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SHEAF QUANTIZATION AND INTERSECTION OF
RATIONAL LAGRANGIAN IMMERSIONS

by Tomohiro ASANO & Yuichi IKE (*)

Abstract. — We study rational Lagrangian immersions in a cotangent bundle,
based on the microlocal theory of sheaves. We construct a sheaf quantization of a
rational Lagrangian immersion and investigate its properties in Tamarkin category.
Using the sheaf quantization, we give an explicit bound for the displacement energy
and a Betti/cup-length estimate for the number of the intersection points of the
immersion and its Hamiltonian image by a purely sheaf-theoretic method.

Résumé. — Nous étudions les immersions lagrangiennes rationnelles dans un
fibré cotangent en nous basant sur la théorie microlocale des faisceaux. Nous
construisons une quantification faisceautique d’une immersion lagrangienne ra-
tionnelle et étudions ses propriétés dans la catégorie de Tamarkin. En utilisant
la quantification faisceautique, nous donnons une limite explicite à l’énergie de
déplacement et une estimation Betti ou cup-length pour le nombre de points d’in-
tersection de l’immersion et de son image hamiltonienne par une méthode purement
faisceautique.

1. Introduction

1.1. Sheaf-theoretic bound for displacement energy

The microlocal theory of sheaves due to Kashiwara–Schapira [17] has
been effectively applied to symplectic geometry for a decade. After the pio-
neering works by Nadler–Zaslow [20, 21] and Tamarkin [24], numerous the-
orems related to symplectic geometry have been proved by sheaf-theoretic
methods (for example, see [7, 12, 13]). Now the theory is considered to be a
powerful tool other than Floer theory for the study of symplectic geometry.
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In [5], the authors gave a purely sheaf-theoretic bound for the displace-
ment energy of compact subsets in a cotangent bundle. Let M be a con-
nected manifold without boundary and denote by T ∗M its cotangent bun-
dle equipped with the canonical symplectic form ω. For a compactly sup-
ported C∞-function H = (Hs)s∈[0,1] : T ∗M × [0, 1] → R, we define ∥H∥ :=∫ 1

0 (maxpHs(p) − minpHs(p)) ds and let ϕH = (ϕHs )s : T ∗M × [0, 1] →
T ∗M denote the generated Hamiltonian isotopy. For given compact sub-
sets A and B of T ∗M , their displacement energy is the infimum of ∥H∥ such
that A∩ϕH1 (B) = ∅. A sheaf-theoretic tool to estimate displacement energy
is Tamarkin category [24]. We denote by D(M) the Tamarkin category of
M , which is defined as a quotient category of the bounded derived category
Db(M ×R) of sheaves of vector spaces over the field F2 = Z/2Z on M ×R.
For a compact subset A of T ∗M , DA(M) denotes the full subcategory of
D(M) consisting of objects whose microsupports are contained in the cone
of A in T ∗(M×R). We also denote by Hom⋆ : D(M)op×D(M) → D(M) the
canonical internal Hom functor. For an object F ∈ D(M) and c ∈ R⩾0 there
exists a canonical morphism τ0,c(F ) : F → Tc∗F , where Tc : M×R → M×R
is the translation by c to the R-direction.

Theorem 1.1 ([5, Thm. 4.18)]). — Denote by q : M × R → R the
projection and let A,B be compact subsets of T ∗M . For F ∈ DA(M),
G ∈ DB(M), if

(1.1) ∥H∥ < inf{c ∈ R⩾0 | τ0,c(Rq∗ Hom⋆(F,G)) = 0},

then A ∩ ϕH1 (B) ̸= ∅.

Theorem 1.1 asserts that if we find sheaves associated with given com-
pact subsets, we can estimate their displacement energy using these sheaves.
However, it says nothing about the existence of such objects and we could
only use sheaves associated with some concrete examples or compact ex-
act Lagrangian submanifolds [12]. In this paper, for a certain class of La-
grangian immersions, we construct such objects that give an explicit bound
of the displacement energy, based on sheaf quantization.

1.2. Sheaf quantization

For a subset of a cotangent bundle (resp. a cosphere bundle), in par-
ticular a Lagrangian (resp. Legendrian) submanifold, a sheaf quantization
is a sheaf whose microsupport coincides with the subset. The process to
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associate a sheaf quantization with a given subset is also called sheaf quan-
tization. Since the microsupport of a sheaf is always conic, for a non-conic
subset of T ∗M , we conify it adding one variable R. In this way, we obtain a
conic subset of T ∗(M ×R) or equivalently a subset of the cosphere bundle
ST ∗(M × R) and we could construct a sheaf quantization of the subset.

Guillermou [11, 12] constructed a sheaf quantization of a compact ex-
act Lagrangian submanifold of T ∗M , whose conification is a Legendrian
submanifold of ST ∗(M × R) with no Reeb chords. He first constructed
a sheaf on M × (0,+∞) × R, which can be regarded as a family of ob-
jects of Db(M × R) parametrized by (0,+∞), and then obtained a sheaf
quantization on M × R as a limit of the family at +∞.

In this paper, we construct a sheaf quantization of a general compact
Legendrian submanifold of ST ∗(M ×R/θZ) with some θ ∈ R⩾0 (see Theo-
rem 4.4 and Remark 4.6). Such a Legendrian is a conification of a strongly
rational Lagrangian immersion (see Definition 4.1 and Remark 4.6). For
the construction, we follow the idea of Guillermou [12]. In our setting, his
construction is obstructed by the existence of Reeb chords and it only gives
a family parametrized by (0, a), where a is a positive real number less than
the shortest length of the Reeb chords. In this way, we obtain an object
G(0,a) of the category Db

/[1](M × (0, a) × R/θZ), where Db
/[1](X) denotes

the triangulated orbit category of sheaves on a manifold X (see Section 2).
We also call this object G(0,a) a sheaf quantization.

Remark 1.2. — The reasons why we construct a sheaf quantization as
an object of Db

/[1](M × (0, a) × R/θZ) is the following threefold:

(i) The appearance of R/θZ comes from the fact that a primitive of
the Liouville 1-form on a strongly rational Lagrangian takes value
only modulo θ.

(ii) Using a sheaf on M × (0, a) × R/θZ rather than one on M × R/θZ
is the essential idea to obtain better energy estimates as in Theo-
rems 1.5 and 1.6 below. The restriction of the sheaf to M × {u} ×
R/θZ for some u ∈ (0, a) can also give an energy estimate but it is
worse in general.

(iii) We can only construct a sheaf quantization as an object of the
triangulated orbit category Db

/[1] because of the existence of an ob-
struction class, which is related to the Maslov class (see [12, §10.3]).
This is why we use the orbit category instead of the usual derived
category.

TOME 73 (2023), FASCICULE 4



1536 Tomohiro ASANO & Yuichi IKE

1.3. Intersection of rational Lagrangian immersions

Based on Theorem 1.1 and sheaf quantization introduced in Section 1.2,
we give an explicit bound for the displacement energy of a rational La-
grangian immersion with a purely sheaf-theoretic method. Not only a bound
for the energy, we also give an estimate of the number of intersection points
by the total Betti number and the cup-length of the Lagrangian.

Definition 1.3.

(i) A Lagrangian immersion ι : L → T ∗M is said to be rational if there
exists σ(ι) ∈ R⩾0 such that

(1.2)
{∫

D2
v∗ω

∣∣∣∣ (v, v) ∈ Σ(ι)
}

= σ(ι) · Z,

where

(1.3) Σ(ι) :=
{

(v, v)

∣∣∣∣∣ v : D2 → T ∗M,v : ∂D2 → L,

v|∂D2 = ι ◦ v

}
.

(ii) For a rational Lagrangian immersion ι : L → T ∗M , one defines

(1.4) e(ι) := inf
({∫

D2
v∗ω

∣∣∣∣ (v, v) ∈ E(ι) ⨿ Σ(ι)
}

∩ R>0

)
,

where

(1.5) E(ι) :=

(v, v)

∣∣∣∣∣∣∣∣
v : D2 → T ∗M, v : [0, 1] → L,

v(0) ̸= v(1), ι ◦ v(0) = ι ◦ v(1),

v|∂D2 ◦ exp(2π
√

−1(−)) = ι ◦ v

 .

Here we put the following additional assumption.

Assumption 1.4. — There exists no (v, v) ∈ E(ι) with
∫
D2 v

∗ω = 0.

Our explicit bounds are the following.

Theorem 1.5 (see Theorem 5.4). — Let ι : L → T ∗M be a compact
rational Lagrangian immersion satisfying Assumption 1.4. If ∥H∥ < e(ι)
and ι : L → T ∗M intersects ϕH1 ◦ ι : L → T ∗M transversally, then

(1.6) #
{

(y, y′) ∈ L× L
∣∣ ι(y) = ϕH1 ◦ ι(y′)

}
⩾

dimL∑
i=0

bi(L).
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Theorem 1.6 (see Theorem 5.5). — Let ι : L → T ∗M be a compact
rational Lagrangian immersion satisfying Assumption 1.4. If a Hamiltonian
function H satisfies ∥H∥ < min ({e(ι)} ∪ ({σ(ι)/2} ∩ R>0)), then

(1.7) #
{

(y, y′) ∈ L× L
∣∣ ι(y) = ϕH1 ◦ ι(y′)

}
⩾ cl(L) + 1,

where cl(L) denotes the cup-length of L over F2.

In particular, Theorem 1.5 gives a bound for the displacement energy of
the image of a rational Lagrangian immersion.

In what follows, we give the outline of our proof.
First, we can reduce the problems to the case of a strongly rational

Lagrangian immersion, where Assumption 1.4 guarantees that the asso-
ciated Legendrian is a submanifold of ST ∗(M × R/θZ). Let a ∈ R>0
be less than the shortest length of the Reeb chords of the Legendrian,
which is related to e(ι). As mentioned in Section 1.2, we can associate
a sheaf quantization G(0,a) ∈ Db

/[1](M × (0, a) × R/θZ) with the Legen-
drian submanifold. Using the quantization object, we define two objects
F(0,a) := Rja!G(0,a), F[0,a] := Rja∗G(0,a) ∈ Db

/[1](M × R × R/θZ), where ja
is the inclusion M × (0, a) × R/θZ → M × R × R/θZ.

To use the objects F(0,a) and F[0,a] effectively, we introduce a modified
version of Tamarkin category DP (M)θ parametrized by a manifold P with
period θ, which is defined as a quotient category of Db

/[1](M × P ×R/θZ).
In the case P = pt and θ = 0, the category recovers (an orbit version of)
the usual Tamarkin category D(M). Similarly to the case of D(M), we can
define a canonical internal Hom functor Hom⋆ : DP (M)op

θ × DP (M)θ →
DP (M)θ. For c ∈ R we denote by Tc the translation by c on R/θZ modulo
θ. In this setting, we can show that the results in [5] including Theorem 1.1
also hold (see Section 3 and Appendix A). This modification corresponds to
the family version of the previous results and gives a better energy estimate
in some cases. Indeed, F(0,a) and F[0,a] define objects of DR(M)θ, and we
can prove that τ0,c(Rq∗ Hom⋆(F(0,a), F[0,a])) is non-zero for any 0 ⩽ c < a,
where q : M ×R×R/θZ → R/θZ is the projection. We cannot obtain such
estimate with G(0,a)|M×{u}×R/θZ ∈ Dpt(M)θ for some u ∈ (0, a) and this
is why we use the parametrized version.

For the bounds for the number of the intersection points, similarly to [15]
we study the object Hom⋆(F(0,a), F

H
[0,a]), where FH[0,a] denotes the Hamilton-

ian deformation of F[0,a] associated with ϕH1 . We find that its microsupport
is related to the intersection #

{
(y, y′) ∈ L× L

∣∣ ι(y) = ϕH1 ◦ ι(y′)
}

and for

TOME 73 (2023), FASCICULE 4
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any c ∈ R

(1.8)
H∗RΓ[c,+∞)(ℓ!Rq∗ Hom⋆(F(0,a), F

H
[0,a]))c

≃ H∗RΓ (Ω+;µhom(F(0,a), T−c∗F
H
[0,a])),

where ℓ : R → R/θZ is the quotient map and Ω+ = {τ > 0} ⊂ T ∗(M ×
R×R/θZ) with (t; τ) being the homogeneous coordinate on T ∗(R/θZ). We
study an action of H∗(L) =

⊕
i∈ZH

i(L;F2) on (1.8) and even compute the
right-hand side explicitly in the case where the intersection is transverse.
These computations are more difficult than previous works such as [12, 15]
because of the singularity of the microsupports of F(0,a) and F[0,a]. Com-
bining the computations with the Morse inequality for sheaves and some
properties of an algebraic counterpart of cup-length, we obtain the theo-
rems. A benefit of the microlocal theory of sheaves especially appears in the
proof of the cup-length bound. We prove the triviality of H∗(L)-action on
the each contribution by showing that the action factors through a microlo-
cal category. This microlocal sheaf-theoretic proof is more straightforward
than that via Floer theory, which needs an unusual construction of suitable
moduli spaces [3, 19].

Related topics

Sheaf quantization has been studied in several situations. Guillermou–
Kashiwara–Schapira [13] constructed a sheaf quantization of the graph of
a Hamiltonian isotopy. Guillermou [11, 12] constructed a sheaf quantiza-
tion of a compact exact Lagrangian submanifold of a cotangent bundle
and applied it to the study of the topology of the Lagrangian. Note that
Viterbo [25] also constructed a sheaf quantization of a compact exact La-
grangian submanifold, based on Floer theory. Jin–Treumann [16] studied
the relation between sheaf quantization and brane structures.

The microlocal theory of sheaves is also applied to quantitative problems
in symplectic geometry. Indeed, Tamarkin [24] already mentioned an action
of Novikov ring on Tamarkin category (see also [5, Rem. 4.21]). Chiu [7]
proved a non-squeezing result based on a sheaf-theoretic method. See also
the recent textbook by Zhang [26] for the quantitative aspect.

Results similar to Theorems 1.5 and 1.6 were also proved by Floer-
theoretic methods for a compact symplectic manifold, without Assump-
tion 1.4. Chekanov [6] proved Theorem 1.5 for a rational embedding ι with
σ(ι) > 0 and Akaho [1] proved Theorem 1.5 for an exact immersion ι,

ANNALES DE L’INSTITUT FOURIER
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which corresponds to the condition σ(ι) = 0. Liu [19] gave a proof of Theo-
rem 1.6 for a rational Lagrangian embedding with a better bound for ∥H∥.
Floer-theoretic approach could give better estimates in the cases where a
bounding cochain exists [2, 8, 9, 10]. See also Remarks 5.7 and 5.8.

Both of the constructions of Floer homology groups and sheaf quantiza-
tions are obstructed by Reeb chords. Augmentations or bounding cochains
were originally introduced to resolve the obstruction to construct Legen-
drian contact homology or Lagrangian Floer homology. Augmentations are
also related to sheaf quantization of Legendrians [4, 22, 23]. In this work, we
construct sheaf quantizations in a more general setting without assuming
the existence of augmentations or bounding cochains, though our quantiza-
tions have less information than the quantizations in [4, 22, 23]. Combining
our argument in this paper with sheaf quantization with augmentations, we
expect that we could obtain a better estimate for the displacement energy.

Organization

The structure of the paper is as follows. In Section 2, we give some results
of the microlocal theory of sheaves in the triangulated orbit category. In
Section 3, we introduce the modified version of Tamarkin category and
give some refined versions of the results of Asano–Ike [5]. In Section 4, we
construct a sheaf quantization of a strongly rational Lagrangian immersion
in a cotangent bundle. In Section 5, we prove Theorems 1.5 and 1.6 based
on the results obtained in the previous sections. In Appendix A, we give
details on the modified version of Tamarkin category.
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2. Preliminaries on microlocal sheaf theory

In this paper, we assume that all manifolds are real manifolds of class C∞

without boundary. Throughout this paper, let k be the field F2 = Z/2Z.
In this section, we recall some definitions and results from [12, 17] and

prepare some notions. We mainly follow the notation in [17]. Until the end
of this section, let X be a manifold.

2.1. Geometric notions

For a locally closed subset Z of X, we denote by Z its closure. We also
denote by ∆X the diagonal of X×X. We denote by TX the tangent bundle
and by T ∗X the cotangent bundle of X, and write πX : T ∗X → X or simply
π for the projection. For a submanifold M of X, we denote by T ∗

MX the
conormal bundle to M in X. In particular, T ∗

XX denotes the zero-section
of T ∗X. We set T̊ ∗X := T ∗X \ T ∗

XX. For two subsets S1 and S2 of X, we
denote by C(S1, S2) ⊂ TX the normal cone of the pair (S1, S2).

With a morphism of manifolds f : X → Y , we associate the following
morphisms and commutative diagram:

(2.1)

T ∗X

πX

��

X ×Y T
∗Y

π

��

fd
oo

fπ
// T ∗Y

πY

��

X X
f

// Y,

where fπ is the projection and fd is induced by the transpose of the tangent
map f ′ : TX → X ×Y TY .

