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SOME RESULTS ON THIN SETS
IN A HALF PLANE

by H. L. JACKSON

1. Introduction.

Let C denote the complex plane, C the extended plane,
and D the open right half plane. Following Brelot [3], we
define X c C to be internally thin at ZQ e C if it is thin there
in the classical sense, [2]. If ^D == {z e C : Rez = 0} and
{oo} == C — C then the Martin boundary of D can be
identified with bD u {oo}. Let AD be the Martin boundary
of D and 6 the Martin compactification of D. If H+ is
the set of all non negative, classical hyperharmonic functions
on D, X c D and 9 any non negative superharmonic func-
tion on D, we define the reduced function (reduite) [5], p. 36,
of 9 on X relative to H4" to be

R^ = inf{A e H+ : h ^ y on X}, and ft^

the superharmonic function which coincides q.e. with R^.
If ZQ e AD, and M^ is a minimal harmonic function on D
whose pole is at ZQ then we define X c D to be minimally
thin at ZQ e AD iff M^^R^. It is possible to formulate
analogous definitions in higher dimensional Euclidean spaces
and even in more general spaces, [3], [4].

In 1948, M"^ J. Leiong [14], p. 130, introduced a definition
for a subset of an open half space in n-dimensional Euclidean
space (n > 2) to be thin at a Martin boundary point of the

10



202 H. L. JACKSON

half space. Nai'm [15], has pointed out that the type of thinness
which M131® Leiong introduced for a half space is in fact the
minimal thinness we have just defined. M"^ Leiong found
necessary and sufficient conditions in order to ensure that a
subset X of a half space must be minimally thin at the origin
or at oo. In the case where n ^ 3 she showed that internal
thinness always implies minimal thinness, and that if X is
contained in a Stolz domain with vertex at the origin then
internal thinness and minimal thinness are equivalent for
any X so restricted. She then remarked that the two types
of thinness are non comparable if n == 2 but gave no details,
[14], p. 132. In various publications ([3], [4]), Brelot noted
this remark and claimed that whereas M131® Leiong did not
prove her claim for n = 2, Choquet did prove here assertion
in detail but did not publish the result. On the basis of this
claim, Brelot ([3], [4], [6]) assumed that there could not be
any axiomatic implication between the two types of thinness,
but was able to prove that a statistical (i.e. almost everywhere)
type of implication does exist between them in a way which
he makes precise ([4], p. 10, theoreme 5, and p. 14, theoreme 5').

The main purpose of this paper is to prove that internal
thinness at the origin always implies minimal thinness there
in the case where n == 2 thus correcting completely a publis-
hed error of Mme Leiong and an unpublished one of Choquet.
Furthermore we shall show that unlike the case for n ^ 3,
this implication continues to be strict when one is restricted
to a Stolz domain with vertex at the origin. We shall also
work out some of the relations between minimal thinness,
finite logarithmic length, and minimal semithinness for sets
restricted to a Stolz domain. Finally we shall apply our results
on thin sets to a theorem of Ahlfors and Heins ([I], p. 341
theorem B) and M"^ Leiong ([14], p. 144, theoreme (lc)).
In particular we shall point out that the P — L exceptional
sets of Ahlfors and Heins are, in fact, minimally thin sets at
oo with respect to the right half plane and then show that the

« finite logarithmic length » character of their theorem B
can be improved. We should expect that these results can
contribute to an improvement of certain theorems of
Essen [10].
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2. Some Required Definitions and Theorems.

