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CONGRUENCE RFRS TOWERS

by Ian AGOL & Matthew STOVER (*)

With an appendix by Mehmet Haluk ŞENGÜN

Abstract. — We describe a criterion for a real or complex hyperbolic lattice
to admit a residually finite rational solvable (RFRS) tower that consists entirely of
congruence subgroups. We use this to show that certain Bianchi groups PSL2(Od)
are virtually fibered on congruence subgroups, and also exhibit the first examples
of RFRS Kähler groups that are not a subgroup of a product of surface groups and
abelian groups.

Résumé. — Nous donnons un critère pour qu’un réseau réel ou complexe hy-
perbolique admette une tour résiduellement finie rationnelle soluble (RFRS) qui se
compose entièrement de sous-groupes de congruence. Nous l’utilisons pour mon-
trer que certains groupes de Bianchi PSL2(Od) sont virtuellement fibrés sur des
sous-groupes de congruence, et donnons aussi les premiers exemples de groupes de
Kähler RFSR qui ne sont pas des sous-groupes d’un produit de groupes de surface
et de groupes abéliens.

1. Introduction

Let Γ be a finitely generated group. The first author introduced the no-
tion of Γ being virtually RFRS to prove that certain hyperbolic 3-manifolds
are virtually fibered [1], and eventually this was used to prove that all finite-
volume hyperbolic 3-manifolds virtually fiber [2, 16, 29]. Finding such a
cover effectively remains an open problem.

In this paper, we study finding RFRS towers arising from congruence
covers of arithmetic manifolds. For example, we will prove:

Keywords: RFRS towers, Bianchi groups, congruence subgroups, real and complex hy-
perbolic lattices, virtual fibering, Kähler groups.
2020 Mathematics Subject Classification: 20H10, 22E40, 11F06, 20H05, 32Q15, 57K32.
(*) Agol was partially supported by the Simons Foundation and the Simonyi profes-
sorship at the Institute of Advanced Study. Stover was supported by Grant Number
523197 from the Simons Foundation/SFARI and Grant Number DMS-1906088 from the
National Science Foundation.



308 Ian AGOL & Matthew STOVER

Theorem 1.1. — The Bianchi groups PSL2(Od) with d ̸≡ −1 (mod 8)
and d square-free contain a RFRS tower consisting entirely of congruence
subgroups. In particular, these Bianchi orbifolds virtually fiber on a con-
gruence cover.

We achieve this using the fact that these Bianchi groups virtually embed
in the group O(4, 1;Z). We then apply a very general idea to the congru-
ence subgroup of level 4 in O(4, 1;Z) to show that it is virtually RFRS with
tower {Γj} for which each Γj contains the congruence subgroup of level 2nj

for some nj . This example also allows us to find infinitely many commen-
surability classes of cocompact arithmetic Kleinian groups that virtually
fiber on a congruence cover; see [3, Lem. 4.6] for examples. We will also
show:

Theorem 1.2. — There is a torsion-free cocompact lattice in PU(2, 1)
that is RFRS. Therefore, there is a RFRS Kähler group that is not iso-
morphic to a subgroup of the direct product of surface groups and abelian
groups.

This addresses a question raised by recent work of Friedl and Vidussi;
see the discussion immediately following [15, Thm. E]. Our example is
a congruence subgroup of a particular Deligne–Mostow lattice [12]. Note
that nonuniform lattices in PU(n, 1) cannot be RFRS, since their cusp
groups are two-step nilpotent groups, which themselves are not RFRS. In
particular, the methods of this paper cannot apply to nonuniform complex
hyperbolic lattices. See Remark 3.17.

We briefly describe the method of constructing these towers. Suppose
that k is a number field and G is a k-algebraic group such that G(k) ⊗Q R
modulo compact factors is isomorphic to SO(n, 1) or SU(n, 1). Let Ok be
the ring of integers of k and p a prime ideal of Ok with residue characteristic
p. Suppose that Γ(p) is the congruence subgroup of level p in the arithmetic
lattice G(Ok), and that Γ < Γ(p) is a finite index subgroup such that
H1(Γ;Z) has no p-torsion.

Using the fact that G(k) is closely related to the commensurator of Γ,
we find a sequence {gn} in G(k) such that

∞⋂
n=0

gnΓg−1
n

is a RFRS tower for Γ. The key is to find an initial g1 ∈ G(k) so that

Γ/(Γ ∩ g1Γg−1
1 )
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is an elementary abelian p-group. One then inductively defines each gn in
a manner most succinctly described using the p-adic Bruhat–Tits building
for G(kp), where kp is the local field associated with p. Note that the above
implicitly assumes that H1(Γ;Z) is infinite, hence our results can only apply
for lattices in SO(n, 1) and SU(n, 1).

We close by briefly recalling the connection between RFRS and various
notions of fibering. When {Γj} is a RFRS tower with Γj = π1(Mj) the
fundamental group of an irreducible 3-manifold, the first author proved
that there is some j0 so that Mj fibers over S1 for all j ⩾ j0 [1, Thm. 5.1]
(the statement of the theorem does not explicitly say that the fibered man-
ifold comes from the RFRS tower, but it is implicit in the proof). It is
a famous theorem of Stallings that this is equivalent to Γj admitting a
homomorphism onto Z with finitely generated kernel for all j ⩾ j0. Such
a homomorphism is called an algebraic fibration, and recent work shows
that being virtually RFRS is closely related to being virtually algebraically
fibered.

For example, Friedl and Vidussi [15, Thm. E] showed that virtually RFRS
Kähler groups are either virtually algebraically fibered or virtually surface
groups, and Kielak proved that an infinite finitely generated virtually RFRS
group is virtually algebraically fibered if and only if its first l(2) betti num-
ber is zero [18, Thm. 5.3]. Both proofs provide a group in the RFRS tower
that algebraically fibers. See [26] and [17] for more about algebraic fibra-
tions of lattices in Lie groups and Coxeter groups. In particular, in [26] the
second author showed that all arithmetic subgroups of SU(n, 1) of “simplest
type” virtually algebraically fiber on a congruence subgroup; this includes
the example used to prove Theorem 1.2 above. On the other hand, there
are known examples of arithmetic lattices Γ in SU(n, 1) so that Λab is finite
for all congruence subgroups Λ ⩽ Γ [23, Thm. 15.3.1], hence Γ cannot vir-
tually algebraically fiber on a congruence subgroup. It is unknown whether
all lattices in SU(n, 1) (arithmetic or not) virtually algebraically fiber. We
rephrase our results in this language in Corollaries 3.6 and 3.16, and see
Section 4 for further discussion.

