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THE RELATIVE CANONICAL IDEAL OF THE
KUMMER–ARTIN SCHREIER–WITT FAMILY OF

CURVES

by Hara CHARALAMBOUS,
Kostas KARAGIANNIS & Aristides KONTOGEORGIS (*)

Dedicated to Prof. Jannis A. Antoniadis on the occasion of his 70th birthday.

Abstract. — We study the canonical model of the Kummer–Artin Schreier–
Witt flat family of curves over a ring of mixed characteristic. We first prove the
relative version of a classical theorem by Petri, then use the model proposed by
Bertin–Mézard to construct an explicit generating set for the relative canonical
ideal. As a byproduct, we obtain a combinatorial criterion for a set to generate
the canonical ideal, applicable to any curve satisfying the assumptions of Petri’s
theorem, except for plane quintics and trigonal curves.
Résumé. — Nous étudions le modèle canonique de la famille de courbes plate

de Kummer–Artin Schreier–Witt sur un anneau de caractéristique mixte. Nous
prouvons d’abord la version relative d’un théorème classique de Petri, puis uti-
lisons le modèle proposé par Bertin–Mézard afin de construire un ensemble de
générateurs explicite de l’idéal canonique relatif. De plus, nous obtenons un critère
combinatoire pour qu’un ensemble engendre l’idéal canonique, applicable à toute
courbe satisfaisante les hypothèses du théorème de Petri, á l’exception des planes
quintiques et des courbes trigonales.

1. Introduction

1.1. The canonical ideal

LetX be a complete, non-singular, non-hyperelliptic curve of genus g > 3
over an algebraically closed field F of arbitrary characteristic. Let ΩX/F
denote the sheaf of holomorphic differentials on X and, for n > 0, let Ω⊗nX/F
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denote the n-th tensor power of ΩX/F . The following classical result is
usually referred to in the bibliography as Petri’s Theorem, even though it
is due to Max Noether, Enriques and Babbage as well:

Theorem 1.1.
(1) The canonical map

φ : Sym(H0(X,ΩX/F ))→
⊕
n>0

H0(X,Ω⊗nX/F )

is surjective.
(2) The kernel IX of φ is generated by elements of degree 2 and 3.
(3) IX is generated by elements of degree 2 except in the following

cases:
(a) X is a non-singular plane quintic (in this case g = 6).
(b) X is trigonal, i.e. a triple covering of P1

F .

The standard terminology for the algebro-geometric objects relevant to
Petri’s Theorem uses the adjective canonical: the sheaf ΩX/F is the canon-
ical bundle, the ring

⊕
n>0 H

0(X,Ω⊗nX/F ) is the canonical ring, the map
φ is the canonical map and the kernel IX = kerφ is the canonical ideal.
More details on the canonical map will be given in section 2; for a modern
treatment over a field of arbitrary characteristic we refer to the article of
B. Saint-Donat [20].
The problem of determining explicit generators for the canonical ideal

has attracted interest by researchers over the years. A non-exhaustive list
of techniques employed includes the use of Weierstrass semigroups [17], the
theory of Gröbner bases [2], minimal free resolutions and syzygies [1]. The
latter are also central to Green’s conjecture, solved by Voisin in [28]. The
purpose of this paper is to study Petri’s Theorem in the context of lifts of
curves as discussed below.

1.2. Lifts of curves

Let k be a field of prime characteristic p > 0. A lift of k to characteristic
0 is the field of fractions L of any integral extension of the ring of Witt
vectors W (k), a classical construction by Witt [29] that generalizes the p-
adic integers Zp = W (Fp). In what follows the field k will be assumed to
be algebraically closed. Note that integral extensions of W (k) are discrete
valuation rings of mixed characteristic, with residue field k.
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THE RELATIVE CANONICAL IDEAL 3

Consider a projective, non-singular curve X0 over k and let R be an in-
tegral extension of W (k). A lift of X0/k to characteristic 0, is a curve Xη
over L = QuotR, obtained as the generic fibre of a flat family of curves
X/R whose special fibre is X0/k. Such lifts have been extensively used by
arithmetic geometers to reduce characteristic p problems to the, much bet-
ter understood, characteristic 0 case. One of the earliest uses of the idea
of lifting is the approach of J.P. Serre [24] in an early attempt to define
an appropriate cohomology theory which could solve the Weil conjectures.
The lifting of an algebraic variety to characteristic zero is unfortunately not
always possible and Serre was able to give such an example, see [25]. The
progress made in deformation theory by Schlessinger [21] identified the lift-
ing obstruction as an element in H2(X,TX), see [23, 1.2.12], [11, 5.7 p.41].

1.3. Lifts of curves with automorphisms

Let X0/k be a projective, non-singular curve as in the previous section.
Such a curve can always lifted in characteristic zero, since the obstruction
lives in the second cohomology which is always zero for curves. However,
one might ask if it is possible to deform the curve together with its auto-
morphism group, see [5]. This is not always possible, since Hurwitz’s bound
for the order of automorphism groups in characteristic 0 ensures that the
answer for a general group G is negative, see [8, 15]. In the same spirit,
J. Bertin in [3] provided an obstruction for the lifting based on the Artin
representation which vanishes for cyclic groups. Note that, even in positive
characteristic, the order of cyclic automorphism groups is bounded by the
classical Hurwitz bound, see [14]. The existence of such a lift for cyclic p-
groups was conjectured by Oort in [18] and was laid to rest three decades
later by Obus–Wewers [16] and Pop [19].
In the meantime, the case for G = Z/pZ was studied by Oort himself

and Sekiguchi–Suwa [22, 27], who unified the theory of cyclic extensions
of the projective line in characteristic p (Artin–Schreier extensions) and
that of cyclic extensions of the projective line in characteristic 0 (Kummer
extensions). The unified theory is usually referred to as Kummer–Artin
Schreier–Witt theory or Oort–Sekiguchi-Suwa (OSS) theory. Using these
results, Bertin–Mézard in [5] provided an explicit description of the affine
model for the Kummer curve in terms of the affine model for the Artin–
Schreier curve. Following this construction, Karanikolopoulos and the third
author in [13] proposed the study of the Galois module structure of the
relative curve X/R. As a byproduct, they found an explicit basis of the
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R-module of relative holomorphic differentials H0(X ,ΩX ), using Boseck’s
work [6] on holomorphic differentials.
The main result of this paper is the determination of an explicit gen-

erating set for the relative canonical ideal of the unified Kummer–Artin
Schreier–Witt theory, using the Bertin–Mézard model and the relative ba-
sis of [13] for 1-differentials. We conclude the introduction by giving an
outline of our arguments and techniques.