Let B(r) = {ze C: |z| < r} where r > 0, and h the
1extended real valued function A(z, w) == log -————- on

C X C. In order to ensure that h will be positive, we shall

( 1 \ / 1 \in future restrict the domain of h to B — ) X B ( —)?
2 / ^ \ 2t I

and shall temporarily be only concerned about thinness at

( 1 \the origin for those Borel sets X c B — ) which are also
1 /

/ 1 \ / 1 \relatively compact in B ( — ). If K c B ( — ) is compact,
\ 2 / \ 2 /

/ 1 \3 a Borel measure (JL on B ( — ). which is carried by K so
\ 2t J /*that the ^-potential of (JL, denoted by U^ = j /i(., w) d[L^

is the equilibrium A-potential such that U^(z) s 1 q.e. on
K. Such a measure (JL shall be called the A-capacitary distri-
bution and j d\L shall be called the ordinary capacity of K,
henceforth to be denoted by c(K). The ordinary capacity
function c extends naturally to Borel sets and even to ana-
lytic sets. It is a capacity function in the sense of Choquet

/ 1 \[9]. If X c B ( — j and ^.(X) is the logarithmic capacity
of X then V 2 /

W-——-——^ if W > 0
log(̂ ) [2],p.321.

= 0 if X(X) ==0

We mention here the fact, apparently not generally known,
that the logarithmic cajpacity X is not a capacity in the sense
of Choquet. / A \

If X c B ( — ) so that the origin 0 is not an isolated point

(usual topology) of X u |0j then X is defined to be inter-
nally thin at 0 if 3 a positive superharmonic function v
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/ 1 \on B ( — ) such that ^(0) < lim v{z). We shall now mention
v / . . ^ .

some further criteria, by now classical, each of which is both

necessary and sufficient to ensure that a set X c B (—}

must be internally thin at 0. Let s be any real number,
temporarily fixed, such that 0 < 5 < 1. We define the n^
annular domain to be ^ = B{sn) — B(sn+l), c(r) = c{X n B(r)),
X^ == X n !„ and c^ = c(XJ. Similarly we define

X(r) = X(X n B(r)) and ^ == X(X n !„).

It has been shown (see [2], p. 325, and [16], p. 104) that a
/ 1 \Borel set X c B (-,-) is internally thin at 0 iff any one of
V 1 ]

the following equivalent conditions holds; (i) ^ ^(sn) < + °o?
00 ?; r(r\ ra==l

(ii) S ^n < + °o? (iii) / —Ldr < + oo for some 8 > 0.
n=l ^ O T

For non-capacitable sets, one could replace « capacity » by
« outer capacity ». The convergence of each of the series (i)
and (ii) is independent of 5, so that in future we shall choose

1s == —• For the metrical properties of internally thin setsa
the reader is referred to Brelot ([2], pp. 335-337).

The Green's function for the right half plane D and pole
at w e D is the extended real valued function g defined so

that g(z, w) = log^^l = h{z, w) - h{z, - w) on D. If

D(r) = D n B(r), and (z, w) e D (—\ X D (-^\

then \z + w\ < 1 so that A(z, — w} > 0 and therefore
g(z, w) < h{z, w). If Kc D is compact and <p(z) === 1 on D,
then R^ is a Green potential on D whose measure v is
carried by K and whose total mass f d^ is called the Green
capacity of K, henceforth to be denoted by o(K). The set
function G can, at least, be extended to all Borel sets, and
analytic sets which are relatively compact in D. It too is a
capacity in the sense of Choquet. Since g < h on
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/ 1 \ / 1 \ .
^ ( ~ o / ^ ^ ( " o / lt ^ll0^ directly that if X is relatively\ 2 / \ 2 /

/ 1 \compact in D ( - ^ - ) then CT(X) ^ c(X). If X is relatively
\ 2 /

/ 1 \compact in D ( -7 . - ) we shall define o(r) == <r(X n B(r)),
\ 1 /

and CT^ == <r(Xn). Let 3£ be a Stolz domain in D such that
ze3t iff |Argz| ^ QQ < 7T/2. If we require X to be contained

in D (-7- ) n 3£, then X^ is relatively compact in D ( -TT )
\ 2 / ^ V 2 /

for all n sufficiently large. M"*6 Leiong has shown that X
00

thus restricted is minimally thin at the origin iff S ^re < 4" °°?
n=l

[14], p. 131. One can make use of her arguments to show that
if X c D is not necessarily restricted to a Stolz domain, but
X^ is relatively compact in D for every n then the condi-

00

tion S ^n < + °° is still sufficient to ensure that X must
71=1

be minimally thin at 0. She also introduced a concept which
she called semi-thinness and we will call minimal semithinness.
A. set X, restricted to a Stolz domain, is semi-thin according
to M*"6 Leiong's definition iff lim (o^) == 0. The theory of

n>oo
minimal semi-thinness has been developed in more general
spaces by Brelot and Doob [7].

