

ANNALES DE L'INSTITUT FOURIER

Félix Cabello SÁnchez \& Alberto Salguero-Alarcón When Kalton and Peck met Fourier

Tome 73, $\mathrm{n}^{\circ} 5$ (2023), p. 1843-1883.
https://doi.org/10.5802/aif. 3562

Article mis à disposition par ses auteurs selon les termes de la licence Creative Commons attribution - pas de modification 3.o France (c) Br-ND http://creativecommons.org/licenses/by-nd/3.0/fr/

MERSENNE

WHEN KALTON AND PECK MET FOURIER
 by Félix CABELLO SÁNCHEZ \& Alberto SALGUERO-ALARCÓN (*)

Abstract

The paper studies short exact sequences of Banach modules over the convolution algebra $L_{1}=L_{1}(G)$, where G is a compact abelian group. The main tool is the notion of a nonlinear centralizer, which in combination with the Fourier transform, is used to produce sequences of L_{1}-modules $0 \rightarrow L_{q} \rightarrow Z \rightarrow$ $L_{p} \rightarrow 0$ that are nontrivial as long as the general theory allows it, namely for $p \in(1, \infty], q \in[1, \infty)$. Concrete examples are worked in detail for the circle group, with applications to the Hardy classes, and the Cantor group.

Résumé. - L'article étudie des suites exactes courtes de modules de Banach sur l'algèbre de convolution $L_{1}=L_{1}(G)$, où G est un groupe abélien compact. L'outil principal est la notion de centralisateur non linéaire, qui, en combinaison avec la transformée de Fourier, est utilisée pour produire des suites exactes de L_{1}-modules de la forme $0 \rightarrow L_{q} \rightarrow Z \rightarrow L_{p} \rightarrow 0$ qui sont non triviales tant que la théorie générale le permet, à savoir pour $p \in(1, \infty], q \in[1, \infty)$. Des exemples concrets sont détaillés pour le groupe du cercle, avec des applications aux classes de Hardy, et le groupe de Cantor.

1. Introduction

Most honest Banach spaces carry one or several module structures over a selected group of algebras that reflect the existence of a good supply of natural symmetries. This applies especially to the Banach spaces of analysis.

Focusing on commutative algebras, "pointwise" L_{∞}-module structures are often related to "unconditionality", while module structures over convolution algebras L_{1} appear in connection with translation-invariant properties. The Fourier transform provides a useful mechanism entwinning these

[^0]properties in function spaces on locally compact abelian groups and their dual groups.

While the homomorphisms of L_{∞}-modules and L_{1}-modules between function spaces have attracted, under the name of multipliers, a considerable attention in the past (see for instance [26] and [16, Section 2.5]), not much is known on the corresponding extensions.

Let A be a Banach algebra. An extension of X by Y in the category of Banach modules over A is a short exact sequence of Banach A-modules and homomorphisms $0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0$. These are our main object of study. The first difficulty one faces when dealing with such extensions is the lack of examples, which is due to the fact that, even for the simplest choices of X and Y, the possible middle objects Z are not "pre-existing" A-modules.

Kalton introduced in [21] the notion of a nonlinear centralizer for $L_{\infty^{-}}$ modules and effectively used it to construct a wide variety of exact sequences of L_{∞}-modules $0 \rightarrow L_{p} \rightarrow Z \rightarrow L_{p} \rightarrow 0$. Roughly speaking, a centralizer between two Banach A-modules is a mapping that "almost intertwines" their module structures, that is, the sums and the actions of A; see Section 2.4 for the definition. In [2], it is shown that every extension of L_{∞}-modules $0 \rightarrow L_{q} \rightarrow Z \rightarrow L_{p} \rightarrow 0$ is trivial if $p \neq q$ (so that Z is naturally isomorphic to $L_{q} \oplus L_{p}$) and that the space of "self-extensions" of L_{p} is basically independent of $p<\infty$.

Replacing L_{∞} by the convolution algebra L_{1} leads to terra incognita. This paper makes the first steps in the study of extensions of L_{1}-modules. We provide explicit examples of extensions of Banach L_{1}-modules $0 \rightarrow$ $L_{q} \rightarrow Z \rightarrow L_{p} \rightarrow 0$ that are nontrivial as long as the general theory allows it, namely for $p \in(1, \infty], q \in[1, \infty)$. These are constructed and studied by means of L_{1}-centralizers $\mho: L_{p} \rightarrow L_{q}$ which in turn are obtained from the classical Kalton-Peck maps Ω for sequence spaces by means of the Fourier tranform. In this way the (good) behavior of Ω with respect to the pointwise product ensures that \mho almost commutes with the product of convolution and makes it an L_{1}-centralizer. Concrete examples and applications are worked in detail for the circle group and the Cantor group.

Most of the paper deals with the case $p=\infty, q=1$ which is, by far, the most difficult and interesting one. Indeed, a second motivation for our work has been the understanding of certain twisted sums of Banach spaces of the form $0 \rightarrow L_{1}(\mu) \rightarrow Z \rightarrow C(K) \rightarrow 0$. All that are known depend one way or another on the existence of "twisted Hilbert spaces", and ours are not exceptions. This is quite enigmatic since it is conceivable that the
\mathscr{L}_{1}-spaces are the least injective Banach spaces there are, and that those of type \mathscr{L}_{∞} are the least projective ones. In the end this could be just the tip of the iceberg of a quasilinear version of Grothendieck factorization theorem, as explained in Section 6.1.

2. Preliminaries

2.1. Algebraic setup

Let A be a complex Banach algebra. A quasinormed module over A is a quasinormed space X with a continuous multiplication $A \times X \rightarrow X$ which defines a structure of A-module in the algebraic sense. If the space X is complete, then it is called a quasi Banach module. A homomorphism between quasinormed A-modules is an operator $T: X \rightarrow Y$ such that $T(a x)=a T(x)$ for every $a \in A$ and every $x \in X$. Operators and homomorphisms are always assumed to be continuous (i.e., bounded), otherwise we speak of linear maps and morphisms.
An extension of X by Y is a short exact sequence of quasi Banach modules and homomorphisms

$$
\begin{equation*}
0 \longrightarrow Y \xrightarrow{\imath} Z \xrightarrow{\pi} X \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

The open mapping theorem guarantees that \imath embeds Y as a closed submodule of Z in such a way that π induces an isomorphism between $Z / \imath[Y]$ and X. We say that $0 \rightarrow Y \rightarrow Z^{\prime} \rightarrow X \rightarrow 0$ is equivalent to (2.1) if there is a homomorphism u making commutative the diagram

The five-lemma and the open mapping theorem guarantee that such a u is an isomorphism, thus revealing that it is a true relation of equivalence. We say that (2.1) splits if there is a homomorphism $P: Z \rightarrow Y$ such that $P \imath=\mathbf{I}_{Y}$; equivalently, if there is a homomorphism $S: X \rightarrow Z$ such that $\pi S=\mathbf{I}_{X}$. This happens if and only if (2.1) is trivial, that is, equivalent to the direct sum extension $0 \rightarrow Y \rightarrow Y \oplus X \rightarrow X \rightarrow 0$ with the obvious homomorphisms.

We denote by $\operatorname{Ext}_{A}(X, Y)$ the set of equivalence classes of extensions of X by Y. By using pullbacks and pushouts this set can be given a linear structure whose zero element is the class of trivial sequences. Thus, $\operatorname{Ext}_{A}(X, Y)=0$ means that each extension of A-modules (2.1) is trivial. Taking $A=\mathbb{C}$ one recovers extensions of quasi Banach spaces. This leads to a delicate point: every extension of modules is also an extension of quasi Banach spaces which could split in the linear category but not necessarily as an extension of modules, because the splitting operators need not be homomorphisms. This is connected with the (Johnson) amenability of A, a major theme in the homology of Banach algebras. Indeed, A is amenable if and only if each extension of (quasi) Banach A-modules (2.1) in which Y is a dual module which splits as an extension of (quasi) Banach spaces also splits as an extension of A-modules; see for instance Runde [34, Theorem 2.3.21].

The (left) A-module structure of the dual of a (right) A-module V is defined by $\left\langle a v^{*}, v\right\rangle=\left\langle v^{*}, v a\right\rangle$ for $a \in A, v^{*} \in V^{*}, v \in V$. An important result of Johnson [34, Theorem 2.1.10] states that a locally compact group G is amenable (in the sense that $L_{\infty}(G)$ has an invariant mean) if and only if the convolution algebra $L_{1}(G)$ is amenable. Since both compact and abelian groups are amenable (the Haar measure is an invariant mean) the convolution algebra $L_{1}(G)$ is overwhelmingly amenable when G is a compact abelian group.

And speaking about delicate points let us explain why we risk losing some of our potential readers by considering quasinorms instead of the more popular norms. Our constructions are invariably Banach spaces and modules whose topology is described by a quasinorm which, in the end, is equivalent to a norm. However, this is not automatic: there exist exact sequences of quasi Banach spaces (2.1) in which X and Y are Banach spaces but Z is not. That cannot happen if X is either $L_{p}(\mu)$ for $1<p \leqslant \infty$ or a $C(K)$ space because the \mathscr{L}_{p}-spaces are \mathscr{K}-spaces for those values of p, see Section 2.4. To be true, only the fact that Hilbert spaces are \mathscr{K}-spaces is necessary here because our constructions are pullbacks/pushouts of selfextensions of Hilbert spaces. So there is no cause for concern here.

2.2. Pushout and pullback

Given an extension (2.1) and homomorphisms $v: Y \rightarrow Y^{\prime}$ and $u: X^{\prime} \rightarrow$ X there are new extensions forming commutative diagrams

and

In the first diagram, the pushout space (actually A-module) PO is the quotient of the direct sum $Y^{\prime} \oplus Z$ by the (closed) submodule $\{(v(y),-\imath(y)): y \in$ $Y\}$, the maps I, V are the corresponding inclusions followed by the quotient map, and Π arises from the factorization of the "obvious" homomorphism $\left(y^{\prime}, z\right) \mapsto \pi(z)$. The pushout sequence splits if and only if v extends to Z (there is a homomorphism $\widetilde{v}: Z \rightarrow Y^{\prime}$ such that $v=\widetilde{v} \imath$).

In the second diagram, the pullback space is $\mathrm{PB}=\left\{\left(z, x^{\prime}\right) \in Z \times X^{\prime}\right.$: $\left.\pi(z)=u\left(x^{\prime}\right)\right\}$ and the homomorphisms U, Π are the restrictions of the projections of $Z \times X^{\prime}$ onto Z and X^{\prime} respectively. The pullback sequence splits if and only if u admits a lifting to Z (there is a homomorphism $\widetilde{u}: X^{\prime} \rightarrow Z$ such that $\left.u=\pi \widetilde{u}\right)$.

The explicit usage of these constructions is marginal in this paper, although they are implicit in most arguments. In any case we remark that it is the existence of pullbacks and pushouts what makes the assignment $(X, Y) \rightsquigarrow \operatorname{Ext}_{A}(X, Y)$ into a functor.

2.3. Harmonic setup

Throughout the paper G denotes a compact abelian group with dual group Γ. The integral of a function $f: G \rightarrow \mathbb{C}$ with respect to the (normalized) Haar measure of G is denoted by $\int_{G} f(x) \mathrm{d} x$ and the translation of f along $y \in G$ is defined as $f_{y}(x)=f\left(x y^{-1}\right)$. The same definition applies to functions defined on Γ. As usual, for $0<p<\infty$, we denote by $L_{p}(G)$ the space of (complex) p-integrable functions on G and we identify functions that agree almost everywhere. $L_{\infty}(G)$ is the space of essentially bounded
(measurable) functions with the essential supremum norm. It is clear that $L_{\infty}(G)$ is a Banach algebra with the pointwise operations and each $L_{p}(G)$ space is an $L_{\infty}(G)$-module. When there is no need for expliciting the group, we will abbreviate $L_{p}(G)$ as L_{p}.

We denote by $C(G)$ the algebra of all continuous functions on G, again with the sup norm and the pointwise operations; $M(G)$ denotes the space of (bounded, complex, regular, Borel) measures on G normed by the total variation. By the Riesz representation theorem, the space of measures on G can be identified with the dual of $C(G)$ through the pairing $\langle\mu, f\rangle=$ $\int_{G} f(x) \mathrm{d} \mu(x)$. In particular, each $f \in L_{1}(G)$ defines a measure on G by the formula $A \mapsto \int_{A} f(x) \mathrm{d} x$ which allows us to consider $L_{1}(G)$ as a subspace of $M(G)$ when appropriate.

We denote by $P(G)$ the "polynomials" on G, that is, those functions that arise as linear combinations of characters. While $P(G)$ is dense in $L_{p}(G)$ for finite p, its closure in $L_{\infty}(G)$ is exactly $C(G)$, by the Stone-Weierstraß theorem. If X is a space of functions on G, we set $X^{0}=X \cap P(G)$, with the norm inherited from X.

The space $M(G)$ is a Banach algebra under the convolution of measures given by $(\mu * \nu)(A)=\int_{G} \mu\left(A y^{-1}\right) \mathrm{d} \nu(y)$, where $A y^{-1}=\left\{x y^{-1}: x \in A\right\}$. This extends the usual convolution for integrable functions, defined by $(f * g)(x)=\int_{G} f\left(x y^{-1}\right) g(y) \mathrm{d} y$, in such a way that $L_{1}(G)$ is an ideal in $M(G)$. The spaces $L_{p}(G)$ for $1 \leqslant p \leqslant \infty$ and $C(G)$ are $L_{1}(G)$-modules (actually $M(G)$-modules) under convolution; see for instance Rudin [33, Section 1.1] and [12, Theorem 5.6.34].

We denote by \mathscr{F} the Fourier transform from G-objects to Γ-objects, not the other way around. The largest space where \mathscr{F} is "naturally" defined is $M(G)$ and for each measure μ the Fourier transform $\mathscr{F}(\mu)=\widehat{\mu}$ is the bounded function defined on Γ by the formula $\widehat{\mu}(\gamma)=\int_{G} \bar{\gamma}(x) \mathrm{d} \mu(x)$. The Fourier transform of $f \in L_{1}(G)$ is defined by $\widehat{f}(\gamma)=\int_{G} f(x) \bar{\gamma}(x) \mathrm{d} x$. Quite clearly, $\widehat{f}_{y}=y^{-1} \widehat{f}$, with the meaning that $\left(\widehat{f}_{y}\right)(\gamma)=\overline{\gamma(y)} \widehat{f}(\gamma)=$ $\gamma\left(y^{-1}\right) \widehat{f}(\gamma)$.

2.4. Quasilinear maps and centralizers

Let X, Y be quasinormed spaces. A homogeneous mapping $\Phi: X \rightarrow Y$ is said to be quasilinear if $\left\|\Phi\left(x+x^{\prime}\right)-\Phi(x)-\Phi\left(x^{\prime}\right)\right\| \leqslant Q\left(\|x\|+\left\|x^{\prime}\right\|\right)$ for some constant Q and all $x, x^{\prime} \in X$. If, in addition, X, Y are modules over a Banach algebra A we say that Φ is an A-centralizer if it is quasilinear and
there is a constant C such that $\|\Phi(a x)-a \Phi(x)\| \leqslant C\|a\|\|x\|$ for all $a \in A$ and all $x \in X$. Quasilinear maps are nothing else than \mathbb{C}-centralizers.

Our interest in quasilinear maps lies on the following construction. If $\Phi: X \rightarrow Y$ is a quasilinear map then the functional $\|(y, x)\|_{\Phi}=$ $\|y-\Phi(x)\|+\|x\|$ is a quasinorm on $Y \times X$ and, if we denote by $Y \oplus_{\Phi} X$ the resulting quasinormed space, then the sequence

$$
0 \longrightarrow Y \xrightarrow{\imath} Y \oplus_{\Phi} X \xrightarrow{\pi} X \longrightarrow 0,
$$

where $\imath(y)=(y, 0)$ and $\pi(y, x)=x$, is exact. What is more: \imath preserves the involved quasinorms and π maps the unit ball of $Y \oplus_{\Phi} X$ onto that of X. Now, we have:

Lemma 2.1. - A quasilinear map $\Phi: X \rightarrow Y$ is an A-centralizer if and only if the outer product $a(y, x)=(a y, a x)$ makes $Y \oplus_{\Phi} X$ into a quasinormed module.

Proof. - If Φ is a centralizer, then

$$
\begin{aligned}
\|(a y, a x)\|_{\Phi} & =\|a y-\Phi(a x)\|+\|a x\| \\
& \leqslant\|a y-a \Phi(x)+a \Phi(x)-\Phi(a x)\|+\|a x\| \\
& \leqslant M\|a\|\|(y, x)\|_{\Phi} .
\end{aligned}
$$

For the converse, if $\|(a y, a x)\|_{\Phi} \leqslant M\|a\|\|(y, x)\|_{\Phi}$ for some M and all $(y, x) \in Y \oplus_{\Phi} X$, then letting $y=\Phi(x)$ one obtains $\|a \Phi(x)-\Phi(a x)\|+$ $\|a x\| \leqslant M\|a\|\|x\|$, and so Φ is a centralizer.