We denote by (x; ξ) a local homogeneous coordinate system on T ∗X. The
cotangent bundle T ∗X is an exact symplectic manifold with the Liouville 1-
form α = ⟨ξ, dx⟩. Thus the symplectic form on T ∗X is defined to be ω = dα.
We denote by a : T ∗X → T ∗X, (x; ξ) 7→ (x; −ξ) the antipodal map. For a
subset A of T ∗X, Aa denotes its image under the antipodal map a. We
also denote by h : T ∗T ∗X

∼−→ TT ∗X the Hamiltonian isomorphism given
in local coordinates by h(dxi) = −∂/∂ξi and h(dξi) = ∂/∂xi. We will
identify T ∗T ∗X and TT ∗X by −h.

Notation 2.1. — For notational simplicity, we sometimes write {P (x)}X
for {x ∈ X | P (x)} if there is no risk of confusion.

ANNALES DE L’INSTITUT FOURIER
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2.2. Microsupports of objects in orbit category

We denote by kX the constant sheaf with stalk k and by Mod(kX) the
abelian category of sheaves of k-vector spaces on X. Moreover, we denote
by Db(kX) the bounded derived category of sheaves of k-vector spaces. One
can define Grothendieck’s six operations RHom,⊗, Rf∗, f

−1, Rf!, f
! for a

continuous map f : X → Y with suitable conditions. For a locally closed
subset Z of X, we denote by kZ the zero-extension of the constant sheaf
with stalk k on Z to X, extended by 0 on X \ Z. Moreover, for a locally
closed subset Z of X and F ∈ Db(kX), we define FZ , RΓZ(F ) ∈ Db(kX) by

(2.2) FZ := F ⊗ kZ , RΓZ(F ) := RHom(kZ , F ).

Let us recall the definition of the microsupport SS(F ) of an object F ∈
Db(kX). Remark that we can define the mircosupport of an object over
any commutative ring, which we will use below for K = k[ε]/(ε2).

Definition 2.2 ([17, Def. 5.1.2]). — Let F ∈ Db(kX) and p ∈ T ∗X.
One says that p ̸∈ SS(F ) if there is a neighborhood U of p in T ∗X such that
for any x0 ∈ X and any C∞-function φ on X (defined on a neighborhood
of x0) satisfying dφ(x0) ∈ U , one has RΓ{x∈X|φ(x)⩾φ(x0)}(F )x0 ≃ 0.

In this paper, we will work in the triangulated orbit category Db
/[1](X)

for sheaves studied in [11, 12], which was originally defined in Keller [18].
Here we recall its definition and properties. See [11, 12] for more details.

Let K be the k-algebra k[ε]/(ε2) and perf(KX) be the full triangulated
subcategory of Db(KX) generated by the image of the functor e : Db(kX) →
Db(KX), F 7→ KX ⊗kX

F . We denote by Db
/[1](X) or Db

/[1](kX) the quo-
tient category Db(KX)/perf(KX). For any F ∈ Db

/[1](X), F [1] is iso-
morphic to F . We also denote by i the composite functor i : Db(kX) →
Db(KX) → Db

/[1](X), where the former functor is induced by the nat-
ural ring homomorphism K → k corresponding to the trivial ε-action
and the latter is the quotient functor. The Grothendieck’s six operations
are defined also on the orbit categories and commute with i. Adjunc-
tions, natural transformations and natural isomorphisms between compos-
ites of the operations exist as in the usual case. A cohomological functor
H∗ : Db

/[1](X) → Mod(kX) is defined so that H∗(F ) is the sheafification
of the presheaf (U 7→ HomDb

/[1](U)(kU , F |U )) on X. This functor satisfies
H∗(i(F )) =

⊕
n∈ZH

n(F ) for F of Db(kX). The functor H∗ for X = pt

TOME 73 (2023), FASCICULE 4
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gives an equivalence between Db
/[1](pt) and Mod(k). Note also that

(2.3)
HomDb

/[1](X)(i(F ), i(G))

≃
⊕
n∈Z

HomDb(kX )(F,G[n]) for F,G ∈ Db(kX).

Guillermou [11, 12] also introduced the microsupport SS(F ) ⊂ T ∗X of
an object F ∈ Db

/[1](X). We define SS(F ) :=
⋂
F ′≃F SSK(F ′), where F ′

runs over objects of Db(KX) that are isomorphic to F in Db
/[1](X) and

SSK(F ′) denotes the usual microsupport of F ′ as an object of Db(KX).
We also set S̊S(F ) := SS(F ) ∩ T̊ ∗X = SS(F ) \ T ∗

XX. One can check the
following properties.

Proposition 2.3.

(i) The microsupport of an object in Db
/[1](X) is a conic (i.e., invariant

under the action of R>0 on T ∗X) closed subset of T ∗X.
(ii) The microsupports satisfy the triangle inequality: if F1 → F2 →

F3
+1−−→ is an exact triangle in Db

/[1](X), then SS(Fi) ⊂ SS(Fj) ∪
SS(Fk) for j ̸= k.

(iii) For F ∈ Db
/[1](Rn) with SS(F ) ⊂ T ∗

RnRn, there exists L ∈ Mod(k)
such that F ≃ LRn .

Using microsupports, we can microlocalize the category Db
/[1](X) as fol-

lows.

Definition 2.4.

(i) For a subsetA of T̊ ∗X, one defines Db
/[1],A(X) to be the triangulated

subcategory of Db
/[1](X) consisting of F with S̊S(F ) ⊂ A.

(ii) For a subset Ω of T ∗X, one defines Db
/[1](X; Ω) to be the categorical

localization of Db
/[1](X) by Db

/[1],T̊∗X\Ω(X). That is, Db
/[1](X; Ω) :=

Db
/[1](X)/Db

/[1],T̊∗X\Ω(X).
(iii) For a subset B of Ω, Db

/[1],B(X; Ω) denotes the full triangulated
subcategory of Db

/[1](X; Ω) consisting of F with S̊S(F ) ∩ Ω ⊂ B.
(iv) For a subset B of T̊ ∗X, Db

/[1],(B)(X) denotes the full triangulated
subcategory of Db

/[1](X) consisting of F for which there exists a
neighborhood U of B such that S̊S(F ) ∩ U ⊂ B.
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The fact that Db
/[1],A(X) is a triangulated subcategory follows from the

triangle inequality (Proposition 2.3(ii)). Note that Db
/[1],A(X) contains lo-

cally constant sheaves on X. Remark also that our notation is the same as
in [11, 12] and slightly differs from that of [17].

The definition below is derived through the discussion with S. Guiller-
mou.

Definition 2.5. — Let U = {Uα}α be an open covering of X and
V = {Vα}α be an open covering of an open subset Ω of T ∗X.

(i) An object F ∈ Db
/[1](X; Ω) is said to be locally tame with respect to

U if F |Uα
is isomorphic to some i(Gα) as an object of Db

/[1](Uα; Ω ∩
T ∗Uα) for each Uα ∈ U . An object of Db

/[1](X; Ω) is said to be
locally tame if it is locally tame with respect to some open covering
of X.

(ii) An object F ∈ Db
/[1](X; Ω) is said to be microlocally tame with

respect to V if F is isomorphic to some i(Gα) as an object of
Db
/[1](X;Vα) for each Vα ∈ V. An object of Db

/[1](X; Ω) is said
to be microlocally tame if it is microlocally tame with respect to
some open covering of Ω.

(iii) Let B be a subset of T̊ ∗X. One defines Db,mt
/[1],(B)(X) to be the full

subcategory of Db
/[1](X) consisting of F for which there exists a

neighborhood Ω of B such that S̊S(F )∩Ω ⊂ B and F ∈ Db
/[1](X; Ω)

is microlocally tame.

Remark 2.6. — The reason why we introduce the notions of tame and
microlocally tame objects is that we can deduce the statements in this
section directly from the corresponding ones in [17].

2.3. Functorial operations

We consider the behavior of the microsupports with respect to functorial
operations.

Proposition 2.7 (cf. [17, Prop. 5.4.4, Prop. 5.4.13, and Prop. 5.4.5]).
Let f : X → Y be a morphism of manifolds, F ∈ Db

/[1](X), and G ∈
Db
/[1](Y ).

(i) Assume that f is proper on Supp(F ). Then

SS(f∗F ) ⊂ fπf
−1
d (SS(F )).
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(ii) Assume that f is non-characteristic for SS(G) (see [17, Def. 5.4.12]
for the definition). Then SS(f−1G) ∪ SS(f !G) ⊂ fdf

−1
π (SS(G)).

(iii) Assume that f : X → Y is a vector bundle over Y and there exists
an open covering U of Y such that F is locally tame with respect to
f−1U := {f−1(U) | U ∈ U}. Then SS(F ) ⊂ fd(X ×Y T

∗Y ) if and
only if the morphism f−1Rf∗F → F is an isomorphism.

The following proposition is called the microlocal Morse lemma, which
follows from Proposition 2.3(iii) and Proposition 2.7(i).

Proposition 2.8 (cf. [17, Prop. 5.4.17]). — Let F ∈ Db
/[1](X) and

φ : X → R be a C∞-function. Moreover, let a, b ∈ R with a < b. Assume
(i) φ is proper on Supp(F ),
(ii) dφ(x) ̸∈ SS(F ) for any x ∈ φ−1([a, b)).

Then the canonical morphism

(2.4) RΓ (φ−1((−∞, b));F ) → RΓ (φ−1((−∞, a));F )

is an isomorphism.

For closed conic subsets A and B of T ∗X, let us denote by A + B the
fiberwise sum of A and B, that is,

(2.5) A+B :=
{

(x; a+ b)

∣∣∣∣∣ x ∈ π(A) ∩ π(B),

a ∈ A ∩ π−1(x), b ∈ B ∩ π−1(x)

}
⊂ T ∗X.

Proposition 2.9 (cf. [17, Prop. 5.4.14]). — Let F,G ∈ Db
/[1](X).

(i) If SS(F ) ∩ SS(G)a ⊂ T ∗
XX, then SS(F ⊗G) ⊂ SS(F ) + SS(G).

(ii) If SS(F ) ∩ SS(G) ⊂ T ∗
XX, then SS(Hom(F,G)) ⊂ SS(F )a + SS(G).

Let φ : X → R be a C∞-function and assume that dφ(x) ̸= 0 for any
x ∈ φ−1(0). Set U := {x ∈ X | φ(x) < 0}. For such an open subset U of
X, we define

(2.6) N∗(U) := SS(kU )a = T ∗
XX|U ∪ {(x;λdφ(x)) | φ(x) = 0, λ ⩽ 0}.

Lemma 2.10. — Let U be an open subset of X as above, j : U → X be
the open embedding, and Z := U . Moreover, let F ∈ Db

/[1](X) be a locally
tame object.

(i) If Supp(F ) ⊂ Z and SS(F ) ∩N∗(U) ⊂ T ∗
XX, there exists a natural

isomorphism FU ≃ F .
(ii) If SS(F ) ∩ N∗(U)a ⊂ T ∗

XX, there exists a natural isomorphism
FZ ≃ Rj∗j

−1F .
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Proof. — (i) Consider the exact triangle FU → F → Fφ−1(0)
+1−−→, where

SS(FU ) ⊂ N∗(U)a + SS(F ) and (N∗(U)a + SS(F )) ∩ N∗(U) ⊂ T ∗
XX. By

Proposition 2.3(ii), we have SS(Fφ−1(0))∩N∗(U) ⊂ T ∗
XX. However, for any

locally tame G ∈ Db
/[1](X) supported on a closed submanifold N of X, the

set SS(G) contains T ∗
NX|Supp(G), which intersects with N∗(U) outside the

zero-section unless Supp(G) = ∅. Hence, we obtain Fφ−1(0) ≃ 0.
(ii) We obtain the morphism by applying Ri∗ to the morphism i−1F →

Rj′
∗j

′−1i−1F , where i : Z → X and j′ : U → Z are the inclusions. The cone
of FZ → Rj∗j

−1F is supported on φ−1(0). By [17, 5.4.8] and the locally
tameness of F , SS(FZ) ∪ SS(Rj∗j

−1F ) ⊂ N∗(U) + SS(F ) and hence the
cone is 0 as in (i). □

Proposition 2.11 (cf. [17, Thm. 6.3.1]). — Let M be a manifold. Set
U := M×R<0, X := M×R and denote by j : U → X the open embedding.
Moreover, let G ∈ Db

/[1](U) and assume that there exists an open covering
V of the open subset {(x, u; ξ, υ) | ξ ̸= 0} of T ∗X = T ∗(M × R) such that

(1) (x, u; ξ, υ + λ) ∈ V for any V ∈ V, (x, u; ξ, υ) ∈ V and λ ∈ R,
(2) G as an object of Db

/[1](U ; {(x, u; ξ, τ) | ξ ̸= 0, u < 0}) is microlo-
cally tame with respect to {V ∩ T ∗U | V ∈ V}.

Then, letting SS(G) denote the closure of SS(G) in T ∗X, one has the fol-
lowing.

(i) If SS(G) ∩N∗(U)a ⊂ T ∗
XX, then SS(Rj∗G) ⊂ SS(G) +N∗(U).

(ii) If SS(G) ∩N∗(U) ⊂ T ∗
XX, then SS(Rj!G) ⊂ SS(G) +N∗(U)a.

2.4. Composition of sheaves

We recall the operation called the composition of sheaves.
For i = 1, 2, 3, let Xi be a manifold. We write Xij := Xi × Xj and

X123 := X1 ×X2 ×X3 for short. We denote by qij the projection X123 →
Xij . Similarly, we denote by pij the projection T ∗X123 → T ∗Xij . We also
denote by p12a the composite of p12 and the antipodal map on T ∗X2.

Let A ⊂ T ∗X12 and B ⊂ T ∗X23. We set

(2.7) A ◦B := p13(p−1
12aA ∩ p−1

23 B) ⊂ T ∗X13.

We define the composition of sheaves as follows:
(2.8)

◦
X2

: Db
/[1](X12) × Db

/[1](X23) → Db
/[1](X13)

(K12,K23) 7→ K12 ◦
X2
K23 := Rq13! (q−1

12 K12 ⊗ q−1
23 K23).
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If there is no risk of confusion, we simply write ◦ instead of ◦
X2

. By Propo-
sition 2.7(i) and (ii) and Proposition 2.9, we have the following.

Proposition 2.12. — Let Kij ∈ Db
/[1](Xij) and set Λij := SS(Kij) ⊂

T ∗Xij (ij = 12, 23). Assume
(i) q13 is proper on q−1

12 Supp(K12) ∩ q−1
23 Supp(K23),

(ii) p−1
12aΛ12 ∩ p−1

23 Λ23 ∩ (T ∗
X1
X1 × T ∗X2 × T ∗

X3
X3) ⊂ T ∗

X123
X123.

Then

(2.9) SS(K12 ◦
X2
K23) ⊂ Λ12 ◦ Λ23.

2.5. µhom functor

The bifunctor µhom is originally defined in [17, §4.4] for the usual derived
category, and then generalized to the case of the triangulated orbit category
by [11, 12] as µhom : Db

/[1](X)op × Db
/[1](X) → Db

/[1](T ∗X). Here we recall
its properties.

Proposition 2.13 (cf. [17, Cor. 5.4.10 and Cor. 6.4.3]). — Let F,G ∈
Db
/[1](X) be microlocally tame. Then

Supp(µhom(F,G)) ⊂ SS(F ) ∩ SS(G),(2.10)

SS(µhom(F,G)) ⊂ −h−1(C(SS(G),SS(F ))).(2.11)

(See Section 2.1 for C(S1, S2) and h : T ∗T ∗X
∼−→ TT ∗X.)

If F,G ∈ Db
/[1](X; Ω) are microlocally tame, µhom(F,G)|Ω ∈ Db

/[1](Ω) is
locally tame.

The functor µhom gives an enrichment in Db
/[1](T ∗X) to Db

/[1](X). For
each F ∈ Db

/[1](X), idF ∈ Hom(F, F ) ≃ Hom(kT∗X , µhom(F, F )) induces
a morphism

(2.12) idµF : kT∗X → µhom(F, F ).

For each F,G,H ∈ Db
/[1](X), a composition morphism

(2.13) ◦µF,G,H : µhom(G,H) ⊗ µhom(F,G) → µhom(F,H)

is defined. This composition is unital and associative.
For an open subset Ω of T ∗X, the restriction of µhom to Ω also gives an

enrichment in Db
/[1](Ω) to Db

/[1](X; Ω).
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Definition 2.14. — Let Ω be an open subset of T ∗X.
(i) For F,G ∈ Db

/[1](X; Ω), define

Homµ
Ω(F,G) := H∗RΓ (Ω;µhom(F,G)).

One also defines a new category Dµ
/[1](X; Ω) as follows:

(2.14)
Ob(Dµ

/[1](X; Ω)) := Ob(Db
/[1](X; Ω)),

HomDµ

/[1](X;Ω)(F,G) := Homµ
Ω(F,G) for F,G ∈ Ob(Dµ

/[1](X; Ω)).

(ii) For F,G ∈ Db
/[1](X; Ω),

mF,G : HomDb
/[1](X;Ω)(F,G) → Homµ

Ω(F,G)

denotes the natural map, which induces a functor from Db
/[1](X; Ω)

to Dµ
/[1](X; Ω).