1.4. Outline

In Section 2 we give details on the canonical map and we prove a com-
binatorial criterion for a subset of the canonical ideal to be a generating
set. The main result of this section is Proposition 2.2 where we prove that
to check if a set G of homogeneous polynomials of degree 2 generates the
canonical ideal, it suffices to check whether dimF (S/〈in≺(G)〉)2 6 3(g−1).
The above criterion reduces the problem of finding a generating set for the
canonical ideal to counting initial terms; we note that the criterion is ap-
plicable to any curve satisfying the assumptions of Petri’s theorem, with
the exception of plane quintics and trigonal curves.
In Section 3 we formalize the lifting problem for the canonical ideal of

the relative curve. First, we review the results of Bertin–Mézard on the
explicit construction of the relative curve X/R. Then, in Theorem 3.1, we
define the relative canonical map and prove an analogue of Petri’s Theorem
for the relative curve X/R, by constructing a diagram

0 // IXη
� � // SL := L[ω1, . . . , ωg]

φη // //
∞⊕
n=0

H0(Xη,Ω⊗nXη/L) // 0

0 // IX
� � //?�

⊗RL

OO

⊗RR/m

����

SR := R[W1, . . . ,Wg]
φ // //

?�

⊗RL

OO

⊗RR/m

����

∞⊕
n=0

H0(X ,Ω⊗nX/R) //

?�

⊗RL

OO

⊗RR/m
����

0

0 // IX0
� � // Sk := k[w1, . . . , wg]

φ0 // //
∞⊕
n=0

H0(X0,Ω⊗nX0/k
) // 0

whose rows are exact and where each square is commutative. In Theo-
rem 3.2, we give a Nakayama-type criterion that reduces the problem of
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THE RELATIVE CANONICAL IDEAL 5

�nding a generating set for the relative canonical ideal I X to �nding com-
patible generating sets for the canonical ideals on the two �bres. In short,
we prove that if G is a set of homogeneous polynomials inI X such that
G 
 R L generatesI X � and G 
 R k generatesI X 0 then G generatesI X .

In Section 4 we state and prove results on the generators of the canonical
ideal which are common for the two �bres. To facilitate the counting, we
set a correspondence between the variables of the polynomial ring in Petri's
Theorem and a discrete set of pointsA � Z2. In Proposition 4.2 we �nd
a binomial ideal contained in the canonical ideal, leading us to build the
generating sets for the two �bres on sets of binomials. Further, in Proposi-
tion 4.6, we extend the correspondence between the variables and the setA
to a correspondence between the binomials and the Minkowski sumA + A,
see [30, p. 28]. The cardinality of the Minkowski sum turns out to be too
big, and we thus devote Section 4.3 to identify and study subsets ofA + A
whose cardinalities are bounded by3(g � 1).

It turns out that these subsets of the Minkowski sum match exactly to
the missing generators for the canonical ideals of the two �bers. These
are studied in Section 5, which contains the main result of this paper,
Theorem 5.5: The generators of the canonical ideal of the relative curve
are either binomials of the form

WN 1 ;� 1 WN 0
1 ;� 0

1
� WN 2 ;� 2 WN 0

2 ;� 0
2

or polynomials of the form

WN;� WN 0;� 0 � WN 00;� WN 000;� 000 +
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i
:

The reader will have to refer to Section 5 for the details on the indices of
the variables and the coe�cients. For the proof of Theorem 5.5 we make
essential use of our Nakayama-type Theorem 3.2 and Theorem 3.1, our
analogue to Petri's Theorem, as reduction and thickening � à la Faltings [7]
� are checked on the category of vector spaces, instead of the category of
rings. To demonstrate our results, we use as a running example a genus12
Kummer curve, see Examples 4.10, 4.13 and 5.4 .

Acknowledgments

We would like to thank the anonymous referee for the insightful com-
ments, corrections and suggested reorganization of the material that greatly
improved the exposition.
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6 H. Charalambous, K. Karagiannis & A. Kontogeorgis

2. A criterion for generators of the canonical ideal

Throughout this section, X is a complete, non-singular, non-hyperelliptic
curve of genusg > 3 over an algebraically closed �eldF of arbitrary char-
acteristic, which is neither a plane quintic nor trigonal. As in the intro-
duction, let 
 X=F denote the sheaf of holomorphic di�erentials onX and,
for n > 1, let 
 
 n

X=F be the n-th tensor power of 
 X=F ; its global sections

H 0(X; 
 
 n
X=F ) form an F -vector space of dimensiondn;g where

(2.1) dn;g =

(
g; if n = 1

(2n � 1)(g � 1); if n > 1:

The direct sum of the F -vector spacesH 0(X; 
 
 n
X=F ) is equipped with the

structure of a graded ring: multiplication in
M

n > 0

H 0(X; 
 
 n
X=F ) is de�ned

via

H 0(X; 
 
 n
X=F ) � H 0(X; 
 
 m

X=F ) ! H 0(X; 
 
 (n + m )
X=F )

fdx 
 n � gdx
 m 7! fgdx 
 (n + m ) :

Choosing coordinates! 1; : : : ; ! g for Pg� 1
F one can identify the symmetric

algebraSym(H 0(X; 
 X=F )) of Petri's Theorem with the graded polynomial
ring S := F [! 1; : : : ; ! g] and we have that

(2.2) S =
M

n > 0

Sn where Sn = f f 2 S : degf = ng:

Choosing a basisv = f f 1dx; : : : ; f gdxg for H 0(X; 
 X=F ) allows us to extend
the assignment! i 7! f i dx and de�ne a homogeneous map of graded rings

� : F [! 1; : : : ; ! g] !
M

n > 0

H 0(X; 
 
 n
X=F )

! a1
1 � � � ! ag

g 7! f a1
1 � � � f ag

g dx
 (a1 + ��� ag ) :

Note that when an emphasis on the basisv is desired, the map� will be
denoted by � v . The kernel of � , denoted by I X , is a graded ideal, so that
in analogy to eq. (2.2) we may write

I X =
M

n > 0

(I X )n where (I X )n = f f 2 I X : degf = ng:

In the context we are working, Petri's Theorem can be rewritten as follows:

Theorem 2.1. � The canonical map� is surjective and I X = h(I X )2i .

ANNALES DE L'INSTITUT FOURIER



THE RELATIVE CANONICAL IDEAL 7

We �x a term order � and note that each f 2 S has a unique leading
term with respect to � , denoted by in � (f ). We de�ne the initial ideal of
I X as in � (I X ) = hin � (f ) : f 2 I X i . If Sn ; (I X )n and in � (I X )n are the
n � th graded pieces ofS; IX and in � (I X ) respectively, then both (I X )n

and in � (I X )n are F -subspaces ofSn and, since quotients commute with
direct sums, we have that

(S=I)n
�= Sn =In and (S=in � (I ))n

�= Sn =in � (I )n :

The proposition below gives a criterion for a subset of the canonical ideal
to be a generating set:

Proposition 2.2. � Let G � I X be a set of homogeneous polynomials
of degree2 in I X . If

dimF (S=hin � (G)i )2 6 3(g � 1);

then I X = hGi .