In practice one cannot expect to explicitly define centralizers on a quasi Banach module, at least if we insist in that they take values in Y. So assume X, Y are quasi Banach modules and that X_{0} is a dense submodule of X. Let $\Phi: X_{0} \rightarrow Y$ be a centralizer and construct the "twisted sum" $Y \oplus_{\Phi} X_{0}$ as before. Let $Z(\Phi)$ be the completion of $Y \oplus_{\Phi} X_{0}$ (which is a quasi Banach A-module) and observe that the universal property of the completion provides a commutative diagram

in which the lower row is an extension of X by Y called, with good reason, the extension generated by Φ. These extensions admit a very simple analysis: Φ generates a trivial extension if and only if there exists a (not necessarily continuous) morphism $\phi: X_{0} \rightarrow Y$ such that $\|\Phi(x)-\phi(x)\| \leqslant K\|x\|$
for some $K>0$ and all $x \in X_{0}$. In this case we say that Φ is a trivial centralizer. Also $\Phi, \Psi: X_{0} \rightarrow Y$ are said to be equivalent if they generate equivalent extensions, which happens if and only if $\Phi-\Psi$ is trivial. In the particular case that $\|\Phi(x)-\Psi(x)\| \leqslant K\|x\|$ for some $K>0$ and all $x \in X$, we say that Φ and Ψ are strongly equivalent and we write $\Phi \approx \Psi$ for short.

A quasilinear map $\Phi: X \rightarrow Y$ acting between Banach spaces gives rise to a Banach space if and only if it obeys an estimate of the form $\left\|\Phi\left(\sum_{i \leqslant n} x_{i}\right)-\sum_{i \leqslant n} \Phi\left(x_{i}\right)\right\| \leqslant M \sum_{i \leqslant n}\left\|x_{i}\right\|$ for some M, all $n \in \mathbb{N}$ and all $x_{1}, \ldots, x_{n} \in X$. Each Banach \mathscr{K}-space X comes with a constant $K=$ $K(X)$ such that every quasilinear map Φ defined on a dense subspace of X satisfies the above estimate with $M=K(X) Q(\Phi)$. One has $K(X) \leqslant 37$ if X is a Hilbert space and $K(X) \leqslant 200 \lambda$ if X is an $\mathscr{L}_{\infty, \lambda}$-space. In particular $K(C(S)) \leqslant 200$ for each compact space S; see $[20,23]$.

2.5. Existence of L_{1}-centralizers

We now specialize to modules on the convolution algebra $L_{1}(G)$. We denote by $*$ the action on any $L_{1}(G)$-module, even if the action might have nothing to do with convolution. The following simple remark justifies our approach in the search for extensions of L_{1}-modules:

Lemma 2.2. - Let $1 \leqslant p<\infty$. Every extension of L_{p} by an arbitrary L_{1}-module Y is equivalent to one induced by an L_{1}-centralizer $\Phi: L_{p}^{0} \rightarrow Y$. Every extension of $C(G)$ by Y is equivalent to one induced by an L_{1} centralizer $\Phi: L_{\infty}^{0} \rightarrow Y$.

Proof. - The key point is that $P(G)$ is a projective L_{1}-module in the purely algebraic sense. We do the proof for the L_{p} case, but it is analogous for $C(G)$. Consider an extension of L_{1}-modules

$$
0 \longrightarrow Y \xrightarrow{\jmath} Z \xrightarrow{\varpi} L_{p} \longrightarrow 0
$$

in which we assume that $Y=\operatorname{ker} \varpi$ and \jmath is the inclusion map. Let B : $L_{p} \rightarrow Z$ be a bounded homogeneous section of ϖ, which exists by the open mapping theorem. Given $\gamma \in \Gamma$ we consider it as a polynomial and we set $z_{\gamma}=\gamma * B(\gamma)$; note that $\gamma * z_{\gamma}=z_{\gamma}$ and that $\varpi\left(z_{\gamma}\right)=\varpi(\gamma * B(\gamma))=$ $\gamma * \varpi(B(\gamma))=\gamma * \gamma=\widehat{\gamma}(\gamma) \gamma=\gamma$. Moreover, the map $L: P(G) \rightarrow Z$ sending each polynomial $f=\sum_{\gamma} c_{\gamma} \gamma$ to $\sum_{\gamma} c_{\gamma} z_{\gamma}$ is an L_{1}-morphism since
for each $a \in L_{1}$ and every polynomial $f=\sum_{\gamma} c_{\gamma} \gamma$ one has

$$
\begin{aligned}
& L(a * f)=L\left(\sum_{\gamma} \widehat{a}(\gamma) c_{\gamma} \gamma\right)=\sum_{\gamma} \widehat{a}(\gamma) c_{\gamma} z_{\gamma} \\
& a * L(f)=\sum_{\gamma} c_{\gamma}\left(a * z_{\gamma}\right)=\sum_{\gamma} c_{\gamma}\left(a *\left(\gamma * z_{\gamma}\right)\right)=\sum_{\gamma} c_{\gamma} \widehat{a}(\gamma) z_{\gamma}
\end{aligned}
$$

Now, the difference $\Phi=B-L$ takes values in $Y=$ ker ϖ since $\varpi(B(f)-$ $L(f))=f-f=0$ for every $f \in P(G)$, and $\Phi: L_{p}^{0} \rightarrow Y$ is an L_{1}-centralizer:

$$
\begin{aligned}
\|\Phi(f+g)-\Phi f-\Phi g\| & =\|B(f+g)-B(f)-B(g)\| \leqslant 2\|B\|(\|f\|+\|g\|) \\
\|\Phi(a * f)-a * \Phi(f)\| & =\|B(a * f)-a * B(f)\| \leqslant 2\|B\|\|a\|\|f\|
\end{aligned}
$$

To check that the extension generated by Φ is equivalent to the starting one, define $u: Y \oplus_{\Phi} L_{p}^{0} \rightarrow Z$ by $u(y, f)=y+L(f)$. Such u is bounded since writing $L=B-\Phi$ one has

$$
\|u(y, f)\|=\|y+B f-\Phi f\| \leqslant\|y-\Phi f\|+\|B f\| \leqslant\|B\|\left(\|(y, f)\|_{\Phi}\right)
$$

Therefore, u is a homomorphism and makes commutative the diagram

Extending u to the completion of $Y \oplus_{\Phi} L_{p}^{0}$ ends the proof.
Note that if Γ is countable (equivalently, if G is metrizable: this follows from the Stone-Weierstraß theorem and the fact that a compact space K is metrizable if and only if $C(K)$ is separable in the sup norm) the proof is simpler since in this case L_{p} contains a dense free submodule. Indeed, pick nonzero c_{γ} such that $\sum_{\gamma \in \Gamma}\left|c_{\gamma}\right|<\infty$ and consider the function $h=\sum_{\gamma \in \Gamma} c_{\gamma} \gamma$ (note that the series converges even in $\left.C(G)\right)$. It is clear that $L_{1} * h=\left\{f * h: f \in L_{1}\right\}$ is a submodule of L_{p} which is free (since $f * h=0$ only if $f=0$) and dense in L_{p} (since it contains $P(G)$). Now, keeping the notations of the lemma, take $\zeta \in Z$ such that $\varpi(\zeta)=h$, for instance $\zeta=B(h)$, and define $L: L_{1} * h \rightarrow Z$ by $L(f * h)=f * \zeta$. It is clear that L is a morphism such that $\varpi \circ L$ is the identity on $L_{1} * h$ and that $B-L: L_{1} * h \rightarrow Y$ (or its restriction to L_{p}^{0}) is the required centralizer.

The identification of morphisms from the polynomials to modules on which the Fourier transform makes sense is very easy. They are all "multipliers":

Lemma 2.3. - Let $a: \Gamma \rightarrow \mathbb{C}$ be any function. Then the map α : $P(G) \rightarrow M(G)$ defined by $\alpha(f)=\mathscr{F}^{-1}(a \widehat{f})$ is a morphism of $L_{1}(G)$ modules and, conversely, every morphism arises in this way. In particular, every morphism $P(G) \rightarrow M(G)$ takes values in $P(G)$.

Proof. - The first part of the first part is trivial. The converse is easy: if $\alpha: P(G) \rightarrow M(G)$ is a morphism of L_{1}-modules and $\mu=\alpha(\gamma)$ then $\gamma * \mu=\mu$, and from here it follows that $\mu=a \gamma \mathrm{~d} x$ for some $a \in \mathbb{C}$ depending on γ.

2.6. The Kalton-Peck maps

We now introduce the quasilinear maps we need to carry out the main construction. Although our main goal is the construction of centralizers over convolution algebras, we ask the reader to forget about groups for a moment since they play no role here. So, let I be an "index" set (which will be countable in the applications) and consider the spaces $\ell_{p}(I)$ for $1 \leqslant p \leqslant \infty$ with their usual norms.

It is clear that each $\ell_{p}(I)$ is an $\ell_{\infty}(I)$-module under the pointwise product and that $\ell_{p}^{0}(I)$, the subspace of finitely supported elements, is a dense submodule of $\ell_{p}(I)$ for $p<\infty$. Please note that the meaning of the superscript 0 is different in $\ell_{p}^{0}(I)$ than in $L_{p}^{0}(G)$.

Let Lip denote the set of all Lipschitz functions $\varphi:[0, \infty) \rightarrow \mathbb{R}$ vanishing at zero. Given such a φ, the Kalton-Peck map $\Phi: \ell_{p}^{0}(I) \rightarrow \ell_{p}(I)$ pointwise defined by

$$
\Phi(f)=f \varphi\left(\log \frac{\|f\|_{p}}{|f|}\right)
$$

(that is, $\Phi(f)(k)=f(k) \varphi\left(\log \left(\|f\|_{p} /|f(k)|\right)\right)$ if $f(k) \neq 0$ and $\Phi(f)(k)=0$ if $f(k)=0)$ is an $\ell_{\infty}(I)$-centralizer with quasilinear constant $8 L_{\varphi} / e$ and centralizer constant $2 L_{\varphi} / e$, where L_{φ} is the Lipschitz constant of φ. This essentially appears in [22] and [21], although not exactly in this form; see [4, Section 3.12] for a more homogeneous argument. Actually Φ is strictly symmetric, meaning that it has the following properties:
(b) $\Phi(f \circ \sigma)=(\Phi f) \circ \sigma$ for every bijection $\sigma: I \rightarrow I$.
(\sharp) If $u \in \ell_{\infty}(I)$ is unitary then $\Phi(u f)=u \Phi(f)$.
These will play a role later. The fact that Φ depends not only on φ but also on p will not cause any confussion and actually only the case $p=2$ will be used in the main construction.

Now assume that $\sigma: I \rightarrow I$ is an injective map, not necessarily surjective. Then σ induces a rearrangement operator R^{σ} on every $\ell_{p}(I)$ sending e_{n} to $e_{\sigma(n)}$, that is,

$$
R^{\sigma}(f)(k)= \begin{cases}f\left(\sigma^{-1}(k)\right) & \text { for } k \text { in the range of } \sigma \\ 0 & \text { otherwise }\end{cases}
$$

We close this section with the following remark:
Lemma 2.4.
(a) Every quasilinear map $\Phi: \ell_{p}^{0}(I) \rightarrow \ell_{p}(I)$ having property (\sharp) is an $\ell_{\infty}(I)$-centralizer.
(b) Every mapping $\Phi: \ell_{p}^{0}(I) \rightarrow \ell_{p}(I)$ having property (\sharp) preserves supports in the sense that $\operatorname{supp}(\Phi f) \subset \operatorname{supp} f$ for all f.
(c) Every mapping $\Phi: \ell_{p}^{0}(I) \rightarrow \ell_{p}^{0}(I)$ having property (b) commutes with R^{σ} for any injection $\sigma: I \rightarrow I$.

Proof.
(a). - It follows from the fact that every function in the unit ball of $\ell_{\infty}(I)$ can be written as the average of four unitaries.
(b). - Pick f and let u be the function that assumes the value 1 on $\operatorname{supp} f$ and -1 elsewhere. Then $u f=f$ and $u \Phi f=\Phi f$ implies that $\operatorname{supp}(\Phi f) \subset \operatorname{supp} f$.
(c). - It is obvious if I is finite. Otherwise for each f we can take a bijection ς that agrees with σ^{-1} on $\sigma(I) \cap(\operatorname{supp} f \cup \operatorname{supp} \Phi f)$ and thus $R^{\sigma}(\Phi f)=(\Phi f) \circ \varsigma=\Phi(f \circ \varsigma)=\Phi\left(R^{\sigma} f\right)$.

3. Construction of L_{1}-centralizers

Although some of the ideas of this section could be presented in a more general setting, the final argument works only in the compact case since we need the containments $L_{p}(G) \subset L_{q}(G)$ for $q \leqslant p$. So, we invariably assume that G is a compact abelian group with dual group Γ. We emphasize the fact that Γ is discrete by writing $\ell_{p}(\Gamma)$ instead of the customary $L_{p}(\Gamma)$. Note that \mathscr{F} is an isometry of $L_{2}^{0}(G)$ onto $\ell_{2}^{0}(\Gamma)$.

We will present three different constructions of L_{1}-centralizers, each with its pros and cons. The first two stem from the same idea: one fixes p and q, takes $f \in L_{p}(G)$, does something with its Fourier coefficients, and moves back to $L_{q}(G)$.

3.1. A global construction

Given a quasilinear map $\Omega: \ell_{2}^{0}(\Gamma) \rightarrow \ell_{2}(\Gamma)$ we consider the composition

$$
\mho: L_{2}^{0}(G) \xrightarrow{\mathscr{F}} \ell_{2}^{0}(\Gamma) \xrightarrow{\Omega} \ell_{2}(\Gamma) \xrightarrow{\mathscr{F}^{-1}} L_{2}(G)
$$

Obviously \mho is quasilinear, with $Q(\mho)=Q(\Omega)$. Also, for $1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty$ we can consider the composition

$$
\mho^{p q}: L_{p}^{0}(G) \xrightarrow{\text { inclusion }} L_{2}^{0}(G) \xrightarrow{\mathscr{F}} \ell_{2}^{0}(\Gamma) \xrightarrow{\Omega} \ell_{2}(\Gamma) \xrightarrow{\mathscr{F}^{-1}} L_{2}(G) \xrightarrow{\text { inclusion }} L_{q}(G)
$$

where $\mho^{22}=\mho$. It is clear that every $\mho^{p q}$ is quasilinear, with $Q\left(\mho^{p q}\right) \leqslant$ $Q(\Omega)$. As pure maps all $\mho^{p q}$ agree. However, they have different properties depending on the norms one considers in the domain and range.

Let us notice that if Ω maps finitely supported sequences to finitely supported sequences then \mho maps polynomials to polynomials. If, besides, Ω preserves supports (as do all Kalton-Peck maps and can be assumed of all $\ell_{\infty}(\Gamma)$-centralizers) then, given characters $\gamma_{1}, \ldots, \gamma_{k} \in \Gamma$, one has $\mho\left[\gamma_{1}, \ldots, \gamma_{k}\right] \subset\left[\gamma_{1}, \ldots, \gamma_{k}\right]$, where the square brackets denote the linear span.

From a linear point of view \mho is "the same object" as Ω; however, things are different from the perspective of the algebras $\ell_{\infty}(\Gamma), L_{\infty}(G)$ and the convolution algebras $\ell_{1}(\Gamma), L_{1}(G)$ as we now see. Recall that each $\eta \in \Gamma$ "translates" functions on Γ by the rule $f_{\eta}(\gamma)=f\left(\gamma \eta^{-1}\right)$. We say that $\Omega: \ell_{2}^{0}(\Gamma) \rightarrow \ell_{2}(\Gamma)$ commutes with translations if $\Omega\left(f_{\eta}\right)=(\Omega f)_{\eta}$ for every η and every f.

Lemma 3.1. - With the same notations as before:
(a) If Ω is an $\ell_{\infty}(\Gamma)$-centralizer and $1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty$ then $\mho^{p q}$ is an $L_{1}(G)$-centralizer, with $C_{L_{1}(G)}\left[\mho^{p q}\right] \leqslant C_{\ell_{\infty}(\Gamma)}[\Omega]$.
(b) Ω commutes with characters if and only if $\mho^{p q}$ commutes with translations.
(c) Ω commutes with translations if and only if $\mho^{p q}$ commutes with characters.

In the following proof we simply write \mho for any of the maps $\mho^{p q}$.

