## Annales de l'institut Fourier

# Howard Lawrence Jackson Some results on thin sets in a half plane 

Annales de l'institut Fourier, tome 20, no 2 (1970), p. 201-218

[http://www.numdam.org/item?id=AIF_1970__20_2_201_0](http://www.numdam.org/item?id=AIF_1970__20_2_201_0)
© Annales de l'institut Fourier, 1970, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

# SOME RESULTS ON THIN SETS IN A HALF PLANE 

## by H. L. JACKSON

## 1. Introduction.

Let C denote the complex plane, $\hat{\mathrm{C}}$ the extended plane, and $D$ the open right half plane. Following Brelot [3], we define $\mathrm{X} \subset \mathrm{C}$ to be internally thin at $z_{0} \in \mathrm{C}$ if it is thin there in the classical sense, [2]. If $\partial \mathrm{D}=\{z \in \mathrm{C}: \operatorname{Rez}=0\}$ and $\{\infty\}=\hat{C}-C$ then the Martin boundary of $D$ can be identified with $\partial \mathrm{D} \cup\{\infty\}$. Let $\Delta \mathrm{D}$ be the Martin boundary of $D$ and $\hat{D}$ the Martin compactification of $D$. If $H^{+}$is the set of all non negative, classical hyperharmonic functions on $\mathrm{D}, \mathrm{X} \subset \mathrm{D}$ and $\varphi$ any non negative superharmonic function on D , we define the reduced function (réduite) [5], p. 36, of $\varphi$ on X relative to $\mathrm{H}^{+}$to be

$$
\mathrm{R}_{\varphi}^{\mathrm{X}}=\inf \left\{h \in \mathrm{H}^{+}: h \geqslant \varphi \text { on } \mathrm{X}\right\}, \quad \text { and } \quad \hat{\mathrm{R}}_{\varphi}^{\mathrm{X}}
$$

the superharmonic function which coincides q.e. with $\mathrm{R}_{\Phi}^{\mathrm{x}}$. If $\hat{z}_{0} \in \Delta \mathrm{D}$, and $\mathrm{M}_{\hat{z}_{0}}$ is a minimal harmonic function on D whose pole is at $\hat{z}_{0}$ then we define $\mathrm{X} \subset \mathrm{D}$ to be minimally thin at $\hat{z}_{0} \in \Delta D$ iff $M_{\hat{z}_{0}} \equiv \sum_{\mathrm{R}_{\hat{z}_{0}}}^{\mathrm{X}}$. It is possible to formulate analogous definitions in higher dimensional Euclidean spaces and even in more general spaces, [3], [4].

In 1948, $\mathrm{M}^{\mathrm{me}} \mathrm{J}$. Lelong [14], p. 130, introduced a definition for a subset of an open half space in $n$-dimensional Euclidean space $(n \geqslant 2)$ to be thin at a Martin boundary point of the
half space. Naïm [15], has pointed out that the type of thinness which $\mathrm{M}^{\text {me }}$ Lelong introduced for a half space is in fact the minimal thinness we have just defined. M ${ }^{\text {me }}$ Lelong found necessary and sufficient conditions in order to ensure that a subset X of a half space must be minimally thin at the origin or at $\infty$. In the case where $n \geqslant 3$ she showed that internal thinness always implies minimal thinness, and that if X is contained in a Stolz domain with vertex at the origin then internal thinness and minimal thinness are equivalent for any X so restricted. She then remarked that the two types of thinness are non comparable if $n=2$ but gave no details, [14], p. 132. In various publications ([3], [4]), Brelot noted this remark and claimed that whereas $\mathrm{M}^{\text {me }}$ Lelong did not prove her claim for $n=2$, Choquet did prove here assertion in detail but did not publish the result. On the basis of this claim, Brelot ([3], [4], [6]) assumed that there could not be any axiomatic implication between the two types of thinness, but was able to prove that a statistical (i.e. almost everywhere) type of implication does exist between them in a way which he makes precise ([4], p. 10, théorème 5 , and p. 14, théorème $5^{\prime}$ ).

The main purpose of this paper is to prove that internal thinness at the origin always implies minimal thinness there in the case where $n=2$ thus correcting completely a published error of $\mathrm{M}^{m e}$ Lelong and an unpublished one of Choquet. Furthermore we shall show that unlike the case for $n \geqslant 3$, this implication continues to be strict when one is restricted to a Stolz domain with vertex at the origin. We shall also work out some of the relations between minimal thinness, finite logarithmic length, and minimal semithinness for sets restricted to a Stolz domain. Finally we shall apply our results on thin sets to a theorem of Ahlfors and Heins ([1], p. 341 theorem B ) and $\mathrm{M}^{\mathrm{me}}$ Lelong ([14], p. 144, théorème (1c)). In particular we shall point out that the $\mathrm{P}-\mathrm{L}$ exceptional sets of Ahlfors and Heins are, in fact, minimally thin sets at $\infty$ with respect to the right half plane and then show that the " finite logarithmic length" character of their theorem B can be improved. We should expect that these results can contribute to an improvement of certain theorems of Essén [10].

## 2. Some Required Definitions and Theorems.

Let $\mathrm{B}(r)=\{z \in \mathrm{C}:|z|<r\}$ where $r>0$, and $h$ the extended real valued function $h(z, \psi)=\log \frac{1}{|z-w|}$ on $\mathrm{C} \times \mathrm{C}$. In order to ensure that $h$ will be positive, we shall in future restrict the domain of $h$ to $\mathrm{B}\left(\frac{1}{2}\right) \times \mathrm{B}\left(\frac{1}{2}\right)$, and shall temporarily be only concerned about thinness at the origin for those Borel sets $X \subset B\left(\frac{1}{2}\right)$ which are also relatively compact in $B\left(\frac{1}{2}\right)$. If $K \subset B\left(\frac{1}{2}\right)$ is compact, $\exists$ a Borel measure $\mu$ on $B\left(\frac{1}{2}\right)$. which is carried by $K$ so that the $h$-potential of $\mu$, denoted by $\mathrm{U}^{\mu}=\int_{\mathbf{K}} h(., \Psi) d \mu_{w}$ is the equilibrium $h$-potential such that $U^{\mu}(z) \equiv 1$ q.e. on K. Such a measure $\mu$ shall be called the $h$-capacitary distribution and $\int_{K} d \mu$ shall be called the ordinary capacity of $K$, henceforth to be denoted by $c(\mathrm{~K})$. The ordinary capacity function $c$ extends naturally to Borel sets and even to analytic sets. It is a capacity function in the sense of Choquet [9]. If $\mathrm{X} \subset \mathrm{B}\left(\frac{1}{2}\right)$ and $\lambda(\mathrm{X})$ is the logarithmic capacity
of X then