In the Appendix, Mehmet Haluk Şengün shows that the methods devel-
oped in this paper can be used to construct congruence RFRS towers for
many prime-level congruence subgroups of Bianchi groups. Specifically, for
d = −1,−2,−3,−7,−11 and p a prime ideal of residue characteristic p with
relatively small norm, Şengün shows that the abelianization of the level p
congruence subgroup of PSL(Od) is p-torsion-free roughly twice as often as
not. As we show in Section 3.1, having no p-torsion in the abelianization

TOME 73 (2023), FASCICULE 1



310 Ian AGOL & Matthew STOVER

of the level p congruence subgroup allows one to construct a RFRS tower
in the tower of p-congruence subgroups of PSL(Od).

This paper is organized as follows. In Section 2 we describe some basic
preliminary results on RFRS towers and congruence towers. In Section 3
we give three examples that describe our general method for producing
congruence towers that are RFRS. These examples suffice to prove the
theorems stated above. Finally, in Section 4 we make closing comments
and raise some questions.

Acknowledgments

We thank Alan Reid and Steven Tschantz for helpful conversations and
the referee for pointing us to [30].

2. Preliminaries on towers

In this section, we discuss two types of towers of finite index subgroups
of a group: RFRS towers, and p-congruence towers.

2.1. RFRS towers

Let Γ be a finitely generated group with commutator subgroup denoted
by Γ(1) = [Γ,Γ] and abelianization

Γab = Γ/Γ(1) ∼= H1(Γ;Z).

We then define the rational abelianization Γrab to be the image of Γab in

Γab ⊗Z Q ∼= H1(Γ;Z) ⊗Z Q ∼= H1(Γ;Q)

under the natural homomorphism and the rational commutator subgroup

Γ(1)
r = ker

(
Γ → Γrab

)
.

Clearly Γ(1) ⩽ Γ(1)
r is finite index and Γrab ∼= H1(Γ;Z)/Torsion.

Given a group Γ, let {Γj} be a cofinal tower of finite index subgroups of
Γ with Γ0 = Γ. In other words,

(1)
⋂

Γj = {1};
(2) Γj is a finite index subgroup of Γ;
(3) Γj+1 ⩽ Γj for all j.

ANNALES DE L’INSTITUT FOURIER
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We say that {Γj} is a RFRS tower if, in addition,

(⋆) (Γj)(1)
r ⩽ Γj+1 for all j ⩾ 0.

Remark 2.1. — The original definition of RFRS [1, Def. 2.1] also required
that Γj be normal in Γ. However, it is also pointed out in [1] that if there
is a RFRS tower, then there is also a normal RFRS tower by passing to
core subgroups (i.e., the largest normal refinement).

We say that Γ is RFRS if it admits such a tower and that it is virtually
RFRS if it contains a finite index subgroup that is RFRS. We note that
RFRS is short for “residually finite Q-solvable”, and refer to [1] for further
details and examples.

We briefly recall that if G is a group and Γ ⩽ G a subgroup, the com-
mensurator of Γ in G is the group consisting of those g ∈ G such that
Γ∩(gΓg−1) has finite index in both Γ and gΓg−1. Our key technical lemma
is the following:

Lemma 2.2. — Let G be a group and Γ ⩽ G a finitely generated sub-
group such that Γab has no p-torsion. Suppose that {g0 = Id, g1, g2, . . . }
is a sequence in G such that each gi is in the commensurator of Γ in G.
Define

∆i = giΓg−1
i

Γn =
n⋂

i=0
∆i.

Finally, suppose:
(1) The sequence {Γn} is a cofinal tower of subgroups.
(2) For each n, there exists some 0 ⩽ i ⩽ n− 1 such that ∆i/(∆i ∩ ∆n)

is an abelian p-group.
Then {Γn} is a RFRS sequence for Γ.

Proof. — Note that ∆0 = Γ0 = Γ and

∆0/(∆0 ∩ ∆1) = Γ0/Γ1

is an abelian p-group. Since Γab
0 = Γab has no p-torsion, the projection from

Γ0 onto Γ0/Γ1 must factor through Γrab
0 , i.e., (Γ0)(1)

r ⩽ Γ1.
We now show that (Γn+1)(1)

r ⩽ Γn+2 for all n ⩾ 0. Since Γn+2 equals
Γn+1 ∩ ∆n+2, to prove that {Γn} is a RFRS sequence, we must show that
(Γn+1)(1)

r ⩽ ∆n+2.
Fix 0 ⩽ i ⩽ n+ 1 such that ∆i/(∆i ∩ ∆n+2) is an abelian p-group. Since

∆i
∼= Γ, we see that ∆ab

i has no p-torsion, and hence (∆i)(1)
r ⩽ (∆i ∩∆n+2).

TOME 73 (2023), FASCICULE 1
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Then Γn+1 ⩽ ∆i by construction, and the natural map Γab
n+1 → ∆rab

i

induced by the inclusion must factor through the map from Γn+1 to Γrab
n+1.

Indeed, ∆rab
i is torsion-free, so Γn+2 → ∆rab

i factors through Γrab
n+1. It

follows that
(Γn+1)(1)

r ⩽ (∆i)(1)
r ⩽ (∆i ∩ ∆n+2).

This gives that (Γn+1)(1)
r ⩽ ∆n+2, as desired. Since {Γn} satisfies the other

hypotheses to be a RFRS sequence by assumption, this completes the proof
of the lemma. □

Our goal will be to apply Lemma 2.2 to certain p-congruence towers in
arithmetic lattices. We now introduce these towers.

2.2. p-congruence towers

We refer the reader to [20, Ch. I and II] for terminology and results from
algebraic number theory used in this section and elsewhere in the paper.
Let k be a number field with integer ring Ok, G ⊆ GLn(k) be a k-algebraic
matrix group, and Γ = G(Ok). Given a prime ideal p of Ok and j ⩾ 1,
let Γ(pj) be the level pj congruence subgroup of Γ, i.e., all those elements
that are congruent to the identity modulo pj . The collection {Γ(pj)} is the
p-congruence tower for Γ. This is a cofinal tower of normal subgroups of Γ.

We record some elementary facts. Let p be a rational prime. Recall that
in a p-group every element has order a power of p, and in an elementary
p-group every element has order p.

