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TRIANGULATIONS OF NON-ARCHIMEDEAN
CURVES, SEMI-STABLE REDUCTION, AND

RAMIFICATION

by Lorenzo FANTINI & Daniele TURCHETTI

Abstract. — Let K be a complete discretely valued field with algebraically
closed residue field and let C be a smooth projective and geometrically connected
algebraic K-curve of genus g. Assume that g ⩾ 2, so that there exists a minimal
finite Galois extension L of K such that CL admits a semi-stable model. In this
paper, we study the extension L | K in terms of the minimal triangulation of
C, a distinguished finite subset of the Berkovich analytification C of C. We prove
that the least common multiple d of the multiplicities of the points of the minimal
triangulation always divides the degree [L : K]. Moreover, in the special case when
d is prime to the residue characteristic of K, then we show that d = [L : K],
obtaining a new proof of a classical theorem of T. Saito. We then discuss curves
with marked points, which allows us to prove analogous results in the case of elliptic
curves, whose minimal triangulations we describe in full in the tame case. In the
last section, we illustrate through several examples how our results explain the
failure of the most natural extensions of Saito’s theorem to the wildly ramified
case.

Résumé. — Soit K un corps discrètement valué complet avec corps résiduel algé-
briquement clos et soit C une K-courbe projective lisse, géométriquement connexe,
de genre g. Si l’on suppose g ⩾ 2 il y a une extension Galoisienne finie L|K mini-
male pour la propriété que le changement de base CL admet un modèle semistable.
Nous étudions l’extension L|K en utilisant la triangulation minimale de C : un
ensemble fini de points de l’analytification à la Berkovich C de C. Nous prouvons
que le plus petit multiple commun d des multiplicités des points de cette triangu-
lation minimale divise le degré de l’extension [L : K]. Lorsque d est premier avec la
caractéristique résiduelle de K, nous démontrons que d = [L : K], en déduisant une
nouvelle preuve d’un théorème classique de T. Saito. Nous discutons ensuite le cas
des courbes avec points marqués, ce qui nous permet d’obtenir des résultats ana-
logues pour les courbes elliptiques et de décrire complètement les triangulations
de ces dernières dans le cas modérément ramifié. Nous terminons en expliquant
grâce à nos résultats pourquoi les extensions plus naturelles du théorème de Saito
ne peuvent pas être vraies dans le cas sauvagement ramifié.

Keywords: Berkovich curves, Semi-stable reduction, monodromy, Galois theory.
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1. Introduction

Let R be a complete discrete valuation ring with algebraically closed
residue field k of characteristic char(k) = p ⩾ 0 and let K be the frac-
tion field of R. In this paper, we are interested in studying the structure
of smooth, projective, and geometrically connected curves over K, using
techniques of non-archimedean analytic geometry.

A classical tool for understanding such a K-curve C comes from the
celebrated semi-stable reduction theorem of Deligne and Mumford [9]. This
fundamental result, proven in 1969, states that, after a suitable finite base
field extension L of K, the curve C acquires semi-stable reduction over L,
that is there exists a model C of CL over the valuation ring of L whose
special fiber is reduced and has at worst nodal singularities. Such a model
is called a semi-stable model of CL.

Whenever the genus g(C) of C is at least 2, there exists a minimal Ga-
lois extension L of K such that C acquires semi-stable reduction over L.
The following question, which has been extensively studied in the last half
century, is therefore very natural.

Question. — What is the minimal Galois extension L of K such that
C acquires semi-stable reduction over L?

The situation is quite well understood whenever this minimal exten-
sion L | K is tamely ramified, that is its degree [L : K] is prime to
the residue characteristic p of K. Indeed, C acquires semi-stable reduc-
tion after a tamely ramified base field extension if and only if the special
fiber (Cmin−snc)k of the minimal regular strict normal crossings (snc) model
Cmin−snc of C over R satisfies the following condition: the multiplicity of
each principal component of (Cmin−snc)k is prime to p. Recall that an ir-
reducible component of (Cmin−snc)k is said to be principal either if it has
positive genus or if it intersects the rest of the special fiber of Cmin−snc in
at least three points.

This criterion is a simple reformulation of a result proven by T. Saito
(see [27, Theorem 3.11]). Moreover, in this case Halle [14, Theorem 7.5]
proved that the minimal extension L of K such that C acquires semi-stable
reduction over L is the unique tamely ramified extension of K whose degree
is the least common multiple of the multiplicities of the principal compo-
nents of (Cmin−snc)k.

However, in the general case, that is when it is required to perform a
wildly ramified base change of K, the question remains very poorly under-
stood. Indeed, in this case there appears to be no simple generalization of
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TRIANGULATIONS OF NON-ARCHIMEDEAN CURVES 697

Saito’s criterion that can hold true, as in general the degree of L | K does
not divide nor is divisible by the least common multiple of the multiplicities
of the principal components of (Cmin−snc)k. Some conditions have conjec-
turally been proposed by Lorenzini [17], but only partial results have been
obtained, by Raynaud [26] and Obus [23], in the special case of a Galois
covering of the projective line with cyclic p-Sylow group. This suggests that
the minimal regular snc model of C is not the correct object to look at in
order to approach the question.

In this paper, we propose to study this problem using tools of non-
archimedean analytic geometry. Denote by C the analytification of C, that
is the non-archimedean analytic curve associated with C, in the sense of
Berkovich theory [3]. The analytic curve C is a Hausdorff, locally compact,
and locally contractible topological space, whose global structure is deeply
related to the combinatorics of the R-models of C and hence to the semi-
stable reduction theorem. Indeed, with each component of the special fiber
of a normal model of C over R we can associate a valuation which is a point
of C. Such points are called type 2 points of C, and with every vertex set
of C, that is a finite non-empty set of type 2 points of C, we can conversely
associate a (possibly singular) normal R-model of C. Building upon results
of Bosch–Lütkebohmert [5] (who worked within the framework of Tate’s
rigid geometry), this approach allows to deduce that C admits semi-stable
reduction over K if and only if C can be decomposed as a disjoint union of a
vertex set, finitely many open annuli, and a family of open discs. This point
of view can be exploited to deduce new proofs of Deligne and Mumford’s
theorem (see [5], [31], and [12]).

From this viewpoint, the semi-stable reduction theorem is equivalent to
the existence of a vertex set of C such that the connected components of
its complement become isomorphic to discs and annuli after a finite base
change. More precisely, we call virtual disc any connected K-analytic space
that becomes isomorphic to a union of open discs, and virtual annulus any
connected K-analytic space that becomes isomorphic to a union of open
annuli, after passing to a finite separable extension L of K. Whenever such
an extension L of K, which is said to trivialize the virtual disc or annulus, is
tamely ramified, the K-analytic space we started with is well understood: in
the case of virtual discs, this was studied by Ducros [11] and Schmidt [28],
while the case of virtual annuli was the object of a previous work by the
authors [13] (see also [6]). In particular, tamely ramified virtual annuli are
determined by whether they have one or two boundary points (or rather,
more precisely, one or two ends).
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698 Lorenzo FANTINI & Daniele TURCHETTI

A triangulation of C is then defined as a vertex set whose complement
in C consists of virtual discs and virtual annuli. This generalizes slightly a
notion due to Ducros [10, 12], who additionally required the annuli among
the components of C \ V to have two ends; we opted to modify Ducros’s
terminology and call this more restrictive version a strong triangulation
of C. The starting point of the investigation of the present article is the
fundamental fact that there exists a unique triangulation Vmin−tr of C that
is minimal under inclusion. As a consequence, it is simple to show that the
minimal extension L of K such that C acquires semi-stable reduction over
L is the minimal extension that trivializes all the connected components of
C\Vmin−tr (see Proposition 5.7), regardless of whether L is tamely ramified
over K or not. For this reason, the minimal triangulation Vmin−tr of C, and
its associated R-model, encodes the information needed to describe the
extension L | K even when the minimal regular snc model fails to do so.
Note that a unique minimal strong triangulation Vmin−str of C also exists,
but it is not as well-behaved under base change.

Observe that, if x is a type 2 point of C, then the multiplicity of the
exceptional component associated with x in a suitable R-model of C does
not depend on the choice of the model, but only on the point x (this mul-
tiplicity can also be seen as the index of the value group of K in the value
group of the completed residue field, in the sense of Berkovich’s theory, at
the point x). We denote this multiplicity by m(x). Our first main result is
the following.

Theorem (see Theorem 5.2). — Let C be the analytification of a geo-
metrically connected, smooth, and projective algebraic K-curve C of genus
at least 2. Let Vmin−tr be the minimal triangulation of C and let L be the
minimal Galois extension of K such that C acquires semi-stable reduction
over L. Then

lcm{m(x) | x ∈ Vmin−tr}
∣∣∣ [L : K].

We obtain this result by studying the behavior of multiplicities under
base change (see Proposition 2.1) and proving that the multiplicity of a
type 2 point at the boundary of a disc or annulus must be one.

Moreover, we prove that the extension L of K in the theorem above
is tamely ramified if and only if the residue characteristic of K does not
divide the least common multiple in the statement, in which case the latter
actually coincides with the degree of L | K (see 5.2(ii)). This allows to
approach the classical Saito’s criterion via a careful study of the vertex
sets associated with the snc models of C (see Section 6), by relating the
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minimal strong triangulation Vmin−str of C to the minimal regular snc R-
model Cmin−snc of C in the tame case. Namely, we prove the following result.

Theorem (see Theorem 7.5). — Let C be the analytification of a geo-
metrically connected, smooth, projective algebraic K-curve C of genus at
least 2. Assume that C acquires semi-stable reduction after a tamely rami-
fied extension of K. Then the minimal strong triangulation of C is the set
of type 2 points associated with the principal components of the special
fiber of the minimal regular snc model of C over R.

Moreover, we deduce from this result Halle’s effective version of Saito’s
criterion (see Corollary 7.6).

We prove the Theorem by first showing that the vertex set associated
with the minimal regular snc model Cmin−snc of C is a triangulation, and
then merging together virtual discs and annuli adjacent to non-principal
type 2 points, which can be done thanks to Ducros’ Fusion Lemmas (see
Lemma 3.6).

In Section 8 we turn our attention to the study of elliptic curves. While
curves of genus less than two have no unique minimal triangulation, and no
unique minimal extension of K yielding semi-stable reduction exists, both
problems can be resolved by endowing them with a finite set of marked
rational points. For example, in the case of an elliptic curve it is sufficient
to mark its origin, and a unique minimal triangulation exists as soon as we
require this point to be contained in a virtual disc rather than a virtual
annulus. By slightly modifying our approach to include marked points,
both theorems above can be proven in the case of elliptic curves. This gives
us an interesting class of concrete examples. Indeed, in Subsections 8.1
and 8.2 we describe completely the minimal triangulation and the minimal
strong triangulation of an elliptic curve in terms of its reduction type.
Conversely, we also show that the knowledge of the minimal triangulation
of an elliptic curve, together with the isomorphism class of one component
of its complement, is sufficient to retrieve the reduction type.

If L is wildly ramified over K, then in general neither Vmin−tr nor Vmin−str
contain, nor they are contained in, the set of type 2 points associated with
the principal components of (Cmin−snc)k. This has several different explana-
tions: examples discussing those pathologies are given in Section 9. These
include virtual discs whose minimal snc model has special fiber containing
a principal component, and points that are associated with a rational curve
in the special fiber of a R-model but become associated with a curve of pos-
itive genus after some base change; two phenomena that can only appear
in the wildly ramified case. The singularities of the connected components
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of C \ Vmin−tr form a wide class of examples of the so-called wild quotient
singularities, and are therefore quite far from being understood; only a few
very special cases have been recently investigated (see [18] and [24]). We
believe that an approach via minimal triangulations can improve our un-
derstanding of this topic. Minimal triangulations seem to be better suited
than snc models to study the problem of semi-stable reduction in the wildly
ramified case; we are convinced that in the future the approach proposed
in this paper will contribute to shed some light on wild ramification.

Notation. — Let K be a complete discretely valued field, let R be its
valuation ring and k its residue field, and assume that k is algebraically
closed. Denote by π a uniformizer of R and endow K with the π-adic
absolute value such that |π| = e−1. Denote by p the characteristic exponent
of k (that is, p = 1 if char(k) = 0 and p = char(k) otherwise).

Let C be a geometrically connected, smooth, and projective algebraic
curve of genus g over K and assume that g ⩾ 2. Finally, let C be the non-
archimedean K-analytic curve associated with C, in the sense of Berkovich
theory.
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2. Non-archimedean curves

In this section, we introduce non-archimedean curves and semi-affinoid
spaces, and prove a simple result on the behavior of multiplicities of points
under base change (Proposition 2.1).

In this paper a curve X is a separated quasi-smooth strictly K-analytic
space of pure dimension one, in the sense of Berkovich’s theory of non-
archimedean analytic geometry. In practice, all the analytic curves that
we consider in this paper will be either the analytification C = Can of a
smooth and projective algebraic curve C over K, or an open subspace of
such a curve.

As our base field K is not algebraically closed, throughout the paper we
will often make use of the following general result [3, Proposition 1.3.5.(i)].
If X is a K-analytic space and L is a finite Galois extension of K then the
Galois group Gal(L | K) of L | K acts continuously on the base change XL

of X to L via automorphisms, and the base change morphism induces an
isomorphism XL

/
Gal(L | K)

∼−→ X.

A point x of a curve X is said to be a type 2 point if the residue field
H̃ (x) of the complete residue field H (x) at x is transcendental over k.
If x is a type 2 point of X, then by Abhyankar inequality the transcen-
dence degree of H̃ (x) over k is equal to 1 and the quotient of value groups
|H (x)×|/|K×| is finite. The index

[
|H (x)×| : |K×|

]
is called the multi-

plicity of x and denoted by m(x).

Proposition 2.1. — Let L be a finite, separable extension of K of
degree d, let τ : XL → X be the base change morphism, let y be a type 2
point of XL and set x = τ(y). Then m(x) ⩾ m(y) and m(x)

gcd(m(x),d) divides
m(y). If L | K is tamely ramified or p does not divide m(x), then m(y) =

m(x)
gcd(m(x),d) .

