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LOCAL RIGIDITY OF MANIFOLDS WITH
HYPERBOLIC CUSPS

I. LINEAR THEORY AND MICROLOCAL TOOLS

by Yannick GUEDES BONTHONNEAU & Thibault
LEFEUVRE (*)

Abstract. — This paper is the first in a series of two articles whose aim is
to extend a recent result of Guillarmou and of the second author on the local
rigidity of the marked length spectrum from the case of compact negatively-curved
Riemannian manifolds to the case of manifolds with hyperbolic cusps. In this first
paper, we deal with the linear (or infinitesimal) version of the problem and prove
that such manifolds are spectrally rigid for compactly supported deformations.
More precisely, we prove that the X-ray transform on symmetric solenoidal 2-
tensors is injective. In order to do so, we expand the microlocal calculus developed
by Bonthonneau and Bonthonneau–Weich to be able to invert pseudo-differential
operators on Sobolev and Hölder–Zygmund spaces modulo compact remainders.
This theory has an interest on its own and will be extensively used in the second
paper in order to deal with the nonlinear problem.

Résumé. — Cet article est le premier d’une série de deux, dont le but est
d’étendre un récent résultat de Guillarmou et du second auteur sur la rigidité
locale du spectre marqué des longueurs, du cas des variétés riemanniennes com-
pactes à courbure négative au cas des variétés à pointes hyperboliques. Dans ce
premier article, nous traitons la version linéaire (ou infinitésimale) du problème et
prouvons que de telles variétés sont spectralement rigides pour des déformations à
support compact. Plus précisément, nous prouvons que la transformée en rayons X
sur les 2-tenseurs symétriques solénoïdaux est injective. Pour ce faire, nous déve-
loppons un calcul microlocal introduit par Bonthonneau et Bonthonneau–Weich,
nous permettant d’inverser des opérateurs pseudodifférentiels sur des espaces de
Sobolev et de Hölder–Zygmund, modulo des restes compacts. Cette théorie, qui
a un intérêt en soi, sera utilisée de façon cruciale dans notre second article pour
traiter le problème non linéaire.
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1. Introduction

1.1. Spectral rigidity

On a smooth closed (i.e. compact without boundary) Riemannian man-
ifold (M, g), the famous question of Kac “Can one hear the shape of a
drum?” [19] asks whether one can reconstruct the Riemannian structure
from the knowledge of the spectrum of the (non-negative) Laplacian −∆g

(1.1) spec(−∆g) = {λ0 = 0 < λ1 ⩽ λ2 ⩽ . . . } .

This question has triggered a lot of work, especially on negatively-curved
manifolds, and is known to be false globally: Vigneras [40] exhibited pairs
of hyperbolic isospectral surfaces which are not isometric. Nevertheless, one
can ask for a weaker statement in the spirit of Guillemin–Kazhdan [15, 16],
such as the infinitesimal spectral rigidity of the manifold (M, g). We re-
call that (M, g) is said to be infinitesimally spectrally rigid if any smooth
isospectral deformation (gλ)λ ∈ (−1, 1) (i.e. metric deformations with same
spectrum of the Laplacian (1.1)) of the metric g is trivial, namely there
exists an isotopy (ϕλ)λ ∈ (−1, 1) such that ϕ∗

λgλ = g. In this article, we are
interested in the question of infinitesimal spectral rigidity of negatively-
curved manifolds with hyperbolic cusps. In this case, the L2-spectrum of
the Laplacian is no longer discrete. It decomposes into a pure point spec-
trum – eigenvalues – and a continuous spectrum. Associated to the continu-
ous spectrum, one can define some resonances which are complex numbers
quantifying the way energy is lost in the cusps, for example in the heat
equation. Gathering resonances and eigenvalues one obtains the resonant
set — see [26] for more details. We will say that two manifolds with cusps
are isospectral if they have the same resonant set (when counted with mul-
tiplicity).

In the case of a closed manifold, the infinitesimal spectral rigidity usu-
ally boils down to proving that the X-ray transform Ig

2 — that is, the
integration of symmetric 2-tensors along closed geodesics in (M, g) — is
injective on symmetric solenoidal or divergence-free 2-tensors. This will be
called solenoidal injectivity in the rest of the paper. It is now well-known
(at least for closed negatively-curved manifolds) that the solenoidal injec-
tivity of the X-ray transform is a first step in proving the infinitesimal
and local rigidity of the marked length spectrum. Recall that on a closed
negatively-curved manifold (M, g), the set of closed geodesics is in 1-to-1
correspondence with the set C of free homotopy classes: in other words,
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given c ∈ C, there exists a unique closed geodesic γg(c) ∈ c. The marked
length spectrum is then defined as the map

Lg : C → R+, c 7→ ℓg (γg(c)) ,

where ℓg denotes the Riemannian length computed with respect to g. Up
to restricting to hyperbolic free homotopy classes (see below), one can still
define the same notion of marked length spectrum on negatively-curved
manifolds with hyperbolic cusps.

Contrary to the case of the Laplace spectrum, it is conjectured that the
marked length spectrum of closed negatively-curved manifolds should de-
termine the metric up to isometries. This is known as the Burns–Katok [6]
conjecture. More precisely, if (M, g1) and (M, g2) are two closed negatively-
curved Riemannian manifolds such that Lg1 = Lg2 , it is conjectured that
there exists a smooth diffeomorphism ϕ : M → M , isotopic to the identity,
such that ϕ∗g1 = g2. This was proved for surfaces in [7, 28] and in some
other particular cases (see [2, 17, 20]) but the conjecture remains open in
full generality in dimension ⩾ 3. The infinitesimal marked length spectrum
rigidity question consists in considering a family of metric (gλ)λ ∈ (−1, 1)
such that Lgλ

= Lg0 and proving that there exists an isotopy (ϕλ)λ ∈ (−1, 1)
such that ϕ∗

λgλ = g0. This result is also implied by the solenoidal injec-
tivity of the X-ray transform operator Ig

2 , as was shown by Guillemin–
Kazhdan [15]. More recently, Guillarmou and the second author [14] showed
that on closed negatively-curved manifolds, the solenoidal injectivity of the
X-ray transform also implies the local rigidity of the marked length spec-
trum: if two negatively-curved metrics that are close enough share the same
marked length spectrum, then they are isometric. This result locally solves
the Burns–Katok conjecture [6]. The goal of our series of two papers is to
extend this result from the case of closed negatively-curved manifolds to
the case of negatively-curved manifolds with hyperbolic cusps. The main
Theorem, similar to that of [14], will be eventually proved in the second
paper [11]. Hence, just as in the compact case, a first step is to estab-
lish solenoidal injectivity of the X-ray transform, which is the goal of the
present paper.

As far as the solenoidal injectivity of the X-ray transform operator Ig
2

is concerned, it was first obtained for negatively-curved closed surfaces by
Guillemin–Kazhdan in their celebrated paper [15]. More generally, their
proof works for tensors of any order m ∈ N. This result was then extended
by Croke–Sharafutdinov [8] to negatively-curved closed manifolds of arbi-
trary dimension. More recently, [30] obtained the solenoidal injectivity of
Ig

2 for any Anosov Riemannian surfaces (M, g), namely surfaces for which
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338 Yannick GUEDES BONTHONNEAU & Thibault LEFEUVRE

the geodesic flow is Anosov or uniformly hyperbolic on the unit tangent
bundle SM . Guillarmou [13] then extended the result on Anosov surfaces to
tensors of arbitrary order m ∈ N. More generally, it is conjectured that the
X-ray transform Ig

m is solenoidal injective on closed Anosov Riemannian
manifolds but the question remains open in dimension ⩾ 3.

In this article, we are interested in the solenoidal injectivity of Ig
2 on

noncompact complete manifolds of negative curvature whose ends are real
hyperbolic cusps and this does not seem to have been considered before
in the literature. More precisely, the case we will consider will be that
of a complete negatively-curved Riemannian manifold (M, g) with a finite
numbers of ends of the form

Za, Λ = [a,+∞[y×
(
Rd/Λ

)
θ
,

where a > 0, and Λ is a crystallographic group (i.e a cocompact discrete
group of isometries of Rd) with covolume 1. On this end, we have the metric
g = y−2(dy2 + dθ2). The sectional curvature of g is constant equal to −1,
and the volume of Za, Λ is finite. All ends with finite volume and curvature
−1 take this form. In dimension two, all cusps are the same (we must have
Λ = Z). However, in higher dimensions, if Λ and Λ′ are not in the same
orbit of SO(d,Z), Za, Λ and Za′, Λ′ are never isometric. In the following, we
will sometimes call cusp manifolds such manifolds. Up to taking a finite
cover, we can always assume that each Λ is a lattice in Rd (i.e only acts by
translations).

Figure 1.1. A surface with three cusps. In red, a closed geodesic in a
hyperbolic free homotopy class. In blue, a curve in a free homotopy
class of loops wrapping once around a cusp: this class does not contain
any closed geodesic.
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In our case, we denote by C the set of hyperbolic free homotopy classes
on M , which is in one-to-one correspondence with the set of hyperbolic
conjugacy classes of π1(M, ·). These are the set of conjugacy classes of
hyperbolic elements of the fundamental group which can be seen as iso-
metric transformations on the universal cover M̃ of M (M̃ is diffeomor-
phic to a ball) with two distinct fixed points on the boundary at infin-
ity. From elementary Riemannian geometry, just as in the closed case, we
know that for each such class c ∈ C of C1 curves on M , there is a unique
closed curve γg(c) which is a geodesic for g. We define the X-ray transform
Ig

2 : C∞
comp(M,S2T ∗M) → ℓ∞(C) (where ℓ∞(C) denotes bounded sequences

indexed by C) as the following operator: if h ∈ C∞
comp(M,S2T ∗M) then

Ig
2h(c) = 1

ℓ(γg(c))

∫ ℓ(γg(c))

0
hγ(t)(γ̇(t), γ̇(t))dt,

where γ is a parametrization by arc-length. Of course, it is possible to
define the X-ray transform for a larger class of tensors than those in
C∞

comp(M,S2T ∗M). The main result of our paper is the following:

Theorem 1.1. — Let d ⩾ 1 and (Md+1, g) be a negatively-curved
complete manifold whose ends are real hyperbolic cusps. Let −κ0 < 0
be the maximum of the sectional curvature. Then, for all α ∈ (0, 1) and
β ∈ (0,√κ0α), the X-ray transform Ig

2 is injective on

yβCα
(
M,S2T ∗M

)
∩H1 (M,S2T ∗M

)
∩ kerD∗ .

Here, D∗ denotes the divergence on 2-tensors: as usual, a tensor f is
declared to be solenoidal if and only if D∗f = 0 (see § 5.3 for further
details). It is defined as the formal transpose (for the L2-scalar product)
of the operator D := σ ◦ ∇ acting on 1-forms, where ∇ is the Levi–Civita
connection and σ is the operator of symetrization of 2-tensors. In turn,
the previous Theorem implies the spectral rigidity for smooth compactly
supported isospectral deformations.

Corollary 1.2. — Let d ⩾ 1 and (Md+1, g) be a negatively-curved
complete manifold whose ends are real hyperbolic cusps. Let (gλ)λ ∈ (−1, 1)
be a smooth isospectral deformation of g = g0 with compact support in M .
Then, there exists an isotopy (ϕλ)λ ∈ (−1, 1) such that ϕ∗

λgλ = g.

This is the equivalent for cusp manifolds of the classical Guillemin–
Kazhdan result [16].

As mentioned earlier, Theorem 1.1 is the first step towards proving the
local rigidity of the marked length spectrum on such manifolds, as the X-
ray transform on symmetric 2-tensors turns out to be the differential of the
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marked length spectrum, and this program will be carried out in the follow-
ing paper [11]. We will refer to the local marked length spectrum rigidity
question as the nonlinear problem. In contrast, the linear or infinitesimal
problem will be that of the solenoidal injectivity of the X-ray transform
which is dealt in the present paper.

In order to prove Theorem 1.1, we will need — together with a Livšic-
type theorem which does not really differ from the compact case — to
study the decomposition of symmetric 2-tensors into a potential part and
a solenoidal part (or divergence-free part). Namely, we will need to prove
that any symmetric 2-tensor f can be written as f = Dp + h, where p is
a 1-form and h is solenoidal. The existence of such a decomposition relies
on the analytic properties of the elliptic differential operator D and in
particular on the existence of a parametrix with compact remainder. Since
the manifold M is not compact, this theory is made harder (smoothing
operators are no longer compact) and one has to resort to a careful analysis
of the behaviour of the operator on the infinite ends of the manifold. A large
part of this article is devoted to this study as the next paragraph explains.

1.2. Pseudo-differential calculus on manifolds with hyperbolic
cusps

A careful study of the operators on the infinite ends of the manifolds will
be needed. The relevant techniques are that of Melrose’s b-calculus [25]
which we will adapt to our setting. They will also be used in our second
paper [11]. While the operators D and D∗D studied in this first article are
very likely to belong to the “fibered cusp calculus” introduced by Mazzeo–
Melrose [24], we rather chose to expand the microlocal calculus developed
in [5] and [12] and this for two main reasons:

(1) First of all, in order to deal with the nonlinear problem in [11], we
use the resolvent of the generator X of the geodesic flow on the
unit tangent bundle SM , as it was studied in [12]. Since X is not
elliptic, the techniques of Melrose [25] cannot be applied to study its
analytic properties (at least, not in a straightforward manner. . . )
and to prove, in particular, the meromorphic extension of (X±τ)−1

to the whole complex plane. It was the purpose of [12] to expand
the relevant calculus introduced in [5] in order to deal with such a
non-elliptic operator.

(2) Secondly, we will mostly be interested in the analytic behaviour
of the operator D∗D on weighted Hölder–Zygmund spaces. On the
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one hand, this type of spaces does not seem to have been considered
so far by the microlocal school working on noncompact manifolds
neither in the general context of Melrose calculi, nor specifically
with cusps and for which we refer to [24, 26, 38]. In particular,
we prove boundedness results of pseudo-differential operators on
such manifolds and show how to construct a parametrix on these
spaces modulo a compact remainder. On the other hand, bound-
edness on this type of spaces for pseudo-differential operators on
manifolds with bounded geometry seems to have been considered
by various authors (see [36, 37] for instance). Roughly speaking,
this assumption asserts that the manifold is uniformly comparable
to Rd and that the usual results known on Rd can be transferred to
such manifolds. However, in our case, since the radius of injectiv-
ity collapses to 0 in the cusps, we are not dealing with a bounded
geometry and we cannot use such results. Hence, combining all the
existing literature on the subject, it seems that our detailed study of
pseudo-differential operators acting on Hölder–Zygmund spaces on
manifolds with cusps is new. We refer to § 2.3 for a more extensive
discussion.

Let us now briefly explain our analysis of pseudo-differential operators
on cusp manifolds. Recall that the cusps are of the form

Za,Λ = [a,+∞[y×
(
Rd/Λ

)
θ
,

where y denotes the height variable and θ the slice variable, and we will
take advantage of this product decomposition. Given f ∈ C∞

comp(M), we
can always decompose f |Za, Λ in restriction to Za, Λ as a sum f = f0 + f⊥,
where f0 ∈ C∞

comp(Za, Λ) is independent of the slice variable θ,

f0(y) :=
∫
Rd/Λ

f(y, θ)dθ ,

is called the 0th Fourier mode of f (note that we do not need to divide by the
volume of the slice, since by assumption the volume of Rd/Λ is equal to 1),
and f⊥ := f − f0 ∈ C∞

comp(Za, Λ) is called the non-zero Fourier modes of f .
Of course, such a decomposition can be naturally extended to sections of
vector bundles.

In the core of this article, we will be working with admissible pseudo-
differential operators (see Definition 4.6 for a precise statement) acting
on sections of vector bundles over the cusp manifold. Roughly speaking,
these operators are of geometric nature (they will be constructed out of
the metric, just like the Laplace–Beltrami operator acting on functions for
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instance) and, as a consequence of their geometric definition, they will act
diagonally on the decomposition of sections into zero and non-zero Fourier
modes, modulo some compact remainders. As we will see, the construction
of a parametrix for an elliptic operator is made difficult due to the zero
Fourier mode and this is really where the non-compactness of the manifold
comes into play.

The precise study of the operator on the zero Fourier mode is done
through an indicial operator as in Melrose [25] which reveals some indicial
roots, playing a crucial role in the description of the elliptic operator as a
Fredholm operator (i.e. an operator with finite kernel and cokernel). In par-
ticular, according to the weighted spaces considered (these are functional
spaces where the norm includes a weight yρ for some ρ ∈ R), the behaviour
of an operator might be drastically different. As for the introduction, we
state a simpler version of our main theorem of inversion (see Theorem 4.13)
in the case where the fiber over the cusp is trivial (it is a point) and the
operator acts on distributions on M .

Theorem 1.3. — Let (Md+1, g) be a complete manifold whose ends
are real hyperbolic cusps. Let P be a differential operator on M . Assume
that it is R-admissible in the sense of Definition 4.6. Also assume that it
is uniformly elliptic in the sense of Definition 2.6. Then there is a discrete
set S(P ) ⊂ R such that for all s ∈ R, for each connected component
I ⊂ R \ S(P ), and ρ ∈ I, P is Fredholm on yρ−d/2Hs(M) and yρCs

∗(M),
with a Fredholm index which only depends on I.

The spaces Hs(M) are the usual Sobolev spaces built from the met-
ric. The spaces Cs

∗(M) are the Hölder–Zygmund spaces, introduced in § 3.
They coincide with the usual Hölder spaces Cs(M) built from the distance
(induced by the metric) for s ∈ R+ \ N (see Proposition 3.9). By a little
more effort, we also obtain a relative Fredholm index Theorem (see For-
mula (4.15)), allowing to describe the jump of the Fredholm index as one
crosses an indicial root (see Propositions 4.24 and 4.25). This also holds in
the Hölder–Zygmund category.

1.3. Outline of the paper

In § 2, we introduce the basic functional spaces and the class of pseudo-
differential operators we will be working with. In § 3, we prove boundedness
properties of our class of pseudo-differential operators on Hölder–Zygmund
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spaces. § 4 is dedicated to the notion of indicial operator and to the in-
version of an elliptic pseudo-differential operators on weighted Sobolev and
Hölder–Zygmund spaces.

In the last § 5, we show how the previous theory can be applied to
the operators ∇S (the gradient of the Sasaki metric on the unit tangent
bundle SM), D and D∗D. This will provide the decomposition of tensors
into a potential and a solenoidal part. We also obtain a Livšic Theorem
(see Theorem 5.2) which is rather similar to the compact case. In the end,
gathering all these different pieces together, we will deduce Theorem 1.1
and Corollary 1.2.
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2. Pseudo-differential operators on manifolds with
hyperbolic cusps

2.1. The geometric setup and main result

2.1.1. Admissible bundles

Throughout the article, we will rely on constructions from [12], itself
based on [5]. In the former paper, the techniques from Melrose [25] had to
be adapted to deal with operators that are not elliptic. In § 2.3, we will
compare our setup to that of Mazzeo and Melrose’s fibred cusp calculus.
Since we want to state results in some generality, we will consider in this
whole section the following situation: we are given a non-compact manifold
N with a finite number of ends Nℓ, which take the form

(2.1) Zℓ, a × Fℓ.

Here, Zℓ, a = {z ∈ Zℓ | y(z) > a}, and

Zℓ = ]0,+∞[y×
(
Rd/Λℓ

)
θ
.

TOME 73 (2023), FASCICULE 1
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In all generality, Λℓ ⊂ O(d) ⋉ Rd is a crystallographic group. However,
according to Bieberbach’s Theorem, up to taking a finite cover, we can
assume that Λ ⊂ Rd is a lattice of translations. We will work with that
case, and check that the results are stable by taking quotients under free
actions of finite groups of isometries. The slice (Fℓ, gFℓ

) is assumed to be a
closed Riemannian manifold. We will use the variables (y, θ, ζ) ∈ Zℓ × Fℓ

where (y, θ) ∈ [a,+∞) × Rd/Λℓ. We assume that N is endowed with a
metric gN , equal over the cusps to the product metric

gN |Zℓ,a
= dy2 + dθ2

y2 + gFℓ
.

We therefore have a decomposition

N = N0 ∪ℓ Nℓ,

where N0 is a compact submanifold of N with boundary. We will refer to
N0 as the compact part of N and to the Nℓ’s as the cuspidal parts of N . An
example of such a manifold is given by N = SM , the unit tangent bundle
of our manifold (M, g) with hyperbolic cusps.

We will also have a vector bundle L → N , and will assume that for each
ℓ, there is a vector bundle Lℓ → Fℓ, so that

L|Nℓ
≃ Zℓ × Lℓ.

Whenever L is a hermitian vector bundle with metric gL, a compatible
connection ∇L is one that satisfies

XgL (f1, f2) = gL

(
∇L

Xf1, f2
)

+ gL

(
f1,∇L

Xf2
)
,

where f1, 2 ∈ C∞
comp(N,L). Taking advantage of the product structure, we

impose that when X is tangent to Z,

(2.2) ∇L
Xf(y, θ, ζ) = d(y, θ)f(X) +A(y, θ)(X) · f,

(since the cylinder Z has a flat structure, the differential d(y, θ) is well
defined). Here the connection form Ax(X) is an anti-symmetric endomor-
phism depending linearly on X, and A(y∂y), A(y∂θ) do not depend on y, θ.
In particular, we get that the curvature of ∇L is bounded, as are all its
derivatives.

Definition 2.1. — Such data (L → N, g, gL,∇L) will be called an
admissible bundle.

Given a cusp manifold (M, g), the bundle of differential forms over M
is an admissible bundle. Since the tangent bundle of a cusp is trivial, any
linearly constructed bundle over M is admissible. For example, the bundle
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of forms over the Grassmann bundle of M , or over the unit cosphere bundle
S∗M . The Sasaki metric on SM is not a product metric, however, it is
uniformly equivalent to the natural product metric in the cusps (see [5,
Appendix C]). In particular, it defines the same classes of regularity.

2.1.2. Functional spaces

Let f be a function on N . We define for an integer k ⩾ 0:

∥f∥Ck(N) := sup
0 ⩽ j ⩽ k

sup
z ∈ N

∥∥∇jf(z)
∥∥ ,

where ∇ is the Levi–Civita connection induced by gN . We write f ∈ C∞(N)
if all the derivatives of f are bounded. If f is infinitely many times differen-
tiable, but its derivatives are not bounded, we simply say that f is smooth.

The Christoffel coefficients of the metric in the cusp in the frame

Xy := y∂y, Xθ := y∂θ, Xζ := ∂ζ

are independent of (y, θ) (see [3, Appendix A.3.2]). As a consequence, in
the cusp, there are uniform constants such that

(2.3) sup
0 ⩽ j ⩽ k

∥∥∇jf(z)
∥∥ ≍ sup

|α|⩽ k

|Xαf(z)| ,

for all z = (y, θ, ζ) ∈ N . Here, α is an ordered multiindex with values in
{y, θ, ζ}k.

We now introduce Hölder spaces. Let 0 < β < 1. We will write f ∈
Cβ(N) if:

∥f∥Cβ := sup
z ∈ N

|f(z)| + sup
z, z′ ∈ N, z ̸= z′

|f(z) − f(z′)|
d(z, z′)β

= ∥f∥∞ + ∥f∥β < ∞,

where d(·, ·) refers to the Riemannian distance induced by the metric gN .
In particular, a function f may be β-Hölder continuous, with a uniform
Hölder constant of continuity (i.e. ∥f∥β < ∞), but may not be in Cβ(N) if
∥f∥∞ = ∞ for instance. It also makes sense to define Cβ for β ∈ R+ \N by
asking that f ∈ C [β](N) and that the [β]th derivatives of f are in Cβ−[β]

Hölder-continuous.
The Lebesgue spaces Lp(N), for p ⩾ 1, are the usual spaces defined with

respect to the Riemannian measure dµ induced by the metric gN . Over
the cusp, it has the particular expression dµ = y−d−1dydθdvolFℓ

(ζ), where
dvolFℓ

denotes the Riemannian measure induced by the metric gFℓ
. For

s ∈ R, we define (via the spectral theorem):

(2.4) ∥f∥Hs(N) := ∥(−∆ + 1)sf∥L2(N) ,

TOME 73 (2023), FASCICULE 1



346 Yannick GUEDES BONTHONNEAU & Thibault LEFEUVRE

and Hs(N) is the completion of C∞
comp(N) with respect to this norm. Here

∆ is the Laplacian induced by the metric gN .
Let ỹ : N → R+ be a smooth positive function such that ỹ(z) = y,

for z ∈ Zℓ, a. In the following, we will abuse notations and confuse the
function ỹ defined globally onM with the y coordinate on the cusps. We can
now introduce weighted spaces yρXs(N) (for X = C,H) by the following
formulas:

∥f∥yρXs(N) := ∥y−ρf∥Xs(N).

For the reader to get familiar with these spaces, let us mention here some
embedding lemmas.

Lemma 2.2.
(1) Let 0 ⩽ s < s′ < 1 and ρ− d/2 < ρ′. Then

yρCs′
(N) ↪→ yρ′

Hs(N)

is a continuous embedding.
(2) Let k ∈ N, s > d+1

2 + k. Then

y−d/2Hs(N) ↪→ Ck(N)

is a continuous embedding.