Proof.
(a). - Actually \mho is even a centralizer over the larger convolution algebra $M(G)$: pick $\mu \in M(G)$ and $f \in L_{2}^{0}(G)$. Then

$$
\begin{aligned}
\|\mho(\mu * f)-\mu * \mho(f)\|_{L_{2}(G)} & =\left\|\mathscr{F}^{-1}(\Omega(\widehat{\mu * f}))-\mu * \mathscr{F}^{-1}(\Omega \widehat{f})\right\|_{L_{2}(G)} \\
& =\|\Omega(\widehat{\mu} \widehat{f})-\widehat{\mu} \Omega(\widehat{f})\|_{\ell_{2}(\Gamma)} \\
& \leqslant C_{\ell_{\infty}(\Gamma)}(\Omega)\|\widehat{\mu}\|_{\ell_{\infty}(\Gamma)}\|\widehat{f}\|_{\ell_{2}(\Gamma)} \\
& \leqslant C_{\ell_{\infty}(\Gamma)}(\Omega)\|\mu\|_{M(G)}\|f\|_{L_{2}(G)}
\end{aligned}
$$

(b). - The hypothesis on Ω means that $\Omega(y c)=y \Omega(c)$ for every $y \in G$ and every finitely supported c, where $y: \Gamma \rightarrow \mathbb{C}$ is defined as $y(\gamma)=\gamma(y)$. To prove \Longrightarrow we must check that $\mho\left(f_{y}\right)=(\mho f)_{y}$ for every $y \in G$ and every polynomial f. The point is that $\mathscr{F}\left(f_{y}\right)=y^{-1} \mathscr{F}(f)$. Now,

$$
\mho\left(f_{y}\right)=\mathscr{F}^{-1}\left(\Omega\left(\widehat{f}_{y}\right)\right)=\mathscr{F}^{-1}\left(\Omega\left(y^{-1} \widehat{f}\right)\right)=\mathscr{F}^{-1}\left(y^{-1} \Omega(\widehat{f})\right)=(\mho f)_{y}
$$

To prove the converse note that $\Omega(c)=\mathscr{F} \mho\left(\mathscr{F}^{-1}(c)\right)$ for every finitely supported $c: \Gamma \rightarrow \mathbb{C}$. If $c=\widehat{f}$, we have

$$
\Omega(y c)=\mathscr{F} \mho\left(\mathscr{F}^{-1}(y c)\right)=\mathscr{F} \mho\left(f_{y^{-1}}\right)=\mathscr{F}\left((\mho f)_{y^{-1}}\right)=y \Omega(c) .
$$

(c). - The proof is formally identical to that of (b).

Note that the hypotheses on Ω in (a), (b) and (c) are automatic if Ω is strictly symmetric since each $y \in G$ is unitary in $\ell_{\infty}(\Gamma)$. We now study the triviality of the quasilinear maps $\mho^{p q}$ for $1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty$. Since we have the factorization

$$
\mho^{\infty 1}: L_{\infty}^{0}(G) \xrightarrow{\text { inclusion }} L_{p}^{0}(G) \xrightarrow{\mho_{p q}} L_{q}(G) \xrightarrow{\text { inclusion }} L_{1}(G)
$$

we see that if $\mho^{\infty 1}$ is not trivial then neither is $\mho^{p q}$. The following result applies, in particular, when $\Omega: \ell_{2}^{0}(\Gamma) \rightarrow \ell_{2}(\Gamma)$ commutes with translations and $\Phi=\mho^{\infty 1}$:

Proposition 3.2. - Let $\Phi: L_{\infty}^{0}(G) \rightarrow L_{1}(G)$ be a quasilinear map such that $\Phi(\gamma f)=\gamma \Phi(f)$ for every $\gamma \in \Gamma$ and every $f \in L_{\infty}^{0}(G)$. The following are equivalent:
(1) $\Phi: L_{\infty}^{0}(G) \rightarrow L_{1}(G)$ is trivial;.
(2) There is $\mu \in M(G)$ so that $\|\Phi f-f \mu\|_{M(G)} \leqslant K\|f\|_{\infty}$ for some K and every $f \in L_{\infty}^{0}(G)$.
(3) Φ is bounded from $L_{\infty}^{0}(G)$ to $L_{1}(G)$.

Proof. - Regarding (2), if $f \in C(G)$ and $\mu \in M(G)$ then $f \mu$ is the measure defined by $(f \mu)(A)=\int_{A} f \mathrm{~d} \mu$. Clearly, $\|f \mu\|_{M(G)} \leqslant\|f\|_{\infty}\|\mu\|_{M(G)}$.
$(1) \Longrightarrow(2)$. - If Φ is trivial then there is a linear map $L: L_{\infty}^{0}(G) \rightarrow$ $L_{1}(G)$ and a constant K such that $\|\Phi(f)-L(f)\| \leqslant K\|f\|$ for every trigonometric polynomial f. Let m be an invariant mean for Γ and let us (isometrically) move from $L_{1}(G)$ to $M(G)$. We kindly ask the reader to have a look at Greenleaf's booklet [17] in case they do not know what an invariant mean is. Let us define a new linear map $\Lambda: L_{\infty}^{0}(G) \rightarrow M(G)$ by the formula

$$
\langle\Lambda(f), h\rangle=m_{\gamma}\left(\int_{G} \gamma^{-1} L(\gamma f) h \mathrm{~d} x\right) \quad\left(f \in L_{\infty}^{0}(G), h \in C(G)\right)
$$

where the subscript indicates that m is applied to a function of the variable γ. We have

$$
\begin{aligned}
\|\Lambda(f)-\Phi(f)\|_{M(G)} & \leqslant \sup _{\gamma \in \Gamma}\left\|\gamma^{-1} L(\gamma f)-\Phi(f)\right\|_{L_{1}(G)} \\
& =\sup _{\gamma \in \Gamma}\left\|\gamma^{-1} L(\gamma f)-\gamma^{-1} \Phi(\gamma f)\right\|_{L_{1}(G)} \\
& =\sup _{\gamma \in \Gamma}\|L(\gamma f)-\Phi(\gamma f)\|_{L_{1}(G)} \leqslant K\|f\|_{L_{\infty}(G)}
\end{aligned}
$$

It is very easy to see that $\Lambda(\gamma f)=\gamma \Lambda(f)$ for every $\gamma \in \Gamma$ and every polynomial f. Since every polynomial is a linear combination of (finitely many) characters and Λ is linear one also has $\Lambda(g f)=g \Lambda(f)$ for all polynomials f, g, and so $\Lambda(f)=\Lambda\left(f 1_{G}\right)=f \Lambda\left(1_{G}\right)$, which yields (2) just taking $\mu=\Lambda\left(1_{G}\right)$.
$(2) \Longrightarrow(3)$. It is simple:

$$
\begin{aligned}
\|\Phi(f)\|_{L_{1}(G)} & \leqslant\|\Phi(f)-f \mu\|_{M(G)}+\|f \mu\|_{M(G)} \\
& \leqslant K\|f\|_{\infty}+\|\mu\|_{M(G)}\|f\|_{\infty}
\end{aligned}
$$

The following result is a quantitative version of the preceding one. To proceed, given a quasilinear map $\Phi: E \rightarrow F$ we define $\delta(\Phi)=\inf \{\|\Phi-L\|:$ L is a linear map from E to $F\}$. Of course $\delta(\Phi)$ is finite if and only if Φ is trivial, as a quasilinear map. In general $\delta(\Phi)$ quantifies the "degree" of non-triviality of a trivial map Φ.

Corollary 3.3.- Let $\Phi: L_{\infty}^{0}(G) \rightarrow L_{1}(G)$ be a quasilinear map commuting with the characters of G. Then $2 \delta(\Phi) \geqslant\|\Phi\|-\left\|\Phi\left(1_{G}\right)\right\|_{1}$.

Proof. - We may assume $\delta(\Phi)$ and $\|\Phi\|$ finite. Fix $\varepsilon>0$ and let f_{ε} be normalized in $L_{\infty}^{0}(G)$ so that $\left\|\Phi\left(f_{\varepsilon}\right)\right\|_{1}>\|\Phi\|-\varepsilon$. Also, let L_{ε} : $L_{\infty}^{0}(G) \rightarrow L_{1}(G)$ be a linear map such that $\left\|\Phi-L_{\varepsilon}\right\|<\delta(\Phi)+\varepsilon$. Use the
preceding proposition to obtain a measure μ_{ε} such that $\left\|\Phi(f)-f \mu_{\varepsilon}\right\|_{M(G)} \leqslant$ $(\delta(\Phi)+\varepsilon)\|f\|_{\infty}$ for every polynomial f. Now, since $\left\|\Phi\left(1_{G}\right)-\mu_{\varepsilon}\right\|_{M(G)}<$ $\delta(\Phi)+\varepsilon$, we have

$$
\begin{aligned}
\delta(\Phi)+\varepsilon & \geqslant\left\|\Phi f_{\varepsilon}-f_{\varepsilon} \mu_{\varepsilon}\right\| \geqslant\left\|\Phi f_{\varepsilon}\right\|_{1}-\left\|f_{\varepsilon} \mu_{\varepsilon}\right\|_{M(G)} \\
& \geqslant\|\Phi\|-\varepsilon-\left\|\mu_{\epsilon}\right\| \geqslant\|\Phi\|-2 \varepsilon-\delta(\Phi)-\left\|\Phi\left(1_{G}\right)\right\|_{1}
\end{aligned}
$$

which is enough to conclude.

Nontriviality

Our next aim is, of course, showing that this mechanism is able to produce nontrivial quasilinear maps. Although we suspect that $\mho^{\infty 1}$ (and so $\mho^{p q}$ for $\left.1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty\right)$ is nontrivial for every nontrivial Ω we have a proof only for some well-behaved centralizers of Kalton-Peck type.

Theorem 3.4. - Let G be an infinite compact abelian group with dual Γ. If $\Omega: \ell_{2}^{0}(\Gamma) \rightarrow \ell_{2}^{0}(\Gamma)$ is the Kalton-Peck map associated to an unbounded, concave $\varphi \in \operatorname{Lip}$ then $\mho^{\infty 1}: C^{0}(G) \rightarrow L_{1}(G)$ is not trivial and neither is $\mho^{p q}: L_{p}^{0}(G) \rightarrow L_{q}(G)$ for $1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty$.

Typical examples of functions satisfying the hypotheses of the theorem are $t \mapsto t^{\alpha}$ for $0<\alpha \leqslant 1$ or $t \mapsto \log (1+t)$.

In the remainder of the section we shorten $L_{p}(G)$ to plain L_{p}. It is clear from Lemma 3.1 that \mho is actually an L_{1}-centralizer. Moreover, the observation before Proposition 3.2 guarantees it is enough to prove that $\mho^{\infty 1}$ is unbounded to get Theorem 3.4. This amounts to finding functions f with controlled L_{∞}-norm such that $\|\mho f\|_{1}$ is arbitrarily large.

The main feature here is the use of dissociate Sidon sets, which include lacunary sets of characters on \mathbb{T} and the Rademacher functions on Cantor's group Δ. To be honest, we came to Sidon sets only after realizing that they provided a common framework for our earlier proofs for some particular cases of the theorem. A set $\Sigma \subset \Gamma$ is called dissociate if $1 \notin \Sigma$ and for finitely many different $\gamma_{1}, \ldots, \gamma_{k} \in \Sigma$ and integers $n(j) \in\{0, \pm 1, \pm 2\}$ the implication

$$
\prod_{1 \leqslant j \leqslant k} \gamma_{j}^{n(j)}=1 \quad \Longrightarrow \quad \gamma_{j}^{n(j)}=1 \quad \forall j
$$

holds; see [29, Definition 2.5] or [19, 37.12 Definition]. This notion makes sense in any group and actually infinite dissociate sets exist in every infinite group: [19, 37.26 Remark (b)] or [29, Theorem 2.8]. Also, $\Sigma \subset \Gamma$ is said to be a Sidon set if every $c \in c_{0}(\Sigma)$ has the form $\left.\widehat{f}\right|_{\Sigma}$ for some $f \in L_{1}$, in
which case there exists S (the Sidon constant of Σ) such that one can choose f with $\|f\|_{1} \leqslant S\|c\|_{\infty}$. Every dissociate set is a Sidon set; actually if Σ is dissociate, then $\Sigma \cup \Sigma^{-1}$ is a Sidon set ([19, 37.15 Corollary and 37.27] or [29, Corollary 2.9]). Sidon sets behave in many respects as the Rademacher system $\left(r_{n}\right)_{n \geqslant 1}$, as witnessed by the following particular case of a result of Pisier [31, Théorème 2.1]: if Σ is a Sidon set, then there exists a constant c depending only on $S(\Sigma)$ such that

$$
\begin{equation*}
c^{-1}\left\|\sum_{i \leqslant k} a_{i} r_{i}\right\|_{L_{p}(\Delta)} \leqslant\left\|\sum_{i \leqslant k} a_{i} \gamma_{i}\right\|_{L_{p}(G)} \leqslant c\left\|\sum_{i \leqslant k} a_{i} r_{i}\right\|_{L_{p}(\Delta)} \tag{3.1}
\end{equation*}
$$

for all $1 \leqslant p<\infty$, all $k \in N$, all scalars a_{i} and all $\gamma_{i} \in \Sigma$. In its turn Khintchine's inequalities state that for every finite p there exist constants A_{p}, B_{p} such that

$$
\begin{equation*}
A_{p}\left(\sum_{i \leqslant k}\left|a_{i}\right|^{2}\right)^{1 / 2} \leqslant\left\|\sum_{i \leqslant k} a_{i} r_{i}\right\|_{L_{p}(\Delta)} \leqslant B_{p}\left(\sum_{i \leqslant k}\left|a_{i}\right|^{2}\right)^{1 / 2} \tag{3.2}
\end{equation*}
$$

The exact values of these constants were computed by Haagerup in [18]. We shall use later that $A_{1}=2^{-1 / 2}$.

We now fix an infinite dissociate set of characters Σ. Note that, for any two finite subsets $E, F \subset \Sigma$ and functions $\epsilon: E \rightarrow\{ \pm 1\}, \delta: F \rightarrow\{ \pm 1\}$ such that

$$
\prod_{\gamma \in E} \gamma^{\epsilon(\gamma)}=\prod_{\eta \in F} \eta^{\delta(\eta)}
$$

we have $E=F$ and $\gamma^{\epsilon(\gamma)}=\gamma^{\delta(\gamma)}$ for all $\gamma \in E$. In particular $\epsilon(\gamma)=\delta(\gamma)$ if γ does not have order 2 -and the sign of $\epsilon(\gamma)$ is irrelevant if γ has order 2. Let us now fix a sequence $\left(\gamma_{n}\right)_{n \geqslant 1}$ of different elements of Σ. Given $\alpha>1$, which will be fixed later, and $N \in \mathbb{N}$, consider the following Riesz product, depending on N and α :

$$
\begin{equation*}
f=\prod_{1 \leqslant j \leqslant N}\left[1+\frac{i}{\alpha \sqrt{N}}\left(\frac{\gamma_{j}+\gamma_{j}^{-1}}{2}\right)\right] \tag{3.3}
\end{equation*}
$$

(see [29, Section 2.4] for a discussion on Riesz products). Let Γ_{N} be the set of characters that can be written as $\gamma=\prod_{j \leqslant N} \gamma_{j}^{\epsilon_{j}}$ with each $\epsilon_{j} \in\{-1,0,1\}$. For every $\gamma \in \Gamma_{N}$ we define the length of γ (relative to Σ) as the number of nonzero exponents in that expression, which is unique up to the signs of the exponents of the elements of order 2 by virtue of dissociateness.

To compute the Fourier coefficients of f one should keep track of the characters of order 2. Passing to a subset if necessary we only need to distinguish two cases, namely:
$(\dagger) \Sigma$ has no elements of order 2.
(\ddagger) Every element in Σ has order 2.
In the first case, the Fourier coefficients of f are, for $\gamma \in \Gamma_{N}$,

$$
\widehat{f}(\gamma)=\left(\frac{i}{2 \alpha \sqrt{N}}\right)^{\ell(\gamma)}
$$

and zero otherwise. Since $\widehat{f}(\gamma)$ only depends on the length of γ, we have

$$
\begin{aligned}
f & =f_{0}+f_{1}+\cdots+f_{N} \\
f_{k}=\sum_{\ell(\gamma)=k} \widehat{f}_{k}(\gamma) \gamma & =\left(\frac{i}{2 \alpha \sqrt{N}}\right)^{k} \sum_{\ell(\gamma)=k} \gamma \quad \text { for } \quad 0 \leqslant k \leqslant N .
\end{aligned}
$$

Note that $f_{0}=1$, that the sum is taken over Γ_{N}, and that there are exactly $\binom{N}{k} 2^{k}$ characters of length k in Γ_{N}. Assuming (\ddagger) instead one has

$$
\begin{equation*}
f=\prod_{1 \leqslant j \leqslant N}\left(1+\frac{i \gamma_{j}}{\alpha \sqrt{N}}\right) \tag{3.4}
\end{equation*}
$$

and the Fourier coefficients of f are different: for $\gamma \in \Gamma_{N}$, we have

$$
\widehat{f}(\gamma)=\left(\frac{i}{\alpha \sqrt{N}}\right)^{\ell(\gamma)}
$$

and zero otherwise. Besides, now there are $\binom{N}{k}$ characters of length k in Γ_{N} and the decomposition we get is slightly different:

$$
\begin{aligned}
f & =f_{0}+f_{1}+\cdots+f_{N} \\
f_{k}=\sum_{\ell(\gamma)=k} \widehat{f}_{k}(\gamma) \gamma & =\left(\frac{i}{\alpha \sqrt{N}}\right)^{k} \sum_{\ell(\gamma)=k} \gamma \quad \text { for } \quad 0 \leqslant k \leqslant N .
\end{aligned}
$$

The following result collects some useful properties of these functions:
Lemma 3.5. - For every N and every $0 \leqslant k \leqslant N$ the following hold:
(a†) If Σ does not contain elements of order 2 , then $\left\|f_{k}\right\|_{L_{2}} \leqslant \frac{1}{\alpha^{k}}\left(\frac{1}{2^{k} k!}\right)^{1 / 2}$, and therefore, $1 \leqslant\|f\|_{\infty} \leqslant\|f\|_{L_{2}} \leqslant\left(1+\frac{1}{2 \alpha^{2} N}\right)^{N / 2} \leqslant e^{1 /\left(4 \alpha^{2}\right)}$.
(a \ddagger) If every element of Σ has order 2 , then $\left\|f_{k}\right\|_{L_{2}} \leqslant \frac{1}{\alpha^{k}}\left(\frac{1}{k!}\right)^{1 / 2}$, and therefore, $1 \leqslant\|f\|_{\infty} \leqslant\|f\|_{L_{2}} \leqslant\left(1+\frac{1}{\alpha^{2} N}\right)^{N / 2} \leqslant e^{1 /\left(2 \alpha^{2}\right)}$.
(b) In any case, if k is even then f_{k} is real; if k is odd, f_{k} is purely imaginary.