(iii) For v ∈ HomDb
/[1](X;Ω)(F,G), one denotes by vµ the corresponding

morphism kΩ → µhom(F,G)|Ω in Db
/[1](Ω).

Note that the notation in (iii) is compatible with (2.12). We also use the
notation EndµΩ(F ) := Homµ

Ω(F, F ) for F ∈ Db
/[1](X; Ω).

2.6. Simple sheaves

Let Λ be a locally closed conic Lagrangian submanifold of T̊ ∗X and
p ∈ Λ. Simple sheaves along Λ at p are defined in [17, Def. 7.5.4], which
we recall below. For a C∞-function φ : X → R such that φ(π(p)) = 0 and
Γdφ := {(x; dφ(x)) | x ∈ X} intersects Λ transversally at p, one can define
τφ = τp,φ ∈ Z (see [17, §7.5 and A.3]).

Proposition 2.15 ([17, Prop. 7.5.3]). — For i = 1, 2, let φi : X → R be
a C∞-function such that φi(π(p)) = 0 and Γdφi

intersects Λ transversally
at p. Let F ∈ Db(kX) and assume that SS(F ) ⊂ Λ in a neighborhood of
p. Then

(2.15) RΓ{φ1⩾0}(F )π(p) ≃ RΓ{φ2⩾0}(F )π(p)
[ 1

2 (τφ2 − τφ1)
]
.

Definition 2.16 ([17, Def. 7.5.4]). — Let F ∈ Db(kX) such that
SS(F ) ⊂ Λ in a neighborhood of p. Then F is said to be simple if
RΓ{φ⩾0}(F )π(p) ≃ k[d] for some d ∈ Z, for some (hence for any) C∞-
function φ such that φ(π(p)) = 0 and Γdφ intersects Λ transversally at p.
If F is simple at all points of Λ, one says that F is simple along Λ.
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Definition 2.17. — An object F ∈ Db
/[1](kX) is said to be simple

along Λ if for each p ∈ Λ there exist an open neighborhood U of p in T̊ ∗X

and G ∈ Db(X;U) that is simple along Λ ∩ U such that i(G) ≃ F in
Db
/[1](X;U).

One can prove that if F ∈ Db
/[1](X) is simple along Λ, then idµF |Λ : kΛ →

µhom(F, F )|Λ is an isomorphism.

Lemma 2.18 (cf. [11, Lem. 6.14]). — Let Λ1 and Λ2 be two conic La-
grangian submanifolds of T ∗X that intersect cleanly. For i = 1, 2, let
Fi ∈ Db

/[1],(Λi)(X) be simple along Λi. Assume that there exists an open
neighborhood Ωi of Λi for i = 1, 2 and an open covering U of Ω1 ∩ Ω2 such
that

(i) each connected component of Λ1 ∩ Λ2 is contained in some element
of U ,

(ii) F1 and F2 are microlocally tame with respect to U as objects of
Db
/[1](X; Ω1 ∩ Ω2).

Then µhom(F1, F2)|Λ1∩Λ2 ≃ kΛ1∩Λ2 .

3. Tamarkin category and distance for sheaves

In this section, we introduce a modified version of Tamarkin category [24]
and the translation distance [5]. Since proofs for the results in this section
are almost the same as those of [5, 14], we omit the details here and discuss
more precisely in Appendix A.

From now on, until the end of this paper, letM be a non-empty connected
manifold without boundary. Recall also that k denotes the field F2 = Z/2Z.

3.1. Definition of Tamarkin category

In this subsection, we define a modified version of Tamarkin category
DP (M)θ, which is a crucial tool to give a better estimate of displacement
energy. For the original definition, see [24] (see also [14]). As mentioned in
Remark 1.2, the modifications are the following threefold:

(i) replacing the additive variable space R with S1
θ = R/θZ for some

θ ∈ R⩾0,
(ii) adding a parameter manifold P ,
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(iii) using the triangulated orbit category instead of the usual derived
category.

Let θ ∈ R⩾0 and set S1
θ := R/θZ. Note that S1

θ = R when θ = 0.
We denote the image of t ∈ R under the quotient map R → S1

θ by [t] or
simply t. Moreover, let P be a manifold. Denote by (x; ξ) a local homo-
geneous coordinate system on T ∗M , by (y; η) that on T ∗P , and by (t; τ)
the homogeneous coordinate system on T ∗S1

θ and T ∗R. We define maps
q̃1, q̃2, sθ : M × P × S1

θ × S1
θ → M × P × S1

θ by

(3.1)
q̃1(x, y, t1, t2) = (x, y, t1),
q̃2(x, y, t1, t2) = (x, y, t2),
sθ(x, y, t1, t2) = (x, y, t1 + t2).

If there is no risk of confusion, we simply write s for sθ. We also set

(3.2)
i : M × P × S1

θ → M × P × S1
θ , (x, y, t) 7−→ (x, y,−t),

ℓ : M × P × R → M × P × S1
θ , (x, y, t) 7−→ (x, y, [t]).

Note also that if θ = 0 then ℓ is the identity map. We also write ℓ : R →
S1
θ , t 7→ [t] by abuse of notation.

Definition 3.1. — For F,G ∈ Db
/[1](M × P × S1

θ ), one sets

F ⋆ G := Rs!(q̃−1
1 F ⊗ q̃−1

2 G),(3.3)

Hom⋆(F,G) := Rq̃1∗ RHom(q̃−1
2 F, s!G)(3.4)

≃ Rs∗ RHom(q̃−1
2 i−1F, q̃!

1G).

Note that the functor ⋆ is a left adjoint to Hom⋆.
For a manifold N , we set Ω+(N)θ := T ∗N×{(t; τ) | τ > 0} ⊂ T ∗(N×S1

θ )
and write Ω+ := Ω+(M × P )θ for short. We define the map

(3.5)
ρ : Ω+ // T ∗M

(x, y, t; ξ, η, τ) � //

∈

(x; ξ/τ).

∈

We also define an endofunctor Pl of Db
/[1](M × P × S1

θ ) by

Pl := Rℓ!kM×P×[0,+∞) ⋆ (−),

which induces the equivalence of categories

(3.6) Pl : Db
/[1](M × P × S1

θ ; Ω+) ∼−→ ⊥Db
/[1],{τ⩽0}(M × P × S1

θ ),

where ⊥(−) denotes the left orthogonal.
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Definition 3.2. — One defines a category DP (M)θ by

(3.7) DP (M)θ := Db
/[1](M × P × S1

θ ; Ω+)

and identifies it with the left orthogonal ⊥Db
/[1],{τ⩽0}(M × P × S1

θ ). One
also sets SS+(F ) := SS(F ) ∩ Ω+ for F ∈ DP (M)θ. For a compact subset A
of T ∗M , one defines a full subcategory DP

A(M)θ by

(3.8) DP
A(M)θ := Db

/[1],ρ−1(A)(M × P × S1
θ ; Ω+).

If P = pt, we omit P from the above notation.

The bifunctor Hom⋆ induces an internal Hom functor Hom⋆ : DP (M)op
θ ×

DP (M)θ → DP (M)θ (see [5] for the details). An argument similar to [14]
proves the following.

Proposition 3.3 (cf. [14, Lem. 4.18]). — Let q : M × P × S1
θ → S1

θ be
the projection. For F,G ∈ Db

/[1](M × P × S1
θ ), there are isomorphisms

(3.9)
HomDP (M)θ

(Q(F ), Q(G)) ≃ HomDb
/[1](M×P×S1

θ
)(Pl(F ), G)

≃ H∗RΓ[0,+∞)(R; ℓ!Rq∗ Hom⋆(F,G)),

where Q : Db
/[1](M × P × S1

θ ) → DP (M)θ is the quotient functor. In par-
ticular, if F ∈ ⊥Db

/[1],{τ⩽0}(M × P × S1
θ ), one has isomorphisms

(3.10)
HomDP (M)θ

(Q(F ), Q(G)) ≃ HomDb
/[1](M×P×S1

θ
)(F,G)

≃ H∗RΓ[0,+∞)(R; ℓ!Rq∗ Hom⋆(F,G)).

3.2. Distance and stability with respect to Hamiltonian
deformation

We introduce a distance on DP (M)θ following [5]. For c ∈ R, we define
the translation map

(3.11) Tc : M × P × S1
θ → M × P × S1

θ , (x, y, t) 7→ (x, y, t+ c).

For F ∈ DP (M)θ and c, d ∈ R with c ⩽ d, there is a canonical morphism
τc,d(F ) : Tc∗F → Td∗F (see Appendix A.3). Using the morphism, we define
the translation distance dDP (M)θ

as in [5].

Definition 3.4 (cf. [5, Def. 4.4]). — Let F,G ∈ DP (M)θ.
(i) Let a, b ∈ R⩾0. The pair (F,G) is said to be (a, b)-interleaved if

there exist morphisms α, δ : F → Ta∗G and β, γ : G → Tb∗F satis-
fying the following conditions:
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(1) F
α−→ Ta∗G

Ta∗β−−−→ Ta+b∗F is equal to τ0,a+b(F ) : F → Ta+b∗F

and
(2) G

γ−→ Tb∗F
Tb∗δ−−−→ Ta+b∗G is equal to τ0,a+b(G) : G → Ta+b∗G.

(ii) One defines

(3.12)
dDP (M)θ

(F,G)
:= inf{a+ b ∈ R⩾0 | a, b ∈ R⩾0, (F,G) is (a, b)-interleaved},

and calls dDP (M)θ
the translation distance.

Now we consider Hamiltonian deformations of sheaves. Let I be an open
interval containing the closed interval [0, 1]. Let H : T ∗M × I → R be a
compactly supported Hamiltonian function and denote by ϕH : T ∗M×I →
T ∗M the Hamiltonian isotopy generated by H. We set

(3.13) ∥H∥ :=
∫ 1

0

(
max
p

Hs(p) − min
p
Hs(p)

)
ds.

Moreover, let KH ∈ Db(M × S1
θ × M × S1

θ × I) be the sheaf quanti-
zation associated with ϕH , whose existence was proved by Guillermou–
Kashiwara–Schapira [13] (see also Appendix A.2). For s ∈ I, we set KH

s :=
KH |M×S1

θ
×M×S1

θ
×{s}. Then the composition with KH

s induces a functor

(3.14) ΦHs := KH
s ◦ (−) : DP (M)θ → DP (M)θ,

which restricts to DP
A(M) → DP

ϕH
s (A)(M) for any compact subset A of T ∗M ,

by Proposition 2.12. The following proposition is one of the main results
of [5], which is a stability result of the translation distance with respect to
Hamiltonian deformation. For the outline of the proof, see Appendix A.3.

Proposition 3.5 (cf. [5, Thm. 4.16]). — Let ϕH : T ∗M × I → T ∗M be
the Hamiltonian isotopy generated by a compactly supported Hamiltonian
function H : T ∗M × I → R and denote by ΦH1 : DP (M)θ → DP (M)θ the
functor associated with ϕH1 . Then for F ∈ DP (M)θ, one has an inequality
dDP (M)θ

(F,ΦH1 (F )) ⩽ ∥H∥.

As explained in the introduction, one can obtain a sheaf-theoretic bound
for the displacement energy of two compact subsets, using the proposition
above (see Proposition A.8).

4. Sheaf quantization of rational Lagrangian immersions

In this section, we prove the existence of sheaf quantizations of a certain
class of Lagrangian immersions, following the idea of Guillermou [11, 12].
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4.1. Definitions and statement of the existence result

First we introduce some notions for Lagrangian immersions. We assume
that L is a compact connected manifold.

Definition 4.1.
(i) A Lagrangian immersion ι : L → T ∗M is said to be strongly rational

if there exists a non-negative number θ(ι) ∈ R⩾0 such that the
image of the pairing map ⟨ι∗α,−⟩ : H1(L;Z) → R, γ 7→

∫
γ
ι∗α is

θ(ι) · Z. We call θ(ι) the period of ι.
(ii) For a strongly rational Lagrangian immersion ι : L → T ∗M , one

defines

(4.1) r(ι) := inf
({∫

l

ι∗α

∣∣∣∣∣ l : [0, 1] → L,

ι ◦ l(0) = ι ◦ l(1)

}
∩ R>0

)
.

Note that the infimum of the empty set is defined to be +∞.

Notation 4.2. — Let ι : L → T ∗M be a compact strongly rational La-
grangian immersion with period θ = θ(ι) and f : L → S1

θ be a function
satisfying ι∗α = df . One defines a conic Lagrangian immersion ι̂f by

(4.2) ι̂ := ι̂f : L× R>0 → T ∗(M × S1
θ ), (y, τ) 7→ (τι(y), (−f(y); τ))

and sets

(4.3) Λ = Λι,f :=
{

(x, t; ξ, τ) ∈T ∗(M×S1
θ )

∣∣∣∣∣ τ > 0, there exists y ∈ L,

(x; ξ/τ) = ι(y), t = −f(y)

}
.

One also sets Λq,Λr ⊂ T ∗(M × (0, r(ι)) × S1
θ ) by

Λq = Λι,f,q := {(x, u, t; ξ, 0, τ) | (x, t; ξ, τ) ∈ Λι,f},
Λr = Λι,f,r := {(x, u, t; ξ,−τ, τ) | (x, t− u; ξ, τ) ∈ Λι,f}.

Moreover, we make the following assumption.

Assumption 4.3. — There exists no curve l : [0, 1] → L with l(0) ̸=
l(1), ι ◦ l(0) = ι ◦ l(1), and

∫
l
ι∗α = 0.

Under Assumption 4.3, the conic Lagrangian immersion ι̂ is an embed-
ding and we identify it with the conic Lagrangian submanifold Λ. Without
this assumption Propositions 5.20 and 5.21 do not hold in general. More-
over, thanks to the assumption, we can apply the method in [12] for the
construction of a sheaf quantization.

The following is the existence result of a sheaf quantization of a strongly
rational Lagrangian immersion, which we will prove in the next subsection.
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Theorem 4.4. — Let ι : L → T ∗M be a compact strongly rational
Lagrangian immersion with period θ = θ(ι) satisfying Assumption 4.3. Take
a function f : L → S1

θ and define Λ,Λq,Λr as in Notation 4.2. Then for each
a ∈ (0, r(ι)), there exists an object G(0,a) ∈ ⊥Db

/[1],{τ⩽0}(M×(0, a)×S1
θ ) ≃

D(0,a)(M)θ satisfying the following conditions:
(1) S̊S(G(0,a)) ⊂ (Λq ∪ Λr) ∩ T ∗(M × (0, a) × S1

θ ),
(2) G(0,a) is simple along Λq ∩ T ∗(M × (0, a) × S1

θ ),
(3) F0 := (Rj∗G(0,a))|M×{0}×S1

θ
is isomorphic to 0, where j is the in-

clusion M × (0, a) × S1
θ → M × R × S1

θ ,
(4) there is an open covering {Vα}α of Ω+(M)θ such that G(0,a) is

microlocally tame with respect to {Vα × T ∗(0, a)}α.
Moreover, the object G(0,a) automatically satisfies

dD(0,a)(M)θ
(G(0,a), 0) ⩽ a.

For the reason why we take a ∈ (0, r(ι)), see Remark 4.16.

Example 4.5 (An object associated with the unit circle). — The embed-
ding ι : R/2πZ → T ∗R, s 7→ (cos s, sin s) is strongly rational with θ(ι) =
r(ι) = π. The function f : R/2πZ → S1

π, s 7→ 1
2s− 1

4 sin 2s satisfies df = ι∗α.
Applying Theorem 4.4 to these ι and f , we obtainG(0,a) ∈ ⊥Db

/[1],{τ⩽0}(R×
(0, a) × S1

π) for each a ∈ (0, π). The boundary set of the support of G(0,a)
is

(4.4)

πR×(0,a)×S1
π
(S̊S(G(0,a)))

= {(cos s, u,−f(s)) | s ∈ R/2πZ, u ∈ (0, a)}
∪ {(cos s, u,−f(s) + u) | s ∈ R/2πZ, u ∈ (0, a)}

⊂ R × (0, a) × S1
π.

The support of G(0,a) is the closure of the bounded regions enclosed by the
boundary set with respect to the standard metric. The support of G(0,a)
can also be written as

(4.5) Supp(G(0,a))

= {(x, u, t) ∈ R × (0, a) × S1
π | (x− cos g(−t))(x− cos g(−t+ u)) ⩽ 0},

where g : S1
π → R/2πZ is the inverse of f . See Figure 4.1.