The shift by yd/2 will appear throughout the article and is due to the
fact that Sobolev spaces are built from the L2 space induced by the hy-
perbolic measure dydθdvol(ζ)/yd+1. We will prove (and even refine) these
embedding lemmas in § 3.3.

So far, we have only introduced the functional spaces for functions. When
working with sections of vector bundles, one needs a connection to compute
derivatives. Then one can define the relevant functional spaces in essentially
the same way. For those spaces to behave in a reasonable fashion, one needs
that the connection itself is uniformly C∞ with respect to itself. It is in
particular the case when it is the connection of an admissible bundle.

2.2. Pseudo-differential operators on cusps

We now introduce our algebra of pseudo-differential operators. We want
to consider the action of operators on sections of L → N or more generally
from sections of L1 → N to sections of L2 → N where L1,2 are admissi-
ble bundles. In the paper [12], an algebra of semi-classical operators was
described using results from [5]. It consists of families of operators depend-
ing on a small parameter h > 0. In this paper, most of the time, we will
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be using classical operators, which is equivalent to fixing the value of h
to 1. The description of the algebra of operators we are using relies on
two points: first, we need to say which types of smoothing remainders are
allowed; second, we need to describe the quantization we will manipulate.

2.2.1. Various types of smoothing operators

The non-compactness of the manifold, and the fact that we consider
Sobolev and Hölder–Zygmund spaces makes it unavoidable to use several
classes of smoothing operators in the paper. Let us take the time to properly
present them.

(1) The smallest class of smoothing operators, which we will call
R-residual operators and denote by Ψ̇−∞

R comprises the operators
R that are bounded as maps

R : yρH−k(N,L1) → y−ρHk(N,L2),

for any ρ > 0, k ⩾ 0. We will define in § 2.1.2 some Hölder–Zygmund
spaces Cs

∗ , and we could replace the spaces Hk by the spaces Cs
∗ in

the definition of R-residual operators, and obtain the same class of
operators, as is stated in Proposition 3.14.

(2) Another class of operators of interest is that of R-smoothing op-
erators, denoted Ψ−∞

R , which comprises the operators R that are
bounded as maps

R : yρH−k(N,L1) → yρHk(N,L2),

for any ρ ∈ R, k ⩾ 0. If one replaces Sobolev spaces by Hölder–
Zygmund spaces, one obtains a notion of R-smoothing operators in
Hölder–Zygmund. In this case, it is not clear to us whether both
classes are the same. We will make further comments on this right
after the proof of Proposition 4.8.

(3) Now, it will turn out that the range of ρ’s that are allowed may have
to be restricted, so that one has to introduce a bit more of notations.
Specifically, given a non-trivial interval I = (ρ−, ρ+) ⊂ R, we will
say that R is an I-residual operator if for any ρ, ρ′ ∈ I, and any
k ∈ R, R is bounded as a map

R : yρ−d/2H−k → yρ′−d/2Hk.

The −d/2 factor is here to take into account that the measure in
the cusps is y−d−1dydθdζ. The class of such operators is denoted
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Ψ̇−∞
I . We will see that it is equivalent to requiring that for the same

range of parameters, R is bounded as a map

R : yρC−k
∗ → yρ′

Ck
∗ .

(4) We also have I-smoothing operators, which are operators R such
that for all ρ ∈ I, and all k ∈ R, R is bounded as a map

R : yρ−d/2H−k → yρ−d/2Hk.

The class of these operators is denoted Ψ−∞
I . Again, if one replaces

Sobolev spaces with Hölder–Zygmund spaces, it defines a class of
I-L∞-smoothing operators. It is not clear to us if this defines the
same class.

The reader familiar with Melrose’s b-calculus will observe that R-residual
here is the equivalent of Melrose’s maximally residual operators.

2.2.2. Hyperbolic quantization

Let us now describe our quantization. In the compact part, we will use
usual pseudo-differential operators with symbols σ in the Kohn–Nirenberg
class, satisfying usual estimates in charts of the form∣∣∣∂α

x ∂
β
ξ σ
∣∣∣ ⩽ Cα, β⟨ξ⟩m−|β|.

For this, we refer to [41] for instance. As a consequence, it suffices to explain
what we will be calling a pseudo-differential operator in the ends. We will
recall the constructions of [5, 12]. For this, we consider one end, and we
drop the ℓ’s. Instead of quantizing Za, we work with the full cusp Z.

Let us denote by Opw the usual Weyl quantization on Rd+1 ×Rk. Given
χ ∈ C∞

comp(R) equal to 1 around 0, and a ∈ S ′(R2d+2k+2), we denote by
Opw(a)χ the operator (on R+∗

y × Rd × Rk now, to avoid y, y′ = 0) whose
kernel is

(2.5) K (y, θ, ζ; y′, θ′, ζ ′) = χ

[
y′

y
− 1
]
KOpw(a) (y, θ, ζ; y′, θ′, ζ ′) .

Next, we can associate a ∈ C∞(T ∗(Z ×Rk),Hom(Rn1 ,Rn2)) with its peri-
odic lift

ã ∈ C∞ (T ∗ (Ry × Rd
θ × Rk

ζ

)
,Hom (Rn1 ,Rn2)

)
.

(supported for y > 0). Given f ∈ C∞(Z × Rk,Rn1), denoting by f̃ the pe-
riodic lift to Rd+1 ×Rk, it follows from the explicit expression of Opw(ã)χf̃

that it is again periodic. In particular, Opw(ã)χ defines an operator from
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compactly supported smooth sections of Rn1 → Z × Rk to distributional
sections of Rn1 → Z × Rk.

As a consequence, it makes sense to set

OpRk (a)f = y(d+1)/2 Opw(a)χ

[
y−(d+1)/2f

]
.

Using a partition of unity on Fℓ, we can globalize this to a Weyl quanti-
zation Opw

Nℓ, L1 → L2
, and then on the whole manifold Opw

N, L1 → L2
— the

arguments in [41, Section 14.2.3] apply. We will write Op for this Weyl
quantization on the whole manifold. Since F is compact, one checks that
the resulting operators are uniformly properly supported above each cusp.

Now, we need to say more about the symbol estimates that we will
require. We introduce

⟨ξ⟩ :=
√

1 + g∗
N (ξ, ξ),

the Japanese bracket of ξ ∈ T ∗N with respect to the natural metric g∗
N

on T ∗N (this is the dual metric to the Sasaki metric). Due to the product
structure of the metric gN on N over the cuspidal part, it is equal to
g∗

Zℓ
+ g∗

Fℓ
. Over the cusps, we denote by (Y, J, η) ∈ R×Rd ×T ∗Fℓ the dual

variables to (y, θ, ζ) ∈ [a,+∞) × Rd/Λ × Fℓ (such global coordinates are
possible because the (co)tangent bundle of the cusp is trivial). In the case
that Fℓ is a point, we then have:

⟨ξ⟩ =
√

1 + y2|ξ|2euc =
√

1 + y2(Y 2 + J2).

Let π : T ∗N → N be the canonical projection on the base. The vector
bundles L1,2 → N can be lifted to T ∗N in order to define vector bundles
π∗L1,2 → T ∗N . In the following, we will consider such lifts (and canonical
vector bundles constructed from it) but we will drop the π∗ notation.

Definition 2.3. — A symbol of order m is a smooth section a of
Hom(L1, L2) → T ∗N , that satisfies the usual estimates over N0 (the com-
pact core of N), and above each Nℓ (the cuspidal parts), and in local charts
for Fℓ, for each α, β, γ, α′, β′, γ′, there is a constant C > 0:∣∣∣(y∂y)α (y∂θ)β (∂ζ)γ (

y−1∂Y

)α′ (
y−1∂J

)β′

(∂η)γ′
a
∣∣∣
Hom(L1, L2)

⩽ C⟨ξ⟩m−α′−|β′|−|γ′|.

We write a ∈ Sm(T ∗N,Hom(L1, L2)).

Observe that this does not actually depend on the order in which the
derivatives were taken, nor does it depend on the choice of charts on Fℓ

since it is compact. (Alternatively, one could ask the previous definition to
hold locally uniformly in charts for Fℓ.)
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2.2.3. Algebra of small pseudo-differential operators

We can now introduce the class of small pseudo-differential operators:

Definition 2.4. — The class of small pseudo-differential operators is
defined as:

Ψm
small (N,L1 → L2)

:=
{

Op(a) +R
∣∣ a ∈ Sm (T ∗N,Hom (L1, L2)) , R ∈ Ψ−∞

R
}
.

The choice of the adjective “small” refers to Melrose’s small calculus [25].
This class of operators satisfies the usual properties that we present now.

Proposition 2.5.

(1) Let m ∈ R. Then A ∈ Ψm
small(N,L1 → L2) is continuous from

yρHs(N,L1) to yρHs−m(N,L2) for all s, ρ ∈ R.
(2) Let m,m′ ∈ R, a ∈ Sm(T ∗N,Hom(L1, L2)) and b ∈ Sm′(T ∗N,Hom

(L2, L3)). Then Op(a) Op(b) ∈ Ψm+m′

small , and

Op(a) Op(b) − Op(ab) ∈ Ψm+m′−1
small .

In particular, Ψ∗
small := ∪m ∈ RΨm

small is an algebra.

For the proof, we refer to [12, Proposition A.8] and [5, Proposition 1.19].
The only difficulty may be that in [12, Proposition A.8], the boundedness
was only considered on spaces Hs, instead of yρHs. However, since Op(σ) is
uniformly properly supported (due to the introduction of the cutoff function
χ in the quantization (2.5)), we can conjugate it by yρ, and observe that
this gives an operator still in the class Ψ∗

small.
It will be useful to recall that the proof of the boundedness relies on

building a symbol σs such that Hs = Op(σs)L2 (so that Op(σs) approxi-
mates (−∆ + C)−s/2 for some large constant C > 0). In the following, we
will write Λ−s = Op(σs).

Definition 2.6. — Let a ∈ Sm(T ∗N,Hom(L1, L2)). We will say that
a is left (resp. right) uniformly elliptic if there exists C > 0 and b ∈
S−m(T ∗N,Hom(L2, L1)) such that b is a left (resp. right) inverse for a,
in the sense that b(z, ξ)a(z, ξ) = 1L1 (resp. a(z, ξ)b(z, ξ) = 1L2) for all
(z, ξ) ∈ T ∗N such that g∗

N (ξ, ξ) ⩾ C.
When L1 and L2 have the same dimension, both definitions are equivalent

and we just say that a is uniformly elliptic.
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Proposition 2.7. — Let a ∈ Sm(T ∗N,Hom(L1, L2)) be left (resp.
right) uniformly elliptic. Then we can find Q ∈ Ψ−m

small(N,Hom(L2, L1))
such that

QOp(a) = 1 +R (resp. Op(a)Q = 1 +R) ,
with R ∈ Ψ−∞

small(N,Hom(L1, L1)).

Before going on with the proof, observe that the remainder here is not
necessarily a compact operator, contrary to the case of a closed manifold.

Proof. — It suffices to deal with the left elliptic case. Here, we can apply
the usual parametrix construction. By definition of (left/right) ellipticity,
we can choose a q0 ∈ S−m(T ∗N,Hom(L2, L1)) such that for all (z, ξ) ∈
T ∗N such that g∗

N (ξ, ξ) > C,

q0(z, ξ)a(z, ξ) = 1L1 .

Then
Op(q0) Op(a) = 1L1 + Op(r1) +R1.

Here, r1 ∈ S−1(T ∗N,Hom(L1)), and R1 is small smoothing. Then

Op ((1 − r1)q0) Op(a) = 1 + Op(r2) +R2,

where r2 ∈ S−2(T ∗N,L(L1)) and R2 is again small smoothing. Now, we
can iterate this construction, and find by Borel’s Lemma a symbol q̃ ∈
S−m(T ∗N,Hom(L2, L1)) with

q̃ ∼ q0 −
+∞∑
i=1

riq0,

where ri ∈ S−i(T ∗N,Hom(L1)), in the sense that for all N ⩾ 0,

q̃ −

(
q0 −

N∑
i=1

riq0

)
∈ S−m−N−1 (T ∗N,Hom (L2, L1)) ,

and such that
Op(q) Op(a) = 1 +R,

with R small smoothing. □

2.3. Comparison to the fibered-cusp calculus

To study Fredholm properties of differential operators on ends of the
type (2.1), the so-called fibered-cusp calculus was introduced by Mazzeo
and Melrose in [24]. We now explain the main difference between their
calculus and ours, and some reasons why using ours is relevant.
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So far, we have presented an algebra of pseudo-differential operators
which is an extension of an algebra of differential operators. The latter is
itself the algebra generated by V0, the Lie algebra of vector fields of the
form

(2.6) ay∂y + by∂θ +X,

where the coefficients a, b are C∞-bounded on Z×F and X is a smooth and
C∞-bounded vector field tangent to F . Here C∞-bounded is understood
with respect to the Levi–Civita connection, or the local vector fields y∂y,
y∂θ and ∂ζ . A crucial observation is that the Laplacian associated with the
metric of Z × F is in this algebra.

Let us recall on the other hand the setup of the fibred-cusp calculus
developed by Mazzeo–Melrose [24]. Usually, it is presented as a calculus
on a manifold with boundary. However, we can remove the boundary, and
replace the distance to the boundary u by y = 1/u as local coordinates.
After such a change of coordinates, the fibered-cusp algebra Ψdiff

fc is seen
to be the algebra of differential operators generated by the algebra Vfc of
vector fields of the form (in local coordinates (y, θ, ζ) near the boundary)

(2.7) 1
y

(
ay∂y + by∂θ + c∂ζ

)
,

where a, b, c are C∞-bounded functions of u = 1/y, ζ, θ (including at u = 0).
At first glance, it seems that Vfc is the same algebra as (1/y)V0. However,
the regularity required in the Mazzeo–Melrose calculus is quite different.
Indeed, the vector fields measuring the regularity of the coefficients are
now y2∂y (∂u in the u-coordinate), ∂θ and ∂ζ (observe how they are not in
Vfc). As a consequence, the inclusion Vfc ⊂ (1/y)V0 is strict. For example,
sin(log y)y∂y is an element of V0, but sin(log y)∂y is not in Vfc. The reason
is that it oscillates with a wavelength ∼ 1 uniformly in the cusp, but in the
fibred-cusp geometry of Mazzeo–Melrose, it oscillates at wavelength | log u|,
where u is the distance to the boundary.

Our algebra of operators is thus a priori larger than the fibred-cusp alge-
bra. However, it can only be defined when working with hyperbolic cusps,
which is not the case of Mazzeo and Melrose’s algebra. To explain this, we
have to expand a bit on the geometric difference behind the definition of
these algebra of vector fields. The very fact that these form an algebra is a
delicate point.

Let us assume for a moment that the θ variable is not a variable in
a torus, but rather an arbitrary compact manifold W , so that the end
takes the form R+ ×W × F . We want to consider then vector fields of the
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form (2.6), and impose some condition on the coefficients for them to form
an algebra. For this, we consider yX1 and yX2, directed along ∂θ. Then
X1 = b1∂θ, and X2 = b2∂θ so that

[yX1, yX2] = y2 [X1, X2] .

This has to be of order O(y), so that [X1, X2] = O(1/y). This means that
the vector fields X1, 2, on W with parameters y, ζ, are almost commuting
as y → +∞. Let us further impose the non-degeneracy condition that
for each point in W we can find vector fields yX1, . . . , yXd in our putative
algebra which form a bounded frame around that point. Heuristically, when
iterating these brackets, we find that in the region where they are non-
degenerate, they are almost constant as y → +∞. Eventually, this implies
that they have to be supported on the whole of W , and almost commute.
Declaring them as an orthonormal basis defines then a metric on W whose
curvature goes to 0 as y → +∞. It follows that W is almost flat. Manifolds
that are almost flat are classified, and are all bundles constructions with
torii. As a side remark here, if we considered complex (instead of real)
hyperbolic cusps, we would have a θ variable describing (instead of a torus)
a torus bundle over a torus. For more insight on this type of question, we
refer to [10] and [1].

On the other hand, the set of vector fields Vfc forms an algebra with-
out any particular condition on the topology of the manifold W . Another
way of putting this is that the description (2.7) is completely local at the
boundary, while the description (2.6) is semi-local, since it is actually a
global description the θ variable.

Let us now explain why in our case, it is worthwhile to use our algebra
instead of the fibred-cusp one. The arguments are of different nature.

The purpose of [24] was to analyze whether operators in Ψdiff
fc have para-

metrices modulo compact remainders when acting on L2(N ′). This involves
the inversion of an indicial operator, which is a family of operators P̂ (ζ, η),
parametrized by (ζ, η) ∈ T ∗F , acting on the fiber p−1(ζ) (here Rd/Λ). To
invert general elliptic operators in our class would certainly involve some-
thing more complicated.

However, we will restrict our attention to operators which respect the
geometry of the cusp. For such operators, we will be able to concentrate
mostly on functions which do not depend on the variable θ. For this reason,
the non-compactness of the manifold will effectively appear to take the form
R+ ×F . The criterion for being Fredholm is then much simpler. Indeed, we
only need to invert a family of operators I(P, λ), with λ ∈ iR, each such
operator acting on F (the base instead of the fiber). One can note here that
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this is very similar to another calculus of Melrose, the b-calculus, which is
adapted to cylindrical ends like R+ × F .

Another argument of convenience is that the theory of Mazzeo and Mel-
rose has so far been developped entirely in the framework of Sobolev spaces.
Extending those results to the class of Hölder–Zygmund spaces would re-
quire a considerable effort, more so than developping our tools.

The other arguments are a bit less practical, and related to the question
of studying dynamics. If P is a differential operator of order m in our class
satisfying the “geometric condition” yet to be stated, umP ∈ Ψdiff

fc , so one
could apply the results in [24]. However

• It is a bit unsatisfying that in the fibred-cusp calculus, the most
natural operator in our setting, i.e the Laplace operator, is not in the
algebra, but can still be dealt with via some trick — multiplication
by u2.

• In the case that P is not differential but pseudo-differential of vary-
ing order, it is not quite obvious what would replace the correspon-
dence P 7→ umP . This is crucial when dealing with anisotropic
spaces as in [12]. This will also intervene in our second paper [11].

• For the study of propagators and propagation of singularities (which
will be important in the sequel [11]), it is important to consider
the flow of the principal symbol of the relevant operators. In our
framework, such a flow is uniformly smooth with respect to the
geometry, while it is not the case of the fibred-cusp calculus.

3. Pseudo-differential operators for Hölder–Zygmund
spaces on cusps

Hölder spaces, with their naive definition, are not very compatible with
the tools of microlocal analysis. The usual solution is to give an alternative
definition of these spaces via a Littlewood–Paley decomposition, defining
thus the so-called Hölder–Zygmund spaces. On Rn, or on compact mani-
folds, this is a classical subject. However, this has not been investigated so
far for manifolds with cusps.

In this section, we are going to define such spaces Cs
∗ on manifolds with

cusps, and then prove that the class of pseudo-differential operators de-
fined in the previous section acts on them in a reasonnable fashion. On a
compact manifold, this is a well-known fact and we refer to the arguments
before [37, Equation (8.22)] for more details. The subtleties come from the
non-compactness of the manifold.
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At this stage, we insist on the fact that the Euclidean Littlewood–Paley
decomposition is rather remarkable insofar as it only involves Fourier multi-
pliers (and not “really” pseudo-differential operators), which truly simplify
all the computations. This is not the case in the hyperbolic world and some
rather tedious integrals have to be estimated.

Then, we will be able to prove that the previously defined pseudo-
differential operators of order m ∈ R map continuously Cs+m

∗ to Cs
∗ , just as

in the compact setting. Since we can always split the operator in different
parts that are properly supported in cusps or in a fixed compact subset of
the manifold (modulo a smoothing operator), we can directly restrict our-
selves to operators supported in a cusp as long as we know that smoothing
operators enjoy the boundedness property.

3.1. Definitions and properties

In the paper [5], only Sobolev spaces were considered. So we will have to
prove several basic results of boundedness of the calculus, acting now on
Hölder–Zygmund spaces. We will give the proofs in the case of cusps, and
leave the details of extending to products of cusps with compact manifolds
to the reader.

We consider a smooth non-negative function ψ ∈ C∞
comp(R) such that

ψ(s) = 1 for |s| ⩽ 1 and ψ(s) = 0 for |s| ⩾ 2. We define, for j ∈ N∗,
the following function on the cotangent bundle to the hyperbolic space
T ∗Hd+1 ≃ Hd+1 × Rd+1:

(3.1) φj(x, ξ) = ψ
(
2−j⟨ξ⟩

)
− ψ

(
2−j+1⟨ξ⟩

)
,

where (x, ξ) ∈ T ∗Hd+1, x = (y, θ) ∈ Hd+1 and ⟨ξ⟩ :=
√

1 + y2|ξ|2 is the
hyperbolic Japanese bracket with |ξ| = |ξ|euc being the euclidean norm of
the (co)vector ξ ∈ Rd+1. Observe that

suppφj ⊂
{

(x, ξ) ∈ Hd+1 × Rd+1 ∣∣ 2j−1 ⩽ ⟨ξ⟩ ⩽ 2j+1} .
Then, with φ0 = ψ(⟨ξ⟩),

∑+∞
j=0 φj(x, ξ) = 1. Of course, the functions φj

are translation invariant and thus descend to a cusp Z =]0,+∞[×Rd/Λ.
We will still denote them by φj . We then introduce the

Definition 3.1. — We define the Hölder–Zygmund space of order s as:

Cs
∗(Z) :=

{
u ∈ ∆NL∞(Z) + L∞(Z)

∣∣ ∥u∥Cs
∗
< ∞

}
,

where:
∥u∥Cs

∗
:= sup

j ∈ N
2js ∥Op(φj)u∥L∞(Z)
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and N = 0 for s > 0 and N > (|s| + d+ 1)/2 when s ⩽ 0.

It will be shown in Lemma 3.3 below that Op(φj) is indeed bounded
on L∞, hence proving that this definition is legitimate. One can check
that the definition of these spaces does not depend on the choice of the
initial function ψ (as long as it satisfies the aforementioned properties),
see Remark 3.6. This mainly follows from Lemma 3.5 below. Note that,
although a cutoff function χ around the “diagonal” y = y′ has been intro-
duced in (2.5) in the quantization Op, we still have 1 =

∑
j ∈ N Op(φj).

Thus, given u ∈ Cs
∗ with s > 0, one has u =

∑
j ∈ N Op(φj)u, with normal

convergence in L∞ and

∥u∥L∞ ⩽
∑
j ∈ N

∥Op (φj)u∥L∞ ⩽
∑
j ∈ N

2−js 2js ∥Op (φj)u∥L∞︸ ︷︷ ︸
⩽ ∥Cs

∗∥

≲ ∥u∥Cs
∗
.

We denote by [x] the floor function, i.e. the integer part of x ∈ R. It can
be checked that the definition of Hölder–Zygmund space locally coincides
with the usual definition on a compact manifold, that is for (1) s /∈ N,
Cs

∗ contains the functions that have [s] derivatives which are locally L∞

and such that the [s]th derivatives are s − [s] Hölder continuous. Indeed,
if we choose a function f that is localized in a strip y ∈ [a, b], then the
size of the annulus in the Paley–Littlewood decomposition is uniform in y

and can be estimated in terms of a and b, so the definition of the Hölder–
Zygmund spaces boils down to that of Rd+1. This will be made precise in
Proposition 3.9.

We have the equivalent of Proposition 2.5:

Proposition 3.2. — Let P = Op(σ) with σ ∈ Sm(T ∗N,Hom(L1, L2))
be a pseudo-differential operator in the class Ψm

small(N,L1 → L2). Then:

P : yρCs+m
∗ (N,L1) → yρCs

∗(N,L2),

is bounded for all s ∈ R. If σ′ ∈ Sm′(T ∗N,Hom(L2, L3)) is another symbol,

Op(σ) Op(σ′) − Op(σσ′) ∈ Ψm+m′−1
small .

We make the following important remark. By definition, an arbitrary
small pseudo-differential operator P ∈ Ψm

small(N,L1 → L2) can be writ-
ten as P = Op(σ) + R, where σ ∈ Sm(T ∗N,Hom(L1, L2)) and R is R-
smoothing i.e. it maps yρH−s → yρHs (for any ρ, s ∈ R). The previous
Proposition 3.2 shows that the first term Op(σ) is bounded on the Hölder–
Zygmund spaces yρCs+m

∗ → yρCs
∗ . However, for the second term R, this

(1) For s ∈ N, this does not exactly coincide with the set of functions that have exactly
[s] derivatives in L∞.
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is not clear. In the following, we will mostly be interested by admissible
operators (see Definition 4.6) and for this restricted class of operators, we
will show that the remainder is indeed bounded on Hölder–Zygmund spaces
(see Proposition 4.9).

As usual, since we added a cutoff function on the kernel of the operator
around the diagonal y = y′, the statement boils down to ρ = 0, which we
are going to prove in the next paragraph.