Figure 3.1. Real (above, grey) and imaginary (below, black) part of the Riesz product $\prod_{1 \leqslant j \leqslant 4}\left(1+\frac{i}{4} \cos \left(3^{j} t\right)\right)$ on the interval $[-\pi / 3, \pi / 3]$.

Proof.
(at). - In this case the number of characters of length k in Γ_{N} is $\binom{N}{k} 2^{k}$. Therefore:

$$
\left\|f_{k}\right\|_{L_{2}}=\frac{1}{\alpha^{k}}\left[\binom{N}{k}(2 N)^{-k}\right]^{\frac{1}{2}}=\frac{1}{\alpha^{k}}\left[\frac{1}{2^{k} k!}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k-1}{N}\right)\right]^{\frac{1}{2}}
$$

which is, for each fixed k, an increasing sequence converging to $\frac{1}{\alpha^{k}}\left(\frac{1}{2^{k} k!}\right)^{1 / 2}$. Also,

$$
\|f\|_{L_{2}}^{2}=\sum_{k=0}^{N}\binom{N}{k}\left(2 N \alpha^{2}\right)^{-k}=\left(1+\frac{1}{2 N \alpha^{2}}\right)^{N} \leqslant e^{1 /\left(2 \alpha^{2}\right)}
$$

(a \ddagger). - In this case we have

$$
\left\|f_{k}\right\|_{2}=(\alpha \sqrt{N})^{-k}\binom{N}{k}^{\frac{1}{2}} \leqslant \frac{1}{\alpha^{k}}\left(\frac{1}{k!}\right)^{\frac{1}{2}}
$$

which implies

$$
\|f\|_{L_{2}}^{2}=\left(1+\frac{1}{\alpha^{2} N}\right)^{N} \leqslant e^{1 / \alpha^{2}}
$$

(b). - It is obvious since γ and γ^{-1} have the same length.

End of the proof of Theorem 3.4. - According to Lemma 3.5 the $L_{\infty^{-}}$ norm of a Riesz product f of the form (3.3) is bounded by $e^{1 /\left(2 \alpha^{2}\right)}$. We now show that the L_{1}-norm of $\mho(f)$ goes to infinity with N. Since

$$
\widehat{f}=\widehat{1}+\widehat{f_{1}}+\cdots+\widehat{f_{N}}
$$

and the \widehat{f}_{k} 's have disjoint support in Γ one obtains

$$
\begin{aligned}
\Omega \widehat{f} & =\widehat{f} \cdot \varphi\left(\log \frac{\|f\|_{2}}{|\widehat{f}|}\right) \\
& =\left(\widehat{1}+\widehat{f_{1}}+\cdots+\widehat{f_{N}}\right) \cdot \varphi\left(\log \frac{\|f\|_{L_{2}}}{\left|\widehat{1}+\widehat{f_{1}}+\cdots+\widehat{f_{N}}\right|}\right) \\
& =\widehat{1} \varphi\left(\log \frac{\|f\|_{L_{2}}}{\widehat{1}}\right)+\widehat{f_{1}} \varphi\left(\log \frac{\|f\|_{L_{2}}}{\left|\widehat{f}_{1}\right|}\right)+\cdots+\widehat{f_{N}} \varphi\left(\log \frac{\|f\|_{L_{2}}}{\mid \widehat{f_{N} \mid}}\right) .
\end{aligned}
$$

Assuming (a \dagger) and taking the inverse Fourier transform we see that the imaginary part of $\mho f$ is given by

$$
\sum_{k \leqslant N \text { odd }} f_{k} \varphi\left(\log \left(\|f\|_{L_{2}}(2 \alpha \sqrt{N})^{k}\right)\right)
$$

The L_{1}-norm of this sum is large because the L_{1}-norm of the first summand is large and the others have small L_{2}-norms. The details are as follows. Since φ is concave, non-negative and vanishes at 0 , it is subadditive: $\varphi(s+t) \leqslant$ $\varphi(s)+\varphi(t)$ for all $s, t \geqslant 0$. Letting $b=\log \|f\|_{2}$ and $a=\log (2 \alpha \sqrt{N})$, we have

$$
\begin{aligned}
\|\mho(f)\|_{L_{1}} & \geqslant\left\|\sum_{k \leqslant N \text { odd }} \varphi(b+k a) f_{k}\right\|_{L_{1}} \\
& \geqslant \varphi(b+a)\left\|f_{1}\right\|_{L_{1}}-\left\|\sum_{k \geqslant 3 \text { odd }} \varphi(b+k a) f_{k}\right\|_{L_{1}} \\
& \geqslant \varphi(b+a)\left\|f_{1}\right\|_{L_{1}}-\sum_{k \geqslant 3 \text { odd }} \varphi(b+k a)\left\|f_{k}\right\|_{2} \\
& \geqslant \varphi(b+a)\left\|f_{1}\right\|_{L_{1}}-\sum_{k \geqslant 3 \text { odd }}(\varphi(b)+k \varphi(a))\left\|f_{k}\right\|_{2}
\end{aligned}
$$

for each fixed α. Now, as $\Sigma \cup \Sigma^{-1}$ is a Sidon set, applying first the Pisier inequality and then Khintchine inequality we get a constant C, depending only on $S\left(\Sigma \cup \Sigma^{-1}\right)$ such that, for all α and all N,

$$
\left\|f_{1}\right\|_{L_{1}} \geqslant \frac{1}{\sqrt{2} C \alpha} \quad \text { since } \quad f_{1}=\frac{i}{2 \alpha \sqrt{N}} \sum_{1 \leqslant j \leqslant N}\left(\gamma_{j}+\gamma_{j}^{-1}\right)
$$

To get an upper bound of the "remainder", note that $\varphi(b) \leqslant L_{\varphi} /\left(4 \alpha^{2}\right)$, so

$$
\sum_{k \geqslant 3 \text { odd }}(\varphi(b)+k \varphi(a))\left\|f_{k}\right\|_{2} \leqslant\left(\frac{L_{\varphi}}{4 \alpha^{2}}+\varphi(a)\right) \sum_{k \geqslant 3 \text { odd }} k\left\|f_{k}\right\|_{L_{2}}
$$

It is therefore enough to see that the last sum is of the order α^{-3}. Using that $k!>2^{k}$ for $k>3$, we deduce that for $\alpha>1$ it can be bounded by

$$
\sum_{k \geqslant 3 \text { odd }} \frac{k}{\alpha^{k}} \sqrt{\frac{1}{2^{k} k!}} \leqslant \frac{\sqrt{3}}{4 \alpha^{3}}+\sum_{k=2}^{\infty} \frac{2 k+1}{(2 \alpha)^{2 k+1}}=\frac{\sqrt{3}}{4 \alpha^{3}}+\frac{20 \alpha^{2}-3}{8 \alpha^{3}\left(4 \alpha^{2}-1\right)^{2}}
$$

Note that the sum of the second series is, except for a factor of $1 /(2 \alpha)$, the derivative of $\sum_{k=2}^{\infty} t^{2 k+1}=t^{5} /\left(1-t^{2}\right)$ evaluated at $t=1 /(2 \alpha)$. Now, for $\alpha>1$, this yields

$$
\sum_{k \geqslant 3 \text { odd }} k\left\|f_{k}\right\|_{L_{2}} \leqslant \frac{\sqrt{3}}{4 \alpha^{3}}+\frac{17}{72 \alpha^{3}} \leqslant \frac{1}{\alpha^{3}}
$$

Combining,

$$
\|\mho(f)\|_{L_{1}} \geqslant \frac{\varphi(a)}{\sqrt{2} C \alpha}-\frac{\varphi(a)}{\alpha^{3}}-\frac{L_{\varphi}}{4 \alpha^{5}}=\frac{\varphi(a)}{\sqrt{2} \alpha} \overbrace{\left[\frac{1}{C}-\frac{\sqrt{2}}{\alpha^{2}}\right]}^{(\star)}-\frac{L_{\varphi}}{4 \alpha^{5}} .
$$

Thus, we only need to take α such that $(\star)>0$ and then let $N \rightarrow \infty$ (hence $a, \varphi(a) \rightarrow \infty)$. This ends the proof under assumption (a \dagger).

If, instead, one assumes ($\mathrm{a} \ddagger$) the imaginary part of $\mho f$ is

$$
\sum_{k \leqslant N \text { odd }} f_{k} \varphi\left(\log \left(\|f\|_{L_{2}}(\alpha \sqrt{N})^{k}\right)\right)
$$

One then has

$$
\|\mho(f)\|_{L_{1}} \geqslant \varphi(c+d)\left\|f_{1}\right\|_{L_{1}}-\sum_{k \geqslant 3 \text { odd }}(\varphi(c)+k \varphi(d))\left\|f_{k}\right\|_{2},
$$

where $c=\log \|f\|_{2}$, thus $\varphi(c) \leqslant L_{\varphi} /\left(2 \alpha^{2}\right)$, and $d=\log (\alpha \sqrt{N})$ for each $\alpha \geqslant 1$. Using the estimates in (a \ddagger) an entirely analogous reasoning yields unboundedness of \mho : first, we have

$$
f_{1}=\frac{1}{\alpha \sqrt{N}} \sum_{j \leqslant N} \gamma_{j} \quad \Longrightarrow \quad\left\|f_{1}\right\| \geqslant \frac{1}{\alpha C}
$$

where C depends only on the Sidon constant of $\Sigma=\Sigma^{-1}$. The other inequality we need is

$$
\begin{aligned}
\sum_{k \geqslant 3 \text { odd }} k\left\|f_{k}\right\|_{2} & \leqslant \frac{3}{\sqrt{6} \alpha^{3}}+\sum_{k \geqslant 5 \text { odd }} \frac{k}{\alpha^{k} \sqrt{k!}} \\
& \leqslant \frac{3}{\sqrt{6} \alpha^{3}}+\sum_{k \geqslant 5 \text { odd }} \alpha^{-k}=\frac{3}{\sqrt{6} \alpha^{3}}+\frac{1}{\alpha^{3}\left(\alpha^{2}-1\right)} .
\end{aligned}
$$

Combining,

$$
\|\mho(f)\|_{L_{1}} \geqslant \frac{\varphi(d)}{\alpha}[\overbrace{\frac{1}{C}-\frac{1}{\alpha^{2}}\left(\frac{3}{\sqrt{6}}+\frac{1}{\alpha^{2}-1}\right)}^{(\star \star)}]-\frac{L_{\varphi}}{2 \alpha^{5}}\left(\frac{3}{\sqrt{6}}+\frac{1}{\alpha^{2}-1}\right)
$$

and taking α so that $(* *)>0$ ends the proof.
The hypothesis of concavity on φ in Theorem 3.4 can be slightly weakened. Let us say that $\varphi \in \operatorname{Lip}$ is essentially concave if it is non-negative and concave (hence non-decreasing) on some interval $[c, \infty$). Typical examples are $t \mapsto a t^{\alpha}-b t^{\beta}$ for $0<\beta<\alpha<1$ and $a, b>0$, as can be seen by looking at the second derivative. It is clear that if $\varphi, \widetilde{\varphi} \in \operatorname{Lip}$ satisfy $\sup _{t \geqslant 0}|\varphi(t)-\widetilde{\varphi}(t)|<\infty$, then the corresponding Kalton-Peck maps $\Omega, \widetilde{\Omega}: \ell_{2}^{0}(\Gamma) \rightarrow \ell_{2}(\Gamma)$ are strongly equivalent and the same is true for the L_{1}-centralizers $\mho^{p q}$ and $\widetilde{\mho}^{p q}$ (with the obvious meaning) for $1 \leqslant q \leqslant 2 \leqslant$ $p \leqslant \infty$. This observation and the following lemma show that Theorem 3.4 holds for essentially concave φ.

Lemma 3.6. - For every essentially concave $\varphi \in \operatorname{Lip}$ there exists a nonnegative, concave $\widetilde{\varphi} \in \operatorname{Lip}$ and a constant M such that $|\varphi(t)-\widetilde{\varphi}(t)| \leqslant M$ for all $t \geqslant 0$.

Proof. - Assume that φ is non-negative and concave on $[a, \infty)$, with $L_{\varphi} \leqslant 1$. If $\varphi(a) / a \geqslant 1$ put

$$
\widetilde{\varphi}(t)= \begin{cases}(\varphi(a) / a) t & \text { if } t \in[0, a] \\ \varphi(t) & \text { otherwise }\end{cases}
$$

If, however, $\varphi(a) / a<1$ then there is a unique $b \in(0, a)$ such that the line determined by the points $(b, 0)$ and $(a, \varphi(a))$ has slope 1 . The function defined by

$$
\phi(t)= \begin{cases}0 & \text { if } t \in[0, b] \\ t+\varphi(a)-a & \text { if } t \in[b, a] \\ \varphi(t) & \text { otherwise }\end{cases}
$$

is non-negative, concave on $[b, \infty)$ and has $L_{\phi} \leqslant 1$, since it is 1-Lipschitz in each interval $[0, b],[b, a],[a, \infty)$. Obviously

$$
\sup _{t \geqslant 0}|\phi(t)-\varphi(t)|=\sup _{0 \leqslant t \leqslant a}|\phi(t)-\varphi(t)|<\infty .
$$

Finally, define $\widetilde{\varphi}(t)=\phi(t+b)$ for $t \geqslant 0$ and check.

3.2. Other "quasimultipliers"

We now consider the existence of extensions of L_{1}-modules $0 \rightarrow L_{q} \rightarrow$ $Z \rightarrow L_{p} \rightarrow 0$ for arbitrary $1 \leqslant p, q \leqslant \infty$. Our conclusion will be that they exist as long as the general theory allows it (see Proposition 3.8 below).
Let $\Sigma \subset \Gamma$ be a Sidon set. Combining (3.1) with Khintchine inequality it is clear that the "summation" operator $S: \ell_{2}(\Sigma) \rightarrow L_{q}(G)$ given by $S(c)=$ $\sum_{\gamma \in \Sigma} c(\gamma) \gamma$ is an isomorphic embedding for finite q. An obvious duality argument then shows that the operator $M: L_{p}(G) \rightarrow \ell_{2}(\Sigma)$ given by $M(f)=\left.\widehat{f}\right|_{\Sigma}$ is bounded and surjective for $p>1$ and also that $M S=\mathbf{I}_{\ell_{2}(\Sigma)}$, so that the range of S is a complemented subspace of $L_{q}(G)$ isomorphic to $\ell_{2}(\Sigma)$ for $1<p<\infty$.

Proposition 3.7. - Let $\Sigma \subset \Gamma$ be a Sidon set and let $\Omega: \ell_{2}^{0}(\Sigma) \rightarrow$ $\ell_{2}(\Sigma)$ be a nontrivial $\ell_{\infty}(\Sigma)$-centralizer. Given $p \in(1, \infty], q \in[1, \infty)$ the $\operatorname{map} \mho_{\Sigma}^{p q}: L_{p}^{0}(G) \rightarrow L_{q}(G)$ defined by $\mho_{\Sigma}^{p q}(f)=S \Omega\left(\left.\widehat{f}\right|_{\Sigma}\right)$ is a nontrivial $L_{1}(G)$-centralizer.

Sketch of the proof. - Lemma 3.1(a) implies that $\mho_{\Sigma}^{p q}$ is an L_{1}-centralizer. Indeed, if we define $\Omega_{\Sigma}: \ell_{2}^{0}(\Gamma) \rightarrow \ell_{2}(\Gamma)$ taking $\Omega_{\Sigma}(c)$ as the only element of $\ell_{2}(\Gamma)$ which vanishes outside Σ and agrees with $\Omega\left(\left.c\right|_{\Sigma}\right)$ on Σ, then Ω_{Σ} is an $\ell_{\infty}(\Gamma)$-centralizer and $\mho_{\Sigma}^{p q}$ agrees with $\mathscr{F}^{-1} \circ \Omega_{\Sigma} \circ \mathscr{F}$.

