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BASE DIVISORS OF BIG AND NEF LINE BUNDLES
ON IRREDUCIBLE SYMPLECTIC VARIETIES

by Ulrike RIESS

Abstract. — Under some conditions on the deformation type, which we expect
to be satisfied for arbitrary irreducible symplectic varieties, we describe which
big and nef line bundles on irreducible symplectic varieties have base divisors. In
particular, we show that such base divisors are always irreducible and reduced.
This is applied to understand the behaviour of divisorial base components of big
and nef line bundles under deformations and for K3[n]-type and Kumn-type.

Résumé. — Nous décrivons quels fibrés en droites gros et nefs, sur des variétés
symplectiques irréductibles, ont des diviseurs de base, sous certaines conditions
relatives au type de déformation dont nous nous attendons à ce qu’elles soient
vraies pour toutes les variétés symplectiques irréductibles. En particulier, nous
montrons que de tels diviseurs de base sont toujours réduits et irréductibles. Nous
appliquons ces résultats pour comprendre le comportement après déformation des
diviseurs de base des fibrés en droites gros et nefs. Nous terminons en donnant une
déscription très explicite pour les variétés de types K3[n] et Kumn.

Introduction

Irreducible (holomorphic) symplectic varieties are a class of varieties that
appears naturally in the classification of algebraic varieties with trivial first
Chern class. The Beauville–Bogomolov decomposition theorem ([4, Theo-
rem 1]) states that up to a finite étale cover every such variety can be
decomposed into a product of three types of varieties: abelian varieties, ir-
reducible symplectic varieties and (strict) Calabi–Yau varieties. Since this is
known, there has been intense research on irreducible symplectic varieties.

Two-dimensional irreducible symplectic varieties are exactly the famous
K3 surfaces. These surfaces have a rich geometry and are very well-studied.

Keywords: Irreducible symplectic varieties, hyperkähler manifolds, base divisors, Fujita’s
conjecture.
2020 Mathematics Subject Classification: 14M99.
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It turns out, that many results on K3 surfaces stem from more general
phenomena for irreducible symplectic varieties.

In this article we study base divisors of big and nef line bundles on
irreducible symplectic varieties.

Starting point are the known results on K3 surfaces:
Proposition ([21]). — Let X be a K3 surface with a big and nef line

bundle H ∈ Pic(X). Then H has base points if and only if H = mE + C,
where m ⩾ 2, E is a smooth elliptic curve, and C is a smooth rational
curve, such that (E, C) = 1. In this case, the base locus of H is exactly C.

Although this article only deals with the complex setting, let us men-
tion that over arbitrary algebraically closed fields of characteristic ̸= 2 a
similar result for ample line bundles was proved by Saint-Donat (see [28,
Proposition 8.1]).

Mayer’s proposition implies that for every ample line bundle H on a K3
surface, 2H is base point free. Remarkably, also for abelian varieties A, it
is known that 2H is base point free for every ample line bundle H ∈ Pic(A)
(see [23]).

These results can be seen as part of a general conjecture of Fujita which
predicts that for smooth, projective varieties ωX + (dim X + 1)H is base
point free for any ample line bundle H (see e.g. [16, Conjecture 10.4.1] for
the full statement of Fujita’s conjecture). Note that for abelian varieties
and for K3 surfaces, the bounds are even better than predicted by Fu-
jita’s conjecture. This suggests, that it might be particularly interesting to
study questions related to base points of ample line bundles for irreducible
symplectic varieties.

Let us mention that in general it is known, that for an ample line bundle
H on a smooth projective variety X of dimension n, the line bundle ωX +
mH is globally generated for m ⩾

(
n+1

2
)

(see [3]).
In this article, we investigate the divisorial part of the base locus of big

and nef line bundles on irreducible symplectic varieties. Before stating the
main theorem in full generality, let me point out that we obtain a complete
characterization of the base divisors for the two most prominent series of
deformation types of irreducible symplectic varieties.

Proposition (see Proposition 8.2). — Let X be an irreducible sym-
plectic variety of K3[n]-type and H ∈ Pic(X) a line bundle that is big and
nef. Then H has a fixed divisor if and only if H is of the form H = mL+F ,
where m ⩾ 2, L is movable with q(L) = 0, and F is an irreducible reduced
divisor of negative square with (L, F )q = 1. In this case F is the fixed
divisor of H.
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Proposition (see Proposition 9.2). — Let X be an irreducible sym-
plectic variety of Kumn-type, and H a big and nef line bundle. Then H is
movable, i.e. it does not have a fixed divisor.