3.2. Basic boundedness

The first step here is to derive a bound on L∞(Z) spaces. We follow the
notations in [5], f̃ denoting the lifting of a function f on Z to Λ-periodic
functions in Hd+1. If f is a function on the full cusp Z, then for P = Op(σ)
with σ ∈ Sm(T ∗Z), one has:

Pf(x) =
∫
Hd+1

χ(y′/y − 1)
(
y

y′

) d+1
2

Kw
σ (y, θ, y′, θ′) f̃ (y′, θ′) dy′dθ′,

where the kernel Kw
σ can be written:

Kw
σ (x, x′) =

∫
Rd+1

ei⟨x−x′,ξ⟩σ
(
x+ x′

2 , ξ

)
dξ,

with x = (y, θ). If P : L∞(Z) → L∞(Z) is bounded, then:

(3.2) ∥P∥L(L∞, L∞)

⩽ sup
(y, θ) ∈ Hd+1

∫
Hd+1

χ(y′/y − 1)
(
y

y′

) d+1
2 ∣∣Kw

σ (y, θ, y′, θ′)
∣∣dy′dθ′

≲ sup
(y, θ) ∈ Hd+1

∫ y′=Cy

y′=y/C

∫
θ′ ∈ Rd

∣∣Kw
σ (y, θ, y′, θ′)

∣∣dy′dθ′.

Thus, we will look for bounds on |Kw
σ (y, θ, y′, θ′)|. A rather immediate

computation shows that:

(3.3) xℓ − x′
ℓ

iy+y′

2
Kw

σ = Kw
Xℓσ,

where x = (x0, x1, . . . , xd) = (y, θ) and X0 = y−1∂Y , Xℓ = y−1∂Jℓ
for

ℓ = 1, . . . , d and we will iterate many times this equality, denoting Xα =
Xα0

0 . . . Xαd

d for each multiindex α = (α0, . . . , αd) ∈ Nd+1. Since∣∣Kw
σ (y, θ, y′, θ′)

∣∣ ≲ ∫
Rd+1

∣∣∣∣σ(x+ x′

2 , ξ

)∣∣∣∣dξ,
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we also get ∣∣Kw
σ (y, θ, y′, θ′)

∣∣ ≲ ∣∣∣∣x− x′

y + y′

∣∣∣∣−α ∫
Rd+1

|Xασ| dξ.

Lemma 3.3. — Let σ ∈ S−m(T ∗Z) with m > d + 1. Then Op(σ) is
bounded on L∞(Z).

Proof. — Under the assumptions, σ is integrable in ξ, and so are its
derivatives. In particular, we get for all multiindex α,∣∣Kw

σ (y, θ, y′, θ′)
∣∣ ≲ Cα

(y + y′)d+1

∣∣∣∣ y + y′

x− x′

∣∣∣∣α .
From this we deduce∣∣Kw

σ (y, θ, y′, θ′)
∣∣ ≲ 1

(y + y′)d+1
1

1 +
∣∣∣ θ−θ′

y+y′

∣∣∣d+1

and

∥Op(σ)∥L∞ → L∞ ≲ sup
y

∫ yC

y/C

dy′
∫
Rd

dθ 1
(y + y′)d+1

1

1 +
∣∣∣ θ

y+y′

∣∣∣d+1

≲ sup
y

∫ yC

y/C

dy′ 1
y + y′ < ∞.

□

We now use the previous dyadic partition of unity. Given a symbol σ ∈
Sm(T ∗Z), we define σj := σφj ∈ S−∞. Observe that

P = Op(σ) =
+∞∑
j=0

Op
(
σφj︸︷︷︸
=σj

)
=

+∞∑
j=0

Pj ,

where Pj := Op(σj). We will need the following refined version of the
previous lemma:

Lemma 3.4. — Assume that σ ∈ Sm(T ∗Z). Then, ∥Pj∥L(L∞, L∞) ≲ 2jm

In particular, if u ∈ L∞(Z), we find that u ∈ C0
∗(Z) (but the converse is

not true !).
Proof. — The proof is similar to the proof of Lemma 3.3, but we have

to be careful to obtain the right bound in terms of power of 2j . Since φj

has support in {2j−1 ⩽ ⟨ξ⟩ ⩽ 2j+1}, the kernel Kw
σj

of Pj satisfies:

(3.4)
∣∣∣Kw

σj
(x, x′)

∣∣∣ ≲ ∫
{2j−1 ⩽ ⟨ξ⟩ ⩽ 2j+1}

⟨ξ⟩mdξ ≲ 2j(m+d+1)

(y + y′)d+1

ANNALES DE L’INSTITUT FOURIER



RIGIDITY OF MANIFOLDS WITH HYPERBOLIC CUSPS 359

Differentiating in ξ, we get for all multiindex α,

(3.5)
∣∣∣Kw

σj

∣∣∣ ≲ ∣∣∣∣ y + y′

x− x′

∣∣∣∣α 2j(m−|α|+d+1)

(y + y′)d+1 ,

Combining with (3.3) (we iterate the equality k′ times in y and k times in
θ that is in each θi coordinate), we obtain:

(3.6)
∣∣∣Kw

σj
(x, x′)

∣∣∣ ≲ 2j(m+d+1)

(y + y′)d+1
(

1 + 2jk′
∣∣∣y−y′

y+y′

∣∣∣k′

+ 2jk
∣∣∣ θ−θ′

y+y′

∣∣∣k)

Then, integrating in (3.2), we obtain:

∥Pj∥L(L∞, L∞)

≲ sup
(y, θ) ∈ Hd+1

∫ y′=Cy

y′=y/C

∫
θ′ ∈ Rd

∣∣Kw
σ (y, θ, y′, θ′)

∣∣dy′dθ′

≲ 2j(m+d+1) sup
(y, θ) ∈ Hd+1

∫ y′=Cy

y′=y/C

∫
θ′ ∈ Rd

dy′dθ′

(y + y′)d+1

(
1 + 2jk′

∣∣∣y−y′

y+y′

∣∣∣k′

+ 2jk

∣∣∣∣ θ − θ′

y + y′

∣∣∣∣k
)

≲ 2j(m+d+1) sup
(y, θ) ∈ Hd+1

2−jd

∫ y′=Cy

y′=y/C

dy′

(y + y′)
(

1 + 2jk′
∣∣∣y−y′

y+y′

∣∣∣k′)1−d/k

≲ 2j(m+1)
∫ C

1/C

1

(1 + u)
(

1 + 2jk′
∣∣∣u−1

u+1

∣∣∣k′)1−d/k
du,

where we have done the change of variable u = y′/y. We let v = 2j 1−u
1+u , so

that u = (1 − 2−jv)/(1 + 2−jv),

1/(1 + u) = (1 + 2−jv)/2, du = − 21−j

(1 + 2−jv)2 dv.

and we get the bound
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∫ C

1/C

1

(1 + u)
(

1 + 2jk′
∣∣∣u−1

u+1

∣∣∣k′)1−d/k
du

≲ 2−j

∫ 2j(C−1)/(C+1)

−2j(C−1)/(C+1)

1
(1 + |v|k′)1−d/k

dv
1 + 2−jv

.

Let now k = d+ 1 and k′ = d+ 2. We can bound the term 1/(1 + 2−jv) by
(C + 1)/2, and we get

∥Pj∥L(L∞, L∞) ≲ 2jm

∫
R

dv
(1 + |v|d+2)1/(d+1) ≲ 2jm.

Here, it was crucial that the kernel is uniformly properly supported. □

Lemma 3.5. — Let σ ∈ Sm(T ∗Z). For all N ∈ N, there exists a constant
CN > 0 such that for all integers j, k ∈ N such that |j − k| ⩾ 3,

∥Pj Op(φk)∥L(L∞, L∞) , ∥Op (φk)Pj∥L(L∞, L∞) ⩽ CN 2−N max(j, k),

where Pj = Op(σφj).

Proof. — This is a rather tedious computation and we only give the key
ingredients. It is actually harmless to assume that σ = 1, which we will
assume for the sake of simplicity. We use [5, Proposition 1.19]. We know
that

Op (φj) Op(φk)f(x) =
∫

x′ ∈ Hd+1

(
y

y′

) d+1
2

Kw
φj♯φk

(x, x′)f(x′)dx′

where, by definition,

(3.7) Kw
φj♯φk

(x, x′) =
∫
ei⟨x−x′,ξ⟩φj♯φk

(
x+ x′

2 , ξ

)
dξ

and

(3.8) φj♯φk(x, ξ) = 2−2d−2
∫
e2i(−⟨x−x1,ξ−ξ1⟩+⟨x−x2,ξ−ξ2⟩)

φj(x2, ξ1)φk(x1, ξ2)χ(y, y1, y2)dx1dx2dξ1dξ2,

where, for fixed y, χ(y, ·, ·) is supported in the rectangle {y/C ⩽ y1, 2 ⩽ yC}
(C not depending on y). To prove the claimed boundedness estimate, it is
thus sufficient to prove that

sup
x ∈ Hd+1

∫
x′ ∈ Hd+1

(
y

y′

) d+1
2 ∣∣∣Kw

φj♯φk
(x, x′)

∣∣∣ dx′ ≲ CN 2−N max(j, k),
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and we certainly need bounds on the kernel Kw
φj♯φk

. First observe that it
is supported in some region {y/C ′ ⩽ y′ ⩽ yC ′} so, as before, the term
(y/y′) d+1

2 is harmless in the integral. Then, we follow the same strategy as
in the proof of Lemma 3.4. We deduce that it suffices to obtain bounds of
the form ∣∣∣Kw

Xα(φj♯φk)

∣∣∣ , ∣∣∣Kw
φj♯φk

∣∣∣ ≲ CN
2−N max(j, k)

(y + y′)d+1 .

for |α| ⩽ d+ 2.
For the sake of simplicity, we only deal with the bound on |Kw

φj♯φk
|, the

others being similar. To obtain a bound on this kernel, it is sufficient to
prove that |φj♯φk(x, ξ)| ≲ CN 2−N max(j, k)⟨ξ⟩−N (where N has to be chosen
large enough). Indeed, one then obtains:∣∣∣Kw

φj♯φk
(x, x′)

∣∣∣ ≲ CN 2−N max(j, k)
∫
Rd+1

dξ(
1 +

(
y+y′

2

)2
|ξ|2
)N/2

≲ CN
2−N max(j, k)

(y + y′)d+1 .

We denote by y1Dx1, ℓ
:= y1

2i ∂x1, ℓ
the operator of derivation and we use

in (3.8) the identity

(3.9)
(

1 + y2
1 |ξ − ξ1|2

)−N (
1 + y2

1D
2
x1

)N
(
e2i⟨x−x1, ξ−ξ1⟩

)
= e2i⟨x−x1, ξ−ξ1⟩ ,

where D2
x1

=
∑

ℓ D
2
x1, ℓ

. In terms of Japanese bracket, this can be rewrit-
ten shortly ⟨ξ − ξ1⟩−2N ⟨Dx1⟩2N (e2i⟨x−x1, ξ−ξ1⟩) = e2i⟨x−x1, ξ−ξ1⟩. We thus
obtain:

φj♯φk(x, ξ)

= 2−2d−2
∫
e2i(⟨x−x1, ξ−ξ1⟩+⟨x−x2, ξ−ξ2⟩)⟨ξ − ξ1⟩−2N ⟨ξ − ξ2⟩−2N

⟨Dx1⟩2N ⟨Dx2⟩2N (
φj (x2, ξ1)φk (x1, ξ2)χ (y, y1, y2)

)
dx1dx2dξ1dξ2,

We also need to use this trick in the x variable (more precisely on the
θ variable) to ensure absolute convergence of this integral. This yields the
formula:
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φj♯φk(x, ξ) = 2−2d−2
∫
e2i(⟨x−x1, ξ−ξ1⟩+⟨x−x2, ξ−ξ2⟩)

⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2M ⟨DJ1⟩2M ⟨DJ2⟩2M[
⟨ξ − ξ1⟩−2N ⟨ξ − ξ2⟩−2N ⟨Dx1⟩2N

⟨Dx2⟩2N (
φj (x2, ξ1)φk (x1, ξ2)χ (y, y1, y2)

)]
dx1dx2dξ1dξ2,

where M is chosen large enough. We here need to clarify a few things. First
of all, the notation is a bit hazardous insofar as ⟨θ−θ1⟩2 := 1+ |θ−θ1|2

y2
1

this
time. This comes from the fact that the natural operation of differentiation
(which preserves the symbol class) is ⟨DJ1⟩2 := 1 +

∑d
ℓ=1(y−1

1 ∂J1, ℓ
)2. If

ones formally develops the previous formula, one obtains a large number
of terms involving derivatives — coming from the brackets

⟨DJ1⟩2M ⟨DJ2⟩2M ⟨Dx1⟩2N ⟨Dx2⟩2N

— of φj and φk. These derivatives obviously do not change the supports of
these functions and can only better the estimate (there is a 2−j that pops
up out of the formula each time one differentiates, stemming from the very
definition of φj). As a consequence, it is actually sufficient to bound the
integral if one forget about these brackets of differentiation. We are thus
left to bound∫

e2i(⟨x−x1, ξ−ξ1⟩+⟨x−x2, ξ−ξ2⟩) ⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2M

⟨ξ − ξ1⟩−2N ⟨ξ − ξ2⟩−2N
φj (x2, ξ1)φk (x1, ξ2)χ (y, y1, y2) dx1dx2dξ1dξ2.

We can now assume without loss of generality that k ⩾ j+3. Then, φj and
φk are supported in two distinct annulus whose interdistance is bounded
below by 2k−1 −2j+1 ⩾ 2k−2. Using this fact, one can bound the integrand
by

⟨ξ − ξ1⟩−2N ⟨ξ − ξ2⟩−2N ⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2M
χ (y, y1, y2)

≲ CN 2−Nk ⟨ξ⟩−4N ⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2M
χ (y, y1, y2) ,

where the last bracket is ⟨ξ⟩ :=
√

1 + y2|ξ|2. (The estimates actually come
out with a Japanese bracket in terms of y1,2 but these are uniformly com-
parable to the Japanese bracket in terms of y because χ is supported in
the region {y/C ⩽ y1, 2 ⩽ yC}.) We thus obtain:
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∣∣∣∣∣
∫
e2i(⟨x−x1, ξ−ξ1⟩+⟨x−x2, ξ−ξ2⟩)⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2M

⟨ξ − ξ1⟩−2N ⟨ξ − ξ2⟩−2Nφj (x2, ξ1)φk (x1, ξ2)χ (y, y1, y2))dx1dx2dξ1dξ2

∣∣∣∣∣
≲ CN 2−Nk⟨ξ⟩−4N

∫
x1 ∈ Rd+1

x2 ∈ Rd+1

2j−1 ⩽ ⟨ξ1⟩ ⩽ 2j+1

2k−1 ⩽ ⟨ξ2⟩ ⩽ 2k+1

⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2Mχ(y, y1, y2)dξ1dξ2dx1dx2

We simply use a volume bound of the annulus (the ball in which it is
contained actually) for the ξ1, ξ2 integrals which provides:∫

2j−1 ⩽ ⟨ξ1⟩ ⩽ 2j+1
dξ1 ≲ 2j(d+1)/yd+1

1

As a consequence, the bound in the previous integral becomes:

CN
2−Nk

⟨ξ⟩4N

∫
x1 ∈ Rd+1

x2 ∈ Rd+1

2j−1 ⩽ ⟨ξ1⟩ ⩽ 2j+1

2k−1 ⩽ ⟨ξ2⟩ ⩽ 2k+1

χ(y, y1, y2)dξ1dξ2dx1dx2

⟨θ − θ1⟩2M ⟨θ − θ2⟩2M

≲ CN
2−Nk+(j+k)(d+1)

⟨ξ⟩4N

∫
x1 ∈ Rd+1

x2 ∈ Rd+1

⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2Mχ(y, y1, y2) dx1dx2

yd+1
1 yd+1

2

Now, the last integral can be bounded by∫ Cy

y1=y/C

∫
θ1 ∈ Rd

∫ Cy

y2=y/C

∫
θ2 ∈ Rd

⟨θ − θ1⟩−2M ⟨θ − θ2⟩−2M dx1dx2

yd+1
1 yd+1

2
≲ 1,

where M is large enough, which eventually yields the estimate

|φj♯φk(x, ξ)| ≲ CN 2−Nk2(j+k)(d+1)⟨ξ⟩−4N .

Since N was chosen arbitrary, we can always take it large enough so that
it swallows the term 2(j+k)(d+1). In the end, concluding by symmetry of j
and k, we obtain the sought estimate

(3.10) |φj♯φk(x, ξ)| ≲ CN 2−N max(j, k)⟨ξ⟩−N .

This implies the estimate on the kernel Kw
φj♯φk

and concludes the proof of
Lemma 3.5. □
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Remark 3.6. — Following the same scheme of proof, one can also obtain
the independence of the definition of the Hölder–Zygmund spaces with re-
spect to the cutoff function ψ chosen at the beginning. If ψ̃ ∈ C∞

0 (R)
is another cutoff function such that ψ̃ ≡ 1 on [−a, a] and ψ̃ ≡ 0 on
R \ [−b, b] (and 0 < a < b), we denote by Op(φ̃j) the operators built
from ψ̃ like in (3.1). Then, in order to show the equivalence of the Cs

∗-
and C̃s

∗-norms respectively built from ψ or ψ̃, one has to compute quan-
tities like ∥ Op(φj) Op(φ̃k)∥L(L∞, L∞). If k ∈ N is fixed, then the terms
Op(φj) Op(φ̃k) “interact” (in the sense that one will not be able to obtain a
fast decay estimate like (3.10)) for j ∈ [k−1+[log2(a)], k+1+([log2(b)]+1)].
We can improperly call these terms “diagonal terms”. Note that the number
of such terms is independent of both j and k. The content of Lemma 3.5
can be interpreted by saying that when taking the same cutoff function
(that is ψ = ψ̃), the diagonal terms are {j, k ∈ N | |j − k| ⩽ 2}. In the
following, we will use the definition of Hölder–Zygmund spaces with the
rescaled cutoff functions ψ̃h := ψ(h·). The diagonal terms are then shifted
by log2(h−1).

A consequence of the previous Lemma 3.5 is the following estimate.
Note that it is not needed for the proof of Proposition 3.2 but will ap-
pear shortly after when comparing the Hölder–Zygmund spaces Cs

∗ with
the usual spaces Cs.

Lemma 3.7. — Let P = Op(σ) for some σ ∈ Sm(T ∗Z),m ∈ R and let
0 < s < m. Then, there exists a constant C > 0 such that for all j ∈ N:

∥P Op(φj)∥L(Cs
∗, L∞) ⩽ C2j(m−s)

Proof. — This is a straightforward computation using both Lemma 3.5
(to deal with the terms |j − k| ⩾ 3 below) and Lemma 3.4 (to deal with
the terms |j − k| ⩽ 2):

∥P Op (φj) f∥L∞ ≲
∑
k ∈ N

∥Pk Op (φj) f∥L∞

≲
∑

|k−j| ⩾ 3

∥Pk Op (φj) f∥L∞ +
∑

|k−j| ⩽ 2

∥Pk Op (φj) f∥L∞

≲
∑

|k−j| ⩾ 3

CN 2−N max(j, k)∥f∥L∞ + 2jm ∥Op (φj) f∥L∞

≲ ∥f∥L∞ + 2j(m−s) 2js ∥Op (φj) f∥L∞︸ ︷︷ ︸
≲∥f∥Cs

∗

≲ 2j(m−s)∥f∥Cs
∗
,
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where N ⩾ 1 is arbitrary. □

We can now start the proof of Proposition 3.2.
Proof of Proposition 3.2, case s+m > 0, s > 0. — We look at:

∥Op (φj)Pu∥L∞ ≲
∑

|j−k| ⩾ 3

∥Op (φj)Pku∥L∞ +

∥∥∥∥∥∥Op (φj)
∑

|j−k| ⩽ 2

Pku

∥∥∥∥∥∥
L∞

.

The first term can be bounded using Lemma 3.5 and for N ⩾ [s] + 1:

sup
j ∈ N

2js
∑

|j−k| ⩾ 3

∥Op(φj)Pku∥L∞

⩽ sup
j ∈ N

2jsCN

∑
|j−k|⩾ 3

2−N max(j,k)∥u∥L∞

≲ ∥u∥L∞ ≲ ∥u∥Cs+m
∗

.

Concerning the second term, we use the same trick, writing uk :=
Op(φk)u.∥∥∥∥∥∥Op (φj)

∑
|j−k| ⩽ 2

Pku

∥∥∥∥∥∥
L∞

≲

∥∥∥∥∥∥
∑

|j−k| ⩽ 2

Pku

∥∥∥∥∥∥
L∞

≲
∑

|j−k|⩽ 2

∑
|j−l| ⩾ 5

∥Pkul∥L∞ +
∑

|j−k|⩽ 2

∑
|j−l|⩽ 4

∥Pkul∥L∞ .

The first term can be bounded just like before, using Lemma 3.5. As to
the second term, we use Lemma 3.4, which gives that

sup
j ∈ N

2js
∑

|j−k| ⩽ 2

∑
|j−l| ⩽ 4

∥Pkul∥L∞

≲ sup
j ∈ N

2js2jm
∑

|j−l| ⩽ 4

∥Op (φl)u∥L∞ ≲ ∥u∥Cs+m
∗

.

Combining the previous inequalities, we obtain the desired result. Observe
that the proof above also gives that for P ∈ Ψm, m ∈ R,

∥Pu∥C−m
∗

≲ ∥u∥L∞ . □

Next, we want to deal with the case of negative s. To this end, we need
to have some rough space on which our operators are bounded. Consider
the space of distributions (for some constant h > 0 small enough).

C−2n(Z) :=
(
−h2∆ + 1

)n
L∞(Z).
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equipped with the norm

∥u∥C−2n(Z) := inf
{

∥v∥L∞

∣∣∣ (−h2∆ + 1
)n
v = u

}
.

Lemma 3.8. — For n ⩾ 1 and h small enough, s > 0, and σ ∈ S−2n+1−s

(T ∗Z), Op(σ) is bounded on C−2n(Z). Also, for n > n′, C−2n′(Z) ⊂
C−2n(Z).

Proof. — First of all, we prove that L∞ ⊂ C−2n. To this effect, we
consider parametrices(

−h2∆ + 1
)n Op(qn) = 1 + hN Op′(rn),

with qn of order −2n, and rn of order −N . Taking N larger than d+ 1, by
Lemma 3.3, Op(rn) is bounded on L∞ and Op(qn) is bounded from L∞ to
C2n

∗ ⊂ L∞ by the previous Lemma. We get that for v ∈ L∞,(
−h2∆ + 1

)n Op(qn)
(
1 + hN Op(rn)

)−1︸ ︷︷ ︸
:=Pn

v = v,

the inverse being defined by Neumann series for h small enough and Pn is
of order −2n so Pnv ∈ C2n

∗ ⊂ L∞. The inclusion C−2n′ ⊂ C−2n follows
decomposing (−h2∆ + 1)n = (−h2∆ + 1)n′(−h2∆ + 1)n−n′ .

For f = (−h2∆ + 1)nf̃ ∈ C−2n (with f̃ ∈ L∞), observe that

Op(σ)f = Op(σ)
(
−h2∆ + 1

)n
f̃ = Op′(σ′

h)f̃ +
(
−h2∆ + 1

)n Op(σ)f̃ ,

with σ ∈ S−2n+1−s — here Op′ is a quantization with cutoffs around
the diagonal with a larger support and σ′

h ∈ S−s. By the last remark in
the proof of the previous lemma, this is in Cs

∗ + (−h2∆ + 1)nC2n+s−1
∗ ⊂

L∞ + (−h2∆ + 1)nL∞ ⊂ C−2n. □

Proof of Proposition 3.2, general case. — Given p ∈ Sm and n, we can
build parametrices(

−h2∆ + 1
)k Op(qk) Op(p) = Op(p) + Op(rk),

with qn ∈ S−2k, rn ∈ S−2n−d−1. With k ⩾ n+ (m+ d+ 1)/2, we get that
for u ∈ C−2n,

Op(p)u =
(
−h2∆ + 1

)k Op(qk) Op(p)u− Op(rk)u ∈ C−2(n+k) + C−2n

= C−2(n+k).

In particular, Op(p) is continuous from C−2n to C−4n−2⌈(m−d−1)/2⌉. Next,
inspecting the proof of Lemma 3.5, we find that it also applies to the spaces
C−2n. In particular, we obtain that for all n ⩾ 0, and every s ∈ R,

(3.11) ∥Op(p)u∥Cs
∗
⩽ C∥u∥Cs+m

∗
+ C∥u∥C−2n .
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So far, we have proved that for n ⩾ 0, s ∈ R, m ∈ R, Op(p) is continuous
as a map{
u ∈ C−2n

∣∣∣ ∥u∥Cs+m
∗

< ∞
}

→
{
u ∈ C−4n−2⌈(m−d−1)/2⌉

∣∣∣ ∥u∥Cs
∗
< ∞

}
.

We would like to replace −4n − 2⌈(m − d − 1)/2⌉ by a number that only
depends on s. To this end, we pick u ∈ C−4n−2⌈(m−d−1)/2⌉ such that
∥u∥Cs

∗
< ∞. First off, if s > 0, then u ∈ L∞. So we assume that s ⩽ 0.

Then for all ϵ > 0, using the estimate (3.11),∥∥∥Op
(

⟨ξ⟩s−ϵ
)
u
∥∥∥

Cϵ
∗

< ∞.