Lemma 2.3. — Suppose k is a number field with ring of integers Ok,
G ⊆ GLn(k) is a k-algebraic matrix group, and Γ = G(Ok). Let p be a
prime ideal of Ok and p the characteristic of the finite field Ok/p. Then:

(1) For all j ⩾ 1, Γ(pj)/Γ(pj+1) is an elementary abelian p-group.
(2) For all k > j ⩾ 1, Γ(pj)/Γ(pk) is a p-group.
(3) For all j ⩾ 2, Γ(pj)/Γ(pk) is abelian for every k ⩽ 2j. In particular,

Γ(pj)/Γ(pj+2) is abelian.

Proof. — Let Op be the integral closure of Ok in the completion kp of k
with respect to its p-adic norm. Fix a uniformizing element π for Op. Then
we have that Ok/p ∼= Op/(π)Op and p is the characteristic of this finite
field.

If α ∈ Γ(pj), then we can write

α = Id +πjM

ANNALES DE L’INSTITUT FOURIER
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for some M ∈ Mn(Op). Then

αp =
p∑

k=0

(
p

k

)
πjkMk,

which is visibly congruent to the identity modulo πj+1. This proves that
every element of Γ(pj)/Γ(pj+1) has order p.

Now, suppose that

α = Id +πjM

β = Id +πjN

for α, β ∈ Γ(pj). Then:

αβ = (Id +πjM)(Id +πjN)

= Id +πj(M +N) + π2jMN

βα = (Id +πjN)(Id +πjM)

= Id +πj(N +M) + π2jNM

We see that α and β commute modulo πk for all k ⩽ 2j. Since 2j ⩾ j + 1
for j ⩾ 1, w, this proves the first and third assertions of the lemma. The
second statement is an immediate consequence of the first. □

Remark 2.4. — Replacing Ok with Op in the proof of Lemma 2.3 is only
necessary when p is not a principal ideal. When it is principal, one can
implement the proof in Ok instead with π a generator for p.

3. Examples

We now describe the examples that suffice to prove the main results
stated in the introduction. Our techniques work in much greater generality,
and the reader will hopefully find these examples illustrative enough to
apply our methods in other settings.

3.1. The magic manifold

It goes back to Thurston that the fundamental group Γ of the magic man-
ifold arises from the congruence subgroup Γ( 1+

√
−7

2 ) inside PGL2(Q(
√

−7)).
It is homeomorphic to the complement in S3 of the 3-chain link 63

1 (see Fig-
ure 3.1 and [27, Ex. 6.8.2]).

TOME 73 (2023), FASCICULE 1



314 Ian AGOL & Matthew STOVER

Figure 3.1. The magic manifold is the complement of the 3-chain link.

Note that p = ( 1+
√

−7
2 ) is a prime ideal dividing 2. We will show that

the magic manifold admits a 2-congruence tower that is RFRS. Note that
the magic manifold is itself fibered, so the fact that PSL2(Od) fibers on a
congruence subgroup is not new in this case.

Since p has norm 2, the completion of Q(
√

−7) at p is Q2, and hence we
obtain an embedding of Γ into PGL2(Q2). Consider the action of PGL2(Q2)
on its Bruhat–Tits tree T , which is a 3-regular tree (see Figure 3.2).

Figure 3.2. The Bruhat–Tits tree T for PGL2(Q2).

We briefly recall that vertices of T are homothety classes of Z2-lattices
in Q2

2, and two vertices [L1] and [L2] are adjacent if and only if there are
representatives in the homothety classes such that L2 ⊆ L1 with L1/L2
isomorphic to the finite field F2 with two elements. See [25, §II.1] for details.

Then Γ ⩽ PGL2(Z2) naturally stabilizes the vertex v0 associated with
the standard lattice Z2

2. Notice that PGL2(Q(
√

−7)) acts transitively on
T , and the element

g1 =
(

0 2
1 0

)

ANNALES DE L’INSTITUT FOURIER
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exchanges v0 with a neighbor v1. One then checks that

Γ(p2) ⩽ Γ ∩ g1Γg−1
1 ⩽ Γ,

and it follows from Lemma 2.3 that Γ/(Γ∩g1Γg−1
1 ) is an elementary abelian

2-group.
We now define gn ∈ PGL2(Q(

√
−7)) and vn = gn(v0) ∈ T by choosing

some vi for 0 ⩽ i ⩽ n − 1 for which not all neighbors of vi are contained
in {v0, . . . , vn−1}, letting vn be one such neighbor of vi, and taking gn to
be the conjugate of g1 in PGL2(Q(

√
−7)) that swaps vi and vn. Define

∆n = gnΓg−1
n . Then

∆n/(∆n ∩ ∆i)
is an elementary abelian 2-group by the same reasoning that we applied to
∆0/(∆1 ∩ ∆0).

Let vn range over all vertices of T . Defining

Γn =
n⋂

i=0
Γi,

we have that
⋂

Γn lies in the stabilizer in PGL2(Q2) of every homothety
class of lattices in Q2

2, which is clearly trivial. Therefore {Γn} is cofinal. In
particular, Lemma 2.2 applies to show that this tower is RFRS.

Remark 3.1. — This idea applies to any principal congruence arithmetic
link. In [5] it is shown that there are principal congruence links for discrim-
inant d = 1, 2, 3, 5, 7, 11, 15, 19, 23, 31, 47, 71. This includes discriminants
d = 7, 15, 23, 31, 47, 71 that are congruent to −1 mod 8; these values of d
are not handled by the next section. More generally, this construction works
for congruence subgroups of arithmetic Kleinian groups with no p-torsion
in their 1st homology for the appropriate p; see Appendix A by Şengün for
further examples.

3.2. Bianchi groups and O(4, 1;Z)

Consider the quadratic form q0 in 5 variables with matrix

Q0 = diag(1, 1, 1, 1,−1),

and let O(4, 1;Z) be the group of integral automorphisms of q0. Then
O(4, 1;Z) determines a nonuniform arithmetic lattice in O(4, 1). For an
integer N ⩾ 1, let Γ(N) denote the congruence subgroup of O(4, 1;Z) of
level N .

TOME 73 (2023), FASCICULE 1
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It is known that O(4, 1;Z) is the group generated by reflections in the
simplex in hyperbolic 4-space with Coxeter diagram given in Figure 3.3.
Moreover, the congruence subgroup Γ(2) of level two is the right-angled
Coxeter group generated by reflections in the sides of a polyhedron obtained
from 120 copies of the simplex for O(4, 1;Z). See [22].

3 3 4

3

Figure 3.3. The Coxeter diagram for O(4, 1;Z).