3. Some Results on Minimally Thin
and Semithin Sets in a Half Plane.

We shall now prove our main theorems.

THEOREM 1. — If VI = {z e D : |Arg z\ < QQ < TC/2} and
I 1 \

X is contained in D ( -7 . - ) n 3t, then X is minimally thin at
<» \ 2 /__

0 if S ^n < + °° and lim {nc^) < 1.
n==l n>oo

( 1 \Proof. — Let v^ be the mass distribution on D — )
r . . /

whose Green potential R^ == f g^., w) d^Jiw) coincides q.e.
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with the reduced function of <p(z) = 1 on X,. Then ft^sl
q.e. on X, and v,(X») = ̂  ̂  = <r,. If ^ ^ Q , 3 z , e X ,

so that ftf»(z,) = 1 and therefore 1 == f g(z,, w) rfv,(w), or

1 = ̂  ̂  [z,̂ ] (^w) - ̂  ̂  |^^[ ^nM which is
equivalent to

(i) f^\^\d^ = A +^logl7^|^w)•
If z <= (!„ n 3t) and ^ e !„ n X then the inequalities

(ii) 25re+l cos 60 ^ | z + ^ | < 25"

easily follow so that 2sn+l cos 60 < |̂  + w[ < 2^ when z,
and w are chosen as in (i).

By making use of the left inequality above it follows that

K+ ^1 ^ 2.̂  cos 60 which ^ t^n implies

(iii) log ——1—. < (n + 1) log fA-\ + log 1——.
Pn+ WJ . 0 \ 5 / ' ° 2 COS 60

1We agreed earlier to let s =— so that (iii) becomes
e A /

(iii/) log |z lc.1 ^ ^ + 1) + Iog 9-1-A>
Fn + W| ° 2 COS 60

1 1or log -.———— ^ n + A where A = 1 4- log ——-——.
Fn+ W| ' b 2 COS 60

We note that A ^ 1 ~ log 2.
If we integrate over X^ with respect to v^ we obtain

(iv) ^ Iog k^T ^n ^ (A + n} ^rfvB = (A + n) an9

and combining (i) and (iv) the inequality

C 1
(v) J log ,—^——j- rf^ ^ 1 + (A + n) a^ results.

n | Z^ W\

Let "n ̂  . , .^''1. \ and note that ^e ^-potential ofi -t- (A. -t- n^o,
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co, at v is J h{z^ w} d<^^(w) < 1. In fact

^ h(z, w) A^(w) ^ 1

q.e. on X^ which means that <On(XJ ^ p<n(X^), ([8], p. 41)
where [L^ is the A-capacitary distribution on Xn. Hence the
inequality

(vi) . , / A n .— — ^ ^ follows. Taking the inverse map-1 -f- (A -}- n)(5^
ping we obtain the fundamental inequality :

(vii) <sa ^ l-^+n)c, provide(i ° ^ cn < A-^n

If lim nc^ ==1 — e where 0 < e < 1 then
n»oo

lim (A + ^)^n ==1 — s
n '̂°o

A I „

also because l i m — ' - — = 1. Therefore (A + ^)Cn < 1 — e/2
n>oo Tt c\

for all n sufficiently large so that a^ < —c^ for all n
00 00

sufficiently large. If 5 ^n < + °° then S ^n < + °° by
n==l n==l

the comparison test for series. Since X is minimally thin at
00

0 iff S ^n < + °° the theorem follows.
n==l

THEOREM 2. — If Xc D (-0-) n 3t i$ internally thin at 0

</ien X i5 minimally thin there. This implication is strict in
general.

