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STATISTICS OF GENUS NUMBERS OF CUBIC FIELDS

by Kevin J. MCGOWN & Amanda TUCKER

Abstract. — We prove that approximately 96.23% of cubic fields, ordered by
discriminant, have genus number one, and we compute the exact proportion of
cubic fields with a given genus number. We also compute the average genus number.
Finally, we show that a positive proportion of totally real cubic fields with genus
number one fail to be norm-Euclidean.

Résumé. — Nous prouvons qu’il y a approximativement 96.23% de corps de
nombres cubiques, ordonnés par discriminant, dont le nombre de genres est un et
nous calculons la proportion exacte des corps de nombres cubiques avec un nombre
de genres donné. Nous calculons également le nombre de genres moyen. Finalement,
nous montrons qu’il y a une proportion strictement positive de corps de nombres
cubiques totalement réels avec un nombre de genres un qui ne sont pas euclidiens
pour la norme.

1. Introduction

The genus theory of algebraic number fields can be traced back to Gauss’s
celebrated work on binary quadratic forms, and has its roots in earlier work
of Euler, Lagrange, and others. It was Hasse who first defined the genus
field of a quadratic extension when he reproved a classical theorem of Gauss
using class field theory [22], and Leopoldt later defined the genus field of
any absolutely abelian extension [27]. The definition of the genus field of a
general number field, which we give forthwith, is due to Fröhlich [20].

The genus field of a number fieldK is defined to be the maximal extension
K∗ of K that is unramified at all finite primes and is a compositum of the
form Kk∗ where k∗ is absolutely abelian. The genus number of K is defined
as gK = [K∗ : K]. It follows right away that gK divides h+

K , the narrow
class number of K. Since the class number hK and the narrow class number
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1366 Kevin J. MCGOWN & Amanda TUCKER

h+
K differ by a power of 2 and the genus number of a cubic field is a power

of 3 (see Theorem 2.1), it follows that gK divides hK when K is cubic.
The class number is among the most important invariants associated to

a number field, but it is very difficult to study. Conjecturally, its behavior
at the “good” primes is governed by the (modified) heuristics of Cohen–
Lenstra–Martinet (see [11, 12]). By contrast, the genus number (whose
support is at “bad” primes) does not behave “randomly” and is therefore
more amenable to study. It is very natural to ask about the density of genus
number one fields among all number fields of a fixed degree and signature.
In the present investigation, we will discuss the situation for cubic fields, as
this is the simplest situation where this question has not been previously
addressed.

Let K be a cubic field. If K is cyclic, then gK = 3e−1, where e is the
number of odd prime factors of the discriminant ∆ of K; it follows that 0%
of cyclic cubic fields have genus number one, and that the average genus
number in this setting is infinite. These same statistical questions become
more subtle when one does not impose the restriction that K is Galois. In
fact, since 0% of cubic fields are cyclic, the aforementioned facts have little
bearing on the answers when one considers the collection of all cubic fields.
In this paper, we show that roughly 96.23% of cubic fields have gK = 1. In
addition, we prove that the average genus number is roughly 1.0785.

Let F denote the collection of all cubic fields K with gK = 1, and write
F+, F− to denote the subsets of F consisting of fields with positive and
negative discriminants, respectively. Set N±(X) = #{K ∈ F± : |∆| ⩽ X}
and define constants n+ = 6 and n− = 2. (Note that we will always count
cubic fields up to isomorphism, and isomorphic cubic fields have the same
genus number.)

In Section 3, we prove our main result:

Theorem 1.1.

N±(X) = 29
54n±ζ(2)

∏
p≡2 (mod 3)

(
1 + 1

p(p+ 1)

)
X +O

(
X16/17+ε

)
.

Corollary 1.2. — The proportion of cubic fields with genus number
one (of positive or negative discriminant) equals

29 ζ(3)
27 ζ(2)

∏
p≡2 (mod 3)

(
1 + 1

p(p+ 1)

)
.

Consequently, roughly 96.23009% of totally real cubic fields and 96.23009%
of complex cubic fields have genus number one.
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In Section 4, we prove the following result regarding the average genus
number of a cubic field:

Theorem 1.3. — The average genus number of a cubic field (in the
positive or negative discriminant case) is given by

lim
X→∞

∑
0<±∆⩽X gK∑
0<±∆⩽X 1

= 119ζ(3)
108ζ(2)

∏
p≡1 (mod 3)

(
1 + 3

p(p+ 1)

) ∏
p≡2 (mod 3)

(
1 + 1

p(p+ 1)

)
≈ 1.078541 .