The nontrivial character of $\mho_{\Sigma}^{p q}$ is clear when $1<p, q<\infty$: if $\mho_{\Sigma}^{p q}$ is trivial as a quasilinear map then so is the composition

$$
\Omega: \ell_{2}^{0}(\Sigma) \frac{S}{\text { bounded }}>L_{p}^{0}(G) \xrightarrow{V_{\Sigma}^{p q}}>L_{q}(G) \xrightarrow[\text { bounded }]{M}>\ell_{2}(\Sigma),
$$

which is not the case.
For finite p and $q=1$ one can use the following argument: since S : $\ell_{2}(\Sigma) \rightarrow L_{1}(G)$ is bounded it suffices to see that $S \circ \Omega=\mho_{\Sigma}^{p q} \circ S$ is not trivial from $\ell_{2}(\Sigma)$ to $L_{1}(G)$. But S is an (isomorphic) embedding and so $Z(\Omega)$ is isomorphic to a subspace of $Z(S \circ \Omega)$: just map each (c, d) in $\ell_{2}(\Sigma) \oplus_{\Omega} \ell_{2}^{0}(\Sigma)$ to $(S(c), d)$ in $L_{1}(G) \oplus_{S \circ \Omega} \ell_{2}^{0}(\Sigma)$. This implies that $Z(S \circ \Omega)$ cannot be isomorphic to the direct sum $L_{1}(G) \oplus \ell_{2}(\Sigma)$ since this space has cotype 2 and $Z(\Omega)$ does not.

The case $p=\infty, 1<q<\infty$ follows by duality. The case $p=\infty$, $q=1$ (which is closely related to the material of Section 3 and implies all cases) follows from the proof of [5, Theorem 5.1] and requires some skill in absolutely summing operators. The argument is given later in the proof of Proposition 4.3 for the sake of completeness.

These "new" constructions have much less symmetries than that appearing in Section 3.1: by Lemma 3.1 (c), \mho_{Σ} cannot commute with the product by characters unless $\Sigma=\Gamma$, in which case G must be finite. However, \mho_{Σ} commutes with the translations of G if Ω commutes with the unitaries of $\ell_{\infty}(\Sigma)$ (see Lemma 3.1 (b) and note that in this case the map Ω_{Σ} introduced in the proof of Proposition 3.7 commutes with the unitaries of $\ell_{\infty}(\Gamma)$).

Finally, the case where $p=1$ or $q=\infty$ is resolved with quite general arguments:

Proposition 3.8. - One has $\operatorname{Ext}_{L_{1}}(X, Y)=0$ in the following cases:
(a) $X=L_{1}$ and Y is a dual module, in particular when $Y=L_{p}$ for $p \in(1, \infty]$.
(b) $X=Y=L_{1}$.
(c) X is any L_{1}-module and $Y=L_{\infty}$.
(d) $X=L_{p}$ for $p \in[1, \infty)$ and $Y=C(G)$, or $X=Y=C(G)$.

Proof.
(a). - It is clear: if Y is a dual Banach space, then each exact sequence of Banach spaces $0 \rightarrow Y \rightarrow Z \rightarrow L_{1} \rightarrow 0$ splits (in the category of Banach spaces) by Lindenstrauss' lifting [28] and then the amenability of L_{1} implies the same in the category of L_{1}-modules.
(b). - We know from Lemma 2.2 that each self-extension of L_{1} comes from a centralizer $\Phi: L_{1}^{0} \rightarrow L_{1}$. If we consider L_{1} as a submodule of $M(G)$, then the composition

$$
L_{1}^{0} \xrightarrow{\Phi} L_{1} \xrightarrow{\text { "inclusion" }} M(G)
$$

is a centralizer, which is necessarily trivial since $\operatorname{Ext}_{L_{1}}\left(L_{1}, M(G)\right)=0$ by the previous case. Hence there is a morphism $\phi: L_{1}^{0} \rightarrow M(G)$ such that $\|\Phi(f)-\phi(f)\|_{M(G)} \leqslant M\|f\|_{L_{1}}$ for every $f \in L_{1}^{0}$. By Lemma 2.3, ϕ takes values in L_{1} and so $\Phi-\phi$ is bounded from L_{1}^{0} to L_{1}. This shows that $\operatorname{Ext}_{L_{1}}\left(L_{1}, L_{1}\right)=0$.
(c). - Repeat the proof of (a) taking into account that every exact sequence of Banach spaces $0 \rightarrow L_{\infty} \rightarrow Z \rightarrow X \rightarrow 0$ splits (since L_{∞} is an injective Banach space) and the Riesz representation theorem: L_{∞} is the dual of the L_{1}-module L_{1} under the pairing $\langle f, g\rangle=\int_{G} f g \mathrm{~d} x$.
(d). - It is analogous to (b), replacing L_{1} by L_{p} or $C(G)$ and $M(G)$ by $L_{\infty}(G)$.

It is not true in general that $\operatorname{Ext}_{L_{1}}(X, M(G))=0$ implies $\operatorname{Ext}_{L_{1}}\left(X, L_{1}\right)=$ 0 . To see this, consider the inclusion $L_{1} \rightarrow M(G)$, which has complemented
range thanks to Lebesgue decomposition theorem (see [11, Theorem 4.3.2]), i.e., the sequence

$$
\begin{equation*}
0 \longrightarrow L_{1} \longrightarrow M(G) \longrightarrow M(G) / L_{1} \longrightarrow 0 \tag{3.5}
\end{equation*}
$$

splits in the category of Banach spaces. Set $X=M(G) / L_{1}$. Then X is an \mathscr{L}_{1}-space and so $\operatorname{Ext}_{L_{1}}(X, M(G))=0$ since $\operatorname{Ext}(X, M(G))=0$ (again by Lindenstrauss' lifting) and L_{1} is amenable. However $\operatorname{Ext}_{L_{1}}\left(X, L_{1}\right) \neq 0$ because (3.5) does not split in the category of L_{1}-modules. Indeed, if P : $M(G) \rightarrow L_{1}$ were an L_{1}-module projection and $f=P\left(\delta_{e}\right)$, where δ_{e} is the unit mass at the unit of G, then $g=P g=P\left(g * \delta_{e}\right)=g * f$ for every $g \in L_{1}$. Therefore, L_{1} has a unit element with respect to convolution, which cannot be unless G is discrete (hence finite).

The algebra L_{1} itself is not a projective module, as can be seen in the following generic examples. Let fin (Γ) be the family of finite subsets of Γ and for each $F \in \operatorname{fin}(\Gamma)$ let $P_{F} \subset L_{1}$ be the subspace of polynomials spanned by F. Consider the amalgam $\ell^{1}\left(\operatorname{fin}(\Gamma), P_{F}\right)$ with the obvious structure of L_{1}-module: $a *\left(f_{F}\right)_{F}=\left(a * f_{F}\right)_{F}$. The sum operator $\operatorname{sum}\left(f_{F}\right)_{F}=\sum_{F} f_{F}$ is a surjective homomorphism from $\ell^{1}\left(\operatorname{fin}(\Gamma), P_{F}\right)$ to L_{1} and we have an extension

$$
0 \longrightarrow \operatorname{ker}(\operatorname{sum}) \longrightarrow \ell^{1}\left(\operatorname{fin}(\Gamma), P_{F}\right) \xrightarrow{\text { sum }} L_{1} \longrightarrow 0
$$

This sequence does not split because the space L_{1}, which lacks the RadonNikodým property, cannot be isomorphic to a subspace of $\ell^{1}\left(\operatorname{fin}(\Gamma), P_{F}\right)$, which has it.

A related example is the following. With the same notations as before, consider fin (Γ) directed by inclusion and the amalgam of bounded families $c\left(\operatorname{fin}(\Gamma), P_{F}\right)=\left\{\left(f_{F}\right): \lim _{F} f_{F}\right.$ exists in $\left.L_{1}\right\}$ with the sup norm and the obvious L_{1}-module structure. Since the polynomials are dense in L_{1} the limit operator $\lim : c\left(\operatorname{fin}(\Gamma), P_{F}\right) \rightarrow L_{1}$, which is clearly a homomorphism, is onto and we have an extension

$$
0 \longrightarrow c_{0}\left(\operatorname{fin}(\Gamma), P_{F}\right) \longrightarrow c\left(\operatorname{fin}(\Gamma), P_{F}\right) \xrightarrow{\lim } L_{1} \longrightarrow 0
$$

where $c_{0}\left(\operatorname{fin}(\Gamma), P_{F}\right)=\left\{\left(f_{F}\right): \lim _{F} f_{F}=0\right\}$. This sequence splits in the Banach category because L_{1} has the BAP (the argument is given by Lusky in the proof of [30, Lemma 3.3]). However, if $S: L_{1} \rightarrow c\left(\operatorname{fin}(\Gamma), P_{F}\right)$ were a right inverse homomorphism for the limit map, then writing $S(f)=$ $\left(S_{F}(f)\right)$ one easily infers that $S_{F}(f)=\sum_{\gamma \in F} \widehat{f}(\gamma) \gamma$ and since $\left\|S_{F}\right\| \leqslant\|S\|$ for all finite $F \subset \Gamma$ by the very definition of the norm in $c\left(\operatorname{fin}(\Gamma), P_{F}\right)$ one easily concludes that G is finite. Indeed, if G is infinite, pick an infinite Sidon set $\Sigma \subset \Gamma$ and observe that H, the closed linear span of Σ in
L_{1}, is isomorphic to $\ell_{2}(\Sigma)$. If $\sup \left\{\left\|S_{F}\right\|: F \in \operatorname{fin}(\Sigma)\right\}$ is finite, then H would be complemented in L_{1}, which cannot be: no infinite-dimensional complemented subspace of an $L_{1}(\mu)$-space is reflexive.

3.3. Quasilinear maps that commute with translations and L_{1}-centralizers

In this section we prove that L_{∞}-centralizers on L_{p} that commute with translations are also L_{1}-centralizers when $1<p<\infty$. Let once again G be a compact abelian group and write $L_{p}^{\infty}=L_{p} \cap L_{\infty}$ for the subspace of all essentially bounded functions in L_{p}, which is a dense L_{∞}-submodule of L_{p} for all p as well as an L_{1}-submodule for $1 \leqslant p<\infty$. As the reader can imagine we say that a (quasilinear) map $\Phi: L_{p}^{\infty} \rightarrow L_{p}$ commutes with translations if $\Phi\left(f_{y}\right)=(\Phi f)_{y}$ for every $y \in G$ and every $f \in L_{p}^{\infty}$. The simplest examples are provided by the "continuous" versions of the Kalton-Peck maps: if $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ is a Lipschitz funtion vanishing at 0 we define $\Phi(f)=f \varphi\left(\log \left(\|f\|_{p} /|f|\right)\right)$ pointwise. These maps are actually $L_{\infty^{-}}$ centralizers and it is not hard to see that Φ is trivial if and only if φ is bounded on $(-\infty, 0]$. See [21, Theorem 3.1] for more general examples and note that, in view of the results in [2], there is no point in considering two different exponents p, q in the ensuing result.

Proposition 3.9. - Let $1<p<\infty$. Every L_{∞}-centralizer $\Phi: L_{p}^{\infty} \rightarrow$ L_{p} that commutes with translations is also an L_{1}-centralizer and, therefore, $Z(\Phi)$ is both an L_{∞}-module and an L_{1}-module.

Sketch of the Proof. - The proof consists in showing that $L_{p} \oplus_{\Phi} L_{p}^{\infty}$ is an L_{1}-module under the product $a *(g, f)=(a * g, a * f)$. This implies that Φ is an L_{1}-centralizer; see Lemma 2.1. We proceed as in the standard proofs of the inequality $\|a * f\|_{B} \leqslant\|a\|_{1}\|f\|_{B}$ when B is a homogenenous Banach space, using vector-valued integration; see for instance Katznelson [24, p. 203].

Let us first check that:
(a) The inclusion $L_{p} \oplus_{\Phi} L_{p}^{\infty} \rightarrow L_{1} \oplus_{1} L_{1}$ is continuous.
(b) The quasinorm $\|(\cdot, \cdot)\|_{\Phi}$ is equivalent to a norm on $L_{p} \oplus_{\Phi} L_{p}^{\infty}$.
(c) $\left(g_{y}, f_{y}\right) \rightarrow\left(g_{x}, f_{x}\right)$ in $L_{p} \oplus_{\Phi} L_{p}^{\infty}$ as $y \rightarrow x$ in G.

To see (a) pick $1<q<p$ and consider Φ as an L_{∞}-centralizer $L_{p}^{\infty} \rightarrow L_{q}$. By the main result of [2], Φ is then trivial and since every morphism of L_{∞} modules $L_{p}^{\infty} \rightarrow L_{q}$ has the form $f \mapsto h f$ for some $h \in L_{q}$ we have
$\|\Phi(f)-h f\|_{q} \leqslant M\|f\|_{p}$ for some constant M. Averaging over G, using the symmetries of Φ and the reflexivity of L_{q} one obtains that $\|\Phi(f)-c f\|_{q} \leqslant$ $M\|f\|_{p}$, where $c=\int_{G} h(x) \mathrm{d} x$. This, together with the fact that the $L_{p^{-}}$ norms are decreasing with respect to p, is enough to conclude:

$$
\begin{aligned}
\|g\|_{1}+\|f\|_{1} & \leqslant\|g-\Phi f\|_{1}+\|\Phi f\|_{1}+\|f\|_{1} \\
& \leqslant\|g-\Phi f\|_{p}+(M+|c|)\|f\|_{p}+\|f\|_{p} \\
& \leqslant(M+|c|+1)\|(g, f)\|_{\Phi}
\end{aligned}
$$

(b) is clear since L_{p} is a \mathscr{K}-space for $p>1$. To prove (c) we first observe that since $(g, f) \mapsto\left(g_{y}, f_{y}\right)$ is an isometric automorphism of $L_{p} \oplus_{\Phi} L_{p}^{\infty}$ it suffices to consider the case in which x is the unit of G and prove that $\left(g_{y}, f_{y}\right) \rightarrow(g, f)$ for (g, f) in any dense subset of $L_{p} \oplus_{\Phi} L_{p}^{\infty}$. Next, we observe that the points (g, f) with f continuous form a dense set: pick $(g, f) \in L_{p} \oplus_{\Phi} L_{p}^{\infty}$ and $\varepsilon>0$. Take $f^{\prime} \in C(G)$ such that $\left\|f-f^{\prime}\right\|<\varepsilon$ and then set $g^{\prime}=g-\Phi\left(f-f^{\prime}\right)$. We have $\left\|(g, f)-\left(g^{\prime}, f^{\prime}\right)\right\|_{\Phi}=\| g-g^{\prime}-$ $\Phi\left(f-f^{\prime}\right)\left\|_{p}+\right\| f-f^{\prime} \|_{p}<\varepsilon$. To finish, observe that Φ is bounded from L_{∞} to L_{p} (this is almost trivial) and so $\|\Phi(f)\|_{p} \leqslant C\|f\|_{\infty}$ for some constant C independent of f. Take $(g, f) \in L_{p} \oplus_{\Phi} L_{p}^{\infty}$ with f continuous. One has

$$
\left\|\left(g_{y}, f_{y}\right)-(g, f)\right\|_{\Phi}=\left\|g_{y}-g-\Phi\left(f_{y}-f\right)\right\|_{p}+\left\|f_{y}-f\right\|_{p}
$$

Now, if y tends to the identity of G, then $\left\|g_{y}-g\right\|_{p}$ and $\left\|f_{y}-f\right\|_{p}$ go to zero and $\left\|\Phi\left(f_{y}-f\right)\right\|_{p} \leqslant C\left\|f_{y}-f\right\|_{\infty} \rightarrow 0$ since f is uniformly continuous.