Proof. — We recall from § 2 that X is internally thin at
00

0 iff S ^n < + °°- It X is internally thin at 0 it follows
n==l oo

that lim (nc^) == 0 and S ^n < + °° so that X satisfies
n»»oo n==l

the conditions of theorem 1 and therefore is minimally thin
at 0.

In order to see that the implication is strict we construct
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00

X == I J X^ so that each X^ is a disk of radius e""1. There-
n=l 4

fore c, = — and it follows that X satisfies the conditions
n2

for theorem 1 so that X is minimally thin at 0. Nevertheless
00 °° 1 .^ nc^ == S — diverges so that X fails to be internally

n=:l n==l ^
thin at 0. This proves theorem 2.

We shall now prove a theorem that will allow us to extend
the implication of theorem 2 to the half plane itself.

_ r 1 1 )
THEOREM 3. — Let V = ^ e = C : z—-7.- < -^-^ and

\ )

( A \ ___ /I °°

X c D — ) n V. If lim (ncj < -^r and S °n < + °° i^en
oo 2 / ra>oo 2 n==i

^(^ < + 00.
n==i

Proof. — Now V = {(r, 6) : r ^ cos 6} and bV n D is
i

{(r, 6) : r == cos 6, r ^ 0}. Let s = — and (^n, 6^) be thatc
point of the first quadrant which is a member of ^B^") n bV.
Hence 5" == cos 6^ and if z e X^ then

Re(z) ^ 5n+l cos (6^1) == (5n+l)2.

Since X c V it is evident that X^ is relatively compact in
D for every natural number n. We shall now follow a line
of reasoning which constitutes a simple modification of that
which was followed in theorem 1. By making use of the same
notation as that employed in the above mentioned theorem,
we obtain the following equality:

w f^^^-^f.^^'1^ i---
on X^. where we recall that v^ is the Green capacitary distri-
bution on X^ and a^ = ̂ (X-n).

We now obtain the following inequalities :
(ii) If z e X^ and ^ e X^ then

2s"4-1 cos 6^1 = 2s2<ra+l> < \z + ^|,
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and therefore:
1 / 1 \2" 1(in) ^iTTn^h) +10^

1 1or ^°S i—T~7\ ^ 2n + (2 — log 2) since e = —.
F i~ ^l $

If we let A = 2 — log 2, and integrate over X^ with respect
to v^ we obtain:

(iv) f^S^^^} ^ (A + 2n)J^ = (A + 2n) a,
and if we combine (i) and (iv) then the inequality:

(v) L ̂ ^~r\d^ < 1 + (A + 2n) ^ results.
•̂n | A —— t,|

By defining co^ = n — and (JL^ as the capacitary
i -+- [1\, + ^}Qn

distribution of the logarithmic kernel so that ^(XJ = c,
we obtain o^(XJ ^ ^n(X^) and therefore

(vi) . . n < c^ follows. If we take the inverse1 ~r (A + ̂ ^n
mapping we obtain the basic inequality:

(vii) "• ( 1 - (A 2n)c. " ° ̂  c- < A^2»
____ j[ yl

Now suppose that lim nc^ = — — e where 0 < e ^ —.
n>oo ^ 2

Then lim (A + 2n)c^ == 1 — 2s so that (A + 2n)c^ < 1 — e
^°° .1 /i

for all n sufficiently large and therefore — > .———,—————
c 8 1 ~ (A + 2n)c^

so that -"- > — — c n ^ (?„ for all n sufficientlye 1 — (A + 2n)^ J

00 ____ A

large. If S ^ < + °o and lim nc^ = — — e therefore
oo n==i n -̂oo ^

S ^n < + °° and the theorem follows.
n==l

We shall now extend the implication in theorem 2 to the
half plane itself.