Using parametrices again, we can find rN ∈ S−s−ϵ and q ∈ Ss+ϵ so that

u = Op(qs+ϵ) Op
(
⟨ξ⟩−s−ϵ

)
u+ Op(rN )u.

Since Op(rN )u,Op(⟨ξ⟩−s−ϵ)u ∈ L∞, we can apply the first part of the
proof and obtain u ∈ C−2⌈(s+ϵ+d+1)/2⌉. □

3.3. Correspondence between Hölder–Zygmund spaces and
usual Hölder spaces

We prove that the Hölder–Zygmund spaces Cs
∗(Z) coincide with the usual

spaces Cs(Z) when s ∈ R+ \ N.

Proposition 3.9. — For all s ∈ R+ \ N, Cs
∗(Z) = Cs(Z). More pre-

cisely, there exists a constant Cs ⩾ 1 such that:

1/Cs × ∥f∥Cs
∗(Z) ⩽ ∥f∥Cs(Z) ⩽ Cs∥f∥Cs

∗(Z).

For the sake of simplicity, we prove the previous proposition in the case
s ∈ (0, 1), the general case being handled in a similar fashion. This will
require a preliminary

Lemma 3.10. — For all N ⩾ 0, there exists a constant CN > 0 such
that for all j ∈ N:

∥Op (φj) 1∥L∞ ⩽ CN 2−jN .

Proof. — Let us start by giving an explicit expression:

Op (φj) 1

=
∫
Hd+1

∫
Rd+1

χ(y′/y − 1)(y/y′)
d+1

2 ei⟨x−x′,ξ⟩σj

(
y + y′

2 , ξ

)
dξdy′dθ′.
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Since there is no dependence in θ, we can remove θ and J and get∫ +∞

y′=0

∫ +∞

Y =−∞
χ(y′/y − 1)(y/y′)

d+1
2 ei⟨y−y′,Y ⟩σj

(
y + y′

2 , Y, J = 0
)

dY dy′ .

The first (symplectic) change of variable y′ = yu, Y = Z/y yields:

Op (φj) 1

=
∫ C

u=1/C

(∫ +∞

Z=−∞
χ(u− 1)u− d+1

2 ei ⟨1−u, Z⟩σj

(
1 + u

2 , Z

)
dZ
)

du,

where

σj

(
1 + u

2 , Z

)

=

ψ
2−j

√
1 +

(
1 + u

2 Z

)2
− ψ

2−j+1

√
1 +

(
1 + u

2 Z

)2
 .

The second change of variable Z ′ = 1+u
2 Z gives:

Op (φj) 1 =
∫ C

u=1/C

2du
1 + u

∫ +∞

Z′=−∞
χ(u− 1)u− d+1

2 e2i⟨ 1−u
1+u , Z′⟩

(
ψ
(

2−j
(
1 + Z ′2)1/2

)
− ψ

(
2−j+1 (1 + Z ′2)1/2

))
dZ ′,

and for the sake of simplicity, we now forget in this expression the term
u− d+1

2 (as u is integrates between 1/C and C, this is uniformly bounded
as well as all its derivatives). The third change of variable h := 1−u

1+u (i.e.
u = 1−h

1+h ) leads to∫
R

(
ψ
(

2−j(1 + Z ′2)1/2
)

− ψ
(

2−j+1 (1 + Z ′2)1/2
))

(∫
R
e2i⟨h, Z′⟩χ

(
−2h
1 + h

)
2dh

1 + h

)
dZ ′

=
∫ +∞

Z′=−∞

(
ψ
(

2−j
(
1 + Z ′2)1/2

)
− ψ

(
2−j+1 (1 + Z ′2)1/2

))
s (Z ′) dZ ′,

for some Schwartz functions s ∈ S(R) (since h 7→ χ(−2h/(1+h)) is smooth
with compact support). Then, given N ⩾ 0, there exists CN > 0 such that
s(Z ′) ⩽ CN ⟨Z ′⟩−N−2020 and thus, using the fact that

Z ′ 7→ ψ
(

2−j
(
1 + Z ′2)1/2

)
− ψ

(
2−j+1 (1 + Z ′2)1/2

)
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is supported on an annulus at height ∼ 2j , we obtain:

∣∣∣∣∫ +∞

Z′=−∞

(
ψ
(

2−j
(
1 + Z ′2)1/2

)
− ψ

(
2−j+1 (1 + Z ′2)1/2

))
s(Z ′)dZ ′

∣∣∣∣
⩽
∫

2j−2 ⩽ |Z′| ⩽ 2j+2
⟨Z ′⟩−N︸ ︷︷ ︸
≲2−jN

⟨Z ′⟩−2020 dZ ′ ≲ 2−jN . □

We can now prove Proposition 3.9:

Proof. — We first prove that there exists C > 0 such that for all func-
tions f ∈ Cs

∗ , ∥f∥Cs ⩽ C∥f∥Cs
∗
. For x, x′ ∈ Z such that d(x, x′) ⩽ 1, we

write:

|f(x) − f(x′)| =

∣∣∣∣∣∣
∑
j ∈ N

(Op (φj) f) (x) − (Op (φj) f) (x′)

∣∣∣∣∣∣
⩽
∑
j ∈ N

∣∣ (Op (φj) f) (x) − (Op (φj) f) (x′)
∣∣

Let N ∈ N\{0} be the unique integer such that 2−N ⩽ d(x, x′) ⩽ 2−N+1.
We split the previous sum between j ⩾ N and j < N . First:∑

j ⩾ N

∣∣ (Op (φj) f) (x) − (Op (φj) f) (x′)
∣∣ ≲ ∑

j ∈ N
∥Op (φj) f∥L∞

≲
∑

j ⩾ N

2−js∥f∥Cs
∗

≲ 2−sN ∥f∥Cs
∗
≲ ∥f∥Cs

∗
d(x, x′)s

Now, using Lemma 3.7 with P = ∇ (note that 0 < s < m = 1), one has:

∑
j < N

∣∣ (Op (φj) f) (x) − (Op (φj) f) (x′)
∣∣

≲
∑

j < N

∥∇ Op (φj) f∥L∞ d (x, x′)

≲ 2N(1−s)∥f∥Cs
∗
d (x, x′) ≲ ∥f∥Cs

∗
d (x, x′)s

Eventually, using the obvious estimate ∥f∥L∞ ≲ ∥f∥Cs
∗
, one obtains

∥f∥Cs ≲ ∥f∥Cs
∗
.
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Let us now prove the other estimate. We start with:

Op (φj) f(x) =
∫
Hd+1

χ (y′/y − 1) (y/y′)
d+1

2 Kw
φj

(x, x′) f(x′)dx′

=
∫
Hd+1

χ (y′/y − 1) (y/y′)
d+1

2 Kw
φj

(x, x′) (f(x′) − f(x)) dx′

+ f(x) Op (φj) 1 .

According to Lemma 3.10 (with N = 1), the last term is bounded by
≲ ∥f∥L∞2−j ≲ ∥f∥Cs2−j . As to the first term, using the Hölder property
of f :∣∣∣∣∫

Hd+1
χ (y′/y − 1) (y/y′)

d+1
2 Kw

φj
(x, x′) (f(x′) − f(x)) dx′

∣∣∣∣
≲
∫
Hd+1

χ (y′/y − 1) (y/y′)
d+1

2
∣∣∣Kw

φj
(x, x′)

∣∣∣ d (x, x′)s dx′∥f∥Cs .

Now, following the exact same arguments as the ones developed in Lem-
ma 3.4 and using the crucial fact that on the support of the kernel of the
pseudo-differential operator (namely for y′ ∈ [y/C, yC]) one can bound the
distance d(x, x′) ≲ | log(y/y′)| + |θ−θ′|

y , one can prove the estimate

sup
x ∈ Hd+1

∫
Hd+1

χ (y′/y − 1) (y/y′)
d+1

2
∣∣∣Kw

φj
(x, x′)

∣∣∣ d(x, x′)sdx′ ≲ 2−js .

The sought estimate ∥f∥Cs
∗
≲ ∥f∥Cs then follows immediately. □

3.4. Embedding estimates

Using the Paley–Littlewood decompositions in the cusps, we are going
to prove the embedding estimates. We can actually strengthen them to the
following two Lemmas:

Lemma 3.11. — For all s, s′ ∈ R such that s′ > s, ρ, ρ′ ∈ R such that
ρ′ > ρ− d/2,

yρCs′

∗ (N,L) ↪→ yρ′
Hs(N,L)

is a continuous embedding.

Lemma 3.12. — For all s, ρ ∈ R,

yρHs(N,L) ↪→ yρ+d/2C
s−(d+1)/2
∗ (N,L)

is a continuous embeddings.
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Observe that the two lemmas are locally true so that it it is sufficient to
prove them when the function is supported on a single fibered cusp. The
key lemma here is the following

Lemma 3.13. — For all s ∈ R,

∥u∥2
Hs(Z) ≍

∑
j ∈ N

∥Op (φj)u∥2
L2(Z) 4js .

Proof. — The proof is done using semiclassical estimates and then con-
cluding by equivalence of norms when h is bounded away from 0. For h > 0,
we start from

∥u∥2
Hs

h
(N) ≍ ∥Oph (⟨ξ⟩s)u∥2

L2

=
∑
j, k

〈
Oph (⟨ξ⟩sφj)u,Oph (⟨ξ⟩sφk)u

〉
=

∑
|j−k|⩽2

〈
Oph (⟨ξ⟩sφj)u,Oph (⟨ξ⟩sφk)u

〉
+

∑
|j−k|⩾3

〈
Oph (⟨ξ⟩sφk) Oph (⟨ξ⟩sφj)u, u

〉
.

The first term is obviously controlled by
∑

j ∥ Oph(⟨ξ⟩sφj)u∥2
L2(Z). To

bound the last term we can first use the estimate (3.10) in the proof of
Lemma 3.5 which yields

〈
Oph (⟨ξ⟩sφk) Oph (⟨ξ⟩sφj)u, u

〉
⩽ CN 2−N max(j, k)∥u∥2

H−N
h

,

where N > |s| is taken arbitrary large and thus

∑
|j−k|⩾3

〈
Oph (⟨ξ⟩sφk) Oph (⟨ξ⟩sφj)u, u

〉
≲ ∥u∥2

H−N
h

(Z).

Now, we also have that
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∥u∥2
H−N

h

=
∥∥Oph

(
⟨ξ⟩−N

)
u
∥∥2

L2

=

∥∥∥∥∥∥
∑

j

Oph

(
⟨ξ⟩−Nφj

)
u

∥∥∥∥∥∥
2

L2

≲
∑

j

2−j
∥∥Oph

(
2j⟨ξ⟩−N−s⟨ξ⟩sφj

)
u
∥∥2

L2

≲
∑

j

2−j
(

∥Oph (⟨ξ⟩sφj)u∥2
L2 + h∥u∥2

H−N
h

(Z)

)
≲
∑

j

∥Oph (⟨ξ⟩sφj)u∥2
L2 + h∥u∥2

H−N
h

(Z),

where the penultimate inequality follows from Gårding’s inequality [12,
Lemma A.15] for symbols of order −(2N − 1) since 2j⟨ξ⟩−N−s⟨ξ⟩sφj ∈
S−(2N−1) is controlled by ≲ ⟨ξ⟩sφj . For h small enough, we can swallow
the term h∥u∥2

H−N
h

(Z) in the left-hand side and we eventually obtain that

∥u∥2
Hs

h
≲
∑

j

∥Oph (⟨ξ⟩sφj)u∥2
L2 ,

where the constant hidden in the ≲ notation is independent of h. Actually,
since ⟨ξ⟩sφj ≲ 2jsφj , the same arguments involving Gärding’s inequality
also yield

∥u∥2
Hs

h
≲
∑

j

∥∥2js Oph(φj)u
∥∥2

L2 .

On the other hand,∑
j

∥Oph (⟨ξ⟩sφj)u∥2
L2(Z) =

〈∑
j

Oph (⟨ξ⟩sφj)2
u, u

〉
.

Using expansions for products, we find that this is ≲ ⟨Oph(⟨ξ⟩2s
∑
φ2

j )u, u⟩.
This itself is controlled by the Hs

h norm. Eventually, we conclude by equiv-
alence of norms when h is bounded away from 0 (see Remark 3.6). □

We will also need the following observation: Op(φj)(yρu) = yρ Op′(φj)
(u) for some other quantization Op′ (the cutoff function χ(y′/y − 1) in
the quantization Op is changed to (y′/y)ρχ(y′/y − 1)). In the following
proof, we will denote by Op′ and Op′′ other quantizations than Op which
are produced by multiplying the cutoff function χ by some power of y′/y.
Eventually, one last remark is that Proposition 3.9 implies in particular
that the spaces Cs

∗(N) defined for s ∈ R+ \N do not depend on the choice
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of the cutoff function χ in the quantization (insofar as they can be identified
to the usual Hölder spaces Cs(N)).

Proof of Lemma 3.11. — We fix ρ < ρ′ + d/2 and ε > 0 small enough
so that ρ < ρ′ + d/2 − ε. Then:

∥u∥2
yρ′ Hs =

∑
j ∈ N

∥∥∥Op (φj)
(
y−ρ′

u
)∥∥∥2

L2
4js

≲
∑
j ∈ N

∥∥∥y−ρ′
Op′ (φj)u

∥∥∥2

L2
4js

≲
∑
j ∈ N

∥∥∥y−ρ′−d/2+ε Op′ (φj)u
∥∥∥2

L∞
4js

≲
∑
j ∈ N

∥∥∥Op′′ (φj)
(
y−ρ′−d/2+εu

)∥∥∥2

L∞
4js

≲
∑
j ∈ N

4j(s−s′)
∥∥∥Op′′ (φj)

(
y−ρ′−d/2+εu

)∥∥∥2

L∞
4js′︸ ︷︷ ︸

⩽∥u∥2
yρ′+d/2−εCs′

∗

≲ ∥u∥2
yρ′+d/2−εCs′

∗
≲ ∥u∥2

yρCs′
∗
,

since s < s′. □

Proof of Lemma 3.12. — Let us sketch the proof for the embedding
y−d/2H(d+1+ε)/2 ↪→ C0, the general case being handled in the same fashion
with a little bit more work. We start by computing a L1(Z) → L∞(Z) norm
for Op(σ) when σ ∈ S−(d+1+ϵ)(T ∗Z). We find

∥Op(σ)∥2
yρL1 → L∞ ⩽ sup

x,x′
yd+1y′2ρ

∣∣∣∣∣∣
∑
γ ∈ Λ

Kw
σ (x, y′, θ′ + γ)

∣∣∣∣∣∣ .
Going through the arguments of proof for equation (3.6), we deduce that

|Kw
σ (x, y′, θ′)| ⩽

[
(y + y′)d+1

(
1 +

∣∣∣∣y − y′

y + y′

∣∣∣∣k′

+
∣∣∣∣ θ − θ′

y + y′

∣∣∣∣k
)]−1

.
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As a consequence, we have to estimate:∑
γ ∈ Λ

|Kw
σ (x, y′, θ′ + γ)|

⩽
∑
γ ∈ Λ

[
(y + y′)d+1

(
1 +

∣∣∣∣y − y′

y + y′

∣∣∣∣k′

+
∣∣∣∣θ − θ′ + γ

y + y′

∣∣∣∣k
)]−1

⩽

[
(y + y′)d+1

(
1 +

∣∣∣∣y − y′

y + y′

∣∣∣∣k′)]−1 ∑
γ ∈ Λ

1 +

∣∣∣ θ−θ′+γ
y+y′

∣∣∣k
1 +

∣∣∣y−y′

y+y′

∣∣∣k′


−1

Since y + y′ > a the function in the sum has bounded variation, so we can
apply a series-integral comparison, and replace it by the integral.

⩽
C(y + y′)d

(y + y′)d+1

(
1 +

∣∣∣∣y − y′

y + y′

∣∣∣∣k′)∫
γ ∈ Rd

1 +

∣∣∣ θ−θ′

y+y′ + |γ|
∣∣∣k

1 +
∣∣∣y−y′

y+y′

∣∣∣k′


−1

⩽
1

y + y′

(
1 +

∣∣∣∣y − y′

y + y′

∣∣∣∣k′)−1+d/k

.

We deduce that

∥Op (φj)∥2
yρL1 → L∞ ⩽ sup

x, x′
yd+1y′ρ

(y + y′)
(

1 +
∣∣∣∣y − y′

y + y′

∣∣∣∣k′)1−d/k
−1

.

This is bounded for ρ = −d. We conclude that Op(σ) is bounded from
y−dL1 to L∞. Now, we recall that for h > 0 small enough,(

−∆ + h−2)−(d+1+ϵ)/2 = Op (σd+1+ϵ) +R,

with R smoothing, and σd+1+ϵ ∈ S−d−1−ϵ. For f ∈ y−dW d+1+ϵ, 1, writing

f =
(
−∆ + h−2)−(d+1+ϵ)/2 (−∆ + h−2)+(d+1+ϵ)/2

f︸ ︷︷ ︸
∈ y−dL1

,

we deduce that y−dW d+1+ϵ, 1 ↪→ C0 for ϵ > 0. By interpolation, we then
deduce that y−d/2W (d+1+ϵ)/2, 2 = y−d/2H(d+1+ε)/2 ↪→ C0. □

To close this section, we make the important observation that R-residual
operators defined in terms of Hölder–Zygmund spaces Cs

∗ are actually the
same as the ones defined in terms of Sobolev spaces. More precisely:
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Proposition 3.14. — The set of operators R which are bounded as

R : yρC−s
∗ → y−ρCs

∗

for all ρ ∈ R, s ∈ R is equal to Ψ̇−∞
R .

Proof. — This follows directly from Lemmas 3.11 and 3.12. □

4. Parametrices modulo compact operators.

In this section, we will consider elliptic parametrices for pseudo-differe-
ntial operators that preserve in a precise sense the geometry of the cusps.
These operators will be called admissible operators. As explained in the
introduction, we will also have to introduce, on top of usual ellipticity,
a concept of ellipticity at infinity, which is related to the inversion of a
model operator induced by a given admissible operator, and called the
indicial operator.

4.1. Decomposition at infinity

4.1.1. Black-box formalism

To start with, we will present a black-box formalism in the sense of [35],
as it was introduced in [12].

Associated with each cusp Zℓ, we define extension and restriction opera-
tors. For the sake of simplicity, we drop the subscript ℓ and denote the cusp
by Z. The discussion is carried out here as if there were only one cusp, but
the generalization is of course straightforward. First of all, we introduce
the pullback operator

ı∗ : C∞
comp (]a,+∞[×FZ , LZ) → C∞

comp(N,L),

defined by ı∗f |N \ Z = 0 and ı∗f |Z(y, θ, ζ) = f(y, ζ). Consider the restric-
tion operator on the zero Fourier mode:

PZ : D′(N,L) → D′ (]a,+∞[×FZ , LZ) ,

defined for f ∈ D′(N,L) and ϕ ∈ C∞
comp(]a,+∞[×FZ , LZ) by:

(4.1) ⟨PZf, ϕ⟩ := ⟨f, ı∗ϕ⟩ .
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Consider the space E ′
0(]a,+∞[×FZ , LZ) ⊂ D′(]a,+∞[×FZ , LZ) defined in

the following way: f ∈ E ′
0(]a,+∞[×FZ , LZ) if and only if there exists A > a

such that supp(f) ⊂]A,+∞[×FZ . We introduce the extension operator

EZ : E ′
0 (]a,+∞[×FZ , LZ) → D′(N,L),

defined for f ∈ E ′
0(]a,+∞[×FZ , LZ) and ϕ ∈ C∞

comp(N,L) by:

(4.2) ⟨EZf, ϕ⟩ = ⟨f, χϕPZϕ⟩ ,

where χϕ ∈ C∞(]a,+∞[×FZ ,R) is a smooth cutoff function defined in
the following way: χϕ ≡ 1 on [a + (A − a)/2,+∞[×FZ and χϕ ≡ 0 on
]a, a + (A − a)/2020] × FZ . It can be checked that (4.2) does not depend
on the choice of χϕ due to the support condition on f .

We fix a smooth cutoff function χ ∈ C∞(N,R) such that χ|Z ≡ 1 for
y > 3a and χ ≡ 0 for y < 2a (recall that y : N → R is considered to be
a global positive function on N which is the height function in the cusps
and an arbitrary smooth positive function in the compact core). Given f ∈
D′(N,L), we will often consider the distribution EZχPZf ∈ D′(N,L). This
is a distribution supported in {y ⩾ 2a}. Roughly speaking, it corresponds
to the projection on the zero Fourier mode of f on {y ⩾ 2a}.

Consider a smooth function ϕ defined on ]a,+∞[×FZ (and typically
unbounded). We define the multiplication of the zero Fourier mode of a
distribution f ∈ D′(N,L) by ϕ in the following way:

Z(ϕ)f := (1 − EZχPZ) f + EZ (χϕPZf) ∈ D′(N,L).

Of course, if ϕ ≡ 1, then Z(1)f = f . The operators EZ , PZ and Z(ϕ)
together form a black box formalism, as it was introduced by Sjöstrand
and Zworski in [35]. Once again, if there are more than one cusp, all the
previous operations are naturally extended.

Definition 4.1. — For s, ρ0, ρ⊥ ∈ R, we define

Hs, ρ0, ρ⊥(N,L) = Z
(
ỹρ0−ρ⊥

)
(yρ⊥Hs) .

These are weighted Sobolev spaces, with weight yρ0 on the zero Fourier
mode and weight yρ⊥ on the non-zero Fourier modes. We also introduce
the notations:

Hs, −∞, ρ⊥(N,L) = ∩ρ0 ∈ RH
s, ρ0, ρ⊥(N,L),

Hs, ρ0, −∞(N,L) = ∩ρ⊥ ∈ RH
s, ρ0, ρ⊥(N,L),

Hs,−∞, −∞(N,L) = ∩ρ0, ρ⊥ ∈ RH
s, ρ0, ρ⊥(N,L)

When both weights are equal, namely ρ0 = ρ⊥ =: ρ, we will simply write
Hs, ρ := Hs, ρ, ρ.
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Note that we take the same weight on each cusps, this will suffice for
our purposes. To obtain compact remainders in parametrices, the following
observation going back to [22] is essential: for any ρ⊥ ∈ R, s > s′, the
restriction of the injection yρ⊥Hs(N,L) ↪→ yρ⊥Hs′(N,L) to non-constant
Fourier modes is compact. More precisely:

Lemma 4.2. — For all s > s′, for all k ∈ N, the operator

1 − EZχPZ : Hs, ρ0, ρ⊥(N,L) → Hs′, −k, ρ⊥(N,L)

is compact.

In the following, we will sometimes say by simplicity that

1 − EZχPZ : Hs, ρ0, ρ⊥(N,L) → Hs′, −∞, ρ⊥(N,L)

is compact, meaning exactly that this operator maps to any Hs′, −k, ρ⊥

(N,L) and that it is compact when mapping on such spaces.
Proof. — The value of ρ0 is inessential here, so we take ρ0 = ρ⊥ = ρ.

Since [1−EZχPZ , y
ρ] = 0, the lemma boils down to the case ρ = 0. For the

sake of simplicity, we assume that there is a single cusp and that L → N

is a trivial bundle, the general case is handled in a similar fashion. Let
ψn ∈ C∞

comp(N) be a smooth cutoff function such that ψn ≡ 1 on y < n

and ψn ≡ 0 on y > 2n. The operators of injection

Tn := ψn (1 − EZχPZ) ∈ L
(
Hs(N), Hs′

(N)
)

are compact, so it is sufficient to prove that the injection

T := 1 − EZχPZ ∈ L
(
Hs(N), Hs′

(N)
)

is the norm-limit of the operators Tn. In other words, if we can prove that
for all n ∈ N, there exits a constant Cn > 0 such that: for all f ∈ Hs(N)
such that χPZf ≡ 0 (we denote by Hs

0(N) the space of such functions
endowed with the norm ∥ · ∥Hs), we have

∥(1 − ψn) f∥Hs′ ⩽ Cn∥f∥Hs ,

and that Cn →n → +∞ 0, then we are done. Using Wirtinger’s inequality,
one can obtain like in [12, Lemma 4.9] that

∥1 − ψn∥L(H1
0 , L2

0) ⩽ C/n

for some uniform constant C > 0 (depending on the lattice Λ). Since the
(ψn)n ⩾ 0 can be designed so that ∥1 − ψn∥L(H1

0 , H1
0 ) ⩽ 1, we obtain by

interpolation that ∥1 − ψn∥L(H1
0 , Hs

0 ) ⩽ (C/n)1−s for all s ∈ [0, 1]. Since
∥1 − ψn∥L(Hk

0 , Hk
0 ) ⩽ 1 for all k ∈ Z, we can interpolate once again to

conclude. □
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Lemma 4.3. — Consider ρ⊥ ∈ R, ρ0 < ρ′
0, and s > s′. Then Hs, ρ0, ρ⊥

(N,L) ↪→ Hs′, ρ′
0, ρ⊥(N,L) is a compact injection.