These two results are consequences of the main theorem of this article.
For the full statement, we first need the following notation:

Let X be an irreducible symplectic variety of dimension 2n and denote
by BK X the closure of its birational Kähler cone (compare Section 2). A
famous conjecture is

Conjecture (see Conjecture 4.4). — Let 0 ̸= L ∈ Pic(X) ∩ BK X be
a primitive line bundle with q(L) = 0. Then dim h0(X, L) = n + 1 and |L|
induces a birational Lagrangian fibration to Pn.

On the other hand, the Riemann–Roch theorem for irreducible sym-
plectic varieties (Theorem 1.3) implies that there exist constants bi ∈
Q such that for each L ∈ Pic(X) the Euler characteristic is given by
χ(X, L) =

∑n
i=0 biq(L)i. Let us denote the appearing polynomial appearing

by RRX(x) :=
∑n

i=0 bix
i.

The main theorem of this article is:

Theorem (compare Theorem 4.7). — Fix an irreducible symplectic va-
riety X of dimension 2n for which RRX |Z⩾0 is strictly monotonic and
such that Conjecture 4.4 holds for X. Consider a big and nef line bun-
dle H ∈ Pic(X). Then H has a non-trivial base divisor if and only if there
exists an irreducible reduced divisor F of negative square such that H is of
the form H = mL + F , where m ⩾ 2, L is a primitive movable line bundle
with q(L) = 0 and (L, F )q > 0, such that RRX(q(H)) =

(
m+n

n

)
. In this

case F is exactly the fixed divisor of H.

We expect that the conditions in the theorem are satisfied for arbitrary
irreducible symplectic varieties. A discussion of the assumptions can be
found in Section 6.

Note that in particular the base divisor is irreducible and reduced of
negative square, whenever the theorem applies, which is a remarkable ob-
servation in itself.

One obtains the following corollary which fits in the framework of Fujita’s
conjecture.

Corollary (see Corollary 4.9). — Fix an irreducible symplectic variety
X which satisfies the assumptions of the theorem. Pick a line bundle H ∈
Pic(X) which is big and nef. Then the base locus of 2H does not contain
a divisor.
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As another application of the main theorem one understands the be-
haviour of divisorial base loci under deformations:

Theorem (see Theorem 7.1). — Let X be an irreducible symplectic
variety such that its deformation type satisfies the conditions in the main
theorem. Then in a (semi-)polarized family the locus where the big and
nef line bundle acquires a divisorial base locus is a disjoint union of certain
Noether–Lefschetz divisors.

In this article, we only discuss the phenomenon of divisorial base loci. For
K3 surfaces, Mayer’s proposition shows that only divisorial base loci can oc-
cur for big and nef line bundles. However, for higher dimensional irreducible
symplectic varieties, it turns out that the situation is more complicated.
Therefore, we restrict ourselves to divisorial base loci in this article and
present results towards base loci of higher codimension in [27].

In Sections 1 to 3, we state properties of irreducible symplectic varieties,
including results on the birational Kähler cone and reflections in prime
exceptional divisors.

The main theorem of this article (Theorem 4.7) is stated in its most
general form in Section 4 and proved in Section 5. A discussion of the
non-standard assumptions in the theorem can be found in Section 6.

Section 7 contains the application of the main theorem to the behaviour
under deformations. The explicit description of base divisors for K3[n]-type
and Kumn-type can be found in Sections 8 and 9.
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1. Basic facts on irreducible symplectic varieties

This section contains a collection of basic facts on irreducible symplectic
varieties, which we need later.

Let us start by giving the definition:
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Definition 1.1. — An irreducible symplectic variety is a simply con-
nected, smooth, projective complex variety X such that H0(X, Ω2

X) is gen-
erated by a nowhere degenerate two-form.

Irreducible symplectic varieties are also known as “projective hyperkähler
manifolds” and as “irreducible holomorphic symplectic varieties”. For an
overview on irreducible symplectic varieties, we refer to [9, Part III], [26],
and [11].

All known irreducible symplectic varieties are deformation equivalent to
one of the following:

• the 2n-dimensional Hilbert scheme Hilbn(S) of n points on a K3
surface S,

• the 2n-dimensional generalized Kummer variety Kumn(A) associ-
ated to an abelian surface A, which is constructed as a fibre of the
summation map Hilbn+1(A) → A,

• two examples discovered by O’Grady (a ten-dimensional one [24]
and a six-dimensional one [25]).

Irreducible symplectic varieties that are deformation equivalent to one of
the first two series of examples are called K3[n]-type respectively Kumn-
type.

We will usually denote the even dimension of an irreducible symplectic
variety X by 2n, and we will not distinguish between Pic(X) and NS(X)
which can be naturally identified.

We denote by q the Beauville–Bogomolov–Fujiki quadratic form on the
second integral cohomology of an irreducible symplectic variety X, which
satisfies the Fujiki relation

∫
X

α2n = CX · q(α)n for every α ∈ H2(X,Z)
with a constant CX ∈ Q>0 depending on X ([7]).