$$
\left.\begin{array}{rlrl}
c(\mathrm{X}) & =\frac{1}{\log \left(\frac{1}{\lambda(\mathrm{X})}\right)} & \text { if } & \lambda(\mathrm{X})>0 \\
& =0 & \text { if } & \lambda(\mathrm{X})=0
\end{array}\right\} \quad[2], \mathrm{p} .321 .
$$

We mention here the fact, apparently not generally known, that the logarithmic capacity $\lambda$ is not a capacity in the sense of Choquet.

If $\mathrm{X} \subset \mathrm{B}\left(\frac{1}{2}\right)$ so that the origin 0 is not an isolated point (usual topology) of $\mathrm{X} \cup\{0\}$ then X is defined to be internally thin at 0 if $\exists$ a positive superharmonic function $\varphi$
on $B\left(\frac{1}{2}\right)$ such that $\varphi(0)<\underline{\lim }_{\substack{\left\{\begin{array}{l}z \rightarrow 0 \\ z \in \mathbb{X}\end{array}\right.}} \varphi(z)$. We shall now mention some further criteria, by now classical, each of which is both necessary and sufficient to ensure that a set $X \subset B\left(\frac{1}{2}\right)$ must be internally thin at 0 . Let $s$ be any real number, temporarily fixed, such that $0<s<1$. We define the $n^{\text {th }}$ annular domain to be $\mathrm{I}_{n}=\mathrm{B}\left(s^{n}\right)-\mathrm{B}\left(s^{n+1}\right), c(r)=c(\mathrm{X} \cap \mathrm{B}(r))$, $\mathrm{X}_{n}=\mathrm{X} \cap \mathrm{I}_{n} \quad$ and $\quad c_{n}=c\left(\mathrm{X}_{n}\right)$. Similarly we define

$$
\lambda(r)=\lambda(\mathrm{X} \cap \mathrm{~B}(r)) \quad \text { and } \quad \lambda_{n}=\lambda\left(\mathrm{X} \cap \mathrm{I}_{n}\right)
$$

It has been shown (see [2], p. 325, and [16], p. 104) that a Borel set $X \subset B\left(\frac{1}{2}\right)$ is internally thin at $0_{\infty}$ iff any one of the following equivalent conditions holds; (i) $\sum_{n=1}^{\infty} c\left(s^{n}\right)<+\infty$, (ii) $\sum_{n=1}^{\infty} n c_{n}<+\infty$, (iii) $\int_{0}^{\delta} \frac{c(r)}{r} d r<+\infty$ for some $\delta>0$. For non-capacitable sets, one could replace "capacity" by " outer capacity". The convergence of each of the series (i) and (ii) is independent of $s$, so that in future we shall choose $s=\frac{1}{e}$. For the metrical properties of internally thin sets the reader is referred to Brelot ([2], pp. 335-337).

The Green's function for the right half plane $D$ and pole at $\oiint \in \mathrm{D}$ is the extended real valued function $g$ defined so that $g(z, w)=\log \frac{|z+\bar{w}|}{|z-w|}=h(z, w)-h(z,-\bar{w})$ on D. If

$$
\mathrm{D}(r)=\mathrm{D} \cap \mathrm{~B}(r), \quad \text { and } \quad(z, w) \in \mathrm{D}\left(\frac{1}{2}\right) \times \mathrm{D}\left(\frac{1}{2}\right)
$$

then $|z+\bar{\aleph}|<1$ so that $h(z,-\overline{\mathcal{N}})>0$ and therefore $g(z, w)<h(z, w)$. If $\mathrm{K} \subset \mathrm{D}$ is compact and $\varphi(z) \equiv 1$ on D , then $\hat{\mathbf{R}}_{\varphi}^{\mathrm{K}}$ is a Green potential on D whose measure $v$ is carried by $K$ and whose total mass $\int_{K} d \nu$ is called the Green capacity of $K$, henceforth to be denoted by $\sigma(K)$. The set function $\sigma$ can, at least, be extended to all Borel sets, and analytic sets which are relatively compact in $D$. It too is a capacity in the sense of Choquet. Since $g<h$ on
$\mathrm{D}\left(\frac{1}{2}\right) \times \mathrm{D}\left(\frac{1}{2}\right)$ it follows directly that if X is relatively compact in $\mathrm{D}\left(\frac{1}{2}\right)$ then $\sigma(\mathrm{X}) \geqslant c(\mathrm{X})$. If X is relatively compact in $\mathrm{D}\left(\frac{1}{2}\right)$ we shall define $\sigma(r)=\sigma(\mathrm{X} \cap \mathrm{B}(r))$, and $\sigma_{n}=\sigma\left(\mathrm{X}_{n}\right)$. Let $\Re$ be a Stolz domain in D such that $z \in \Re$ iff $|\operatorname{Arg} z| \leqslant \theta_{0}<\pi / 2$. If we require X to be contained in $\mathrm{D}\left(\frac{1}{2}\right) \cap \Re$, then $\mathrm{X}_{n}$ is relatively compact in $\mathrm{D}\left(\frac{1}{2}\right)$ for all $n$ sufficiently large. $\mathrm{M}^{\mathrm{me}}$ Lelong has shown that X thus restricted is minimally thin at the origin iff $\sum_{n=1}^{\infty} \sigma_{n}<+\infty$, [14], p. 131. One can make use of her arguments to show that if $\mathrm{X} \subset \mathrm{D}$ is not necessarily restricted to a Stolz domain, but $\mathrm{X}_{n}$ is relatively compact in D for every $n$ then the condition $\sum_{n=1}^{\infty} \sigma_{n}<+\infty$ is still sufficient to ensure that X must be minimally thin at 0 . She also introduced a concept which she called semi-thinness and we will call minimal semithinness. A set X , restricted to a Stolz domain, is semi-thin according to $\mathbf{M}^{\text {me }}$. Lelong's definition iff $\lim _{n \rightarrow \infty}\left(\sigma_{n}\right)=0$. The theory of minimal semi-thinness has been developed in more general spaces by Brelot and Doob [7].