Proof. � We note that sinceG � I X ; hin � (G)i 2 is a subspace ofin � (I X )2.
Therefore

dimF (S=in � (I X ))2 = dim F S2=in � (I X )2(2.3)

6 dimF S2=hin � (G)i 2 = dim F (S=hin � (G)i )2 :

Moreover, by [26, Prop. 1.1]

dimF (S=in � (I X ))2 = dim F (S=IX )2 and(2.4)

dimF (S=hin � (G)i )2 = dim F (S=hG i )2 :

By Petri's Theorem and eq. (2.1), we have that

(2.5) dimF (S=IX )2 = dim F H 0(X; 
 
 2
X=F ) = 3( g � 1):

Combining eq. (2.3), (2.4), (2.5), and the hypothesisdimF (S=hin � (G)i )2 6
3(g � 1) gives

dimF
�
S=IX

�
2 = dim F

�
S=hGi

�
2 ) (I X )2 = hGi 2 ) I X = h(I X )2i = hGi

completing the proof. �

3. The canonical ideal of relative curves

Let k be an algebraically closed �eld of prime characteristicchar(k) =
p > 0. Denote by W (k)[� ] the ring of Witt vectors over k extended by a
p-th root of unity � and let � = � � 1. By [12, Sec. 8.10]W (k)[� ] is a discrete
valuation ring with maximal ideal m and residue �eld isomorphic to k. Let
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8 H. Charalambous, K. Karagiannis & A. Kontogeorgis

m > 1 be a natural number not divisible by p; for any 1 6 ` 6 p � 1 we
write m = pq� ` and consider, as in [13, Sec. 3], the local ring

R =

(
W (k)[� ]Jx1; : : : ; xqK if ` = 1

W (k)[� ]Jx1; : : : ; xq� 1K if ` 6= 1

with maximal ideal mR = hm; f x i gi . We write

K = Quot ( R=m) =

(
Quot (kJx1; : : : ; xqK) if ` = 1

Quot (kJx1; : : : ; xq� 1K) if ` 6= 1

and consider the extension of the rational function �eld K (x) given by
X0 : X p � X = x `

a(x )p , where

(3.1) a(x) =

(
xq + x1xq� 1 + � � � + + xq� 1x + xq if ` = 1

xq + x1xq� 1 + � � � + xq� 1x if ` 6= 1 :

Bertin�Mézard proved in [4, Sec. 4.3] that the curve above lifts to a curve
over L = Quot( R) given by X� : yp = � px ` + a(x)p for y = a(x)( �X + 1) ,
which is the normalization of R[x] in L (y). This gives rise to a family
X ! Spec(R), with special �bre X0 and generic �bre X� :

(3.2)

Spec(k) � Spec(R ) X = X0 X X� = Spec(L )� Spec(R ) X

Spec(k) Spec(R) Spec(L )

For n > 1, we write 
 
 n
X =R for the sheaf of holomorphic polydi�eren-

tials on X . We remark that since H 0(X ; 
 
 n
X =R ) 
 R k �= H 0(X0; 
 
 n

X 0 =k )

and H 0(X ; 
 
 n
X =R ) 
 R L �= H 0(X� ; 
 
 n

X � =L ), by [10, Lemma II.8.9] the R-

modules H 0(X ; 
 
 n
X =R ) are free of rankdn;g for all n > 1, with dn;g given

by eq. (2.1). We select generatorsW1; : : : ; Wg for the symmetric algebra
Sym(H 0(X ; 
 X =R )) and identify it with the polynomial ring R[W1; : : : ; Wg].
Similarly, we identify the symmetric algebras Sym(H 0(X� ; 
 X � =L )) and
Sym(H 0(X0; 
 X 0 =k )) with the polynomial rings L [! 1; : : : ; ! g], k[w1; : : : ; wg]
respectively. Our next result concerns the canonical embedding of the
Bertin�Mézard family:

ANNALES DE L'INSTITUT FOURIER



THE RELATIVE CANONICAL IDEAL 9

Theorem 3.1. � Diagram (3.2) induces a deformation-theoretic dia-
gram of canonical embeddings
(3.3)

0 //I X �

�• //SL := L [! 1; : : : ; ! g]
� � ////

1M

n =0

H 0(X� ; 
 
 n
X � =L ) //0

0 //I X
�• //

?�


 R L

OO


 R R= m

����

SR := R[W1; : : : ; Wg]
� ////

?�


 R L

OO


 R R= m

����

1M

n =0

H 0(X ; 
 
 n
X =R ) //

?�

 R L

OO


 R R= m
����

0

0 //I X 0

�• //Sk := k[w1; : : : ; wg]
� 0 ////

1M

n =0

H 0(X0; 
 
 n
X 0 =k ) //0

where I X � = ker � � ; I X = ker �; I X 0 = ker � 0, each row is exact and each
square is commutative.

Proof. � Exactness of the top and bottom row of diagram (3.3) are due
to Theorem 2.1, the classical result of Enriques, Petri and M. Noether. To
de�ne the map � of the middle row, we choose generatorsf 1dx; : : : ; f gdx
for H 0(X ; 
 X =R ) such that f i dx 
 R 1R= mR = � 0(wi ) 2 H 0(X0; 
 X 0 =k )
(this is possible by Nakayama's Lemma) for i = 1 ; � � � ; g and note that
the assignmentWi 7! f i dx gives rise to a homogeneous homomorphism of
graded rings

� : R[W1; : : : ; Wg]
� //

1M

n =0

H 0(X ; 
 
 n
X =R ):

To prove surjectivity of � , we write � =
L 1

n =0 (� )n , where for eachn 2 N

(� )n : R[W1; : : : ; Wg]n
� n //H 0(X ; 
 
 n

X =R )

is a homomorphism of �nitely generatedR-modules. By construction,(� )n 

1R= mR = ( � 0)n is surjective for all n. Nakayama's Lemma then implies that
(� )n is surjective for all n, and thus � is surjective as well. �

We proceed with establishing a Nakayama-type criterion for a subset of
the kernel I X to generate the relative canonical ideal:

Theorem 3.2. � Let G be a set of homogeneous polynomials inI X

such that G 
 R L generatesI X � and G 
 R k generatesI X 0 . Then:

TOME 0 (0), FASCICULE 0



10 H. Charalambous, K. Karagiannis & A. Kontogeorgis

(1) For any n 2 N, the R-modules(SR =hGi )n are free of rankdn;g .
(2) I X = hGi .

Proof.

For (1). � Let n 2 N. Since by assumptionG
 R L and G
 R k generate
I X � and I X 0 respectively, we have that

(SR =hGi )n 
 R L �=
�
SL =IX �

�
n and (SR =hGi )n 
 R k �=

�
Sk =IX 0

�
n :

By Petri's Theorem 2.1 we get that
�
SL =IX �

�
n

�= H 0(X� ; 
 
 n
X � =L ) and

�
Sk =IX 0

�
n

�= H 0(X0; 
 
 n
X 0 =k )

and by eq. (2.1)

dimL
�
SL =IX �

�
n = dim k

�
Sk =IX 0

�
n = dn;g :

The result follows from [10, lemma II.8.9].