The signature of q is (3, b2 − 3), where b2 = rk H2(X,Z). Restricted to
H1,1(X,R) the signature of q is (1, b2 − 3).

Therefore one can define the positive cone CX ⊆ H1,1(X,R) as the con-
nected component of {α ∈ H1,1(X,R) | q(a) > 0} containing an ample
class. Note that the positive cone contains all ample classes and that a nef
class is big if and only if q(H) > 0.

Another important property of q is the following:

Lemma 1.2 ([5, Proposition 4.2.(ii)]). — Let X be an irreducible sym-
plectic variety, and E, F ∈ Pic(X) be effective divisors with no common
component, then q(E, F ) ⩾ 0.

Using the Beauville–Bogomolov–Fujiki form, the Hirzebruch–Riemann–
Roch formula takes a special form for irreducible symplectic varieties:

TOME 73 (2023), FASCICULE 2
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Theorem 1.3 (Riemann–Roch for irreducible symplectic varieties, see
[11, Section 1.11]). — For an irreducible symplectic variety X there exist
bi ∈ Q such that for each L ∈ Pic(X)

χ(X, L) =
n∑

i=0
biq(L)i.

Let us further mention the following result:

Proposition 1.4 ([9, Theorem 5.9]). — Let X be an irreducible sym-
plectic variety of dimension 2n. Then χ(OX) = n + 1.

We will frequently use the following basic observation.

Lemma 1.5 ([10, Section 2.2]). — Let X and X ′ be birational irreducible
symplectic varieties. Then there exist open subsets U ⊆ X and U ′ ⊆ X ′

with U ∼= U ′, such that X \ U and X ′ \ U ′ have codimension at least two.

2. The birational Kähler cone

In this section, we collect some useful facts about the birational Kähler
cone of an irreducible symplectic variety.

Definition 2.1. — Let X be an irreducible symplectic variety of di-
mension 2n as before. Denote its Kähler cone by KX ⊆ H1,1(X,R). Define
its birational Kähler cone as

BKX :=
⋃
f

f∗(KX′) ⊆ H1,1(X,R),

where the union is taken over all birational maps f : X 99K X ′ from X to
another irreducible symplectic variety X ′. Denote its closure by BK X ⊆
H1,1(X,R).

Note that the pullback along f : X 99K X ′ is well-defined, since the
indeterminacy locus is of codimension at least two by Lemma 1.5.

Theorem 2.2 ([12, Proposition 4.2]). — Let X be an irreducible sym-
plectic variety. Then the closure of the birational Kähler cone of X can be
described in the following way

BK X =
{

α ∈ CX ⊆ H1,1(X,R)
∣∣ (α, D)q ⩾ 0, ∀ D ⊆ X uniruled divisor

}
.

Corollary 2.3. — Let X be an irreducible symplectic variety, E ∈
Pic(X) an effective divisor and H ∈ BK X . Then (H, E)q ⩾ 0. In partic-
ular this applies for all nef line bundles H ∈ Pic(X).
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Proof. — This was actually part of the proof of [12, Proposition 4.2]. □

Remark 2.4. — In Theorem 2.2, we can restrict ourselves to considering
irreducible effective divisors D such that (D, β)q < 0 for some β ∈ CX .
Since D satisfies (α, D)q > 0 for all α ∈ BK X ⊆ CX (by Corollary 2.3),
this implies that D is orthogonal to some element in CX in this case.
Therefore the divisor D satisfies q(D) < 0. In this situation it was shown
in [5], that D is always uniruled:

Proposition 2.5 ([5, Proposition 4.7]). — Every irreducible effective
divisor D ∈ Pic(X) with q(D) < 0 is uniruled.

One can deduce the following standard fact:

Corollary 2.6. — Fix an irreducible symplectic variety X. Let
Mov(X) be the closure of the movable cone in Pic(X)R, i.e. the closure
of the set{

r · M ∈ Pic(X)R
∣∣ r ∈ R, M ∈ Pic(X) movable line bundle

}
.

Then Mov(X) = BK X ∩ Pic(X)R.

Proof. — By Lemma 1.2 and Theorem 2.2 every movable line bundle
M ∈ Pic(X) is contained in BK X . Conversely, every element α ∈ BKX ∩
Pic(X) is the pullback of an ample class on a birational model and therefore
movable. □

In general, the union in the definition of BKX can be infinite. Therefore
it is important to observe the following:

Proposition 2.7. — Let X be an irreducible symplectic variety and
fix L ∈ Pic(X). Suppose L ∈ Pic(X) ∩ BK X ∩CX . Then there exists a
birational irreducible symplectic variety X ′ such that the associated line
bundle L′ ∈ Pic(X ′) is nef. If b2(X) ̸= 4, the same holds for L ∈ Pic(X) ∩
BK X with q(L) = 0.