To complete the proof, pick $f \in L_{p}^{\infty}, g \in L_{p}, a \in L_{1}$. We want to see that

$$
\begin{equation*}
(a * g, a * f)=\int_{G} a(y)\left(g_{y}, f_{y}\right) \mathrm{d} y \tag{3.6}
\end{equation*}
$$

where the integral is taken in $Z(\Phi)$ in the Bochner sense. The function $y \in$ $G \mapsto a(y)\left(g_{y}, f_{y}\right) \in L_{p} \oplus_{\Phi} L_{p}^{\infty}$ is measurable since so is a and $y \mapsto\left(g_{y}, f_{y}\right)$ is continuous. To check integrability, let $\|(\cdot, \cdot)\|$ be a norm on $L_{p} \oplus_{\Phi} L_{p}^{\infty}$ such that $\|(\cdot, \cdot)\| \leqslant\|(\cdot, \cdot)\|_{\Phi} \leqslant M\|(\cdot, \cdot)\|$. Then

$$
\begin{aligned}
\int_{G}\left\|a(y)\left(g_{y}, f_{y}\right)\right\| \mathrm{d} y & =\int_{G}|a(y)|\left\|\left(g_{y}, f_{y}\right)\right\| \mathrm{d} y \\
& \leqslant \int_{G}|a(y)|\left\|\left(g_{y}, f_{y}\right)\right\|_{\Phi} \mathrm{d} y \\
& =\|a\|_{L_{1}}\|(g, f)\|_{\Phi}
\end{aligned}
$$

Thus, the integral in (3.6) makes sense in $Z(\Phi)$ and $\left\|\int_{G} a(y)\left(g_{y}, f_{y}\right) \mathrm{d} y\right\|_{\Phi} \leqslant$ $M\|a\|_{L_{1}}\|(g, f)\|_{\Phi}$. Finally, as the formal inclusion of $L_{p} \oplus_{\Phi} L_{p}^{\infty}$ into $L_{1} \oplus L_{1}$
is continuous one has

$$
\begin{aligned}
\overbrace{\int_{G} a(y)\left(g_{y}, f_{y}\right) \mathrm{d} y}^{\text {integration in } Z(\Phi)} & =\overbrace{\int_{G} a(y)\left(g_{y}, f_{y}\right) \mathrm{d} y}^{\text {integration in } L_{1} \oplus L_{1}}=(\overbrace{\int_{G} a(y) g_{y} \mathrm{~d} y}^{\text {integration in } L_{1}} \overbrace{\int_{G} a(y) f_{y} \mathrm{~d} y}^{\text {integration in } L_{1}}) \\
& =(a * g, a * f) .
\end{aligned}
$$

We do not know if every quasilinear map $L_{p}^{\infty} \rightarrow L_{q}$ that commutes with translations is an L_{1}-centralizer for $1<p, q<\infty$.

4. L_{1}-centralizers on the Hardy classes

When specialized to $G=\mathbb{T}$ the preceding constructions provide extensions of the Hardy classes in the category of L_{1}-modules. We refer the reader to Duren [14, Chapter 2] for the definition and properties of the Hardy classes H_{p}, and much more. For our purposes we can define

$$
H_{p}=\left\{f \in L_{p}: \widehat{f}(n)=0 \text { for all } n<0\right\} \quad(1 \leqslant p \leqslant \infty)
$$

and we set $H_{p}^{0}=H_{p} \cap L_{p}^{0}$. If $1 \leqslant p<\infty$, then H_{p} agrees with the closure of the ordinary polynomials $a_{0}+a_{1} z+\cdots+a_{k} z^{k}($ with $k \geqslant 0)$ in $L_{p}=L_{p}(\mathbb{T})$. For $p=\infty$ the closure of the polynomials in $L_{\infty}(\mathbb{T})$ is the disc algebra, denoted by A, which is much smaller than H_{∞}.

Throughout this section we denote by $\gamma_{n}: \mathbb{T} \rightarrow \mathbb{T}$ the character defined by $\gamma_{n}(z)=z^{n}$.

Proposition 4.1.

(a) Let $\Phi: C^{0}(\mathbb{T}) \rightarrow L_{1}$ be a quasilinear map such that $\Phi\left(\gamma_{n} f\right)=$ $\gamma_{n} \Phi(f)$ for every $n \in \mathbb{Z}$ and every $f \in C^{0}(\mathbb{T})$. Then Φ is bounded if and only if its restriction to A^{0} is bounded.
(b) Let $\Phi: A^{0} \rightarrow L_{1}$ be a quasilinear map such that $\Phi\left(\gamma_{n} f\right)=\gamma_{n} \Phi(f)$ for every $n \geqslant 0$ and every $f \in A^{0}$. Then Φ is trivial if and only if it is bounded.

Proof.
(a). - Actually $\left\|\Phi: C^{0}(\mathbb{T}) \rightarrow L_{1}\right\|=\left\|\Phi: A^{0} \rightarrow L_{1}\right\|$. Indeed, for each $f \in C^{0}(\mathbb{T})$ there is $k \in \mathbb{N}$ such that $\gamma_{k} f \in A^{0}$. Now, $\|\Phi(f)\|_{1}=$ $\left\|\gamma_{k} \Phi(f)\right\|_{1}=\left\|\Phi\left(\gamma_{k} f\right)\right\|_{1}$ and $\|f\|_{\infty}=\left\|\gamma_{k} f\right\|_{\infty}$.
(b). - Assume Φ trivial, so that $\|\Phi(f)-L(f)\|_{1} \leqslant K\|f\|_{\infty}$ for some linear map L, a constant K, and all $f \in A^{0}$. We consider L_{1} inside $M(\mathbb{T})=$ $C(\mathbb{T})^{*}$. Let $m \in \ell_{\infty}\left(\mathbb{Z}_{+}\right)^{*}$ be an invariant mean for the semigroup \mathbb{Z}_{+}(AKA
a Banach limit). Then, since $\left\|\Phi(f)-\gamma_{n}^{-1} L\left(\gamma_{n} f\right)\right\|_{1} \leqslant K\|f\|_{\infty}$, if we define $\Lambda: A^{0} \rightarrow M(\mathbb{T})$ by letting $\langle\Lambda(f), g\rangle=m_{n}\left(\left\langle\gamma_{n}^{-1} L\left(\gamma_{n} f\right), g\right\rangle\right)$ for $g \in C(\mathbb{T})$, it is easily seen that $\|\Phi-\Lambda\| \leqslant K$ and that $\gamma_{n} \Lambda(f)=\Lambda\left(\gamma_{n} f\right)$ for every $n \geqslant 0$ and all $f \in A^{0}$, from where it follows that Λ has the form $\Lambda(f)=f \mu$, with $\mu=\Lambda\left(1_{\mathbb{T}}\right)$ and that Λ, and thus Φ, is bounded.

In the following result we say that an L_{∞}-centralizer $\Phi: L_{p}^{\infty} \rightarrow L_{p}$ is symmetric if for every measure preserving bijection σ of \mathbb{T} one has $\Phi(f \circ \sigma)=(\Phi f) \circ \sigma$ for all $f \in L_{p}^{\infty}$.

Theorem 4.2 .

(a) Let $\Sigma \subset \mathbb{Z}_{+}$be a Sidon set and let $\Omega: \ell_{2}^{0}(\Sigma) \rightarrow \ell_{2}(\Sigma)$ be a nontrivial $\ell_{\infty}(\Sigma)$-centralizer. Given $p \in(1, \infty), q \in[1, \infty)$, the map $\mho_{\Sigma}^{p q}: H_{p}^{0} \rightarrow H_{q}$ defined by $\mho_{\Sigma}^{p q}(f)=S_{q} \Omega\left(\left.\widehat{f}\right|_{\Sigma}\right)$ is a nontrivial L_{1} centralizer.
(b) Let $\Omega: L_{p}^{0} \rightarrow L_{p}$ be a symmetric L_{∞}-centralizer, $1<p<\infty$. Then there is an L_{1}-centralizer $\Omega_{+}: H_{p}^{0} \rightarrow H_{p}$ such that $\| \Omega(f)-$ $\Omega_{+}(f)\left\|_{p} \leqslant M\right\| f \|_{p}$ for some constant M and all $f \in H_{p}^{0}$. Any other quasilinear map satisfying the corresponding estimate is strongly equivalent to Ω_{+}. Moreover, Ω_{+}is trivial (as a quasilinear map) if and only if Ω is trivial.
(c) Let φ be an essentally concave unbounded Lipschitz function and let $\Omega: \ell_{2}^{0}(\mathbb{N}) \rightarrow \ell_{2}(\mathbb{N})$ be the induced Kalton-Peck map. Then, for every $1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty$, the map $\mho^{p q}: H_{p}^{0} \rightarrow H_{q}$ defined by $\mho^{p q}(f)=S_{q} \Omega(\widehat{f})$ is a nontrivial L_{1}-centralizer.

Proof.

(a). - It is exactly as the corresponding cases of Proposition 3.7; note that we are now assuming $1<p<\infty$.
(b). - The key point is a result of Kalton stating that the restriction of such an Ω to H_{p}^{0} is "almost" H_{p}-valued in the sense that there is a constant M such that for every $f \in H_{p}^{0}$ one has $\|\Omega(f)-g\|_{p} \leqslant M\|f\|_{p}$ for some $g \in H_{p}$, see [21, Theorem 7.3]. Since the Riesz projection $R(f)=$ $\sum_{n \geqslant 0} \widehat{f}(n) \gamma_{n}$ is a bounded L_{1}-homomorphism on L_{p} for $p \in(1, \infty)$, it follows that $\Omega_{+}(f)=R \Omega(f)$ is an L_{1}-centralizer from H_{p}^{0} to H_{p}. Next, we show that if Ω_{+}is trivial, then so is Ω. Clearly, Ω_{+}is trivial if and only if $\Omega: H_{p}^{0} \rightarrow L_{p}$ is. Put $\widetilde{H}_{p}=\operatorname{ker} R=\left\{f \in L_{p}: \widehat{f}(k)=0\right.$ for all $\left.k \geqslant 0\right\}$ and observe that the map $U \in L\left(L_{p}\right)$ defined by $(U f)(z)=\bar{z} f(\bar{z})$ is an isometric automorphism (involution in fact) of L_{p} since it arises as the composition with the measure-preserving map $z \in \mathbb{T} \mapsto \bar{z} \in \mathbb{T}$ followed by multiplication by a function of modulus one. Moreover U maps H_{p} onto
\widetilde{H}_{p} : just observe that $U\left(\gamma_{n}\right)=\gamma_{-n-1}$ for $n \in \mathbb{Z}$, and that H_{p} is spanned by the characters γ_{n} with $n \geqslant 0$, while \widetilde{H}_{p} is spanned by the characters γ_{n} with $n<0$. The hypotheses on Ω imply that $U \circ \Omega \approx \Omega \circ U$ and thus $\left.\Omega\right|_{H_{p}^{0}}$ is trivial if and only if $\left.\Omega\right|_{\tilde{H}_{p}^{0}}$ is trivial. Since $\Omega \approx \Omega \circ R+\Omega \circ(\mathbf{I}-R)$ the proof is done.
(c). - It is a direct consequence of Theorem 3.4 and the preceding proposition.

We remark that the only obstruction to establishing the case $p=\infty$ in the first part of the preceding theorem is that we cannot guarantee the surjectivity of the map $\left.f \in A \mapsto \widehat{f}\right|_{\Sigma} \in \ell_{2}(\Sigma)$ since otherwise one has the following "analytic" version of [5, Proof of Theorem 5.1]:

Proposition 4.3. - Let $0 \rightarrow H \rightarrow Z \rightarrow H^{\prime} \rightarrow 0$ be a nontrivial exact sequence, where H, H^{\prime} are Hilbert spaces. If $J: H \rightarrow L_{1}$ is an embedding and $Q: A \rightarrow H^{\prime}$ is a quotient map, then the extension obtained by taking first pushout with J and then pullback with Q does not split.

Sketch of the proof. - The relevant diagram is

The relevant information is that

- Z does not have cotype 2 (otherwise, the first row splits by the argument in the last three lines of the proof).
- PO has finite cotype (since both L_{1} and H^{\prime} do).

The first point already implies that the second row does not split: the space PO, which contains an isomorphic copy of Z, cannot be isomorphic to $L_{1} \oplus H^{\prime}$, which has cotype 2 .

Assume that the lower sequence splits. Then Q has a lifting $L: A \rightarrow \mathrm{PO}$. Since PO has finite cotype, L is p-summing for some $2<p<\infty([13,11.14$ Theorem] plus [35, III.I, Corollary 13]) and by the Pietsch factorization theorem [13, p. 45] L factors through some $L_{p}(\mu)$ in the form

$$
L: A \xrightarrow{\alpha} L_{p}(\mu) \xrightarrow{\beta} \mathrm{PO}
$$

Now, $Q=\pi \beta \alpha$ and the map $\pi \beta$ is onto, so we have a commutative diagram

Finally since L_{1} has cotype 2 and $L_{p}(\mu)$ has type 2, Maurey's extension theorem [13, p. 246] implies that u extends to an operator $U: L_{p}(\mu) \rightarrow L_{1}$, and the upper row of the preceding diagram splits, which is not the case.

5. A finer analysis based on Cantor's group

In this section we explore the peculiarities of the construction of Section 3.1 for Cantor's group. We will show that the L_{1}-centralizers \mho have a full range of "spatial" symmetries.

Let $\Delta=\{-1,1\}^{\mathbb{N}}$ be Cantor's group and D its dual group. The n-th Rademacher function $r_{n}: \Delta \rightarrow \mathbb{T}$ is just evaluation at $n: r_{n}(t)=t(n)$. It is clear that the Rademachers are characters and actually every character is a finite product of Rademachers, i.e., a Walsh function. Let us denote by fin the set of all finite subsets of \mathbb{N}, including the empty set. Each $a \in$ fin has a character associated with it, namely the Walsh function

$$
\begin{equation*}
w_{a}=\prod_{k \in a} r_{k}, \quad w_{a}(x)=\prod_{k \in a} x(k) \tag{5.1}
\end{equation*}
$$

with $w_{\varnothing}=1_{\Delta}$. One then has $D=\left\{w_{a}: a \in \operatorname{fin}\right\}$, with the discrete topology, and $w_{a} w_{b}=w_{c}$, where $c=a \Delta b$ is the symmetric difference between a and b. We shall identify D and fin when it suits us without further mention.

From now on, Ω denotes a strictly symmetric quasilinear map on $\ell_{2}^{0}(D)$ and $\mho^{p q}: L_{p}^{0}(\Delta) \rightarrow L_{q}(\Delta)$ is as in Section 3.1, that is, $\mho^{p q}(f)=\mathscr{F}^{-1} \Omega(\widehat{f})$ where $1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty$, with \mho^{22} shortened to plain \mho. Recall that, as pure maps, all $\mho^{p q}$ agree. We know that these are nontrivial $L_{1}(\Delta)$ centralizers at least when Ω is the Kalton-Peck map associated to an unbounded essentially concave Lipschitz function.

Note that all characters of Δ have order 2 , so that one is now working on the assumption (\ddagger) in the proof of Theorem 3.4. Thus, taking Σ as the sequence of Rademachers $\left(r_{n}\right)_{n \geqslant 1}$ we can consider the Riesz products

$$
f=\prod_{k=1}^{N}\left(1+\frac{i r_{k}}{\alpha \sqrt{N}}\right)
$$

see (3.4). The characters that can be obtained from $\left\{r_{1}, \ldots, r_{N}\right\}$ are exactly the Walsh functions w_{a} with $a \subseteq\{1, \ldots, N\}$ and the length of w_{a} agrees with $|a|$, the cardinality of a. In this case we can be pretty concrete in the estimation of $\|\mho(f)\|_{L_{1}}$ because in view of Khintchine inequality the value of C in the last inequality of the proof of Theorem 3.4 is $\sqrt{2}=1 / A_{1}$, hence $(\star \star)>0.3$ for $\alpha=2$, so that

$$
\begin{equation*}
\|\mho(f)\|_{L_{1}} \geqslant 0.14 \varphi(\log 2 \sqrt{N})-0.03 \tag{5.2}
\end{equation*}
$$

for all N if φ is concave with $L_{\varphi} \leqslant 1$, in which case $Q\left(\mho^{\infty 1}\right) \leqslant Q(\Omega) \leqslant 8 / e$. Actually, for large values of N we can do it much better because the sum $X_{N}=\sum_{j \leqslant N} r_{j}$ can be seen as a simple one-dimensional random walk, so the expected value $\mathbb{E}\left[\left|X_{N}\right|\right]=\left\|X_{N}\right\|_{L_{1}}$ is exactly $2^{-N} \sum_{0 \leqslant k \leqslant N}|2 k-N|\binom{N}{k}$ and behaves asymptotically like $\sqrt{2 N / \pi}$ (see for instance [15, Chapter 6, p. 70]).

5.1. Localizing the spatial support

In the following result we partially localize the support of a given function on Δ by means of its Fourier coefficients. Take $a \in$ fin, then $\epsilon: a \rightarrow\{ \pm 1\}$ and put $\Delta(a, \epsilon)=\{t \in \Delta: t(k)=\epsilon(k)$ for every $k \in a\}$.

Lemma 5.1. - For $f \in L_{1}(\Delta)$, the following are equivalent:
(1) $\operatorname{supp}(f) \subset \Delta(a, \epsilon)$.
(2) For every $k \in a$ one has $r_{k} f=\epsilon(k) f$.
(3) For every $k \in a$ and every $d \in D$ one has $\widehat{f}(d \Delta\{k\})=\epsilon(k) \widehat{f}(d)$.

Proof. - Obvious, after realizing that it suffices to check the equivalences for $|a|=1$.

Corollary 5.2. - Let $\Omega: \ell_{2}^{0}(D) \rightarrow \ell_{2}(D)$ be a strictly symmetric quasilinear map and let a, ϵ be as before. For every polynomial f such that $\operatorname{supp}(f) \subset \Delta(a, \epsilon)$ one has $\operatorname{supp}(\mho f) \subset \Delta(a, \epsilon)$.