For (2). � let s 2 I X and assume for contradiction that s =2 hGi . Since
s 
 1L 2 I X � and G 
 R L generatesI X � , there exist gi 2 G and si 2 SL

such that s 
 1L =
P

si (gi 
 1L ). Choosing d 2 R to be the gcd of the
denominators of the coe�cients of the si , we may clear denominators to
obtain ds 
 1L =

P
dsi (gi 
 1L ), with dsi 2 SR or equivalently ds =P

dsi gi with dsi 2 SR , implying that ds 2 hGi . If s =2 hGi , then s is a
torsion element ofSR =hGi , with its homogeneous components being torsion
elements of theR-modules (SR =hGi )n for some n 2 N. By (i), the latter
are free R-modules, so we conclude that ifs =2 hGi then s must be zero,
completing the proof. �

Theorem 3.2 reduces the problem of determining the generating set of
the relative canonical ideal to determining compatible generating sets for
the canonical ideals of the two �bers. Thus, in the next section we study
the canonical embeddings of the two �bers, while compatibility is studied
in Section 5.

4. The Canonical Embedding of the Two Fibers

The family's generic �bre, given by X� : yp = � px ` + a(x)p, for y =
a(x)( �X + 1) , is a cyclic rami�ed covering of the projective line and, by
assumption, the order of the cyclic group is prime to the characteristicp.
Boseck in [6] gives an explicit description of a basis for the global sections

ANNALES DE L'INSTITUT FOURIER



THE RELATIVE CANONICAL IDEAL 11

of holomorphic di�erentials of such covers. Following the notation of [13],
Boseck's basisb for H 0(X� ; 
 X � =L ) is given by

(4.1) b =
�

xN y� � dx :
�

�`
p

�
6 N 6 �q � 2; 1 6 � 6 p � 1

�
:

Using this analysis, the authors of [13] found an explicit basis for the global
sections of holomorphic di�erentials on the special �bre, compatible to b
in the sense of Theorem 3.2. The basisc for H 0(X0; 
 X 0 =k ) is given by
(see [13, eq. (25), p. 2381]):

(4.2) c =
�

xN a(x)p� 1� � X p� 1� � dx :
�

�`
p

�
6 N 6 �q � 2; 16 � 6 p� 1

�
:

The elements of b and c are determined by the values of(N; � ), so we
proceed with the study of the respective index set.

4.1. The index set A and the corresponding multidegrees

Let

(4.3) A =
�

(N; � ) :
�

�`
p

�
6 N 6 �q � 2; 1 6 � 6 p � 1

�
� N2:

and note that by [6, eq. (34) p. 48]

(4.4) jAj =
p� 1X

� =1

�
�q �

�
�`
p

�
� 1

�
= g:

Let f zN;� : (N; � ) 2 Ag be a set of variables indexed byA. To each variable
zN;� we assign the multidegreemdeg(zN;� ) = (1 ; N; � ) 2 N3. Thus, if
S = F [f zN;� g] is the polynomial ring over F , by assigning the multidegree
(0; 0; 0) to the elements ofF , we get a multigrading on S via

(4.5) mdeg(zN 1 ;� 1 zN 2 ;� 2 � � � zN d ;� d )

= ( d; N1 + N2 + � � � Nd; � 1 + � 2 + � � � + � d):

We will refer to the �rst coordinate of the multidegree (4.5) as the standard
degree.

Next, we consider the two polynomial ringsL [f ! N;� g] and k[f wN;� g] with
variables indexed by the points (N; � ) 2 A. The results of this subsection
apply to both �bers, so we introduce the following notation: We will write
X to refer to either curve X� or X0, F to refer to either �eld L or k, f zN;� g
to refer to either set of variablesf ! N;� g or f wN;� g, S = F [f zN;� g] to refer
to either polynomial ring L [f ! N;� g] or k[f wN;� g] and f N;� dx to refer to the
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12 H. Charalambous, K. Karagiannis & A. Kontogeorgis

basis elements of eitherb or c. Note that the multiplication in the canonical
ring in particular implies that for any two 1-di�erentials f N;� dx; f N 0;� 0dx
we havef N;� dx � f N 0;� 0dx = f N + N 0;� + � 0dx
 2.

Definition 4.1. � Let � t be the lexicographic order on the variables
f zN;� : (N; � ) 2 Ag. We de�ne a new term order � on the monomials ofS
as follows:

zN 1 ;� 1 zN 2 ;� 2 � � � zN d ;� d � zN 0
1 ;� 0

1
zN 0

2 ;� 0
2

� � � zN 0
s ;� 0

s
if and only if

(1) d < s or
(2) d = s and

P
� i >

P
� 0

i or
(3) d = s and

P
� i =

P
� 0

i and
P

N i <
P

N 0
i

(4) d = s and
P

� i =
P

� 0
i and

P
N i =

P
N 0

i and

zN 1 ;� 1 zN 2 ;� 2 � � � zN d ;� d � t zN 0
1 ;� 0

1
zN 0

2 ;� 0
2

� � � zN 0
s ;� 0

s
:

4.2. The binomial part of the canonical ideal

For each n 2 N we write Tn for the set of monomials of degreen in S
and observe that the binomials below are contained inI X .

Proposition 4.2. � Let zN 1 ;� 1 zN 0
1 ;� 0

1
; zN 2 ;� 2 zN 0

2 ;� 0
2

2 T2 be such that
mdeg(zN 1 ;� 1 zN 0

1 ;� 0
1
) = mdeg(zN 2 ;� 2 zN 0

2 ;� 0
2
). Then zN 1 ;� 1 zN 0

1 ;� 0
1
� zN 2 ;� 2 zN 0

2 ;� 0
2

2 I X .

Proof. � Sincemdeg(zN 1 ;� 1 zN 0
1 ;� 0

1
) = mdeg(zN 2 ;� 2 zN 0

2 ;� 0
2
), we have that

N1 + N 0
1 = N2 + N 0

2 and � 1 + � 0
1 = � 2 + � 0

2, so

� (zN 1 ;� 1 zN 0
1 ;� 0

1
� zN 2 ;� 2 zN 0

2 ;� 0
2
)

= f N 1 + N 0
1 ; � 1 + � 0

1
dx
 2 � f N 2 + N 0

2 ; � 2 + � 0
2
dx
 2 = 0 : �

We collect the binomials of Proposition 4.2 in the set below.