The proof uses the theory of wall divisors (also known as MBM-classes),
which can be used to describe the interior structure of BKX .

Let W ′ be the set of divisors W ∈ Pic(X) such that W ⊥ contains a
face of one of the Kähler chambers in BKX , i.e. there is a birational map
f : X 99K X ′ from X to another irreducible symplectic variety X ′ such that
W ⊥ ∩ f∗(KX′) contains an open subset of W ⊥.

TOME 73 (2023), FASCICULE 2
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Definition 2.8 (Wall-divisors/MBM-classes; compare [22, Def. 1.2],
[1, Def. 1.13]). — The set W of wall divisors on X (also known as MBM-
classes) is the union of φ(W ′) for all φ ∈ Mon2

Hdg(X), where Mon2
Hdg(X)

denotes the monodromy operators on H2(X,Z) which preserve the Hodge
structure.

An important property of wall divisors is

Proposition 2.9 ([1, Theorem 1.19]). — Let X be an irreducible sym-
plectic variety. The Kähler cone KX is a connected component of CX \⋃

W ∈W W ⊥. Moreover, for every element α ∈ CX \
⋃

W ∈W W ⊥ there exists
φ ∈ Mon2

Hdg(X), such that φ(α) ∈ f∗(KX′) for a birational irreducible
symplectic variety X ′ as above.

In order to deal with the case q(L) = 0 of Proposition 2.7, we further
need the following:

Theorem 2.10. — Let X be an irreducible symplectic variety with
b2(X) ̸= 4. Then the set{

q(W )
∣∣ W ∈ h1,1(X) (primitive) wall divisor on X

}
is bounded.

Proof. — This is due to Amerik and Verbitsky. Their theorem [2, Theo-
rem 3.17] states that for any irreducible symplectic variety X with b2(X) ⩾
5 the monodromy group acts on the set of primitive wall divisors with
finitely many orbits. Indeed they show this even for the larger set of such
classes in H2(X,Z). Since monodromy operators are isometries for q, this
implies the statement. □

The other central ingredient is the following basic proposition:

Proposition 2.11 ([19, Proposition 3.4]). — Let X be an irreducible
symplectic variety, Π ⊆ Cx a (closed) rational polyhedral cone, and N ∈ N
a fixed natural number. Then the set{

w ∈ H1,1(X,Z)
∣∣ −N < q(w) < 0 and w⊥ ∩ CX ∩ Π ̸= ∅

}
is finite.

Using these results, we can prove Proposition 2.7:
Proof of Proposition 2.7. — From Proposition 2.9, one can deduce that

BK X ∩CX =
⋃
f

f∗(KX′ ∩ CX),
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where the union is again taken over all f : X → X ′, where X ′ is a birational
irreducible symplectic variety. This was not a priori clear, since the union
could be infinite. Therefore, a line bundle in the intersection L ∈ Pic(X) ∩
BK X ∩CX lies in one of the f∗(KX′). Thus L′ := f−1∗(L) ∈ KX′ is nef.

It only remains to deal with the case q(L) = 0 under the assumption
that b2(X) ̸= 4. Fix L ∈ BK X ∩ Pic(X) ∩ ∂ CX . We need to show that
the associated line bundle L′ is nef on some birational model.

Pick any (closed) rational polyhedral cone Π ⊆ BK X ∩ Pic(X)R of di-
mension ρ(X) := h1,1(X,Z) such that L ∈ Π (e.g. one can construct this by
picking any rational polyhedral cone Π′ in Nef(X) = Amp(X) of dimension
ρ(X), and choosing Π := Π′ + R⩾0L).

By Theorem 2.10, the square of primitive wall divisors is bounded, and
therefore we can apply Proposition 2.11 to deduce that{

w ∈ H1,1(X,Z)
∣∣ w is wall divisor and w⊥ ∩ CX ∩ Π ̸= ∅

}
is a finite set.

In particular Π decomposes into a finite union of chambers of the form
Π ∩ f∗(Nef(X ′)), where f : X 99K X ′ are birational irreducible symplec-
tic varieties. Therefore, L lies in f∗(Nef(X ′)) for one such X ′. Thus the
associated line bundle L′ := f−1∗(L) lies in Nef(X ′) as claimed. □

Remark 2.12. — The same arguments show: If b2(X) ̸= 4 and BK X is
rationally polyhedral, then there are only finitely many chambers in BK X .