It will be convenient to change coordinates. The matrix

α =


1 1 0 0 0
0 −1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 −1

 ∈ SL5(Z)

conjugates O(4, 1;Z) to O(q;Z), where q is the quadratic form with matrix

Q =


0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

 ,

i.e., Q = tαQ0α. Since α is integral of determinant one, it preserves all
congruence subgroups of SL5(Z). Thus αΓ(N)α−1 is the level N congruence
subgroup of O(q;Z) for all N ⩾ 1, and we continue calling it just Γ(N).

We will also need the Bruhat–Tits building associated with O(q;Q2),
which is a (5, 3)-regular tree T . See [28, §2.7] and Figure 3.4. Considering
O(q;Q2) as a subgroup of GL5(Q2), we obtain an injection of buildings
T ↪→ X, where X is the building associated with PGL5(Q2). We briefly
describe T using this embedding. While we do not need details of the
finer structure of T , for the reader’s convenience in what follows we give a
complete argument that T is a (3, 5)-regular tree.

As in the 2-dimensional case, vertices of X are in one-to-one correspon-
dence with homothety classes of Z2-lattices in Q5

2, where vertices x and y

are adjacent if there are representatives Lx and Ly for the two homothety

ANNALES DE L’INSTITUT FOURIER
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Figure 3.4. The Bruhat–Tits tree T for O(q;Q2).

classes so that 2Lx ⊂ Ly ⊂ Lx. See [25, Exer. II.1.4]. We fix the base vertex

x0 = [⟨e1, . . . , e5⟩],

where {ei} is the basis for which q has the given matrix and ⟨ − ⟩ denotes
the Z2-span. The stabilizer of x0 in GL5(Q2) is generated by GL5(Z2) and
the scalar matrices. Then O(q;Z2) stabilizes x0, which implies that we can
realize T as the convex hull of the O(q;Q2)-orbit in X of x0.

The apartment A of X associated with the Q2-split torus of diagonal
matrices in GL5(Q2) (e.g., see [28, §1]) can be identified with the set of
homothety classes

{[⟨2r1e1, . . . , 2r5e5⟩]}ri∈Z ,

i.e., the orbit of x0 under the diagonal subgroup. The Q2-split torus of
diagonal matrices in the rank one group O(q;Q2) is

S =


λ 0 0

0 Id 0
0 0 λ−1

 : λ ∈ Q∗
2

 ,

where Id is the 3 × 3 identity matrix, and the convex hull of the S-orbit of
x0 is then the apartment A0 of T associated with S. The S-orbit of x0 is

xr = [⟨2re1, e2, . . . , e4, 2−re5⟩]

for r ∈ Z, and its convex hull also includes the vertices

xr+ 1
2

= [⟨2r+1e1, e2, . . . , e4, 2−re5⟩].

We see that A0 is a line with vertex set {xα : α ∈ 1
2Z}, where xα is

adjacent to xβ if and only if |α− β| = 1
2 .

Since O(q;Q2) acts transitively on apartments of T [28, §2], the vertex
set of T is the O(q;Q2)-orbit of {x0, x 1

2
}. In particular, to prove that T is

a (5, 3)-regular tree we need to prove the following two lemmas.

Lemma 3.2. — The vertex x0 ∈ T has valence 5.

TOME 73 (2023), FASCICULE 1
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Lemma 3.3. — The vertex x 1
2

∈ T has valence 3.

Proof of Lemma 3.2. — We must compute the O(q;Z2)-orbit of x 1
2
. We

define L0 = ⟨e1, . . . , e5⟩ and L 1
2

= ⟨2e1, e2, . . . , e5⟩. Neighbors of x0 in X

are in one-to-one correspondence with proper nonzero subspaces of

V0 = L0/2L0 ∼= F5
2.

Let {ei} be the basis for V0 induced by {ei}.
If q0 denotes the quadratic form on V0 induced by the restriction of q to

L0, then we see that the image of L 1
2

in V0 is the q0-orthogonal complement
e⊥

5 of e5, which we note is a codimension one subspace that contains the
isotropic vector e5. To prove the lemma it then suffices to compute the
orbit of e⊥

5 under the image G0 of O(q;Z2) under reduction modulo 2 (e.g.,
see [28, §3.5.4]).

Since v⊥ = e⊥
5 if and only if v = e5, it moreover suffices to compute the

G0-orbit of e5. One checks that this orbit is

{e5 , e1 , e1 + e2 + e3 + e5 , e1 + e2 + e4 + e5 , e1 + e3 + e4 + e5}.

This proves the lemma. □

Proof of Lemma 3.3. — The proof is very similar to the proof of
Lemma 3.2, so we sketch the argument and leave it to the reader to verify
the details. With notation as in that proof, we consider

2L 1
2

⊂ 2L0 ⊂ L 1
2

= ⟨f1, . . . , f5⟩.

Then V 1
2

= L 1
2
/2L 1

2 is a vector space with basis {f i} with respect to
which the quadratic form q 1

2
contains a two-dimensional totally degenerate

subspace spanned by f1 and f5.
Since the image of 2L0 in V 1

2
is the line spanned by f1, we must compute

its orbit under the reduction modulo 2 of the stabilizer in O(q;Q2) of L 1
2
.

One shows that this orbit consists of the lines spanned by f1, f5, and
f1 + f5, and the lemma follows. □

Remark 3.4. — The neighbors of x0 in A0 are x 1
2

and x− 1
2
. The other

neighbors have representatives:

⟨2e1 , e1 + e2 , e1 + e3 , e4 , e1 + e2 + e3 + e5⟩
⟨2e1 , e1 + e2 , e3 , e1 + e4 , e1 + e2 + e4 + e5⟩
⟨2e1 , e2 , e1 + e3 , e1 + e4 , e1 + e3 + e4 + e5⟩
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Similarly, x 1
2

has neighbors x0 and x1 along with the vertex with represen-
tative 〈

e1 + 1
2e5 , e2 , e3 , e4 , e5

〉
,

which is the image of L0 under the matrix
1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0

− 1
2 −1 0 0 1

 ∈ SO(q;Q2)

that stabilizes L 1
2
.

We now prove the main result of this section. Recall that the Bianchi
groups PSL2(Od) with d ̸≡ −1 (mod 8) are all commensurable with sub-
groups of O(4, 1;Z), and one can choose the subgroup of PSL2(Od) con-
tained in O(4, 1;Z) to be a congruence subgroup of each. We can then use
the following to prove Theorem 1.1.