Proof. - This follows from the preceding lemma, taking into account that if Ω is strictly symmetric and if $g(a)=\epsilon g(b)$ for $a, b \in$ fin and $\epsilon= \pm 1$, then $(\Omega g)(a)=\epsilon(\Omega g)(b)$.

Each $a \in$ fin induces a partition of Δ into $2^{|a|}$ clopen sets of equal measure, namely

$$
\begin{equation*}
\Delta=\bigsqcup_{\epsilon \in\{ \pm 1\}^{a}} \Delta(a, \epsilon) \tag{5.3}
\end{equation*}
$$

If X or $X(\Delta)$ is a space of functions on Δ and $S \subset \Delta$ is a clopen set, let us write $X(S)_{0}=\{f \in X: f=0$ off $S\}=\{f \in X: \operatorname{supp} f \subset S\}$. It is clear that each finite partition \mathscr{P} of Δ into clopen sets induces decompositions

$$
L_{p}=\bigoplus_{S \in \mathscr{P}} L_{p}(S)_{0} \quad \text { and } \quad L_{p}^{0}=\bigoplus_{S \in \mathscr{P}} L_{p}^{0}(S)_{0}
$$

in which both direct sums carry the corresponding ℓ_{p}-norm.
Now assume $\Phi: E \rightarrow F$ is a quasilinear map and that we have a decomposition $E=\bigoplus_{i \leqslant k} E_{i}$ so that each $x \in E$ can be written in a unique way as $x=\sum_{i \leqslant k} x_{i}$, with $x_{i} \in E_{i}$ and the projections $x \mapsto x_{i}$ are bounded. Then, if we denote the restriction of Φ to E_{i} by $\Phi_{i}: E_{i} \rightarrow F$, we can define a new quasilinear map $\bigoplus_{i \leqslant k} \Phi_{i}: E=\bigoplus_{i \leqslant k} E_{i} \rightarrow F$ exactly as the reader is figuring out: $\bigoplus_{i \leqslant k} \Phi_{i}\left(\sum_{i \leqslant k} x_{i}\right)=\sum_{i \leqslant k} \Phi_{i}\left(x_{i}\right)$, where $x_{i} \in E_{i}$ for $i \leqslant k$. It is very easy to see that $\left\|\Phi-\bigoplus_{i \leqslant k} \Phi_{i}\right\| \leqslant M$, where the constant M depends on $Q(\Phi)$ and the decomposition. Actually the following lemma, whose proof is included at the request of the referee, shows that one can take $M \leqslant Q(\Phi)\left\lceil\log _{2} k\right\rceil R$, where $\lceil\cdot\rceil$ is the ceiling function and $R=\sup _{\|x\| \leqslant 1} \sum_{i \leqslant k}\left\|x_{i}\right\|$. Furthermore, if E is a \mathscr{K}-space one can replace $\left\lceil\log _{2} k\right\rceil$ by the \mathscr{K}-space constant of E.

Lemma 5.3. - Let $\Phi: X \rightarrow Y$ be a quasilinear map acting between normed spaces. Then, for any $x_{1}, \ldots, x_{k} \in X$ one has

$$
\begin{equation*}
\left\|\Phi\left(\sum_{i \leqslant k} x_{i}\right)-\sum_{i \leqslant k} \Phi\left(x_{i}\right)\right\| \leqslant Q(\Phi)\left\lceil\log _{2} k\right\rceil\left(\sum_{i \leqslant k}\left\|x_{i}\right\|\right) . \tag{5.4}
\end{equation*}
$$

Proof. - One can assume $Q(\Phi)=1$. By adding some zeroes if necessary it suffices to consider the case $k=2^{n}$, which we prove by induction on n. If $n=0$ then $k=1$ and (5.4) is trivial. Assume now that (5.4) holds for $k=2^{n-1}$ and let us check it for $k=2^{n}$. Pick $x_{i} \in X$ for $1 \leqslant i \leqslant 2^{n}$. Put $x^{\prime}=\sum_{1 \leqslant i \leqslant 2^{n-1}} x_{i}, x^{\prime \prime}=\sum_{2^{n-1}<i \leqslant 2^{n}} x_{i}$ and $x=x^{\prime}+x^{\prime \prime}$. Then

$$
\left\|\Phi(x)-\Phi\left(x^{\prime}\right)-\Phi\left(x^{\prime \prime}\right)\right\| \leqslant\left\|x^{\prime}\right\|+\left\|x^{\prime \prime}\right\|
$$

since $Q(\Phi) \leqslant 1$, while the inductive hypothesis yields

$$
\begin{aligned}
\left\|\Phi\left(x^{\prime}\right)-\sum_{1 \leqslant i \leqslant 2^{n-1}} \Phi\left(x_{i}\right)\right\| & \leqslant(n-1) \sum_{1 \leqslant i \leqslant 2^{n-1}}\left\|x_{i}\right\|, \\
\left\|\Phi\left(x^{\prime \prime}\right)-\sum_{2^{n-1}<i \leqslant 2^{n}} \Phi\left(x_{i}\right)\right\| & \leqslant(n-1) \sum_{2^{n-1}<i \leqslant 2^{n}}\left\|x_{i}\right\| .
\end{aligned}
$$

Combining one obtains (5.4) for $k=2^{n}$.

These ideas are quite useful in the study of the maps \mho because they have many symmetries that are compatible with the decompositions induced by the partitions of the form (5.3), as we now see.

Given $a \in D$, consider two choices of signs $\epsilon, \eta \in\{ \pm 1\}^{a}$. If $y \in \Delta$ is defined by

$$
y(n)= \begin{cases}1 & \text { if } n \notin a \tag{5.5}\\ \epsilon(n) \eta(n) & \text { if } n \in a\end{cases}
$$

it is obvious that the (involutive) map $x \mapsto x y^{-1}$ maps $\Delta(a, \epsilon)$ to $\Delta(a, \eta)$ and vice-versa. Therefore, $\operatorname{supp} f \subset \Delta(a, \epsilon) \Longleftrightarrow \operatorname{supp} f_{y} \subset \Delta(a, \eta)$ and $f \mapsto f_{y}$ sends each function supported on $\Delta(a, \epsilon)$ to one supported on $\Delta(a, \eta)$. This implies that if Ω is strictly symmetric then the "chunks" of \mho associated to a partition of the form (5.3) are all basically "equal". Precisely:

Lemma 5.4. - Assume $\Omega: \ell_{2}^{0}(D) \rightarrow \ell_{2}(D)$ is a strictly symmetric quasilinear map. Let $a \in D$ and $\epsilon, \eta \in\{ \pm 1\}^{a}$ be as before and let $\mho_{a, \epsilon}$ and $\mho_{a, \eta}$ be the restriction of \mho to the polynomials supported on $\Delta(a, \epsilon)$ and $\Delta(a, \eta)$, respectively. Then, if y is given by (5.5), one has $\left(\mho_{a, \epsilon}\left(f_{y}\right)\right)_{y}=$ $\mho_{a, \eta}(f)$ for every polynomial f supported on $\Delta(a, \eta)$.

Actually all the maps $\mho_{a, \epsilon}$ are "copies" of the mother map \mho in the sense indicated in Proposition 5.5 below. Indeed, given a, ϵ, let $s: \mathbb{N} \rightarrow \mathbb{N} \backslash a$ be a bijection and set $(\sigma x)(n)=x(s(n))$. Given a function f defined on Δ we define another function $E(f)$ supported on $\Delta(a, \epsilon)$ letting

$$
(E f)(x)= \begin{cases}f(\sigma(x)) & \text { if } x \in \Delta(a, \epsilon) \\ 0 & \text { otherwise }\end{cases}
$$

Observe that E depends not only on a and ϵ but also on s. It is clear that E is multiplicative and that it defines isomorphisms between $L_{p}(\Delta)$ and $L_{p}(\Delta(a, \epsilon))_{0}$ which preserve polynomials for all p. Actually $\|E f\|_{p}=$ $2^{-|a| / p}\|f\|_{p}$ for finite p, as a consequence of the change of variables theorem, and $E: C(\Delta) \rightarrow C(\Delta(a, \epsilon))_{0}$ is a surjective isometry. Let us denote by E_{p} the map E acting on $L_{p}(\Delta)$.

Here is what we wanted to establish:
Proposition 5.5. - Let $1 \leqslant q \leqslant 2 \leqslant p \leqslant \infty$. If $\Omega: \ell_{2}^{0}(D) \rightarrow \ell_{2}$ is strictly symmetric then, for every a and ϵ, one has $E_{q} \circ \mho^{p q} \approx \mho_{a, \epsilon}^{p q} \circ E_{p}$ and, therefore, $\mho_{a, \epsilon}^{p q} \approx E_{q} \circ \mho^{p q} \circ E_{p}^{-1}$.

Sketch of the Proof. - Since E commutes with the inclusions $L_{r}(\Delta) \rightarrow$ $L_{s}(\Delta)$ for $s \leqslant r$ it suffices to do the proof for $p=q=2$. We need to
describe the action of E on the Walsh functions. Since these are products of Rademachers and E is multiplicative we just have to keep track of the Rademachers. Given $x \in \Delta(a, \epsilon)$ and $n \in \mathbb{N}$, one has

$$
\left(E r_{n}\right)(x)=r_{n}(\sigma(x))=(\sigma x)(n)=x(s(n)),
$$

so $E\left(r_{n}\right)=1_{\Delta(a, \epsilon)} r_{s(n)}$ and $E\left(w_{d}\right)=1_{\Delta(a, \epsilon)} w_{s(d)}$ if we agree that $s(d)=$ $\left\{s\left(n_{1}\right), \ldots, s\left(n_{k}\right)\right\}$ for $d=\left\{n_{1}, \ldots, n_{k}\right\}$. The Fourier transform of $1_{\Delta(a, \epsilon)}$ is supported on $\{b \in D: b \subset a\}$ and one actually has

$$
\widehat{1}_{\Delta(a, \epsilon)}(b)= \begin{cases}2^{-|a|} \prod_{n \in b} \epsilon(n) & \text { if } b \subset a \\ 0 & \text { otherwise }\end{cases}
$$

although this sophistication is not necessary, so write just $1_{\Delta(a, \epsilon)}=$ $\sum_{b \subset a} c_{b} w_{b}$ and then

$$
E\left(w_{d}\right)=\left(\sum_{b \subset a} c_{b} w_{b}\right) w_{s(d)}=\sum_{b \subset a} c_{b} w_{b \Delta s(d)}=\sum_{b \subset a} E^{b}\left(w_{d}\right)
$$

where E^{b} is the operator sending w_{d} to $c_{b} w_{b \Delta s(d)}$.
Let us complete the proof assuming that \mho commutes with every E^{b}; we will prove this right away - see the next lemma. Writing $E \mho(f)=$ $\sum_{b \subset a} E^{b} \mho(f)=\sum_{b \subset a} \mho\left(E^{b} f\right)$ we obtain, using that Hilbert spaces are \mathscr{K}-spaces,

$$
\begin{aligned}
\|\mho(E f)-E \mho(f)\|_{2} & =\left\|\mho\left(\sum_{b} E^{b} f\right)-\sum_{b} \mho\left(E^{b} f\right)\right\|_{2} \\
& \leqslant 37 Q(\mho) \sum_{b}\left\|E^{b} f\right\|_{2} \leqslant 37 Q(\Omega) \sum_{b} 2^{-|a|}\|f\|_{2} \\
& =37 Q(\Omega)\|f\|_{2}
\end{aligned}
$$

since the power set of a has cardinality $2^{|a|}$.
Lemma 5.6. - With the same notations as before, \mho commutes with every E^{b}.

Proof. - It is clear that for each fixed $b \in$ fin the map $\beta:$ fin \rightarrow fin defined by $\beta(d)=b \Delta s(d)$ is injective - it is the composition of two injective maps. If R^{β} is the corresponding rearrangement operator on $\ell_{2}(D)$ it is obvious that $\mathscr{F} E^{b}=R^{\beta} \mathscr{F}$ and so $E^{b} \mathscr{F}^{-1}=\mathscr{F}^{-1} R^{\beta}$. Hence, by Lemma 2.4,

$$
\begin{aligned}
\mho\left(E^{b} f\right) & =\mathscr{F}^{-1} \Omega\left(\widehat{E^{b}} f\right)=\mathscr{F}^{-1} \Omega\left(R^{\beta} \widehat{f}\right) \\
& =\mathscr{F}^{-1} R^{\beta} \Omega(\widehat{f})=E^{b} \mathscr{F}^{-1} \Omega(\widehat{f})=E^{b} \mho(f) .
\end{aligned}
$$

5.2. An extension of c_{0} by ℓ_{1} (explicit content)

We now take advantage of our familiarity with the maps \mho to construct a nontrivial quasilinear map $c_{0} \rightarrow \ell_{1}$. The existence of such objects is proved in [3, Section 4.3] (or [4, Proposition 5.2.21]) by means of local arguments that, in the end, do not provide any explicit example; and it is revisited in [6, Section 3] where it is shown that each nontrivial extension $0 \rightarrow L_{1}(\mu) \rightarrow Z \rightarrow C(K) \rightarrow 0$ leads (by making pullback and pushout) to one of the form $0 \rightarrow \ell_{1} \rightarrow Z^{\prime} \rightarrow c_{0} \rightarrow 0$ which remains nontrivial. We first obtain the basic blocks of the construction. Given $n \in \mathbb{N}$ consider the group $\Delta_{n}=\{ \pm 1\}^{n}$ with Haar measure normalized to 1 . The dual group D_{n} can be identified with the power set of $\{1, \ldots, n\}$ with Haar measure normalized so that each point of D_{n} has mass 1 .

Now let $\varphi \in$ Lip be unbounded concave, $\Omega_{n}: \ell_{2}\left(D_{n}\right) \rightarrow \ell_{2}\left(D_{n}\right)$ the corresponding Kalton-Peck map and $\mho_{n}^{\infty 1}: L_{\infty}\left(\Delta_{n}\right) \rightarrow L_{1}\left(\Delta_{n}\right)$ the map given by $\mho_{n}^{\infty 1}(f)=\mathscr{F}^{-1} \Omega_{n}(\widehat{f})$. It is clear that the quasilinearity constants $Q\left(\mho_{n}^{\infty 1}\right)$ are uniformly bounded (with a bound depending only on L_{φ}) and that there is a constant $c>0$ such that $\delta\left(\mho_{n}^{\infty 1}\right) \geqslant c \varphi(\log n)$ for n large enough, in particular $\lim _{n} \delta\left(\mho_{n}^{\infty 1}\right)=\infty$. Indeed, define a Riesz product with the n Rademachers in D_{n}, use the estimate (5.2) and then Corollary 3.3. Let $\left(c_{k}\right)$ be a summable sequence and, for each k, take $n(k)$ so large that $c_{k} \varphi(\log n(k)) \rightarrow \infty$. The following result has an obvious proof.

Lemma 5.7. - The map $\Phi: c_{0}^{0}\left(\mathbb{N}, L_{\infty}\left(\Delta_{n(k)}\right)\right) \rightarrow \ell_{1}\left(\mathbb{N}, L_{1}\left(\Delta_{n(k)}\right)\right)$ defined by $\Phi\left(\left(x_{k}\right)_{k \geqslant 1}\right)=\left(c_{k} \mho_{n(k)}^{\infty 1}\left(x_{k}\right)\right)_{k \geqslant 1}$ is quasilinear and nontrivial.

But $L_{\infty}\left(\Delta_{n(k)}\right)=\ell_{\infty}\left(\Delta_{n(k)}\right)$, with the same norm, while $L_{1}\left(\Delta_{n(k)}\right)$ is isometric to $\ell_{1}\left(\Delta_{n(k)}\right)$, so that Φ can be seen as a quasilinear map $c_{0}^{0} \rightarrow \ell_{1}$ which, to be true, seems to be highly nonsymmetric and a bit nasty. Given the approach of this paper the following question is unavoidable, and rather itching:

Problem 5.8. - Find a nontrivial quasilinear map $c_{0}^{0}(\mathbb{Z}) \rightarrow \ell_{1}(\mathbb{Z})$ that commutes with translations or prove that there is none.

In a different direction we may ask if it is possible to construct a quasilinear map $C(K) \rightarrow L_{1}(\mu)$ that is nontrivial when restricted to every subspace spanned by a disjoint sequence. Here f and g are disjoint if $f g=0$, equivalently, if supp $f \cap \operatorname{supp} g=\varnothing$. This would lead to a strictly singular quasilinear map $c_{0} \rightarrow L_{1}$ ([7, Lemma 2], [9, Lemma 4.3]), which could perhaps be used to get a strictly singular quasilinear map $c_{0} \rightarrow \ell_{1}$ ([6, Section 3]) whose existence, asked repeatedly by J.M.F. Castillo, we do not
known either. See [10] for the available information on twisted sums of ℓ_{1} and c_{0} and observe that our results do not solve any of the problems stated or suggested at the end of that paper.