Proof. — We have the following equalities of indices:[
|H (y)×| : |K×|

]
=

[
|H (y)×| : |L×|

]
·
[
|L×| : |K×|

]
= m(y) · d

=
[
|H (y)×| : |H (x)×|

]
·
[
|H (x)×| : |K×|

]
=

[
|H (y)×| : |H (x)×|

]
·m(x).

It follows that, since
[
|H (y)×| : |H (x)×|

]
⩽

[
H (y) : H (x)

]
⩽ [L :

K] = d, we have m(x) ⩾ m(y). Moreover, the group |H (y)×| contains
the absolute values of the uniformizers of L and H (x), which respectively
have order d and m(x) in the quotient |H (x)×|/|K×|. As a consequence,[
|H (y)×| : |K×|

]
is a multiple of lcm

(
d, m(x)

)
= d·m(x)

gcd(m(x),d) , which is
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to say that m(x)
gcd(m(x),d) divides m(y), and the first part of the proposition

is proved. Moreover, observe that the equality holds if and only if the
value group |H (y)×| is generated by |L×| and |H (x)×| over |K×|. Let
us show that this is the case under the assumption that L | K is tamely
ramified. In this case, we have L = K[Z]

(Zd−π) and, since the residue field k

of K is algebraically closed, L is a Galois extension of K. We now study
two situations that complement each other. First, we suppose that H (x)
contains L. Since L | K is Galois, we have that H (x)⊗̂KL ∼=

⊕d
i=1 H (x),

so that H (y) = H (x). It follows that

m(y) = m(x)
d

= m(x)
gcd(m(x), d) .

At the opposite side of the picture, if H (x) ∩ L = K then

H (y) ∼=
H (x)[Z]
(Zd − π) .

Then, the needed result is a consequence of the fact that in H (y) we have∣∣∣∑d−1
i=0 λiϖ

i
∣∣∣ = max{|λi||ϖi|} for every d-uple (λi) in H (x)d. This can

be proved using Temkin’s theory of graded reduction by observing that
the set {1, ϖ, . . . , ϖd−1} is a basis for the extension of graded reductions
H̃ (y) | H̃ (x), a fact proven in [11, 2.21] (see the totality of section 2 of
loc. cit, and in particular Lemma 2.3, for the relevant definitions in graded
algebra). The case of a general tamely ramified extension can be deduced
by considering first the base change of X from K to H (x)∩L, which being
tamely ramified is itself Galois over K because the latter contains all prime-
to-p roots of unity, and then the base change from H (x)∩L to L. Finally, if
L | K is arbitrary and p does not divide m(x), then we can prove the claim
at the end of the statement by splitting the extension L | K as a purely
wildly ramified extension of the maximally tame extension of K. Indeed,
in the first case we have gcd(m(x), d) = 1 and thus m(x) divides m(y) by
the first part of the proposition, so that the inequality m(y) ⩽ m(x) is in
fact an equality, while the tame case has been previously treated. □

With each type 2 point x of a K-curve X we can associate a numerical
invariant, its genus, as follows. The set y1, . . . , yn of points above x in the
base change X

K̂alg of X to K̂alg is finite by [12, 4.5.1] (or [7, Lemma 1.1.5]).
The group Aut

(
K̂alg | K

)
of continuous automorphisms of K̂alg fixing K

acts via isomorphisms on X
K̂alg , inducing a transitive permutation on the

set {yi} and hence isomorphisms H (yi) ∼= H (yj) for every i and j. We
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TRIANGULATIONS OF NON-ARCHIMEDEAN CURVES 703

define the genus g(x) of x to be the genus of the unique smooth projective
k̃-curve whose function field is H̃ (yi).

Let us quickly recall some basic facts about an important class of K-
analytic spaces, that of semi-affinoid spaces. We will adopt an ad hoc point
of view in order to keep things as simple as possible; a more thorough
treatment and further references can be found in [13, Section 2].

Let Dm,n = Dm
K ×K (D−

K)n be the product of the m-dimensional K-
analytic closed unit disc with the n-dimensional K-analytic open unit disc,
that is the subset of the (n+m)-dimensional K-analytic affine line Am+n,an

K

cut out by the inequalities |Yi(x)| ⩽ 1 for all i = 1, . . . , m and |Yi(x)| < 1
for all i = m + 1, . . . , m + n, where the Yi’s are coordinates on Am+n,an

K .
Denote by

O◦(Dm,n) = R{Y1, . . . , Ym}[[Ym+1, . . . , Ym+n]]

the algebra of the analytic functions on Dm,n that are bounded by 1 in
absolute value. A semi-affinoid K-analytic space U is any space of the form

U = Um,n,(f1,...,fr) = V (f1, . . . , fr) ⊂ Dm,n,

for some integers m, n ⩾ 0 and analytic functions f1, . . . , fr ∈ O◦(Dm,n),
where V (f1, . . . , fr) denotes the zero locus of the functions fi in Dm,n.

Let U = Um,n,(f1,...,fr) be a semi-affinoid K-analytic space and consider
the R-algebra

A = Am,n,(f1,...,fr) = R{Y1, . . . , Ym}[[Ym+1, . . . , Ym+n]]
(f1, . . . , fr) .

Any such algebra is usually called a special R-algebra. Assume that the
algebra A is reduced, so that U is a reduced K-analytic space. Then, the
integral closure of A in the K-algebra A ⊗R K coincides with the set of
analytic functions on U that are bounded by 1 in absolute value (and so
in particular it does not depend on m, n, and (f1, . . . , fr), but only on
the isomorphism class of U). It has a natural R-algebra structure and we
denote it by O◦(U). The R-algebra O◦(U) determines the semi-affinoid
space U completely: O◦(U) ∼= Am′,n′,(g1,...,gr′ ) is itself a special R algebra
and U ∼= Um′,n′,(g1,...,gr′ ) (see [13, Lemma 2.2]).

The good point of view for studying semi-affinoid spaces is that of formal
schemes. Indeed, a special R-algebra A as above is a noetherian adic topo-
logical ring, with ideal of definition J generated by the uniformizer of R

and by the coordinate functions Ym+1, . . . , Yn+m, so that we can consider
its formal spectrum Spf(A) = lim−→n

Spec(A/Jn). The semi-affinoid space U

is then the K-analytic space associated with Spf(A), as in [15, Section 7]
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and [4, Section 1]. We call the formal scheme Spf
(
O◦(U)

)
the canonical

model of U .
Given a connected K-analytic curve X, we define its field of constants

s(X) as

s(X) =
{

f ∈ OX(X)
∣∣ P (f) = 0 for some P ∈ K[T ] separable

}
.

It is a finite separable field extension of K which is contained in the sub-
algebra of OX(X) and consists of those functions that are constant on X.
The degree [s(X) : K] coincides with the number of connected components
of X ×K s(X), and hence of the base change of X to the algebraic closure
of K. In particular, if X has a L-rational point for some finite separable
extension L of K then s(X) is contained in L.

Since the non-archimedean field s(X) is contained in the K-algebra
OX(X), the K-analytic space X has also a natural structure of an s(X)-
analytic space. We denote by Xs this s(X)-analytic space. Since Xs is
geometrically connected, this procedure often gives a convenient way to
avoid having to deal with curves that are not geometrically connected. In-
deed, if L is a Galois extension of K containing s(X), then the base change
X ×K L of X to L is isomorphic to [s(X) : K]-many copies of Xs ×s(X) L.
If moreover X is a semi-affinoid space, then s(X)◦ is the integral closure
of R in O◦(X), and Xs is naturally a semi-affinoid space as well simply by
seeing O◦(X) as a special s(X)◦-algebra.

With each x ∈ X we associate the largest subfield s(x) of H(x) that is
separable over K. We consider the map

s : X −→ N
x 7−→ [s(x) : K],

which we call the splitting function of X. For every semi-affinoid subspace
U of X containing x and every constant function f ∈ s(U), the evaluation at
x produces an element f(x) ∈ s(x). This induces an injection s(U) ↪→ s(x).
Moreover, the local ringOX,x being Henselian, it contains s(x), and so there
exists a semi-affinoid neighborhood U of x contained in X such that s(x) =
s(U). As a consequence, the splitting function s is lower semi-continuous
on X. Observe that from the discussion above it follows that s(x) is the
cardinality of the preimage of x in the base change X

K̂alg of X to K̂alg.
Given a connected open K-analytic curve X, the number of connected

components of X \{Y }, where Y is a compact subset of X, does not depend
on Y if Y is big enough. This allow us to define the set of ends of X as

Ends(X) = lim←−
Y

π0(X \ Y ).

ANNALES DE L’INSTITUT FOURIER



TRIANGULATIONS OF NON-ARCHIMEDEAN CURVES 705

If ε ∈ Ends(X) is an end of X, then it can be represented by a family
(Un)n∈N of connected open subsets Un of X such that Un+1 ⊂ Un for every
n and ∩n Ends(Un) = {ε}.

Let ε ∈ Ends(X) be an end of X. The field of constants s(Un) of Un

does not depend on the choice of a representative (Un)n of ε as above nor
on Un if n is big enough. We denote this field by s(ε) and call it the field
of constants of ε. Its degree [s(ε) : K] over K counts the number of ends
of X

K̂alg above ε.

3. Virtual discs and virtual annuli

In this section we introduce two very important families of semi-affinoid
K-analytic spaces, namely virtual discs and virtual annuli, give several
examples of those and discuss some of their fundamental properties.

Definition 3.1 (Discs and annuli). — Let X be a K-analytic curve.
(i) We say that X is an open disc (or simply disc) over K if it is

isomorphic to

DK =
{

x ∈ A1,an
K

∣∣ |T (x)| < 1
}

,

where T denotes the standard coordinate function on A1,an
K .

(ii) We say that X is an open annulus (or simply annulus) over K if it
is isomorphic to

An,K =
{

x ∈ A1,an
K

∣∣ |πn| < |T (x)| < 1
}

for some n ∈ N.

Note that the disc DK is the semi-affinoid K-analytic space associated
with the special R-algebra RJT K, while the annulus An,K is the semi-affinoid
K-analytic space associated with the special R-algebra RJS, T K/(ST −πn).
A disc and an annulus are depicted in Figure 3.1 below.

Definition 3.2 (Virtual discs and virtual annuli). — Let X be a con-
nected semi-affinoid curve over K.

(i) We say that X is a virtual open disc (or simply a virtual disc) if
there exists a finite separable extension L of K such that XL =
X ×K L is a disjoint union of open discs over L.

(ii) We say that X is a virtual open annulus (or simply a virtual an-
nulus) if there exists a finite separable extension L of K such that
XL is a disjoint union of open annuli over L.

In both cases, we say that X is trivialized by L.
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A1,an
K

0 π3
π2

π

[
√

π]

1

1 + π3 {
|T (x) − 1| < |π3|

}
disc

A2,K =
{

|π2| < |T (x)| < 1
}

annulus

Figure 3.1. A disc, in blue, and the annulus A2,K , in red, seen as
subspaces of A1,an

K .

Let X be a virtual disc (respectively a virtual annulus) over K, trivialized
by L. Since discs and annuli are geometrically connected, s(X) embeds in
L. The curve Xs being geometrically connected, its base change Xs×s(X) L

to L is then a disc (respectively an annulus) over L. Conversely, any K-
analytic curve X such that Xs becomes a disc (respectively an annulus)
after a finite separable base field extension L′ of s(X) is a virtual disc
(respectively a virtual annulus) since X ×K L′ consists of a finite number
of copies of Xs ×s(X) L′.

It follows from the definition that any disc has one end and any an-
nulus has two ends. Let X be a virtual disc or a virtual annulus trivi-
alized by a finite Galois extension L of K. Since X is homeomorphic to
Xs, by replacing the former with the latter we can assume that X is ge-
ometrically connected. Then Gal(L | K) acts on Ends(XL) and we have
Ends(X) ∼= Ends(XL)/Gal(L | K). Therefore, if X is a virtual disc then
Ends(X) consists of a single point. On the other hand, if X is a virtual an-
nulus then Ends(X) consists of two points if the two elements of Ends(XL)
are fixed by every element of Gal(L | K), and of a single point otherwise.

We caution the reader on our terminology here, since it differs from the
one of [12]. Indeed, in loc. cit. virtual annuli are required to have two ends,
which is not the case here. In turn, in the next section this will lead us to
a definition of triangulation different than the one of loc. cit..

Discs and annuli are connected, contractible special quasi-polyhedrons,
in the sense of [3, Section 4.1]. If X is an annulus, then we call skeleton
of X the real open interval connecting the two ends of X, and we denote
it by Σ(X). It follows readily from the definition of annulus that Σ(X)
coincides with the analytic skeleton of X, which is the set of points of X
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that have no neighborhood in X isomorphic to a virtual disc, and with
the topological skeleton of X, which is the set of points of X that have no
neighborhood in X homeomorphic to a real tree with one end. Moreover,
X admits a strong deformation retraction onto Σ(X) which is topologically
a proper map (this follows for example from [3, Proposition 4.1.6]). Now,
let X be a virtual annulus trivialized by an extension L of K, denote by
τ : XL → X the base change morphism, and set Σ(X) = τ

(
Σ(XL)

)
, where

Σ(XL) is the union of the skeletons of the components of XL. The action
of the Galois group Gal(L | K) of L over K fixes Σ(XL) and identifies
Σ(X) with the quotient Σ(XL)/Gal(L | K). To understand this quotient,
by replacing the virtual annulus X with Xs we can assume without loss of
generality that X is geometrically connected, so that Σ(XL) is a single line
segment. Then the action of an element σ of Gal(L | K) on Σ(XL), being
a continuous automorphism of finite order, is either the identity or a non-
trivial involution permuting the ends of the line segment. In both cases
Σ(X), which we call again skeleton of X, is itself a line segment (either
open or semi-open) which coincides with the analytic skeleton of X. In the
first case Σ(X) is also the topological skeleton of X, while in the second
case the analytic structure of X is necessary to determine it. It follows
again by [3, Proposition 4.1.6] that X admits a topologically proper strong
deformation retraction onto Σ(X).