At each interior point of Supp(G(0,a)), the stalk of G(0,a) is isomorphic to
k. At each boundary point of Supp(G(0,a)), the stalk of G(0,a) is isomorphic
to k or 0. Indeed, for any point (x, u, t) ∈ R×(0, a)×S1

π, the stalk of G(0,a)
at (x, u, t) is isomorphic to k if and only if (x, u, t + ε) ∈ Supp(G(0,a)) for
sufficiently small ε > 0.
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u

t

0 π/2 π

Figure 4.1. G(0,a) associated with the unit circle

Remark 4.6. — For any Legendrian submanifold L of ST ∗(M×S1
θ ), there

exist n ∈ Z⩾0, a strongly rational immersion ι : L → T ∗M with period nθ

satisfying Assumption 4.3, and a primitive function f : L → S1
nθ such that

pn(Λι,f )/R>0 = L, where pn : T̊ ∗(M × S1
nθ) → T̊ ∗(M × S1

θ ) is the natural
covering map. Thus, Theorem 4.4 gives a sheaf quantization object for a
Legendrian submanifold of ST ∗(M × S1

θ ).

4.2. Construction

In this subsection, we prove Theorem 4.4 following the idea
of [12, Thm. 12.2.2 and §12.3]. We prepare some notions introduced by [12].

4.2.1. Kashiwara–Schapira stack

First we introduce Kashiwara–Schapira stack [12, Part 10]. This is an
important tool to construct the sheaf quantization G(0,a).

Definition 4.7. — Let Λ be a locally closed conic Lagrangian subman-
ifold of T ∗X.

(i) For V ⊂ Λ, one defines a category µShmt,0
/[1],Λ(V ) as follows:

(4.6)

Ob
(
µShmt,0

/[1],Λ(V )
)

:= Ob
(

Db,mt
/[1],(V )(X)

)
,

HomµShmt,0
/[1],Λ(V )(F,G) := HomDb

/[1](X;V )(F,G)

for F,G ∈ Ob
(
µShmt,0

/[1],Λ(V )
)
.

The correspondence V 7→ µShmt,0
/[1],Λ(V ) defines a prestack µShmt,0

/[1],Λ
on Λ.
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(ii) One defines the Kashiwara–Schapira stack µShmt
/[1],Λ on Λ as the

associated stack with µShmt,0
/[1],Λ. The quotient functor gives a functor

mΛ : Db,mt
/[1],(Λ)(X) → µShmt

/[1],Λ(Λ) (see also Definition 2.5)
(iii) An object F ∈ µShmt

/[1],Λ(V ) is said to be simple if F is obtained by
gluing simple objects.

Remark 4.8. — The stack µShmt
/[1],Λ defined above is smaller than or equal

to the Kashiwara–Schapira stack µSh/[1](kΛ) in [12]. We put the microlo-
cally tameness condition since they are easier to treat.

Arguments similar to [12, §10.4] show the following proposition.

Proposition 4.9. — Let Λ be a locally closed conic Lagrangian sub-
manifold of T ∗X. The category µShmt

/[1],Λ(Λ) has a unique simple object.

4.2.2. Doubling functor and doubled sheaves

First we construct G(0,ε) for a sufficiently small ε > 0 so that G(0,ε) is
locally isomorphic to an image of ΨU , which we define below. We introduce
a variant of the convolution functor ⋆ in Section 3. Set γ := {(u, t) | 0 ⩽
t < u} ⊂ R>0 × R. For an open subset U ⊂ M × S1

θ , we define

(4.7) Uγ := {(x, u, t) ∈ M × R>0 × S1
θ | (x, t− [c]) ∈ U for any c ∈ [0, u]}

We also define a functor ΨU : Db
/[1](U) → Db

/[1](Uγ) by ΨU (F ) := RsU !(F⊠

kγ)|Uγ
, where sU : U×R>0 ×R → M×R>0 ×S1

θ is (x, t1, u, t2) 7→ (x, u, t1 +
[t2]).

The next lemma follows from [12, Thm. 11.1.7].

Lemma 4.10. — Let s23 be the swapping map M ×S1
θ ×R → M ×R×

S1
θ , (x, t, u) 7→ (x, u, t) and jU be the open embedding Uγ → Uγ ∪ s23(U ×

R⩽0). Then RjU ∗ΨU (F )|s23(U×{0}) ≃ 0 for any F ∈ Db
/[1](U).

Definition 4.11 (cf. [12, Def. 11.4.1]). — Let Λ be a conic Lagrangian
submanifold of Ω+(M)θ such that Λ/R>0 is compact and Λ/R>0 → M is
finite. A finite family U = {Ub}b∈B of open subsets of M ×S1

θ is said to be
adapted to Λ if it satisfies the following conditions:

(1) πM×S1
θ
(Λ) ⊂

⋃
b∈B Ub.

(2) For each b ∈ B, there exist an open subset Wb of M and a con-
tractible open subset Ib of S1

θ such that Ub =Wb×Ib and πM×S1
θ
(Λ)∩

Ub ⊂ Wb ×K for some compact subset K of Ib.
(3) For any B1 ⊂ B, RHom(kUB1 ,kM×S1

θ
) ≃ k

UB1 where UB1 :=⋃
b∈B1

Ub.
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(4) Setting Λ+ := Λ ∪ T ∗
M×S1

θ
(M × S1

θ ), one has

(4.8) (SS(kUB1 )+̂ SS(kUB2 )a) ∩ (Λ++̂(Λ+)a) ⊂ T ∗
M×S1

θ
(M × S1

θ )

for any B1, B2 ⊂ B.
See [17, Def. 6.2.3(v) and Rem. 6.2.8(ii)] for the definition of +̂ in (4.8).

Similarly to [12, Lemma 11.4.2], we obtain the following.

Lemma 4.12. — Let Λ be a conic Lagrangian submanifold of Ω+(M)θ
such that Λ/R>0 is compact and let {Λj}j∈J be a finite open covering of
Λ by conic subsets. Then there exist

(i) a homogeneous Hamiltonian isotopy ϕ̂ on Ω+(M)θ, as closed to id
as desired and

(ii) a finite family {Ub}b∈B of open subsets of M × S1
θ that is adapted

to ϕ̂(Λ)
such that for each b ∈ B, each connected component of ϕ̂(Λ) ∩ T ∗Ub is
contained in ϕ̂(Λj), for some j ∈ J .

Definition 4.13. — Let Λ and U = {Ub}b∈B be as in Definition 4.11.
Let U be an open subset of M × S1

θ . We denote by Ddbl
/[1],Λ,U (U) the sub-

category of Db
/[1](U × R>0) formed by F such that, for sufficiently small

ε > 0
(i) Supp(F )∩(U×(0, ε)) ⊂ {(x, t+[c], u) ∈ U×(0, ε) | (x, t) ∈ π(Λ), c ∈

[0, u]},
(ii) every point of U has a neighborhood W such that π0(Λ ∩ T ∗W ) =

{Λi}i is finite, and for each Λi there exist a subset Bi ⊂ B and a
microlocally tame object Fi ∈ Db

/[1],Λi
(kW ) with S̊S(Fi) = Λi such

that

(4.9) F |W ε ≃
⊕
i

ΨW (RΓUBi (Fi))|W ε ,

where W ε := Wγ ∩W × (0, ε) and UBi :=
⋃
b∈Bi

Ub.

For F ∈ Ddbl
/[1],Λ,U (U), there exists a well-defined open subset SSdbl(F )

of Λ ∩T ∗U locally defined by SSdbl(F ) ∩T ∗W :=
⋃
i(Λi ∩T ∗UBi) with the

notation of Definition 4.13. For an object F ∈ Ddbl
/[1],Λ,U (M ×S1

θ ) satisfying
SSdbl(F ) = Λ, the functor mΛ : Db,mt

/[1],(Λ)(U) → µShmt
/[1],Λ(Λ ∩ T ∗U) defines

mdbl
Λ (F ) ∈ µShmt

/[1],Λ(Λ) so that mdbl
Λ (F )|Λi

≃ mΛi
(Fi)|Λi

, again with the
notation of Definition 4.13. See [12, Part 12] for more details. Arguing
similarly to [12] with some R’s replaced by S1

θ ’s, one can prove the following.
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Proposition 4.14 (cf. [12, Thm. 12.2.2]). — Let Λ and U = {Ub}b∈B
be as in Definition 4.11. For any object F ∈ µShmt

/[1],Λ(Λ) there exists an
object F ∈ Ddbl

/[1],Λ,U (M × S1
θ ) such that SSdbl(F ) = Λ and mdbl

Λ (F ) ≃ F .

Now we give a proof of Theorem 4.4.

Proof of Theorem 4.4. — Since the conditions in Theorem 4.4 are pre-
served by the action of a homogeneous Hamiltonian isotopy on Ω+(M)θ, we
may assume that there exists a family U adapted to Λ by Lemma 4.12. By
Proposition 4.9 and Proposition 4.14, there exists F ∈ Ddbl

/[1],Λ,U (M × S1
θ )

such that SSdbl(F ) = Λ and mdbl
Λ (F ) is simple. For a sufficiently small

a > 0, the object F |M×(0,a)×S1
θ

∈ Db
/[1](M × (0, a) × S1

θ ) satisfies the con-
ditions (1)–(4), where (3) follows from Lemma 4.10 and (4) is verified by
the microlocally tameness of Fi’s in Definition 4.13.

The construction for a larger a ∈ (0, r(ι)) is parallel to that in [12, §12.3].
We use a homogeneous Hamiltonian isotopy ϕ̃ = (ϕ̃u)u∈(0,a) : T̊ ∗(M×S1

θ )×
(0, a) → T̊ ∗(M × S1

θ ) such that

(a) ϕ̃ε = id for some ε ∈ (0, a),
(b) ϕ̃u is identity on Λ for any u ∈ (0, a),
(c) for ε ∈ (0, a) given in (a), any u ∈ (0, a), and any (x, t; ξ, τ) ∈ Λ,

one has ϕ̃u(x, t+ ε; ξ, τ) = (x, t+ u; ξ, τ).

Such ϕ̃ exists since Λ is disjoint from T ′
uΛ for any u ∈ (0, a), where

T ′
u : T̊ ∗(M × S1

θ ) → T̊ ∗(M × S1
θ ) is the lift of Tu : M × S1

θ → M × S1
θ .

Hence we can apply a parallel argument to obtain an object G′
(0,a) on

M × (0, a) × S1
θ . Since a is strictly smaller than r(ι), near the {u = a}-

part, the boundedness of the quantization of ϕ̃ is guaranteed. Defining
G(0,a) := Pl(G′

(0,a)) ∈ ⊥Db
/[1],{τ⩽0}(M × (0, a) × S1

θ ), one can check the
conditions (1)–(4) for G(0,a) by using those of the object corresponding to
a smaller a.

Let us show dD(0,a)(M)θ
(G(0,a), 0) ⩽ a. Take ã ∈ (a, r) and G(0,ã) ∈

D(0,ã)
L (M)θ satisfying the conditions in Theorem 4.4 with a replaced by ã

so that G(0,ã)|M×(0,a)×S1
θ

is isomorphic to G(0,a). Define Dã := {(u, s) ∈
R2 | 0 < u < s < ã} and denote by p : M × Dã × S1

θ → M × (0, ã) ×
S1
θ , (x, u, s, t) 7→ (x, u, t) the projection. Moreover, we set G := p−1G(0,ã) ∈

DDã

L (M)θ. Define the map

(4.10)
k : M ×Dã × S1

θ → M × (−∞, a) × (−∞, ã) × S1
θ ,

(x, u, s, t) 7→ (x, u− s+ a, s, t)
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and set G′ := Rk!G|M×(0,a)×(−∞,ã)×S1
θ
. Then it satisfies G′|{s=0} ≃ 0,

G′|{s=a} ≃ G(0,a) and SS(G′) ⊂ T ∗(M×(0, a))×{0 ⩽ σ ⩽ τ}T∗((−∞,ã)×S1
θ

).
Thus we obtain the result by Lemma A.5. □

Remark 4.15. — In our situation, we cannot apply the above construc-
tion for a > r(ι) since T ′

uΛ may intersect Λ if u ⩾ r(ι) and an isotopy ϕ̃ as
above does not exist. This is one of the differences from the construction
of [12]. We also remark that a conic half-line in the intersection Λ ∩ T ′

uΛ
corresponds to a Reeb chord of Λ/R>0 in the cosphere bundle.

Remark 4.16. — One could take a = r(ι) to obtain an object G(0,r(ι)).
For construction, we need to use the sheaf quantization of a homogeneous
Hamiltonian isotopy ϕ̃ = (ϕ̃u)u∈(0,r(ι)) that diverges at u = r(ι). Hence the
boundedness of the quantization of ϕ̃ and the well-definedness of G(0,r(ι))
are unclear. This is why we take a ∈ (0, r(ι)) and construct G(0,a). More-
over, it gets more complicated to obtain similar results to Section 5 with
the possibly constructed G(0,r(ι)).

5. Intersection of rational Lagrangian immersions

In this section, using the refined version of Tamarkin category intro-
duced in Section 3 and the sheaf quantization constructed in Section 4,
we give explicit estimates for the displacement energy and the number of
the intersection points of rational Lagrangian immersions (Theorems 5.4
and 5.5 below). These are proved by a purely sheaf-theoretic method and
partial generalizations of results of Chekanov [6], Akaho [1], and Liu [19]
(see Remark 5.7 for more details).

5.1. Statements of theorems

First we give the definition of rational Lagrangian immersions. Here again
we assume that L is a compact connected manifold.

Definition 5.1.
(i) A Lagrangian immersion ι : L → T ∗M is said to be rational if there

exists σ(ι) ∈ R⩾0 such that

(5.1)
{∫

D2
v∗ω

∣∣∣∣ (v, v) ∈ Σ(ι)
}

= σ(ι) · Z,
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where

(5.2) Σ(ι) :=
{

(v, v)

∣∣∣∣∣ v : D2 → T ∗M,v : ∂D2 → L,

v|∂D2 = ι ◦ v

}
.

We call σ(ι) the rationality constant of ι.
(ii) For a rational Lagrangian immersion ι : L → T ∗M , one defines

(5.3) e(ι) := inf
({∫

D2
v∗ω

∣∣∣∣ (v, v) ∈ E(ι) ⨿ Σ(ι)
}

∩ R>0

)
,

where

(5.4) E(ι) :=

(v, v)

∣∣∣∣∣∣∣∣
v : D2 → T ∗M, v : [0, 1] → L,

v(0) ̸= v(1), ι ◦ v(0) = ι ◦ v(1),

v|∂D2 ◦ exp(2π
√

−1(−)) = ι ◦ v

 .

Remark 5.2. — A strongly rational Lagrangian immersion is rational.
Indeed, for a strongly rational Lagrangian immersion ι with period θ(ι),
one can check that it is rational with rationality constant nθ(ι) for some
n ∈ Z⩾0. However, the converse is not true. For example, the graph of
any closed 1-form β on a compact connected manifold M is rational with
rationality constant 0, but this embedding has a period θ(ι) if and only if
there exists a primitive element b ∈ H1(M ;Z) such that [β] = θ(ι) · b ∈
H1(M ;R).

We make the following assumption, which we will use in the reduction to
the case of a strongly rational Lagrangian immersion with Assumption 4.3
in the next subsection (see Lemma 5.11).

Assumption 5.3. — There exists no (v, v) ∈ E(ι) with
∫
D2 v

∗ω = 0.

Our results are the following: the first one is an estimate for the number
of Lagrangian intersection for immersions by the total Betti number of L
under the transverse assumption, and the second is an estimate by the
cup-length of L.

Theorem 5.4. — Let ι : L → T ∗M be a compact rational Lagrangian
immersion satisfying Assumption 5.3. If ∥H∥ < e(ι) and ι : L → T ∗M

intersects ϕH1 ◦ ι : L → T ∗M transversally, then

(5.5) #
{

(y, y′) ∈ L× L
∣∣ ι(y) = ϕH1 ◦ ι(y′)

}
⩾

dimL∑
i=0

bi(L).
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Theorem 5.5. — Let ι : L → T ∗M be a compact rational Lagrangian
immersion satisfying Assumption 5.3. If a Hamiltonian function H satisfies
∥H∥ < min ({e(ι)} ∪ ({σ(ι)/2} ∩ R>0)), then

(5.6) #
{

(y, y′) ∈ L× L
∣∣ ι(y) = ϕH1 ◦ ι(y′)

}
⩾ cl(L) + 1,

where cl(L) denotes the cup-length of L over F2 (see Section 5.3.3 for the
definition).

Remark 5.6. — If e(ι) ̸= σ(ι) then min ({e(ι)} ∪ ({σ(ι)/2} ∩ R>0)) =
e(ι).

Remark 5.7. — Our theorems are partial generalizations of results of
Chekanov [6], Akaho [1], and Liu [19] in the following sense. Their results
hold on any compact symplectic manifold and do not require Assump-
tion 5.3. Remark that they all used Floer-theoretic methods to prove the
results and our method is independent from theirs.

(i) The result of Chekanov [6] is Theorem 5.4 for a rational Lagrangian
embedding ι (i.e., rational Lagrangian submanifold) with rational-
ity constant σ(ι) > 0. Remark that e(ι) = σ(ι) in this case.

(ii) The result of Akaho [1] is Theorem 5.4 for an exact Lagrangian
immersion ι, which corresponds to σ(ι) = 0, under the condition
that the non-injective points are transverse.

(iii) Liu [19] proved that for a rational Lagrangian embedding ι with
rationality constant σ(ι) > 0, if ∥H∥ < e(ι) = σ(ι) then the es-
timate (5.6) holds. This estimate is Theorem 5.5 with the bound
min ({e(ι)} ∪ ({σ(ι)/2} ∩ R>0)) = σ(ι)/2 replaced by σ(ι).