Proposition 3.5. — The congruence subgroup Γ(4) of level 4 in
O(4, 1;Z) admits a congruence RFRS tower.

Proof. — Recall that the congruence subgroup Γ(2) of level 2 in O(n,1;Z)
is a right-angled Coxeter group [22, Thm. 7]. One computes that Γ(2)/Γ(4)
and Γ(2)/Γ(2)(1) are elementary abelian 2-groups of the same order, hence
Γ(4) = Γ(2)(1). We then see that Γ(4) has torsion-free abelianization by [10,
§4.5], as the abelianization of the commutator subgroup of any right-angled
Coxeter group is isomorphic to the reduced degree zero homology of a
certain complex, hence it is necessarily torsion-free. Alternately, using the
presentation for O(4, 1;Z) as a Coxeter group with diagram as in Figure 3.3,
one can easily check using a computer algebra program like Magma [9] that
in fact Γ(4)ab ∼= Z55. In particular, Γ(4)ab has no 2-torsion.

Consider the matrix

g1 =


0 0 0 0 2
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
1
2 0 0 0 0

 ∈ SO(q;Q) < SO(q;Q2)

that exchanges the vertices x0, x1 ∈ T and fixes the intermediate vertex x 1
2
.
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We now set Γ0 = Γ(4) and Γ1 = g1Γ0g
−1
1 . We claim that

Γ(16) ⩽ Γ0 ∩ Γ1 ⩽ Γ0.

To see this, one first notices that

g1


1 + 16a5 −32e2 −32e3 −32e4 64e1

−8b5 1 + 16b2 16b3 16b4 −32b1
−8c5 16c2 1 + 16c3 16c4 −32c1
−8d5 16d2 16d3 1 + 16d4 −32d1
4a1 −8a2 −8a3 −8a4 1 + 16a1

 g−1
1

=


1 + 16a1 16a2 16a3 16a4 16a5

16b1 1 + 16b2 16b3 16b4 16b5
16c1 16c2 1 + 16c3 16c4 16c5
16d5 16d2 16d3 1 + 16d4 16d5
16e1 16e2 16e3 16e4 1 + 16e5


for a1, . . . , e5 ∈ Z. Also, since g1 ∈ SO(q,Q), the matrix on the right-hand
side preserves q if and only if the matrix being conjugated on the left-hand
side does. This proves the claim.

Lemma 2.3 implies that Γ(4)/Γ(16) is an abelian 2-group, hence so is
Γ0/Γ1. We now define gn inductively as follows. Let xn be a vertex of T
in the SO(q;Q2)-orbit of x0 that is distance 2 in T from some vertex xi in
{x0, . . . , xn−1}. Since SO(q;Q) is dense in SO(q;Q2), there exists an hn in
SO(q;Q) so that hn(x0) = xi and hn(x1) = xn. We define gn = hng1h

−1
n .

Choose the sequence {xn} to exhaust the SO(q;Q2)-orbit of x0. Then it is
easy to see that the sequence {gn} satisfies all the conditions of Lemma 2.2.
In particular, if ∆n = gnΓ0g

−1
n and

Γn =
n⋂

i=0
∆n,

then {Γn} is cofinal, and the elements gn satisfy the requisite assumptions
by construction. Therefore there is a RFRS tower for Γ(4). □

Corollary 3.6. — The group SO(4, 1;Z) has a congruence subgroup
that is algebraically fibered.

Proof. — Since SO(4, 1;Z) has b(2)
1 = 0 (see [21, Lem. 1]), a result of

Dawid Kielak [18, Thm. 5.3] implies that some level 2k congruence subgroup
is algebraically fibered. □
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Remark 3.7. — The proof of Proposition 3.5 would work without alter-
ation for the level 4 congruence subgroup of SO(n, 1;Z) for any n ⩾ 2, as
long as it has no 2-torsion in its abelianization. This holds for n = 2, 3, 4,
however Steven Tschantz computed that H1(Γ(4);Z) ∼= Z256 × Z/2 for
Γ = SO(5, 1;Z).

Remark 3.8. — For n = 2, . . . , 7, the congruence subgroup Γ(2) of level
2 in O(n, 1;Z) is a right-angled Coxeter group [22, Thm. 7]. As noted in
the proof of Proposition 3.5, the commutator subgroup Γ(2)(1) then has
torsion-free abelianization by [10, §4.5]. For n ⩽ 4, Γ(2)(1) equals Γ(4). For
n > 4, we have that Γ(2)(1) is a proper finite index subgroup of Γ(4). It
is possible that H1(Γ(4)) is torsion-free for n > 5 in spite of Tschantz’s
computation for n = 5.

Proof of Theorem 1.1. — For d ̸≡ −1 (mod 8), there is a finite index
subgroup ∆ of PSL2(Od) that is isomorphic to a subgroup of the group Γ(4)
in Proposition 3.5. For d square-free, the quadratic form qd = ⟨1, 1, 1,−d⟩ is
isotropic if and only if d ̸≡ −1 (mod 8); [3, Thm. 6.2] and the subsequent
discussion. In this case, PO(qd;Z) is commensurable with PSL2(Od) [3,
Thm. 2.3], hence one can embed PO(qd;Z) into PO(4, 1;Z) up to commen-
surability by [3, Lem. 6.3] and as in the proof of [3, Lem. 4.6(i)]. The proof
that such a ∆ exists in fact produces a congruence subgroup of PSL2(Od).
Intersecting this with the RFRS tower given in Proposition 3.5 produces
the desired RFRS tower for ∆. This proves the theorem. □

Remark 3.9. — The above gives an explicit congruence subgroup of
PSL2(Od) that begins a congruence RFRS tower. We sketch the argument
bounding the index of this subgroup when d ≡ 1 (mod 4) is a sum of two
squares (equivalently, no prime dividing d is congruent to 3 modulo 4). In
this case, PSL2(Od) can be realized as the subgroup of SO(qd;Z) for

qd =



0 1
2 0 0 0

1
2 0 0 0 0
0 0 1 0 0
0 0 0 d 0
0 0 0 0 d


that preserves the upper left 4 × 4 block (e.g., see [11, §3.1]). Then qd is
equivalent to the standard quadratic form ⟨−1, 1, 1, 1, 1⟩ under the change
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of variables with matrix

hd =



1 1 0 0 0
−1 1 0 0 0
0 0 1 0 0

0 0 0 a

d

b

d

0 0 0 − b

d

a

d


where d = a2 + b2.