## 3. Some Results on Minimally Thin and Semithin Sets in a Half Plane.

We shall now prove our main theorems.
Theorem 1. - If $\Re=\left\{z \in \mathrm{D}:|\operatorname{Arg} z| \leqslant \theta_{0}<\pi / 2\right\}$ and X is contained in $\mathrm{D}\left(\frac{1}{2}\right) \cap \mathcal{K}$, then X is minimally thin at 0 if $\sum_{n=1}^{\infty} c_{n}<+\infty$ and $\varlimsup_{n \rightarrow \infty}\left(n c_{n}\right)<1$.

Proof. - Let $\nu_{n}$ be the mass distribution on D $\left(\frac{1}{2}\right)$ whose Green potential $\hat{\mathbf{R}}_{\varphi_{n}}=\int_{\mathbf{x}} g\left(.,(\varphi) d v_{n}(\varphi)\right.$ coincides q.e.
with the reduced function of $\varphi(z) \equiv 1$ on $X_{n}$. Then $\hat{\mathrm{R}}^{\mathrm{x}_{\varphi}} \equiv 1$ q.e. on $X_{n}$ and $v_{n}\left(X_{n}\right)=\int_{x_{n}} d \nu_{n}=\sigma_{n}$. If $\sigma_{n} \neq 0, \exists z_{n} \in X_{n}$ so that $\hat{\mathrm{R}}_{\mathrm{X}_{\mathrm{N}}}\left(z_{n}\right)=1$ and therefore $1=\int_{\mathrm{X}_{n}} g\left(z_{n},(w) d v_{n}(\Phi)\right.$, or $1=\int_{X_{n}} \log \frac{1}{\left|z_{n}-\varphi\right|} d \nu_{n}(\varphi)-\int_{X_{n}} \log \frac{1}{\left|z_{n}+\bar{\Phi}\right|} d \nu_{n}(\varphi) \quad$ which is equivalent to
(i) $\int_{X_{n}} \log \frac{1}{\left|z_{n}-\Phi\right|} d v_{n}(\Phi)=1+\int_{x_{n}} \log \frac{1}{\left|z_{n}+\bar{\Phi}\right|} d v_{n}(\varphi)$.

If $z \in\left(I_{n} \cap \mathscr{K}\right)$ and $\zeta \in I_{n} \cap \mathscr{K}$ then the inequalities

$$
\begin{equation*}
2 s^{n+1} \cos \theta_{0} \leqslant|z+\zeta|<2 s^{n} \tag{ii}
\end{equation*}
$$

easily follow so that $2 s^{n+1} \cos \theta_{0} \leqslant\left|z_{n}+\bar{w}\right|<2 s^{n}$ when $z_{n}$ and $\phi$ are chosen as in (i).

By making use of the left inequality above it follows that $\frac{1}{\left|z_{n}+\bar{\Phi}\right|} \leqslant \frac{1}{2 s^{n+1} \cos \theta_{0}}$ which in turn implies
(iii) $\log \frac{1}{\left|z_{n}+\bar{w}\right|} \leqslant(n+1) \log \left(\frac{1}{s}\right)+\log \frac{1}{2 \cos \theta_{0}}$.

We agreed earlier to let $s=\frac{1}{e}$ so that (iii) becomes
(iii) $\quad \log \frac{1}{\left|z_{n}+\bar{\infty}\right|} \leqslant(n+1)+\log \frac{1}{2 \cos \theta_{0}}$,
or $\log \frac{1}{\left|z_{n}+\bar{x}\right|} \leqslant n+\mathrm{A}$ where $\mathrm{A}=1+\log \frac{1}{2 \cos \theta_{0}}$. We note that $A \geqslant 1-\log 2$.

If we integrate over $X_{n}$ with respect to $\nu_{n}$ we obtain
(iv) $\int_{\mathbf{x}_{n}} \log \frac{1}{\left|z_{n}+\bar{ल}\right|} d v_{n} \leqslant(\mathrm{~A}+n) \int_{\mathbf{x}_{\mathrm{n}}} d \nu_{n}=(\mathrm{A}+n) \sigma_{n}$, and combining (i) and (iv) the inequality
(v) $\int_{x_{n}} \log \frac{1}{\left|z_{n}-\varphi\right|} d v_{n} \leqslant 1+(\mathrm{A}+n) \sigma_{n}$ results.

Let $\omega_{n}=\frac{\nu_{n}}{1+(\mathrm{A}+n) \sigma_{n}}$ and note that the $h$-potential of
$\omega_{n}$ at $z_{n}$ is $\int_{\mathbf{x}_{n}} h\left(z_{n}, w\right) d \omega_{n}(w) \leqslant 1$. In fact

$$
\int_{x_{n}} h\left(z,(w) d \omega_{n}(\Phi) \leqslant 1\right.
$$

q.e. on $X_{n}$ which means that $\omega_{n}\left(X_{n}\right) \leqslant \mu_{n}\left(X_{n}\right)$, ([8], p. 41) where $\mu_{n}$ is the $h$-capacitary distribution on $\mathrm{X}_{n}$. Hence the inequality
(vi) $\frac{\sigma_{n}}{1+(\mathrm{A}+n) \sigma_{n}} \leqslant c_{n}$ follows. Taking the inverse mapping we obtain the fundamental inequality:
(vii) $\sigma_{n} \leqslant \frac{c_{n}}{1-(\mathrm{A}+n) c_{n}}$ provided $0 \leqslant c_{n}<\frac{1}{\mathrm{~A}+n}$.