Definition 4.3. � Let

G1 =

8
><

>:
zN 1 ;� 1 zN 0

1 ;� 0
1
� zN 2 ;� 2 zN 0

2 ;� 0
2

2 S :

zN 1 ;� 1 zN 0
1 ;� 0

1
; zN 2 ;� 2 zN 0

2 ;� 0
2

2 T2

and mdeg(zN 1 ;� 1 zN 0
1 ;� 0

1
)

= mdeg(zN 2 ;� 2 zN 0
2 ;� 0

2
)

9
>=

>;
:

Next, we consider the Minkowski sum ofA with itself, de�ned as

A + A = f (N + N 0; � + � 0) : (N; � ); (N 0; � 0) 2 Ag � Z2

and note the following correspondence between points ofA + A and mono-
mials in T2:
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THE RELATIVE CANONICAL IDEAL 13

Corollary 4.4. � (�; T ) 2 A + A , 9 zN;� zN 0;� 0 2 T2 such that

mdeg(zN;� zN 0;� 0) = (2 ; �; T ):

Proof. � Follows directly from the de�nition of A given in eq. (4.3),
since

(N; � ) 2 A , 9 zN;� 2 F [f zN;� g] such that mdeg(zN;� ) = (1 ; N; � ): �

The correspondence of Corollary 4.4 is not one-to-one: for any(�; T ) 2
A + A, we set

B �;T := f zN;� zN 0;� 0 2 T2 : (�; T ) = ( N + N 0; � + � 0)g

and observe that the di�erences of elements ofB �;T are in G1. Next, we
de�ne the map of sets:

Definition 4.5.

� : A + A ! T2

(�; T ) 7! min
�

B �;T :

We will use the map � to show that A + A is in bijection with a standard
basis of(S=hin � (G1)i )2:

Proposition 4.6. � jA + Aj = dim F (S=hin � (G1)i )2

Proof. � Let (�; T ) 2 A + A. By Corollary 4.4, B �;T is non-empty and,
since � is a total order, it has a unique minimal element. Hence, the map
� is well-de�ned, 1 � 1 and it is immediate that � (A + A) = T2 n in � (G1).
Sincehin � (G1)i is a monomial ideal generated in degree2 we remark that
dimF (S=hin � (G1)i )2 = jT2 n in � (G1)j, completing the proof. �

4.3. A subset of A + A of cardinality 3(g � 1)

By Proposition 2.2 and Proposition 4.6, the binomials of De�nition 4.3
would generateI X if jA + Aj 6 3(g � 1). It turns out that this is not the
case in general. Thus we need to identify an appropriate subset ofA + A
whose points are in bijection with the monomials that do not appear as
leading terms of the generators ofI X . To do so, we introduce and study
appropriate subsetsC(i ) � A + A for 0 6 i 6 p, which we will use in
Section 5 to give the generators for the relative canonical ideal (see remark
after De�nition 5.2).

We proceed with a description ofA + A in terms of bounding inequalities.
To this end, we �x the second coordinate of a point (�; T ) 2 A + A and
determine the bounds of the �rst coordinate.
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14 H. Charalambous, K. Karagiannis & A. Kontogeorgis

Definition 4.7. � Let T 2 Z such that (�; T ) 2 A + A. We de�ne

b(T) = min
��

�`
p

�
+

�
� 0̀

p

�
: all �; � 0 s.t. T = � + � 0 and 1 6 �; � 0 6 p� 1

�

Remark 4.8. � The properties of the �oor function imply that b(T) takes
one of the following values:

b(T) =

8
>>>>>><

>>>>>>:

j
T `
p

k
; if 8 1 6 �; � 0 6 p � 1 with T = � + � 0

we have
j

�`
p

k
+

j
� 0`
p

k
=

j
T `
p

k

j
T `
p

k
� 1; if 9 1 6 �; � 0 6 p � 1 with T = � + � 0

and
j

�`
p

k
+

j
� 0`
p

k
=

j
T `
p

k
� 1:

For example, b(p) = ` � 1, since p = 1 + ( p � 1) and
j

`
p

k
+

j
(p� 1) `

p

k
=

` � 1. Similarly, b(2p � 2) = 2 ` � 2, since 2p � 2 = ( p � 1) + ( p � 1) andj
(p� 1) `

p

k
+

j
(p� 1) `

p

k
= 2 ` � 2.

De�nition 4.7 allows us to give an alternative description of A + A which
follows directly from the description of A given in eq. (4.3).

Lemma 4.9.
A + A = f (�; T ) : 2 6 T 6 2(p � 1); b(T) 6 � 6 Tq � 4g � N2:

Example 4.10. � Consider the genus12Kummer curve with a�ne model
X� : y5 = � 5x3 + ( x2 + x1x)5. The Minkowski sum

A + A = f (�; T ) : 2 6 T 6 8; b(T) 6 � 6 2T � 4g

is depicted in Figure 4.1 below.

The following auxiliary lemma will also be useful.

Lemma 4.11. � If 2 6 T 6 p � 1 and 0 6 � 6 p � 1, then b(T + � ) 6
b(T) + � .

Proof. � If � = 0 , the result follows trivially. If 1 6 � 6 p � 1, then by
De�nition 4.7 we can choose a decompositionT + � � 1 = � + � 0 satisfying
1 6 �; � 6 p� 1 and b(T + � � 1) =

j
�`
p

k
+

j
� 0`
p

k
. SinceT + � � 1 6 2p� 3,

we may assume without loss of generality that� 6 p � 2 and thus T + �
can be decomposed asT + � = ( � + 1) + � 0. We then obtain that

b(T + � ) 6
�

(� + 1) `
p

�
+

�
� 0̀

p

�

=
�

(� + 1) `
p

�
�

�
�`
p

�
+

�
�`
p

�
+

�
� 0̀

p

�
6 1 + b(T + � � 1):
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�0 1 2 3 4 5 6 7 8 9 10 11 12

T

0

1

2

3

4

5

6

7

8

� = 2T � 4

T = 8

Figure 4.1. The setA + A for p = 5 ; q = 2 ; ` = 3 corresponding to a
genus12 curve.

The result follows since

b(T + � ) 6 b(T + � � 1) + 1 6 b(T + � � 2) + 2

6 � � � 6 b(T + 1) + � � 1 6 b(T) + �: �

We are ready to de�ne the setsC(i ).

Definition 4.12. � For 0 6 i 6 p we let

j min (i ) =

(
0; if ` = 1

p � i; if ` 6= 1

and de�ne

C(i ) =

(

(�; T ) 2 A + A :
(� + `; T + p) and (� + j; T + p � i ) 2 A + A

for j min (i ) 6 j 6 (p � i )q

)

:

Example 4.13. � For the genus 12 curve of Example 4.10, the red points
in Figure 4.2 correspond to the setC(0) = f (0; 2); (1; 3); (2; 3)g, which
satis�es j(A + A) n C(0)j = 3( g � 1) = 33. In this particular case we have
that C(0) = C(1).

We note that a point a = ( �; T ) 2 C(i ) determines the point a� 1 =
(� + `; T + p) 2 A + A as well as the collection of pointsaj = ( � + j; T + p� i )
of A + A for j min (i ) 6 j 6 (p � i )q.

Proposition 4.14. � C(0) =
T p

i =0 C(i ).
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�0 1 2 3 4 5 6 7 8 9 10 11 12

T

0

1

2

3

4

5

6

7

8

Figure 4.2. The red points correspond toC(0) � A + A for p = 5 ; q =
2; ` = 3 .