THEOREM 4. — If E c D is internally thin at 0 with respect
to C then E is minimally thin at 0 with respect to D.
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Proof. — Let X = E n V and X' == E n (D — V) so that
E = X u X \ The function M == Re [ — ) is a minimal

harmonic function on D with pole at 0 and the reduced
function R^ == 1 on_V so that D — V is minimally thin
at 0. Since X' c D — V it follows that X7 is ^Iso minimally
thin at 0. Now suppose that E is internally thin at 0. It
follows that X is also internally thin at 0 and hence satisfies

00

the conditions for theorem 3 so that ^ ^n < + °o. We
n=l

noted at the end of § 2 that if each X^ is relatively compact
00

in D then the condition 5 c^ < + oo is a sufficient condition
n==l

for minimal thinness at 0, though not necessary unless X
is restricted to a Stolz domain. Since every X^ is relatively
compact in D it follows that X is minimally thin at 0,
and since X7 is always minimally thin at 0 therefore
E = X u X7 is minimally thin at 0.

We shall now consider the property of finite logarithmic
length.

Let ^ be the circular projection mapping of D onto the
positive real axis, that is if z == re18 then ^f(z) = r. If
X ^ = = X n I ^ we shall let X, == ^(XJ and ^ = X(X^). If
m denotes the one dimensional Lebesgue measure on the
positive real axis we shall let m^ == m(Xn), and note the
inequalities \ > \n > rn- ([16], p. 85, corollary 6). If Xn

is an interval then ^ == 7nn. A set X c D is defined to be an

r-set of finite logarithmic length at the origin if X' == ^(X)
has the property that for some 8 > 0 then C dr- < + oo

^x'n(o,5) r ?

Or equivalently ^ ^"^n < + °°*

( 1 \THEOREM 5. — If X c D -^)n3t is minimally thin at
/

0, then X' == ^(X) possesses finite logarithmic length, but the
converse does not hold in general.

Proof. —- We shall first prove the direct part. By making
use of the right side of inequality (ii) in the proof of theorem 1
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and reason as before, we obtain the inequality:

("•'> 1 + (n -1'log 2).. ? '•••

1 1which implies that — + (^ — log 2) ^ — if we ignore all
^n ^n

terms where a^ or Cn == 0.
Now define

iW •= ———— if 0 < r < 1

•0^
=0 if r = 0

Then y is strictly monotone increasing on [0,1). Since

^ < ^ < ^ therefore T (^) ^ Y(^n) ^ y(^) = ^, and

1 1 / 4 \it follows that — < -—,—.- == l o g ( — ) • Combining this
^ ^(^ ^{mj &

last inequality with the one above it follows that

— < log ( — ) + log 2 — n == log ( — ) — n
<^n \^n/ \^n/

which implies that
. ____1 _ 1 frn^

an i /8 \——— ~ , / 8 \ = Y \~S~)^si—) — n ^si—)^\mJ "V^n^/

for all natural numbers n. It follows that minimal thinness

at 0 implies that S Y (""FT') < + °° and since y(r) > r
n=i \ °y w me"

where r is sufficiently small it follows that ^ n < + oo.
The direct part follows. ,. , n-1

/ J- 4- T \For the converse part let Xn == ( — — ——> — 1 for each n.
, \^ M2^ e71/

Then ^m^ == -^ so that X' has finite logarithmic length,
Tt

but "-n == ̂  == -^ so that c, = ———— == — — 1 — — — .
4 n "̂ , /1 \ n + 2 log nMr)YW
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00

Hence 2 c, diverges and since <;„ < <r, it follows that X'
tl—I

fails to be minimally thin at 0. This proves theorem 5.

Remark. - Since f{r) > r~P for all natural numbers p

it follows Uiat if XcD^n3£ is minimally thin at 0,

therefore ^ {m^) P < 4- oo.
n=l

We shall now find a necessary and sufficient condition for a

( 1 \

set X c D y ^ n ^ to be minimally semithin at the origin.

THEOREM 6. - If X c D (y)n3t ^n X „ mmima^

semithin at 0 i'y7 lim (X^71) = 0.
n^oo

Proo/*. — For the necessity part we use inequality (vi)' in
the proof of theorem 5 to obtain

^+ re- log2^=log(- I-\
n °n \^n/

or

^<log^)+log2-n.