The above sums are taken over all cubic fields K where the discriminant
∆ falls in the specified range.

In Section 5, we give the exact proportion of cubic fields with a given
genus number.

Theorem 1.4. — A positive proportion of cubic fields (of positive or
negative discriminant) have gK = m iff m is a power of 3, and the exact
proportion with gK = 3k is given by

ζ(3)
ζ(2)

29
27
∑
f∈Tk

∏
p|f

1
p(p+ 1) + 1

108
∑

f∈Tk−1

∏
p|f

1
p(p+ 1)

 ,
where Tk denotes the collection of squarefree integers coprime to 3 having
exactly k prime factors p that satisfy p ≡ 1 (mod 3).(1) The approximate
proportions are given in the following table:

k 0 1 2 3
proportion 96.23% 3.72% 0.05% really small!

Our initial interest in this question stemmed from the study of norm-
Euclidean cubic fields. There are only finitely many norm-Euclidean cu-
bic fields with negative discriminant, but it may very well be the case
that there are infinitely many with positive discriminant (see [14, 23]).
A norm-Euclidean field is necessarily class number one and, hence, genus
number one; thus, if gK ̸= 1, we can trivially conclude that K is not norm-
Euclidean. Consequently, it is of greater interest to study fields that fail to
be norm-Euclidean for reasons other than genus theory. In Section 6, we
prove the following result:

(1) If we adopt the convention that T−1 = ∅, then the formula holds for k = 0 as well.
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1368 Kevin J. MCGOWN & Amanda TUCKER

Theorem 1.5. — A positive proportion of totally real cubic fields with
genus number one fail to be norm-Euclidean.

Our starting point is a theorem of Fröhlich which gives an explicit de-
scription of gK when K is cubic. The main tool we employ is a powerful
theorem, proved independently by Taniguchi–Thorne [33] and Bhargava–
Shankar–Tsimerman [7], that allows one to compute the density of cu-
bic discriminants satisfying specified local conditions with a very precise
error term. This is a generalization of a classical theorem of Davenport–
Heilbronn [15], who were the first to accomplish the counting of cubic fields.

In principle, our methods should work for degrees four and five as well,
making use of the work of Bhargava [3, 4, 5, 6], Cohen–Diaz y Diaz–
Olivier [10], Shankar–Tsimerman [32], and Ellenberg–Pierce–Wood [17].
This has been carried out for degree five [30]. The degree four case is work
in progress. For any degree d, it is expected that the number of degree d
number fields of discriminant up to X is asymptotic to a constant times X,
but this is, as of yet, unproven. (The best known result for general d is due
to Ellenberg–Venkatesh [18].) Consequently, we cannot hope to approach
the “genus number one problem” when d > 5.

2. Preliminaries

Let K be a cubic field. Then the discriminant ∆ takes one of the three
forms df2, 9df2, 81df2, where d is a fundamental discriminant and f is a
squarefree positive integer coprime to 3. A prime p ̸= 3 is totally ramified
in K if and only if p divides f , and 3 is totally ramified in K if and only if
∆ takes one of the forms 9df2, 81df2 [9]. The following theorem of Fröhlich
gives an explicit expression for the genus number [20]; see also [24].

Theorem 2.1 (Fröhlich). — Let e denote the number of odd primes p
such that p is totally ramified in K and (d/p) = 1, where (d/p) is the usual
Legendre symbol. Then we have:

gK =
{

3e−1 if K is cyclic,
3e if K is not cyclic.

Note that since the number of cyclic cubic fields with discriminant less
than or equal to X is O(X1/2), for our purposes we may neglect these
fields [13, 21]. If K is cyclic and gK = 1, then ∆ = f2 where f = 9
or f ≡ 1 (mod 3) is a prime; for each such f , there is exactly one such
field. Therefore the number of cyclic cubic fields with genus number one is

ANNALES DE L’INSTITUT FOURIER
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O(π(
√
X)), which shows via the Prime Number Theorem that 0% of cyclic

cubic fields have genus number one.
Our main tool is the following theorem, which is a strengthening of the

classical Davenport–Heilbronn Theorem (see [7, 15, 33]). For what follows,
set m+ = 1 and m− =

√
3.

Theorem 2.2 (Taniguchi–Thorne, Bhargava–Shankar–Tsimerman). —
The number of cubic fields satisfying 0 < ±∆ ⩽ X equals

1
2n±ζ(3)X + 4m±ζ(1/3)

5Γ(2/3)3ζ(5/3)X
5/6 +O(X7/9+ε) .