Let X be a virtual annulus with two ends, so that the skeleton Σ(X)
of X is the open line segment connecting the two ends, and let x be a
point of Σ(X). Then s(x) = s(X). To see this, we can assume without
loss of generality that X is geometrically connected, since s(x) is also the
constant field of x seen as a point of Xs. Then our claim follows from the
fact that [s(x) : K] is the number of preimages of x in the skeleton Σ(XL)
of the annulus XL, where L is a finite extension of K trivializing X, and we
have already seen that in this case the Galois group of L | K fixes Σ(XL)
point-wise.

Let X be a virtual annulus with one end, so that the skeleton Σ(X)
of X is a semi-open line segment connecting the end of X to a point x

of Σ(X). We call the point x the bending point of X. Then it follows
from the discussion above that the connected component of X \ {x} that
intersects Σ(X) nontrivially is a virtual annulus with two ends, while all
other connected components are virtual discs. If we assume again that X

is geometrically connected, then every point y of the skeleton Σ(X) of X

different from the bending point x has two distinct inverse images in the
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base change X
K̂alg of X to K̂alg (that is, s(y) = 2), while x has one (that

is, s(x) = 1), as is depicted in the example of Figure 3.2.

Examples 3.3. — We begin by giving some examples of geometrically
connected virtual discs and annuli, chosen among the ones that will play a
relevant role in the rest of the paper.

(i) Consider the subspace

X =
{

x ∈ A1,an
K

∣∣ |T (x)| < |π|1/d
}

of the analytic affine line A1,an
K . It is the semi-affinoid space asso-

ciated with the special R-algebra RJS, T K/(πS − T d). This is what
we call a fractional disc over K. Observe that X has a K-rational
point, hence in particular s(X) ∼= K. Its boundary in A1,an

K consists
of a single point of multiplicity d. There exists a finite separable
field extension L of K such that L contains an element ϖ of abso-
lute value |ϖ| = |π|1/d (for example, if d is prime with the residue
characteristic of K or if K is perfect we can take for ϖ a d-th root
of π), then XL is the disc

{
x ∈ A1,an

L

∣∣ |T (x)| < |ϖ|
}

over L, and
so X is a virtual disc.

(ii) Any geometrically connected virtual disc over K that is trivialized
by a tamely ramified extension of K is of the form described in the
previous example. This follows from [11, Théorème 3.5].

(iii) Any geometrically connected virtual annulus X over K with two
ends that is trivialized by a tamely ramified extension of K is of
the form

X =
{

x ∈ A1,an
K

∣∣ |π|β < |T (x)| < |π|α
}

for some α, β ∈ Q, as proved in [13, Theorem 8.1]. This is what we
call a fractional annulus over K.

(iv) Suppose that K is of mixed characteristic (0, p) and consider the
subspace X of A1,an

K defined as

X =
{

x ∈ A1,an
K

∣∣ |(T p − π)(x)| < |π|
}

.

Then X is the semi-affinoid K-analytic curve having special R-
algebra RJU, V K/(Up − π − πV ). Its boundary in A1,an

K consists of
the point x on the path from 0 to the Gauss point satisfying |T (x)| =
|π|1/p, which has multiplicity p. After choosing a p-th root ϖ of π

and performing a base change to the wild extension L = K(ϖ) of
K, the space XL is isomorphic to the disc

XL =
{

x ∈ A1,an
L

∣∣ |(T −ϖ)(x)| < |ϖ|
}
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of center ϖ and radius |ϖ| = |π|1/p, since the distance between two
distinct p-th roots of π is smaller than |ϖ|. However, despite being
geometrically connected, the virtual disc X is not itself a disc with a
rational radius as in (i), since it has no rational point over K. More
generally, other examples of virtual discs trivialized by a wildly
ramified extension of K can be produced by picking an Eisenstein
polynomial P (S) ∈ R[S] of degree pn and considering the special R-
algebra RJS, T K/

(
P (S)−πT

)
. The associated semi-affinoid space is

a virtual disc trivialized by the extension K[S]/
(
P (S)

)
. Examples

of geometrically connected virtual discs over K that are not discs
and yet have a K-rational point also exist, see for example [11,
3.8.2].

Let X be a connected semi-affinoid curve over K. If Xs is isomorphic to
a fractional disc

{x ∈ A1,an
s(X)

∣∣ |T (x)| < ρ
}

for some ρ ∈
√
|K×|, then X is a virtual disc which we call generalized

fractional disc. If Xs is isomorphic to a fractional annulus{
x ∈ A1,an

s(X)
∣∣ ρ1 < |T (x)| < ρ2

}
for some ρ1, ρ2 ∈

√
|K×|, then X is a virtual annulus which we call gener-

alized fractional annulus.

Examples 3.4. — Here are some examples of generalized fractional discs
and annuli.

(i) Let m be a positive integer prime with the residue characteristic of
K. Similarly as in Example 3.3(iv), the subspace X of A1,an

K defined
as

X =
{

x ∈ A1,an
K

∣∣ |(T m − π)(x)| < |π|
}

.

is a semi-affinoid K-analytic curve associated with the special al-
gebra RJU, V K/(Um − π − πV ), whose boundary in A1,an

K consists
of a point of multiplicity m. However, unlike in the case of Exam-
ple 3.3(iv), if ϖ and ϖ′ are two distinct m-th roots of π in K̂alg,
then |ϖ − ϖ′| = |ϖ|, and hence the base change XL of X to the
tamely ramified extension L = K(ϖ) of K is

XL =
⋃

ζm=1

{
x ∈ A1,an

L

∣∣ |(T − ζϖ)(x)| < |ϖ|
}

,

which is a disjoint union of m discs over L. In particular, we deduce
that the field of constants s(X) of X is L and that X is a generalized
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fractional disc. This can also be seen by observing that there exists
an isomorphism of special R-algebras

RJU, V K/(Um − π − πV )→ RJS, T K/(Sm − π),

defined by sending U to S(1+T )1/m and V to T . These two algebras
are not isomorphic in the situation of Example 3.3(iv), as can be
expected since the one on the right contains the constant function
S. A picture of such a virtual disc for m = 2 is given on the left of
Figure 3.2

(ii) Let α and β be two rational numbers with β > α ⩾ 1 and let d be
a positive integer prime with the residue characteristic of K. Then
the subspace of A1,an

K of the form

X =
{

x ∈ A1,an
K

∣∣ |π|β < |(T d − π)(x)| < |π|α
}

is a generalized fractional annulus. Its field of constants is s(X) =
K(π1/d) and its ends have multiplicities da and db, where a and b

are the smallest positive integers such that aα and bβ are integers.
Indeed, over s(X) we have

Xs
∼=

{
x ∈ A1,an

s(X)
∣∣ |π|β/d < |T (x)| < |π|α/d

}
.

(iii) It follows easily from Examples 3.3(ii) and 3.3(iii) that any virtual
disc (respectively virtual annulus with two ends) over K trivialized
by a tamely ramified extension of K is a generalized fractional disc
(respectively a generalized fractional annulus).

Example 3.5. — Let n > 1 be an integer, assume that the residue char-
acteristic of K is different from 2, and consider the subspace of P1,an

K de-
fined by

X = {x ∈ P1,an
K

∣∣ |(T 2 − π)(x)| > |π|n}
and depicted at the bottom-right of Figure 3.2. The complement of X in
P1,an

K is a closed version of a generalized fractional disc analogous to the
one of Example 3.4(i) (with m = 2 and the radius raised to the power
n). It follows that the base change XL of X to the quadratic extension
L = K(

√
π) of K is the complement in P1,an

K of two closed discs, which is
an annulus. Since X has only one end, as its boundary in P1,an

K consists of a
single point, this shows that X is a virtual annulus with one end, trivialized
by L. In fact, we have shown in [13, Theorem 8.3] that, whenever the
residue characteristic of K is different from two, any virtual annulus with
one end that is trivialized by a quadratic extension of K is isomorphic to
the K-analytic space X (for some choice of n > 1). The explicit equations
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appearing in loc. cit. also show that X is the semi-affinoid K-analytic space
associated with the special R-algebra

RJS, T, UK/(S2 − U + πn, πU − T 2).

0 π

[
√

π]

1

(1)

(2)

(1)

base change

0 π

−
√

π
√

π

1

(1)

(1)

(1)

0 π

[
√

π]

[
√

π + πn/2]
1

(1)

(2)

(1)

base change

0
π

√
π

√
π + πn/2

−
√

π

−
√

π + πn/2
1

(1)

(1)

(1)

Figure 3.2. The bottom half of the figure depicts the virtual disc of
Example 3.4(i) with m = 2 (on the left) and the virtual annulus with
one end of Example 3.5 (on the right). They are both trivialized by
the base change to K(

√
π), as shown in the top half of the figure. The

numbers between parentheses denote the multiplicities of the nearby
type 2 points, and the skeletons of the virtual annulus and of its triv-
ialization are depicted in bold.

More generally, let X be a virtual annulus with one end, denote by x the
bending point of X, and suppose that X is trivialized by a tamely ramified
extension L of K. Then we claim that the multiplicity of m(x) divides
the degree [L : K] of L over K, which has to be even by the existence
of an element in Gal(L | K) of order 2. Then, thanks to Proposition 2.1
and in the terminology of [13], our claim is equivalent to the fact that
the connected components of XL are annuli of even modulus. If L is a
quadratic extension of K, our claim is contained in [13, Theorem 8.3], and
corresponds to the case shown on the bottom-right part of Figure 3.2. In
the general case, up to replacing K with s(X) we can assume that X is
geometrically connected. Let us first show that X can be embedded in P1,an

K .
The connected component Y of X \ {x} that intersects Σ(X) nontrivially
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is a virtual annulus with two ends that over L becomes a disjoint union of
two fractional annuli. In particular, by [13, Theorem 8.1], and as already
discussed in 3.3(iii), Ys is a fractional annulus over the field of constants
s(Y ) ∼= K[T ]/(T 2 − π) of Y . It follows that Y is a generalized fractional
annulus, that is there exist constants α, β ∈ Q such that Y is isomorphic
to the subspace

Y ′ =
{

y ∈ A1,an
K

∣∣ |π|β < |(T 2 − π)(y)| < |π|α
}

of A1,an
K . Set

X ′
α =

{
y ∈ A1,an

K

∣∣ |(T 2 − π)(y)| < |π|α
}

and
X ′

β =
{

y ∈ P1,an
K

∣∣ |(T 2 − π)(y)| > |π|β
}

.

Both X ′
α and X ′

β contain, adjacent to their unique end, the fractional
annulus Y ′. Now, if when approaching the bending point x the function
|T 2 − π| on Y tends to |π|α, then X and X ′

β can be glued along Y ∼= Y ′.
On the other hand, if that function tends to |π|β , then it is X and X ′

α that
can be glued along Y ∼= Y ′. In both cases, we obtain a proper curve X ′′ of
genus 0 that contains X as an open subspace. By [12, Théorème 3.7.2] X ′′

is the analytification of an algebraic projective curve of genus 0 over K,
that is, a conic. Since the residue field of K is algebraically closed, there is
a rational point on the special fiber of a suitable model of X ′′ that, thanks
to Hensel’s lemma, can be lifted to a K-rational point in X ′′. As a result,
X ′′ ∼= P1,an

K , and so X ⊂ X ′′ can be embedded in P1,an
K . Since Y is trivialized

by a tamely ramified extension of K, up to an automorphism of P1,an
K we can

assume that such an embedding identifies Y ⊂ X with Y ′ ⊂ P1,an
K . It follows

that X is identified either with X ′
β or with X ′

α. Since X is geometrically
connected, the latter is not possible, and therefore X ∼= X ′

β . In particular,
it is now easy to see that the bending point x of X has multiplicity 2 (it is
the same of the one in Figure 3.2) and hence divides the degree [L : K].

In the next sections we will often make use of the following three results
in order to prove that some semi-affinoid curve is a virtual disc or a virtual
annulus. The first two are reformulations of results proved by Ducros in [12],
while the third is a consequence of the second one.

Fusion Lemmas 3.6. — Let X be a connected semi-affinoid open K-
curve, and let x be a point of X of genus zero such that X \ {x} is the
disjoint union of two subspaces X ′ and X ′′ and of virtual discs. Then:

(i) if X ′ is a virtual disc and X ′′ is a virtual annulus with two ends
such that there exists a virtual annulus with two ends X ′′′ ⊂ X
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containing both X ′′ and x, then X is a virtual disc, trivialized by
any extension that trivializes X ′′′;

(ii) if X ′ and X ′′ are virtual annuli with two ends and s(X ′) = s(X ′′) =
s(x), then X is itself a virtual annulus with two ends, trivialized by
any extension of K that trivializes both X ′ and X ′′;

(iii) if X ′ is a virtual annulus with one end and bending point y and X ′′

is a virtual annulus with two ends such that s(X ′ \ {y}) = s(X ′′) =
s(x), then X is itself a virtual annulus with one end, trivialized by
any extension of K that trivializes both X ′ and X ′′.

Proof. — Part (i) is [12, Lemme 5.1.1] applied to X ′ and X ′′′. Part (ii)
in the case s(X ′) = s(X ′′) = K is an immediate consequence of [12,
Lemme 5.1.2]. We deduce the general case from the case above applied
to Xs, since under our hypotheses we have s(X) = s(x). To see this equal-
ity, consider the base change X

K̂alg of X to K̂alg; then the inverse image
of the skeleton Σ(X) = Σ(X ′)∪ {x} ∪Σ(X ′′), which is a line segment, is a
disjoint union of s(x)-many line segments, and his complement is a disjoint
union of discs. Therefore, X

K̂alg has itself s(x)-many connected compo-
nents, and therefore [s(X) : K] = s(x). To prove part (iii), we can again
suppose that X ′ is geometrically connected by working over s(X ′), which
is a subfield of s(X ′′). Then, if L is an extension of K that trivializes both
X ′ and X ′′ and τ : XL → X denotes the base change morphism, the base
change X ′′

L consists of two disjoint annuli, each connected to the annulus
X ′

L by either one of the two points in τ−1(x). By applying twice the second
part we deduce that XL us an annulus. □

Proposition 3.7. — Let C be the analytification of a smooth, projec-
tive, and connected algebraic K-curve and let X be an open subspace of C

whose topological boundary consists of type 2 points. Then X is a virtual
disc (respectively a virtual annulus) if and only if the following conditions
are met:

(i) X does not contain type 2 points of positive genus;
(ii) every connected component of X ×K K̂alg is contractible;
(iii) every connected component of X×K K̂alg has precisely one (respec-

tively two) ends.