Thus if γ ∈ PSL2(Od) ⩽ SO(qd;Z), then h−1
d γhd preserves the standard

quadratic form. If γ ∈ SO(qd;Z) is congruent to the identity modulo 8d,
then h−1

d γhd ∈ SO(4, 1;Z) is congruent to the identity modulo 4. Follow-
ing [11, Eq. (3.1)], one sees that the congruence subgroup of PSL2(Od)
of level 8d maps into the congruence subgroup of SO(qd;Z) of level 8d.
Computing the index of this congruence subgroup, we see that PSL2(Od)
contains a RFRS subgroup of index at most∣∣ PSL2

(
Od/(8d)Od

)∣∣ = (8d)6
∏

p | (8d)Od

(
1 − 1

N(p)2

)
.

However, one can likely improve upon this.

Remark 3.10. — Methods analogous to work of Michelle Chu [11] on ef-
fectively embedding subgroups of Bianchi groups in SO(6, 1;Z) could allow
one to prove that the above Bianchi groups contain a congruence RFRS
tower of uniformly bounded index.

Remark 3.11. — If the congruence subgroup of level 4 in SO(6, 1;Z) has
no 2-torsion in its first homology, then Theorem 1.1 holds for all Bianchi
groups. See [3, Lem. 4.4]. More generally, one only needs to find a prime p
so that the congruence subgroup of level p in SO(6, 1;Z) has no p-torsion in
its abelianization, which seems likely but very difficult to verify computa-
tionally. If this holds, then all Bianchi groups contain a congruence RFRS
tower and hence fiber on a congruence subgroup.

3.3. A complex hyperbolic example

Our example will come from a congruence cover of a Deligne–Mostow
orbifold [12]. We recall that for certain (n+ 3)-tuples µ of integers (called
weights) satisfying a condition called INT, Deligne and Mostow constructed
lattices Γµ ⊴ ΓΣµ in PU(n, 1), where Σ is the symmetry group of the
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weights and ΓΣµ/Γµ
∼= Σ. Let B2 denote complex hyperbolic 2-space in

what follows.
The example we consider here is µ = (2, 2, 2, 2, 2), hence Σ = S5. Follow-

ing [19], the underlying analytic space for the orbifold B2/Γµ is the blowup
of the complex projective plane P2 at the four vertices of the complete
quadrangle, and each divisor has orbifold weight 5. See Figure 3.5. (Note
that the convention in [19] is to divide the elements of µ by their gcd, so
µ is listed as (1, 1, 1, 1, 1).) Then S5 acts on this blowup of P2 in a natural
way with quotient the underlying analytic space for B2/ΓΣµ.

Figure 3.5. The orbifold B2/Γµ. Each line or circle represents a P1

in the orbifold locus, and each has orbifold weight 5. Local orbifold
groups at intersection points are all (Z/5)2.

It is known that these lattices are arithmetic. More specifically, let E
be Q(ζ5), where ζ5 is a primitive 5th root of unity, and F = Q(α) with
α2 = 5 be its totally real quadratic subfield. Define ϕ = 1−α

2 and consider
the hermitian form on E3 with matrix

h =

ϕ 1 0
1 ϕ 1
0 1 ϕ

 .

Then h has signature (1, 2) at one complex place of E and signature (3, 0) at
the other complex place. Since −h then has signature (2, 1) the appropriate
place, and because similar hermitian forms have isomorphic unitary groups,
it follows that PU(h,OE) is a cocompact arithmetic lattice in PU(2, 1),
where OE = Z[ζ5] is the ring of integers of E. Let π = ζ5 −1 and p5 = πOE

be the unique prime ideal of OE dividing 5OE . Note that OE/p5 ∼= F5,
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p2
5 = αOE , and p4

5 = 5OE . We then have the following, which was proved
by Yamazaki and Yoshida.

Proposition 3.12 ([30, Prop. 4.3]). — With notation as above, we have
ΓΣµ

∼= PU(h,OE) and Γµ is the congruence subgroup ΓΣµ(p5) of level p5
in ΓΣµ.

The lattice of interest to us is supplied by the following lemma.

Lemma 3.13. — With notation as above, the congruence subgroup of
level p2

5 = αOE in ΓΣµ is the commutator subgroup of Γµ and its abelian-
ization is isomorphic to Z60.

Proof. — The first statement was proved by Yamazaki and Yoshida [30,
Thm. 1]. Using a presentation for Γµ (e.g., see [30, Prop. 2.1]) one then com-
putes the abelianization of the commutator subgroup of Γµ in Magma [9]
to complete the proof of the lemma. □

Remark 3.14. — We note the following analogy between O(4, 1;Z) and
ΓΣµ. Recall that O(4, 1;Z) is a Coxeter group whose congruence subgroup
of level 2 is a right-angled Coxeter group, and the commutator subgroup of
the right-angled group is the congruence subgroup of level 4 in O(4, 1;Z).
Analogously, ΓΣµ is a complex hyperbolic reflection group whose congru-
ence subgroup of level p5 is the complex hyperbolic reflection group Γµ,
and the commutator subgroup of Γµ is the congruence subgroup of ΓΣµ of
level p2

5.

We now describe the building used to apply our methods to prove that
ΓΣµ(p2

5) admits a congruence RFRS tower. Let E5 be the completion of E
with respect to the valuation associated with p5. Then E5 = Q5(ζ5) is a
degree four totally ramified extension of Q5 with intermediate quadratic
subfield F5 = Q5(α) and π is a uniformizer for E5. The group SU(h,E3) is
the unique special unitary group in 3 variables with respect to E5/F5, and
the associated Bruhat–Tits building is a tree [28, §2.10].

As in Section 3.2, a change of coordinates will be convenient for describ-
ing this building. One can find a change of coordinates with entries in the
ring of integers O5 of E5 so that h has matrix −h0 for

h0 =

0 0 1
0 1 0
1 0 0

 .
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For example,

c =

 1 −δ−1 −1+α
8

−1 + δ δ−1 (1−α)(1+δ)
8

−1 − α+ ϵ 0 − 2+δ
4


suffices, where δ is a square root of 1 + α and ϵ is a square root of 4 + 2α.
Critically, δ, ϵ ∈ O∗

5 (one can see this by showing that the prime αOF of
OF dividing 5 splits in both F (δ) and F (ϵ), and δ, ϵ are invertible in O∗

5
since 1 + α and 4 + 2α have norm −4). Since this conjugation is integral
over E5 with determinant 1, and because similar hermitian forms have the
same unitary group, we have that ΓΣµ is isomorphic to the intersection of
the F -points of SU(h0) with SU(h0,O5).