We note in passing that the secondary term was conjectured by
Roberts [31] following computations carried out by Belabas [1], and that
the existence of a power saving error term was first proved by Belabas–
Bhargava–Pomerance in [2]; this whole story is summarized very nicely
in [2].

In fact, both papers [7, 33] give a stronger version of Theorem 2.2 (which
we will require) allowing one to specify local conditions. If local conditions
are imposed at finitely many primes p, then the main term and the sec-
ondary term are multiplied by an additional factor for each p; moreover, in
this case, the implicit constant in the O-term now depends upon the set of
local conditions. For our application we need to specify infinitely many local
conditions and we require an explicit dependence on these local conditions.
In principle, either Theorem 7 of [7] or Theorem 1.3 of [33] will suffice, but
the situation is such that neither accomplishes our aim “out-of-the-box”
with no additional work. We have chosen to use Theorem 1.3 of [33] as our
main work horse. At the appropriate juncture in our proofs, please see [33,
§6] and [7, §4] for information regarding local density calculations.

Finally, we mention that there is a forthcoming paper [8] that improves
the error term in Theorem 2.2 to O(X2/3+ε). Substituting this result into
our arguments would result in an improvement of our error terms.

3. Counting genus number one cubic fields

Recall that we write the discriminant of a cubic field K as ∆ = df2, 9df2,
or 81df2 with f coprime to 3. Let G± denote the collection of all cubic fields
with sgn(∆) = ±1, and let F± ⊆ G± denote the collection of all such cubic
fields K with gK = 1. Let N±(X) = #{K ∈ F± : |∆| ⩽ X}. Define

F±
1 = {K ∈ G± | p ≡ 2 (mod 3) for all p dividing f}

F±
2 = {K ∈ F±

1 | 3 is totally ramified and d ≡ 1 (mod 3)}.

TOME 73 (2023), FASCICULE 4



1370 Kevin J. MCGOWN & Amanda TUCKER

By Theorem 2.1, we have F± = F±
1 \F±

2 , and thereforeN±(X) = N±
1 (X)−

N±
2 (X) where N±

i (X) = #{K ∈ F±
i : |∆| ⩽ X}. Indeed, when p ̸= 2, 3 is

totally ramified,
(d/p) = 1 ⇐⇒ p ≡ 1 (mod 3)

(see [24, Example 6.10]), and, of course, (d/3) = 1 is equivalent to d ≡ 1
(mod 3). In what follows, we will establish asymptotic formulas for N±

1 (X),
N±

2 (X) individually and then obtain the desired result by subtraction.
For each square free f coprime to 3 we write N±(f ;X) to denote the

number of fields in G± with |∆| ⩽ X that are totally ramified at the primes
dividing f and at no other primes, except possibly 3.

Proposition 3.1.

N±(f ;X) = 13
24n±ζ(2)

∏
p|f

1
p(p+ 1)X +O(f−1X16/17+ε) .

Proof. — Write M±(f ;X) to denote the number of cubic fields of posi-
tive (or negative) discriminant with |∆| ⩽ X where all the primes dividing
f are totally ramified (and no other restrictions). Observe that this con-
stitutes only finitely many local conditions. Notice that, by the inclusion–
exclusion principle,

N±(f ;X) =
∑

(r,3f)=1

µ(r)M±(rf ;X) .

We will split this sum as
∑
r =

∑
r⩽Y +

∑
r>Y where Y is some param-

eter to be specified. In all sums over r we will only consider values where
(r, 3f) = 1. For r ⩽ Y , we will use Theorem 1.3 of [33] to obtain

M±(f ;X) = c±
f X + d±

f X
5/6 +O(f16/9X7/9+ϵ) ,

where the constant in the main term is

c±
f = 1

2n±ζ(3)
∏
p|f

1
p2 + p+ 1 ,

and the constant in the secondary term is

d±
f = 4m±ζ(1/3)

5Γ(2/3)3ζ(5/3)
∏
p|f

p2/3 − 1
(p5/3 − 1)(p− 1)

= O(f−2) .

On the other hand, when r > Y we will use the estimate

M±(f ;X) = O(f−2+εX) ,
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which follows immediately from Lemma 3.4 of [33], in light of the fact that
6ω(f) = O(fε). Consequently,

N±(f ;X) =
∑
r⩽Y

(
µ(r)crfX +O((rf)−2X5/6) +O((rf)16/9X7/9+ε)

)
+
∑
r>Y

O((rf)−2+εX)

= X
∑
r⩽Y

µ(r)crf +O(f−2X5/6) +O(Y 25/9f16/9X7/9+ε)

+O(Y −1+εf−2+εX) .