Proof. — This follows immediately from [12, Proposition 5.1.18] applied
to every connected component of X ×K K̂alg. □
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4. Structure of analytic curves and triangulations

In this section we move to the study of the models of C over the valuation
ring R of K. We focus on the relation between models of C and finite non-
empty subsets of type 2 points of C and begin the study of semi-stability.

Let C be the analytification of a smooth, projective, and connected al-
gebraic K-curve C. An R-model (or simply model) of C is a flat, proper
scheme C over R equipped with an isomorphism from its generic fiber to C.
We denote by Ck the special fiber C×R k of C. If C and C′ are two models of
C, a morphism of R-schemes f : C′ → C is said to be a morphism of models
of C if it is compatible with the given identifications of the generic fibers
with C.

Definition 4.1 (Vertex sets). — A vertex set of C is a finite and
nonempty set V of points of type 2 of C.

If C is a model of C, the reduction modulo π induces a natural surjective
and anti-continuous map

spC : C −→ Ck

(that is, the inverse image of an open subset of Ck is closed in C), called
the specialization map (or reduction map) associated with C. If C is normal
and η is the generic point of an irreducible component of Ck, then sp−1

C (η)
consists of a single type 2 point of C. If P is a closed point of Ck, then
sp−1

C (P ) is a semi-affinoid space whose associated special R-algebra is the
completion ÔC,P of the local ring of the model C at P . We call the open
subset sp−1

C (P ) of C the formal fiber of P in C. These notions, as well as
those surrounding the content of the following proposition, were first inves-
tigated in [5] in the setting of rigid analytic geometry and are at the heart
of the description of the structure of non-archimedean K-analytic curves.
For a more modern formulation we refer to [3, Section 4] and [12], or to [2]
and [32] for the analogous result in the (simpler) case of an algebraically
closed base field.

Theorem 4.2. — The correspondence

C 7−→ VC =
{

sp−1
C (η)

∣∣ η generic point of a component of Ck

}
,

where spC : C → Ck is the specialization map, induces a bijection between
the partially ordered set of isomorphism classes of normal (algebraic) R-
models C of C, ordered by morphisms of models, and the partially ordered
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set of vertex sets of C, ordered by inclusion. Moreover, spC induces a bi-
jection {

closed points of Ck

} ∼−→ π0(C \ VC)

via the inverse image P 7→ sp−1
C (P ).

The surjectivity of the correspondence, which is the only part of the
statement which was not already implicit in the work of [5], can be deduced
directly from [12, Théorème 6.3.15 and Théorème 3.7.6]. It can also be
obtained starting from any model whose associated vertex set contains a
given one, and proving that the additional components of the special fiber
can be contracted while preserving algebraicity and normality of the model.

Recall that a model C of C over R is said to be a semi-stable model
of C if its special fiber Ck is reduced and has at worst double points as
singularities. It follows that a model C of C is a semi-stable model of C if
and only if the connected components of C \ VC are all discs and annuli
(see [5, Propositions 2.2 and 2.3]). Indeed, a normal model of C is semi-
stable if and only if, for every point P of the special fiber Ck of C, there
exists e ∈ N such that the completed local ring ÔC,P is isomorphic to either
RJS, T K/(T − πe) ∼= RJSK, if P is a smooth point of Ck through P , or to
RJS, T K/(ST − πe), if P is a double point of Ck (see [16, Corollary 10.3.22]
for a direct computation of the latter).

Remark 4.3. — Under the correspondence of Theorem 4.2, the notions
of multiplicity of a point of type 2 is consistent with its geometrical coun-
terpart. More precisely, if C is a model of C and x ∈ VC , then m(x) is the
multiplicity of the k-curve spC(x) inside Ck (see for example [12, Proposi-
tion 6.5.2.(1)]). This is not true for the genus. Indeed, the function field of
the curve spC(x) is exactly the residue field H̃ (x) of the complete residue
field H (x) of C at x (see again [12, Proposition 6.5.2.(2)]), but the genus
g(x) of x is the (geometric) genus of a curve above spC(x) in the base change
of the model C to the algebraic closure of K, which could be greater than
the genus of spC(x) since passing to the special fiber does not commute
with base change. For example, the analytification C of an elliptic curve C

that has potentially good reduction has a type 2 point x which has genus
1. However, if C does not have good reduction over K, then it has a regular
model C over R whose special fiber consists of rational curves. In particular,
the point x is associated with an irreducible component E of the special
fiber of a model obtained from the regular model C by a sequence of point
blowups, which implies that E is a rational curve.
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Remark 4.4. — The approach to models via vertex sets permits to avoid
some difficulties related to the fact that when constructing new models, for
example via base change, it is usually necessary to normalize the resulting
scheme. Here are two examples of this phenomenon in action:

(i) If C is any model of C, the inverse image sp−1
C (η) through the spe-

cialization map of the generic point η of a component E of Ck con-
sists of finitely many type 2 points of C, one for each component
above E in the special fiber of the normalization of C.

(ii) Let L be a finite extension of K and denote by τ : CL → C the
base change morphism. Let V be a vertex set of C, let CV be the
model of C associated with V and consider the model Cτ−1(V ) of CL

associated with the vertex set τ−1(V ) of CL. Then Cτ−1(V ) is the
normalization of the base change of CV to the valuation ring of L.

Let X be a semi-affinoid open subspace of C whose boundary ∂X in
C consists of type 2 points. Then there exists a natural surjective map
∂ : Ends(X) → ∂X ⊂ C, which sends an end ε represented by a family
(Un)n to the type 2 point ∂(ε) = ∩n∂(Un) of C. As observed on page 704,
we have s

(
∂(ε)

)
⊂ s(ε).

The multiplicity m
(
∂(ε)

)
of the type 2 point ∂(ε) of C only depends on

X and ε, while it does not depend on the ambient curve C itself. In order
to see this, one can reason as follows. Consider a regular model C of C with
strict normal crossings special fiber such that ∂(ε) belongs to the vertex set
V associated with C and that X contains the unique connected component
X ′ of C \ V satisfying ε ∈ Ends(X ′). Then the multiplicity m

(
∂(ε)

)
of

∂(ε) can be read from the completed local ring of the point spC(X ′) of
the special fiber Ck of C, as it is the multiplicity in Ck of the irreducible
component associated with ε, and so also from the canonical model of the
regular semi-affinoid space X ′, and can therefore be read in X without the
need of considering the geometry of C. The multiplicity m

(
∂(ε)

)
will be

denoted by m(ε) and called multiplicity of the end ε. For example, the
multiplicity of any end of a disc or an annulus is equal to 1.

Remark 4.5. — Note that, for the same reason discussed in Remark 4.3,
it is not possible to define intrinsically the genus of an end, as a semi-
affinoid space can generally be realized as a formal fiber of points lying
on curves of different genera. For example, if C is the analytification of a
genus g curve with good reduction, so that it contains a point x of genus g,
any connected component X of C \{x} is a disc whose boundary point has
genus g. Observe also that one could define directly the multiplicity m(ε)
of an end ε of a semi-affinoid space X as the multiplicity of the irreducible
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component corresponding to ε in the special fiber of a snc resolution of
the canonical model of X. However, the notion of irreducible components
of special formal schemes and their multiplicities is quite delicate (see [21,
Sections 2.4 and 2.5]) and its treatment goes beyond the scope of our work.

Definition 4.6 (Triangulations). — A vertex set V of C is said to be a
triangulation of C if each connected component of C \V is either a virtual
disc or a virtual annulus. If moreover all virtual annuli among the connected
components of C \ V have two ends, V is said to be a strong triangulation
of C.

Any strong triangulation of C is a triangulation of C by definition. Con-
versely, given a triangulation V of C, and thanks to the observation made
right before Example 3.3, by adding to V the bending point of each con-
nected component of C \ V which is a virtual annulus with one end we
obtain a strong triangulation of C; it is the minimal strong triangulation
of C containing V .

Since our definition of virtual annulus is more general than the one of [12],
allowing for virtual annuli with one end, the same goes with our definition
of triangulations. The triangulations of loc. cit. are what we call strong
triangulations here.

Proposition 4.7. — The curve C admits a triangulation.

Proof. — By the semi-stable reduction theorem there exist a finite Galois
extension L of K and a semi-stable model C of CL over the valuation ring
of L. Denote by τ : CL → C the base change morphism and by V ⊂ CL

the vertex set of CL associated with C. We can assume without loss of
generality that the natural action of G = Gal(L | K) on CL extends to
C (from the point of view of vertex sets this is obtained by replacing V

with its closure under the G-action, which still yields a semi-stable model
of CL). For each connected component X of C \ τ(V ), the base change
XL = τ−1(X) of X to L is then a finite union of isomorphic connected
components of CL \ V , and hence X is a virtual disc or annulus. □

Remark 4.8. — Using the results of the next section we can prove a
more precise result, namely that V is a triangulation of C if and only if
there exists a finite extension L of K trivializing all the components of
C \ V simultaneously, in which case the model of CL associated with the
vertex set τ−1(V ), where τ : CL → C is the base change morphism, is
semi-stable. The reader should also note that, while for our purposes it
was sufficient to deduce the result of Proposition 4.7 from the existence of
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a semi-stable model of C, it is also possible to obtain it via a delicate study
of the geometry of the analytic curve C itself, and therefore use it to prove
the semi-stable reduction theorem (see [12, Section 6.4]).

Remarks 4.9. — We discuss here some simple properties of triangula-
tions:

(i) Any triangulation of C contains the set of type 2 points of C that
have positive genus. Indeed, virtual discs and annuli can be embed-
ded in the analytic affine line after a base change, and the genus of
a type 2 point is invariant under base change.

(ii) A triangulation V of C gives rise to a graph Σ(V ) embedded in
C, called the skeleton of C associated with V and defined as the
graph whose set of vertices is V and whose edges are the skeletons
of the virtual annuli in π0(C \ V ). Since C is the analytification of
an algebraic curve, only finitely many of the elements of π0(C \ V )
are virtual annuli, therefore Σ(V ) is a finite graph.

(iii) If V is a triangulation of C, then C retracts by deformation onto
Σ(V ), as each virtual disc retracts onto its boundary point and each
virtual annulus retracts onto its skeleton.

(iv) Assume that C has a semi-stable model C over R. Then, for every
triangulation V of C we have

g(C) = b
(
Σ(V )

)
+

∑
x∈V

g(x),

where b
(
Σ(V )

)
= denotes the first Betti number of Σ(V ). Indeed, if

Γ is the dual graph of the special fiber of C then C retracts by defor-
mation also onto a copy of Γ, and thus we have b

(
Σ(V )

)
= b(Γ). The

formula then follows from the standard result [16, Lemma 10.3.18].

5. Minimal triangulations and ramification

In this section we discuss the notion of minimal (strong) triangulations
and prove our first main result, Theorem 5.2. We restrict ourselves to the
case of curves of genus greater than 1; we will explain how to adapt the
proofs to the case of elliptic curves in Section 8.

Definition 5.1 (Minimal triangulations). — We say that a vertex set
V of C is a minimal triangulation of C (respectively, a minimal strong
triangulation of C) if it is minimal among the triangulations (respectively,
among the strong triangulations) of C ordered by inclusion.
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We can now state the main result of the section. The existence (and
uniqueness) of a minimal triangulation and of a minimal strong triangula-
tion for curves of genus at least 2 will be proven in Proposition 5.3.

Theorem 5.2. — Assume that g(C) > 1, let Vmin−tr be a minimal
triangulation of C, and let L be a finite Galois extension of K such that
CL has semi-stable reduction. Then:

(i) lcm{m(x) | x ∈ Vmin−tr}
∣∣∣ [L : K] ;

(ii) L can be taken to be tamely ramified over K if and only if p does
not divide lcm{m(x) | x ∈ Vmin−tr}. When this is the case, then
the minimal extension L′ of K such that CL′ has semi-stable reduc-
tion is the unique totally ramified extension of K of degree exactly
lcm{m(x) | x ∈ Vmin−tr}.

In order to prove this theorem we need some intermediate results, starting
with an alternative description of minimal triangulations. As we did in the
case of virtual annuli, we call analytic skeleton of C the set Σan(C) of those
points of C that have no neighborhood in C isomorphic to a virtual disc.
If V is a triangulation of C, then Σan(C) is contained in the skeleton Σ(V )
associated with V constructed in Remark 4.9, hence Σan(C) is itself a finite
graph. We say that a point x of Σan(C) is a node of Σan(C) if either one
of the following three conditions holds:

(i) the genus g(x) of x is positive;
(ii) the point x has degree different from 2 in the graph Σan(C);
(iii) the splitting function s : Σan(C)→ Z is discontinuous (that is, not

locally constant) at x.

The first part of the following proposition can also be found in the discus-
sion of [12, § 5.4] (the precise statement is given in 5.4.12.1 of loc. cit.); we
include a direct proof for the reader’s benefit, as it provides the starting
point to prove the second part as well.