If $\varlimsup_{n \rightarrow \infty} n c_{n}=1-\varepsilon$ where $0<\varepsilon \leqslant 1$ then

$$
\varlimsup_{n \rightarrow \infty}(\mathrm{~A}+n) c_{n}=1-\varepsilon
$$

also because $\lim _{n \rightarrow \infty} \frac{\mathrm{~A}+n}{n}=1$. Therefore $(\mathrm{A}+n) c_{n}<1-\varepsilon / 2$ for all $n \begin{gathered}n \rightarrow \infty \\ n \\ \text { sufficiently }\end{gathered}$ large so that $\sigma_{n}<\frac{2}{\varepsilon} c_{n}$ for all $n$ sufficiently large. If $\sum_{n=1}^{\infty} c_{n}<+\infty$ then $\sum_{n=1}^{\infty} \sigma_{n}<+\infty$ by the comparison test for series. Since X is minimally thin at 0 iff $\sum_{n=1}^{\infty} \sigma_{n}<+\infty$ the theorem follows.

Theorem 2. - If $\mathrm{X} \subset \mathrm{D}\left(\frac{1}{2}\right) \cap \Re$ is internally thin at 0 then X is minimally thin there. This implication is strict in general.

Proof. - We recall from § 2 that X is internally thin at 0 iff $\sum_{n=1}^{\infty} n c_{n}<+\infty$. If $\mathrm{X}_{\infty}^{\infty}$ is internally thin at 0 it follows that $\lim _{n \rightarrow \infty}^{n=1}\left(n c_{n}\right)=0$ and $\sum_{n=1}^{\infty} c_{n}<+\infty$ so that X satisfies the conditions of theorem 1 and therefore is minimally thin at 0 .

In order to see that the implication is strict we construct
$\mathrm{X}=\bigcup_{n=1}^{\infty} \mathrm{X}_{n}$ so that each $\mathrm{X}_{n}$ is a disk of radius $e^{-n^{2}}$. Therefore $c_{n}=\frac{1}{n^{2}}$ and it follows that X satisfies the conditions for theorem 1 so that X is minimally thin at 0 . Nevertheless $\sum_{n=1}^{\infty} n c_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges so that $X$ fails to be internally thin at 0 . This proves theorem 2.

We shall now prove a theorem that will allow us to extend the implication of theorem 2 to the half plane itself.
Theorem 3. - Let $\overline{\mathrm{V}}=\left\{z \in \mathrm{C}:\left|z-\frac{1}{2}\right| \leqslant \frac{1}{2}\right\}$ and $\mathrm{X}_{\infty} \subset \mathrm{D}\left(\frac{1}{2}\right) \cap \overline{\mathrm{V}}$. If $\varlimsup_{n \rightarrow \infty}\left(n c_{n}\right)<\frac{1}{2}$ and $\sum_{n=1}^{\infty} c_{n}<+\infty$ then $\sum_{n=1} \sigma_{n}<+\infty$.
Proof. - Now $\overline{\mathrm{V}}=\{(r, \theta): r \leqslant \cos \theta\}$ and $\partial \overline{\mathrm{V}} \cap \mathrm{D}$ is $\{(r, \theta): r=\cos \theta, r \neq 0\}$. Let $s=\frac{1}{e}$ and $\left(s^{n}, \theta_{n}\right)$ be that point of the first quadrant which is a member of $\partial \mathrm{B}\left(s^{n}\right) \cap \partial \overline{\mathrm{V}}$. Hence $s^{n}=\cos \theta_{n}$ and if $z \in X_{n}$ then

$$
\operatorname{Re}(z) \geqslant s^{n+1} \cos \left(\theta_{n+1}\right)=\left(s^{n+1}\right)^{2} .
$$

Since $X \subset \bar{V}$ it is evident that $X_{n}$ is relatively compact in D for every natural number $n$. We shall now follow a line of reasoning which constitutes a simple modification of that which was followed in theorem 1. By making use of the same notation as that employed in the above mentioned theorem, we obtain the following equality :
(i) $\int_{x_{n}} \log \frac{1}{|z-\zeta|} d v_{n}(\zeta)=1+\int_{x_{n}} \log \frac{1}{|z+\bar{\zeta}|} d v_{n}(\zeta) \quad$ q.e.
on $X_{n}$. where we recall that $v_{n}$ is the Green capacitary distribution on $\mathrm{X}_{n}$ and $\sigma_{n}=v_{n}\left(\mathrm{X}_{n}\right)$.

We now obtain the following inequalities:
(ii) If $z \in X_{n}$ and $\zeta \in X_{n}$ then

$$
2 s^{n+1} \cos \theta_{n+1}=2 s^{2^{(n+1)}} \leqslant|z+\bar{\zeta}|,
$$

and therefore:
(iii)

$$
\log \frac{1}{|z+\bar{\zeta}|} \leqslant \log \left(\frac{1}{s}\right)^{2 n}+\log \frac{1}{2 s^{2}},
$$

or $\quad \log \frac{1}{|z+\zeta|} \leqslant 2 n+(2-\log 2)$ since $e=\frac{1}{s}$.
If we let $A=2-\log 2$, and integrate over $X_{n}$ with respect to $v_{n}$ we obtain:

$$
\text { (iv) } \int_{\mathbf{x}_{n}} \log \frac{1}{|z+\bar{\zeta}|} d \nu_{n}(\zeta) \leqslant(\mathbf{A}+2 n) \int_{\mathbf{x}_{n}} d \nu_{n}=(\mathbf{A}+2 n) \sigma_{n}
$$ and if we combine (i) and (iv) then the inequality:

$$
\text { (v) } \int_{\mathbf{x}_{n}} \log \frac{1}{|z-\zeta|} d v_{n}(\zeta) \leqslant 1+(\mathrm{A}+2 n) \zeta_{n} \text { results. }
$$

