . Thus finally, the avoidant set of F is an
algebraic variety

VF =
⋂
J,K

V JKF .

To simplify the notation, let

P Jf (ξ, q, p) = aM (ξ, q)
M∏
α=1

(
p− ω̃α(ξ, q)

)
,

QKg (ξ, q, p) = bN (ξ, p)
N∏
β=1

(
q − Ω̃β(ξ, p)

)
,

(6.5)

with aM , bN ̸= 0, ω̃α1 ̸= ω̃α2 if 1 ⩽ α1 < α2 ⩽ M , Ω̃β1 ̸= Ω̃β2 if 1 ⩽ β1 <

β2 ⩽ N , just like what we have done in Section 5. We should keep in mind
that aM , M , and the ω̃α’s depend on J , and bN , N , and the Ω̃β ’s depend
on K.

By the formula (3.4), one can easily prove that F is holomorphic inside
D(τ)×D(τ)×D( τ

2

4 )×D( τ2 )×D( τ2 ). We shall choose a point (ξ1, ξ2, ξ3, q, p)
in this polydisc, then there exists c > 0, s.t.

|ξ3|
τ
2

< c <
τ

2 .

The formula (3.4) is equivalent to

(6.6) F (ξ1, ξ2, ξ3, q, p) = 1
2πi

∮
C

f(ξ1, q, p+ z)g
(
ξ2, q + ξ3

z
, p

)
dz
z

where C is the circle of radius c with center at origin.
Let us consider the polynomials

P Jf (ξ1, q, p+ z) := aM (ξ1, q)
M∏
α=1

(z − ωα(ξ1, q, p)) ∈ C[ξ1, q, p, z],

QKg (ξ2, q + z, p) := bN (ξ2, p)
N∏
β=1

(z − Ωβ(ξ2, q, p)) ∈ C[ξ2, q, p, z].
(6.7)

From the lemma 4.3, we know that these two polynomials are both z-simple
polynomials, which means that we have

(6.8)
aM ̸= 0, ωα1 ̸= ωα2 if 1 ⩽ α1 < α2 ⩽M,

bN ̸= 0, Ωβ1 ̸= Ωβ2 if 1 ⩽ β1 < β2 ⩽ N.

We shall define the avoidant set of F in C5 by using the notations above.
One may notice that it is a “symmetry” condition:
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Definition 6.7. — Let

V JKF

:= C5−

(ξ1, ξ2, ξ3, q, p) ∈C5

∣∣∣∣∣∣∣
Pξ1,q,p(z) has M distinct non-zero roots,
Qξ2,q,p(z) has N distinct non-zero roots,
ξ3 /∈ {ωαΩβ} ∪ {0}

,
where Pξ1,q,p(z) := P Jf (ξ1, q, p + z) is treated as a polynomial in z with
coefficients in C[ξ1, q, p] and Qξ2,q,p(z) := QKg (ξ2, q + z, p) is treated as a
polynomial in z with the coefficients in C[ξ2, q, p].

Remark 6.8. — In fact, V JKF can be simplified to one sentence:

(6.9) V JKF

=C5 −

(ξ1, ξ2, ξ3, q, p) ∈C5

∣∣∣∣∣∣∣
zNPξ1,q,p(z)Qξ2,q,p

(
ξ3

z

)
has M +N distinct non-zero roots

.
By Lemma 4.4, we know that V JKF is an algebraic variety.

From the discussion above, to prove Lemma 3.5 it is sufficient to prove
the following claim:

Claim 6.9. — If f and g admit analytic continuation along any path
that avoids V Jf and V Kg respectively, then F defined by formula (6.6) admits
analytic continuation along any path γ that avoids V JKF defined above.