6. Miscellaneous remarks

6.1. Is there a nonlinear Grothendieck theorem?

The version of Grothendieck's theorem that best suits our purposes is [32, Theorem 2.1]: Let S, T be compact spaces and $\mathcal{V}: C(S) \rightarrow M(T)$ an operator. Then there are probabilities λ, μ respectively on S and T and an operator $\Omega: L_{2}(\lambda) \rightarrow L_{2}(\mu)$ such that $\mho=J \Omega I$, where $I: C(S) \rightarrow L^{2}(\lambda)$ and $J: L^{2}(\mu) \rightarrow L^{1}(\mu) \rightarrow M(T)$ are the formal inclusions. We have edited slightly Pisier statement to emphasize that all the quasilinear maps \mathcal{J} : $C(S) \rightarrow M(T)$ we know have a similar factorization where $\Omega: L_{2}(\lambda) \rightarrow$ $L_{2}(\mu)$ is now quasilinear. We do not know if this is due to a general principle or rather to our lack of ability to find other examples.

6.2. The failure of Kalton-Roberts theorem for bimeasures

Kalton-Roberts' proof that Banach spaces of type \mathscr{L}_{∞} are \mathscr{K}-spaces basically consists in showing that there is a constant K such that whenever $m: 2^{S} \rightarrow \mathbb{R}$ satisfies $|m(A \cup B)-m(A)-m(B)| \leqslant 1$ for all disjoint subsets A, B of a finite set S there is a true measure $\mu: 2^{S} \rightarrow \mathbb{R}$ such that $|m(A)-\mu(A)| \leqslant K$ for all $A \subset S$. One may wonder if bimeasures have a similar stability property, namely if given a function $b: 2^{S} \times 2^{T} \rightarrow \mathbb{R}$ that satisfies the estimate $|b(A \cup B, C)-b(A, C)-b(B, C)| \leqslant 1$ for all disjoint $A, B \subset S$ and all $C \subset T$ and the same with the variables reversed, there is a bimeasure $\beta: 2^{S} \times 2^{T} \rightarrow \mathbb{R}$ such that $|b(A, B)-\beta(A, B)| \leqslant K$ for some universal constant K. The existence of quasilinear maps $\Phi_{n}: \ell_{\infty}^{n} \rightarrow \ell_{1}^{n}$ with $Q\left(\Phi_{n}\right)$ uniformly bounded and $\delta\left(\Phi_{n}\right) \rightarrow \infty$ implies that there is no Kalton-Roberts theorem for bimeasures.

Let us sketch the proof (by contrapositive) in the real case. We identify ℓ_{1}^{n} with the dual of ℓ_{∞}^{n} in the usual way and we denote the power set of $\{1, \ldots, n\}$ by 2^{n}. For arbitrary $\Phi: \ell_{\infty}^{n} \rightarrow \ell_{1}^{n}$ one can define a setfunction $b: 2^{n} \times 2^{n} \rightarrow \mathbb{R}$ by $b(A, B)=\left\langle\Phi\left(1_{A}\right), 1_{B}\right\rangle$, where 1_{A} denotes the characteristic function of A, and the same for B. It is clear that for each $A \in 2^{n}$ the set-function $b(A, \cdot)$ is additive (i.e., a measure). Regarding
the other argument of b, if Φ is quasilinear, we have that for fixed C and disjoint $A, B \in 2^{n}$
$|b(A \cup B, C)-b(A, C)-b(B, C)| \leqslant Q(\Phi)\left(\left\|1_{A}\right\|_{\infty}+\left\|1_{B}\right\|_{\infty}\right)\left\|1_{C}\right\|_{\infty} \leqslant 2 Q(\Phi)$.
Assume that β is a bimeasure such that $|b(A, B)-\beta(A, B)| \leqslant \delta$ for some δ and all $A, B \in 2^{n}$. Note that there is a unique linear map $L: \ell_{\infty}^{n} \rightarrow \ell_{1}^{n}$ such that $\beta(A, B)=\left\langle L\left(1_{A}\right), 1_{B}\right\rangle$, and that for $f \in \ell_{1}^{n}$ one has $\|f\|_{1}=$ $\sup \left\{\left|\left\langle f, 1_{B}-1_{C}\right\rangle\right|: B \cap C=\varnothing\right\}$. It quickly follows that for every $A \in 2^{n}$ one has $\left\|\Phi\left(1_{A}\right)-L\left(1_{A}\right)\right\|_{1} \leqslant 2 \delta$. An obvious version of the proof of [23, Proposition 6.2] yields that $\|\Phi(f)-L(f)\|_{1} \leqslant(8 Q(\Phi)+4 \delta)\|f\|_{\infty}$ for all $f \in$ ℓ_{∞}^{n}. Using [25, Theorem 4.1] one gets $\|\Phi(f)-L(f)\|_{1} \leqslant 4 Q(\Phi)(2+2 \delta)\|f\|_{\infty}$ instead.

Our results can only give $\delta\left(\Phi_{n}\right) / Q\left(\Phi_{n}\right) \geqslant c \log \log (n)$ for some $c>0$ (with the maps $\mho_{n}^{\infty 1}$ of Section 5.2, for instance). Brudnyi and Kalton have already obtained examples with $\delta\left(\Phi_{n}\right) / Q\left(\Phi_{n}\right) \geqslant c \log (n)$ for some absolute constant c, see [1, Theorem $4.3(\mathrm{~b})]$.

6.3. A more professional approach

Knowledgeable people on centralizers use a more flexible definition that requires to have a good ambient space. Precisely, let X, Y be Banach A modules and let W be another A-module containing Y in the purely algebraic sense. A homogeneous mapping $\Phi: X \rightarrow W$ (not Y) is said to be a centralizer from X to Y if for every $x, y \in X$ and every $a \in A$ the differences $\Phi(x+y)-\Phi(x)-\Phi(y)$ and $\Phi(a x)-a \Phi(x)$ fall in Y and obey the estimates $\|\Phi(x+y)-\Phi(x)-\Phi(y)\| \leqslant Q(\|x\|+\|y\|)$ and $\|\Phi(a x)-a \Phi(x)\| \leqslant C\|a\|\|x\|$ for some constants Q and C.

The set $Y \oplus_{\Phi} X=\{(w, x) \in W \times X: w-\Phi(x) \in Y\}$ is a submodule of $W \times X$ (with the coordinatewise product) which becomes a quasinormed module with the quasinorm $\|(w, x)\|_{\Phi}=\|w-\Phi(x)\|+\|x\|$. The sequence

$$
\begin{equation*}
0 \longrightarrow Y \xrightarrow{\imath} Y \oplus_{\Phi} X \xrightarrow{\pi} X \longrightarrow 0 \tag{6.1}
\end{equation*}
$$

in which $\imath(y)=(y, 0), \pi(w, x)=x$ is exact. Besides, \imath preserves the quasinorm and π maps the unit ball of $Y \oplus_{\Phi} X$ onto that of X. This implies that $Y \oplus_{\Phi} X$ is complete (hence a quasi Banach A-module) if X and Y are and thus no further action is required. The splitting criterion for these sequences is simple: (6.1) splits, as an extension of quasi Banach modules, if and only if there is a morphism $\phi: X \rightarrow W$ such that $\Phi-\phi$ is bounded from X to Y.

There is a classical object that could have been used as an ambient space for L_{1}-centralizers: the space of p seudomeasures on G.

Consider the Fourier algebra $A(G)=\left\{f \in C(G): \sum_{\gamma \in \Gamma}|\widehat{f}(\gamma)|<\infty\right\}$ and norm it by $\|f\|_{A(G)}=\sum_{\gamma \in \Gamma}|\widehat{f}(\gamma)|$ so that $A(G)$ is isometric to $\ell_{1}(\Gamma)$. Clearly, $A(G)$ is an $M(G)$-module under convolution (the Fourier coefficients of any finite measure are bounded). Let $A^{*}(G)$ be the dual space of $A(G)$, which is an $M(G)$-module under the "dual action":

$$
\langle\mu \circledast \phi, f\rangle=\langle\phi, f * \mu\rangle \quad\left(\mu \in M(G), \phi \in A^{*}(G), f \in A(G)\right) .
$$

Note that, since $A(G)$ is (uniformly) dense in $C(G)$, every measure can be treated as an element of $A^{*}(G)$ and the "inclusion" is continuous. Besides, $\mu \circledast \phi=\mu * \phi$ if $\phi \in M(G)$. Of course there is nothing really new in the space $A^{*}(G)$ which is just $\ell_{\infty}(\Gamma)$ in disguise. What is interesting for us is that we can interpret $\mathscr{F}: A^{*}(G) \rightarrow \ell_{\infty}(\Gamma)$ as an isomorphism in the obvious way and then consider $A^{*}(G)$ as a "convolution" algebra defining $\phi \circledast \psi=\mathscr{F}^{-1}(\mathscr{F}(\phi) \mathscr{F}(\psi))$.

We have the following companion of Lemma 2.2:
Proposition 6.1. - Let X, Y be Banach L_{1}-modules. If Y admits a continuous inclusion into $A^{*}(G)$ then every extension of X by Y (in the category of Banach L_{1}-modules) is equivalent to the extension induced by an L_{1}-centralizer from X to Y with values in $A^{*}(G)$.

Sketch of the proof. - Let $0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{\pi} X \longrightarrow 0$ be an extension and consider the pushout diagram (see Section 2.2)

in which \jmath is the hypothesized inclusion - an injective homomorphism. The space $A^{*}(G)$ is linearly isometric to $\ell_{\infty}(\Gamma)$, an injective Banach space. Hence the lower row splits in the linear category and the amenability of $L_{1}(G)$ implies that the same happens in the category of modules. Thus, there is a homomorphism $J: Z \rightarrow A^{*}(G)$ extending the inclusion of Y into $A^{*}(G)$ (that is, $\imath J=\jmath$). Let $B: X \rightarrow Z$ be a bounded homogeneous section of the quotient map π (that is, $\pi B=\mathbf{I}_{X}$). Then the composition

$$
\Phi: X \xrightarrow[\text { nonlinear }]{B} Z \underset{\text { homomorphism }}{\longrightarrow} A^{*}(G)
$$

is an L_{1}-centralizer from X to Y (check it!) and induces an extension equivalent to the starting one.

6.4. Group actions and G-modules

As we already mentioned, module structures on convolution algebras are often related to actions of the underlying group. Given a topological group G, a (quasi) Banach G-module is a (quasi) Banach space X together with a continuous action $G \times X \rightarrow X$, that is, a continuous representation of G into the algebra of operators on X. When G is a compact abelian group the notions of G-module and that of $L_{1}(G)$-module are more or less interchangeable for Banach spaces of functions on G. Things are different for nonlocally convex quasi Banach spaces and indeed the space $L_{p}(G)$ for $0<p<1$ is the perfect example of a G-module whose action cannot be "extended" to a module structure over the convolution algebra $L_{1}(G)$. Our methods, based on the Fourier transform, do not apply in general to nonlocally convex spaces. We refer the reader to [8, 27] for some results on exact sequences of G-modules.

Acknowledgements

We thank Óscar Blasco for his explanations and patience. We are also very grateful to the referee, whose exhaustive and successive reports forced us to improve the paper considerably.

BIBLIOGRAPHY

[1] Y. A. Brudnyi \& N. J. Kalton, "Polynomial approximation on convex subsets of $\mathbb{R}^{n} "$, Constr. Approx. 16 (2000), no. 2, p. 161-199.
[2] F. Cabello Sánchez, "Nonlinear centralizers in homology", Math. Ann. 358 (2014), no. 3-4, p. 779-798.
[3] F. Cabello Sánchez \& J. M. F. Castillo, "Uniform boundedness and twisted sums of Banach spaces", Houston J. Math. 30 (2004), no. 2, p. 523-536.
[4] ——, Homological Methods in Banach Space Theory, Cambridge Studies in Advanced Mathematics, vol. 203, Cambridge University Press, 2023.
[5] F. Cabello Sánchez, J. M. F. Castillo, N. J. Kalton \& D. T. Yost, "Twisted sums with $C(K)$ spaces", Trans. Am. Math. Soc. 355 (2003), no. 11, p. 4523-4541.
[6] F. Cabello Sánchez, J. M. F. Castillo \& A. Salguero-Alarcón, "The behaviour of quasi-linear maps on $C(K)$-spaces", J. Math. Anal. Appl. 475 (2019), no. 2, p. 1714-1719.
[7] F. Cabello Sánchez, J. M. F. Castillo \& J. Suárez, "On strictly singular nonlinear centralizers", Nonlinear Anal., Theory Methods Appl. 75 (2012), no. 7, p. 33133321.
[8] J. M. F. Castillo \& V. Ferenczi, "Group actions on twisted sums of Banach spaces", https://arxiv.org/abs/2003.09767, 2020.
[9] J. M. F. Castillo, V. Ferenczi \& M. González, "Singular twisted sums generated by complex interpolation", Trans. Am. Math. Soc. 369 (2017), no. 7, p. 4671-4708.
[10] J. M. F. Castillo \& M. A. Simões, "Positions in $\ell_{1} "$, Banach J. Math. Anal. 9 (2015), no. 4, p. 395-404.
[11] D. L. Cohn, Measure Theory, Birkhäuser Advanced Texts, Birkhäuser, 2013.
[12] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs, vol. 24, Clarendon Press, 2000.
[13] J. Diestel, H. Jarchow \& A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, 1995.
[14] P. L. Duren, Theory of H^{p} spaces, Academic Press Inc., 1970.
[15] M. Gardner, Mathematical Circus, The Mathematical Association of America, 1992.
[16] L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, Springer, 2014.
[17] F. P. Greenleaf, Invariant Means on Topological Groups, vol. 16, Van Nostrand Reinhold Company, 1969.
[18] U. HaAgerup, "The best constants in the Khintchine inequality", Stud. Math. 70 (1981), no. 3, p. 231-283.
[19] E. Hewitt \& K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact abelian groups, vol. 1970, Springer, 1970.
[20] N. J. Kalton, "The three-space problem for locally bounded F-spaces", Compos. Math. 37 (1978), p. 243-276.
[21] , Nonlinear commutators in interpolation theory, Memoirs of the American Mathematical Society, vol. 73, American Mathematical Society, 1988.
[22] N. J. Kalton \& N. T. Peck, "Twisted sums of sequence spaces and the three-space problem", Trans. Am. Math. Soc. 255 (1979), p. 1-30.
[23] N. J. Kalton \& J. W. Roberts, "Uniformly exhaustive submeasures and nearly additive set functions", Trans. Am. Math. Soc. 278 (1983), p. 803-816.
[24] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge Mathematical Library, Cambridge University Press, 2004.
[25] T. Kochanek, "Stability of vector measures and twisted sums of Banach spaces", J. Funct. Anal. 264 (2013), no. 10, p. 2416-2456.
[26] P. Kolwicz, K. Leśnik \& L. Maligranda, "Pointwise products of some Banach function spaces and factorization", J. Funct. Anal. 266 (2014), no. 2, p. 616-659.
[27] P. A. Kuchment, "Three-representation problem in Banach spaces", Complex Anal. Oper. Theory 15 (2021), no. 2, article no. 34 (23 pages).
[28] J. Lindenstrauss, "On a certain subspace of $\ell_{1} "$, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 12 (1964), p. 539-542.
[29] J. M. Lopez \& K. A. Ross, Sidon Sets, Lecture Notes in Pure and Applied Mathematics, vol. 13, Marcel Dekker, 1975.
[30] W. Lusky, "A note on Banach spaces containing c_{0} or $C_{\infty} "$, J. Funct. Anal. 62 (1985), p. 1-7.
[31] G. Pisier, "Les inégalités de Khintchine-Kahane d'après C. Borell", in Seminaire sur la géométrie des espaces de Banach. 1977-1978, École Polytech., 1978, Exp. No. 7, 14 pp., p. 1977-1978.
[32] , "Grothendieck's Theorem, past and present", Bull. Am. Math. Soc. 49 (2012), no. 2, p. 237-323.
[33] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, vol. 12, Interscience Publishers, division of John Wiley and Sons, 1962.
[34] V. Runde, Amenable Banach Algebras. A Panorama, Springer Monographs in Mathematics, Springer, 2020.
[35] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, 1991.

Manuscrit reçu le 26 janvier 2021, révisé le 29 novembre 2021, accepté le 23 septembre 2022 .

Félix CABELLO SÁNCHEZ
Instituto de Matemáticas
Universidad de Extremadura Avenida de Elvas 06071-Badajoz (Spain)
fcabello@unex.es
Alberto SALGUERO-ALARCÓN
Instituto de Matemáticas
Universidad de Extremadura
Avenida de Elvas
06071-Badajoz (Spain)
salgueroalarcon@unex.es

[^0]: Keywords: Short exact sequence; Banach module; Convolution algebra; Fourier transform; Nonlinear centralizer; Riesz product.
 2020 Mathematics Subject Classification: 43A15, 43A20, 43A25, 46M18.
 ${ }^{(*)}$ This research has been supported in part by project PID2019-103961GB-C21 (Ministerio de Ciencia, Innovación y Universidades) and Projects IB16056 and IB20038 (Junta de Extremadura). The second author is supported by the grant FPU18/00990 by the Spanish Ministry of Education, Science and Universities.