By defining $\omega_{n}=\frac{\nu_{n}}{1+(\mathrm{A}+2 n) \sigma_{n}}$ and $\mu_{n}$ as the capacitary distribution of the logarithmic kernel so that $\mu_{n}\left(\mathrm{X}_{n}\right)=c_{n}$ we obtain $\omega_{n}\left(X_{n}\right) \leqslant \mu_{n}\left(\mathrm{X}_{n}\right)$ and therefore
(vi) $\frac{\sigma_{n}}{1+(\mathrm{A}+2 n) \sigma_{n}} \leqslant c_{n}$ follows. If we take the inverse mapping we obtain the basic inequality:

$$
\text { (vii) } \sigma_{n} \leqslant \frac{c_{n}}{1-(\mathrm{A}+2 n) c_{n}} \text { if } 0 \leqslant c_{n}<\frac{1}{\mathrm{~A}+2 n}
$$

Now suppose that $\varlimsup_{n \rightarrow \infty} n c_{n}=\frac{1}{2}-\varepsilon$ where $0<\varepsilon \leqslant \frac{1}{2}$. Then $\varlimsup_{n \rightarrow \infty}(\mathrm{~A}+2 n) c_{n}=1-2 \varepsilon$ so that $(\mathrm{A}+2 n) c_{n}<1-\varepsilon$ for all $\stackrel{n \rightarrow \infty}{n}$ sufficiently large and therefore $\frac{1}{\varepsilon}>\frac{1}{1-(\mathrm{A}+2 n) c_{n}}$ so that $\frac{c_{n}}{\varepsilon}>\frac{c_{n}}{1-(\mathrm{A}+2 n) c_{n}} \geqslant \sigma_{n}$ for all $n$ sufficiently large. If $\sum_{n=1}^{\infty} c_{n}<+\infty$ and $\varlimsup_{n \rightarrow \infty} n c_{n}=\frac{1}{2}-\varepsilon$ therefore $\sum_{n=1}^{\infty} \sigma_{n}<+{ }^{n=1}$ and the theorem follows.

We shall now extend the implication in theorem 2 to the half plane itself.

Theorem 4. - If $\mathrm{E} \subset \mathrm{D}$ is internally thin at 0 with respect to C then E is minimally thin at 0 with respect to D .

Proof. - Let $\mathrm{X}=\mathrm{E} \cap \overline{\mathrm{V}}$ and $\mathrm{X}^{\prime}=\mathrm{E} \cap(\mathrm{D}-\overline{\mathrm{V}})$ so that $E=X \cup X^{\prime}$. The function $M=\operatorname{Re}\left(\frac{1}{z}\right)$ is a minimal harmonic function on D with pole at 0 and the reduced function $R_{M}^{D^{-}-\bar{v}} \equiv 1$ on $\bar{V}$ so that $D-\bar{V}$ is minimally thin at 0 . Since $X^{\prime} \subset D-\bar{V}$ it follows that $X^{\prime}$ is also minimally thin at 0 . Now suppose that E is internally thin at 0 . It follows that X is also internally thin at 0 and hence satisfies the conditions for theorem 3 so that $\sum_{n=1}^{\infty} \sigma_{n}<+\infty$. We noted at the end of $\S 2$ that if each $\mathrm{X}_{n}$ is relatively compact in D then the condition $\sum_{n=1}^{\infty} \sigma_{n}<+\infty$ is a sufficient condition for minimal thinness at 0 , though not necessary unless X is restricted to a Stolz domain. Since every $X_{n}$ is relatively compact in D it follows that X is minimally thin at 0 , and since $\mathrm{X}^{\prime}$ is always minimally thin at 0 therefore $\mathrm{E}=\mathrm{X} \cup \mathrm{X}^{\prime}$ is minimally thin at 0 .

We shall now consider the property of finite logarithmic length.

Let $\psi$ be the circular projection mapping of D onto the positive real axis, that is if $z=r e^{i \theta}$ then $\psi(z)=r$. If $\mathrm{X}_{n}=\mathrm{X} \cap \mathrm{I}_{n}$ we shall let $\mathrm{X}_{n}^{\prime}=\psi\left(\mathrm{X}_{n}\right)$ and $\lambda_{n}^{\prime}=\lambda\left(\mathrm{X}_{n}^{\prime}\right)$. If $m$ denotes the one dimensional Lebesgue measure on the positive real axis we shall let $m_{n}=m\left(\mathrm{X}_{n}^{\prime}\right)$, and note the inequalities $\lambda_{n} \geqslant \lambda_{n} \geqslant \frac{m_{n}}{4}$ ([16], p. 85, corollary 6). If $\mathrm{X}_{n}^{\prime}$ is an interval then $\lambda_{n}^{\prime}=\frac{m_{n}}{4}$. A set $\mathrm{X} \subset \mathrm{D}$ is defined to be an $r$-set of finite logarithmic length at the origin if $\mathrm{X}^{\prime}=\psi(\mathrm{X})$ has the property that for some $\delta>0$ then $\int_{\mathbf{x}^{\prime} \cap(0, \delta)} \frac{d r}{r}<+\infty$, or equivalently $\sum_{n=1}^{\infty} e^{n} m_{n}<+\infty$.

Theorem 5. - If $\mathrm{X} \subset \mathrm{D}\left(\frac{1}{2}\right) \cap \Re$ is minimally thin at 0 , then $\mathrm{X}^{\prime}=\psi(\mathrm{X})$ possesses finite logarithmic length, but the converse does not hold in general.

Proof. - We shall first prove the direct part. By making use of the right side of inequality (ii) in the proof of theorem 1
and reason as before, we obtain the inequality:

$$
\frac{\sigma_{n}}{1+(n-\log 2) \sigma_{n}} \geqslant c_{n}
$$

which implies that $\frac{1}{\sigma_{n}}+(n-\log 2) \leqslant \frac{1}{c_{n}}$ if we ignore all terms where $\sigma_{n}$ or $c_{n}=0$.