Proof. — One can write f = (1 − EZχPZ)f + EZχPZf . The first term
is dealt by applying the previous lemma, namely

(1 − EZχPZ) : Hs, ρ0, ρ⊥(N,L) → Hs′, ρ′
0, ρ⊥(N,L)

is compact. As to EZχPZ : Hs, ρ0, ρ⊥(N,L) → Hs′, ρ′
0, ρ⊥(N,L), we see it as

the operator:

Hs, ρ0, ρ⊥(N,L) ∋ f 7→ χPZf ∈ Hs, ρ0, ρ⊥
(
]a,+∞[×FZ , LZ

)
↪→ χPZf ∈ Hs′, ρ′

0, ρ⊥
(
]a,+∞[×FZ , LZ

)
7→ EZχPZf ∈ Hs′, ρ′

0, ρ⊥(N,L)

and use the fact that the injection in the middle is compact. (Indeed, forget-
ting about the transverse manifold FZ , this boils down to a rather elemen-
tary statement on functions defined on R. By making the change of variable
y = aer, one can check that this is implied by the following statement: the
injection eρrHs(R+

r ) ↪→ eρ′rHs′(R+
r ) is compact for ρ < ρ′, s > s′ (here R

is equipped with the usual Lebesgue measure dr). The latter statement can
be reduced to proving that e−ρrHs(R+

r ) ↪→ L2(R+
r ,dr) is compact. This is

a classical result on R.). □

Most of the time, it will be sufficient to deal with the non-zero Fourier
modes as part of the black box. However, it will prove useful to know that
some regularity can be traded off for decay in those modes; it is the content
of the following lemma:

Lemma 4.4. — Consider ρ⊥, ρ0, s ∈ R,m > 0. Then Hs+m, ρ0, ρ⊥+m ↪→
Hs, ρ0, ρ⊥ is a continuous embedding.

Observe that there is no reason for this embedding to be compact.
Proof. — Decomposing once again in zero and non-zero Fourier modes

and using interpolation estimates, it is sufficient to prove that yH1 ↪→ L2 is
a continuous embedding on functions with vanishing zeroth Fourier mode.
But:

∥f∥2
yH1 =

∥∥y−1f
∥∥2

H1

≍
∥∥y−1f

∥∥2
L2 +

∥∥y∂y

(
y−1f

)∥∥2
L2 +

∥∥y∂θ

(
y−1f

)∥∥2
L2 +

∥∥∂ζ

(
y−1f

)∥∥2
L2

Using Wirtinger’s inequality for functions with zero integral, we can con-
trol the term ∥y∂θ(y−1f)∥2

L2 = ∥∂θf∥2
L2 ⩾ ∥f∥2

L2 and this provides the
sought estimate. □
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If f ∈ D′(N,L), then χPZf ∈ E ′
0(]a,+∞[×FZ , LZ) and this can nat-

urally be seen as an element χPZf ∈ D′(]0,+∞[y×FZ , LZ) (here χ is
extended by 0 for y < a). Making the change of variable y = er, where
r ∈ Rr, we can see that as an element χPZf ∈ D′(Rr × FZ , LZ). We then
have the following correspondence:

Lemma 4.5. — The following maps are bounded

Hs, ρ0, ρ⊥(N,L) ∋ f 7→ χPZf ∈ e(ρ0+d/2)rHs (R × FZ , LZ) ;

eρ0rHs (R × FZ , LZ) ∋ f 7→ EZ(χf) ∈ Hs, ρ0−d/2, −∞(N,L),

where r = log y, and Hs(R × FZ , L) is the usual Sobolev space, built from
the L2 space induced by the measure drdvolFZ

(ζ).

The spaces Hs(R×FZ) are the ones induced by the Laplacian obtained
from the product metric dr2 +gF . We insist on the fact that there is a shift
of −d/2 due to the fact that we are considering the usual Euclidean measure
when working in the r-variable. The proof of Lemma 4.5 is postponed: we
will prove it below at the end of the next paragraph.

4.1.2. Admissible operators

We can now introduce the general class of R-admissible operators (also
called admissible operators below).

Definition 4.6. — Consider A ∈ Ψm
small(N,L1 → L2). We will say that

A is an R-admissible operator if the following holds:
(1) There exists a pseudo-differential operator IZ(A) ∈ Ψm(Rr × FZ ,

LZ) (in the usual Kohn–Nirenberg class with ρ = 1, δ = 0, see [34,
Definition 1.1] for instance) of order m, called the indicial oper-
ator of A, such that [IZ(A), ∂r] = 0 (in other words, IZ(A) is a
convolution operator (2) in the r-variable),

(2) There exists a smooth cutoff function χA ∈ C∞(]a,+∞[) (depend-
ing on A), such that χA is supported in {y > 2a} and equal to 1 in
{y > CA}, where CA > 2a is a constant (depending on A),

(2) By convolution operator, we mean the following: there exists a Schwartz kernel K ∈
D′(Rr × FZ × FZ) such that:

IZ(A)f
(

r′, ζ′
)

=
∫
R×FZ

K
(

r′ − r, ζ′, ζ
)

f(ζ)drdvolgF (ζ),

for all f ∈ C∞
comp(R × FZ).
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(3) We have:

(4.3) χA [A, ∂θ]χA and EZχA [PZAEZ − IZ(A)]χAPZ ,

are R-residual operators (i.e. bounded from ykH−k to y−kHk, for all
k ∈ N, or equivalently from ykC−k

∗ to y−kCk
∗ by Proposition 3.14).

(Here, by abuse of notations, χA is identified with a function on N , sup-
ported in the cuspidal parts and only depending on the y variable.)

When ρ > ρ′, the unique convolution operator that is bounded from
eρrL2(dr) to eρ′rL2(dr) is the null operator and it follows that the indicial
operator associated with an R-admissible operator is necessarily unique.
Modulo compact remainders, the first condition in (4.3) means that the
operator A preserves the θ-Fourier modes; the second condition implies
that sufficiently high in the cusp(3) , A is a convolution operator in the
r = log y variable when acting on the 0th Fourier mode. In particular, if
B is a compactly supported pseudo-differential operator, B is admissible,
and IZ(B) = 0.

Observe that in general, if σ ∈ Sm(T ∗N), then ∂θσ ∈ y−∞Sm(T ∗N).
Indeed, since ∂θσ has mean value 0 in the θ variable, it is controlled by
∂N

θ σ, and (y∂θ)Nσ ∈ Sm for each N ∈ N. It follows that if P ∈ Ψm
small,

then in the cusp, χ[P, ∂θ]χ is in y−∞Ψm
small. Indeed, its symbol can be

expressed with derivatives of the symbol of P , that include at least one
derivative ∂θ. What we gain with our assumption is that on top of being
decaying the cusp, the operator is smoothing.

An important consequence of the definition is the following:

Lemma 4.7. — If A is R-admissible, then

(4.4) EZχAPZA [1 − EZχAPZ ] , and [1 − EZχAPZ ]AEZχAPZ

are both R-residual.

Proof. — For the first one, let Rθ : C∞(Rd/Λ) → C∞(Rd/Λ) be the
inverse of ∂θ on functions with vanishing 0th Fourier mode, i.e.{

f ∈ L2 (Rd/Λ
)
,

∫
Rd/Λ

f(θ)dθ = 0
}

(and Rθ1 = 0, where 1 denotes the constant function equal to 1). Write
Π0, the orthogonal projection onto the 0th Fourier mode. Then: ∂θRθ =
Rθ∂θ = 1 − Π0. The operator Rθ acts naturally on functions that are

(3) By “sufficiently high in the cusp”, we mean that the behaviour of the pseudo-
differential A can be arbitrary on some compact set {y < CA}, hence the introduction
of the cutoff χA.
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supported in the cusp. Indeed, if f ∈ C∞
comp(N,L) is supported in {y > a},

then
(Rθf) (y, θ, ζ) := (Rθf(y, ·, ζ)) (θ).

The operator χARθχA is then bounded on every Hs, ρ0, ρ⊥(N,L), s, ρ0, ρ⊥
∈ R.

Now, taking χ′
A supported in {y > a} such that χ′

A ≡ 1 on supp(χA),
we obtain:

0 = ∂θEZχAPZARθχ
′
A [1 − EZχAPZ ]

= EZχAPZA (1 − Π0)χ′
A [1 − EZχAPZ ]

+ EZχAPZ [∂θ, A] Rθχ
′
A [1 − EZχAPZ ]

= EZχAPZA [1 − EZχAPZ ]χ′
A − EZχAPZA [1 − EZχAPZ ] Π0χ

′
A

+ EZχAPZ [∂θ, A] Rθχ
′
A [1 − EZχAPZ ] .

Using that [1−EZχAPZ ]Π0f = 0 for any f ∈ C∞(N,L) such that supp(f)
⊂ {y > CA}, together with the assumption (4.3) on the bracket [∂θ, A],
we obtain the desired result for the operator EZχAPZA[1 − EZχAPZ ]χ′

A,
namely it is bounded as an operator ykH−k(N,L) → y−kHk(N,L) for any
k ∈ N. To get rid of the χ′

A in front, it suffices to observe that:

EZχAPZA [1 − EZχAPZ ] (1 − χ′
A)

= EZ χA (1 − χ′
A)︸ ︷︷ ︸

=0

PZA [1 − EZχAPZ ]

+ EZχAPZ [A, (1 − χ′
A)] [1 − EZχAPZ ] .

Due to the support property of the kernel of A (more precisely, the intro-
duction of the cutoff function in the hyperbolic quantization, see § 2.2.2),
it is not difficult to check that this operator has compact support. It is
also clearly regularizing (in the sense that it maps any compactly sup-
ported distribution to smooth functions) as χA and 1 − χ′

A have disjoint
(micro)support. Hence, it is R-residual. □

Lemma 4.7 says that, up to compact remainders, A acts diagonally on
the decomposition between zero and non-zero Fourier modes. However, we
observe that the sole conditions in (4.4) are not necessarily stable under
products, nor under taking parametrices. If we want to consider a class of
operators enjoying such stability, we need to assume (4.3).

Proposition 4.8. — Consider A = Op(σ). Then:
(1) The first boundedness property in (4.3) is satisfied if ∂θσ = 0.
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(2) The second one in (4.3) also does in each cusp if,

σ̃ : (r, z;λ, η) 7→
∫
Rd/Λ

σ|Z
(
er, θ, ζ; e−rλ, J = 0, η

)
dθ,

does not depend on r. In that case, the operator IZ(A) is pseudo-
differential, properly supported, and its principal symbol is σ̃. Both
these conditions are satisfied when σ is invariant by local isometries
of the cusp.

(3) An operator A is R-admissible if and only if it is of the form
Op(σ) + B + R, where σ satisfies the conditions above, R is R-
admissible smoothing, and B is a compactly supported pseudo-
differential operator. In particular, the set of R-admissible operators
is stable by composition.

Proof of Proposition 4.8. — Again, it suffices to work in local charts
for F , i.e with with OpU on Z × U ⊂ Rk. First, we observe directly from
formula (2.5) that [∂θ,Op(σ)] = Op(∂θσ), so that when ∂θσ = 0, OpU (σ)
commutes with ∂θ. Reciprocally, if [∂θ,Op(σ)] is bounded from yNH−N

to y−NHN , it implies that ∂θσ ∈ y−∞S−∞ — expressing σ in terms of
the kernel of Op(σ). In particular, we can replace σ by

∫
σdθ, and this

only adds a negligible correction. For the second condition, one has to do
a change of variables. For details, we refer to [12, Section 4.1]. □

To apply the machinery on Hölder–Zygmund spaces later on, we need
to make an important observation. In the Definition 4.6 of admissible op-
erators, we consider small operators A ∈ Ψm

small (see Definition 2.4) and
in the very definition of this algebra, we allowed for remainders that are
R-smoothing, a notion that is defined in terms of Sobolev spaces: R is
R-smoothing if it bounded as

R : yρH−s → yρHs,

for all s, ρ ∈ R (see § 2.2.1). Let us even say for a moment that such oper-
ators are Sobolev R-smoothing. We have also introduced Hölder–Zygmund
R-smoothing operators, i.e those R’s that are bounded as

R : yρC−s
∗ → yρCs

∗ ,

for all ρ, s ∈ R and considered, similarly to the Definition 2.4 of small
pseudo-differential operators, the algebra of operators of the form

Ψ̃m
small := {Op(a) + Hölder–Zygmund R-smoothing | a ∈ Sm} .

As mentioned in § 2.2.1, we insist on the fact that it is not clear to us that
this algebra is the same as the algebra Ψm

small of small pseudo-differential
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operators introduced in Definition 2.4. Nevertheless, it turns out that in
the specific case where the operator is admissible, these two notions agree.

Proposition 4.9. — If A ∈ Ψ̃m
small and A is R-admissible, then A ∈

Ψm
small. Conversely, if A ∈ Ψm

small and A is R-admissible, then A ∈ Ψ̃m
small.

As we will only work with admissible operators in the following, we can
simply drop the notation Ψ̃m

small.
Proof. — We will only prove that if A ∈ Ψm

small is R-admissible in the
original sense, then A ∈ Ψ̃m

small, i.e. it also is in the “Hölder–Zygmund”
sense. The other direction is completely similar.

According to Proposition 4.8, we can directly assume that A is R-smoo-
thing, and we have to prove that it is Hölder–Zygmund R-smoothing. Ac-
cording to Lemma 4.7, we can always replace A by χAEZIZ(A)PZχA, since
R-residual operators also map ykC−k

∗ → y−kCk
∗ for all k ∈ N (see Propo-

sition 3.14). In this way, we reduce our problem completely to a study of
operators on Rr × F , which are convolution operators in the r variable.

As a consequence, we have to prove that IZ(A) is bounded from eρrC−s
∗

(R×F ) → eρrCs
∗(R×F ) for all ρ ∈ R, s > 0. From the Sobolev embeddings,

we already know that eρrC−s
∗ is mapped to eρr+ϵ⟨r⟩Cs

∗ for all ϵ > 0, but we
need to avoid this loss. Here, the presence of F is not essential, and we can
assume that F is a point. Indeed, denoting by H := L(C−s

∗ (F ), Cs
∗(F )), we

can see IZ(A) as convolution operator on R with values in H (using the
Sobolev embeddings in F ).

Let us denote by K(r) the convolution kernel of IZ(A). If δ is the Dirac
at 0, K(r) = [IZ(A)δ](r). In particular, since δ ∈ eρrH−N for all ρ ∈ R
and N > 0 large enough, we deduce that K ∈ eρrHN for all ρ ∈ R, and
N >> 1. In particular, K(r) ∈ eρrCN

∗ for all ρ,N ∈ R, again according to
the Sobolev embeddings. This is sufficient to conclude. □

Let us give some examples of admissible (pseudo)differential operators.
If (L,∇L) is an admissible vector bundle in the sense of Definition 2.1,
then from the decomposition (2.2), we deduce that ∇L is an admissible
(pseudo)differential operator. More generally, all the differential operators
that can be defined completely locally using only the metric structure are
bound to be properly supported admissible differential operators (e.g. the
Laplacian or the Levi–Civita connection). In the following, the operator D
— the symmetric derivative of symmetric tensors, see § 5.3 for a definition
— and D∗D will be local differential operators constructed from the metric,
so they will be properly supported admissible differential operators, in the
sense of Definition 4.6.
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To complete this section, we prove the following boundedness result:

Lemma 4.10. — Let A be an R-admissible pseudo-differential operator
of order m ∈ R. Then A is bounded as an operator between Hs+m, ρ0, ρ⊥

and Hs, ρ0, ρ⊥ , for all s, ρ0, ρ⊥ ∈ R.

Proof. — We decompose the operator into four terms:

A = (1 − EZχAPZ)A (1 − EZχAPZ) f + EZχAPZA (1 − EZχAPZ) f
+ (1 − EZχAPZ)AEZχAPZf + EZχAPZAEZχAPZf

The first term is bounded as a map

Hs+m, ρ0, ρ⊥ 1−EZ χAPZ→ Hs+m, −∞, ρ⊥

↪→ yρ⊥Hs+m A→ yρ⊥Hs 1−EZχAPZ→ Hs, −∞, ρ⊥ ↪→ Hs, ρ0, ρ⊥ ,

where we have used the boundedness of A obtained in Proposition 2.5.
By (4.4), the second and third terms are immediately bounded. As to the
last term, it is dealt exactly like the first term. □

We can now complete the proof of Lemma 4.5, asserting that the follow-
ing maps are bounded:

Hs, ρ0, ρ⊥(N,L) ∋ f 7→ χPZf ∈ e(ρ0+d/2)rHs (R × FZ , LZ) ,

eρ0rHs (R × FZ , LZ) ∋ f 7→ EZ(χf) ∈ Hs, ρ0−d/2, −∞(N,L).

Proof of Lemma 4.5. — For this lemma, the presence of the compact part
is inessential, so we can work completely in the cusps. We can decompose
the statement into two parts. The first one is that the map which associates
a section f with its 0th Fourier mode EPf is continuous on the weighted
Sobolev spaces.

To prove this, we first observe that the parameter ρ⊥ is not essential
here, since the differentiated weight for zeroth and non-zeroth Fourier mode
was introduced directly using the Fourier decomposition. In particular, we
can assume that ρ⊥ = ρ0. Next, we recall that the spaces Hs are equal
to Op(σ−s)L2, where σ−s is a symbol, and Op(σ−s) is a parametrix for
(−∆ + C)−s/2. Since ∆ is R-admissible, this parametrix construction can
be done also in an admissible fashion. In particular we can apply Lemma 4.7
to Op(σ−s), and deduce that the action of Op(σ−s) and the taking of the
zeroth Fourier mode commute modulo R-residual operators, hence proving
that the map EP is bounded on the relevant spaces.

Next, the second part of the argument is to prove that yρHs intersected
with the space of functions not depending on θ can be identified with the
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usual Sobolev spaces e(ρ0+d/2)rHs(Rr × F ). For this it suffices to observe
that the d/2 shift is due to the measure y−ddydθdvolF , and then observe
that y∂y = ∂r, so that the vector fields one can use to define Hs regularity
on the cusp are essentially the same as the ones used to define regularity
on R × F . □

4.1.3. Admissible operators on an interval

When dealing with differential operators, whose kernel is supported ex-
actly on the diagonal, the assumption that one can work with spaces
Hs, ρ0, ρ⊥ for any ρ0, ρ⊥ ∈ R is not very important. However, we will be
dealing with pseudo-differential operators that are not properly supported.
Moreover, we will also be dealing with parametrices of differential opera-
tors, which cannot be R-admissible as some poles appear. As before, we
consider two admissible vector bundles L1, L2 → N .

Our more general class of operator differs only in the behaviour of its
kernel far from the diagonal, i.e its smoothing part. For this reason, we
emphasize the definition of the remainders.

Definition 4.11. — Let ρ+ > ρ−. Given R : C∞
comp(N,L1) → D′(N,

L2), we say that R is (ρ−, ρ+)-smoothing admissible if there exists a smooth
cutoff function χR supported in {y > a}, taking value 1 for y large enough
and such that:

(1) For all ρ0 ∈]ρ−, ρ+[, ρ⊥ ∈ R and k ∈ N,

R : H−k, ρ0−d/2, ρ⊥(N,L1) → Hk, ρ0−d/2, ρ⊥(N,L2),

is bounded, i.e. in light of § 2.2.1 R is (ρ−, ρ+)-smoothing,
(2) For all ρ⊥ ∈ R and k ∈ N, ϵ > 0,

χR [∂θ, R]χR : H−k, ρ+−d/2−ϵ, ρ⊥(N,L1) → Hk, ρ−−d/2+ϵ, ρ⊥(N,L2),

is bounded, i.e. in light of § 2.2.1 the previous operator is (ρ−, ρ+)-
residual,

(3) There is a convolution operator IZ(R) such that

EZχR (PZREZ − IZ(R))χRPZ ,

is an operator bounded from

H−k, ρ+−d/2−ϵ, ρ⊥(N,L1) → Hk, ρ−−d/2+ϵ, ρ⊥(N,L2),

for all k ∈ N, ϵ > 0, ρ⊥ ∈ R, i.e. the previous operator is (ρ−, ρ+)-
residual.
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We say that an operator A : C∞
comp(N,L1) → D′(N,L2) is (ρ−, ρ+)-

admissible of order m ∈ R if it can be decomposed as A = Acomp +Acusp +
R, where Acomp is a compactly supported pseudo-differential operator of
order m, Acusp = Op(σ) with σ ∈ Sm(T ∗N,Hom(L1, L2)) satisfying the
conditions of Proposition 4.8 and R is (ρ−, ρ+)-smoothing admissible.

The difference between being R-admissible and (ρ−, ρ+)-admissible lies
only in the behaviour on the 0th Fourier mode in the cusps, where certain
asymptotic behaviour is allowed. More specifically, it is only related to the
decay of the kernel far from the diagonal. In the other Fourier modes in θ,
all exponential behaviours are allowed. Each (ρ−, ρ+) admissible operator
A is associated with a convolution operator IZ(A) = IZ(Acusp) + IZ(R) in
each cusp. Note that IZ(Acusp) is well-defined since Acusp is R-admissible.

We have the following equivalent of Lemma 4.7, Propositions 4.8 and 4.9:

Proposition 4.12. — The set of (ρ−, ρ+)-admissible operators is an
algebra of operators. If in Definition 4.11 one replaces the spaces yρ−d/2Hs

by the spaces yρCs
∗ everywhere, the class of admissible operators obtained

is the same. Moreover, if one replaces R by I in Lemma 4.7, the statement
still holds.

The proof is the same as that of Lemma 4.7 and Propositions 4.8 and 4.9.

4.1.4. Main result

We can now state our main Theorem, using the notions introduced in
the previous paragraph:

Theorem 4.13. — Let L be an admissible bundle in the sense of Defi-
nition 2.1. Assume that L is endowed with an (ρ−, ρ+)-admissible pseudo-
differential operator P of order m ∈ R, in the sense of Definition 4.11. Also
assume that it is uniformly elliptic in the sense of Definition 2.6. Then there
is a discrete set S(P ) ⊂ (ρ−, ρ+) such that for each connected component
I := (ρI

−, ρ
I
+) ⊂ (ρ−, ρ+)\S(P ), there is an I-admissible pseudo-differential

operator QI such that

PQI = 1mod Ψ̇−∞
I , QIP = 1mod Ψ̇−∞

I

i.e. both PQI − 1 and QIP − 1 are bounded as operators

H−N, ρI
+−ϵ−d/2, ρ⊥(L) → HN, ρI

−+ϵ−d/2, ρ⊥(L),

(resp. yρI
+−ϵC−N

∗ → yρI
−+ϵCN

∗ ) for all N > 0 and ϵ > 0 small enough.
In particular, P is Fredholm with same index on each space Hs, ρ0−d/2, ρ⊥

(resp. yρ0Cs
∗) for s ∈ R, ρ0 ∈ I, ρ⊥ ∈ R.
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4.2. The case of elliptic operators and Sobolev spaces

In this section, we will prove Theorem 4.13 in the case where the opera-
tors act on Sobolev spaces.

4.2.1. Indicial family

We now introduce the notion of indicial family. Recall that if L → N is
an admissible bundle, in the cusps it decomposes as L|N = Z × LZ , LZ

being a bundle over FZ . Given ρ− < ρ+, it will be convenient to introduce
the notation

C(ρ−, ρ+) := {λ ∈ C, ℜλ ∈ (ρ−, ρ+)} .
In this section, we will fix an interval I = (ρ−, ρ+) ⊆ R.

Definition 4.14. — Let A be an I-admissible operator of order m.
We introduce for λ ∈ CI the operator acting as a map C∞(FZ , LZ) →
C∞(FZ , LZ) and defined for f ∈ C∞(FZ , LZ) by:

(4.5) IZ(A, λ)f(ζ) = e−λrIZ(A)
[
eλr′

f(ζ ′)
]
.

The family (IZ(A, λ))λ ∈ CI
is called the indicial family associated with A.

For each λ ∈ CI , IZ(A, λ) is well-defined as an operator acting on
C∞(FZ , LZ), due to the fact that IZ(A) is a convolution operator in the
r-variable. Interpreting IZ(A) as a convolution operator on R valued in
operators on F , we see that IZ(A, λ) is the Fourier transform of the con-
volution kernel of IZ(A).

More precisely, let S(R × FZ) be the space of functions such that f ∈
S(R × FZ) if and only if for all i, j, k ∈ N:

sup
r ∈ R

⟨r⟩i
∥∥∂j

rf(r)
∥∥

Ck(FZ ) < ∞.

Given f ∈ eρrS(R × FZ , L), we can write

f =
∫

ℜ(λ)=ρ

eλrf̂(λ)dλ,

where f̂(λ) ∈ C∞(FZ , L) is defined by

f̂(λ) = 1
2π

∫
Rr

e−λrf(r, ·)dr,

and we have a Plancherel-type formula

(4.6) ∥f∥2
L2(R×FZ , drdζ) = 1

2π

∥∥∥f̂∥∥∥2

L2(Rλ ; L2(FZ ))
.
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Then:

(4.7) IZ(A)f =
∫

ℜ(λ)=ρ

eλrIZ(A, λ)f̂(λ)dλ.

To give an accurate meaning to the previous integral, recall that the
spaces Hs(R × FZ) are the ones induced by the Laplacian ∆ := ∂2

r + ∆ζ

obtained from the metric dr2 + gFZ
, i.e.

Hs(R × FZ) := (1 − ∆)−s/2L2 (R × FZ ,drdζ) .