The following useful property of line bundles in A ∈ Pic(X) ∩ BK X

with q(A) ̸= 0 follows from Proposition 2.7:

Lemma 2.13. — Let X be an irreducible symplectic variety and pick a
line bundle A ∈ Pic(X) ∩ BK X ∩ CX . Then h0(X, A) = χ(X, A).

Proof. — Since A ∈ Pic(X) ∩ BK X ∩ CX , Proposition 2.7 implies that
there exists a birational irreducible symplectic variety X ′ such that the
corresponding line bundle A′ ∈ Pic(X ′) is nef. Then A′ is indeed big and
nef since q(A′) = q(A) > 0. Consequently

h0(X, A) = h0(X ′, A′) = χ(X ′, A′) = χ(X, A),

where the first equality uses that X and X ′ are isomorphic away from
codimension two by Lemma 1.5. The second equality exploits that A′ is
big and nef, and therefore satisfies Kodaira vanishing, and the last equal-
ity holds since (X, M) and (X ′, M ′) are deformation equivalent (see [11,
Theorem 4.6]). □

TOME 73 (2023), FASCICULE 2
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3. Reflections for prime exceptional divisors

In this section we use Huybrechts’ description of BK X and Markman’s
results on reflections for prime exceptional divisors to prove Proposition 3.4,
which shows that arbitrary elements α ∈ NS(X)Q∩∂ CX can be moved into
BK X , by a series of such reflections.

Let us first introduce some notations.

Definition 3.1.

(1) A divisor D ∈ Div(X) is called prime exceptional divisor if D is
reduced and irreducible and satisfies q(D) < 0.

(2) For a prime exceptional divisor D define the reflection RD ∈
O(H2(X,Q)) as

RD(α) := α − 2(D, α)q

q(D) D.

Remark 3.2. — Several statements in the previous sections involved
prime exceptional divisors. In particular Proposition 2.5.

For the proof of Proposition 3.4, we will need the following result of
Markman:

Proposition 3.3 ([17, Proposition 6.2]). — For any prime exceptional
divisor D the reflection RD restricts to an integral morphism. In fact, it is
a monodromy operator preserving the Hodge structure.

Proposition 3.4. — Let 0 ̸= α ∈ NS(X)Q ∩ CX then there exists a
composition R = RDk−1 ◦ · · · ◦ RD0 of reflections RDi associated to prime
exceptional divisors Di, such that R(α) ∈ BK X .

Proof. — This proof is similar to the analogue for K3 surfaces, as pre-
sented in [13, Remark VIII.2.12].

By passing to a multiple of α, we may assume that α ∈ H2(X,Z) is an
integral element. Set α0 := α. Fix an ample class h ∈ H2(X,Z). For any
element αi ∈ H2(X,Z) ∩ C X , the Beauville–Bogomolov pairing (αi, h)q is
a positive integer. If αi /∈ BK X , then by Theorem 2.2 and Remark 2.4
there exists a prime exceptional divisor Di with (αi, Di)q < 0. Note that
(Di, h)q > 0 and (αi, h)q > 0, since h is ample. Set αi+1 := RDi

(αi), which
is an element in the integral lattice H2(X,Z), since RDi is an integral

ANNALES DE L’INSTITUT FOURIER
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morphism by Proposition 3.3. Observe that

(αi+1, h)q =
(
RDi(αi), h

)
q

=
(
αi − 2(Di, αi)q

q(Di)
Di , h

)
q

= (αi, h)q − 2(Di, αi)q

q(Di)
· (Di, h)q︸ ︷︷ ︸

>0

< (αi, h)q .

If αi+1 /∈ BK X , repeat the above for αi+1. Since (α0, h) > (α1, h) >

(α2, h) > . . . is a descending sequence of positive integers, this procedure
needs to stop for some k ∈ N, which implies that αk ∈ BK X . Set R :=
RDk−1 ◦ · · · ◦RD0 . This concludes the proof, since R(α) = αk ∈ BK X . □

Furthermore, we will need the following inequality for exceptional prime
divisors:

Lemma 3.5 (follows from [18, Lemma 3.7]). — Let X be an irreducible
symplectic variety. Suppose D ∈ Pic(X) is an irreducible (and reduced)
divisor with q(D) < 0. Recall that div(D) := gcd{(α, D)q | α ∈ H2(X,Z)}.
Then q(D) | 2 div(D). In particular

−1
2q(D) ⩽ div(D).

4. Main Theorem

In this section, we state the main theorem of this article and deduce some
immediate consequences.

For the assumptions of the theorem in its most general form, we need to
introduce some notation first.

Let X be an irreducible symplectic variety. Recall that by the Riemann–
Roch theorem for irreducible symplectic varieties (Theorem 1.3) there exist
bi ∈ Q such that for each L ∈ Pic(X)

χ(X, L) =
n∑

i=0
biq(L)i.