By using the following eight conditions, we describe V JKF more precisely:

(6.10) V JKF

=



(ξ1, ξ2, ξ3, q,p) ∈C5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aM (ξ1, q) = 0 or bN (ξ2, p) = 0 or
ωα1(ξ1, q, p) =ωα2(ξ1, q, p) for some α1 ̸=α2 or
Ωβ1(ξ2, q, p) = Ωβ2(ξ2, q, p) for some β1 ̸=β2 or

ωα(ξ1, q, p) = ξ3

Ωβ(ξ2, q, p)
for some α, β or

ωα(ξ1, q, p) = 0 for some α or
Ωβ(ξ2, q, p) = 0 for some β or
ξ3 = 0


where α, α1, α2 ∈ {1, . . . ,M} and β, β1, β2 ∈ {1, . . . , N}.
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Assume that γ : t ∈ [0, 1] 7→ γ(t) =
(
γξ1(t), γξ2(t), γξ3(t), γq(t), γp(t)

)
∈

C5 has its starting point γ(0) close to 0. To perform analytic continuation,
we shall adapt Definition 6.4 to this situation:

Definition 6.10. — A γC-homotopy is a continuous map H : (t, s) ∈
[0, 1] × [0, 2π] → Ht(s) ∈ C s.t. for any t, s, α, β:

H0(s) = c eis, Ht(s) ̸= 0,

Ht(s) ̸= ωα
(
γξ1(t), γq(t), γp(t)

)
, Ht(s) ̸= γξ3(t)

Ωβ
(
γξ2(t), γq(t), γp(t)

) .
We shall prove that, if there exists such a γC-homotopy, then

(contγ|t
F )(ξ1, ξ2, ξ3, q, p)

= 1
2πi

∮
Ht

(
cont(γξ|t,γq|t,γp|t+H|t(s)) f̂

)
(ξ1, q, p+ z)

·
(

cont
(γξ2 |t,γq|t+

γξ3 |t

H|t(s) ,γp|t)
ĝ

)(
ξ2, q + ξ3

z
, p

)
dz
z
,

which means that F admits analytic continuation along γ (see the proof of
Claim 5.4 for details).

Let us now assume that γ avoids V JKF . To find the desired homotopy, it
is sufficient to find a flow Ψt : C → C that satisfies

Ψ0 = id,
Ψt(0) = 0,

Ψt(ωi(0)) = ωi(t) for i = 1, . . . , N +M,

where ωN+j(t) := γξ3 (t)
Ωj(t) , j = 1, . . . ,M . Here we use ωα(t) and Ωβ(t) to

simplify the notation ωα(γξ1(t), γq(t), γp(t)) and Ωβ(γξ2(t), γq(t), γp(t)) re-
spectively.

The conditions in (6.10) ensure that, if γ avoids V JKF , then ωi(t) ̸= ωj(t)
and ωi(t) ̸= 0 for 1 ⩽ i ̸= j ⩽M+N . Thus we can use the non-autonomous
vector field:

X(ξ, t) :=
r∑
i=1

ηi(ξ, t)
ηi(ξ, t) + τi(ξ, t)

ω′
i(t)

where ηi(ξ, t) := dist(ξ, {0} ∪
⋃
j ̸=i ωj(t)) and τi(ξ, t) := dist(ξ, ωi(t)). The

Cauchy–Lipschitz theorem on the existence and uniqueness of solutions to
differential equations applies to dξ

dt = X(ξ, t): for every ξ ∈ C and t0 ∈ [0, 1]
there is a unique solution t → Φt0,t(ξ) such that Φt0,t0(ξ) = ξ. Then we
define our flow as Ψt = Φ0,t for t ∈ [0, 1] and the desired γC-homotopy as
Ht(s) := Ψt(c eis). This concludes the proof of Claim 6.9.
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Example 6.11. — The functions f(ξ, q, p) := log(3 − ξ − q − p) and
g(ξ, q, p) := 1

3−ξ−q−p · 1
4−ξ−2q−p are holomorphic in D(1) × D(1) × D(1).