This shows that the previous partial Fourier transform in the r-variable
allows to express the Sobolev norms:

∥f∥2
Hs(R×FZ) =

∥∥∥(1 − ∆)s/2
f
∥∥∥2

L2(R×FZ)

=
∫

ℜ(λ)=0

∥∥∥(1 − λ2 − ∆ζ

)s/2
f̂(λ)

∥∥∥2

L2(FZ )
dλ.

We have a precise description for the indicial family of an admissible
operator. In the following, we denote by OpF a quantization on FZ .

Lemma 4.15. — Let A be an I-admissible operator. Then IZ(A, λ) is
⟨ℑλ⟩−1-semi-classical, i.e it can be written as OpF

h (σ̃λ)+OΨ−∞(h∞), where
h = ⟨ℑλ⟩−1. The estimates are locally uniform in ℜλ ∈ I.

Proof. — For this, we decompose A = Acomp + Op(σ) + R, with Acomp
is a compactly supported pseudo-differential operator, Op(σ) is supported
in the cusp satisfying (1) and (2) of Proposition 4.8, and R is I-admissible
smoothing.

Certainly, Acomp does not contribute to IZ(A), and we start by studying
the contribution from Op(σ). Let us express the kernel of IZ(Op(σ)) (in
local charts in FZ) as∫

Rk×R
eiΦ(r, r′, λ, z, η)χ(r − r′)σ̃

(
z + z′

2 , λ, η

)
2e(r+r′)/2

er + er′

dηdλ
(2π)1+k

.

(σ̃ was defined in Proposition 4.8) with

Φ = ⟨z − z′, η⟩ + 2λ tanh r − r′

2 .

As a consequence, IZ(Op(σ), λ) = Op(σλ) with

σλ = 1
2π

∫
R2
e−λu+2iµ tanh u

2
χ(u)

cosh u
2
σ̃(z, µ, η)dudµ.
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This integral is stationary at µ = iℑλ, u = 0, with compact support in u,
and symbolic estimates in µ. So we get σλ ∈ Sm, with the refined estimates

(4.8)
∣∣∂α

z ∂
β
η ∂

γ
λσλ

∣∣ ⩽ Cα, β, γ

(
1 + |ℑλ|2 + |η|2

)(m−|β|−γ)/2
,

with constants Cα, β, γ locally uniform in ℜλ. We deduce from this that
IZ(Op(σ), λ) is semi-classical with parameter h = ⟨ℑλ⟩−1.

Let us turn now to IZ(R, λ). We need to prove that its kernel, seen as
a smooth function on C∞(FZ × FZ) is uniformly bounded, as well as all
its derivatives, by O(⟨ℑλ⟩−∞). Since its kernel is the Fourier transform of
the convolution kernel of IZ(R), this polynomial decay at high frequency
is a direct consequence of the smoothness of the kernel of IZ(R). Indeed,
to obtain our bound, it suffices to prove for all k ⩾ 0 that uniformly in
ζ1, ζ2 ∈ F , and locally uniformly in ρ ∈ I that

r 7→
〈
δ

(k)
ζ1
, IZ(R)δ0(r)δ(k)

ζ2

〉
F

∈ eρrC∞.

But this follows from the fact that R is I-smoothing, and usual Sobolev
injections on R. □

We can now prove

Lemma 4.16. — Let A be an I-admissible operator. Its indicial family

CI ∋ λ 7→ IZ(A, λ) ∈ Ψm (FZ , LZ)

is holomorphic (as a map taking values in a Fréchet space) and is a homo-
morphism in the sense that for all I-admissible operators P and Q, for all
λ ∈ CI :

IZ (PQ, λ) = IZ (P, λ) IZ (Q,λ) IZ (P +Q,λ) = IZ (P, λ) + IZ (Q,λ) .

Proof. — That IZ(A, λ) is defined for λ ∈ CI follows from the description
of IZ(A, λ) as the “Fourier transform” of IZ(A). This is explained in much
detail in [12, Lemmas 3.16 and 3.17].

We now show that if P,Q are I-admissible, IZ(PQ) = IZ(P )IZ(Q). To
this end, we consider a cutoff function χP Q supported on {χP = 1} ∩ {χQ

= 1} taking constant value 1 as y → +∞. Then, using Definition 4.11 of
admissible operators, together with Proposition 4.12:
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EZχP QPZPQEZχP QPZ

= EZχP QPZPEZχP PZQEZχP QPZ

+ (EZχP QPZP (1 − EZχP PZ))︸ ︷︷ ︸
in Ψ̇∞

I
, by Proposition 4.12

QEZχP QPZ

= χP Q (EZχP PZPEZχP PZ)︸ ︷︷ ︸
= EZ χP IZ (P )χP PZ mod Ψ̇∞

I

QEZχP QPZ mod Ψ̇∞
I

= χP QEZχP IZ(P )χP PZEZχQIZ(Q)χQPZEZχP QPZ mod Ψ̇∞
I

= EZχP QIZ(P )χPχQIZ(Q)χP QPZ mod Ψ̇∞
I .

We now need to explain how to get rid off the cutoff function χPχQ in the
middle. To that end, it suffices to show that both

EZχP QIZ(P ) (1 − χP )χQIZ(Q)χP QPZ

and

EZχP QIZ(P )χP (1 − χQ) IZ(Q)χP QPZ

are I-residual. We deal with the first term for instance. First of all, observe
that due to the support properties of χP Q and χP and the pseudo-locality
of IZ(P ), the operator χP QIZ(P )(1 − χP ) has smooth Schwartz Kernel
and maps

erρH−k (R × FZ) → erρ′
Hk (R × FZ)

for any k ∈ N, ρ ∈ R, ρ′ ∈ I. Moreover, it is immediate that (1 −
χP )χQIZ(Q)χP QPZ : yρHs(N,L) → min(eρ′r, 1)Hs(Rr × FZ) is bounded
for all k ∈ N, ρ ∈ I, ρ′ ∈ R. Combining these two facts, we obtain that
EZχP QIZ(P )(1 − χP )χQIZ(Q)χP QPZ is I-residual. □

It is good to have in mind the following bound:

Lemma 4.17. — Consider A ∈ Ψ0(N,L), and a < b. Then, there exists
C = C(A) such that for all a < ℜ(λ) < b, ∥IZ(A, λ)∥L(L2, L2) ⩽ C.

Proof. — This follows from [12, Lemma 3.16]. □

4.2.2. Indicial resolvent

In this section, we now pick I as before, A an I-admissible operator.
Additionally, we assume that A is uniformly elliptic, and we find an inverse
for IZ(A).
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Proposition 4.18. — Let A be an I-admissible operator. Then IZ

(A, λ) is Fredholm of index 0 on every space Hs(FZ , LZ), s ∈ R, and invert-
ible for ℑλ large enough, locally uniformly in ℜλ ∈ I. We call indicial roots
of A (at cusp Z) the λ’s in CI such that IZ(A, λ) is not invertible. We
also let

(4.9) S(A) := {ρ ∈ I | there exists an indicial root of A in ρ+ iR} ⊂ I.

This set is discrete in I.

Proof. — For this we recall that since A is uniformly elliptic, we have
built a parametrix Q such that QA = 1 + R, where R is a I-smoothing.
Since Q is constructed as Op(σ), and σ is built with symbolic operations
from the symbol of A, we can impose that Q is R-admissible. We deduce
that

I(Q,λ)I(A, λ) = 1 + IZ(R).

Since R is I-admissible smoothing, IZ(R) = O(⟨ℑλ⟩−∞), and this implies
that I(A, λ) is left invertible for ℑλ large enough, locally uniformly in ℜλ.
Since Q is also a right parametrix, we deduce that I(A, λ) is invertible for
ℑλ large enough, and

(4.10) I(A, λ)−1 = I(Q,λ) + OΨ−∞
(
⟨ℑλ⟩−∞) .

Using the analytic Fredholm theorem, we deduce that for λ ∈ CI , I(A, λ)−1

is a meromorphic family of pseudo-differential operators, with poles of finite
rank. The discreteness of S(A) follows from the invertibility of I(A, λ) for
ℑλ large enough. □

Proposition 4.19. — Let A be an I-admissible elliptic operator of
order m. Then for ρ ∈ I \ S(A), s ∈ R, IZ(A) is invertible as a map
eρrHs(R×F,LF ) → eρrHs−m(R×F,LF ). The inverse can be expressed as

IZ(A)−1
ρ =

∫
ℜλ=ρ

eλrIZ(A, λ)−1dλ.

(this is an equality of convolution kernels). It is pseudo-differential, and as
an operator C∞

comp(R×F,LF ) → C∞(R×F,LF ), it does not depend on ρ,
as long as ρ varies in a connected component of I \ S(A).

Proof. — For this, we will start by considering the operator in the right-
hand side of the formula (denote it W ), and prove that this is a bounded
operator from eρrHs−m(R × F,LF ) to Hs(R × F,LF ). Up to conjugating
by some powers of the Japanese bracket of the Laplacian, the statement
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boils down to s = m = 0 and one can also take ρ = 0. (4) Then, we observe
that on the line ℜλ = 0, the operator IZ(A, λ)−1 is uniformly bounded
on L2 by Lemma 4.17. We can thus apply Plancherel’s formula (4.6), and
obtain:

∥Wf∥2
L2 =

∫
ℜ(λ)=0

∥∥∥IZ(A, λ)−1f̂(λ)
∥∥∥2

L2(FZ )
dλ

≲
∫

ℜ(λ)=0

∥∥∥f̂(λ)
∥∥∥2

L2(FZ )
dλ = ∥f∥2

L2 .

This bound also ensures the validity of the computation

IZ(A)W = WIZ(A) =
∫

ℜλ=0
eλrIZ(A, λ)−1IZ(A, λ)dλ = 1.

Next, to check that IZ(A)−1
ρ is pseudo-differential, we observe that since

IZ(Q)IZ(A) = 1 mod Ψ−∞

(Q being the parametrix already defined), we have necessarily

IZ(A)−1
ρ = IZ(Q) mod Ψ−∞.

Finally, since IZ(A)−1
ρ is expressed as a contour integral, testing against

C∞
comp function (whose Fourier transform in the r variable decay very fast),

we can shift contours as long as we do not encounter a pole of IZ(A, λ)−1,
using Cauchy’s formula. □

4.2.3. Improving Sobolev parametrices

In this section, we will complete the proof of Theorem 4.13 in the case
that the operator A is (ρ−, ρ+)-admissible elliptic (except the part about
the Fredholm index (4.15) that we will deal with in the next section). Recall
that A = Acomp +Acusp +R. Both Acusp, R are associated with some cutoff
function χAcusp , χR (as it was introduced in Definitions 4.6 and 4.11). In
the following, we will write χA for a smooth cutoff function such that χA

is supported in {χR ≡ 1} ∩ {χAcusp} and it takes value 1 near y = +∞.

(4) Indeed, using the fact that ∆r, ζ := ∂2
r + ∆ζ = IZ(∆g), namely it is the indicial

operator associated to the Laplacian on N , we obtain by a straightforward computation
that the bound

∥IZ(A)f∥Hs ≲ ∥f∥Hs+m

is equivalent to the bound∥∥IZ

(
(1 − ∆g)s/2 A (1 − ∆g)−(s+m)/2) f

∥∥
L2 ≲ ∥f∥L2

and this last operator is of order 0.
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According to Proposition 2.7, we have a symbol q such that Op(q)A− 1

is a smoothing operator (but not necessarily compact). From Lemma 4.3,
we deduce that it would suffice to improve Op(q) only with respect to
the action on the 0th Fourier coefficient in the cusps. As we observed in
the previous section, since the symbol q was built using symbolic calculus,
we deduce directly that Op(q) is R-admissible. Consider an open interval
J which is a connected component of I \ S(A). Denote by IZ(A)−1

J the
corresponding inverse of IZ(A). Then set

QJ := Op(q) +
∑

Z

EZχA

[
IZ(A)−1

J − IZ (Op(q))
]
χAPZ ,

which is now a J-admissible pseudo-differential operator. Indeed, to prove
this it suffices to prove that the correction we added is J-smoothing. Since
IZ(A)−1

J −IZ(Op(q)) ∈ Ψ−∞ is a convolution operator, using the Plancherel
formula, this follows from the fact that the estimate

IZ(A, λ)−1 − IZ(Op(q), λ) = OΨ−∞
(
⟨ℑλ⟩−1) ,

is valid locally uniformly for ℜλ ∈ J .
We now write QJA = 1 + RJ and we aim to prove that RJ is compact

on Hs, ρ0−d/2, ρ⊥ for all s ∈ R, ρ0 ∈ J , ρ⊥ ∈ R. By stability by composition
of admissible pseudo-differential operators (see Proposition 4.12), we know
that RJ is a smoothing admissible operators. Moreover, the operator QI

was chosen so that IZ(RJ) = 0 (this can be checked using the calculation
rules of Lemma 4.16). As a consequence, thanks to Lemma 4.3, the proof
of Theorem 4.13 (except the Fredholm properties) now boils down to the
following Lemma:

Lemma 4.20. — Let A be a (ρ−, ρ+)-admissible pseudo-differential op-
erator of order −m such that IZ(A) = 0. Then A is bounded from

Hs, ρ0−d/2, ρ⊥ to Hs+m, ρ′
0−d/2, ρ⊥ for ρ0, ρ

′
0 ∈ (ρ−, ρ+), ρ⊥ ∈ R.

Proof. — We have:

Af = (1 − EZχAPZ)A (1 − EZχAPZ) f + EZχAPZA (1 − EZχAPZ) f
+ (1 − EZχAPZ)AEZχAPZf + EZχAPZAEZχAPZf .

By definition of being admissible, the first three terms directly satisfy
the announced bounds. The last one also does since we have assumed that
IZ(A) = 0. □
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4.2.4. Fredholm index of elliptic operators

We first prove the following identification:

Lemma 4.21. — For all s, ρ0, ρ⊥ ∈ R, one can identify via the L2 scalar
product the spaces (Hs, ρ0, ρ⊥)′ ≃ H−s, −ρ0, −ρ⊥ .

Proof. — We have to prove that the bilinear map

(4.11) C∞
comp(N,L) × C∞

comp(N,L) ∋ (u, v) 7→ ⟨u, v⟩

=
∫

N

gL(u, v)dvolN (z)

extends boundedly as a non-degenerate bilinear map

Hs, ρ0, ρ⊥ ×H−s, −ρ0, −ρ⊥ → C.

As usual, non-degeneracy is trivial. Up to a smoothing order modification
of Λs which we denote by Λ′

s, we can assume that Λ−sΛ′
s = 1. Then,

for u, v ∈ C∞
c (N,L), one has ⟨u, v⟩ = ⟨Λ−sΛ′

su, v⟩ = ⟨Λsu,Λ′
−sv⟩. By

Lemma 4.10, since Λ±s is admissible, Λ±s : H±s, ρ0, ρ⊥ → H0, ρ0, ρ⊥ is
bounded. The boundedness of (4.11) on H0, ρ0, ρ⊥ × H0, −ρ0, −ρ⊥ → C is
immediate (these are L2 spaces with weight yρ0 on the 0th Fourier mode
and yρ⊥ on the non-zero modes) and thus:∣∣〈Λsu,Λ′

−sv
〉∣∣ ≲ ∥Λsu∥H0, ρ0, ρ⊥

∥∥Λ′
−sv
∥∥

H0, −ρ0, −ρ⊥

≲ ∥u∥Hs, ρ0, ρ⊥ ∥v∥H−s, −ρ0, −ρ⊥ .

We then conclude by density of C∞
comp(N,L). □

An immediate computation shows that

(4.12) IZ(P ∗, λ) = IZ

(
P, d− λ

)∗
.

As a consequence, λ is an indicial root of P ∗ if and only if d − λ is an
indicial root of P .

Proposition 4.22. — Let P be a (ρ−, ρ+)-admissible elliptic pseudo-
differential operator of order m ∈ R. Let I be a connected component
in (ρ−, ρ+) not containing the real part of any indicial root. Then P is
Fredholm as a bounded operator Hs+m, ρ0−d/2, ρ⊥ → Hs, ρ0−d/2, ρ⊥ with
s ∈ R, ρ0 ∈ I, ρ⊥ ∈ R. The index does not depend on s, ρ0, ρ⊥ in that
range.

Proof. — We write I = (ρI
−, ρ

I
+). First, from the parametrix construc-

tion, and the compactness of the relevant spaces, we deduce that the kernel
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of P is finite dimensional on each of those spaces (and is actually always
the same). Indeed, we have

QP = 1 +K,

with K mapping H−k, ρI
+−ϵ−d/2, ρ⊥ → Hk, ρI

−+ϵ−d/2, ρ⊥ for any k ∈ N, any
ϵ > 0 small enough and any ρ⊥ ∈ R, by Lemma 4.20. This can actually be
upgraded to

K : H−k, ρI
+−ϵ−d/2, ρ⊥ → Hk, ρI

−+ϵ−d/2, −∞

is bounded (in the sense that K : H−k, ρI
+−ϵ−d/2, ρ⊥ → Hk, ρI

−+ϵ−d/2, −k is
bounded for all k ∈ N, ε > 0). Indeed, by Lemma 4.4, we know that

Hk, ρI
−+ϵ−d/2, ρ⊥ ↪→ Hk/2, ρI

−+ϵ−d/2, ρ⊥−k/2,

is a continuous embedding and this proves the claim.
As a consequence, if Pu = 0 with u ∈ Hs+m, ρ0−d/2, ρ⊥ for s ∈ R and

ρ0 ∈ I, ρ⊥ ∈ R, then u = −Ku, hence

u ∈ ∩k ∈ N, ε > 0, ρ⊥ ∈ R H
k, ρI

−+ϵ−d/2, ρ⊥(N,L1),

that is the kernel of P is independent of the space (as long as the weight
yρ

0 on the zeroth Fourier mode is in the window ρ0 ∈ I). Moreover, by
compactness of K, the kernel of 1 +K is finite-dimensional, and so is the
kernel of P .

Eventually, using Lemma 4.21, we can consider the same argument for
the adjoint P ∗ (to obtain the codimension of the image of P ), and this
closes the proof. □

Remark 4.23. — If on the other hand, ρ ∈ S(A), then the operator A :
Hs+m, ρ, ρ⊥ → Hs, ρ, ρ⊥ is not Fredholm for any values s, ρ⊥ ∈ R. Although
we do not make a formal statement of this fact, it could be deduced from
the relative Fredholm index Theorem (see (4.15)) obtained in the next
paragraph: indeed, the family ρ0 7→ yρ0Ay−ρ0 ∈ Ψm is continuous and
the relative Fredholm index Theorem indicates that the Fredholm index
jumps when crossing an indicial root. By a mere continuity argument, this
prevents the operator from being Fredholm.

4.2.5. Jumps of Fredholm index

Let A be an elliptic pseudo-differential operator of order m > 0 and
assume that it is R-admissible. We want to investigate what happens when
one crosses an indicial root: the operator may fail to be injective and/or
surjective. For the sake of simplicity, we assume that the operator A has
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no indicial root on ℜ(λ) = d/2 and that it is an isomorphism as a map
Hs, ρ, ρ⊥ → Hs−m, ρ, ρ⊥ for all s ∈ R, ρ⊥ ∈ R and ρ in a neighbourhood
of 0. Let us investigate its kernel: we consider u ∈ H0, ρ0, ρ⊥ such that
Au = 0, where ρ0 > 0 and we assume that ρ0 + d/2 is not an indicial root.
By Proposition 4.22, it implies in particular that u ∈ H+∞, ρ0, −∞ and we
recall that this notation means that u ∈ Hk, ρ0, −k for all k ∈ N. Moreover,
we have

Au = 0 =
(1 − EZχAPZ)A (1 − EZχAPZ)u+ EZχAPZA (1 − EZχAPZ)u

+ (1 − EZχAPZ)AEZχAPZu+ EZχAPZAEZχAPZu

Since A is R-admissible, the first three terms are respectively in

H+∞, −∞, ρ⊥ , H+∞, −∞, −∞, H+∞, −∞, −∞.

In particular, this implies that

EZχAPZAEZχAPZu

= EZχAIZ(A)χAPZu+ Oy−∞H∞(1) = Oy−∞H∞(1).

that is IZ(A)χAPZu ∈ ∩ρ ∈ Re
ρrH∞(R×FZ , L). Since ρ0+d/2 was assumed

not to be an indicial root, IZ(A) is invertible on

eρ0+d/2Hs+m (R × FZ , L) → eρ0+d/2Hs (R × FZ , L) ,

for all s ∈ R with inverse IZ(A)−1
ρ0+d/2 and the Schwartz kernel of this

inverse does not depend on a small perturbation of ρ0. By Lemma 4.5, we
have

f := χAPZu ∈ e(ρ0+d/2)rH∞.

In particular, we deduce that IZ(A)−1
ρ0+d/2IZ(A)f = f . We also have that

IZ(A)f ∈ e(ρ+d/2)rH∞ for all ρ ∈ R. On the other hand, we know by a
classical contour integration argument that

I(A)−1
ρ0+d/2 = I(A)−1

d/2 + 2iπ
∑

λ indicial root of A
ℜλ ∈ ]d/2, d/2+ρ0[

Πλ.

Here, Πλ is the convolution operator whose kernel is the residue of

eλ′(r−r′)IZ (A, λ′)−1 at λ′ = λ.

It is a finite rank operator, whose image is the linear span of sections of
the form

(4.13) eλrrkfk(ζ),
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(k being at most the order of the pole of IZ(A, λ)). This implies, using the
boundedness properties of I(A)−1

d/2 that

f = I(A)−1
d/2(A)IZ(A)f +

∑
λ indicial root of A

ℜλ ∈ ]d/2, ρ0[

ΠλIZ(A)f

=
∑

λ indicial root of A
ℜλ ∈ ]d/2, ρ0[

ΠλIZ(A)f mod edr/2H∞.

Going back to u and writing (note that we put twice the cutoff function
here so that each term below makes sense):

u = (1 − EZχAχAPZ)u+ EZχAf

= (1 − EZχAχAPZ)u+ EZχAO
e

d
2 rH∞(1)

+
∑

λ indicial root of A
ℜλ ∈ ]d/2,ρ0[

EZχAΠλIZ(A)f,

we see that the first term is H+∞, −∞, −∞ and the second term is in
H+∞, 0, −∞. In other words, we can write u = u0+u1, where u0 ∈ H+∞, 0, ρ⊥

and

(4.14) u1 = EZ

∑
λ indicial root of A

ℜλ ∈ ]d/2, ρ0[

χAΠλ (IZ(A)PZχu) ,

which belongs to a finite-dimensional space. On the other hand,

Au1 = Au−Au0 = −Au0 ∈ H+∞, −∞, −∞.

By invertibility of A for sections in Hs, 0, ρ⊥ , s ∈ R, ρ⊥ ∈ R, we obtain that
u0 = −A−1(Au1) ∈ H+∞, 0, −∞. In other words, any solution to Au =
0, where u ∈ H+∞, ρ0, −∞, can be written as u = u0 + u1, where u0 ∈
H+∞, 0, −∞ and u1 has the explicit form (4.14).

Now, the converse is also true. For any element in the range of Πλ, where
0 < ℜ(λ) < ρ0, we can build a solution to Au = 0. Indeed, first of all observe
that, taking λ an indicial root and ρ > ℜ(λ), and considering IZ(A) acting
on the spaces eρrHs, we have IZ(A)Πλ = 0 by a simple contour integral
argument. As a consequence, defining u1 := χAEZu

′, where u′ ∈ ran(Πλ),
we have by construction Au1 ∈ H+∞, −∞, −∞. We then look for u = u0 +u1
such that Au = 0, u0 ∈ H+∞, 0, −∞. For that, it is sufficient to solve
Au0 = −Au1 ∈ H+∞, −∞, −∞ ↪→ H+∞, 0, −∞. Now, since A is assumed
to be invertible on spaces with weight y0 on the zeroth Fourier mode, we
obtain u0 = −A−1(Au1) ∈ H+∞, 0, −∞ and u = u0 + u1 solves Au = 0. To
sum up the discussion, we have proved the
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Proposition 4.24. — Let A be an R-admissible elliptic operator of
order m > 0. Assume that A has no indicial root on {ℜ(λ) = d/2} and
that it is invertible as a map A : Hs+m, ρ0, ρ⊥(N,L) → Hs, ρ0, ρ⊥(N,L) for
ρ0 near 0 (s, ρ⊥ ∈ R being arbitrary). Assume that Au = 0, u ∈ H0, ρ0, ρ⊥

with ρ⊥ ∈ R and ρ0 + d/2 not being the real part of an indicial root. Then
u = u0 + u1 with

u1 =
∑

λ indicial root of A
ℜλ ∈]d/2, d/2+ρ0[

EZχAΠλIZ(A)PZχAu

and Au1 ∈ H+∞, −∞, −∞, and u0 = −A−1(Au1) ∈ H+∞, 0, −∞ (in partic-
ular, u ∈ H∞, ρ0, −∞). Conversely, for each indicial root λ with ℜλ > d/2,
and each element in the range of Πλ, we can build such a solution.

We also have a similar statement for the resolution of the equation Au =
v on smaller spaces than Hs, 0, ρ⊥ .