Proof. � It su�ces to show that C(0) � C(i ) for 0 6 i 6 p. By Def-
inition 4.12, this is equivalent to showing that if (�; T ) 2 A + A and
(� + j; T + p) 2 A + A for all j min (0) 6 j 6 pq then (� + j; T + p� i ) 2 A + A
for all j min (i ) 6 j 6 (p � i )q. First, we observe that

2 6 T 6 T + p � i 6 p � 2 + p � i 6 2(p � 1)

and

� + j 6 � + ( p � i )q 6 Tq � 4 + ( p � i )q 6 (T + p � i )q � 4:

For the lower bound of � , we distinguish the following cases:

� If ` = 1 , then j min (i ) = 0 . Since(�; T ) 2 C(0), De�nition 4.12 gives
that (�; T + p) 2 C(0) and thus by Lemma 4.9 we getb(T + p) 6 � .
We then have

b(T + p � i ) 6 b(T + p) 6 � 6 � + j:

� If ` > 1 then j min (i ) = p � i , and, by Lemma 4.11,

b(T + p � i ) 6 b(T) + p � i 6 � + p � i 6 � + j:

We conclude that 2 6 T 6 2(p� 1) and that b(T + p� i ) 6 � + j 6 (T + p�
i )q� 4 for j min (i ) 6 j 6 (p� i )q. Lemma 4.9 implies that (� + j; T + p� i ) 2
A + A, completing the proof. �

We proceed with an auxiliary lemma to bound the cardinality of (A +
A) n C(0).
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Lemma 4.15. � The cardinality of C(0) satis�es

jC(0)j >
p� 2X

T =2

(Tq � b(T) � 3) �
2p� 2X

T = p� 1
b(T )= bT `

p c

1:

Proof. � First we prove that the points of C(0) satisfy the following
bounding inequalities

(4.6) C(0) = f (�; T ) 2 A + A : M 0 6 � 6 Tq � 4; 2 6 T 6 p � 2g;

where

M 0 =

(
b(T); if b(T + p) 6 b(T) + `

b(T) + 1 ; if b(T) + ` < b (T + p):

Indeed, by de�nition, for all j min (0) 6 j 6 pq we have that

(�; T ) 2 C(0) , (�; T ) 2 A + A; (� + `; T + p) 2 A + A

and (� + j; T + p) 2 A + A

, 2 6 T 6 p � 2 and M 6 � 6 Tq � 4 (by Lemma 4.9)

whereM := max f b(T); b(T + p) � `; b(T + p) � j min (0)g. We will show that
M = M 0:

� If ` = 1 then j min (0) = 0 and b(T) = b(T + p) = 0 since
j

�`
p

k
= 0

for all 1 6 � 6 p � 1. HenceM = b(T) = 0 .
� If ` > 1 then j min (0) = p, so b(T + p) � j min (0) < b(T + p) � ` and

thus

M = max f b(T); b(T + p) � `g:

If b(T + p) 6 b(T)+ `, then M = b(T), whereas ifb(T)+ ` < b (T + p),
then it easily follows that

b(T) =
�

T `
p

�
� 1 and b(T + p) =

�
(T + p)`

p

�
=

�
T `
p

�
+ `

and soM = b(T + p) � ` = b(T) + 1 .

We thus have that M = M 0, which completes the proof of eq. (4.6). We
then have that

jC(0)j =
p� 2X

T =2

(Tq � M � 3) =
p� 2X

T =2

(Tq � b(T) � 3) �
p� 2X

T =2
b(T )+ `<b (T + p)

1:
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18 H. Charalambous, K. Karagiannis & A. Kontogeorgis

When 2 6 T 6 p � 2, the condition b(T) + ` < b (T + p) implies that

b(T + p) =
�

(T + p)`
p

�
:

Therefore
p� 2X

T =2
b(T )+ `<b (T + p)

1 6
2p� 2X

T = p+2
b(T )= bT `

p c

1 <
2p� 2X

T = p� 1
b(T )= bT `

p c

1

where the last inequality is strict by Remark 4.8. �

Finally, we show that the cardinality of (A + A) n C(0) is bounded by
3(g � 1).

Lemma 4.16. � j(A + A) n C(0)j 6 3(g � 1).

Proof. � We successively have

(4.7) j(A + A) n C(0)j

=
2(p� 1)X

T =2

(Tq � b(T) � 3) � j C(0)j; by Lemma 4.9

<
2(p� 1)X

T = p� 1

(Tq � b(T) � 3) +
2(p� 1)X

T = p� 1
b(T )= bT `

p c

1; by Lemma 4.15

=
2(p� 1)X

T = p� 1

�
Tq�

�
T `
p

�
� 2

�
�

2(p� 1)X

T = p� 1
(
	

T )= bT `
p c

1+
2(p� 1)X

T = p� 1
b(T )= bT `

p c

1; by Remark 4.8

=
2(p� 1)X

T = p+1

�
Tq �

�
T `
p

�
� 2

�
+

�
(p � 1)q �

�
(p � 1)`

p

�
� 2

�

+
�

pq�
�

p`
p

�
� 2

�
:

By eq. (4.4), we have that

(4.8)
p� 1X

T =1

�
Tq �

�
T `
p

�
� 1

�
= g
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so we change the index in the sum of eq. (4.7) by settingT0 = T � p:

(4.9)
2(p� 1)X

T = p+1

�
Tq �

�
T `
p

�
� 2

�

=
p� 2X

T 0=1

�
(T0+ p)q �

�
(T0+ p)`

p

�
� 2

�

=
p� 2X

T 0=1

�
T0q �

�
T 0̀

p

�
+ m � 2

�
, sincepq� ` = m

=
p� 2X

T 0=1

�
T0q �

�
T 0̀

p

�
� 1

�
+ ( m � 1)(p � 2):

Next, we observe that

(4.10)
p� 2X

T 0=1

�
T0q �

�
T 0̀

p

�
� 1

�
+

�
(p � 1)q �

�
(p � 1)`

p

�
� 2

�

=
p� 1X

T 0=1

�
T0q �

�
T 0̀

p

�
� 1

�
� 1:

Combining relations (4.7), (4.8), (4.9) and (4.10) gives:

j(A + A) n C(0)j <
p� 1X

T 0=1

�
T0q �

�
T 0̀

p

�
� 1

�
� 1 + ( m � 1)(p � 2)

+
�

pq�
�

p`
p

�
� 2

�

= g � 1 + mp � 2m � p + 2 + m � 2

= g + ( m � 1)(p � 1) � 2

= 3g � 2

and changing< to 6 gives the desired

j(A + A) n C(0)j 6 3g � 3: �

Combining Proposition 4.14 and Lemma 4.16 we directly get the follow-
ing.

Corollary 4.17. � j(A + A) n
T p

i =0 C(i )j 6 3(g � 1).