From the discussion above, we know that the corresponding F is holomor-
phic in D(1)×D(1)×D( 1

4 )×D( 1
2 )×D( 1

2 ). We choose γξ3(0) = 1
8 , then there

exists c > 0 (we may choose c = 3
8 ) s.t.

1
8
1
2
< c < 1

2 . From formula (6.6), we
compute

F (ξ1, ξ2, ξ3, q, p) =
∮
C

log(ω − z) · 1
A− ξ3

z

· 1
B − 2ξ3

z

· dz
2πiz

= 1
2πiAB

∮
C

log(ω − z) · z dz
(z − ξ3

A )(z − 2ξ3
B )

with ω := 3 − ξ1 − q − p, A := 3 − ξ2 − q − p and B := 4 − ξ2 − 2q − p, and
a residue computation yields

F (ξ1, ξ2, ξ3, q, p) = 1
B − 2A ·

[
log
(
ω − ξ3

A

)
· 1
A

− log
(
ω − 2ξ3

B

)
· 2
B

]
,

with B − 2A = ξ2 + p− 2. Thus, we directly see that F is an algebro-
resurgent germ, with avoidant set

V := {ξ2 + p− 2 = 0} ∪ {A = 0} ∪ {B = 0} ∪ {ξ3 = ωA} ∪ {ξ3 = ωB/2}.

Here we have Pf (ξ1, q, p) = 3 − ξ1 − q − p = ω, thus ω1(ξ1, q, p) = ω,
and Pg(ξ2, q, p) = AB, thus Ω1 = A, Ω2 = B/2, so formula (6.10) leads to
V 11
F ∪V 12

F = V ∪{ω1 = 0}∪{ξ3 = 0}. Notice that {Ω1 = Ω2} = {ξ2+p−2 =
0} is not singular for the principal branch of F , but it is for some branches
of its analytic continuation.

Remark 6.12. — The above computation gives an example where the
fourth, fifth and seventh conditions in Definition (6.10) are necessary. Ex-
amples can be found for the other conditions too.

7. Conclusion of the proof for an arbitrary number of
degrees of freedom

We now assume N ⩾ 1, q = (q1, . . . , qN ) and p = (p1, . . . , pN ), and want
to prove Theorem 1.2, i.e. that

f̂ , ĝ ∈ Q̂A
2N+1 ⇒ f̂ ∗ ĝ ∈ Q̂A

2N+1.
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Recall the integral formula (2.30):

(7.1) f̂ ∗ ĝ(ξ, q, p) = dN+2

dξN+2

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2 · · ·

×
∫ ξ−ξ1−···−ξN+1

0
dξN+2

∫ 2π

0

dθ1

2π · · ·
∫ 2π

0

dθN
2π

× f̂
(
ξN+1, q1, . . . , qN , p1 +

√
ξ1e−iθ1 , . . . , pN +

√
ξNe−iθN

)
× ĝ

(
ξN+2, q1 +

√
ξ1eiθ1 , . . . , qN +

√
ξNeiθN , p1, · · · , pN

)
(we have chosen Cj = parametrized circle θj ∈ [0, 2π] 7→

√
ξj eiθj , where√

ξj is any square root of ξj). We will make use of the following

Definition 7.1. — Suppose 1 ⩽ i < j ⩽ n. We define the Hadamard–
Taylor operator on coordinates (i, j) as the linear operator ⊙n

i,j :

F (z1, . . . , zn) ∈ C{z1, . . . , zn} 7→ ⊙n
i,jF (ξ, z1, . . . , zn) ∈ C{ξ, z1, . . . , zn},

with

⊙n
i,j F (ξ, z1, . . . , zn) :=

∫ 2π

0

dθ
2π

×F
(
z1, . . . , zi−1, zi +

√
ξe−iθ, zi+1, . . . , zj−1, zj +

√
ξeiθ, zj+1, . . . , zn

)
.