Definition 4.1. — For a given irreducible symplectic variety X, denote
the polynomial appearing in the Riemann–Roch formula by RRX(x) :=∑n

i=0 bix
i, where the bi are as above.

The polynomial RRX only depends on the deformation type of X.

TOME 73 (2023), FASCICULE 2
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Remark 4.2. — For the main theorem (Theorem 4.7), we will need to as-
sume that RRX is strictly monotonic. Note that without any assumptions,
it is not even clear that for an arbitrary irreducible symplectic variety X

and an ample line bundle H ∈ Pic(X) there are non-trivial global sections
in H0(X, H). Our assumptions on RRX will exclude this problem.

Another statement which we will frequently need for the main theorem
is that the following conjecture holds for the variety X which we consider:

Definition 4.3. — A line bundle L ∈ Pic(X) is said to induce a ratio-
nal Lagrangian fibration to Pn if there exists a birational map f : X 99K X ′

to an irreducible symplectic variety X ′, and a fibration φ : X ′ ↠Pn, such
that the birational transform L′ of L on X ′ is the pullback of an ample line
bundle.

Conjecture 4.4. — Let X be an irreducible symplectic variety of di-
mension 2n and 0 ̸= L ∈ Pic(X) ∩ BK X be a primitive line bundle with
q(L) = 0. Then dim h0(X, L) = n + 1 and |L| induces a birational La-
grangian fibration to Pn.

This is a classical conjecture on irreducible symplectic varieties. There
is a weaker version which does not make any predictions on the base space
of the Lagrangian fibration. For its history we refer to [29, p. 3]. Note
however, that the base space of a Lagrangian fibration is automatically
isomorphic to Pn if it is smooth (see [8] and [14]). Smoothness of the base
is not known in general, but also conjectured. Furthermore, the presented
statement of the conjecture implies that the pullback φ∗O(1) is primitive.
This property is conjectured to hold in general and has been subject of [15].
The version of the conjecture stated here also implies the existence of the
birational model X ′ on which L′ is nef. By Proposition 2.7 this is automatic
whenever b2(X) ̸= 4.

Conjecture 4.4 is known to hold in many cases:

Theorem 4.5 ([20, Corollary 1.1]). — Conjecture 4.4 holds for all irre-
ducible symplectic varieties of K3[n]-type and of Kumn-type.

Remark 4.6. — Trivially, if X satisfies Pic(X)∩∂ CX = 0, Conjecture 4.4
automatically holds for X (since there is no such line bundle L).

We can now formulate the main theorem in its most general form:

Theorem 4.7. — Let X be a 2n-dimensional irreducible symplectic va-
riety for which RRX |Z⩾0 is strictly monotonic and such that Conjecture 4.4
holds for X. Consider a big and nef line bundle H ∈ Pic(X). Then H has
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a non-trivial base divisor if and only if there exists an irreducible reduced
divisor F of negative square such that H is of the form H = mL+F , where
m ⩾ 2, L is a primitive movable line bundle with q(L) = 0 and (L, F )q > 0,
such that RRX(q(H)) =

(
m+n

n

)
. In this case F is exactly the fixed divisor

of H.

Let us first note some immediate consequences, before we give the proof
in Section 5.

Corollary 4.8. — If X is an irreducible symplectic variety such that
RRX

∣∣
Z⩾0

is strictly monotonic and with Pic(X) ∩ ∂ CX = 0, then no big
and nef line bundle on X has fixed components.

Corollary 4.9. — Fix an irreducible symplectic variety X such that
RRX |Z⩾0 is strictly monotonic and Conjecture 4.4 holds for X. Let H ∈
Pic(X) be a big and nef line bundle. Then 2H does not have a divisorial
base component.

Proof. — For a big and nef line bundle H ∈ Pic(X) Theorem 4.7 shows
that if H has a divisorial base component, H is of the form H = mL + F ,
where m ⩾ 2, L is movable with q(L) = 0, and F is the fixed part of H,
which is an irreducible reduced divisor of negative square, and (L, F )q > 0.

Therefore 2H = 2mL + 2F . Assume for contradiction that 2H has a
divisorial base component F ′. Then Theorem 4.7 shows that 2H = m′L′ +
F ′, where F ′ is the base locus of 2H, and q(L′) = 0. However, the base locus
of 2H is contained in the base locus of H, which implies F ′ = F . Therefore
m′L′ = 2H − F = 2mL + F . For the last term use (L, F )q > 0 and
Lemma 3.5 to show that q(m′L′) = q(2mL + F ) = 4m(L, F )q + q(F ) > 0
which gives the desired contradiction to q(m′L′) = 0. □

5. Proof of the main theorem (Theorem 4.7)

In this section we prove the main theorem of this article. The general
structure of this proof was inspired by the case of K3 surfaces (compare [13,
Proof of Corollary 3.15]).