Proposition 5.3. — Assume that g(C) > 1. Then:

(i) C admits a unique minimal strong triangulation Vmin−str, which
coincides with the set of nodes of Σan(C) and with the set of points
of C that have no neighborhood isomorphic to a virtual annulus
with two ends;

(ii) C admits a unique minimal triangulation Vmin−tr, which coincides
with the set of points of C that have no neighborhood isomorphic
to a virtual annulus.
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Proof. — In order to prove the first part of the proposition, we begin by
showing that Σan(C) is nonempty and that it has at least a node. More
precisely, we will show the existence of a node that has either positive
genus or degree at least 2 in Σan(C). To do this, we can assume without
loss of generality that C does not have a type 2 point of positive genus.
Let L be a finite Galois extension of K and let τ : CL → C be the base
change morphism. Then we have Σan(CL) ⊂ τ−1(

Σan(C)
)
. Indeed, given

x ∈ C \Σan(C) there exists a virtual disc X in C that contains x, and thus
XL
∼= τ−1(X) is a disjoint union of virtual discs in CL, from which the claim

follows. Now, using the semi-stable reduction theorem we can suppose that
C has semi-stable reduction over L. Then CL contains at least two loops, as
can be deduced from the genus formula recalled in Remark 4.9(iv). Observe
that if γ : [0, 1]→ CL defines a loop on CL, that is γ is continuous, injective,
and γ(0) = γ(1), then γ([0, 1]) is contained in Σan(CL), because a point
of γ([0, 1]) cannot have a contractible open neighborhood with only one
end. In particular, Σan(CL) is nonempty, and therefore so is τ

(
Σan(CL)

)
=

Σan(CL)/ Gal(L | K) ⊂ Σan(C). We will now show the existence of a node
of degree at least 2 in Σan(C). This is immediate if τ

(
Σan(CL)

)
contains

at least one point of degree at least three, (for example, this is the case if
τ
(
Σan(CL)

)
contains at least two loops, that is if Gal(L | K) fixes point-

wise at least two loops of Σan(CL)). Whenever this is not the case, then
τ
(
Σan(CL)

)
is either a loop or a compact interval. In both cases, it is easy

to verify by elementary topological arguments that there exists a point of
degree 2 of τ

(
Σan(CL)

)
that has less inverse images under τ than some

of its neighbors, so that the splitting function s is discontinuous at this
point. Let us now prove that the set S of nodes of Σan(C) is contained in
all strong triangulations of C. Let V be an arbitrary strong triangulation
of C, which exists by Proposition 4.7. We already observed that Σan(C)
is contained in the skeleton Σ(V ) associated with V . Assume that x is
a point of V that has degree one in the graph Σ(V ) and such that x is
not in Σan(C); such a point exists unless V is contained in Σan(C). Then
by the first Fusion Lemma 3.6(i) we can glue the unique virtual annulus
with two ends among the components of C \ V adjacent to x to a virtual
disc containing x, showing that V \ {x} is also a strong triangulation. This
ensures that we can delete recursively all vertices of degree one that are
not contained in Σan(C), until we obtain a strong triangulation V ′ ⊂ V

such that Σ(V ′) ⊂ Σan(C), and hence Σ(V ′) = Σan(C). If x is a point of
S \ V ′, then the connected component X of C \ V containing x is a virtual
annulus whose skeleton is X∩Σan(C), since the skeleton of a virtual annulus
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coincides with its analytic skeleton. In particular, x has genus 0, degree 2
in Σan(C), and s is constant on Σan(C) locally at x, contradicting the fact
that x is a node of Σan(C). This proves that S ⊂ V ′, in particular S is
contained in every strong triangulation of C. To prove that S is the unique
minimal strong triangulation of C, it remains to show that S is itself a
strong triangulation. In order to do so, we will show that we can delete
any point x of V \ S and still obtain a strong triangulation. Since such a
point x is not a node of Σan(C), it has genus 0 and degree 2 in Σan(C)
and hence there are precisely two virtual annuli with two ends X1 and
X2 among the connected components of C \ V ′ adjacent to x, and the
skeleton of each of the Xi coincides with Xi ∩ Σan(C). The fact that x is
not a node implies that s is constant on a neighborhood of x. Since on the
skeleton of a virtual annulus s is constant, as discussed on page 706, this
implies that s(X1) = s(X2). Then by the second Fusion Lemma 3.6(ii) the
connected component of C \

(
V ′ \ {x}

)
containing x is a virtual annulus

with two ends, therefore V \{x} is a strong triangulation of C. This proves
that S is the minimal strong triangulation of C. Now, any point of C \ S

has a neighborhood isomorphic to a virtual annulus with two ends, since
this is the case for every point of a virtual disc. Conversely, no point of S

can have a neighborhood isomorphic to a virtual annulus with two ends,
otherwise by repeating the argument using the Fusion Lemma above we
would obtain a smaller strong triangulation. This completes the proof of
the first part of the proposition. It remains to show that the set S′ obtained
by removing from S those points that have a neighborhood isomorphic to
a virtual annulus is the minimal triangulation of C. First we observe that
if x is a point of S \ S′, then any neighborhood as above will be a virtual
annulus with one end whose bending point is x. In particular, x has degree
1 in Σan(C) and genus g(x) = 0. It follows that S′ is nonempty, since we
have proven that Σan(C) has a node that has either positive genus or degree
at least 2. Observe also that S′ is contained in any triangulation V ′′ of C,
since any point of C \ V ′′ has a neighborhood isomorphic to a virtual disc.
To conclude the proof of the proposition, it remains to show that S′ is itself
a triangulation of C. This can be done in a similar way as in the proof of
the first part of the proposition, by removing the points of S \ S′ one by
one applying the third Fusion Lemma 3.6(iii). □

Remarks 5.4. — Let us comment on a few points that arose in the course
of the proof of Proposition 5.3.

(i) We have shown that if C has genus at least two then Σan(C) is
nonempty and it has at least a node. Note that the hypothesis on
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the genus of C is necessary: the projective line has empty analytic
skeleton, and the analytic skeleton of an elliptic curve with multi-
plicative reduction is a circle with no nodes. However, the theory of
this paper can be easily adapted to the general case once we take
into account marked points in the definition of a minimal (strong)
triangulation. This will be discussed in Section 8, where we will
prove an analogue of Theorem 5.2 for elliptic curves.

(ii) In the proof we have made use of the inclusion of Σan(CL) in
τ−1(

Σan(C)
)
. In fact, the equality Σan(CL) = τ−1(

Σan(C)
)

holds,
as can be seen from combining the proposition with Lemma 5.5
below.

(iii) It is also worth stating explicitly the following fact that appeared in
the proof: an element of Vmin−str which is not an element of Vmin−tr
has necessarily degree 1 in Σan(C).

Lemma 5.5. — Assume that g(C) > 1, let V be a vertex set of C, let
L be a finite extension of K, and denote by τ : CL → C the base change
morphism. Then:

(i) V is a triangulation of C if and only if τ−1(V ) is a triangulation of
CL.

(ii) V is the minimal triangulation of C if and only if τ−1(V ) is the
minimal triangulation of CL.

Proof. — Observe that if X ⊂ C is a virtual disc (respectively a virtual
annulus), then all the connected components of XL

∼= τ−1(X) are virtual
discs (respectively virtual annuli). In particular, if V is a triangulation of C

then τ−1(V ) is a triangulation of CL. Suppose now that L is Galois over K

and let Y be a connected component of CL \ τ−1(V ). Then the connected
component of τ−1(

τ(Y )
)

that contains Y is Y itself, and in particular
all connected components of τ−1(

τ(Y )
)

are translates of Y under some
element of Gal(L | K), and are thus isomorphic to Y . We deduce that if
Y is a virtual disc (respectively a virtual annulus), then so is τ(Y ), and
in particular V is a triangulation as long as τ−1(V ) is one. In the general
case, we obtain the same result by first doing a base change to a finite
Galois extension of K containing L and the applying the result we have
just proven in the Galois case. This concludes the proof of the first part
of the lemma. If L is Galois over K, the second part of the lemma follows
now from the fact that the minimal triangulation of CL is Galois-invariant,
which is an immediate consequence of Proposition 5.3. Indeed, a point of
CL has a neighborhood isomorphic to a virtual annulus if and only if the
same is true for any of its translates by elements of Gal(L | K). The general
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case can again be reduced to the Galois case in a similar way as in the proof
of the first part of the lemma. □

Remark 5.6. — The main reason why the notion of triangulation is more
useful than the one of strong triangulation in our context is the fact that it
behaves better under base change. Indeed, the lemma above does not hold
for the strong triangulations of C, since any strong triangulation is required
to contain the set of bending points of the virtual annuli with one end that
are contained in C, while the base change of that set under an extension
L of K trivializing those virtual annuli is not necessarily contained in all
strong triangulations of CL.

Proposition 5.7. — Assume that g(C) > 1 and let Vmin−tr be the
minimal triangulation of C. Then the following are equivalent:

(i) C admits semi-stable reduction over K ;
(ii) all the connected components of C \ Vmin−tr are discs or annuli

over K ;
(iii) m(x) = 1 for every x in Vmin−tr.

When these properties hold, then Vmin−tr is a strong triangulation of C

and the associated model is the stable model of C.

Proof. — Denote by C the model of C associated with its minimal tri-
angulation Vmin−tr. As discussed after Theorem 4.2, part (ii) implies that
C is semi-stable, and thus (i) holds. The implication (i) =⇒ (ii) follows
from the fact that there exists a triangulation V whose associated model is
semi-stable, so that V has to contain Vmin−tr by minimality of the latter,
and from the following claim: if X is a virtual disc (or a virtual annulus)
that can be decomposed as a disjoint union of finitely many type 2 points,
finitely many annuli, and some discs, then X is itself a disc (respectively
an annulus). If X is a virtual disc or a virtual annulus with two ends, the
claim is a simple consequence of the Fusion Lemmas 3.6. On the other
hand, if X is a virtual annulus with one end admitting such a decompo-
sition, there is an annulus X ′ ⊂ X whose skeleton intersects the interior
of the skeleton of X. This gives rise to a contradiction, since the splitting
function x 7→ s(x) = [s(x) : K] of page 704 is equal to 1 on the skeleton of
the annulus X ′, and is greater than 1 on the the interior of the skeleton of
X, therefore proving the claim and thus establishing (ii). In particular, this
shows that if C admits semi-stable reduction over K then C is a semi-stable
model of C. Since the vertex set of any semi-stable model of C is a trian-
gulation, we deduce that C is the minimal semi-stable model of C, that is
its stable model. Moreover, since no component of C \ Vmin−tr is a virtual
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annulus with one end, Vmin−tr is also a strong triangulation of C. The im-
plication (ii) =⇒ (iii) is immediate, since the boundary points of discs and
annuli have multiplicity 1. In order to prove the implication (iii) =⇒ (i),
denote again by C the normal model of C associated with Vmin−tr, let L be
a finite extension of K such that CL admits semi-stable reduction over L,
and let C′ be the base change of C to the valuation ring of L. Note that the
special fiber C′

k of C′ coincides with that the special fiber Ck of C, since we
have that C′

k = C′×R′ k = C×R R′×R′ k = Ck. To prove that Ck is reduced,
we make use of Serre’s criterion as follows. Since m(x) = 1 for every x in
Vmin−tr, then by Remark 4.3 the local ring at the generic point of every
irreducible component of the special fiber is reduced, and therefore it is
regular. In particular, the scheme Ck satisfies the property R0. Moreover,
since Ck is a Cartier divisor inside the model C, and this model satisfies the
property S2 by normality, then Ck satisfies the property S1. It follows that
the special fiber C′

k of C′, being isomorphic to Ck, is reduced as well, and so
C′ is itself normal by [16, Lemma 4.1.18]. We deduce that C′ is the model
of CL associated with the vertex set τ−1(Vmin−tr), which is the minimal
triangulation of CL by Proposition 5.7, and therefore C′ is the stable model
of CL by the previous part of the proof. Since the definition of stable model
only depends on the geometry of the special fiber, and since Ck

∼= C′
k, we

deduce that C is itself stable, proving (ii). □

Proof of Theorem 5.2. — By combining Proposition 5.7 and Lemma 5.5
we deduce that, if x is a point of Vmin−tr and y is a point of τ−1(x), then
m(y) = 1. Then Proposition 2.1 implies that gcd{m(x), [L : K]} must be
equal to m(x), that is m(x) divides [L : K], which proves (i). We move
now to the proof of part (ii). Set d = lcm{m(x) | x ∈ Vmin−tr}, and observe
that it follows from (i) that if L can be taken to be tamely ramified over K

then p does not divide d. Conversely, assume that p does not divide d, let
L′ be the unique totally ramified extension of K of degree d, and denote by
τ ′ : CL′ → C the corresponding base change morphism. Since L′ is tamely
ramified over K, we deduce from Proposition 2.1 that m(y) = 1 for every y

in τ ′−1(Vmin−tr). But by Lemma 5.5 the vertex set τ ′−1(Vmin−tr) is the mini-
mal triangulation of CL′ . It then follows again from Proposition 5.7 that CL′

admits semi-stable reduction over L′, which is what we wanted to show. □

Remark 5.8. — Assume that, in the notation of Theorem 5.2, the mini-
mal extension L of K such that CL has semi-stable reduction is tamely rami-
fied. Then, it follows immediately from the discussion following Example 3.5
that the multiplicity of the bending point of any virtual annulus with one
end among the components of C \Vmin−tr divides the degree [L : K], which
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coincides with lcm{m(x) | x ∈ Vmin−tr} by Theorem 5.2(ii). In particular,
we deduce that lcm{m(x) | x ∈ Vmin−tr} = lcm{m(x) | x ∈ Vmin−str} .

6. Snc models and vertex sets

In this section, we introduce models with strict normal crossings, and
prove the main technical result required to relate minimal snc models and
minimal triangulations.

Definition 6.1 (Snc vertex sets). — A vertex set V of C is called snc
if the model CV associated with V via the correspondence of Theorem 4.2
is a snc model of C, that is, it is regular and its special fiber has strict
normal crossings.

With a snc vertex set V of C, one can canonically associate a skeleton
Σ(V ) inside C even when V is not a triangulation. Indeed, each formal fiber
of a double point of the special fiber (CV )k still contains a line segment
connecting its two ends as a skeleton. This can be done in a very intrinsic
way and in arbitrary dimension as in [20, Section 3.1], where it is also
shown that C retracts by deformation onto the skeleton Σ(V ).