We compute the constant in the main term:∑
r⩽Y

µ(r)crf

=
∑
r

µ(r)crf +O

(∑
r>Y

crf

)

= 1
2ζ(3)n±

∏
p|f

1
p2 + p+ 1

∑
(r,3f)=1

µ(r)
∏
p|r

1
p2 + p+ 1 +O

(∑
r>Y

(rf)−2+ε

)

= 1
2ζ(3)n±

∏
p|f

1
p2 + p+ 1

∏
p ̸ | 3f

(
1 − 1

p2 + p+ 1

)
+O(Y −1+εf−2+ε)

= 13
24ζ(3)n±

∏
p|f

1
p(p+ 1)

∏
p

(
1 − 1

p2 + p+ 1

)
+O(Y −1+εf−2+ε)

= 13
24ζ(2)n±

∏
p|f

1
p(p+ 1) +O(Y −1+εf−2+ε)

Setting Y = f−1X1/17 and putting this all together yields the result. □

Let T denote the collection of all squarefree f with the property that
p ≡ 2 (mod 3) for all primes p dividing f . We have

N±
1 (X) =

∑
f∈T

N±(f ;X)

=
∑
f∈T

f⩽X1/2

 13
24ζ(2)n±

∏
p|f

1
p(p+ 1) ·X +O(f−1X16/17+ε)



TOME 73 (2023), FASCICULE 4



1372 Kevin J. MCGOWN & Amanda TUCKER

= 13
24ζ(2)n± ·X

∑
f∈T

∏
p|f

1
p(p+ 1) +X

∑
f>X1/2

O(f−2)

+
∑

f⩽X1/2

O(f−1X16/17+ε)

= 13
24ζ(2)n±

∏
p∈T

(
1 + 1

p(p+ 1)

)
·X +O(X16/17+ε).(3.1)

This establishes the desired formula for N±
1 (X). In order to deal with

N±
2 (X) we require a slight modification of the quantity N(f ;X). For each

squarefree f coprime to 3 we write N ′(f ;X) to denote the number of such
fields that are totally ramified at 3 and the primes dividing f but no other
primes and that also satisfy the extra condition d ≡ 1 (mod 3). (For the
remainder of this section we have dropped ± from most of the notation.)

Proposition 3.2.

N ′(f ;X) = 1
216ζ(2)n±

∏
p|f

1
p(p+ 1)X +O(f−1X16/17+ε) .

Proof. — As before, we can write

N ′(f ;X) =
∑

(r,3f)=1

µ(r)M ′(rf ;X)

and apply Theorem 1.3 of [33] to obtain

M ′(f ;X) = c′
fX +O(f−2X5/6) +O(f16/9X7/9+ε) .

The calculation of c′
f is identical to that of cf except for the local factor at

the prime 3. We need to impose the additional conditions that 3 is totally
ramified and d ≡ 1 (mod 3). These conditions are definable in terms of
congruence conditions on the coefficients of the corresponding cubic form;
indeed, this is equivalent to saying ∆ ≡ 34 (mod 35).

At this juncture, computing the local densities on the “forms side” via
the Delone–Fadeev correspondence is more convenient; please see [7, §4] for
details regarding this type of local computation. Let S denote the collection
of integral binary cubic forms having a triple root modulo 3, satisfying the
maximality condition at 3, and satisfying our congruence condition on the
discriminant. Let µ3(S) denote the 3-adic density of the p-adic closure of
S in Z4

3. (Here the additive measure µ3 is normalized so that µ3(Z4
3) = 1.)

In this notation, we have

c′
f = µ3(S)(1 − 3−2)−1(1 − 3−3)−1cf .

ANNALES DE L’INSTITUT FOURIER
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All that remains is to compute µ3(S). Since maximality is a condition
modulo 32, we may do all our calculation modulo 32.

There are 8 forms over Z/3Z with a triple root and 2/3 of the lifts of
these forms to Z/32Z are maximal at 3. For each of these 432 forms, we
compute the discriminant via the standard formula and then check whether
the fundamental part of the discriminant satisfies d ≡ 1 (mod 3). Precisely
48 of these fit the bill, in other words, 1/9 of the forms under consideration.
It follows that the 3-adic density is µ3(S) = (8/34)(2/3)(1/9) = 16/2187.