A crucial observation in the study of base components for irreducible
symplectic varieties is the following:

Lemma 5.1. — Let X be an irreducible symplectic variety and 0 ̸= F ∈
Pic(X) be a fixed divisor (i.e. h0(X, F ) = 1). If RRX |Z⩾0 is monotonic and
if X satisfies Conjecture 4.4 then q(F ) < 0.
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Proof. — Suppose for contradiction that F ∈ CX . Apply Proposition 3.4
(and its proof) to see that, after a finite number of reflections associated
to prime exceptional divisors, A := RDk−1 ◦ · · · ◦ RD0(F ) ∈ BK X lies
in the closure of the birational Kähler cone. Recall that in the proof of
Proposition 3.4, we set F0 := F . As long as Fi /∈ BK X , we successively
pick effective divisors Di with q(Di) < 0 and (Di, Fi)q < 0, and define
Fi+1 := RDi

(Fi) = Fi − 2(Di,Fi)q

q(Di) Di. By the choice of the Di, each of these
reflections subtracts a positive multiple of the effective divisor Di.

Consequently

F = A +
k−1∑
i=0

aiDi with ai = 2(Di, Fi)q

q(Di)
> 0.

Note that ai ∈ Z is integral by Lemma 3.5. Therefore, it suffices to show
that no element A ∈ BK X is a fixed divisor.

If q(A) > 0, then by assumption RRX(q(A)) ⩾ RRX(0) = n + 1 > 1,
which together with Lemma 2.13 implies

h0(X, A) = χ(X, A) = RRX(q(A)) > 1.

In particular A is not a fixed divisor.
If q(A) = 0 Conjecture 4.4 implies that A is movable. In both cases this

shows that F could not be a fixed divisor. □

Using Lemma 5.1 we can show:

Lemma 5.2. — Let X be an irreducible symplectic variety which satis-
fies Conjecture 4.4 and such that the map RRX |Z⩾0 is strictly monotonic.
Fix a big and nef bundle H ∈ Pic(X) and consider the decomposition
H = M + F into the movable and fixed part. If in this situation q(M) > 0,
then F = 0.

Proof. — By assumption, M is movable. Therefore M ∈ Pic(X)∩BK X

by Corollary 2.6. Since q(M) > 0, Lemma 2.13 applies and yields

χ(X, H) = h0(X, H) = h0(X, M) = χ(X, M),

where the first equality exploits that H is big and nef, and therefore satisfies
Kodaira vanishing, the second equality holds since M is the movable part
of H, and the third equality is the statement of Lemma 2.13.
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This implies q(H) = q(M), since by assumption RRX |Z⩾0 is strictly
monotonic, and in particular injective. Then

q(M) = q(H) = q(M + F ) = q(M) + 2(M, F )q + q(F ) implies
0 = 2(M, F )q + q(F ) = (M, F )q︸ ︷︷ ︸

⩾0

+ (H, F )q︸ ︷︷ ︸
⩾0

.

The fact that both terms on the right hand side are at least zero, fol-
lows from Lemma 1.2. This equality implies that (M, F )q = 0 = (H, F )q.
Therefore

0 = (H, F )q = (M + F, F )q = (M, F )q︸ ︷︷ ︸
=0

+ q(F ).

By Lemma 5.1, we know that q(F ) < 0 whenever F is not trivial. It follows
that F = 0 as claimed. □

Using these results, we can complete the proof of the main theorem

Proof of Theorem 4.7. — Let X be an irreducible symplectic variety
satisfying the conditions of Theorem 4.7 and H = M + F ∈ Pic(X) be a
big and nef line bundle with its decomposition into movable and fixed part.
Suppose that H ̸= M or equivalently that the fixed divisor F ̸= 0 is not
trivial. It follows from Lemma 5.2 that q(M) = 0. Using that RRX |Z⩾0 is
strictly monotonic one obtains

h0(X, M) = h0(X, H) = χ(X, H) = RRX(q(H)) > RRX(0) = n + 1,

since M is the movable part of H, by Kodaira vanishing, Theorem 1.3, and
Proposition 1.4. Denote M = m · L, where L is the primitive line bundle
in the same ray and m ⩾ 0. By Conjecture 4.4, |L| induces a rational
Lagrangian fibration to Pn and therefore h0(X, L) = n + 1. Thus m ⩾ 2.

We need to observe that F is irreducible. Let F =
∑

aiFi be the de-
composition of F into its irreducible components. Lemma 5.1 shows that
q(F ) < 0. Since 0 < (H, F )q = (M, F )q + q(F ) =

∑
i ai(M, Fi)q + q(F ),

there exists at least one i0 such that the irreducible component Fi0 satisfies
(M, Fi0)q > 0.