Now define

$$
\left.\begin{array}{rlrlr}
\gamma(r) & =\frac{1}{\log \left(\frac{1}{r}\right)} & \text { if } & 0<r<1 \\
& =0 & \text { if } & r=0
\end{array}\right\}
$$

Then $\gamma$ is strictly monotone increasing on $[0,1)$. Since $\frac{m_{n}}{4} \leqslant \lambda_{n}^{\prime} \leqslant \lambda_{n}$ therefore $\gamma\left(\frac{m_{n}}{4}\right) \leqslant \gamma\left(\lambda_{n}^{\prime}\right) \leqslant \gamma\left(\lambda_{n}\right)=c_{n}, \quad$ and it follows that $\frac{1}{c_{n}} \leqslant \frac{1}{\gamma\left(\frac{m_{n}}{4}\right)}=\log \left(\frac{4}{m_{n}}\right)$. Combining this last inequality with the one above it follows that

$$
\frac{1}{\sigma_{n}} \leqslant \log \left(\frac{4}{m_{n}}\right)+\log 2-n=\log \left(\frac{8}{m_{n}}\right)-n
$$

which implies that

$$
\sigma_{n} \geqslant \frac{1}{\log \left(\frac{8}{m_{n}}\right)-n}=\frac{1}{\log \left(\frac{8}{m_{n} e^{n}}\right)}=\gamma\left(\frac{m_{n} e^{n}}{8}\right)
$$

for all natural numbers $n$. It follows that minimal thinness at 0 implies that $\sum_{n=1}^{\infty} \gamma\left(\frac{m_{n} e^{n}}{8}\right)<+\infty$ and since $\gamma(r)>r$ where $r$ is sufficiently small it follows that $\sum_{n=1}^{\infty} \frac{m_{n} e^{n}}{8}<+\infty$. The direct part follows.

For the converse part let $X_{n}^{\prime}=\left(\frac{1}{e^{n}}-\frac{4}{n^{2} e^{n}}, \frac{1}{e^{n}}\right)$ for each $n$. Then $e^{n} m_{n}=\frac{4}{n^{2}}$ so that $X^{\prime}$ has finite logarithmic length, but $\frac{m_{n}}{4}=\lambda_{n}=\frac{1}{n^{2} e^{n}} \quad$ so that $\quad c_{n}=\frac{1}{\log \left(\frac{1}{\lambda_{n}}\right)}=\frac{1}{n+2 \log n}$.

Hence $\sum_{n=1}^{\infty} c_{n}$ diverges and since $c_{n} \leqslant \sigma_{n}$ it follows that $\mathrm{X}^{\prime}$ fails to be minimally thin at 0 . This proves theorem 5.

Remark. - Since $\gamma(r)>r^{\frac{1}{p}}$ for all natural numbers $p$ it follows that if $\mathrm{X} \subset \mathrm{D}\left(\frac{1}{2}\right) \cap \Re$ is minimally thin at 0 , therefore $\sum_{n=1}^{\infty}\left(m_{n} e^{n}\right)^{\frac{1}{p}}<+\infty$.

We shall now find a necessary and sufficient condition for a set $\mathrm{X} \subset \mathrm{D}\left(\frac{1}{2}\right) \cap \Re$ to be minimally semithin at the origin.

Theorem 6. - If $\mathrm{X} \subset \mathrm{D}\left(\frac{1}{2}\right) \mathrm{n} \boldsymbol{r}$ then X is minimally semithin at 0 iff $\lim _{n \rightarrow \infty}\left(\lambda_{n} e^{n}\right)=0$.

Proof. - For the necessity part we use inequality (vi) ${ }^{\prime}$ in the proof of theorem 5 to obtain

$$
\frac{1}{\sigma_{n}}+n-\log 2 \leqslant \frac{1}{c_{n}}=\log \left(\frac{1}{\lambda_{n}}\right)
$$

or

$$
\frac{1}{\sigma_{n}} \leqslant \log \left(\frac{1}{\lambda_{n}}\right)+\log 2-n .
$$

It follows that $\frac{1}{\sigma_{n}} \leqslant \log \left(\frac{2}{\lambda_{n} e^{n}}\right)$ and therefore

$$
\sigma_{n} \geqslant \frac{1}{\log \left(\frac{2}{\lambda_{n} e^{n}}\right)}=\gamma\left(\frac{\lambda_{n} e^{n}}{2}\right) .
$$

Since $\gamma(r)>\boldsymbol{r}$ it follows that minimal semithinness implies that $\lim _{n \rightarrow \infty}\left(\lambda_{n} e^{n}\right)=0$.

For the sufficiency part we make use of inequality (vi) in the proof of theorem 1 to obtain

$$
\frac{1}{\sigma_{n}}+(\mathrm{A}+n) \geqslant \frac{1}{c_{n}}=\log \left(\frac{1}{\lambda_{n}}\right) .
$$

Therefore $\frac{1}{\sigma_{n}}+\mathrm{A} \geqslant \log \left(\frac{1}{\lambda_{n} e^{n}}\right)$ so that if $\lim _{n \rightarrow \infty}\left(\lambda_{n} e^{n}\right)=0$ then $\lim _{n \rightarrow \infty} \log \left(\frac{1}{\lambda_{n} e^{n}}\right)=+\infty$ and hence $\lim _{n \rightarrow \infty}\left(\frac{1}{\sigma_{n}}\right)=+\infty$ or $\lim _{n \rightarrow \infty} \sigma_{n}=0$. This proves the sufficiency and the theorem.

Remark. - Since $\frac{m_{n}}{4} \leqslant \lambda_{n}^{\prime} \leqslant \lambda_{n}$ therefore $\lim _{n \rightarrow \infty}\left(m_{n} e^{n}\right)=0$, or equivalently $m_{n}=o\left(\frac{1}{e^{n}}\right)$ if X is semithin at the origin. This sharpens a result of Brelot and Doob [7], p. 406, corollaire.

Corollary. - If X is contained in the positive real axis, then the properties of semithinness and of finite logarithmic length are non comparable.