Remark 5.8. — In the Floer-theoretic approach, one can study the cases
∥H∥ ⩾ e(ι) using bounding cochains in the sense of [2, 8, 9]. Fukaya–
Oh–Ohta–Ono [8, 9, Thm. J] and [10, Thm. 6.1] gave an estimate for
the number of the intersection points of Lagrangian submanifolds. More-
over, they proved a common generalization of the results of Chekanov [6]
and [8, 9, Thm. J] with a slight modification of the definition of bounding
cochains [8, Thm. 6.5.47].

5.2. Reduction to strongly rational case

In this subsection, we reduce the problem to the strongly rational case.

Notation 5.9. — For a Lagrangian immersion ι : L → T ∗M , one defines
F (ι) to be the set of non-injective points: F (ι) := {(y, y′) ∈ L × L | y ̸=
y′, ι(y) = ι(y′)}.
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Lemma 5.10. — Let ι : L → T ∗M be a compact connected rational
Lagrangian immersion with rationality constant σ(ι). Assume that π1(π ◦
ι) : π1(L) → π1(M) is surjective. Then, there exists a closed 1-form β on M
such that the immersion ι+β : L → T ∗M,y 7→ ι(y)+β(π ◦ ι(y)) is strongly
rational with θ(ι+ β) = σ(ι+ β) = σ(ι) and r(ι+ β) = e(ι+ β) = e(ι).

Proof. — Since π1(L) → π1(M) is surjective, so is the induced homo-
morphism of groups [π1(L), π1(L)] → [π1(M), π1(M)]. Consider the com-
mutative diagram of groups

(5.7)

1

��

1

��

[π1(L), π1(L)]� _

��

// // [π1(M), π1(M)]� _

��

// 1

1 // Ker(π1(π ◦ ι)) �
�

//

��

π1(L) // //

����

π1(M) //

����

1

0 // Ker(H1(π ◦ ι;Z)) �
�

// H1(L;Z)

��

// // H1(M ;Z) //

��

0

0 0.
By the nine lemma for groups, we find that Ker(π1(π ◦ ι)) → Ker(H1(π ◦
ι;Z)) is surjective.

Choose a section w : H1(M ;R) → H1(L;R) of H1(π ◦ ι;R) : H1(L;R) →
H1(M ;R) and take a closed 1-form β onM such that [β] = ⟨w(−), [−ι∗α]⟩ ∈
H1(M ;R) ≃ Hom(H1(M ;R),R). Since (ι+β)∗α = ι∗α+(π◦ι)∗β, the pair-
ing with [(ι+ β)∗α] vanishes on the image of w. Thus we obtain

(5.8)

{∫
γ

(ι+ β)∗α

∣∣∣∣ γ ∈ H1(L;Z)
}

=
{∫

γ

(ι+ β)∗α

∣∣∣∣ γ ∈ Ker(H1(π ◦ ι;Z))
}

=
{∫

γ

ι∗α

∣∣∣∣ γ ∈ Ker(H1(π ◦ ι;Z))
}

=
{∫

γ

ι∗α

∣∣∣∣ γ ∈ Ker(π1(π ◦ ι))
}

= σ(ι) · Z,

where the third equality follows from the surjectivity of Ker(π1(π ◦ ι)) →
Ker(H1(π ◦ ι;Z)). This proves that ι+β is strongly rational and θ(ι+β) =
σ(ι) = σ(ι+ β).

For each (y0, y1) ∈ F (ι+ β) = F (ι), there exists an element (v, v) ∈ E(ι)
such that v(i) = yi (i = 0, 1). We obtain such a pair (v, v) as follows. Take
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a path connecting y0 and y1 in L. Composing π ◦ ι with this path gives
an element of π1(M,π ◦ ι(y0)). We can take a preimage of the element in
π1(L, y0) by the surjectivity of π1(L) → π1(M). Concatenating a represen-
tative path of the inverse of the preimage to the original path on L, we
obtain a path v connecting y0 and y1 that bounds a disk v in T ∗M . By the
existence of such (v, v) ∈ E(ι), we conclude r(ι+ β) = e(ι+ β) = e(ι). □

Lemma 5.11. — Assume that Theorems 5.4 and 5.5 hold for any
strongly rational Lagrangian immersion ι : L → T ∗M satisfying Assump-
tion 4.3, θ(ι) = σ(ι), and r(ι) = e(ι). Then Theorems 5.4 and 5.5 hold for
any rational Lagrangian immersion.

Proof. — Take the covering p : M̃ → M corresponding to ι∗(π1(L)) ⊂
π1(M). Then a lift ι̃ : L → T ∗M̃ of ι induces a surjection on the funda-
mental groups and σ(ι̃) = σ(ι). By the construction of p, a non-injective
point (y, y′) ∈ F (ι) of ι is one for ι̃ if and only if there exists (v, v) ∈ E(ι)
with (y, y′) = (v(0), v(1)). Hence e(ι̃) = e(ι) and Assumption 5.3 for ι is
equivalent to Assumption 5.3 for ι̃.

Take a closed 1-form β on M̃ satisfying the conclusion of Lemma 5.10
for ι̃. By the surjectivity of π1(ι̃), Assumption 4.3 for ι̃ + β is equivalent
to Assumption 5.3 for ι̃ + β, which is equivalent to Assumption 5.3 for ι.
Furthermore, for a Hamiltonian function H on T ∗M , setting H̃ to be the
composite of H and the projection T ∗M̃ → T ∗M , we get ∥H̃∥ = ∥H∥ and

(5.9)

{
(y, y′) ∈ L× L

∣∣ ι(y) = ϕH1 ◦ ι(y′)
}

⊃
{

(y, y′) ∈ L× L
∣∣∣ ι̃(y) = ϕH̃1 ◦ ι̃(y′)

}
=
{

(y, y′) ∈ L× L
∣∣∣ (ι̃+ β)(y) = ϕH̃1 ◦ (ι̃+ β)(y′)

}
.

Thus Theorems 5.4 and 5.5 for ι are reduced to those for ι̃+ β. □

5.3. Proof for strongly rational cases

This subsection is devoted to the proofs of Theorems 5.4 and 5.5 for a
strongly rational Lagrangian immersion. In what follows, we assume the
following.

Assumption 5.12. — An immersion ι : L → T ∗M is a strongly rational
Lagrangian immersion satisfying Assumption 4.3, θ(ι) = σ(ι), and r(ι) =
e(ι).
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We write θ = θ(ι) for simplicity. Set Λ = Λι,f as in (4.3). Let a ∈
(0, r(ι)) and G(0,a) ∈ ⊥Db

/[1],{τ⩽0}(M × (0, a) × S1
θ ) be an object given in

Theorem 4.4. We denote by ja : M × (0, a) × S1
θ → M × R × S1

θ the open
embedding and define

(5.10) F(0,a) := ja!G(0,a), F[0,a] := Rja∗G(0,a) ∈ Db
/[1](M × R × S1

θ ).

Note that F(0,a) ∈ ⊥Db
/[1],{τ⩽0}(M × R × S1

θ ) and

(5.11) Hom(F(0,a), F[0,a]) ≃ H∗RΓ[0,+∞)(R; ℓ!Rq∗ Hom⋆(F(0,a), F[0,a]))

by Proposition 3.3, where F[0,a] also means Q(F[0,a]) ∈ DR(M)θ by abuse of
notation and Hom(−,−) denotes HomDR(M)θ

(−,−) unless otherwise spec-
ified hereafter. Using the fact that F(0,a) is in the left orthogonal, we also
find that Hom(F(0,a), F[0,a]) is naturally isomorphic to End(G(0,a)) by the
adjunction ja! ⊣ ja

−1.

Notation 5.13. — One defines subsets of T ∗R by

c(a) := {(0; υ) | −1 ⩽ υ ⩽ 0} ∪ {(u; υ) | 0 ⩽ u ⩽ a, υ = 0,−1},
d(a) := c(a) ∪ {(a; υ) | υ ⩾ −1},
q(a) := c(a) ∪ {(a; υ) | υ ⩽ 0},
l(a) := {(a; υ) | −1 < υ < 0}.

One also defines their “conifications”, which are subsets of Ω+(R)θ, by

ĉ(a) := {(u,−uυ; τυ, τ) | (u; υ) ∈ c(a)},

d̂(a) := ĉ(a) ∪ {(a, 0; υ, τ) | υ > 0} ∪ {(a, [a]; υ, τ) | υ > −τ},
q̂(a) := ĉ(a) ∪ {(a, 0; υ, τ) | υ < 0} ∪ {(a, [a]; υ, τ) | υ < −τ},

l̂(a) := {(a, [a]; υ, τ) | −τ < υ < 0}.

Notation 5.14. — For cones C1 ⊂ Ω+(M)θ and C2 ⊂ Ω+(P )θ, one defines

(5.12) C1 ⊞ C2 :=
{

(x, y, t1 + t2; ξ, η, τ)

∣∣∣∣∣ (x, t1; ξ, τ) ∈ C1,

(y, t2; η, τ) ∈ C2

}
⊂ Ω+.

Lemma 5.15.
(i) One has SS+(F(0,a)) ⊂ Λ ⊞ d̂(a) and SS+(F[0,a]) ⊂ Λ ⊞ q̂(a). In

particular, F(0,a), F[0,a] are objects of DR
ι(L)(M)θ.

(ii) One has

S̊S(F(0,a))∩{τ = 0}T∗(M×R×S1
θ

) ⊂ {u= a, ξ= 0, υ⩾ 0}T∗(M×R×S1
θ

),(5.13)

S̊S(F[0,a])∩{τ = 0}T∗(M×R×S1
θ

) ⊂ {u= a, ξ= 0, υ⩽ 0}T∗(M×R×S1
θ

).(5.14)
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Proof. — In this proof, {−} denotes {−}T∗(M×R×S1
θ

). Since Λq ∪ Λr ⊂
{υ = 0,−τ} and N∗(M × (0, a) ×S1

θ ) ⊂ {τ = 0}, we find that SS(G(0,a)) ∩
N∗(M×(0, a)×S1

θ ) and SS(G(0,a))∩N∗(M×(0, a)×S1
θ )a are contained in

the zero-section. By Proposition 2.11, we obtain SS(F(0,a)) ⊂ SS(G(0,a)) +
N∗(M × (0, a) × S1

θ )a and SS(F[0,a]) ⊂ SS(G(0,a)) + N∗(M × (0, a) × S1
θ ).

Fiberwise computations show

SS(F(0,a)) ∩ {u = 0} ⊂ {(x, t; ξ, τ) ∈ Λ, υ ⩽ 0} ∪ {τ = 0, ξ = 0, υ ⩽ 0},
SS(F[0,a]) ∩ {u = 0} ⊂ {(x, t; ξ, τ) ∈ Λ, υ ⩾ −τ} ∪ {τ = 0, ξ = 0, υ ⩾ 0},
SS(F(0,a)) ∩ {u = a} ⊂ {(x, t; ξ, τ) ∈ Λ, υ ⩾ 0}

∪ {(x, t− a; ξ, τ) ∈ Λ, υ ⩾ −τ}
∪ {τ = 0, ξ = 0, υ ⩾ 0},

SS(F[0,a]) ∩ {u = a} ⊂ {(x, t; ξ, τ) ∈ Λ, υ ⩽ 0}
∪ {(x, t− a; ξ, τ) ∈ Λ, υ ⩽ −τ}
∪ {τ = 0, ξ = 0, υ ⩽ 0}.

The cone of the natural morphism F(0,a) → F[0,a] is supported on M×{a}×
S1
θ , since F[0,a]|M×{0}×S1

θ
is isomorphic to 0 by Theorem 4.4(3). Hence, by

the triangle inequality (Proposition 2.3(ii)), we obtain

(5.15)
S̊S(F(0,a)) ∩ {u = 0} = S̊S(F[0,a]) ∩ {u = 0}

⊂ {(x, t; ξ, τ) ∈ Λ,−τ ⩽ υ ⩽ 0},

which proves the results. □

Now let H : T ∗M × I → R be a compactly supported Hamiltonian func-
tion and denote by ϕH = (ϕHs )s∈I : T ∗M × I → T ∗M the Hamiltonian
isotopy generated by H.

Notation 5.16.

(i) One sets ιH := ϕH1 ◦ ι and fH := f − ℓ ◦ h : L → S1
θ with h :=

u1 ◦ ι : L → R (see Appendix A.2 for the definition of u1).
(ii) One also sets C(ι,H) := {(y, y′) ∈ L × L | ι(y) = ιH(y′)} and

defines g : C(ι,H) → S1
θ by g(y, y′) := fH(y′) − f(y).

(iii) For y ∈ L, one sets l(y) := {(x,−f(y); ξ, τ) ∈ Λ | (x; ξ/τ) = ι(y)} ⊂
T ∗(M × S1

θ ).
(iv) One defines ΛH := ϕ̂H1 (Λ) (see Appendix A.2 for ϕ̂H1 ), namely

(5.16) ΛH =
{

(x, t; ξ, τ) ∈T ∗(M × S1
θ )

∣∣∣∣∣ τ > 0, there exists y ∈ L,

(x; ξ/τ) = ιH(y), t = −fH(y)

}
.
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We denote by ΦH1 : DP (M)θ → DP (M)θ the functor associated with ϕH1
(see (3.14)) and set FH[0,a] := ΦH1 (F[0,a]). Note that SS+(FH[0,a]) ⊂ ΛH⊞ q̂(a)
and (5.14) also holds with F[0,a] replaced by FH[0,a].

We denote by q : M ×R×S1
θ → S1

θ the projection and by ℓ the quotient
map R → S1

θ . From now on, for simplicity we write Tc instead of Tc∗ for
c ∈ R.

Proposition 5.17.

(i) One has dD(M)θ
(F[0,a], F

H
[0,a]) ⩽ ∥H∥. In particular, for any a′ >

∥H∥, there exist b ∈ [0, a′] and morphisms α : F[0,a] → TbF
H
[0,a],

β : FH[0,a] → Ta′−bF[0,a] such that τ0,a′ : F[0,a] → Ta′F[0,a] is equal to
Tbβ ◦ α.

(ii) One has

(5.17)

π(S̊S(ℓ!Rq∗ Hom⋆(F(0,a), F
H
[0,a])))

⊂

c ∈ R

∣∣∣∣∣∣∣
there exists (y, y′) ∈ C(ι,H),
g(y, y′) ≡ −c mod θ or
g(y, y′) ≡ −c− a mod θ

 .

(iii) If a′ < a, then τ0,a′ : Hom(F(0,a), F[0,a]) → Hom(F(0,a), Ta′F[0,a]) is
an isomorphism.

Proof.

(i). — It follows from Proposition 3.5 and Definition 3.4.

(ii). — Let T ′
c be the translation map Ω+ → Ω+ or Ω+(R)θ → Ω+(R)θ

that is the lift of Tc. By Lemma 5.15 and the above remark on FH[0,a],
we have S̊S(i−1F(0,a)) ∩ S̊S(FH[0,a]) = ∅. Hence by Proposition 2.9(ii) and
Proposition 2.7,

(5.18)

π(S̊S(ℓ!Rq∗ Hom⋆(F(0,a), F
H
[0,a]))

⊂ {−c | S̊S(F(0,a)) ∩ T ′
c(S̊S(FH[0,a])) ̸= ∅}

⊂ {−c | Λ ⊞ d̂(a) ∩ T ′
c(ΛH ⊞ q̂(a)) ̸= ∅}.

If (x, u, t; ξ, υ, τ) ∈ Λ⊞ d̂(a) ∩T ′
c(ΛH ⊞ q̂(a)), then there exist t1, t2, t3, t4 ∈

S1
θ with t = t1 + t2 = t3 + t4 + [c] such that (x, t1; ξ, τ) ∈ Λ, (u, t2; υ, τ) ∈

d̂(a), (x, t3; ξ, τ) ∈ ΛH , (u, t4; υ, τ) ∈ q̂(a). Then

(u, t2; υ, τ) ∈ d̂(a) ∩ T ′
t2−t4(q̂(a)),
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where we use T ′
c′ for c′ ∈ S1

θ by abuse of notation. Since

(5.19) d̂(a) ∩ T ′
c′(q̂(a)) =


ĉ(a) (c′ = 0)
l̂(a) (c′ = [a])

∅ (otherwise),

we have t2 − t4 = 0, [a]. By definition, there exist y, y′ ∈ L such that
ι(y) = ιH(y′) = (x, ξ/τ), t1 = −f(y), and t3 = −fH(y′). Then g(y, y′) =
−t3 + t1 = [c]− (t2 − t4), which implies that the sets in (5.18) are contained
in the right-hand side of (5.17) and the assertion holds.