Observe that
16/2187

(1 − 3−2)(1 − 3−3) = 1/117 ,

which leads to
c′
f = 1

234ζ(3)n±

∏
p|f

1
p2 + p+ 1 .

(The extra factor can also be computed as (1/9)(32 + 3 + 1)−1 = 1/117.)
The rest of the proof proceeds exactly as in the proof of Proposition 3.1. □

Applying the previous proposition and following the same procedure we
used to obtain our formula for N1(X) yields

N2(X) = X
1

216n±ζ(2)
∏
p∈T

(
1 + 1

p(p+ 1)

)
+O

(
X16/17+ε

)
.

Finally, subtracting, we have

N(X) = X
29

54n±ζ(2)
∏

p≡2 (mod 3)

(
1 + 1

p(p+ 1)

)
+O

(
X16/17+ε

)
.

This proves Theorem 1.1, and Corollary 1.2 follows.

4. The average genus number

First, we verify that the cyclic fields do not contribute to the aver-
age. When K is cyclic, we have ∆ ∈ {f2, (9f)2} and, by Theorem 2.1,
gK = 3e−1; in this case, e is the number of (odd) primes that are (totally)
ramified in K. Moreover, there are 2e−1 fields with each possible discrimi-
nant. Therefore, we have∑

0<±∆⩽X
Kcyclic

gK ≪
∞∑
k=1

πk(
√
X)6k ,

where πk(y) denotes the number of positive integers ⩽ y with exactly k

prime factors. Notice that the sum on the righthand side above is finite since

TOME 73 (2023), FASCICULE 4
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πk(y) = 0 for k > c log y/ log log y, where c > 0 is an absolute constant.
The elementary estimate

ε log y∑
k=1

πk(y)6k ≪ y

ε log y∑
k=1

6k ≪ y1+ε

leads to ∑
0<±∆⩽X
Kcyclic

gK = O
(
X1/2+ε

)
.

The fact that the above expression is o(X) tells us that cyclic fields do not
contribute to the average genus number. Although we will not use it here,
we mention in passing that estimates for πk(y) (see [25]) allow one to show
that the sum of genus numbers above is ≫ X1/2(logX)c with c > 0 and
therefore the average genus number taken over cyclic cubic fields is infinite.

We now turn to the main part of the proof. Define ψ(n) to be the number
of primes p dividing n satisfying p ≡ 1 (mod 3). As we are ignoring cyclic
fields, everything that follows holds up to an error of O(X1/2+ε). We have∑

0<±∆⩽X

gK =
∑

0<±∆⩽X

3ψ(f) −
∑′

0<±∆⩽X

3ψ(f) +
∑′

0<±∆⩽X

3ψ(f)+1

=
∑

0<±∆⩽X

3ψ(f) + 2
∑′

0<±∆⩽X

3ψ(f)

=
∑♭

(f,3)=1

3ψ(f)N(f ;X) + 2
∑♭

(f,3)=1

3ψ(f)N ′(f ;X) ,

where
∑′ denotes only summing over those fields where 3 is totally ramified

with d ≡ 1 (mod 3) and the
∑♭ denotes summing over squarefree f .

Applying Proposition 3.1 to compute the first sum above, we obtain:∑♭

(f,3)=1

3ψ(f)N(f ;X)

= 13
24ζ(2)n±X

∑♭

(f,3)=1
f⩽X1/2

3ψ(f)
∏
p|f

1
p(p+ 1) +

∑♭

(f,3)=1
f⩽X1/2

3ψ(f)O(f−1X16/17+ε) .

After performing manipulations similar to (3.1) this yields

13
24n±ζ(2)X

∏
p ̸=3

(
1 + 3ψ(p)

p(p+ 1)

)
+

∑
f>X1/2

3ψ(f)O(f−2X) +
∑

f⩽X1/2

3ψ(f)O(f−1X16/17+ε) .

ANNALES DE L’INSTITUT FOURIER
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The main term is
13

24n±ζ(2)X
∏

p≡1 (mod 3)

(
1 + 3

p(p+ 1)

) ∏
p≡2 (mod 3)

(
1 + 1

p(p+ 1)

)
.

Because 3ψ(f) = O(fε), the error term is∑
f>X1/2

O(f−2+εX) +
∑

f⩽X1/2

O(f−1+εX16/17+ε) = O(X16/17+ε) .

In exactly the same manner, we apply Proposition 3.2 to compute the
second term ∑♭

(f,3)=1

3ψ(f)N ′(f ;X) .