Proof of Corollary. - Suppose X is constructed so that $\mathrm{X}_{n}$ is connected for each $n$ and $\frac{m_{n}}{4}=\frac{1}{n e^{n}}$. Then $\lambda_{n}=\frac{m_{n}}{4}$ so that $\lambda_{n} e^{n}=\frac{1}{n}$ and hence $\lim _{n \rightarrow \infty}\left(\lambda_{n} e^{n}\right)=0$ so that X is semithin at $0^{n}$ but $\sum_{n=1}^{\infty} e^{n} m_{n}{ }_{n}^{n \rightarrow \infty}$ diverges so that X fails to be of finite logarithmic length. We point out that if X is structured so that each $X_{n}$ is connected, and if $S$ is of finite logarithmic length then X is semithin. We shall now see that in general however, finite logarithmic length does not imply semithinness. Let us construct $X$ so that each $X_{n}$ is a Cantor set in $\left[\frac{1}{e^{n+1}}, \frac{1}{e^{n}}\right]$. Then $m_{n}=0$ for each $n$ so that X is of finite logarithmic length, but $\exists \alpha>0$ such that $\lambda_{n} e^{n}>\alpha$ for all $n$ sufficiently large, [16], p. 106-108. Hence $\lim _{n \rightarrow \infty} \lambda_{n} n^{n} \geqslant \alpha$ and it follows that $X$ cannot be semithin at the origin.

Remark. - The properties of internal thinness, minimal thinness, semithinness and finite logarithmic length are all preserved under the inversion mapping $f(z)=\frac{1}{z}$ so that all implications which have been proved at the origin hold equally well at $\infty$.

## 4. Applications.

In 1949, Ahlfors and Heins, [1], published the following result which we will call theorem $B$.

Theorem B. - Let u be a subharmonic function whose domain is the half plane D such that $\prod_{\substack{\mathcal{l i m}_{\begin{subarray}{c}{z} }}^{z z_{0}}} \\{z_{0} \in \partial_{\mathrm{D}}}\end{subarray}} u(z) \leqslant 0$ and

$\exists$ an $r$-set $\mathrm{X}^{\prime}$ of finite logarithmic length such that the expression $\lim _{r \rightarrow \infty} \frac{u(z)}{r}=\alpha \cos \theta$ holds uniformly in $\theta$ where $z \in \Re$, and where $r$ is restricted to lie oustside of $\mathrm{X}^{\prime}$.

After proving this result, they remarked that they were uncertain as to whether or not the "finite logarithmic length" character of theorem B could be improved [1], p. 345. One of the basic tools introduced by Ahlfors and Heins in order to obtain theorem B and other results was a concept, believed by them to be new, which they called a P-L exceptional set. A set $\mathrm{X} \subset \mathrm{D}$ is defined to be $\mathrm{P}-\mathrm{L}$ exceptional according to Ahlfors and Heins if it is open and there exists a Green potential U on D which dominates the function $\varphi(z)=\operatorname{Rez}$ everywhere on X. We shall now note the following lemma due to Brelot and published by Naïm, [15], p. 204, lemma 1. See also [14], p. 139, théorème, and [11], p. 313.

Lemma 1. - Let G be a Green space, $\hat{z}_{0}$ a minimal Martin boundary point and $\varphi(z)=\mathrm{M}_{\hat{z}_{0}}$ a minimal harmonic function with pole at $\hat{z}_{0}$. If $\mathrm{X} \subset \mathrm{G}$, then $\hat{\mathrm{R}}_{\phi}^{\mathrm{x}}$ is either a Green potential on G or the function $\varphi$ itself.

Remark. - From lemma 1, we obtain the following result ([11], p. 313): An open set $\mathrm{X} \subset \mathrm{D}$ is $\mathrm{P}-\mathrm{L}$ exceptional according to Ahlfors and Heins iff it is minimally thin at $\infty$ with respect to the half plane D .

If $\hat{z}_{0} \in \Delta D$ we shall let $\mathscr{F}_{\mathcal{z}_{0}}=\{\mathrm{S} \subset \mathrm{D}: \mathrm{D}-\mathrm{S}$ is minimally thin at $\left.\hat{z}_{0}\right\}$ be the trace on $D$ of the filter of neigh-
bourhoods of $\hat{z}_{0}$ in the space $\mathrm{D} \cup \Delta \mathrm{D}$ endowed with the fine topology of Naïm. For brevity we shall replace $\mathscr{F}_{\hat{z}_{0}}$ by $\mathscr{F}$ if $\hat{z}_{0}=\infty$. We shall now mention a result of $\mathbf{M}^{\text {me }}$ Lelong's, ([11], p. 144, théorème $1 c$ ) which has been generalized by Naïm ([15], théorème $8^{\prime}-17$ ) and is applicable to the present discussion. Even though the result is valid in more general spaces we shall phrase it in terms of our two dimensional notation.

Theorem $\mathrm{B}^{\prime}$. - If $\rho$ is a positive superharmonic function on D such that $\inf \left\{\frac{\varphi(z)}{x}: z \in \mathrm{D}\right\}=\alpha \geqslant 0$, then $\lim _{\mathscr{F}}\left(\frac{\rho(z)}{x}\right)=\alpha$.
$M^{m e}$ Lelong then observed that if $v$ is a superharmonic function which can be decomposed into the form:

$$
\varphi(z)=\beta x+\omega(z)
$$

where $\propto$ is a non-negative superharmonic function such that $\inf \left\{\frac{s(z)}{x}: z \in \mathrm{D}\right\}=0$ and $\beta$ is any real number, then $\lim _{\mathscr{F}}\left(\frac{\varphi(z)}{x}\right)=\beta$.