Following [28, §2.10], the building for SU(h0, E5) has vertices the set of
additive norms ϕ on E3

5 so that

ν(h0(x, y)) ⩾ ϕ(x) + ϕ(y)

for all pairs x, y ∈ E3
5 , where ν is the extension to E5 of the normalized

valuation on F5 (i.e., with value group 1
2Z). There is an obvious action of

SU(h0) on the set of norms, and the norm stabilized by SU(h0,O5) is the
vertex v0 associated with the norm

ϕ0(x1, x2, x3) = inf{ν(xj) : 1 ⩽ j ⩽ 3}.

In particular, ΓΣµ stabilizes this vertex.
The matrix

g0 =

 0 0 π

0 ζ4
5 0

π−1 0 0

 ∈ SU(h)

(where π is the conjugate of π for the Gal(E5/F5)-action) acts on the tree
by sending v0 to the vertex v1 associated with the norm

ϕ1(x1, x2, x3) = inf
{
ν(x1) − 1

2 , ν(x2), ν(x3) + 1
2

}
,

since ν(π) = 1
2 . It also fixes the intermediate vertex associated with

ψ(x1, x2, x3) = inf
{
ν(x1) − 1

4 , ν(x2), ν(x3) + 1
4

}
.

Then one checks by a direct matrix computation that the intersection of
g0ΓΣµ(p2

5)g−1
0 with ΓΣµ(p2

5) contains Γ(p4
5). Indeed, note that p4

5 = 5OE

and if

γ=

 1 + 5c3 −(ζ2
5 + 2ζ5 + 1)π5c2 −(ζ3

5 + 2ζ2
5 + ζ5)π6c1

(ζ3
5 + ζ2

5 − 1)π3b3 1 + 5b2 −(ζ3
5 + 2ζ2

5 + 2ζ5 + 1)π5b1
(ζ3

5 + 2ζ2
5 + 2ζ5 + 1)π2a3 (ζ3

5 + 2ζ2
5 + ζ5)π3a2 1 + 5a1

,
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then γ ∈ ΓΣµ(p2
5) and

g0γg
−1
0 =

1 + 5a1 5a2 5a3
5b1 1 + 5b2 5b3
5c1 5c2 1 + 5c3

 ∈ ΓΣµ(p4
5).

From here, one applies the techniques developed in the previous examples
to prove Theorem 1.2.

Remark 3.15. — Analogous to our realization of the building for PO(q;Q2)
inside the building for PGL5(Q2) in Section 3.2, we can realize the building
for PU(h,E5) inside the building for PGL3(E5) by taking the vertex asso-
ciated with an additive norm ϕ to be the homothety class of the OE lattice
on which ϕ takes nonnegative values. In the above notation and recalling
that ν is normalized to have value group 1

2Z, this gives:

ϕ0 7→ [⟨e1, e2, e3⟩]

ϕ1 7→ [⟨πe1, e2, π
−1e3⟩]

ψ 7→ [⟨πe1, e2, e3⟩]

One can proceed as in Section 3.2 to compute the fundamental apartment
associated with the standard Q5-split torus and compute the valence of
each vertex of the tree.

Combining Theorem 1.2 and [15, Thm. E], one obtains a new proof of
the following (which was known by [26, Thm. 3] without knowing which
congruence tower contains the fibration).

Corollary 3.16. — The group ΓΣµ virtually algebraically fibers on a
congruence subgroup of level dividing 5.

Remark 3.17. — We note that nonuniform lattices in PU(n, 1) cannot be
virtually RFRS for n ⩾ 2. This is because their cusp subgroups are virtually
two-step nilpotent groups, but two-step nilpotent groups are not virtually
RFRS and being RFRS descends to subgroups. However, if Γ < PU(n, 1)
was a nonuniform arithmetic lattice contained in the congruence subgroup
of level p for which Γab contains no p-torsion, where p is a prime of residue
characteristic p, then the methods of this paper would produce a congruence
RFRS tower, which is impossible. In particular, we conclude that Γab must
have p-torsion.

One way to find this p-torsion is as follows. Since Γ is contained in a con-
gruence subgroup, away from some small exceptions the associated com-
plex hyperbolic manifold Bn/Γ admits a smooth toroidal compactification
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in the sense of [4]. One often sees that the cusp cross-sections of Bn/Γ
are nil-manifolds with p-torsion in their homology. For example, for Γ(p)
the center of any peripheral subgroup generates p-torsion in the homol-
ogy of the associated nil-manifold. Careful consideration of the standard
Mayer–Vietoris sequence for the toroidal compactification (cf. [13, §4]) al-
lows one to then conclude that this p-torsion in the homology of the cusp
cross-section must in fact induce p-torsion in the homology of Bn/Γ.

In particular, peripheral subgroups of Γ can force Γab to have p-torsion
when Γ is contained in the congruence subgroup of level p. Thus the ob-
struction to Γ containing a RFRS tower is also an obstruction to Γab having
no p-torsion.

4. Conclusion

There are many natural questions that arise from the results and methods
of this paper.

We recall that a group Γ is said to algebraically fiber if it has a homo-
morphism onto Z with finitely generated kernel. This is an algebraic gen-
eralization of the well-known Stallings criterion for a compact 3-manifold
to fiber over S1.

Question 4.1. — Which commensurability classes of rank 1 arithmetic
lattices contain a congruence subgroup that is algebraically fibered?

This question was originally posed by Baker and Reid in personal com-
munication. A 4-dimensional lattice that virtually algebraically fibers was
given in [17, Rem. 5.3], though we do not know if the example fibers on a
congruence subgroup. An obvious obstruction to having a virtual algebraic
fibration on a congruence subgroup is if every congruence lattice in the
commensurability class has trivial 1st betti number. For example, Bergeron
and Clozel proved that the first betti number vanishes for all congruence
arithmetic lattices in PO(7, 1) defined via triality [8, Thm. 1.1]. For all
other arithmetic lattices in PO(n, 1), n ̸= 3, one can find a congruence sub-
group with nontrivial 1st betti number [7, Cor. 1.8] (the n = 3 case is open
– see [24] for a discussion of what is known). There are also classes of arith-
metic lattices in PU(n, 1) where each kind of behavior occurs. See [6] for
more on what is known for cohomological vanishing for congruence arith-
metic lattices in PU(n, 1) and [26] for more on algebraic fibrations in that
setting.
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Question 4.2. — Given a congruence arithmetic group, how often does
a principal congruence subgroup at a prime ideal p have no p-torsion in H1,
where p|p? Is there some arithmetic significance to this phenomenon?