TOME 0 (0), FASCICULE 0



20 H. Charalambous, K. Karagiannis & A. Kontogeorgis

5. Thickening and reduction

In the notation of Section 3, let X ! Spec(R) denote the family of curves
with generic �ber

(5.1) X� : yp = � px ` + a(x)p

and special �ber

(5.2) X0 : X p � X =
x `

a(x)p

where y = a(x)( �X + 1) , and a(x) is given by

a(x) =

(
xq + x1xq� 1 + � � � + + xq� 1x + xq; if ` = 1

xq + x1xq� 1 + � � � + xq� 1x; if ` 6= 1 :

For each 0 6 i 6 p, we expand the(p � i )-th power of a(x)

(5.3) a(x)p� i =
(p� i )qX

j = j min ( i )

cj;p � i x j

where j min (i ) is 0 if ` = 1 and p � i if ` 6= 1 as in De�nition 4.12, and for
j min (i ) 6 j 6 (p � i )q, the coe�cients cj;p � i are given by

cj;p � i =
X

( t 0 ;:::;t q )2 Nq

t 1 +2 t 2 ��� + qt q = j

�
p � i

t0; : : : ; tq

� qY

s=0

x t s
s :

In [13] the authors prove that the free R-module H 0(X ; 
 X =R ) has basis

c =
�

xN a(x)p� 1� � X p� 1� �

a(x)p� 1(�X + 1) p� 1 dx :
�

�`
p

�
6 N 6 �q � 2; 1 6 � 6 p � 1

�
:

Consider the canonical map

� c : S = R[f WN;� g] !
M

n > 0

H 0(X ; 
 
 n
X =R );

which maps a monomialW a1
N 1 ;� 1

� � � W ad
N d ;� d

to the di�erential

x (a1 N 1 + ��� + ad N d ) (a(x)X )a1 (p� 1� � 1 )+ ��� + ad (p� 1� � d )

a(x)(a1 + ::: + ad )( p� 1) (�X + 1) (a1 + ��� + ad )( p� 1)
dx
 (a1 + ��� + ad ) :

We write I X = ker � c for the canonical ideal and note that the following
polynomials are in I X :
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Proposition 5.1. � Let 1 6 i 6 p � 1. For j min (i ) 6 j 6 (p � i )q,
let WN;� WN 0;� 0; WN 00;� 00WN 000;� 000 and WN j ;� i WN 0

j ;� 0
i

be any monomials of
degree2 in S satisfying

mdeg(WN 00;� 00WN 000;� 000) = mdeg(WN;� WN 0;� 0) + (0 ; `; p);

mdeg(WN j ;� i WN 0
j ;� 0

i
) = mdeg(WN;� WN 0;� 0) + (0 ; j; p � i ):

Then

WN;� WN 0;� 0 � WN 00;� WN 000;� 000

+
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

2 I X :

Proof. � Let

f := WN;� WN 0;� 0 � WN 00;� WN 000;� 000

+
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

where

(5.4)
N 00+ N 000= N + N 0+ `; � 00+ � 000= � + � 0+ p

and N j + N 0
j = N + N 0+ j; � i + � 0

i = � + � 0+ p � i:

We note that f 2 R[f WN;� g], since by [5, Sec. 4.3]

(5.5) p � � s �

(
0 mod m; for � (p � 1) < s < 0

� 1 mod m; for s = � (p � 1);

which implies that � i � p
� p

i

�
2 m � mR � R for all 1 6 i 6 p � 1. Applying

the canonical map� c to f gives

(5.6)
xN + N 0

(a(x)X )2(p� 1) � ( � + � 0)

(a(x)( �X + 1)) 2(p� 1)
dx
 2

�
xN 00+ N 000

(a(x)X )2(p� 1) � ( � 00+ � 000)

(a(x)( �X + 1)) 2(p� 1)
dx
 2

+
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i

xN j + N 0
j (a(x)X )2(p� 1) � ( � i + � 0

i )

(a(x)( �X + 1)) 2(p� 1)
dx
 2;
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and using the relations of eq. (5.4) we may rewrite eq. (5.6) as

� c (f ) = h

0

@1� x ` (a(x)X ) � p +
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i x j (a(x)X ) i � p

1

A ;

where

h :=
xN + N 0

(a(x)X )2(p� 1) � ( � + � 0)

(a(x)( �X + 1)) 2(p� 1)
dx
 2:

Combining with the expansion of a(x)p� i in eq. (5.3) we get that

� c (f ) = h

 

1 � x ` (a(x)X ) � p +
p� 1X

i =1

� i � p
�

p
i

�
X i � p

!

and simplify the expression as follows:

� c (f ) = h

 

� x ` (a(x)X ) � p +
pX

i =1

� i � p
�

p
i

�
X i � p

!

= h

 

� x ` (a(x)X ) � p � � � pX � p +
pX

i =0

� i � p
�

p
i

�
X i � p

!

= h
�

� x ` (a(x)X ) � p � � � pX � p + � � pX � p(�X + 1) p
�

:(5.7)

Finally, since y = a(x)( �X + 1) , eq. (5.7) is equivalent to eq. (5.1), so
� c (f ) 
 R 1L = 0 and thus � c (f ) = 0 , completing the proof. �

We collect the polynomials of Proposition 5.1 in the set below:

Definition 5.2. � Let

Gc
2 =

�
WN;� WN 0;� 0 � WN 00;� 00WN 000;� 000

+
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

2 S :

mdeg(WN 00;� 00WN 000;� 000) = mdeg(WN;� WN 0;� 0) + (0 ; `; p);

mdeg(WN j ;� i WN 0
j ;� 0

i
) = mdeg(WN;� WN 0;� 0) + (0 ; j; p � i );

for 0 6 i 6 p; j min (i ) 6 j 6 (p � i )q
�

:
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Remark 5.3. � Let

g = WN;� WN 0;� 0 � WN 00;� 00WN 000;� 000

+
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

be an element ofGc
2 as above. By comparing the multidegree relations

de�ning Gc
2 with the description of C(i ) in De�nition 4.12, we observe that

the monomial WN;� WN 0;� 0 corresponds to the point(N + N 0; � + � 0) of C(0).
Moreover, the monomial WN 00;� 00WN 000;� 000 of g corresponds to the point
a� 1 (see the comment preceding Proposition 4.14), while the monomials
WN j ;� i WN 0

j ;� 0
i

of g in the double sum correspond to the pointsaj .

Example 5.4. � In the context of Example 4.10 and Example 4.13, the
monomial W0;1W0;1 corresponds to the point(0; 2) 2 C(0). The blue points
in the �gure below correspond to the points a� 1 and aj as in the above
discussion, and they de�ne the element ofGc

2 with initial term W0;1W0;1.

�0 1 2 3 4 5 6 7 8 9 10 11 12

T

0

1

2

3

4

5

6

7

8

Figure 5.1. The blue points de�ne the element ofGc
2 with initial term

W0;1W0;1.

We write Gc
1 for the set of binomials in De�nition 4.3. The main result

of this section is the following:

Theorem 5.5. � I X = hGc
1 [ Gc

2i .