This simply results in multiplying the first outcome by a factor of 1/117.
Thus the whole sum is the first term multiplied by 1 + 2/117 = 119/117.
Hence, we obtain

119
216n±ζ(2)X

∏
p≡1 (mod 3)

(
1 + 3

p(p+ 1)

) ∏
p≡2 (mod 3)

(
1 + 1

p(p+ 1)

)
,

plus O(X16/17+ε). Dividing the above by 1/(2n±ζ(3)) yields the desired
expression, thereby proving Theorem 1.3.

5. Counting cubic fields with given genus number

As before, G± will denote the collection of all cubic fields with sgn(∆) =
±1. We now let F± ⊆ G± denote the collection of all cubic fields K with
gK = 3k. As before, define N±(X) = #{K ∈ F± : |∆| ⩽ X}. Let Tk
denote the collection of squarefree integers n coprime to 3 with ψ(n) = k

(i.e., having exactly k prime factors p satisfying p ≡ 1 (mod 3)).

F±
1 = {K ∈ G± | f ∈ Tk}

F±
2 = {K ∈ G± | f ∈ Tk, 3 is totally ramified, and d ≡ 1 (mod 3)}

F±
3 = {K ∈ G± | f ∈ Tk−1, 3 is totally ramified, and d ≡ 1 (mod 3)}.

By Theorem 2.1, we have F± = (F±
1 \F±

2 )∪F±
3 , and therefore N±(X) =

N±
1 (X) −N±

2 (X) +N±
3 (X) where N±

i (X) = #{K ∈ F±
i : |∆| ⩽ X}. Now

we can proceed exactly as in Section 3 to find

N±
1 (X) = 13

24ζ(2)n±X
∑
f∈Tk

∏
p|f

1
p(p+ 1) +O(X16/17+ε)
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and we multiply by 1/117 to obtain

N±
2 (X) = 1

216ζ(2)n±X
∑
f∈Tk

∏
p|f

1
p(p+ 1) +O(X16/17+ε) .

Similarly, we obtain

N±
3 (X) = 1

216ζ(2)n±X
∑

f∈Tk−1

∏
p|f

1
p(p+ 1) +O(X16/17+ε) ,

and this makes the desired proportion equal to

ζ(3)
ζ(2)

29
27
∑
f∈Tk

∏
p|f

1
p(p+ 1) + 1

108
∑

f∈Tk−1

∏
p|f

1
p(p+ 1)

 .
We include here a table of approximations to the first few percentages.

k 0 1 2 3
proportion 96.23% 3.72% 0.05% really small!

This concludes the proof of Theorem 1.4.
We note that the formulas for N±

1 , N±
2 , N±

3 just derived can essentially
be used to establish Theorems 1.1, 1.3, and 1.4 but we have chosen to
structure the paper in this manner for clarity of exposition.

6. Norm-Euclidean cubic fields

Davenport showed that there are only finitely many norm-Euclidean cu-
bic fields with negative discriminant [14]. Heilbronn showed that there are
only finitely many norm-Euclidean cyclic cubic fields with positive discrim-
inant [23], and the first author completely determined these fields under
the GRH [28, 29]. This leaves open the case of non-cyclic totally real cubic
fields. In fact, Heilbronn says that he would “be surprised to learn that the
analogue of [the finiteness theorem] is true in this case”. Lemmermeyer car-
ried out computations (up to discriminant 1.3 ·104) in this setting (see [26])
and observed that the percentage of norm-Euclidean fields was decreasing,
and consequently he stated that “it is tempting to conjecture that the
norm-Euclidean cubic fields have density 0.”

This leads to the following problem: Give an upper bound on the propor-
tion of totally real cubic fields that are norm-Euclidean. To our knowledge,
no one has given a nontrivial upper bound in this setting, i.e., a bound less
than 100%. The first thing one might try to do is to use genus theory; in
light of Corollary 1.2, one knows that less than 96.24% of totally real cubic
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fields are norm-Euclidean. The question then is whether one can improve
on the upper bound coming from genus theory. Theorem 1.5 accomplishes
this, albeit very modestly. In order to give our results in more detail, we
must first state Heilbronn’s criterion in our situation.

Let K be a totally real cubic field, and adopt the previous notation
for ∆, d, f . Denote by F the product of all the totally ramified primes in
K. Notice that F = f or F = 3f depending upon whether 3 is totally
ramified. The following is the natural adaptation to our setting of a result
of Heilbronn on cyclic cubic fields, which has its roots in a theorem of
Erdös–Ko [19]; it is also a special case of a more general theorem due to
Egami [16] who attributed it to Lenstra.