Proposition 4.25. — Let A be an R-admissible elliptic operator of
order m > 0. Assume that A has no indicial root on {ℜ(λ) = d/2} and
that it is invertible as a map A : Hs+m, ρ0, ρ⊥(N,L) → Hs, ρ0, ρ⊥(N,L)
for ρ0 near 0 (s, ρ⊥ ∈ R being arbitrary). Let ρ0 < 0 and assume that
ρ0 + d/2 is not the real part of an indicial root (in particular, there is
no indicial root on (ρ0 − ε, ρ0 + ε) for some ε > 0). Then, there exists
S ∈ Ψ−m, an (ρ0 − ε, ρ0 + ε)-L2-admissible operator, a linear mapping
G : Hs, ρ0, ρ⊥ → eρrH+∞, bounded on these spaces for all s, ρ, ρ⊥ ∈ R,
such that for all v ∈ Hs, ρ0, ρ⊥ , s ∈ R, ρ⊥ ∈ R, one has:

A−1v = Sv + χEZ

∑
λ indicial root of A
ℜλ ∈ ]ρ0, d/2+ρ0[

Πλ (PZχ+G) v.

Moreover, one has AχEZΠλ : erρHs → H+∞, −∞, −∞ for all ρ < ℜ(λ).

Proof. — Since A is assumed to be invertible on the spaces Hs, 0, ρ⊥ , s ∈
R, ρ⊥ ∈ R, given v ∈ Hs ρ0, ρ⊥ for ρ0 < 0, the equation Au = v admits a
solution u ∈ Hs+m, 0, ρ⊥ and one needs to prove that u is actually more
decreasing than this. The proof follows the same arguments as the ones
given in the proof of Proposition 4.24, namely one has to solve in the full
cusp the equation IZ(A)ũ = f̃ , where f̃ ∈ er(ρ0+d/2)Hs and ũ is a priori in
erd/2Hs+m. □

Finally, putting together Propositions 4.24 and 4.25, we deduce that the
Fredholm index of A acting on Hs,ρ,ρ⊥ , when ρ > 0 is not the real part of
an indicial root, is
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(4.15) ind (A,Hs,ρ,ρ⊥) =
∑

ℜλ ∈ ]d/2, d/2+ρ[

rank (Πλ) .

If ρ < 0, this is minus the sum for ℜλ ∈]d/2 + ρ, d/2[.

4.3. Generalizations

The results of the previous section can be extended in several direc-
tions that we will explore. We will start by considering the case where
the operator is only left or right elliptic. Then, we will consider the ac-
tion on Hölder–Zygmund spaces. Throughout the section, A denotes an
I-admissible operator of order m, I being some open interval in R.

4.3.1. The case of left/right-elliptic operators

In this section, we will consider the case of left-elliptic operators, the case
of right-elliptic operators being mostly similar. We obtain the following
extension of Theorem 4.13:

Theorem 4.26. — Let A be an I-admissible pseudo-differential oper-
ator, uniformly left-elliptic. Then there exists a discrete set S(A,W ) ⊂ I

(depending on the construction of a tempered inverse W , see below) and
for each connected component J of I \ S(A,W ) an operator QJ , which is
J-extended admissible (in the sense of Definition 4.29) such that

QJA = 1 mod Ψ̇−∞
J .

In the constructions of the previous section, a crucial step was to find an
exact inverse for the indicial operator of A. Here, we will have to settle for
a left inverse. However, since the indicial family will only be left-invertible
a priori, there may be several left-inverses of interest. It follows that there
are various ways of constructing the parametrix.

We have identified three different techniques:
(1) We construct a C∞ parametrix Q, and observe that I(Q,λ)I(A, λ)

= 1+ OΨ−∞(⟨ℑλ⟩−∞) as before, so that (I(Q,λ)I(A, λ))−1I(Q,λ)
is a left inverse for I(A, λ). We can then build the associated con-
volution operator.
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(2) Let us assume that d/2 ∈ I. We can consider W := A∗A, which is
J-admissible for an interval J containing d/2, and is elliptic. Then,
we can build a parametrix Q for W as in the previous section and
observe that (QA∗)A = 1 mod Ψ̇−∞

J′ , where J ′ ⊂ J is a subinterval
of J without any (projection on the real axis of) indicial roots for W .

(3) Finally, it may be more convenient to study directly I(A, λ), and
find an operator W (λ) such that W (λ)I(A, λ) = 1. Then, the ques-
tion is to understand what are the conditions required on W (λ)
so that there exists an admissible operator Q on M such that
IZ(Q,λ) = W (λ) and QA = 1 mod Ψ̇−∞

I .

This suggests important remarks. First of all, the validity of construc-
tions (1) and (2) follows directly from the results in the previous section,
as one recovers the usual elliptic case, so there is nothing to prove, and
the result is an admissible parametrix (instead of extended admissible).
Nevertheless, (1) and (2) are clearly suboptimal insofar as they may create
artificial indicial roots for the operator A (this is exactly what happens
for the symmetric derivative D studied in Lemma 5.6 if one applies con-
struction (2) for instance), and this is due to the fact that there are many
possible choices for a left inverse of IZ(A, λ), and some have different poles
than others.

We will concentrate on explaining how (3) can be made to work. We can
already announce that in (3), we will indeed construct such an operator Q
but we are unable to build it so that it is pseudo-differential. This is due to
that fact that we will have to do some surgery on the zeroth Fourier mode
and this operator Q will naturally belong to an extension of small pseudo-
differential operators, denoted by Ψm

I (see Definition 4.29). Nevertheless,
this parametrix operator for A will enjoy all the main properties of pseudo-
differential operators (e.g. boundedness on Sobolev spaces) and this will be
sufficient for our purposes.

We start by investigating the conditions that may be sufficient for a holo-
morphic family of operators on F to be the indicial family of an admissible
operator. For this, we recall the discussion in the proof of Lemma 4.15.

Definition 4.27. — We say that a holomorphic family CI ∋ λ 7→
W (λ) ∈ Ψm(F ) is a tempered holomorphic family of pseudo-differential
operators if it can be decomposed into

W (λ) = W ′(λ) +R(λ),
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where R(λ) = OΨ−∞(⟨ℑλ⟩−∞) is a holomorphic family of O(⟨ℑλ⟩−∞)-
smoothing operators on F , and W ′(λ) is a holomorphic family of pseudo-
differential operators on F , supported in a small neighbourhood of the diag-
onal, such that in local charts, their full symbol satisfies the estimates (4.8).

We have already seen that if A is I-admissible, then IZ(A, λ) is a tem-
pered holomorphic family of pseudo-differential operators (Lemma 4.15).
We now consider the converse statement

Lemma 4.28. — Let CI ∋ λ 7→ W (λ) be a tempered holomorphic family
of pseudo-differential operators on F . Then for ρ ∈ I,

W = 1
2iπ

∫
ℜλ=ρ

eλrW (λ)dλ

defines a convolution operator, pseudo-differential on R × F . We say that
such a W is a I-tempered convolution operator on R × F .

Proof. — First off, if W is a O(⟨ℑλ⟩−∞) smoothing operator, that the
result holds is elementary. We can thus concentrate on the case that W (λ)
is uniformly supported in a small neighbourhood of the diagonal. As a
consequence, we can take local charts, and assume that we are working in
Rk instead of F .

Thus, we can write the kernel of W (λ) as
1

(2π)k

∫
Rk

ei⟨ζ−ζ′,η⟩σ (ζ, λ, η) dη.

The symbol σ is holomorphic in the λ variable, and we have the estimates∣∣∂α
ζ ∂

β
η ∂

γ
λσ
∣∣ ⩽ Cα, β

(
1 + |ℑλ|2 + |η|2

)(m−|β|−γ)/2
.

The kernel of W is thus
1

i(2π)k+1

∫
ℜλ=ρ

ei⟨ζ−ζ′, η⟩+λ(r−r′)σ (ζ, λ, η) dηdλ

= 1
(2π)k+1

∫
Rk+1

ei(⟨ζ−ζ′, η⟩+λ(r−r′))σ (ζ, λ, η) eρ(r−r′)dηdλ.

We can incorporate exp(ρ(r − r′)) in the symbol to find that this is a
pseudo-differential operator in the usual sense on R × F . □

We now introduce the natural extension of admissible pseudo-differential
operators:

Definition 4.29. — We define the extended I-admissible operators of
order m ∈ R as the set Ψm

I of operators P such that there exists a cutoff
function χ (with χ ≡ 0 in {y < a} and χ ≡ 1 in {y > CP } for some constant
CP > 0), a small admissible pseudo-differential operator A ∈ Ψm

small and
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a I-tempered convolution operator W of order m on R × F , and finally a
compactly supported pseudo-differential operator W ′ of order m on R×F

such that:
P = A+ χE (W +W ′) Pχ.

The operator χEW ′Pχ is actually a compactly supported pseudo-diffe-
rential operator on the zeroth Fourier mode. In the Definition 4.6 of ad-
missible operators, it was assumed that the operator is pseudo-differential.
Extended admissible operators are not pseudo-differential anymore, but
they still satisfy properties (1)-(3) of Definition 4.6, with the indicial op-
erator I(P ) = I(A) + W . They also enjoy the boundedness properties of
Lemma 4.10. We can now prove the following:

Lemma 4.30. — Assume A ∈ Ψm
small is I-admissible left-elliptic, and

that we have a tempered holomorphic family CI ∋ λ 7→ W (λ) such that
W (λ)I(A, λ) = 1. Then, there exists Q ∈ Ψ−m

I such that IZ(Q,λ) = W (λ)
for all λ ∈ CI and

QA = 1 mod Ψ̇−∞
I .

In practice, given A, an I-admissible left-elliptic operator, we will con-
struct by hand a left indicial inverse W (λ) that is meromorphic on I and
without poles in {|ℑ(λ)| ≫ 1} (see for instance Lemma 5.1 where we deal
with the gradient of the Sasaki metric). As a consequence, we can define
the set

S(A,W ) := {ρ |W (λ) has a pole on ρ+ iR} ,
that is λ 7→ W (λ) is holomorphic in a strip {ρ− < λ < ρ+}, where ρ± ∈
S(A,W ) are two consecutive points in this set. The set S(A,W ) depends
on the choice of left inverse W , and the parametrix construction will only
work on spaces yρ−d/2Hs, with ρ ∈ I \ S(A,W ). (5)

Proof. — Let us consider Q an R-admissible C∞ parametrix for A. We
want to build a left parametrix for A which acts essentially as W on the
zeroth Fourier mode at infinity. For this we start by setting

Q̃ := Q+ χE [W − I(Q)] Pχ.

(5) Although this will not be used in the following, one could go further and define a set
S(A) (independent of a choice of W ) for the left elliptic operator A as:

S(A) :=
⋂

W left inverse on I

S(A, W ).

It should be possible to prove that I \ S(A) coincides with the set of all ρ ∈ I such that
there exists ε > 0 such that for all λ ∈ C such that ℜ(λ) ∈ (ρ − ε, ρ + ε), the operators
I(A, λ) ∈ Ψm(F, L1 → L2) are injective. As this will not be pursued in the following,
we do not make a formal claim out of this.
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Q̃ is not pseudo-differential, because we modified Q by an operator which
only acts on the zeroth Fourier mode in the cusps, so that Q̃ is an extended
admissible operator. If we compute Q̃A, we will obtain

Q̃A = 1 + χE [W − I(Q)] P [χ,A] mod Ψ̇−∞
I .

Since W − I(Q) is not smoothing, this is not a parametrix modulo
smoothing operators. However, since [χ,A] is of order m − 1, and since
A is admissible, we can decompose χE [W − I(Q)]P[χ,A] into the sum of
an I-residual operator and an operator acting only on the zeroth Fourier
mode, which is pseudo-differential as such, and of order −1. It further
decomposes into the sum of an I-residual operator and a compactly sup-
ported pseudo-differential operator of order −1 (acting only on the zeroth
Fourier mode). To improve Q̃ to a parametrix modulo compact smooth-
ing remainder, we have to add another modification in the zeroth Fourier
mode, via a parametrix construction similar to the original construction
of Q in the proof of Proposition 2.7. This will add to Q̃ a compactly sup-
ported pseudo-differential operator of order −m − 1 acting only on the
zeroth Fourier mode in the cusps, and we thus obtain as announced an
I-extended admissible operator. □

We end this paragraph with the following important comment. In the
case where A is only left elliptic, Proposition 4.25 can be extended and boils
down to saying the following. Assume that A is left elliptic, and invertible
on L2. Consider v ∈ y−ρ0L2, and u such that Au = v, with a priori u in
Hm, then u is actually of the form u = u0 + u1, where u0 ∈ y−ρ0Hm and

u1 = χEZ

∑
λ left indicial root of A

ℜλ ∈]ρ0, d/2[

Πλ (PZχ+G) v,

where G maps into erρH+∞ for all ρ ∈ R.

4.3.2. Action on Hölder–Zygmund spaces

In this section, we will explain how one can prove Theorem 4.13 in the
case of operators acting on Hölder–Zygmund spaces on cusps.

In the proof of Theorem 4.13 in the case of Sobolev spaces, the main
ingredients were the existence of the inverse of the indicial operator and
the compactness of some injections. Translating the proof to the case of
Hölder–Zygmund spaces, we need to check that both ingredient are still
available. We start by the compactness argument. As in § 4.1.1, we consider
a smooth cutoff function χ ∈ C∞(N,R) such that χ|Z ≡ 1 for y > 3a and
χ ≡ 0 for y < 2a.
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Lemma 4.31. — For any ρ ∈ R, s > s′, the embedding

1 − EZχPZ : yρCs(N,L) → yρCs′
(N,L)

is compact.

In other words, the restriction of the injection yρCs(N,L) ↪→ yρCs′(N,L)
to functions with vanishing zeroth Fourier mode is compact.

Proof. — We follow the proof of Lemma 4.2. As in that proof, it is suffi-
cient to prove that ∥(1−ψn)f∥C0

∗
⩽ C/n∥f∥C

s0
∗

for some s0 > 0, C > 0 and
then to conclude by interpolation. Since L∞ ↪→ C0

∗ and C1+ϵ
∗ ↪→ C1 (for any

ϵ > 0), it is therefore sufficient to prove that ∥(1 − ψn)f∥L∞ ⩽ C/n∥f∥C1 .
By Poincaré–Wirtinger’s inequality, there exists a constant C > 0 (only
depending on the lattice Λ) such that for any f such that

∫
fdθ = 0,

∥f(y)∥L∞(Td) ⩽ C∥∂θf(y)∥L∞(Td), for all y > a. Thus, ∥(1−ψn)f(y)∥L∞(Td)
⩽ C/n∥y∂θf(y)∥L∞(Td) and passing to the supremum in y, we obtain the
result we yearned for. □

Next, we turn to the fact that the indicial operator has a bounded inverse.
This is a bit more subtle. For simplicity, assume there are no indicial roots
in {ℜλ ∈ I} ⊃ iR, and consider the action of

(4.16) IZ(A)−1 =
∫

iR
eλ(r−r′) (IZ(A, λ))−1 dλ,

on Cs
∗(R × FZ). While the action of convolution operators on L2 spaces is

very convenient to analyze, it is not so easy for Hölder–Zygmund spaces.
First, from the computations in the proof of Lemma 4.5, we deduce that the
Cs

∗ spaces of L → N , correspond with the usual Cs
∗ spaces of LZ → R×FZ .

Next, we recall that according to Lemma 4.15, IZ(A, λ)−1 is a tempered
family of holomorphic operators in CI . In particular, we can decompose it
into the sum of a smoothing family, and a pseudo-differential family sup-
ported in a small neighbourhood of the diagonal. We denote by S

(1)
I the

contribution of the pseudo-differential family, and S(2)
I that of the smooth-

ing family.
Choosing local patches in FZ , we can write

S
(1)
I f(r, ζ) =

∫
R×Rn

eiλ(r−r′)ei⟨ζ−ζ′,η⟩σ̃(λ, z, ξ)f (r′, ζ ′) dr′dζ ′dλdη,

and this is a classical pseudo-differential operator of order −m on R× FZ

which is bounded as a map Cs
∗(R × FZ) → Cs+m

∗ (R × FZ).
It remains to study S

(2)
I . For the sake of simplicity, we will identify in

our notations the operator and its kernel. We pick z, z′ ∈ FZ and r > 1.
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When |ρ| < ϵ,

S
(2)
I (r, z, z′) =

∫
R
eitrRit(z, z′)dt = eρr

∫
R
eitrRit+ρ(z, z′)dt,

where Rit+ρ is O(⟨t⟩−∞) in C∞(FZ × FZ), for |ρ| < ϵ. We deduce that
S

(2)
I (r, z, z′) is O(e−ϵ|r|) in C∞(R × FZ × FZ). In particular, S(2)

I acts
boundedly as a map Cs

∗(R × FZ) → Cs+m
∗ (R × FZ). Now that we have

checked that IZ(A)−1 is bounded on the appropriate spaces, the proof of
§ 4.2.3 applies.

At this point, we also observe that our arguments can be combined di-
rectly with the arguments of § 4.3.1 to deal with the case of left/right
elliptic operators on Hölder–Zygmund spaces.

To finish the proof of Theorem 4.13, we consider the Fredholm index of
elliptic operators acting on Hölder-Zygmund spaces. It is similar to Propo-
sition 4.22.

Proposition 4.32. — Let P be a (ρ−, ρ+)-admissible elliptic pseudo-
differential operator of order m ∈ R. Let I be a connected component
in (ρ−, ρ+) not containing any indicial root. Then, the Fredholm index of
the bounded operator P : yρCs+m

∗ → yρCs
∗ is independent of s ∈ R, ρ ∈

I. Moreover, the Fredholm index coincides with that of Proposition 4.22,
that is of P acting on Sobolev spaces Hs+m, ρ−d/2, ρ⊥ → Hs,ρ−d/2,ρ⊥ , for
s, ρ⊥ ∈ R.

Proof. — This is a rather straightforward consequence of Proposition
4.22 combined with the embedding estimates of Lemma 3.11 and Lem-
ma 3.12. □

5. X-ray transform and symmetric tensors

In this Section, we apply the previous theory of inversion of elliptic
pseudo-differential operators to the three operators ∇S , D and D∗D and
prove that the X-ray transform is solenoidal injective on 2-tensors.

5.1. Gradient of the Sasaki metric

A first step towards the Livšic Theorem 5.2 is the analytic study of the
gradient ∇S induced by the Sasaki metric gS (itself induced by g) on the
unit tangent bundle SM of (M, g). Let π : SM → M be the projection.
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We recall (see [29] for further details) that the tangent bundle to SM can
be decomposed according to the splitting

T (SM) = V ⊕⊥ H ⊕⊥ RX,

where V = ker dπ is the vertical bundle, H = ker K ∩ (RX)⊥ is the hor-
izontal bundle (6) , K : T (SM) → TM is the connection map defined as
follows: consider (x, v) ∈ SM,w ∈ T(x, v)(SM) and a curve (−ε, ε) ∋ t 7→
z(t) ∈ SM such that z(0) = (x, v), ż(0) = w; write z(t) = (x(t), v(t)); then
K(x, v)(w) := ∇ẋ(t)v(t)|t=0. Note that dπ : V → TM,K : H ⊕ RX → TM

are both isometries. We denote by gS the Sasaki metric on SM defined by:

gS(w,w′) := g (dπ(w), dπ(w′)) + g (K(w),K(w′)) .

Let ∇S be the Levi–Civita connection induced by the Sasaki metric gS on
SM . Given u ∈ C∞(SM), one can decompose its gradient according to:

(5.1) ∇Su = ∇vu+ ∇hu+Xu ·X,

where ∇v, h are the respective vertical and horizontal gradients (the or-
thogonal projection of the gradient on the vertical and horizontal bundles),
that is ∇vu ∈ C∞(SM,V) and ∇hu ∈ C∞(SM,H).

Lemma 5.1. — The gradient ∇S : C∞(SM) → C∞(SM,T (SM)) is a
left-elliptic R-admissible differential operator of order 1. Its only indicial
root is 0. Moreover, there exists a ]0,+∞[-extended admissible operator Q
of order −1 and R a ]0; +∞[-residual operator such that:

Q∇S = 1 +R

Proof. — As before, we let Z := [a,+∞[×Rd/Λ be (one of) the cuspidal
part of the manifold (M, g). The fact that ∇S is an elliptic admissible dif-
ferential operator of order 1 is immediate. Observe that, if f ∈ C∞(SM),
then f can be extended as a function f̃ in C∞(TM \{0}) by 0-homogeneity.
Then, writing ∇T M

S for the gradient on TM (induced by the Sasaki met-
ric), we have ∇Sf = (∇T M

S f̃)|SM . As a consequence, it is equivalent to
study the action of ∇T M

S : C∞(TM) → C∞(T (TM)) on 0-homogeneous
functions, which we are going to do from now on. Taking advantage of the
global trivialization over the cusp, we can write TZ ≃ Z × Rd+1; we use
coordinates (y, θ, vy, vθ).

We now compute the indicial operator of the gradient, following the tech-
niques of the previous sections. In order to do so, we let f ∈ C∞(Rd+1) be
a function depending on the variables (vy, vθ) which is 0-homogeneous. In

(6) We use the convention that H := (V ⊕ RX)⊥, and not V⊥ as usual. In particular, if
M is (d + 1)-dimensional, then H is d-dimensional.
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other words, f is a smooth function on the quotient FZ := Rd+1/R∗
+ which

is a smooth compact manifold diffeomorphic to the d-dimensional sphere.
Therefore, we are really in the setting of the previous two sections. We intro-
duce the vector fields U := dπ−1(y∂y), Vℓ := dπ−1(y∂θℓ

) for ℓ = 1, . . . , d.
They belong to the space H⊕RX. An elementary (although tedious) com-
putation using Christoffel symbols in coordinates (see [3, Appendix A.3.2])
allows to show that:

U ∝ y∂y + vy∂vy
+
∑

ℓ

vθ∂vθ
= y∂y + E ,

(modulo normalization), where E is the Euler vector field and

Vℓ ∝ y∂θℓ
+ vy∂vθℓ

− vθℓ
∂vy ,

(modulo normalization). Then, writing ∇v
T M for the (total) vertical gra-

dient on TM , and using the formula dπ−1(Y ) · π∗h = π∗(Y · h) for Y ∈
C∞(M,TM), h ∈ C∞(M), we obtain:

y−λ∇T M
S

(
fyλ

)
= ∇v

T Mf + y−λ

(
U
(
fyλ

)
· U +

∑
ℓ

Vℓ

(
fyλ

)
· Vℓ

)
= ∇v

T Mf +
(
Uf + y−λfy∂y

(
yλ
))

· U +
∑

ℓ

(
Vℓf + y−λfy∂θℓ

(
yλ
))

· Vℓ

= ∇v
T Mf + λf · U +

∑
ℓ

Vℓf · Vℓ,

because Uf = 0 (note that the 0-homogeneity condition is used here
in Ef = 0). We then set W (λ)(w) := λ−1gS(w,U), for w ∈ C∞(R ×
Rd+1, T (R × Rd+1)). Then:

W (λ)I(∇S , λ)f = f

The only indicial root of ∇S is thus λ = 0. As a consequence, Theorem 4.26
applies immediately (using construction (3), presented after Theorem 4.26)
and yields the results of Lemma 5.1. □

5.2. Exact Livšic theorem

We recall that C is the set of hyperbolic free homotopy classes on M

and that for each such class c ∈ C of C1 curves on M , there is a unique
representative representant γg(c) which is a geodesic for g.

TOME 73 (2023), FASCICULE 1



408 Yannick GUEDES BONTHONNEAU & Thibault LEFEUVRE

In this section, we prove an exact Livšic theorem asserting that a function
whose integrals over closed geodesics vanish is a coboundary, namely a
derivative in the flow direction. For f ∈ C0(SM), we can define

Igf(c) = 1
ℓ (γg(c))

∫ ℓ(γg(c))

0
f (γ(t), γ̇(t)) dt,

for c ∈ C.

Theorem 5.2 (Livšic theorem). — Let (Md+1, g) be a negatively-cur-
ved complete manifold whose ends are real hyperbolic cusps. Denote by −κ0
the maximum of the sectional curvature. Let 0 < α < 1 and 0 < β <

√
κ0α.

Let f ∈ yβCα(SM) ∩ H1(SM) such that Igf = 0. Then there exists
u ∈ yβCα(SM)∩H1(SM) such that f = Xu. Moreover, ∇vXu,∇X∇vu ∈
L2(SM,V) and u thus satisfies the Pestov identity (Lemma 5.3).

We will denote by N⊥ the subbundle of π∗TM → SM (where π :
SM → M denotes the projection) whose fiber at (x, v) ∈ SM is given by
N⊥(x, v) := {v}⊥. The picture to have in mind is the following: above each
point (x, v) ∈ SM , we glue the fiber (R ·v)⊥. Using the maps dπ and K, the
vectors ∇v, hu can be identified with elements of N⊥, i.e. K(∇vu), dπ(∇hu)
∈ N⊥. For the sake of simplicity, we will drop the notation of these projec-
tion maps in the following and consider ∇v,hu as elements of N⊥. We have
a natural L2-scalar product on L2(SM,N⊥) given by:

⟨w,w′⟩ :=
∫

SM

gx

(
w(x, v), w′(x, v)

)
dµ(x, v),

where µ stands for the Liouville measure. We refer to [31, Section 2] for
further details. Before starting with the proof of the Livšic Theorem 5.2,
we recall the celebrated Pestov identity:

Lemma 5.3 (Pestov identity). — Let (Md+1, g) be a cusp manifold. Let
u ∈ H2(SM). Then

∥∇vXu∥2
L2(SM, N⊥) = ∥∇X∇vu∥2

L2(SM, N⊥)

−
∫

SM

κ (v,∇vu) ∥∇vu∥2 dµ(x, v) + d∥Xu∥2
L2(SM),

where κ is the sectional curvature.