A / 0 \
It follows that — < log ( — — ) and therefore

an \^n6 /

^ ^ 1 - Y f^}
i / 2 \ - Y V 2 /
108 W v /

Since y(r) > r it follows that minimal semithinness implies
that lim (?i,e11) =0.

n^oo

For the sufficiency part we make use of inequality (vi)
in the proof of theorem 1 to obtain

^+(A+,.)^=lo^.
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1 / 1 \Therefore — + A ^ log ( —, ) so that if lim (X^") == 0
Cn V^/ ">00

then lim log ( — — ) === 4- °° and hence lim ( — ) == 4- oo or
n>oo \\e ) n>oo \ (T^ /

lim CT, == 0. This proves the sufficiency and the theorem.
n>oo

Remark. — Since — < \n < ^n therefore lim (m^") == 0,
4: n^oo

or equivalently m^ == o(-n-) if X is semithin at the origin.

This sharpens a result of Brelot and Doob [7], p. 406, corollaire.

COROLLARY. — If X is contained in the positive real axisy
then the properties of semithinness and of finite logarithmic
length are non comparable.

Proof of Corollary. — Suppose X is constructed so that Xn

is connected for each n and mn =—. Then X., == mn so
. 4 m?» n 4

that X^e" == — and hence lim (^n) =0 so that X is
n ao n>°o

semithin at 0 but S ^^n diverges so that X fails to be
of finite logarithmic length. We point out that if X is struc-
tured so that each X^ is connected, and if S is of finite
logarithmic length then X is semithin. We shall now see that
in general however, finite logarithmic length does not imply
semithinness. Let us construct X so that each X^ is a

[ 1 1 1Cantor set in ——? — |- Then m^ = 0 for each n so that^n+l ^nj

X is of finite logarithmic length, but 3a > 0 such that
^n > a for all n sufficiently large, [16], p. 106-108. Hence
lim X^" ^ a and it follows that X cannot be semithin at
n>oo

the origin.

Remark. — The properties of internal thinness, minimal
thinness, semithinness and finite logarithmic length are all

1preserved under the inversion mapping f{z) = — so that all
z

implications which have been proved at the origin hold equally
well at oo.
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4. Applications.

In 1949, Ahlfors and Heins, [I], published the following
result which we will call theorem B.

THEOREM B. — Let u be a subharmonic function whose
domain is the half plane D such that lim u{z) ^ 0 and

fz->Zo
\n('7\ ) Uoe?)D

sup ^-^zeD,.?^ Rez? ==oc < +00. It
f yy \C )

3i = {z = re19 e= D : 0 ^ 60 < 7r/2},

3 an r-set X' o/* finite logarithmic length such that the

expression lim ——L = a cos Q holds uniformly in Q where
r->w r

z e 3£:, and where r is restricted to lie oustside of X'«
After proving this result, they remarked that they were

uncertain as to whether or not the « finite logarithmic length »
character of theorem B could be improved [I], p. 345. One
of the basic tools introduced by Ahlfors and Heins in order
to obtain theorem B and other results was a concept, believed
by them to be new, which they called a P-L exceptional set.
A set X c D is defined to be P — L exceptional according
to Ahlfors and Heins if it is open and there exists a Green
potential U on D which dominates the function 9(2) == Rez
everywhere on X. We shall now note the following lemma due
to Brelot and published by Nairn, [15], p. 204, lemma 1. See
also [14], p. 139, theoreme, and [il], p. 313.

LEMMA 1. — Let G be a Green space, ZQ a minimal Martin
boundary point and 9(2) == M^ a minimal harmonic function
with pole at ZQ. If X c G, then R^ is either a Green potential
on G or the function 9 itself.

Remark.— From lemma 1, we obtain the following result
([II], p. 313) : An open set Xc D is P — L exceptional
according to Ahlfors and Heins iff it is minimally thin at oo
with respect to the half plane D.