Lemma 6.1 (Heilbronn’s criterion). — If we can write F = a + b with
a, b ∈ Z+ where a, b are not norms and a is a cubic residue modulo F , then
K is not norm-Euclidean.

One amusing observation is that if p ̸≡ 1 (mod 3) then every number is
a cubic residue modulo p, so Heilbronn’s criterion is more easily verified in
the genus number one setting (where all p dividing F have this property).

Lemma 6.2. — Suppose K has genus number one. If we can write F =
a+b with a, b ∈ Z+ where a, b are not norms, then K is not norm-Euclidean.

Let H(X) denote the number of genus number one cubic fields with
0 < ∆ ⩽ X to which Heilbronn’s criterion applies, and let H(F ;X) denote
the number of such fields with fixed F . We have

H(X) =
∑

F⩽X1/2

H(F ;X)

Proposition 6.3. — We have

H(F ;X) = bF
12ζ(2)

∏
p|F

1
p(p+ 1)X +O(eFX16/17+ε)

for some explicitly computable bF ∈ Q ∩ [0, 1].

F 1 2 3 5 6 10 11 15 17 22

bF 0 0 0 1
18 0 7

96
55

288
1574

15309
231205
653184

1292771
4354560

≈ 0 0 0 0.0556 0 0.0729 0.191 0.103 0.354 0.297

Using the previous proposition, we will prove the main result of this
section which immediately implies Theorem 1.5.
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Theorem 6.4. — We have H(X) ∼ BX with 5.7·10−4 ⩽ B ⩽ 6.1·10−4.
Consequently, Heilbronn’s criterion applies to strictly between 4/5 of a
percent and 1 percent of all totally real cubic fields with genus number
one.

Admittedly, the proportion in the previous theorem is rather small. The
main interest here is to know that such a density exists and is positive. We
obtain the rather weak corollary that less than 96% of totally real cubic
fields are norm-Euclidean. However, this theorem does say something about
the limitations of these methods; in particular, one cannot hope to beat 95%
by using only genus theory and totally ramified primes (via Lemma 6.1)
— one would need to inject some new ideas. In principle, one could use
the ideas presented here to compute B more accurately, but we have not
pursued this (because of the reasons just mentioned).

Remark 6.5. — Even though the total proportion given in Theorem 6.4
is rather small, if we only consider fields where F is large we can give much
stronger results. For example, when F = 167, we compute bF ≈ 0.9421. In
fact, the precise number is:

5707366742127207720711393876905481748779979640006818006913
6058037125307413601957148346537399067112071383363249766400

The upshot is the following: Suppose we know that 167 is the only totally
ramified prime in K. Then K has less than a 5.8% chance of being norm-
Euclidean.

Before launching into the proofs, we recast Heilbronn’s criterion into a
form that is more convenient for our purposes. We define the set

S = {a ∈ Z | 0 < a < F , a /∈ NK/Q(OK)} ,

and rewrite the condition in Heilbronn’s criterion as

(†) ∃ a ∈ S such that F − a ∈ S .

Recall that n ̸= 0 is a norm if and only if 3|vp(n) for all inert p|n. In light
of this, we immediately see that (†) holds iff there exists an a ∈ (0, F ) and
a pair of inert primes {p, q} such that p|a, q|F − a, and 3 ̸ | vp(a)vq(F − a).
If this condition is satisfied, we call the set of two primes {p, q} a Heilbronn
pair for F .

Example 6.6. — We find all the Heilbronn pairs for F = 11. By sym-
metry, there are 5 possible choices of (a, F − a) we must consider. We can
reject the values (1, 10) and (3, 8) because they contain cubes, which leaves
three remaining choices for (a, F − a). The choice (2, 9) leads to the H-pair
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{2, 3}, the choice (4, 7) leads to the H-pair {2, 7}, and the choice (5, 6) leads
to the H-pairs {5, 2}, {5, 3}. In summary, the Heilbronn pairs for F = 11
are {2, 3}, {2, 5}, {2, 7}, {3, 5}. This means Heilbronn’s criterion applies to
a cubic field K with F = 11 if and only if the collection of primes that are
inert in K contains at least one of these four H-pairs.

Let I be a subset of the primes p with p < F and (p, F ) = 1. We
say that I is admissible if it contains both primes in a Heilbronn pair.
Let H(F, I;X) denote the number of cubic fields with fixed F satisfying
0 < ∆ ⩽ X such that I is exactly the inert primes less than F . In light of
discussion above, we have

(6.1) H(F ;X) =
∑

I admissible
H(F, I;X) .