See Appendix A by Şengün for data indicating that vanishing of p-torsion
is quite frequent for congruence subgroups of Bianchi groups, but by no
means ubiquitous.

Question 4.3. — For each n > 1, is there a prime p so that the congru-
ence subgroup Γ(p) of level p in SO(n, 1;Z) has no p-torsion in its abelian-
ization?

If true, this would give a positive answer to Question 4.1 for arithmetic
hyperbolic groups of simplest type (i.e., those defined by a quadratic form),
since one can embed a congruence subgroup of these groups into SO(n, 1;Z)
by restriction of scalars.

Question 4.4. — When does Γ(pn), n ∈ N, form a RFRS sequence? Is
the sequence RFRS whenever it is at the first stage, i.e., Γ(p)(1)

r ⩽ Γ(p2)?

This is roughly a version of another question posed by Baker and Reid
in private communication. In this paper, we only show that an interlac-
ing of this sequence is RFRS if H1(Γ(p);Z) has no p-torsion. Also recall
Remark 3.17.

Question 4.5. — When does this strategy work for nonarithmetic hy-
perbolic lattices? When is there a congruence subgroup that fibers, or a
congruence RFRS tower?

Note that any lattice in PO(n, 1), n ⩾ 3, or PU(n, 1), n ⩾ 2, is a sub-
group of an S-arithmetic group by local rigidity. Indeed, the lattice can be
embedded in GLn(K) for K a number field, and hence lies in GLn(O) for O
some finitely generated subring of K. Therefore, the notion of congruence
subgroup makes sense when one avoids the primes in S, where S denotes
the primes that are inverted in O. Despite the fact that methods of this
paper cannot apply to a nonarithmetic lattice (since its commensurator is
discrete) and moreover the ambient S-arithmetic group containing it can-
not admit a RFRS tower (since it has trivial virtual betti number), this
does not preclude a nonarithmetic lattice from nevertheless admitting a
congruence RFRS tower.
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Appendix A. Torsion in the homology of principal
congruence subgroups of Bianchi groups

A.1. Introduction

Let K be an imaginary quadratic field with ring of integers ZK . An ideal
a of ZK determines a finite-index normal subgroup Γ(J) of the Bianchi
group SL2(ZK), called the principal congruence subgroup of level a. If p

is a prime idea of ZK over the rational prime p, the question of whether
the abelian group H1(Γ(p),Z) has p-torsion arises naturally in the current
work of Ian Agol and Matthew Stover. In this appendix, we try to gain
insight into this question by producing numerical data.

A.2. Methodology

Let K be one of the five imaginary quadratic fields for which ZK is
Euclidean, namely K = Q(

√
−d) with d = 1, 2, 3, 7, 11. Let p be a prime

ideal of ZK . Our starting point is the basic fact that H1(Γ(p),Z) ≃ Γ(p)ab

where Γ(p)ab is the abelianization of Γ(p). To compute the abelianization
of Γ(p), we will need a presentation. We will obtain this presentation from
a presentation of SL2(ZK) using the standard functions in the Finitely
Presented Groups package of the computer algebra system Magma.

Presentations for Bianchi groups go back to the late 19th century. We
prefer to use those given in [14, p. 37]. The presentations given there are
for the projective Bianchi groups PSL2(ZK). To obtain a presentation for
SL2(ZK), we simply introduce another generator j =

( −1 0
0 −1

)
, modify the

existing relations accordingly and add new relations to ensure that j is
central. We present here the result for the case K = Q(

√
−1):

SL2(ZK) = ⟨a, b, u, j | (ab)3 = j, b2 = j, j2 = 1, [a, u] = 1,

(bubu−1)3 = 1, j= (bu2bu−1)2, j= (aubau−1b)2, [a, j] = 1, [u, j] = 1⟩.

We have the matrix realizations a = ( 1 1
0 1 ), b =

( 0 −1
1 0

)
and u =

(
1

√
−1

0 1

)
.

The principal congruence subgroup Γ(p) is the kernel of the surjective
homomorphism

SL2(ZK) −→ SL2(ZK/p),
(
a b

c d

)
7→

(
a b

c d

)
where x → x is the reduction map ZK → ZK/p. We implement this
homomorphism in Magma and ask Magma to compute its kernel. Given
the presentation of SL2(ZK), Magma then can compute a presentation for
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Γ(p) using Reidemeister–Schreier type algorithms. Finally we ask Magma
to compute the abelianization. For the readers’ convenience, we make our
code public on our homepage.(1)

A.3. Results

As mentioned above, we compute with prime ideals. As H1(Γ(p),Z) ≃
H1(Γ(p),Z), for prime ideals with p ̸= p (here), we computed with only
one of them. We list the norm of the prime ideal p, the rank of H1(Γ(p),Z)
and the size of the torsion subgroup of H1(Γ(p),Z). The size is given in its
prime factorisation.

Norm(p) rank size of torsion
K = Q(

√
−1)

2 0 25

5 6 1
9 20 1

13 42 1
17 72 1
29 238 31

37 342 1
41 420 262

49 825 76

53 702 3104

61 930 21242962

73 1332 3375741974

K = Q(
√

−2)
2 3 22

3 4 1
11 60 1
17 144 29

19 180 1
25 403 57

41 881 2855174012740

43 924 288342674212744

49 1724 7133

59 1740 229035811116315859236574360

67 2244 220031352396627166647667276838011664791768

73 2738 2369329619737311151174208974220517215095972

(1) https://sites.google.com/site/mhaluksengun/research
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Norm(p) rank size of torsion
K = Q(

√
−3)

3 0 33

4 5 21

7 8 1
13 28 1
19 60 1
25 117 1
31 160 1
37 228 319

43 308 244

61 620 362

67 748 268567

79 1040 2804178

K = Q(
√

−7)
2 3 21

7 24 1
9 40 31

11 60 1
23 264 222

25 376 57

29 420 515

37 684 3191938

43 924 58741446742

53 1404 232037525935285754

67 2244 2105636711678968131681376646368

71 2520 2288514029725970897031170937701931972

K = Q(
√

−11)
3 4 1
4 15 22

5 12 1
11 81 1
23 264 2112

31 480 29653029323130

37 722 1738193637568336

47 1151 313854717462313746974619146160948

53 1404 232051601127191045352431526835285954

59 1740 23483408558711611581712019583158595819958233605279602034158

67 2244 213631321713331686766197683316861366230968580768678296625618966
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