Under suitable tame assumptions, we can show that a formal fiber of a
snc model is a virtual disc or a virtual annulus.

Proposition 6.2. — Let C be a snc model of C and let P be a closed
point of the special fiber Ck of C. Then:

(i) if P belongs to a unique irreducible component of Ck whose multi-
plicity m is not divisible by p, then sp−1

C (P ) is a generalized frac-
tional disc with field of constants K(π1/m);

(ii) if P is a double point belonging to two irreducible components of
Ck of multiplicities m1 and m2 and if p does not divide the greatest
common divisor m = gcd{m1, m2} of m1 and m2, then sp−1

C (P ) is
a generalized fractional annulus with field of constants K(π1/m).

Proof. — Denote by X the formal fiber sp−1
C (P ). It is the semi-affinoid

space generic fiber associated with the formal spectrum of the ring ÔC,P ,
which is the completion of the local ring of C at the point P . A simple
deformation-theoretic argument (see [8, Lemma 2.3.2], whose proof carries
through in our case despite the fact that in the statement both multiplicities
are supposed to be not divisible by p) shows that ÔC,P is isomorphic to
RJS, T K/(Sm−π) in case (i), and to A ∼= RJS, T K/(Sm1T m2−π) in case (ii).
In the first case, this shows that X is precisely the virtual disc described in
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Example 3.4(i). In the second case, observe that the field of constants s(X)
of X contains a m-th root ϖ = π

1/m of π, since if we write m′
i = mi/m

for i = 1, 2, then (Sm′
1T m′

2)m = π. Then Xs is the semi-affinoid space
associated with the special R′-algebra R′JS, T K/(Sm′

1T m′
2 −ϖ), where we

set R′ = R[ϖ]. In particular, we deduce that R′JS, T K/(Sm′
1T m′

2 − ϖ) is
the unique regular R′-algebra corresponding to a semi-affinoid space with
two ends of multiplicities m′

1 and m′
2. Since we prove in Corollary A.7 that

there exists a fractional annulus having these properties, it follows that Xs

is a fractional annulus, which concludes the proof. □

Proposition 6.2 enables us to say that the possible phenomena preventing
a snc vertex set from being a strong triangulation are related to wild rami-
fication. One instance of this is the fact that type 2 points of positive genus
whose associated residual curve is rational are either in the minimal snc
vertex set or they have multiplicities divisible by the residue characteristic
of K, as follows from the following lemma.

Lemma 6.3. — Let x be a type 2 point of C such that x belongs to the
minimal strong triangulation of C but not to its minimal snc vertex set.
Then the residue characteristic p of K divides the multiplicity m(x) of x.

Proof. — Let C be the minimal snc model of C and let P be the closed
point of the special fiber Ck of C such that x belongs to the formal fiber
sp−1

C (P ) of C over P . Since x is an element of the minimal strong triangu-
lation of C, it cannot be contained in any virtual disc or virtual annulus
with two ends, hence by Proposition 6.2 all the components of Ck passing
through Q must have multiplicity divisible by p. The minimal snc model
of C whose vertex set contains x is obtained by a sequence of blowups of
closed points of C above Q. In particular, the exceptional component of
every such blowup has to have multiplicity divisible by p (see [16, Propo-
sition 9.1.21.(b) and Theorem 9.3.8]), hence this holds for the component
corresponding to x, so that p divides m(x). □

Remark 6.4. — Assume that x is point of type 2 in C such that H̃ (x)
has positive geometric genus, which (as observed in Remark 4.3) means
that the genus of the component Ex corresponding to x in the special fiber
of any regular model C of C such that x ∈ VC is positive. Then by Castel-
nuovo criterion Ex cannot be contracted without introducing singularities
of the model. This shows that x has to be contained in Vmin−snc. On the
other hand, the points studied in the lemma above contain an interest-
ing special class of residual curves, those that have genus zero but acquire
positive genus after some normalized base change. The existence of such
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curves is part of what makes the study of semi-stable reduction in the wild
case particularly complicated. We will discuss this further in Section 9 (see
part (ii) of Subsection 9.2).

7. The tamely ramified case

Let C be a curve that acquires semi-stable reduction after a tamely
ramified extension of K. In this section we describe explicitly the minimal
strong triangulation of C in terms of the combinatorics of its minimal snc
model. This is related to a classical result of T. Saito.

As before, C is the analytification of a proper, smooth algebraic K-curve
C of genus g(C) > 1. Denote by Vmin−snc the vertex set of C associated
with its minimal snc model.

Definition 7.1 (Principal point of a snc vertex set). — Given a snc
vertex set V of C, we say that a point x ∈ V is principal if it satisfies
either one of the following conditions:

(i) the genus g(x) of x is positive;
(ii) the degree deg(x) of x in the graph Σ(V ) is at least three;

Definition 7.2 (Principalization of a snc vertex set). — Given a snc
vertex set V of C, we call principalization of V the vertex set consisting of
its principal points, and we denote it by Vpr.

The fact that Vpr is nonempty follows from the argument already used
in the course of the proof of Proposition 5.3: since g(C) > 1 then either C

has a point or positive genus or it contains at least two loops, in which case
Σ(V ) has at least a vertex of degree at least three by the genus formula
recalled in 4.9(iv).

Remark 7.3. — Observe that this definition of a principal vertex of V

differs from the usual definition of a principal component of the special
fiber of the snc model CV associated with V (as for example given in [14,
Definition 6.1]), because as we explained in Remark 6.4 some type 2 points
could have positive genus even when the associated residual curve is ra-
tional. Nevertheless, Vpr always contains the points associated with the
principal components of (CV )k.

Let V be a snc vertex set of C, let X be a connected component of
C \ Vpr, and let x0 ∈ Vpr be a boundary point of X. Then, by the def-
inition of Vpr, the intersection X ∩ Σ(V ) is a union of r adjacent edges
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[x0, x1], [x1, x2], . . . , [xr−1, xr] of the skeleton Σ(V ) associated with V , for
some r ⩾ 0. Two cases are possible: either xr is a point of Vpr, in which case
∂X = {x0, xr} and X ∩ Σ(V ) = X ∩ Σ(Vpr) is an edge [x0, xr] of Σ(Vpr),
or ∂X = X ∩ Σ(Vpr) = {x0}. Let CV be the snc model of C associated
with the snc vertex set V and denote by Ei the irreducible component of
the special fiber (CV )k of CV associated with xi and by mi the multiplicity
of Ei in (CV )k. Then, for every j = 1, . . . , r − 1, a standard intersection
theoretic computation yields

0 = Ck · Ej =
∑

0⩽i⩽r

miEi · Ej = mj−1 + mjE2
j + mj+1.

We deduce the following.

Lemma 7.4. — In the preceding notation, for every j = 0, . . . , r − 1 we
have

gcd{mj , mj+1} = gcd{m0, . . . , mr}.
Moreover, if we are in the second case above, that is if xr is not a principal
vertex of V , then we have 0 = (CV )k · Er = mr−1 + mrE2

r , and therefore
gcd{m0, . . . , mr} = mr.

Theorem 7.5. — Assume that the minimal extension L of K such that
C acquires semi-stable reduction over L is tamely ramified. Then the fol-
lowing hold:

(i) the minimal snc vertex set Vmin−snc of C is a strong triangulation
of C;

(ii) the principalization (Vmin−snc)pr of Vmin−snc is the minimal strong
triangulation of C.

Proof. — By Theorem 5.2(ii) and Remark 5.8 we know that p does not
divide the multiplicity of any element of the minimal strong triangulation
Vmin−str of C. It then follows from Lemma 6.3 that Vmin−str is contained
in Vmin−snc. Now let X be a connected component of C \Vmin−str. Observe
that the s(X)-analytic space Xs defined on page 704 is a form of a disc or
of an annulus with two ends trivialized by the tame extension L | s(X); it
follows from [13, Theorem 8.1] that Xs is a fractional disc or a fractional
annulus. It follows from the discussion following Example A.4 that no prin-
cipal point of the vertex set of the minimal snc model of Xs is contained
in Xs. This shows that (Vmin−snc)pr is contained in Vmin−str. Now, in or-
der to prove (i), let X be a connected component of C \ Vmin−snc. Since
Vmin−snc is associated with a snc model C of C, the boundary ∂X of X has
either one or two points. In the first case, since X does not contain any
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point of Vmin−str, it is contained in some virtual disc and therefore satisfies
the hypotheses of Proposition 3.7, so that X is itself a virtual disc. In the
second case, let m1 and m2 be the multiplicities of the two points of ∂X.
By Lemma 7.4 the greatest common divisor gcd{m1, m2} of m1 and m2
is not divisible by p, since otherwise we would find a point of (Vmin−snc)pr
whose multiplicity is a multiple of p, which is not possible as we have shown
that (Vmin−snc)pr ⊂ Vmin−str. Then X is a generalized fractional annulus by
Proposition 6.2. This proves that Vmin−snc is a strong triangulation, show-
ing(i). In order to prove(ii), it remains to show that (Vmin−snc)pr is a strong
triangulation of C. Let X be a connected component of C \ (Vmin−snc)pr
and let x0 ∈ (Vmin−snc)pr be a boundary point of X. Following the nota-
tion of Lemma 7.4 we write X ∩ Vmin−snc = {x0, . . . , xr}. Without loss of
generality we can assume that r ⩾ 1, because otherwise U is a connected
component of C \ Vmin−snc. For every i = 1, . . . , r, denote by Xi the con-
nected component of C \Vmin−snc such that ∂Xi = {xi−1, xi}. Then, again
by Lemma 7.4, we have that gcd{mi−1, mi} equals gcd{m0, . . . , mr} and is
not divisible by p, hence all the generalized fractional annuli Xi have field
of constants s(Xi) isomorphic to the unique totally ramified extension of
K of degree gcd{m0, . . . , mr}. Moreover, we also have s(xi) = s(Xi). This
follows from the fact that s(xi) is contained in s(Xi) and s(Xi) is contained
in the field of constants of each formal fiber at a closed point of the com-
ponent of Ck associated with xi. Indeed, two of these components are Xi

and Xi+1, while all the others are associated with a special R-algebra of
the form RJS, T K/(uSmi − π) (again by the simple deformation-theoretic
argument of [8, Lemma 2.3.2]), for some unit u of RJS, T K, so that they
contain the constant (uSmi)1/ gcd{mi,mi+1}. We can then apply r times the
seond Fusion Lemma 3.6(ii) to deduce that the connected component X ′

of C \{x0, xr} containing X1 is a virtual annulus with two ends. If X ′ = X

then there is nothing left to prove. If X ′ is a proper subset of X, this means
that we are in the second case treated in Lemma 7.4 and thus p does not
divide mr. Now, if we blowup once a smooth point of Er and we denote
by xr+1 the type 2 point in X corresponding to the exceptional compo-
nent of this blowup, we have that mr+1 = mr and as before the connected
component X ′′ of C \ {x0, xr+1} containing X0 is a virtual annulus with
two ends. The connected component of C \ {xr} containing xr+1 being a
virtual disc, by the first Fusion Lemma 3.6(i) the component X is itself a
virtual disc. This proves that (Vmin−snc)pr is a strong triangulation, which
concludes the proof of (ii). □
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Observe that the tameness hypothesis on L | K is necessary. An example
where the theorem does not hold in the wildly ramified case will be given
in Subsection 9.1.

The following effective version of the criterion by Saito cited in the in-
troduction, which was originally due to Halle [14, Theorem 7.5], follows
immediately from the combination of Theorems 5.2(ii) and 7.5.

Corollary 7.6. — Assume that the minimal extension L of K such
that C acquires semi-stable reduction is tamely ramified. Then we have

[L : K] = lcm
{

m(x)
∣∣ x ∈ (Vmin−snc)pr

}
.

Remark 7.7. — In the classical formulation of Saito’s criterion (cf. [27,
Theorem 3]), the components of the special fiber (Cmin−snc)k of the minimal
snc model Cmin−snc of C are required to satisfy the following additional
conditions: no two components whose multiplicities are divisible by p can
intersect, and no component intersecting exactly only one other component
can have multiplicity divisible by p. However, as follows from Lemma 7.4,
if p divides the multiplicity of the last curve in a chain of rational curves in
(Cmin−snc)k, or if it divides the multiplicities of two intersecting components
in such a chain, then it divides also the multiplicity of a principal component
at the end of the chain. Therefore, the condition is automatically satisfied
as long as no point of (Vmin−snc)pr has multiplicity divisible by p.

Remark 7.8. — Let Vmin−snc be the minimal snc vertex set of C. It is
proven in [1, Theorem 3.3.13] that the subspace Σ

(
(Vmin−snc)pr

)
of C is

the essential skeleton of C, in the sense of [20] and [22]. If we assume that
C acquires semi-stable reduction over a tamely ramified extension of K,
it follows then from Theorem 7.5(ii), that the essential skeleton coincides
with Σ(Vmin−str). Moreover, the model associated with Vmin−str is the min-
imal dlt model of C that is also minimal with respect to the domination
order relation (see [1, Remark 3.3.7]). However, since Theorem 7.5(ii) does
not necessarily hold in the wildly ramified case, the essential skeleton and
Σ(Vmin−str) do not always coincide. An example where the former is strictly
smaller than the latter will be given in Subsection 9.1.

8. Marked curves and tame triangulations of elliptic
curves

In this section we briefly explain how to adapt the theory that we have
developed so far to the case of curves with marked points. We then describe
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explicitly all possible minimal triangulations of elliptic curves, in terms of
their reduction type, when the minimal extension yielding semi-stabiliy is
tamely ramified.