(iii). — By Proposition 3.3, we have

(5.20) Hom(F(0,a), TcF[0,a]) ≃H∗RΓ[−c,+∞)(R; ℓ!Rq∗ Hom⋆(F(0,a), F[0,a]))

for any c ∈ R. Set H = ℓ!Rq∗ Hom⋆(F(0,a), F[0,a]). Applying (ii) to the case
H is a constant function, we get [−a′, 0) ∩ π(SS+(H)) = ∅. Hence by the
microlocal Morse lemma (Proposition 2.8) for H and the five lemma, we
find that H∗RΓ[0,+∞)(R; H) → H∗RΓ[−a′,+∞)(R; H) is an isomorphism,
which proves the result. □

Now we assume that the Hamiltonian function H satisfies ∥H∥ < r(ι).
Moreover, we fix a, a′ ∈ R>0 such that ∥H∥ < a′ < a < r(ι). By Proposi-
tion 5.17(i) and (iii), the isomorphism τ0,a′ factors as

(5.21) Hom(F(0,a), F[0,a]) → Hom(F(0,a), TbF
H
[0,a]) → Hom(F(0,a), Ta′F[0,a])

for some b ∈ [0, a′]. We also fix such b in what follows.
In order to study the second object in (5.21), we set

(5.22)
Hb := ℓ!Rq∗ Hom⋆(F(0,a), TbF

H
[0,a])

≃ ℓ!Rq∗Tb Hom⋆(F(0,a), F
H
[0,a]).

Note that H∗RΓ[c,+∞)(R; Hb) ≃ Hom(F(0,a), Tb−cF
H
[0,a]) for c ∈ R. We also

define

(5.23)
Wc := H∗RΓ[c,+∞)(Hb)c

≃ H∗RΓ[0,+∞)(ℓ!Rq∗ Hom⋆(F(0,a), Tb−cF
H
[0,a]))0

for c ∈ R.
The following proposition is an essential tool for the proofs of theorems

below, which decomposes the information of Hom(F(0,a), TbF
H
[0,a]) into that

of Wc’s.
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Proposition 5.18. — In the situation above we have the following.
(i) Assume that c ∈ R is not an accumulation point of π(SS+(Hb)).

Take d, d′ ∈ R satisfying (1) d ⩽ c < d′ and (2) π(SS+(Hb)) ∩
[d, d′] ⊂ {c} and define

Ac := Coker(Hom(F(0,a), Tb−d′FH[0,a]) → Hom(F(0,a), Tb−dF
H
[0,a])),(5.24)

Bc := Ker(Hom(F(0,a), Tb−d′FH[0,a]) → Hom(F(0,a), Tb−dF
H
[0,a])).(5.25)

Then there exists a short exact sequence of right End(G(0,a))-modules

(5.26) 0 → Ac → Wc → Bc → 0.

(ii) Assume that π(SS+(Hb)) is a discrete set and let

(5.27) π(SS+(Hb)) ∩ [−a, 0) = {c1, . . . , cn}

with c1 < · · · < cn. Take d1, . . . , dn−1 ∈ R satisfying c1 < d1 <

c2 < · · · < dn−1 < cn and set d0 = −a, dn = 0. Define

(5.28) Vd := Im(Hom(F(0,a), TbF
H
[0,a]) → Hom(F(0,a), Tb−dF

H
[0,a]))

for d ∈ [−a, 0]. Then for any i = 0, . . . , n there exists a submodule
B̃ci

of Bci
and a short exact sequence of right End(G(0,a))-modules

(5.29) 0 → B̃ci
→ Vdi

→ Vdi−1 → 0.

Moreover, Vd0 ≃ 0.
(iii) Assume that π(SS+(Hb)) is a discrete set and let

(5.30) π(SS+(Hb)) ∩ [0, a) = {cn+1, . . . , cn+m}

with cn+1 < · · · < cn+m. Take dn+1, . . . , dn+m−1 ∈ R satisfying
cn+1 < dn+1 < cn+2 < · · · < dn+m−1 < cn+m and set dn =
0, dn+m = a. Define

(5.31) Vd := Im(Hom(F(0,a), Tb−dF
H
[0,a]) → Hom(F(0,a), TbF

H
[0,a]))

for d ∈ [0, a]. Then for any i = n + 1, . . . , n + m there exists a
quotient submodule Ãci

of Aci
and a short exact sequence of right

End(G(0,a))-modules

(5.32) 0 → Vdi → Vdi−1 → Ãci → 0.

Moreover, Vdn+m
≃ 0.
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Proof.
(i). — Consider the exact triangle

(5.33) RΓ[d′,+∞)(R; Hb) → RΓ[d,+∞)(R; Hb) → RΓ[d,d′)(R; Hb)
+1−−→,

where the third object is isomorphic to RΓ[c,+∞)(Hb)c by the microlocal
Morse lemma (Proposition 2.8). Note that in the triangulated orbit cate-
gory Db

/[1](k) the shift functor [1] is naturally isomorphic to the identity
functor. Hence, applying the cohomological functorH∗ = HomDb

/[1](k)(k,−)
gives the long exact sequence

(5.34)

· · · // Wc

// Hom(F(0,a), Tb−d′FH[0,a]) // Hom(F(0,a), Tb−dF
H
[0,a]) // Wc

// Hom(F(0,a), Tb−d′FH[0,a]) // Hom(F(0,a), Tb−dF
H
[0,a]) // · · · ,

which induces the short exact sequence (5.26) of k-vector spaces. Through
the natural ring homomorphism

(5.35) End(G(0,a))op ja!−−→ End(F(0,a))op → End(Hb),

we find that the exact sequence is that of right End(G(0,a))-modules.
(ii) (iii). — Defining B̃ci

:= Bci ∩ Vdi , we obtain the exact sequence
(5.29) of k-vector spaces.

The induced morphism Aci → Coker(Vdi → Vdi−1) is surjective and
Coker(Vdi

→ Vdi−1) is isomorphic to a quotient module Ãci
of Aci

. This
gives the exact sequence (5.32) of k-vector spaces.

The constructions above are natural with respect to Hb and the exact
sequences are those of right End(G(0,a))-modules.

Let us prove Vd0 ≃ 0. The proof for Vdn+m
≃ 0 is similar. Since

τ0,a(F(0,a)) = ja!τ0,a(G(0,a)), it is enough to show τ0,a(G(0,a)) = 0. Apply-
ing the microlocal Morse lemma (Proposition 2.8) to Hom⋆(F(0,a), F[0,a]),
for a sufficiently small ε > 0, we find that
(5.36)

Im(HomD(0,a)(M)θ
(G(0,a), G(0,a)) → HomD(0,a)(M)θ

(G(0,a), TaG(0,a)))
≃ Im(HomDR(M)θ

(F(0,a), F[0,a]) → HomDR(M)θ
(F(0,a), TaF[0,a]))

≃ Im(HomDR(M)θ
(F(0,a), F[0,a]) → HomDR(M)θ

(F(0,a), Ta+εF[0,a]))
≃ Im(HomD(0,a)(M)θ

(G(0,a), G(0,a)) → HomD(0,a)(M)θ
(G(0,a), Ta+εG(0,a))).
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Therefore the result follows from the assertion dD(0,a)(M)θ
(G(0,a), 0) ⩽ a in

Theorem 4.4. □

5.3.1. Study of µhom between sheaf quantizations

In this subsection, we compute End(G(0,a)) and Wc using µhom functor.

Lemma 5.19.
(i) For c ∈ R, there is an isomorphism

(5.37)
Wc ≃ H∗RΓ (Ω+;µhom(F(0,a), Tb−cF

H
[0,a]))

= Homµ
Ω+

(F(0,a), Tb−cF
H
[0,a])).

(ii) For c ∈ R,

(5.38) Supp(µhom(F(0,a), TcF
H
[0,a])|Ω+) ⊂ C1(a, c) ∪ C2(a, c),

where

C1(a, c) :=
⋃

g(y,y′)=[c]

l(y) ⊞ ĉ(a) and C2(a, c) :=
⋃

g(y,y′)+[a]=[c]

l(y) ⊞ l̂(a).

Proof.
(i). — The proof is essentially the same as that of [15, §4.3]. The only

and slight difference appears in checking that δ : (M × R) × S1
θ × S1

θ →
(M × R) × (M × R) × S1

θ × S1
θ is non-characteristic, which can also be

verified easily.
(ii). — By Proposition 2.13 and Lemma 5.15, we get

(5.39)
Supp(µhom(F(0,a), TcF

H
[0,a])|Ω+) ⊂ SS+(F(0,a)) ∩ T ′

c(SS+(FH[0,a]))

⊂ Λ ⊞ d̂(a) ∩ T ′
c(ΛH ⊞ q̂(a)),

where T ′
c : Ω+ → Ω+ is the lift of Tc. The equality Λ⊞d̂(a)∩T ′

c(ΛH⊞q̂(a)) =
C1(a, c)∪C2(a, c) has been checked in the proof of Proposition 5.17(ii). □

Proposition 5.20.
(i) The object F(0,a) (resp. F[0,a]) is simple along Λ⊞(d̂(a)\ĉ(a)) (resp.

Λ ⊞ (q̂(a) \ ĉ(a))).
(ii) There exists an isomorphism µhom(F(0,a), F(0,a))|Ω+ ≃ kΛ⊞d̂(a)

such that the diagram

(5.40)

kΩ+
//

idµ
F(0,a) ''

kΛ⊞d̂(a)

∼

��

µhom(F(0,a), F(0,a))|Ω+

TOME 73 (2023), FASCICULE 4



1570 Tomohiro ASANO & Yuichi IKE

commutes. In particular, EndµΩ+
(F(0,a)) ≃ H∗(L) =

⊕
i∈ZH

i(L; k)
as k-vector spaces. Moreover, ◦µF(0,a),F(0,a),F(0,a)

induces the cup
product on H∗(L) through this isomorphism. Similarly, there is
an isomorphism µhom(F[0,a], F[0,a])|Ω+ ≃ kΛ⊞q̂(a).

(iii) There exists an isomorphism µhom(F(0,a), F[0,a])|Ω+ ≃ kΛ⊞ĉ(a) such
that the diagram

(5.41)

kΛ⊞d̂(a)

∼

��

// kΛ⊞ĉ(a)

∼

��

µhom(F(0,a), F(0,a))|Ω+

µhom(F(0,a),ψ)|Ω+
// µhom(F(0,a), F[0,a])|Ω+

commutes, where ψ : F(0,a) → F[0,a] is the canonical morphism and
the left vertical arrow is the isomorphism given in (ii). In partic-
ular, Homµ

Ω+
(F(0,a), F[0,a]) ≃ H∗(L) as k-vector spaces. Moreover,

◦µF(0,a),F(0,a),F[0,a]
induces the usual right H∗(L)-module structure

on H∗(L) through these isomorphisms.

Proof.

(i). — It follows from (ii) and Theorem 4.4(4).

(ii). — Since Supp(µhom(F(0,a), F(0,a))|Ω+) ⊂ Λ ⊞ d̂(a) by Proposi-
tion 2.13 and Lemma 5.15, the morphism

idµF(0,a)
: kΩ+ → µhom(F(0,a), F(0,a))|Ω+

factors through kΛ⊞d̂(a). We define E to be the cone of the morphism
kΛ⊞d̂(a) → µhom(F(0,a), F(0,a))|Ω+ . We will show that E ≃ 0.

Again by Proposition 2.13 and Lemma 5.15, setting Cd̂,d̂
:= −h−1(C(Λ⊞

d̂(a),Λ ⊞ d̂(a))) we have

SS(µhom(F(0,a), F(0,a))|Ω+) ⊂ Cd̂,d̂.

Since SS(kΛ⊞d̂(a)) ⊂ Cd̂,d̂, by the triangle inequality (Proposition 2.3(ii)),

(5.42) SS(E) ⊂ Cd̂,d̂ ⊂ −h−1((dρ)−1C(d(a),d(a))).
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We decompose d̂(a) into the following nine parts

D1 := {(a, 0; υ, τ) | υ > 0}, D2 := {(a, 0; 0, τ)},
D3 := {(u, 0; 0, τ) | 0 < u < a}, D4 := {(0, 0; 0, τ)},
D5 := {(0, 0; υ, τ) | −τ < υ < 0}, D6 := {(0, 0; −τ, τ)},
D7 := {(u, [u]; −τ, τ) | 0 < u < a}, D8 := {(a, [a]; −τ, τ)},
D9 := {(a, [a]; υ, τ) | υ > −τ}.

Let p : Λ ⊞ d̂(a) → Λ be the unique continuous map satisfying
p(x, u, t; ξ, υ, τ) = (x, t′; ξ, τ) for any (x, u, t; ξ, υ, τ) ∈ Λ ⊞ d̂(a) and some
t′. Define Λi := Λ ⊞ Di for i = 1, . . . , 9. Let pi be the projection Λi → Λ
that is the restriction of p. For even i, pi is bijective. For odd i, we define
qi that is an extension of pi by

q1 : Ω1 := {u = a, υ > 0}Ω+ → Ω+(M)θ,
(x, a, t; ξ, υ, τ) 7→ (x, t; ξ, τ),

q3 : Ω3 := {0 < u < a, υ = 0}Ω+ → Ω+(M)θ,
(x, u, t; ξ, 0, τ) 7→ (x, t; ξ, τ),

q5 : Ω5 := {u = 0,−τ < υ < 0}Ω+ → Ω+(M)θ,
(x, 0, t; ξ, υ, τ) 7→ (x, t; ξ, τ)

q7 : Ω7 := {0 < u < a, υ = −τ}Ω+ → Ω+(M)θ,
(x, u, t; ξ,−τ, τ) 7→ (x, t− u; ξ, τ),

q9 : Ω9 := {u = a,−τ < υ}Ω+ → Ω+(M)θ,
(x, a, t; ξ, υ, τ) 7→ (x, t− a; ξ, τ).

The image of (qi)d contains SS(E|Ωi) for each odd i. Here we show it in the
case i = 7, for example. We denote by (x, u, t, ξ, υ, τ ; x̃, ũ, t̃, ξ̃, υ̃, τ̃) a homo-
geneous coordinate system of T ∗Ω+. Let i7 : Ω7 → Ω+ be the inclusion. It
is enough to check SS(E) ∩ T ∗Ω+|Ω7 is contained in ((i7)d)−1(Im(q7)d). A
direct computation shows

(5.43) ((i7)d)−1(Im(q7)d) = {0 < u < a, υ = −τ, ũ = −t̃}T∗Ω+ .

On the other hand, Cd̂,d̂ ∩T ∗Ω+|Ω7 is the conormal bundle of Λ7 and hence
contained in {ũ = −t̃}T∗Ω+ . Hence the image of (q7)d contains SS(E|Ω7).

For each odd i, by Proposition 2.7(iii) and Theorem 4.4(4), there exists
an Ei ∈ Db

/[1](Ω+(M)θ) satisfying Supp(Ei) ⊂ Λ and E|Ωi
≃ q−1

i Ei. We
also define Ei := E|Ω+(M)θ⊞Di

for even i. By Theorem 4.4(2), we have
E|Ω+(M)θ⊞D3 ≃ 0. On a neighborhood of Λ2, the set Cd̂,d̂ does not intersect
{ũυ̃ < 0}T∗Ω+ . Using Lemma 2.10(ii) for ϕ = ±(u + υ

τ − a), we find that

TOME 73 (2023), FASCICULE 4



1572 Tomohiro ASANO & Yuichi IKE

E1 ≃ E2 ≃ E3 and E is of the form p−1E1 on this neighborhood. By
similar arguments for Λ4,Λ6 and Λ8, we get E|Λ⊞d̂(a) ≃ p−1(E3|Λ) ≃ 0,
which proves the first assertion.

The last assertion is proved in a parallel way.
Let us prove the second assertion. Denote by

v ∈ Hom
((

kΛ⊞d̂(a)

)⊗2
,kΛ⊞d̂(a)

)
the morphism corresponding to ◦µF(0,a),F(0,a),F(0,a)

through the isomorphism
proved above and by v′ : H∗(L)⊗2 → H∗(L) the induced morphism. Con-
sider the canonical isomorphism ζ : k⊗2

Λ⊞d̂(a)
∼−→ kΛ⊞d̂(a) that induces the

cup product ∪ : H∗(L)⊗2 → H∗(L). The morphism w : H∗(L) → H∗(L)
corresponding to v ◦ ζ−1 satisfies w(β) = w(1) ∪ β for any β ∈ H∗(L).
By construction, v′(α1 ⊗ α2) = w(α1 ∪ α2) = w(1) ∪ α1 ∪ α2 for any
α1, α2 ∈ H∗(L), which also shows w(1) = v′(1 ⊗ 1). The morphism idµF(0,a)

corresponds to 1 ∈ H∗(L) and hence by the unitality v′(1 ⊗ 1) = 1, which
proves the result.

(iii). — The morphism µhom(F(0,a), ψ)|Ω+ factors through kΛ⊞ĉ(a).
Since ψ|{u<a}Ω+

is an isomorphism, kΛ⊞ĉ(a) → µhom(F(0,a), F[0,a]) is also
isomorphic on {u < a}Ω+ . The cone E ′ of kΛ⊞ĉ(a) → µhom(F(0,a), F[0,a])|Ω+

is supported on {u = a}Ω+ . Since the microsupports of both kΛ⊞ĉ(a) and
µhom(F(0,a), F[0,a])|Ω+ are contained in −h−1C(Λ⊞ q̂(a),Λ⊞ d̂(a)), SS(E ′)
does not intersect {ũ > 0}T∗Ω+ . These two properties require E ′ ≃ 0.