She further remarked that a subharmonic function $u$ satisfies the Phragmén-Lindelof conditions imposed by Ahlfors and Heins in theorem B iff $(-u)=\rho$ is a superharmonic function which is subject to the above mentioned decomposition. When applied to subharmonic functions $u$ of the type considered by Ahlfors and Heins, $\mathbf{M}^{\text {me }}$ Lelong's result can be phrased as follows :

Theorem $\mathrm{B}^{\prime \prime}$. - If $u$ is subharmonic on D and satisfies the restrictions imposed in Theorem B , then

$$
\lim _{\mathscr{F}}\left(\frac{u(z)}{x}\right)=\alpha .
$$

Now suppose that $z$ is restricted to the Stolz domain $\varkappa=\left\{z=\mathrm{re}^{i \theta}:|\theta| \leqslant \theta_{0}<\pi / 2\right\}$. Then it follows that

$$
\left|\frac{u}{r}-\alpha \cos \theta\right| \leqslant\left|\frac{u}{x}-\alpha\right| \leqslant \frac{1}{\cos \theta_{0}}\left|\frac{u}{r}-\alpha \cos \theta\right|
$$

If $\mathscr{F} / \mathscr{K}$ is the trace of the filter $\mathscr{F}$ on $\mathscr{K}$ and $\mathrm{F} \in \mathscr{F} / \mathscr{K}$
then $\left\|\frac{u}{r}-\alpha \cos \theta\right\|_{F} \leqslant\left\|\frac{u}{x}-\alpha\right\|_{F} \leqslant \frac{1}{\cos \theta_{0}}\left\|\frac{u}{r}-\alpha \cos \theta\right\|_{F}$ where $\left\|\|_{F}\right.$ means the sup norm on $F$. Hence lim $\left\|\frac{u}{r}-\alpha \cos \theta\right\|=0 \quad$ iff $\lim _{\mathscr{F} / \mathscr{K}}\left\|\frac{u}{x}-\alpha\right\|=0$. This last equivalence of limits does not hold of course on the half plane itself.

Remark. - (see [6], p. 44). There exists E c D where E is minimally thin at $\infty$ such that the limit along $\mathscr{F}$ of a given function $f$ on D is in fact the ordinary limit (i.e. limit in Martin topology) of $f$ as $z \rightarrow \infty$ on $\mathrm{D}-\mathrm{E}$.

Lemma 2. - The "finite logarithmic length" character of theorem B of Ahlfors and Heins can be improved.

Proof. - For any subharmonic function $u$ restricted as in theorem B and for any given angular domain $\Pi$ it follows that $\lim _{\mathscr{F} / \sqrt{K}}\left\|\frac{u(z)}{r}-\alpha \cos \theta\right\|=0$. There exists an exceptional set $X$ which must be a minimally thin set at $\infty$ and which is restricted to $\mathscr{K}$ such that $\lim _{\substack{\mathscr{F} / \mathcal{K}}}=\lim _{\substack{z \rightarrow \infty \\ z \in \mathcal{K}-\mathrm{x}}}$. The projected set $\mathrm{X}^{\prime}=\psi(\mathrm{X})$ must also be minimally thin at $\infty$ with respect to D. From theorem 5 and our remark at the end of $\S 3$, such a set must be of finite logarithmic length but not conversely. The lemma follows.

One may regard the condition of «finite logarithmic length" to be a kind of first approximation to minimal thinness. On the other hand the condition of "finite logarithmic length» does take on greater significance when theorem B is generalized to the half plane itself. This is demonstrated by theorems 2 and 5 in a paper by Hayman [12].

## 5. Concluding Remarks.

It would appear to the author that the result contained in theorem 4 cannot fail to exert a fundamental influence on any future work that deals with a comparison of the internal fine topology and the minimal fine topology. One would
expect that some of Brelot's theorems can now be improved (eg. [4], théorème 5 and théorème $5^{\prime}$ ) from « almost everywhere " implication to "everywhere" implication at least in many instances. This can certainly be done in his «particular case» ([4], p. 10) where the boundaries under consideration are sufficiently regular and can be identified, as in the case of any ball or half space in $\mathrm{R}^{n}$. We note in conclusion that on any closed ball in $\mathrm{R}^{n}(n \geqslant 2)$, then the minimal fine (Naïm) topology is strictly finer than the internal fine (CartanBrelot) topology on $\mathrm{R}^{n}$ relativized to the ball.

## BIBLIOGRAPHY

[1] L. V. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Annals of Math. 50, No. 2 (1949), 341-346.
[2] M. Brelot, Points irréguliers et transformations continues en théorie du potentiel, Jour. Math. Pures et Appliquées 19 (1940), 319-337.
[3] M. Brelot, Etude comparée des deux types d'effilement, Annales de l'Inst. Fourier, Grenoble, 15 (1965), 155-168.
[4] M. Вrelot, Aspect statistique et comparé des deux types d'effilement, Anais da Academia Brasileira de Ciencias, 37 (1965), No. 1, 1-15.
[5] M. Brelot, Axiomatique des fonctions harmoniques, Les Presses de l'Université de Montréal, 1966.
[6] M. Brelot, La topologie fine en théorie du potentiel, Symposium on Probability Methods in Analysis (Loutraki, 1966) lecture notes 31, pp. 36-47, Springer, Berlin, 1967.
[7] M. Brelot and J. L. Doob, Limites angulaires et limites fines, Annales de l'Inst. Fourier, Grenoble, 13 (1963), 395-415.
[8] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, Berlin, 1963.
[9] G. Choquet, Theory of Capacities, Annales de L'Inst. Fourier, Grenoble, 5 (1954), 131-295.
[10] M. Essén, A Generalization of the Ahlfors-Heins theorem, Bull. Amer. Math. Soc. 75 (1969), 127-131.
[11] K. Gowrisankaran, Extreme harmonic functions and boundary value problems, Annales de l'Inst. Fourier, Grenoble 13 (1963), 307-356.
[12] W. K. Hayman, Questions of regularity connected with the PhragménLindelöf principle, Jour. Math. Pures et Appliquées 35 (1956), 115-126.
[13] J. Lelong, Propriétés des fonctions surharmoniques positives dans un demi-espace, Comptes Rend. Acad. Sc. 226 (1948), 1161-1163.
[14] J. Lelong, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Annales de l'École Normale Sup., 66 (1949), 125-159.
[15] L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Annales de l'Inst. Fourier, Grenoble, 7 (1957), 183-285.
[16] M. Tsusi, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

Manuscrit reçu le 17 février 1970.
H.L. Jackson,
Mc. Master University,

Hamilton, Ontario,
Canada.