Let C be a geometrically connected, smooth and projective algebraic
curve over K and let N be a finite set of K-rational points of C. We denote
as usual by C the analytification of C, and we implicitly identify the set N
with the corresponding set of K-points of C. We then define a triangulation
(respectively a strong triangulation) on (C,N ) as a triangulation (respec-
tively a strong triangulation) V of C satisfying the following additional
conditions:

(i) every connected component of C \V contains at most a point of N ;
(ii) every connected component of C \ V containing a point of N is a

virtual disc.
This definition ensures the existence of a minimal triangulation not only
for curves of genus g > 1, but more generally for curves of genus g with n

marked points satisfying the numerical condition 2g − 2 + n > 0, and in
particular for elliptic curves. Upon modifying the definitions of snc mod-
els and semi-stable models to require that all marked points specialize to
smooth points of the special fiber, the definition of principal point of a snc
vertex set by having each marked point contribute to the degree (so that,
for example, a point x of a snc vertex set V of E is principal also whenever
x has degree 2 in Σ(V ) and a connected component of E \ V adjacent to
x contains a marked point), and redefining the analytic skeleton of (C,N )
as the analytic skeleton of C \ N (that is the subset consisting of those
points having no neighborhood in C isomorphic to a virtual disc contain-
ing no marked point), then all results of the previous sections hold true
more generally for marked curves. We leave to the reader to verify these
results, observing that this task is made simpler by the fact that, if C is a
snc model of C, then every K-point of C specializes to a smooth point of
a component of multiplicity one of Ck (see for example Remark A.8(iii)).

8.1. Tame elliptic curves with potentially good reduction

Let (E, 0) be the analytification of an elliptic curve over K and assume
that E has potentially good reduction. Then the minimal triangulation of
(E, 0) consists of a single point, the unique point x of E of genus g(x) = 1.
This is also the minimal strong triangulation. Assume that E acquires semi-
stable reduction after a tamely ramified extension L of K (which is always
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the case if the residue characteristic of K is different from 2 and 3, since
our E has good reduction as soon as it admits a Weierstrass equation in
Legendre normal form, which requires at most a base field extension of
degree 6, see the proofs of VII.5.5 and III.1.7 in [30]). We are going to
attach some natural numerical invariants to this triangulation, using the
well known notion of the reduction type of E, that is of the combinatorics
of the special fiber Ek of the minimal snc model E of E. The possible
reduction types of elliptic curves can be classified and explicitly computed
using Tate’s algorithm (see for example [29, IV.§ 9]). As E acquires good
reduction after a tamely ramified extension of K, its reduction type is I0,
I⋆
0, II, II⋆, III, III⋆, IV, or IV⋆. We recall what this means in Figure 8.1

below, where for every reduction type we depict the dual graph associated
with Ek, weighted on the vertices by the multiplicities of the corresponding
irreducible component of Ek. In all cases, the vertex in red corresponds to
the only principal component of Ek, while we add an arrow departing from
the vertex corresponding to the component onto which the marked point 0
specializes.

1

I0

2

1

1 1

1

I⋆
0

6

2

3 1

II

6 3

5 4 3 2 1

4 2

II⋆

4

1

2 1

III

4 2

3 2 1

3 2 1

III⋆

3

1

1 1

IV

3 2 1

2 1

2 1

IV⋆

Figure 8.1.

As in Theorem 7.5, the red vertex x is also the unique point x of the minimal
triangulation of (E, 0), which in these cases is also the minimal strong
triangulation of (E, 0). Thanks to Proposition 6.2 and to the tameness
assumption, we can apply recursively the Fusion Lemmas in order to show
that the connected component X of E \ {x} that contains 0 is a fractional
disc, that is

X ∼=
{

x ∈ A1,an
K

∣∣ |T (x)| < |π|α
}

,

ANNALES DE L’INSTITUT FOURIER



TRIANGULATIONS OF NON-ARCHIMEDEAN CURVES 733

where T denotes a coordinate function on A1,an
K , for some rational num-

ber α. Observe that the class of α in Q/Z, which depends only on the
isomorphism class of X and determines this isomorphism class uniquely,
can be computed explicitly for every reduction type. Indeed, from Propo-
sition 6.2 we obtain that the components of E \ Vmin−snc with two ends
are regular fractional annuli (in the terminology of Section A). We can
then easily compute α by gluing together the regular fractional annuli of
E \Vmin−snc in the path from x to 0. For example, in the case IV⋆ we have
to merge a disc centered at 0 with a regular fractional annulus of the form{

x ∈ A1,an
K

∣∣ |π| < |T (x)| < |π|1/2}
and with a second one of the form{

x ∈ A1,an
K

∣∣ |π|1/2 < |T (x)| < |π|1/3}
. The resulting fractional disc X will

then be of the form

X ∼=
{

x ∈ A1,an
K

∣∣ |T (x)| < |π|1/3
}

,

which is to say that α = 1/3. On the other hand, in the case IV we have
to merge a disc centered at 0 with a regular fractional annulus of the
form

{
x ∈ A1,an

K

∣∣ |π|1/3 < |T (x)| < 1
} ∼= {

x ∈ A1,an
K

∣∣ |π| < |T (x)| <

|π|1−1/3}
(observe that this is not the same as the fractional annulus

{
x ∈

A1,an
K

∣∣ |π| < |T (x)| < |π|1/3|
}

, which is not regular) and so the resulting
fractional disc X will be of the form

X ∼=
{

x ∈ A1,an
K

∣∣ |T (x)| < |π|1−1/3
}

,

that is we can take α = −1/3. The other cases are analogue to the previous
two. We deduce that the reduction type of E is fully determined by (and
determines uniquely) the datum of α and of the multiplicity m(x) of x, as
indicated in the following table:

reduction type I0 I⋆
0 II II⋆ III III⋆ IV IV⋆

m(x) 1 2 6 6 4 4 3 3
α mod Z 0 1/2 -1/6 1/6 -1/4 1/4 -1/3 1/3

Note that in particular, as in Corollary 7.6, the multiplicity m(x) coincides
with the degree [L : K] of the minimal extension L of K over which E

acquires semi-stable reduction (that is, over whose valuation ring E admits
a smooth model).

8.2. Tame elliptic curves with potentially multiplicative
reduction

Let E be the analytification of an elliptic curve which does not have
potentially good semi-stable reduction. Equivalently, E contains no type
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2 point of positive genus. Then E acquires split multiplicative reduction
over an extension L of K, which means that EL has a snc model whose
special fiber is a chain of rational curves closing onto itself. It follows that
EL has the homotopy type of a circle and therefore E is not geometrically
contractible. Suppose that the residue characteristic of K is different from
two. Tate showed that the degree [L : K] is at most two (see [30, Theo-
rem C.14.1.(d)]), so in our situation L is tamely ramified over K. Over K,
the curve E can have reduction type either In (which means that E has
multiplicative reduction already over K) or I⋆

n, for some n > 1. In both
cases n is equal to the opposite of the π-adic valuation of the j-invariant of
E. As before, we refer to [29, IV.§ 9] for a detailed discussion of reduction
types and limit ourselves to recalling what this means in terms of the com-
binatorial data arising from the minimal snc model E of E. Exactly as in
Figure 8.1 in the previous subsection, Figure 8.2 depicts for each reduction
type the dual graph associated with Ek, weighted with the multiplicities of
the corresponding components of Ek, with the principal points depicted as
red vertices, and an arrow departing from the vertex corresponding to the
component onto which the point 0 specializes.

1
1

1 1 1 1

1 1 1 1

(loop consisting of n > 1 edges)

In

2 2

1

1

2 2 1

1(n > 1 edges)

I⋆
n

Figure 8.2.

As in Theorem 7.5, the red points correspond to the minimal strong trian-
gulation, but they do not correspond to the minimal triangulation in the
case of I⋆

n. Indeed, in this case the minimal triangulation contains only the
red point on the left, since removing this latter cuts the curve into a virtual
annulus with one end and an infinite number of generalized fractional discs.
As an aside, we observe that keeping only the red point on the right would
yield a triangulation of the unmarked curve E which is not a triangulation
of (E, {0}), since the origin would lie in the virtual annulus; in particular
the unmarked curve E does not have a minimal triangulation. For both
types In and I⋆

n, by reasoning as in the case of potentially good reduction,
we can compute the isomorphism class of the unique virtual annulus X
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among the connected components of E \ Vmin−str. In the case I⋆
n this is a

generalized fractional annulus trivialized by a quadratic extension L of K,
and it is then determined by the multiplicities of its ends and the isomor-
phism class of XL. We then obtain the following table, associating with the
datum of the minimal strong triangulation and the isomorphism class of
the virtual annulus X a uniquely determined reduction type.
reduction type In I⋆

n

#Vmin−str 1 2
X ⊂ A1,an

K

{
|π|n < |T (x)| < 1

} {
|π|2(n+1) < |T 2(x)− π| < |π|2

}
This completes the description of the minimal triangulations and strong

triangulations of elliptic curves in the tame case.

9. First steps in wildlife observation

In this section, we discuss several examples of curves that acquire semi-
stable reduction after a wildly ramified extension of K. We explain why
in some cases dropping the tameness assumption leads to a failure of the
equality of the effective version of Saito’s criterion (Corollary 7.6), with
the aim to start a systematic study of the minimal extension realizing
semi-stable reduction from the point of view of non-archimedean analytic
geometry.

9.1. Elliptic curves with potentially multiplicative reduction

Assume that K has residue characteristic 2 and let E be the analytifi-
cation of an elliptic curve over K with non-split multiplicative reduction,
that is, E has not multiplicative reduction over K but it acquires it after
a base change to a finite separable extension L of K. In this case, such an
extension L can always be taken to be of degree 2 over K. The analytic
skeleton of E is a line segment, since it is the quotient of the loop Σan(EL)
by the involution induced by the action of the Galois group Gal(L | K).
The minimal strong triangulation of E consists precisely of the two end-
points x1 and x2 of this segment, which are the images via the base change
morphism of the two points of Σan(EL) that are fixed by the action of
Gal(L | K). Equivalently, x1 and x2 are the only points of the analytic
skeleton Σan(E) of E whose fields of constants s(x1) and s(x2) are equal to
K. These are the only nodes of the analytic skeleton of E, since any other
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point y of Σan(E) satisfies g(y) = 0 and s(y) = L, therefore they form
the minimal strong triangulation of E. The minimal triangulation of E is
obtained from the minimal strong triangulation by keeping only the point,
say x1, corresponding to the component onto which the neutral element of
E specializes. The connected component of E \ {x1} which contains x2 is
then a virtual annulus with one end and bending point x2, trivialized by L.

Let us discuss an explicit example. Let K = Q̂ur
2 be the completion of

the maximal unramified extension of the field of 2-adic numbers and let E

be the analytification of the elliptic curve over K defined birationally by
the minimal Weierstrass equation

v2 − 2uv + 16v = u3 + 2u2 + 32u.

The 2-adic valuation of the j-invariant j(E) of E is vK(j(E)) = −1, and
hence the curve E has potentially multiplicative reduction. It does not have
multiplicative reduction itself, as the R-model defined by the same equation
has additive reduction. To be more precise, Tate’s algorithm shows that the
reduction type of E is I⋆

5 . However, E has multiplicative reduction over a
totally ramified degree 2 extension L of K, we have vL(j(E)) = −2 and
therefore EL has reduction type I2. The morphism of dual graphs induced
by the base change to L is depicted in Figure 9.1 below.

I⋆
5

I2

Figure 9.1.

In both graphs in the figure, the red vertices form the minimal strong
triangulation, while the minimal triangulation consists of the red vertex
on the right since that’s the vertex carrying the arrow once all non-red
vertices have been contracted. In the top graph, the two red vertices ac-
tually also form the minimal snc vertex set of EL; the dashed part of the
graph, which corresponds to two discs, contains the components that are
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contracted in order to pass to the minimal snc model of EL. In the bot-
tom graph, (Vmin−snc)pr consists of the two blue vertices, and is therefore
different from Vmin−snc. In particular, the second part of Theorem 7.5 does
not hold. In this case such a behavior can also be seen as a particular
case of [17, Theorem 2.8]; other examples of this phenomenon, including in
equicharacteristic 2, can be found in the proof of that result.

9.2. Elliptic curves with potentially good reduction

We now give examples concerning points of positive genus. Let E be
the analytification of an elliptic curve with potentially good reduction.
Then the minimal triangulation of E coincides with its minimal strong
triangulation and it consists of a single point, the unique type 2 point x

of E of positive genus. Let us discuss some consequences of this simple
observation.

(i) Let E be the analytification of the elliptic curve E over K defined
birationally by the equation

v2 − π2v = u3 + πu2 + π3u.

If K has residue characteristic 2, a simple computation shows that
the j-invariant of E has positive valuation, so that E has potentially
good reduction. Applying Tate algorithm, one can show that the
curve E has reduction type I⋆

1. As a result, the skeleton of the
minimal snc vertex set of E is as depicted in Figure 9.2 below.

I⋆
1

Figure 9.2.

The two red vertices in the figure are exactly the principal points
of Vmin−snc. In particular, since Vmin−str consists of a single point
of E, we have (Vmin−snc)pr ̸= Vmin−str, and therefore Theorem 7.5
implies that the minimal Galois extension L of K such that E ac-
quires semi-stable reduction over L is wildly ramified. More gen-
erally, the same argument shows that an elliptic curve that has
potentially good reduction and reduction type I⋆

n, which can only
exist in residue characteristic 2, acquires semi-stable reduction after
a wild extension of its base field.
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(ii) Assume that K has mixed characteristic (0, 2) and let E be the
analytification of the elliptic curve over K defined birationally by
the equation

v2 − u3 = π.