The composition morphism

µhom(F(0,a), F[0,a])|Ω+ ⊗ µhom(F(0,a), F(0,a))|Ω+ → µhom(F(0,a), F[0,a])|Ω+

is also determined by the unitality as in (ii). □

Proposition 5.21. — There is an isomorphism of rings

(5.44) End(G(0,a)) ≃ H∗(L) =
⊕
i∈Z

Hi(L; k).

Proof. — By the functoriality of m−,− : Db
/[1](X; Ω) → Dµ

/[1](X; Ω) (see
Definition 2.14(ii)) and Proposition 5.20, we obtain the ring homomorphism
(5.45)

End(G(0,a))
ja!−−→ End(F(0,a))

mF(0,a),F(0,a)−−−−−−−−−→ EndµΩ+
(F(0,a)) ≃ H∗(L).

We check that this morphism is an isomorphism of modules.
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For any 0 < ε < r(ι)−a, there is an exact triangle of End(G(0,a))-modules

(5.46)
Hom(F(0,a), T−εF[0,a]) → Hom(F(0,a), F[0,a])

→ H∗RΓ[0,+∞)(ℓ!Rq∗ Hom⋆(F(0,a), F[0,a]))0
+1−−→

The second module is isomorphic to End(G(0,a)). Moreover, the third one
is isomorphic to Homµ

Ω+
(F(0,a), F[0,a]) by Lemma 5.19(i) (the case H ≡ 0

and c = b), which is isomorphic to H∗(L) by Proposition 5.20(iii). Thus by
the commutativity of the following diagram, it is enough to prove the first
module in (5.46) is 0:

(5.47)

End(G(0,a))

ja!

�� ))

End(F(0,a))

mF(0,a),F(0,a)

��

ψ◦−
// Hom(F(0,a), F[0,a])

mF(0,a),F[0,a]

��

EndµΩ+
(F(0,a)) //

��

Homµ
Ω+

(F(0,a), F[0,a])

��

H∗(L) // H∗(L),

where ψ : F(0,a) → F[0,a] is the canonical morphism. All the arrows in the
diagram are morphisms of right End(G(0,a))-modules and the three arrows
in the left column are ring homomorphisms. Note that the unlabeled arrows
are all isomorphisms.

If a < r(ι)/2, we can choose 0 < ε1, ε2 < r(ι) − a so that ε2 − ε1 > a.
The isomorphism Hom(F(0,a), T−ε2F[0,a]) → Hom(F(0,a), T−ε1F[0,a]) is
induced by τ−ε2,−ε1(G(0,a)), which is the zero morphism since
dD(0,a)(M)θ

(G(0,a), 0) ⩽ a by Theorem 4.4.
Now assume a > r(ι)/2. In this case, we take a < ã < r(ι) and construct

an object H ∈ D(0,ã)(pt)θ such that H|S1
θ

×{u} ≃ Rq∗ Hom⋆(F(0,u), F[0,u])
for any u ∈ (0, ã) as follows. Let Dã and G ∈ DDã

L (M)θ be as in the proof
of Theorem 4.4. Set

(5.48)
F1 := Rj!G, F2 := Rj∗G ∈ DR×(0,ã)(M)θ,

H := Rq′
∗ Hom⋆(F1,F2) ∈ D(0,ã)(pt)θ,

where j : M × Dã × S1
θ → M × R × (0, ã) × S1

θ is the inclusion and
q′ : M × R × (0, ã) × S1

θ → (0, ã) × S1
θ is the projection. Then the ob-

ject H|(0,ã)×{ε} is locally constant on (0, ã) for 0 < ε < r(ι)− ã. This shows
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that Hom(F(0,u), T−εF[0,u]) does not depend on u ∈ (0, ã) and the result
follows from the case a < r(ι)/2. □

By Proposition 5.21, the modules Wc, Ac, Bc, etc. that appeared in
Proposition 5.18 are equipped with a H∗(L)-action.

5.3.2. Betti number estimate: Proof of Theorem 5.4

In this subsection, in order to prove Theorem 5.4 for a strong rational
Lagrangian immersion satisfying Assumption 5.12, we assume the following.

Assumption 5.22. — The strongly rational Lagrangian immersion
ι : L → T ∗M and the Hamiltonian function H : T ∗M × I → R satisfy
the following conditions:

(i) ∥H∥ < r(ι),
(ii) ι and ιH = ϕH1 ◦ ι intersect transversally.

Under the assumption, π(SS+(Hb)) is discrete by Proposition 5.17(ii).

Lemma 5.23. — With the notation of Proposition 5.18, for t ∈ S1
θ , take

any t̃ ∈ ℓ−1(t) and set Wt := Wt̃, At := At̃, and Bt := Bt̃, which do not
depend on the choice of t̃. Let c1, . . . , cn+m be as in Proposition 5.18(ii)
and (iii). Then

(5.49)

∑
t∈S1

θ

dimBt ⩾
n∑
i=1

dimBci
⩾ dimH∗(L),

∑
t∈S1

θ

dimAt ⩾
n+m∑
i=n+1

dimAci ⩾ dimH∗(L).

In particular,

(5.50)
∑
t∈S1

θ

dimWt ⩾ 2 dimH∗(L).

Proof. — Since the composite (5.21) is an isomorphism and

Hom(F(0,a), F[0,a]) ≃ H∗(L)

by Proposition 5.21, we have

(5.51) dim Hom(F(0,a), TbF
H
[0,a]) ⩾ dimH∗(L).

By Proposition 5.18(ii), noticing that

Vd0 ≃ 0 and Vdn
≃ Hom(F(0,a), TbF

H
[0,a]),

ANNALES DE L’INSTITUT FOURIER



SHEAF QUANTIZATION OF LAGRANGIAN IMMERSIONS 1575

we get

(5.52)
n∑
i=1

dimBci
⩾

n∑
i=1

dim B̃ci
= dim Hom(F(0,a), TbF

H
[0,a]).

Similarly by Proposition 5.18(iii), noticing that

Vdn+m
≃ 0 and Vdn

≃ Hom(F(0,a), TbF
H
[0,a]),

we get

(5.53)
n+m∑
i=n+1

dimAci ⩾ dim Hom(F(0,a), TbF
H
[0,a]).

Moreover, by Proposition 5.18(i), dimBt + dimAt = dimWt. Combining
these inequalities, we obtain the result. □

Proposition 5.24. — For c ∈ R, there is an isomorphism

(5.54)
µhom(F(0,a), TcF

H
[0,a])|Ω+

≃
⊕

g(y,y′)=[c]

k
l(y)⊞ĉ(a) ⊕

⊕
g(y,y′)+[a]=[c]

k
l(y)⊞̂l(a).

Proof. — We argue similarly to Proposition 5.20 and use the same no-
tation as in its proof and Lemma 5.19. Moreover, we set

F :=µhom(F(0,a), F
H
[0,a])|Ω+ ∈ Db

/[1](Ω+), D10 := {(a, [a]; 0, τ)}, D11 := l̂(a),

and

(5.55)
q11 : Ω11 := {u = a,−τ < υ < 0}Ω+ → Ω+(M)θ,

(x, a, t; ξ, υ, τ) 7→ (x, t− a; ξ, τ).

By Lemma 5.19(ii), Supp(F) ⊂ C1(a, c) ∪ C2(a, c). Since C1(a, c) and
C2(a, c) are disjoint, F admits a direct sum decomposition of the form F ≃
F ′ ⊕ F ′′ with Supp(F ′) ⊂ C1(a, c) and F ′′ ⊂ C2(a, c). By Proposition 2.13
and Lemma 5.15, we have

(5.56)
SS(F) ⊂ −h−1(C(Λ ⊞ d̂(a),ΛH ⊞ q̂(a)))

⊂ −h−1((dρ)−1C(d(a),q(a))).

The image of (qi)d contains SS(F ′|Ωi
) for each odd i. Therefore, by

Proposition 2.7(iii), there exists a locally tame object F ′
i ∈ Db

/[1](Ω+(M)θ)
with Supp(F ′

i ) ⊂ Λ and F ′|Ωi
≃ q−1

i F ′
i for any odd i. We also define

F ′
i := F ′|Ω+(M)θ⊞Di

for even i. By Theorem 4.4 and Lemma 2.18, we have
F ′

3 ≃
⊕

g(y,y′)=c kl(y)⊞D3 . On a neighborhood of Λ2, the set −h−1C(Λ ⊞

d̂(a),Λ ⊞ q̂(a)) does not intersect {ũυ̃ < 0}T∗Ω+ . Using Lemma 2.10(ii)
for ϕ = u − υ

τ − a, we find that F ′
2 ≃ F ′

3 and F ′|Λ⊞ĉ(a) is of the form
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p−1F ′
3 on this neighborhood. By similar arguments for Λ4,Λ6 and Λ8, we

get F ′ ≃
⊕

g(y,y′)=[c] k
l(y)⊞ĉ(a).

By Proposition 5.20(i) and Lemma 2.18,

F ′′|Ω11 ≃
⊕

g(y,y′)+[a]=[c]

k
l(y)⊞̂l(a)|Ω11 .

Using Lemma 2.10(i) for ϕ = u − υ
τ − a,−(u + υ

τ − a) − 1, we obtain
F ′′ ≃

⊕
g(y,y′)+[a]=[c] k

l(y)⊞̂l(a).
Combining these isomorphisms, we obtain the result. □

Proof of Theorem 5.4. — For t ∈ S1
θ , take t̃ ∈ ℓ−1(t) as in Lemma 5.23.

By Lemma 5.19(i) and Proposition 5.24,

(5.57)
dimWt = dimH∗RΓ (Ω+;µhom(F(0,a), Tb−t̃F

H
[0,a]))

= # {(y, y′) ∈ C(ι,H) | g(y, y′) = [b] − t}
+ # {(y, y′) ∈ C(ι,H) | g(y, y′) + [a] = [b] − t}

for any t ∈ S1
θ . Hence, we get

∑
t∈S1

θ
dimWt = 2#C(ι,H). Combining this

equality with Lemma 5.23, we obtain the theorem. □

5.3.3. Cup-length estimate: Proof of Theorem 5.5

In this subsection, we give a proof of Theorem 5.5 for a strongly rational
Lagrangian immersion satistying Assumption 5.12.

First we introduce an algebraic counterpart of cup-length and study some
properties.

Definition 5.25. — Let R be an associative (not necessarily commu-
tative nor unital) algebra over k. For a right R-module A, define

(5.58) clR(A) := inf

k − 1

∣∣∣∣∣∣∣
k ∈ Z⩾0, a0 · r1 · · · rk = 0

for any (ri)i ∈ Rk and
for any a0 ∈ A

 ∈ Z⩾−1 ∪ {∞}.

Note that
(i) clR(A) = −1 if and only if A = 0.
(ii) clR(A) = 0 if and only if A ̸= 0 and ar = 0 for any a ∈ A and any

r ∈ R.
If there is no risk of confusion, we simply write cl(A) for clR(A).

By definition, one can easily show the following two lemmas.

Lemma 5.26. — For an exact sequence A → B → C of right R-modules,
cl(B) ⩽ cl(A) + cl(C) + 1.
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Lemma 5.27. — Let R,R′ be rings and A be a right R-module. If R′

is a non-zero unital ring and the action of R on A factors as R → R′ →
End(A)op, then clR(A) ⩽ clR(R′).

The usual notion of cup-length is related to the above definition as fol-
lows. Let X be a manifold. We define the ring RX :=

⊕
i⩾1 H

i(X; k)
equipped with the cup product and cl(X) := clRX

(H∗(X; k)). The number
cl(X) ∈ Z⩾−1 ∪ {∞} is called the cup-length of X.

Now we start the proof of Theorem 5.5. In what follows, we assume the
following.

Assumption 5.28. — The Hamiltonian function H satisfies ∥H∥ <

min(r(ι), θ(ι)/2).

Take a ∈ R satisfying ∥H∥ < a < min(r(ι), θ(ι)/2). From now on, until
the end of this subsection, set R := RL =

⊕
i⩾1 H

i(L; k). Recall again
that by Proposition 5.21 the right End(G(0,a))-modules that appeared in
Proposition 5.18 can be regarded as H∗(L)-modules and hence R-modules.

Lemma 5.29. — Assume that π(SS+(Hb)) is a discrete set and let
c1, . . . , cn be as in Proposition 5.18(ii). Then

(5.59) n+
n∑
i=1

cl(Wci
) ⩾ cl(L) + 1.

Proof. — First recall that the composite (5.21) is an isomorphism and
Hom(F(0,a), F[0,a]) ≃ H∗(L) as R-modules by Proposition 5.21. Hence we
have

(5.60) cl(Hom(F(0,a), TbF
H
[0,a])) ⩾ cl(H∗(L)).

Applying Lemma 5.26 to the exact sequences (5.29) and (5.26) of right
R-modules, we have

(5.61) cl(Vdi
) ⩽ cl(Wci

) + cl(Vdi−1) + 1.

Noticing that Vd0 ≃ 0 and Vdn ≃ Hom(F(0,a), TbF
H
[0,a]), by induction we

obtain

(5.62) n+
n∑
i=1

cl(Wci) ⩾ cl(Hom(F(0,a), TbF
H
[0,a])) + 1,

which proves the result. □
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It remains to see the action ofR on eachWci
≃ Homµ

Ω+
(F(0,a), Tb−ci

FH[0,a]).
Recall that for any c ∈ R,

(5.63)
Homµ

ρ−1(U)(F(0,a), TcF
H
[0,a])

≃ H∗RΓ (ρ−1(U);µhom(F(0,a), TcF
H
[0,a]))

admits a right End(G(0,a))-module structure. Hence it is equipped with a
right R-module structure through the ring homomorphism R ↪→ H∗(L) ≃
End(G(0,a)).

Proposition 5.30. — Let U be an open subset of T ∗M . Then for any
c ∈ R,

(5.64) cl
(

Homµ
ρ−1(U)(F(0,a), TcF

H
[0,a])

)
⩽ cl(H∗(ι−1(U))).

Proof. — By the functoriality of m−,− (see Definition 2.14(ii)), the ac-
tion of End(F(0,a)) on Homµ

ρ−1(U)(F(0,a), TcF
H
[0,a]) factors through

Endµρ−1(U)(F(0,a)), and so does the action of R. The ring Endµρ−1(U)(F(0,a))
is isomorphic to H∗RΓ (ρ−1(U); kΛ⊞d(a)∩ρ−1(U)) ≃ H∗(ι−1(U)) by Propo-
sition 5.20(ii). Hence the assertion follows from Lemma 5.27 if ι−1(U) is
non-empty.

If ι−1(U) is empty, Homµ
ρ−1(U)(F(0,a), TcF

H
[0,a]) is zero by Lemma 5.19(ii).

Hence both sides of (5.64) are −1. □

Proof of Theorem 5.5. — We may assume that C(ι,H) is discrete and
let c1, . . . , cn be as in Lemma 5.29. Since a < θ/2, for any (y, y′) ∈ C(ι,H),
the set

(5.65)
{
c ∈ R

∣∣∣∣∣ g(y, y′) ≡ −c+ b mod θ or
g(y, y′) ≡ −c+ b− a mod θ

}
∩ [−a, 0)

is a singleton or empty. Hence, we have #C(ι,H) ⩾ n.
Let c be any of c1, . . . , cn and set

(5.66) {(y1, y
′
1), . . . , (yk, y′

k)}

:=
{

(y, y′) ∈ C(ι,H)

∣∣∣∣∣ g(y, y′) ≡ −c+ b mod θ

or g(y, y′) ≡ −c+ b− a mod θ

}
.

Take a sufficiently small contractible open neighborhood Uj of ι(yj) =
ιH(y′

j) in T ∗M for j= 1, . . . , k and set U :=
⋃k
j=1 Uj . Then, by Lemma 5.19,

we obtain

(5.67)
Wc ≃ H∗RΓ (Ω+;µhom(F(0,a), Tb−cF

H
[0,a]))

≃ H∗RΓ (ρ−1(U);µhom(F(0,a), Tb−cF
H
[0,a])).
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Therefore, by Proposition 5.30, we have cl(Wc) ⩽ cl(H∗(ι−1(U))) = 0,
which proves the theorem by Lemma 5.29. □

Remark 5.31. — The quantity cl +1 in the proof of Theorem 5.5 and
dim in the proof of Theorem 5.4 play similar but a bit different roles in the
following sense. For a short exact sequence 0 → A → B → C → 0 of right
R-modules, cl(B) + 1 can be strictly smaller than cl(A) + 1 + cl(C) + 1
while dimB = dimA+ dimC always holds. Because of this difference, the
proof of Lemma 5.23 with dim replaced by cl +1 does not proceed in the
same way.

Remark 5.32. — If min ({r(ι)} ∪ ({θ(ι)/2} ∩ R>0)) ̸= r(ι), then r(ι) =
θ(ι) as remarked in Remark 5.6. In such a case, for a ∈ (θ/2, r(ι)), the set
(5.65) may have two elements and our estimate for σ(ι)/2 ⩽ ∥H∥ < e(ι)
can be worse than (5.6).