Proposition 6.7. — Suppose 3 is not totally ramified in K. Then

H(f, I;X) = 1
12ζ(2)

∏
p|f

1
p(p+ 1)

∏
p<f
p∤f

ap
1 + p−1X +O(efX16/17+ε)

where

ap =
{

1/3 p ∈ I,
2/3 + 1/p p ̸∈ I.

Proof. — Note that our hypothesis gives ∆ = df2. We follow the same
procedure as Proposition 3.1. However, this time there are many more local
conditions being imposed. We impose the conditions:

(1) p is totally ramified for all p|f ;
(2) p is either inert (if in I) or not inert but not totally ramified (not

in I) for all p < f with p ∤ f ;
(3) p is not totally ramified for all p > f (via inclusion–exclusion).

The constant in the main term is thus:

1
12ζ(3)

∏
p|f

1/p2

1 + p−1 + p−2

∏
p<f
p∤f

ap
1 + p−1 + p−2

∑
r>f

(r,Πp⩽fp)=1

µ(r)
∏
p|r

1
p2 + p+ 1

= 1
12ζ(3)

∏
p|f

1
p2 + p+ 1

∏
p<f
p∤f

ap
1 + p−1 + p−2

∏
p>f

(
1 − 1

p2 + p+ 1

)
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= 1
12ζ(2)

∏
p|f

1
p2 + p+ 1

∏
p<f
p∤f

ap
1 + p−1 + p−2

∏
p⩽f

(
1 − 1

p2 + p+ 1

)−1

= 1
12ζ(2)

∏
p|f

1
p(p+ 1)

∏
p<f
p∤f

ap
1 + p−1 .

When the smoke clears, the error term is equal to

O(f−2X5/6) +O(Y 25/9f8/9efX7/9+ε) +O(Y −1+εf−2+εX) .

The middle O-term above comes from the estimate∏
p|f

(
p2)8/9 ∏

p<f
p∤f

p8/9 = f8/9 exp ((8/9)θ(f)) ⩽ f8/9 exp(f) .

Setting Y = X1/17f−13/17e−9f/34 yields the error term

O(f−21/17+εe9f/34X16/17+ε) . □

If 3 is totally ramified in K, then the previous proposition still holds, but
with f replaced by F = 3f and the constant in the main term multiplied
by a factor of 8/9.

Example 6.8. — We return to our example of F = 11. We saw that the
four H-pairs in this situation are {2, 3}, {2, 5}, {2, 7}, {3, 5}. Consequently,
there are 9 admissible sets I; namely: {2, 3}, {2, 3, 5}, {2, 3, 7}, {2, 3, 5, 7},
{2, 5}, {2, 5, 7}, {2, 7}, {3, 5}, {3, 5, 7}. Consider for the moment the choice
I = {2, 3, 5}. In this situation, the extra factor is

1/3
1 + 2−1 · 1/3

1 + 3−1 · 1/3
1 + 5−1 · 2/3 + 1/7

1 + 7−1 = 85
7776

and hence Proposition 6.7 yields

H(F, I;X) ∼ 85
7776 · 1

12ζ(2)
∏
p|f

1
p(p+ 1)X

For each admissible I we get an additional rational factor; summing over
all admissible I yields:

H(F ;X) ∼ 55
288 · 1

12ζ(2)
∏
p|f

1
p(p+ 1)X

Proof of Proposition 6.3. — This follows immediately from Proposi-
tion 6.7 since the sum appearing in (6.1) is finite. The calculation of the bF
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is along the lines of the previous example; namely, when F is not divisible
by 3,

bF =
∑

I admissible

∏
p<F
p∤F

ap
1 + p−1 ,

and bF is equal to the same expression times 8/9 when F is divisible by 3.
□

Proof of Theorem 6.4. — Using Proposition 6.3 for F < Y we obtain:

H(X) =
∑
F<Y

H(F ;X) +
∑
F>Y

O(F−2+εX)

= 1
12ζ(2)X

∑
F

bF
∏
p|f

1
p(p+ 1)

+
∑
F<Y

O(eFX16/17+ε) +
∑
F>Y

O(F−2+εX)

= 1
12ζ(2)X

∑
F

bF
∏
p|f

1
p(p+ 1) +O(eYX16/17+ε) +O(Y −1+εX)

Choosing Y to be a small power of logX proves the result with

B = 1
12ζ(2)

∑
F

bF
∏
p|f

1
p(p+ 1) . □
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