Then E has reduction type II (as depicted in Figure 8.1 in the previ-
ous section). Indeed, the minimal snc model of E can be computed
explicitly quite simply, as this boils down to the classical compu-
tation of a good embedded resolution of the plane cuspidal curve
defined by v2 − u3 = 0. If we denote by ϖ a square root of π, the
change of variables defined by w = u/ 3

√
4π and z = (v − ϖ)/2ϖ

brings the equation to

w3 = z(z − 1),

which is smooth. Observe that, whenever the π-adic valuation of
2 is congruent to 1 modulo 3, then 3

√
4π belongs to the quadratic

extension L = K(ϖ) of K. It follows that in this case E acquires
good semi-stable reduction after the base change to L. In partic-
ular, x has multiplicity at most 2, and therefore it cannot be the
point of (Vmin−snc)pr, as the latter has multiplicity 6. In fact, it is
interesting to point out that, contrarily to what happened in Sub-
section 9.1, the point x is not in Vmin−snc either. Indeed, let y be
the only point of multiplicity 2 of Vmin−snc, which is the point asso-
ciated with the exceptional component of the blowup of the origin
of the special fiber of the R-model defined by v2 − u3 = π. Then x

does not coincide with y, as can be verified directly on the algebra
of the blowup, for example by showing that the inverse image of
y via the base change map to L consists of a point which still has
multiplicity 2. The point x can be obtained by blowing up further
a point of the exceptional component associated with y (more pre-
cisely, the only point of the component which becomes not regular
in the normalized base change of the blown-up model to R[ϖ]).
The number of blowups required to make x appear depend on the
π-adic valuation of 2; for example, one blowup is sufficient if this
valuation is equal to 1. We remark that the same behavior occurs
with the hyperelliptic curves defined by the equation v2 − um = π

(see also [17, Remark 3.12]).
(iii) In the example above, the point of positive genus of E is not con-

tained in Vmin−snc. We give a condition that prevents this behavior.
Let L be a Galois extension of K and let E be a smooth model of EL
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over the valuation ring of L. Then G = Gal(L | K) acts on the spe-
cial fiber Ek of E , inducing a Galois cover of k-curves φ : Ek → Ek/G.
Assume that the ramification locus of φ consist of at least three
distinct points. Then x is a principal point of Vmin−snc. Indeed, the
ramification points of φ are in one-to-one correspondence with the
edges of the skeleton Σ(V ) that are adjacent to x, where V is the
minimal snc vertex set of E that contains x, since those are pre-
cisely the point of Ek that map to singular point of Ek/G by [19,
§ 5.2]. If x is not a point of Vmin−snc, then V is obtained by adding
x to a snc vertex set of E, so that x has degree one or two in Σ(V ).
As this contradicts our hypothesis, we deduce that x is a point of
Vmin−snc, and hence of (Vmin−snc)pr.

9.3. A general wild pathology

In general, one pathology that may arise in the wildly ramified case comes
from the fact that desingularizing a virtual disc may result in the creation
of new principal components, leading to points of (Vmin−snc)pr that are not
in Vmin−tr. This is the case of the two connected components of E \Vmin−tr
that contain a trivalent vertex in Figure 9.1 in Subsection 9.1, and of the
connected component of E \ Vmin−snc containing the origin of the elliptic
curve of part (ii) of Subsection 9.2. Another explicit example of such a
virtual disc can be realized as a subspace of the K-analytic projective line
P1,an

K as follows. Consider the subspace X of P1,an
K defined as

X =
{

x ∈ P1,an
K

∣∣ |(T p − π)(x)| > |π|
}

.

Observe the similarity of this example with Example 3.3(iv). Then X is
a virtual disc, as can be deduced from Proposition 3.7 (it also possible to
see explicitly that, after adding p-th root of π to K, the space X becomes
isomorphic to a disc centered at infinity). However, X is not a generalized
fractional disc, and the special fiber of the minimal snc desingularization
of the canonical model of X contains one component that intersects three
other components.

Appendix A. Open fractional annuli and regularity

In this section we introduce a notion of regularity for semi-affinoid spaces.
We then focus on the regular open semi-affinoid subspaces of A1,an

K , giving
an interpretation using continued fractions.
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Definition A.1. — We say that a semi-affinoid K-analytic space X is
regular if the associated special R-algebra O◦(X) is regular.

Examples A.2. — An annulus of the form

An,K =
{

x ∈ A1,an
K

∣∣ |πn| < |T (x)| < 1
}

is regular if and only if n = 1 is one. Indeed, we have O◦(An,K) ∼=
RJS, T K/(ST − πn). A fractional disc of the form

X =
{

x ∈ A1,an
K

∣∣ |T (x)| < |π|1/d
}

is regular if and only if d = 1, that is if and only if it is a disc (see Exam-
ple 3.3(i)). Other examples of regular semi-affinoid spaces are the virtual
discs of Examples 3.3(iv) and 3.4(i).

Let X be an open semi-affinoid subspace of P1,an
K whose boundary ∂X

in P1,an
K consists of finitely many type 2 points, and let C be the normal

model of P1,an
K whose vertex set is ∂X. Recall that, thanks to Theorem 4.2

and the discussion preceding it, there exists a closed point P of the special
fiber of C such that X ∼= sp−1

C (P ), and thus ÔC,P
∼= O◦(X). In particular,

X is regular if and only if C is regular at the point P . Equivalently, X is
regular if and only if X ∩V = ∅, where V is the minimal vertex set of P1,an

K

that contains ∂X and whose associated model of P1,an
K is regular.

The following elementary lemma will be used to study the regularity of
fractional annuli in Lemma A.6.

Lemma A.3. — Assume that X is contained in A1,an
K . Then one can

check the regularity of X as follows. Since X is bounded, there exists a
point x of P1,an

K \X of type 2 that has multiplicity m(x) = 1. Then {x} is
the vertex set of a smooth model C0 of P1,an

K , and there exists a minimal
sequence of point blowups C1 → C0 such that ∂X is contained in the snc
vertex set VC1 associated with C1. Then X is regular if and only if it contains
no point of VC1 .

Proof. — This is a consequence of the fact that VC1 contains the minimal
vertex set VC2 that contains ∂X and whose associated model C2 is regular,
that the resulting morphism C1 → C2, being a morphism of regular models,
is a sequence of point blowups, and of the minimality in the definition of
the model C1. □

Example A.4. — Let us performe the procedure of the previous lemma
in two simple cases. Consider the two fractional annuli

X =
{

x ∈ A1,an
K

∣∣ |π|1/2 < |T (x)| < 1
}
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and
X ′ =

{
x ∈ A1,an

K

∣∣ |π|2/3 < |T (x)| < 1
}

.

Observe that the vertex set of the model C0 = P1,an
R of P1,an

K consist of a
single point x0, the boundary of the unit disc centered at 0, which belongs
to the boundary of both X and X ′. By blowing up C0 along the origin of
its special fiber, we obtain a model C1 of P1,an

K whose special fiber consists
of two rational curves cutting each other transversally in one point. Its
vertex set is VC1 = {x0, x1}, where x1 is the boundary point of the disc
of center 0 and radius |π| in P1,an

K . If we blow up C1 along the double
point of its special fiber we obtain a new model C2 of P1,an

K whose vertex
set is VC2 = {x0, x1, x2}, where x2 is the boundary point of the disc of
center 0 and radius |π|1/2 in P1,an

K . In particular, VC2 contains the boundary
∂X = {x0, x2} of X and X ∩ VC2 = ∅, so that according to Lemma A.3
the fractional annulus X is regular. Consider now the model C3 of P1,an

K

obtained by blowing up C2 along the intersection point between the two
components of its special fiber associated with x1 and x2. Its vertex set is
VC3 = {x0, x1, x2, x3}, where x3 is the boundary point of the disc of center 0
and radius |π|2/3 in P1,an

K , and thus it contains the boundary ∂X ′ = {x0, x3}
of X ′. However, X ∩ VC3 = {x2} ̸= ∅, and thus according to Lemma A.3
the fractional annulus X ′ is not regular. This can also be checked directly
by looking at the special R-algebras associated with X and X ′, which are
described in [13, § 7].

If X is any fractional annulus, then we can perform the procedure of
Lemma A.3 like in the previous example, starting from the model P1,an

R ,
and at every step we either blow up along the smooth point of the special
fiber where the origin of P1,an

K specializes, or we blow up a double point
of the special fiber. This yields a model of P1,an

K whose vertex set V is
contained in the line segment joining 0 to ∞ in P1,an

K . In particular, V ∩X

is contained in the skeleton of X and the connected components of X \ V

are regular virtual discs and finitely many regular fractional annuli. For
instance, in Example A.4 the fractional annulus X ′ is cut by the type 2
point x2 into two regular fractional annuli and a family of virtual discs.
In particular, in the terminology of Section 7, this implies that the vertex
set of the minimal snc model of X dominating its canonical model has
no principal points. Similarly, a fractional disc X can be cut into regular
virtual discs and finitely many regular fractional annuli by removing finitely
many type 2 points that lie on the line segment between its boundary point
and any chosen K-rational point of X, so that the same conclusion about
principal points holds.
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Remark A.5. — It follows from the discussion above that every regu-
lar open semi-affinoid subset of A1,an

K has at most two boundary points.
For example, this shows that the semi-affinoid space of special R-algebra
RJX, Y K/(XY (X − Y )− π) cannot be embedded in the analytic line.

In the following lemma, given a rational number α we consider its Eu-
clidean continued fraction expansion

α = a0 +
1

a1 +
1

· · ·+
1

an

that is uniquely determined by requiring that the integers ai satisfy the
conditions a1, . . . , an−1 ⩾ 1 and an > 1. We denote this continued fraction
expansion by α = [a0; a1, . . . , an].

Recall also that by convention gcd(a, 0) = a for every positive integer a.

Lemma A.6. — Let X ⊂ A1,an
K be an open fractional annulus of radii

|π|a/b and |π|a
′/b′ , with a, b, a′, b′ ⩾ 0, gcd(a, b) = gcd(a′, b′) = 1, and b ⩽ b′,

so that b and b′ are the multiplicities of the two ends of X. Then the
following conditions are equivalent:

(i) X is regular;
(ii) either b′ = b = 1 and a′ = a±1, or b′ > b ⩾ 1, the continued fraction

expansion of a/b is [a0; a1, . . . , an−1, an], and the continued fraction
expansion of a′/b′ is one of the following:
• [a0; . . . , an−1, an + 1];
• [a0; . . . , an−1, an, an+1] for some integer an+1 ⩾ 2;
• [a0; . . . , an−1, an − 1, 2];
• [a0; . . . , an−1, an − 1, 1, an+2] for some integer an+2 ⩾ 2.

(iii) X contains no K(π1/d)-rational point, for every d ⩽ max{b, b′};
(iv) the skeleton of X contains no point of multiplicity d ⩽ max{b, b′};
(v) the matrix

(
a a′

b b′

)
has determinant ±1.

Proof. — Let us prove the equivalence between (i) and (ii). If b′ = b,
then X is regular if and only if b′ = b = 1 and a′ = a ± 1, as can be
readily checked by applying the procedure of Lemma A.3. Therefore we
can assume that b′ > b. Denote by x (respectively x′) the type 2 point of
P1,an

K which is the boundary of the disc centered at the origin and of radius
|π|a/b (respectively |π|a

′/b′ ). Then, as observed in Lemma A.3, the virtual
annulus X is regular if and only if it is a formal fiber of the smallest snc
model of P1,an

K whose vertex set contains both x and x′. Observe that the
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minimal snc model X of P1,an
K that dominates P1,an

R and whose vertex set
contains x is obtained by blowing up P1,an

R a0 + 1 times downwards (that
is, blowing up the point of the exceptional divisor of the previous blowup
that points towards zero), then a1 times upwards (that is, blowing up the
point of the exceptional divisor of the previous blowup that points towards
∞), then a2 times downwards, a3 upwards and so on up to an − 1 times
upwards (if n is odd) or downwards (if n is even). This follows from the
fact that when we blow up the intersection point of two divisors whose
associated type 2 points have radii |π|a/b and |π|c/d, we obtain the type 2
point of radius |π|a + c/b + d, and a standard argument based on the Euclidean
algorithm (in particular, note that denominators never simplify). Then, X

is regular if and only if x′ is contained in the vertex set of the snc model
X ′ obtained by further blowing up X exactly once at a closed point of the
divisor corresponding to x, either upwards or downwards, and then finitely
many times in the opposite direction, as any other further blowup would
add some point of the path between x and x′ to the corresponding vertex
set. Then one concludes that the equivalence between (i) and (ii) holds
by carefully tracking what happens with the continued fraction expansion
of a/b after performing upward or downward blowups. For example, the
second expansion of the list corresponds to a model X ′ obtained by blowing
up once in the same direction as the last blowup in X → P1,an

R and then
an+1 in the other direction; the other cases are similar. The equivalence with
property (v) follows now from the standard criterion for regularity in toric
geometry, which can be studied directly or interpreted in terms of continued
fraction expansions as above (following the point of view described in [25]).
The equivalence with the properties (iii) and (v), which will not be used in
the paper, are simple verifications left to the reader. □

The following result follows immediately from the condition (v) above
and Bezout Theorem, but any reader who’s passionate about continued
fractions can also obtain it from condition (ii) as a simple exercise.

Corollary A.7. — Let m, m′ ∈ N>0 such that gcd(m, m′) = 1. Then
there exists a regular fractional annulus whose ends have multiplicities m

and m′.

Remark A.8.
(i) It is clear from the proposition that the regularity of fractional

annuli does not descend nor it ascends with respect to base changes,
even for base changes of degree prime with the multiplicities at the
boundary.
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(ii) The proposition yields a simple effective procedure to resolve a frac-
tional annulus, by adding the type 2 points of the skeleton that
have multiplicity lower than or equal to the multiplicity of one of
its boundary points. Because of the fact that regularity is not base-
sensitive, and the fact that the canonical model of a semi-affinoid X

has a natural induced structure of formal scheme over s(X)◦ (see the
discussion at page 704), the algorithm above works for generalized
fractional annuli as well. In particular, by counting the number of
downward blowups in this resolution process, we can observe that if
X ⊂ A1,an

K is a fractional annulus of the form {|π|a/b < |T (x)| < 1},
with a/b = [a0; a1, . . . , an], then the smallest number of regular an-
nuli in which X can be broken is

∑
i⩾0 a2i.

(iii) A semi-affinoid K-curve X that is regular and has a rational point
over K is necessarily a disc (see for example the implication (2) =⇒
(1) of [21, Proposition 8.9]). This fact and the examples above
prompt us to ask whether it is true that a semi-affinoid curve that
is not a disc is regular if and only if it has no K(π1/d)-rational point
for every d <

∑
x∈∂X m(x).
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