A possible way to prove (5.6) for σ(ι)/2 ⩽ ∥H∥ < e(ι) is to take a = r(ι)
as mentioned in Remark 4.16. In this case, the set (5.65) is a singleton for
each (y, y′) ∈ C(ι,H). However, in the case a = r(ι), Lemma 5.19 does not
hold and proofs for Propositions 5.21 and 5.30 become more complicated.

Note that we have proved #g(C(ι,H)) ⩾ cl(L) + 1 assuming C(ι,H)
is discrete in the proof of Theorem 5.5. More generally, we obtain the
following. We denote by pr1 : C(ι,H) → L the first projection.

Proposition 5.33. — Assume that the number of the values of g is
finite. Let g(C(ι,H)) = {t1, . . . , tl} and set Ti := g−1(ti) for i = 1, . . . , l.
Moreover, let Vi be an open neighborhood of pr1(Ti) in L for i = 1, . . . , l.
Then

(5.68) l +
l∑
i=1

cl(H∗(Vi)) ⩾ cl(L) + 1.

Proof. — Let c1, . . . , cn be as in Lemma 5.29. Then l ⩾ n and we obtain
the result by Lemma 5.29 and a slight modified version of Proposition 5.30.

□

We can also deduce a similar statement without mentioning g.

Proposition 5.34. — Assume that the number of the path-connected
components of C(ι,H) is finite and let {C1, . . . , Cm} be the set of the
path-connected components. Moreover, let Ui be an open neighborhood of
pr1(Ci) in L for i = 1, . . . ,m. Then

(5.69) m+
m∑
i=1

cl(H∗(Ui)) ⩾ cl(L) + 1.
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Proof. — Since g is constant on each path-connected component, the
assumption of Proposition 5.33 is satisfied. We use the same notation as in
Proposition 5.33. We define κ : {1, . . . ,m} → {1, . . . , l} so that Ci ⊂ Dκ(i)
for each i = 1, . . . ,m. Set Vj :=

⋃
i∈κ−1(j) Ui. It is enough to check that

(5.70)
∑

i∈κ−1(j)

(cl(H∗(Ui)) + 1) ⩾ cl(H∗(Vj)) + 1

for each j ∈ {1, . . . , l}. This is obtained by iterative use of Lemma 5.35
below. □

Lemma 5.35. — For open subsets W1 and W2 of L,

(5.71) cl(H∗(W1)) + cl(H∗(W2)) + 1 ⩾ cl(H∗(W1 ∪W2)).

Proof. — By the Mayer–Vietoris sequence and Lemma 5.26, we get

(5.72) cl(H∗(W1 ∪W2)) ⩽ cl(H∗(W1 ∩W2)) + cl(H∗(W1) ⊕H∗(W2)) + 1.

Since cl(H∗(W1 ∩W2)) ⩽ min{cl(H∗(W1)), cl(H∗(W1))} and cl(H∗(W1) ⊕
H∗(W2)) = max{cl(H∗(W1)), cl(H∗(W2))}, the assertion holds. □

Although in Proposition 5.34 we state the result for a strongly rational
Lagrangian immersion satisfying Assumption 5.28, we can show that the
statement holds for any rational Lagrangian immersion as in Theorem 5.5
by an argument similar to Section 5.2.

Appendix A. Modified Tamarkin category and energy
estimate

In this section, we give a more detailed exposition on the modified ver-
sion of Tamarkin category DP (M)θ. We continue to use the notation in
Section 3.

A.1. Separation theorem

First noticing that ℓ : M × P × R → M × P × S1
θ is a covering map, we

obtain the following.

Lemma A.1.
(i) Let G ∈ Db

/[1](M × P × S1
θ ). If ℓ!G ≃ 0 then G ≃ 0.
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(ii) The functor ℓ! : Db
/[1](M×P ×S1

θ ) → Db
/[1](M×P ×R) is conserva-

tive. That is, a morphism f in Db
/[1](M×P ×S1

θ ) is an isomorphism
if and only if so is ℓ!f .

Applying the proper base change and the projection formula, one can
prove the following.

Lemma A.2. — For F,G ∈ Db
/[1](M × P × R), there is an natural iso-

morphism

(A.1) Rℓ!F ⋆ Rℓ!G ≃ Rℓ!(F ⋆ G),

where ⋆ in the right-hand side stands for the convolution ⋆ for the case
θ = 0.

We define endofunctors Pl and Pr of Db
/[1](M × P × S1

θ ) by

Pl := Rℓ!kM×P×[0,+∞) ⋆ (−) and Pr := Hom⋆(Rℓ!kM×P×[0,+∞),−).

Using Lemma A.1 and Lemma A.2 and arguing similarly to [14], we can
show the equivalence of categories

Pl : Db
/[1](M × P × S1

θ ; Ω+) ∼−→ ⊥Db
/[1],{τ⩽0}(M × P × S1

θ ),

Pr : Db
/[1](M × P × S1

θ ; Ω+) ∼−→ Db
/[1],{τ⩽0}(M × P × S1

θ )⊥,

where ⊥(−) (resp. (−)⊥) denotes the left (resp. right) orthogonal.
For an object F ∈ DP (M), we take the canonical representative Pl(F ) ∈

⊥Db
{τ⩽0}(M ×P ×R) unless otherwise specified. The support of an object

F ∈ DP (M) is defined to be that of Pl(F ). For a compact subset A of T ∗M

and F ∈ DP
A(M), the canonical representative Pl(F ) ∈ ⊥Db

{τ⩽0}(M × P ×
R) satisfies SS(Pl(F )) ⊂ ρ−1(A).

The following is a slight generalization of Tamarkin’s separation theorem.

Proposition A.3 (see also [24, Thm. 3.2 and Lem. 3.8] and
[14, Thm.4.28]). — Let q denote the projection M × P × S1

θ → S1
θ . Let

A,B be compact subsets of T ∗M and F ∈ DP
A(M)θ, G ∈ DP

B(M)θ. Assume
(i) A ∩B = ∅,
(ii) q is proper on Supp(F ) ∪ Supp(G).

Then Rq∗ Hom⋆(F,G) ≃ 0.

A.2. Sheaf quantization of Hamiltonian isotopies

In this subsection, we briefly recall the existence theorem of a sheaf quan-
tization of a Hamiltonian isotopy due to Guillermou–Kashiwara–Schapira
[13], with a slight modification so that it can be applied to our setting.
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Let I be an open interval containing the closed interval [0, 1]. Let
H : T ∗M × I → R be a compactly supported Hamiltonian function and
denote by Xs the associated Hamiltonian vector field on T ∗M defined by
dα(Xs,−) = −dHs. We also denote by ϕH : T ∗M × I → T ∗M the Hamil-
tonian isotopy generated by Xs. We consider the conification of ϕH as fol-
lows. Define Ĥ : T ∗M×T̊ ∗S1

θ×I → R by Ĥs(x, t; ξ, τ) := τ ·Hs(x; ξ/τ). Note
that Ĥ is homogeneous of degree 1, that is, Ĥs(x, t; cξ, cτ) = c·Ĥs(x, t; ξ, τ)
for any c ∈ R>0. The Hamiltonian isotopy ϕ̂ : T ∗M × T̊ ∗S1

θ × I → T ∗M ×
T̊ ∗S1

θ associated with Ĥ makes the following diagram commute (recall that
we have set ρ : Ω+ → T ∗M, (x, t; ξ, τ) 7→ (x; ξ/τ)):

(A.2)

Ω+ × I
ϕ̂
//

ρ×id
��

Ω+

ρ

��

T ∗M × I
ϕH

// T ∗M.

Defining a C∞-function u = (us)s∈I : T ∗M × I → R by us(p) :=
∫ s

0 (Hs′ −
α(Xs′))(ϕHs′ (p))ds′, we find that

(A.3) ϕ̂s(x, t; ξ, τ) = (x′, t+ [us(x; ξ/τ)]; ξ′, τ),

where (x′; ξ′/τ) = ϕHs (x; ξ/τ). By construction, ϕ̂ is a homogeneous Hamil-
tonian isotopy: ϕ̂s(x, t; cξ, cτ) = c · ϕ̂s(x, t; ξ, τ) for any c ∈ R>0. We define
a conic Lagrangian submanifold Λ

ϕ̂
⊂ T ∗M × T̊ ∗S1

θ × T ∗M × T̊ ∗S1
θ × T ∗I

by
(A.4)

Λ
ϕ̂

:=
{(
ϕ̂s(x, t; ξ, τ), (x, t; −ξ,−τ),(s; −Ĥs ◦ ϕ̂s(x, t; ξ, τ))

) ∣∣∣
(x; ξ) ∈ T ∗M, (t; τ) ∈ T̊ ∗S1

θ , s ∈ I
}
.

By construction, we have

(A.5) Ĥs ◦ ϕ̂s(x, t; ξ, τ) = τ · (Hs ◦ ϕHs (x; ξ/τ)).

Note also that
(A.6)

Λ
ϕ̂

◦ T ∗
s I =

{(
ϕ̂s(x, t; ξ, τ), (x, t; −ξ,−τ)

) ∣∣∣ (x, t; ξ, τ) ∈ T ∗M × T̊ ∗S1
θ

}
⊂ T ∗M × T̊ ∗S1

θ × T ∗M × T̊ ∗S1
θ

for any s ∈ I (see (2.7) for the definition of A ◦ B). The following was
proved by Guillermou–Kashiwara–Schapira [13].
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Theorem A.4 (cf. [13, Thm. 4.3]). — In the preceding situation, there
exists a unique object KH ∈ Db(M × S1

θ × M × S1
θ × I) satisfying the

following conditions:
(1) S̊S(KH) ⊂ Λ

ϕ̂
,

(2) KH |M×S1
θ

×M×S1
θ

×{0} ≃ k∆M×S1
θ

, where ∆M×S1
θ

is the diagonal of
M × S1

θ ×M × S1
θ .

Moreover both projections Supp(KH) → M × S1
θ × I are proper.

The objectKH is called the sheaf quantization of ϕ̂ or associated with ϕH .

A.3. Hamiltonian deformation for sheaves and translation
distance

In this subsection, we give the outline of the proof of Proposition 3.5.
Let F ∈ DP (M)θ. Then the canonical morphism Rℓ!kM×P×[0,+∞) ⋆F →

F is an isomorphism. Moreover, for any c ∈ R, we have an isomorphism
Tc∗(Rℓ!kM×P×[0,+∞) ⋆ F ) ≃ Rℓ!kM×P×[c,+∞) ⋆ F . Hence, for any c, d ∈ R
with c ⩽ d, the canonical morphism kM×P×[c,+∞) → kM×P×[d,+∞) induces
a morphism τc,d(F ) : Tc∗F → Td∗F in DP (M)θ. Using the morphism, we
define the translation distance as in Definition 3.4.

The following is a modified version of the key lemma in [5], which we
used once in the proof of Theorem 4.4.

Lemma A.5 (cf. [5, Prop. 4.3]). — Denote by q : M × P × S1
θ × I →

M ×P ×S1
θ the projection. Let H ∈ Db

{τ⩾0}(M ×P ×S1
θ × I) and s1 < s2

be in I. Assume that there exist a, b, r ∈ R>0 satisfying
(A.7)
SS(H) ∩π−1(M ×P ×S1

θ × (s1 − r, s2 + r)) ⊂ T ∗(M ×P ) × (S1
θ × I) × γa,b,

where γa,b := {(τ, σ) ∈ R2 | −aτ ⩽ σ ⩽ bτ} ⊂ R2. Then
(i) dDP (M)θ

(Rq∗(HM×P×S1
θ

×[s1,s2)), 0) ⩽ a(s2 − s1),
(ii) dDP (M)θ

(Rq∗(HM×P×S1
θ

×(s1,s2])), 0) ⩽ b(s2 − s1),
(iii) dDP (M)θ

(H|M×P×S1
θ

×{s1},H|M×P×S1
θ

×{s2}) ⩽ (a+ b)(s2 − s1).

Outline of the proof. — We can prove (i) and (ii) similarly to that of [5,
Prop. 4.3], using Lemma A.6 below instead of the usual microlocal cut-off
lemma. Similarly to [5, Lem. 4.14], we can show that if F → G → H

+1−−→
is an exact triangle in Db

{τ⩾0}(M × P × S1
θ ) and dDP (M)θ

(F, 0) ⩽ c with
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c ∈ R⩾0, then dDP (M)θ
(G,H) ⩽ c. Hence, applying it to the exact triangles

(A.8)

Rq∗(HM×P×S1
θ

×(s1,s2]) → Rq∗(HM×P×S1
θ

×[s1,s2])

→ H|M×P×S1
θ

×{s1}
+1−−→,

Rq∗(HM×P×S1
θ

×[s1,s2)) → Rq∗(HM×P×S1
θ

×[s1,s2])

→ H|M×P×S1
θ

×{s2}
+1−−→,

we obtain (iii) by the triangle inequality for dDP (M)θ
. □

Lemma A.6. — Define

s : M × P × S1
θ × R × R × R → M × P × S1

θ × R,
(x, y, t1, s1, t2, s2) 7→ (x, y, t1 + [t2], s1 + s2),

q1 : M × P × S1
θ × R × R × R → M × P × S1

θ × R,
(x, y, t1, s1, t2, s2) 7→ (x, y, t1, s1),

q2 : M × P × S1
θ × R × R × R → M × P × R × R,

(x, y, t1, s1, t2, s2) 7→ (x, y, t2, s2).

Let γ be a closed convex cone in R2 with 0 ∈ γ and H ∈ Db(M × P ×
S1
θ × R). Then the canonical morphism Rs∗(q−1

1 H ⊗ q−1
2 kM×P×γ) → H is

an isomorphism if and only if SS(H) ⊂ T ∗(M ×P ) × (S1
θ ×R) × γ◦, where

γ◦ denotes the polar cone of γ.

Outline of the proof of Proposition 3.5. — Let KH be the sheaf quanti-
zation associated with ϕH . Define H := KH◦F ∈ Db(M×P×S1

θ×I). Then
we have H|M×P×S1

θ
×{0} ≃ F and H|M×P×S1

θ
×{1} ≃ ΦH1 (F ). By Proposi-

tion 2.12 and (A.4), we get

(A.9) SS(H)

⊂ T ∗(M × P ) ×
{

(t, s; τ, σ)
∣∣∣∣ − max

p
Hs(p) · τ ⩽ σ ⩽ − min

p
Hs(p) · τ

}
.

Using Lemma A.5 (iii) and arguing similarly to [5, Prop. 4.15], for any
n ∈ Z⩾0 we obtain

(A.10) dDP (M)θ
(F,ΦH1 (F )) ⩽

n−1∑
k=0

1
n

·

(
max

s∈[ k
n ,

k+1
n ]

f(s) + max
s∈[ k

n ,
k+1

n ]
g(s)

)
,

where f(s) = maxpHs(p) and g(s) = − minpHs(p). For any ε ∈ R>0, there
exists n ∈ Z⩾0 such that the right-hand side of (A.10) is less than ∥H∥+ε,
which proves the result. □
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As an application, we give a sheaf-theoretic bound for the displacement
energy of two compact subset of T ∗M . For compact subsets A and B of
T ∗M , we define their displacement energy e(A,B) by

(A.11)

e(A,B)

:= inf
{

∥H∥

∣∣∣∣∣ H : T ∗M × I → R with compact support,

A ∩ ϕH1 (B) = ∅

}
Using Hom⋆ and the translation distance on D(pt)θ, we introduce a

sheaf-theoretic energy.

Definition A.7 (cf. [5, Def. 4.17]). — Let q denote the projection M ×
P × S1

θ → S1
θ . One defines

(A.12)
eDP (M)θ

(F,G) :=dD(pt)θ
(Rq∗ Hom⋆(F,G), 0)

= inf {c ∈ R⩾0 | τ0,c(Rq∗ Hom⋆(F,G)) = 0} .

Note that by Proposition 3.3, we have

(A.13) eDP (M)θ
(F,G)

⩾ inf
{
c ∈ R⩾0

∣∣ HomDP (M)θ
(F,G) → HomDP (M)θ

(F, Tc∗G) is zero
}
.

Combining Proposition A.3 with Proposition 3.5, we obtain the following
refined version of the main theorem of [5]. Note that we do not use this
result in the previous sections, since we need more precise arguments for
the estimates of the number of the intersection points.

Proposition A.8 (cf. [5, Thm. 4.18]). — Let q denote the projection
M × P × S1

θ → S1
θ . Moreover, let A and B be compact subsets of T ∗M .

Then for any F ∈ DP
A(M)θ and G ∈ DP

B(M)θ such that q is proper on
Supp(F ) ∪ Supp(G),

(A.14) e(A,B) ⩾ eDP (M)θ
(F,G).

In particular, for such F and G,

(A.15) e(A,B)
⩾ inf{c ∈ R⩾0 | HomDP (M)θ

(F,G) → HomDP (M)θ
(F, Tc∗G) is zero}.
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