In the compact case, the proof is based on the integration of local com-
mutator formulas and clever integration by parts (see [31, Proposition 2.2]).
Since the manifold has finite volume and no boundary, the proof is iden-
tical and we do not reproduce it here. By a density argument and using
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the fact that the sectional curvature is pinched negative, assuming only
∇vXu ∈ L2(SM), we deduce that ∇X∇vu,∇vu ∈ L2(SM) and

∥∇X∇vu∥ , ∥∇vu∥ ≲ ∥∇vXu∥ .

Proof of Theorem 5.2. — In this proof, we will first build u, and then
determine its exact regularity. For the construction, we follow the usual
tactics, but we give the details since we want to let the Hölder constant
grow at infinity. For the sake of simplicity, we will denote by y : M → R+
a smooth extension of the height function (initially defined in the cusps) to
the whole unit tangent of the manifold, such that 0 < c < y is uniformly
bounded from below and y ⩽ a on M \ ∪ℓZℓ. The case of uniformly Hölder
functions was dealt with in [32, Remark 3.1]. Since the flow is transitive,
we pick a point with dense orbit x0, and define

u (φt(x0)) =
∫ t

0
f (φs(x0)) ds.

Obviously, we have Xu = f , so it remains to prove that it is locally uni-
formly Hölder to consider the extension of u to SM . Pick x1 = φt(x0) and
x2 = φt′(x0), with t′ > t. Pick ϵ > 0, and assume that d(x1, x2) = ϵ. By
the Shadowing Lemma, there is a periodic point x′ with d(x1, x

′) < ϵ and
period T < |t′ − t| + Cϵ, for some uniform constant C > 0 depending on
the dynamics, which shadows the segment (φs(x0))s ∈ [t, t′]. Moreover, there
exists a time τ ⩽ Cϵ such that we have the following estimate:

(5.2) d
(
φs (φτ (x1)) , φs(x′)

)
⩽ Cϵe−√

κ0 min(s,|t′−t|−s)

This is a classical bound in hyperbolic dynamics (see [18, Proposition 6.2.4]
for instance). The constant √

κ0 follows from the fact the maximum of
the curvature is related to the lowest expansion rate of the flow (see [21,
Theorem 3.9.1] for instance).

Then, using the assumption that
∫ T

0 f(φs(x′))ds = 0, we write:

u(x2) − u(x1) =
∫ t′−t

0
f (φs(x1)) ds

=
∫ t′−t−τ

0
f
(
φs (φτ (x1))

)
− f (φs(x′)) ds

−
∫ T

t′−t−τ

f (φs(x′)) ds+
∫ τ

0
f (φs(x1)) ds

The last two terms are immediately bounded by ≲ ϵy(x1)β because τ
< Cϵ and T−(t−t′) < Cε. As to the first one, using (5.2), it is controlled by
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∣∣∣∣∣
∫ t′−t−τ

0
f
(
φs (φτ (x1))

)
− f (φs(x′)) ds

∣∣∣∣∣
≲
∫ t′−t

0
y (φs(x′))β

d (φs(x1), φs(x′))α ds,

thanks to the assumption on f (namely it is yβCα(SM)). (Note that chang-
ing y(φs(x′))β by y(φs(x1))β or y(φs(φτ (x1)))β does not change anything
in the previous integral on the right-hand side as the ratios

y (φs(x′)) /y (φs(x1)) , y (φs(x′)) /y
(
φs(φτ (x1))

)
are uniformly contained in an interval [1/C,C] for some constant C > 0).
Let us find an upper bound on y(φs(x′)). Of course, when a segment of the
trajectory (φs(x′))s ∈ [0, T ] is included in a compact part of the manifold
(say of height y ⩽ a), y(φs(x′)) is uniformly bounded by a, so the only
interesting part is when the trajectory is contained in the cusps. In time
|t′ − t|, the segment (φs(x′))s ∈ [0, T ] has started and returned at height
y(x1). Thus, it can only go up to a height

(5.3) y(φs(x′)) ⩽ emin(s,|t′−t|−s)y(x1).

Combining (5.2) and (5.3), this leads to:∫ t′−t

0
y(φs(x′))βd (φs(x1), φs(x′))α

≲
∫ t′−t

0
y(x1)βeβ min(s, |t′−t|−s)d(x1, x2)αe−α

√
κ0 min(s, (t′−t)−s)ds

≲ y(x1)βd(x1, x2)α

∫ t′−t

0
e(β−α

√
κ0) min(s, |t′−t|−s)ds

As long as √
κ0α > β, this is uniformly bounded as |t′ − t| → +∞. In

particular, we conclude that u is yβCα, and we can thus extend it to a
global yβCα function on SM .

We now have to prove that u ∈ H1(SM) and to this end, we will use a
kind of bootstrap argument. Since f ∈ H1(SM) and f = Xu, we obtain
that ∇vXu ∈ L2(SM). Moreover, as discussed after the Pestov identity,
we obtain directly that ∇X∇vu,∇vu ∈ L2(SM).

By using the commutator identity [X,∇v] = −∇h (see [31, Lemma 2.1]),
we deduce ∇hu ∈ L2(SM). Thus, ∇Su ∈ L2. By Lemma 5.1, we deduce
that u ∈ H1(SM) □

ANNALES DE L’INSTITUT FOURIER



RIGIDITY OF MANIFOLDS WITH HYPERBOLIC CUSPS 411

5.3. X-ray transform and symmetric tensors

Although we will mostly use 1- and 2-tensors, it is convenient to introduce
notations for general symmetric tensors. We will be using the injection

πm : v ∈ C∞(M,SM) → v ⊗ · · · ⊗ v ∈ C∞ (M,SM⊗m
)
.

Given a symmetric m-tensor h ∈ C∞(M,Sm(T ∗M)), we can define a func-
tion on SM by pulling it back via πm:

π∗
mh : (x, v) 7→ hx(v ⊗ · · · ⊗ v).

Definition 5.4. — The X-ray transform on symmetric m-tensors is
defined in the same way as for C0 functions on SM : if h is a symmetric
m-tensor,

Ig
mh(c) = 1

ℓ(γg(c))

∫ ℓ(γg(c))

0
π∗

mh (γ(t), γ̇(t)) dt,

where t 7→ γ(t) is a parametrization by arc-length, c ∈ C.

Given a symmetric m-tensor h, we can consider its covariant derivative
∇h, which is a section of

T ∗M ⊗ Sm(T ∗M) → M.

If S denotes the symmetrization operator from ⊗m+1T ∗M to Sm+1(T ∗M),
we define the symmetric derivative as

Dh = S(∇h) ∈ C∞ (M,Sm+1 (T ∗M)
)
.

Given x ∈ M , the pointwise scalar product for tensors in ⊗mT ∗
xM is defined

by

⟨v∗
1 ⊗ · · · ⊗ v∗

m, w
∗
1 ⊗ · · · ⊗ w∗

m⟩x =
m∏

j=1
g (vj , wj) ,

where vj , wj ∈ TxM and v∗
j , w

∗
j denotes the dual vector given by the musical

isomorphism. We can then endow the spaces C∞(M,Sm(T ∗M)) with the
scalar product

(5.4) ⟨h1, h2⟩ =
∫

M

〈
h1(x), h2(x)

〉
x
dvol(x)

We obtain a global scalar product on ⊕m ⩾ 0 C
∞(M,Sm(T ∗M)) by declar-

ing that wheneverm ̸= m′, C∞(M,Sm(T ∗M)) is orthogonal to C∞(M,Sm′

(T ∗M)). Following conventions we denote by −D∗ the adjoint of D with
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respect to this scalar product. One can compute that for a tensor T , for
any orthogonal frame e1, . . . , ed+1,

D∗T (·) = Tr(∇T )(·) =
∑

i

∇ei
T (ei, ·).

The operator D∗ is called the divergence, and one can check that it maps
symmetric tensors to symmetric tensors.

Definition 5.5. — Let f be a tensor so that D∗f = 0. Then we say
that f is solenoidal.

We can also define πm∗, which is the formal adjoint of π∗
m — with respect

to the usual scalar product on L2(SM). Moreover, one can check (7)

π∗
m+1D = Xπ∗

m,

see [23, Lemma B.1.4] for instance. Through π∗
m we obtain another scalar

product on symmetric tensors:

[u, v] =
∫

SM

π∗
muπ

∗
mv.

Representing [u, v] = ⟨Au, v⟩, one can check that there are universal con-
stants Cm > 0 such that ∥A∥ ⩽ Cm, ∥A−1∥ ⩽ Cm when restricted to
m-tensors. (This simply follows from the fact that this is a statement point-
wise in x ∈ M ; as a consequence, the constant Cm > 0 is universal and
does not depend on the geometry.) In the following, we will restrict our
study to the map

D : C∞(M,T ∗M) → C∞ (M,S2 (T ∗M)
)

but it is very likely that most of the results still hold for tensors of general
order m ∈ N. As in the compact case, we obtain:

Lemma 5.6. — The symmetric derivative of 1-forms

D : C∞ (M,T ∗M) → C∞ (M,S2 (T ∗M)
)

is R-admissible and left uniformly elliptic. Its only indicial root is −1.
Additionally, it is injective on yρHs and yρCs

∗ for all ρ, s ∈ R. Moreover,
there is a ] − 1,+∞[-extended admissible pseudo-differential operators Q
of order −1 and R, a ] − 1,+∞[-residual operator such that:

QD = 1 +R.

(7) The fastest way to check this is the following: first of all, observe that π∗
m+1D =

π∗
m+1∇ (all the antisymmetric parts vanish); then consider at a point p ∈ M local

normal coordinates (x1, . . . , xd+1); in these coordinates at p, ∇f(p) =
∑

i
∂xi fdxi and

X|TpM =
∑

i
vi∂xi which is now sufficient the claim.
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In particular, the image of D(Hs+1(M,T ∗M)) ⊂ Hs(M,S2(T ∗M)) is
closed, for all s ∈ R.

Proof. — For the moment, we deal with the general case

D : C∞ (M,Sm (T ∗M)) → C∞ (M,Sm+1 (T ∗M)
)
.

Since D is a differential operator, it makes no difference to work with
Sobolev or Hölder-Zygmund spaces. The first step is to prove that D is
uniformly elliptic. By taking local coordinates around a point (x, ξ) ∈
T ∗M \ {0} for instance, one can compute the principal symbol of the oper-
ator D which is σ(D)(x, ξ) : u 7→ S(ξ ⊗ u), where u ∈ Sm(T ∗

xM) (see [33,
Theorem 3.3.2]). Then, using the fact that the antisymmetric part of ξ⊗u

vanishes in the integral:

∥σ(D)u∥2 ⩾ C−1
m

∫
Sd

⟨ξ, v⟩2π∗
mu

2(v)dv

= C−1
m |ξ|2

∫
Sd

⟨ξ/|ξ|, v⟩2
π∗

mu
2(v)dv > 0,

unless u ≡ 0. Since Sm(T ∗
xM) is finite dimensional, the map

(u, ξ/|ξ|) 7→ ∥σ(D) (x, ξ/|ξ|)u∥ ,

defined on the compact set {u ∈ Sm, |u|2 = 1} ×Sd is bounded and attains
its lower bound C2 > 0 (which is independent of x). Thus ∥σ(x, ξ)u∥ ⩾
C|ξ|∥u∥. It is then not hard to check from this lower bound that the op-
erator is uniformly left elliptic in the sense of Definition 2.6 (actually, this
could have been taken as an equivalent definition of left ellipticity).

We now assume m = 1 and consider

D : C∞ (M,T ∗M) → C∞ (M,S2 (T ∗M)
)
.

Let us give a word on the injectivity of this operator. Consider a 1-form
f such that Df = 0, and f is either in some yρHs or some yρCs

∗ . Then
f is smooth by the elliptic regularity Theorem. As a consequence π∗

1f is
a smooth function on SM . Recall that Xπ∗

1f = π∗
2Df = 0. Additionally,

the geodesic flow admits a dense orbit; we deduce that π∗
1f is a constant.

However, since f is a 1-form, π∗
1f(x,−v) = −π∗

1f(x, v) for all (x, v) ∈ SM ,
thus f = 0.

Now, we recall the results from Sections § 4 and § 3. Since D is a differen-
tial operator that is invariant under local isometries, it is an R-admissible
(left elliptic) operator. In particular, it suffices to determine whether its
associated indicial family IZ(D,λ) has a left inverse. In the present case,
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since D is an operator on sections of a bundle over M , the indicial operator
is just a matrix. We consider a 1-form α in the cusp in the form

yλ

[
a
dy

y
+
∑

bi
dθi

y
,

]
where a, bi ∈ R. Then we find that

Dα = yλ

[
a

(
λ
dy2

y2 −
∑ dθ2

i

y2

)
+
∑

bi(λ+ 1)dθidy + dydθi

y2

]
.

The matrix IZ(D,λ) is thus the transpose of
λ −1 −1 . . . −1 0 0 . . . 0
0 0 0 0 0 2(λ+ 1) 0 . . . 0
0 0 0 0 0 0 2(λ+ 1) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 0 . . . 2(λ+ 1)


In particular, with

J(λ) =
(λ+ 1)−1 −(λ+ 1)−1 0 . . . 0 . . . 0

0 0 0 0 (2(λ+ 1))−1 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 . . . (2(λ+ 1))−1


we get

J(λ)IZ(D,λ) = 1; ∥J(λ)∥ = O
(
|λ|−1) as ℑλ → ±∞.

We deduce that D has −1 for sole indicial root. As a consequence, we can
apply Theorem 4.26 (using again construction (3)):

(5.5) QD = 1 +R,

with R bounded from Hs, ρ to HN, −d/2−1+ϵ and from Cs, ρ
∗ to Cs, −1+ϵ

∗ , for
all d/2 > ϵ > 0, s ∈ R, ρ > −d/2 + 1.

Let us now prove that the image of D is closed (for the Sobolev spaces,
the case of Hölder–Zygmund spaces is similar). This is a rather classical ar-
gument once one has an inverse for the operator modulo a compact remain-
der, but we reproduce it here for the reader’s convenience. For a sequence
(un) of elements of H1+s such that Dun → f ∈ Hs, QDun = un + Run

also converges since Q is continuous. By extraction, since R is compact we
can assume that R(un/∥un∥) converges also, to some v. Then, we have

un + ∥un∥(v + o(1)) = Qf + o(1).
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Assume that ∥un∥ is bounded. Then we obtain that un itself converges in
H1+s, to some u, and Du = f . Otherwise, we can decompose un = λnv +
wn, with wn ⊥ v, wn bounded and λn → ∞. We deduce that Rv = −v,
and QDun = QDwn, so that we can extract wn to make it converge to
some w, and Dw = f . □

Since the image of D is closed, it is the orthogonal of the kernel of D∗,
and each f ∈ Hs(M,S2(T ∗M)) can be written as

f = fs +Du,

with D∗fs = 0, and fs ∈ Hs(M,S2(T ∗M)), u ∈ H1+s(M,S1(T ∗M)). The
tensor fs is called the divergence-free part or the solenoidal part of f ,
and Du the exact part or the potential part of f . This can be naturally
generalized to tensors of any order and Hölder–Zygmund spaces, following
the same scheme of proof.

To close this section, remark that the X-ray transform satisfies IX = 0
and thus 0 = IXπ∗

m = Iπ∗
mD = ImD. Thus in general it is impossible to

recover the exact part Dp of a tensor f from the knowledge of Imf . We will
say that the X-ray is solenoidal injective on smooth symmetric m-tensors
if it is injective when restricted to kerD∗.

5.4. Projection on solenoidal tensors

In this section, we will study the symmetric Laplacian on 1-forms, that
is the operator ∆ := D∗D acting on sections of S1(T ∗M) → M . We will
denote by λ±

d = d/2 ±
√
d+ d2/4. Observe that λ−

d < 0 (this will be used
later).

Lemma 5.7. — For all s ∈ R, ρ ∈]λ−
d , λ

+
d [, ρ⊥ ∈ R, the operator ∆

is invertible on the spaces Hs, ρ−d/2, ρ⊥(M,S1(T ∗M)) and on yρCs
∗(M,S1

(T ∗M)). Its inverse ∆−1 is a pseudo-differential operator of order −2.

Proof. — The operator ∆ = D∗D is elliptic since D is elliptic, and it
is also invariant under local isometries, and differential. In particular, it is
R-admissible, so we can apply Theorem 4.13. Let us compute its indicial
operator: we find

I(∆, λ)
(
a
dy

y

)
=
(
λ2 − λd− d

)
a
dy

y

I(∆, λ)
(
bi
dθi

y

)
= 1

2(λ+ 1)(λ− (d+ 1))bi
dθi

y
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I(∆, λ) is a diagonal matrix which is invertible for

λ /∈

−1, d+ 1, d/2 ±
√
d+ d2/4︸ ︷︷ ︸

= λ±
d


The interval ]λ−

d , λ
+
d [ does not contain other any root, so we can apply

directly Theorem 4.13, and get a pseudo-differential operator Q of order
−2, bounded on the relevant Sobolev and Hölder–Zygmund spaces such
that

(5.6) Q∆ = 1 +K,

with K bounded from yρH−N to y−ρHN , yρ+d/2C−N
∗ to yd/2−ρCN

∗ for all
ρ ∈ [0, λ+

d − d/2[. We can also do this on the other side:

(5.7) ∆Q = 1 +K ′,

K ′ satisfying the same bounds. We deduce that ∆ is Fredholm. Addition-
ally, from the parametrix equation, we find that any element of its kernel
(on any Sobolev or Hölder–Zygmund space we are considering) has to lie in
L2(SM). However, on L2, ∆u = 0 implies Du = 0, and u = 0. Additionally,
on L2, ∆ is self-adjoint, so it is invertible and its Fredholm index is 0. We
then conclude using Propositions 4.22 and 4.32. □

As a consequence, we obtain the

Lemma 5.8. — πker D∗ = 1 −D∆−1D∗ is the orthogonal projection on
solenoidal tensors. It is a ]λ−

d , λ
+
d [-admissible pseudo-differential operator

of order 0.

We also observe that if we had used the construction (2) (see Sec-
tion 4.3.1) to find a parametrix for D, we would obtain a set of indicial
roots strictly larger than necessary, since it would include the roots of ∆,
and not only −1.

5.5. Solenoidal injectivity of the X-ray transform

We now prove Theorem 1.1. As usual, the proof relies on the Pestov
identity combined with the Livšic theorem. It follows exactly that of [8];
nevertheless, we thought it was wiser to include it insofar as we only work in
H1 regularity on a noncompact manifold (where as [8] is written in smooth
regularity on a compact manifold).
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We recall that there exists a canonical splitting

T(x, v)(TM) = V(x, v) ⊕⊥ H(x, v),

where (x, v) ∈ TM which is orthogonal for the Sasaki metric. We insist on
the fact that we now work on the whole tangent bundle TM and no longer
on the unit tangent bundle SM . As a consequence, the horizontal space
H is the same but the vertical space V sees its dimension increased by 1.
These two spaces are identified to the tangent vector space TxM via the
maps dπ and K.

Given u ∈ C∞(TM), we can write ∇Su = ∇vu + ∇hu, where ∇vu ∈
V,∇hu ∈ H. We denote by divv, h the formal adjoints of the operators ∇v, h

S

(see [31, Section 2] for further details).
Proof. — We first start with an elementary inequality. Let u ∈ C∞(SM).

We extend u to TM \ {0} by 1-homogeneity. The local Pestov identity [8,
Equation (2.14)] at (x, v) ∈ TM reads:

2
〈
∇hu,∇v(Xu)

〉
=
∣∣∇hu

∣∣2 + divh Y + divv Z − ⟨R (v,∇vu) v,∇vu⟩

where

Y :=
〈
∇hu,∇vu

〉
v −

〈
v,∇hu

〉
∇vu Z :=

〈
v,∇hu

〉
∇hu

Moreover, ⟨v, Z⟩ = |Xu|2. Integrating over SM and using the Green–
Ostrogradskii formula [33, Theorem 3.6.3] together with the assumption
that the curvature is nonpositive, we obtain:

(5.8)
∫

SM

∥∥∇hu
∥∥2
dµ ⩽ 2

∫
SM

〈
∇hu,∇v(Xu)

〉
dµ− (3+d)

∫
SM

⟨v, Z⟩︸ ︷︷ ︸
=|Xu|2

dµ

Note that by a density argument, the previous formula extends to functions
u ∈ H1(SM) such that ∇v(Xu) ∈ L2(SM).

We now consider the case where π∗
mf = Xu with f ∈ H1 (and thus

u ∈ H1 and ∇v(Xu) ∈ L2 by the arguments given in the proof of Livšic
theorem). Following [8, Equation (2.18)], one obtains the following equality
almost-everywhere in TM :

2
〈
∇h,∇v(Xu)

〉
= divh W − 4 × uπ∗

m (D∗f) ,

with W (x, v) = 4u(x, v)(fx(·, v, . . . , v))♯ (where ♯ : T ∗M → TM is the
musical isomorphism). In (5.8), this yields

(5.9)
∫

SM

(∣∣∇hu
∣∣2 + (3 + d)|Xu|2

)
dµ ⩽ −4

∫
SM

uπ∗
m (D∗f) dµ

We now assume that f is a symmetric m-tensor in

yβCα (M,Sm (T ∗M)) ∩H1 (M,Sm (T ∗M)) ,
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such that D∗f = 0 and Im(f) = 0. By the Livšic Theorem 5.2, there exists
u ∈ yβCα(SM) ∩ H1(SM) such that π∗

mf = Xu. By (5.9), we obtain
Xu = 0, thus f = 0. □

5.6. Proof of the spectral rigidity

This section is devoted to the proof of Corollary 1.2. We consider thus
as in the statement a family (gλ)λ ∈ [−1, 1] of cusp metrics on a given cusp
manifold (M, g0). We assume that the resonant set of gλ does not depend
on λ. The standard argument in the compact case (see [15, 16] for the
original reference) is to say that the trace of the wave-group (eit

√
−∆)t ∈ R

is exactly singular at the length of the periodic orbits (this follows from the
trace formula of Duistermaat-Guillemin [9] or also by earlier work of Colin
de Verdière [39]), and determined by the spectrum, so that the lengths of
the periodic orbits do not change when λ varies.

In this non-compact case, the same argument applies, once the suitable
modifications have been made. We explain this without entering into much
detail, as it would require to rewrite the content of other articles.

The first point is that the trace of the wave-group is not well defined; it
has to be replaced by the 0-trace of the wave-group, a sort of Hadamard
regularization in the cusp. In [4, Section 2.1], it is explained how this reg-
ularized trace can be expressed in terms of the discrete spectrum and the
scattering determinant. The latter is a meromorphic function which is al-
most entirely determined by the resonances, as explained in [27, Theo-
rem 3.32] for surfaces. The same facts also holds for higher dimension with
a similar proof (see [3, Proposition 1.1.3]). In any case, the part of the scat-
tering determinant which is not determined by the resonances contributes
only to a Dirac mass (or derivative of a Dirac mass) at 0 in the 0-trace of
the wave group.

On the other hand, the regularization at infinity introduced by the
0-trace does not introduce some exotic singularities (as explained in
[4, Section 2.4.2]), so that the arguments of Duistermaat–Guillemin [9],
which can certainly be carried out in any compact part of the manifold,
imply that the singularities of the 0-trace take place exactly at the algebraic
lengths of the periodic orbits of the geodesic flow.

From these considerations, we conclude that the marked length spectrum
is constant as λ varies. However, as we have seen, for any free hyperbolic
homotopy class c ∈ C:
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d

dλ
Lgλ

(c) =
∫

γgλ
(c)
∂λgλ = 1/2 × Lgλ

(c)Igλ

2 [∂λgλ] (c).

Now, since ∂λgλ is assumed to have compact support, it certainly is an ele-
ment of y−∞CN

∗ for any N ∈ R. Writing the L2-orthogonal decomposition

∂λgλ = fs
λ +Dgλ

uλ,

where Dgλ
is the symmetric derivative induced by the metric gλ (see § 5.3),

uλ is a 1-form and fs ∈ kerD∗
gλ

is the solenoidal part of the symmetric
2-tensor ∂λgλ, we can apply the Lemma 5.8 to deduce that fs

λ and uλ

are in y−ϵCN
∗ for some ϵ > 0, and every N > 0 (using here that λ−

d

< 0). In particular, we can now use the injectivity of the X-ray transform
Theorem 1.1 to deduce that fs

λ = 0.
Identifying the 1-form uλ with a vector field Xλ, we deduce that ∂λgλ =

LXλ
gλ (where L stands for the Lie derivative), so that defining the isotopy

(ϕλ)λ ∈ [−1, 1] such that ϕ0 is the identity and

∂λϕλ = Xλ ◦ ϕλ,

we have ϕ∗
λgλ = g0. It may be worthwhile to observe here that a priori,

ϕλ is not compactly supported, even though we only allowed a compactly
supported deformation in the first place. This is somehow a linear version
of the solenoidal reduction which will be a key object in our second article.
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