Notice that the number of variables is not the same in the source and
target spaces: a new variable is inserted in first position. In particular,
starting with the following function of 4N + 2 variables,

(7.2) F (ξN+1, z1, . . . , z2N , ξN+2, z2N+1, . . . , z4N )

:= f̂(ξN+1, z1, . . . , z2N ) ĝ(ξN+2, z2N+1, . . . , z4N ),

we find that G1 := ⊙4N+2
2N+1,3N+2F is a function of 4N + 3 variables such

that, when evaluating G1 on (ξN , ξN+1, z1, . . . , z2N , ξN+2, z2N+1, . . . , z4N )
with

(7.3) (z1, . . . , z4N ) := (q, p, q, p),

we get the integrand of (7.1) with just the θN -integration performed.
Similarly, G2 := ⊙4N+3

2N+1,3N+2G1 is a function of 4N + 4 variables; if we
evaluate it on (ξN−1, ξN , ξN+1, z1, . . . , z2N , ξN+2, z2N+1, . . . , z4N ) with the
zj ’s as in (7.3), then we get the integrand of (7.1) with the θN -integration
and the θN−1-integration performed. Note that, although we use (i, j) =
(2N+1, 3N+2) in both Hadamard–Taylor operators, the effect of the first
one is on a pair (qN , pN ), while the effect of the second one is on a pair
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(qN−1, pN−1) because the insertion of a new variable in first position shifts
the old ones by one unit.

In fact, we can rewrite the formula (7.1) as

(7.4) f̂ ∗ ĝ(ξ, q, p) = dN+2

dξN+2

∫ ξ

0
dξ1

∫ ξ−ξ1

0
dξ2 · · ·

×
∫ ξ−ξ1−···−ξN+1

0
dξN+2 G(ξ1, . . . , ξN+2, q, p),

where G(ξ1, . . . , ξN+2, q, p) is the evaluation at

(ξ1, . . . , ξN , ξN+1, z1, . . . , z2N , ξN+2, z2N+1, . . . , z4N ) with z as in (7.3)

of the function
GN := ⊙n+N−1

i,j · · · ⊙n+1
i,j ⊙n

i,jF

with n := 4N + 2 and (i, j) = (2N + 1, 3N + 2).
In view of Lemmas 3.6 and 3.7, to prove that f̂ ∗ ĝ ∈ QA

2N+1, it is thus
sufficient to prove the following lemma:

Lemma 7.2. — If F (z1, . . . , zn) ∈ QA
n , then ⊙n

i,jF (ξ, z1, . . . , zn) ∈ QA
n+1.

Proof. — We assume {(z1, . . . , zn) | PF (z1, . . . , zn) = 0} is the avoidant
set of F . Consider

Q(z, ξ, z1, . . . , zn) := zNPF

(
z1, . . . , zi + z, . . . , zj + ξ

z
, . . . , zn

)
,

where N is the smallest number such that Q is a polynomial. Treating
Qξ,z1,...,zn

(z) := Q(z, ξ, z1, . . . , zn) as a polynomial in one variable z, of
order M , with coefficients in C[ξ, z1, . . . , zn], one can prove that ⊙n

i,jF

admits analytic continuation along any path contained in{
(ξ, z1, . . . , zn) ∈ Cn+1 ∣∣Qξ,z1,...,zn

(z) has M distinct non-zero roots
}
.

The details are left to the reader. □

At this stage, Theorem 1.2 is proved. In view of formula (2.32), exactly
the same kind of argument, when applied to (2.32), yields Theorem 1.3, i.e.

(7.5) f̂ ∈ Q̂A
2N+1 ⇒ T̂±1f̂ ∈ Q̂A

2N+1.

Theorem 1.1 then directly follows from Theorems 1.2 and 1.3.

Remark 7.3. — Theorem 1.1 can also be proved more directly by rewrit-
ing (2.31) in the same way we have rewritten (2.30) as (7.4), and using
Lemmas 7.2, 3.6 and 3.7.
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