To prove Theorem 5.5, we will use the Nakayama-type criterion of The-
orem 3.2 by showing that

h(Gc
1 
 R k) [ (Gc

2 
 R k)i = I X 0 and h(Gc
1 
 R L) [ (Gc

2 
 R L)i � I X � :
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5.1. Compatibility with the special �ber

Rewrite the a�ne model for the family's special �ber given in eq. (5) as

(5.8) X0 : 1 � x ` a(x) � pX � p � X � (p� 1) = 0 :

Let c be the basis forH 0(X0; 
 X 0 =k ) as in eq. (4.2) consider the canonical
map

� 0;c : S = k[f wN;� g] �!
M

n > 0

H 0(X0; 
 
 n
X 0 =k )

which maps a monomialwa1
N 1 ;� 1

� � � wad
N d ;� d

to the di�erential

x (a1 N 1 + ��� + ad N d ) (a(x)X )a1 (p� 1� � 1 )+ ��� + ad (p� 1� � d ) dx
 (a1 + ��� + ad ) :

We write I X 0 = ker � 0;c for the canonical ideal on the special �ber and note
that the polynomials of Proposition 5.1 reduce to the following polynomials
in I X 0 :

Proposition 5.6. � We have that Gc
2 
 R k = Gc

2 � I X 0 , where

Gc
2 =

�
wN;� wN 0;� 0� wN 00;� 00wN 000;� 000�

(p� 1)qX

j = j min (1)

cj;p � 1wN j ;� j wN 0
j ;� 0

j
2 S :

mdeg(wN 00;� 00wN 000;� 000) = mdeg(wN;� wN 0;� 0) + (0 ; `; p);

mdeg(wN j ;� j wN 0
j ;� 0

j
) = mdeg(wN;� wN 0;� 0) + (0 ; j; p � 1);

for j min (1) 6 j 6 (p � 1)q
�

:

Proof. � Eq. (5.5) implies that in the expression

p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

only the term for i = 1 survives reduction, giving that

0

@
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

1

A 
 R k

= �
(p� 1)qX

j = j min (1)

cj;p � 1wN j ;� j wN 0
j ;� 0

j
;
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and equivalently
�

WN;� WN 0;� 0 � WN 00;� WN 000;� 000

+
p� 1X

i =1

(p� i )qX

j = j min ( i )

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

�

 R k

= wN;� wN 0;� 0 � wN 00;� 00wN 000;� 000 �
(p� 1)qX

j = j min (1)

cj;p � 1wN j ;� j wN 0
j ;� 0

j
;

completing the proof. �

Remark 5.7. � The fact that Gc
2 � I X 0 follows from the relative canon-

ical embedding diagram of Theorem 3.1. However, the reader may also
verify directly that � 0;c

�
Gc

2

�
= 0 .

We write Gc
1 for the set of binomials in De�nition 4.3 and remark that

Gc
1 
 R k = Gc

1 � I X 0 . To prove that I X 0 = hGc
1 [ Gc

2i we will use the
dimension criterion of Proposition 2.2 and a series of lemmas. We consider
the subsetC(1) of A + A given by De�nition 4.12

C(1) =

(

(�; T ) 2 A + A :
(� + `; T + p) and (� + j; T + p � 1) 2 A + A

for j min (1) 6 j 6 (p � 1)q

)

;

and study its image under the map� : A + A ! T2 given in De�nition 4.5.

Lemma 5.8. � � (C(1)) � in � (Gc
2).

Proof. � If (�; T ) 2 C(1) then by de�nition (�; T ) 2 A + A; (� + `;
T + p) 2 A + A and (� + j; T + p� 1) 2 A + A for all j min (1) 6 j 6 (p� 1)q.
Hence the monomialswN;� wN 0;� 0 := � (�; T ); wN 00;� 00wN 000;� 000 := � (� +
`; T + p) and wN j ;� j wN 0

j ;� 0
j

:= � (� + j; T + p � 1) give rise to a polynomial

g = wN;� wN 0;� 0 � wN 00;� 00wN 000;� 000 �
(p� 1)qX

j = j min (1)

cj;p � 1wN j ;� j wN 0
j ;� 0

j
;

which, by construction, satis�es g 2 Gc
2 and in � (g) = � (�; T ). �

Lemma 5.9. � dimk
�
S=hin �

�
Gc

1 [ Gc
2

�
i
�

2 6 j(A + A) n C(1)j:

Proof. � By Proposition 4.6 we have that � (A + A) = T2 nin � (Gc
1) and

by Lemma 5.8 we have that� (C(1)) � in � (Gc
2), so

(5.9) �
�
(A + A) n C(1)

�
� T2 n

�
in � (Gc

1) [ in � (Gc
2)

�
:
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Since� is one-to-one, eq. (5.9) gives

j(A + A) n C(1)j = j�
�
(A + A) n C(1)

�
j >

�
�
�T2 n

�
in � (Gc

1) [ in � (Gc
2)

� �
�
� :

Finally, hin � (Gc
1) [ in � (Gc

2)i is a monomial ideal generated in degree2 so

dimk

�
S=hin � (Gc

1) [ in � (Gc
2)i

�

2
=

�
�
�T2 n

�
in � (Gc

1) [ in � (Gc
2)

� �
�
� ;

completing the proof. �

Theorem 5.10. � I X 0 = hGc
1 [ Gc

2i .

Proof. � By Proposition 4.2 and Proposition 5.6 we get thathGc
1 [ Gc

2i �
I X 0 . By Lemma 5.9 and Proposition 4.14 we get that

dimk

�
S=hin � (Gc

1 [ Gc
2)i

�

2
6 j(A + A) n C(1)j 6 j(A + A) n C(0)j

so Lemma 4.16 givesdimk
�
S=hin � (Gc

1 [ Gc
2)i

�
2 6 3(g� 1). Proposition 2.2

implies that I X 0 = hGc
1 [ Gc

2i , completing the proof. �

5.2. Compatibility with the generic �ber

Let C(i ) denote the subsets ofA + A given in De�nition 4.12, where
0 6 i 6 p. By Proposition 4.14, C(0) =

T p
i =0 C(i ). Thus, if (�; T ) 2 C(0)

then (�; T ) 2 A + A; (� + `; T + p) 2 A + A and (� + j; T + p � i ) 2
A + A for all j min (i ) 6 j 6 (p � i )q. Hence the monomialsWN;� WN 0;� 0 :=
� (�; T ); WN 00;� WN 000;� 000 := � (� + `; T + p) and WN j ;� i WN 0

j ;� 0
i

:= � (� +
j; T + p � i ) give rise to the polynomial

g = WN;� WN 0;� 0 � WN 00;� WN 000;� 000

+
p� 1X

i =1

(p� i )qX

j = j min

� i � p
�

p
i

�
cj;p � i WN j ;� i WN 0

j ;� 0
i

2 Gc
2:

We comment that in � (g) = � (�; T ).

Lemma 5.11. � dimL (S=hin � (Gc
1 [ Gc

2)i )2 
 R L 6 j(A + A) n C(0)j.

Proof. � By Proposition 4.6 we have that

� (A + A) = T2 n (in � (Gc
1) 
 R L)

and by the preceding comment we have that� (C(0)) � in � (Gc
2) 
 R L, so

(5.10) �
�
(A + A) n C(0)

�
� T2 n (in � (Gc

1) 
 R L [ in � (Gc
2) 
 R L) :
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