If ZQ e AD we shall let ^ = {S c D : D — S is mini-
mally thin at Zo} be the trace on D of the filter of neigh-
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bourhoods of ZQ in the space D u AD endowed with the
fine topology of Nairn. For brevity we shall replace 3^ by
9 if ZQ = oo. We shall now mention a result of M"6 Leiong's,
([II], p. 144, theoreme Ic) which has been generalized by
Nairn ([15], theoreme 8'-17) and is applicable to the present
discussion. Even though the result is valid in more general
spaces we shall phrase it in terms of our two dimensional
notation.

THEOREM B\ — If v is a positive superharmonic function

on D such that inf \—L: z e D { == a ^ 0, then Urn ( —)-} = a.
( x } ^ \ x /

M1116 Leiong then observed that if v is a superharmonic
function which can be decomposed into the form:

v{z) == ^x + w{z)

where w is a non-negative superharmonic function such that

inf ^—^: j z e D ^ ==0 and (B is any real number, then
x

'v[zlimf^==P.
^ \ x /

She further remarked that a subharmonic function u
satisfies the Phragmen-Lindelof conditions imposed by Ahlfors
and Heins in theorem B iff (— u) == v is a superharmonic
function which is subject to the above mentioned decompo-
sition. When applied to subharmonic functions u of the
type considered by Ahlfors and Heins, M"*6 Leiong's result
can be phrased as follows :

THEOREM B". — If u is subharmonic on D and satisfies
the restrictions imposed in Theorem B, then

v /^Ahm | —— ) ==
^ \ ^ /

a.

Now suppose that z is restricted to the Stolz domain
3; = {z == re16: |6| ^ 60 < 7r/2}. Then it follows that

U Q , U 1 U ,.— — a cos 6 ^ — — a ^ ——— — — a cos 6
r x cos 9o r

If S?/3t is the trace of the filter 9 on 3i and F e ̂ /3t
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^ 1
COS QQ

norm on

uthen

where

u
x — — a cos 6r

a cos 6

F. Hence limIF means the sup
u
x

^
== 0. This last equiva-

u .— — a cos 6r =0 iff lim
^W

a
" II vf /*/»/ II ( I

lence of limits does not hold of course on the half plane itself.

Remark. — (see [6], p. 44). There exists E c D where E
is minimally thin at oo such that the limit along 9 of a
given function f on D is in fact the ordinary limit (i.e.
limit in Martin topology) of f as z -> oo on D — E.

LEMMA 2. — The « finite logarithmic length » character of
theorem B of Ahlfors and Heins can be improved.

Proof. — For any subharmonic function u restricted as
in theorem B and for any given angular domain 3t it follows

n _ - / ,\ 1 1uw
r

which

== 0. There exists an exceptionalthat lim
^

set X

a cos 6

must be a minimally thin set
lim

at oo
. Theand which is restricted to 3i such that lim ==

W ' 2->ao

•zeX—x
projected set X7 == ^(X) must also be minimally thin at oo
with respect to D. From theorem 5 and our remark at the
end of § 3, such a set must be of finite logarithmic length but
not conversely. The lemma follows.

One may regard the condition of « finite logarithmic length »
to be a kind of first approximation to minimal thinness. On the
other hand the condition of « finite logarithmic length » does
take on greater significance when theorem B is generalized
to the half plane itself. This is demonstrated by theorems 2
and 5 in a paper by Hayman [12].

5. Concluding Remarks.

It would appear to the author that the result contained
in theorem 4 cannot fail to exert a fundamental influence on
any future work that deals with a comparison of the internal
fine topology and the minimal fine topology. One would
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expect that some of Brelot's theorems can now be improved
(eg. [4], theoreme 5 and theoreme 5') from « almost every-
where » implication to « everywhere » implication at least in
many instances. This can certainly be done in his « particular
case » ([4], p. 10) where the boundaries under consideration
are sufficiently regular and can be identified, as in the case
of any ball or half space in R". We note in conclusion that
on any closed ball in R^M ^ 2), then the minimal fine
(Nairn) topology is strictly finer than the internal fine (Cartan-
Brelot) topology on R" relativized to the ball.
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