Define H ′ := M + Fi0 = mL + Fi0 . We will show that H ′ ∈ BK X ∩CX .
By choice of i0 one has (L, Fi0)q > 0, and thus (L, Fi0)q ⩾ div(Fi0) > 0.
On the other hand, since Fi0 is a fixed divisor, Lemma 5.1 shows that
q(Fi0) < 0, and thus Lemma 3.5 implies that

(5.1) −q(Fi0) ⩽ 2 div(Fi0) ⩽ 2(L, Fi0)q .
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Consequently

q(H ′) = q(mL + Fi0)

= m2q(L)︸ ︷︷ ︸
=0

+2(m − 1)(L, Fi0)q + 2(L, Fi0)q + q(Fi0)︸ ︷︷ ︸
⩾0

> 0.

For any irreducible effective divisor D ̸= Fi0 ∈ Pic(X) (in particular for
uniruled divisors) use Lemma 1.2 to see

(H ′, D)q = (mL + Fi0 , D)q = m(L, D)q︸ ︷︷ ︸
⩾0

+ (Fi0 , D)q︸ ︷︷ ︸
⩾0

⩾ 0.

Finally observe that

(H ′, Fi0)q = (mL + Fi0 , Fi0)q = m(L, Fi0)q + q(Fi0) ⩾ 0,

where the last inequality follows again from (5.1). Thus H ′ ∈ BK X ∩ CX

by Theorem 2.2.
Similar to Lemma 5.2 we show that F − Fi0 = 0: Since M is the mov-

able part of H, observe that h0(X, H) = h0(X, H ′) = h0(X, M). Us-
ing Lemma 2.13 twice, thus gives χ(X, H) = h0(X, H) = h0(X, H ′) =
χ(X, H ′), and thus q(H) = q(H ′) by the injectivity of RRX |Z⩾0 . Therefore

0 = q(H) − q(H ′) = (H, H ′ + F − Fi0)q − q(H ′)
= (H ′ + F − Fi0 , H ′)q + (H, F − Fi0)q − q(H ′)
= (F − Fi0 , H ′)q︸ ︷︷ ︸

⩾0

+ (H, F − Fi0)q︸ ︷︷ ︸
⩾0

,

where the last inequalities follow from Corollary 2.3. Consequently (H, F −
Fi0)q = 0 = (H ′, F − Fi0)q, and thus

q(F − Fi0) = (H − H ′, F − Fi0)q = (H, F − Fi0)q − (H ′, F − Fi0)q = 0.

Since F − Fi0 is a fixed divisor, Lemma 5.1 implies that F − Fi0 = 0.
Therefore F = Fi0 is irreducible and reduced and in addition (F, L)q =
(Fi0 , L)q > 0.

In order to establish the condition on RRX(q(H)), begin with the follow-
ing observation. For a primitive movable line bundle L ∈ Pic(X) ∩ BK X

with q(L) = 0, use Conjecture 4.4 for X to obtain a birational model X ′,
where the corresponding line bundle L′ induces a Lagrangian fibration to
Pn. In particular

(5.2) h0(X, mL) = h0(X ′, mL′) = h0(Pn, O(m)) =
(

m + n

n

)
,
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where the first equality follows from the fact that X and X ′ are isomorphic
away from codimension two by Lemma 1.5.

Therefore the theorem follows from the above, since by Kodaira vanishing
h0(X, H) = χ(X, H) = RRX(q(H)), and because a line bundle of the
form H = mL + F has base locus along F if and only if h0(X, H) =
h0(X, mL). □

6. Discussion of the assumptions in the statement

In this section we discuss the assumptions in the statement of Theo-
rem 4.7.

First note that Theorem 4.7 applies to all varieties of K3[n]-type and of
Kumn-type: Conjecture 4.4 holds in these cases by Theorem 4.5. The con-
dition that RRX |Z⩾0 is strictly monotonic, can either be verified directly,
or deduced from the following lemma:

Let U be the standard hyperbolic lattice of rank two, i.e. the lattice with
associated matrix ( 0 1

1 0 ).

Lemma 6.1. — Fix an irreducible symplectic variety X such that
(1) Conjecture 4.4 is satisfied for all deformations of X,
(2) H2(X,Z) is an even lattice with respect to the Beauville–

Bogomolov–Fujiki form, and
(3) H2(X,Z) contains a copy of U .

Then the restriction RRX

∣∣
Z⩾0

: Z⩾0 → Z is strictly monotonic and in par-
ticular injective.

Remark 6.2. — This lemma should serve as an indication that it is rea-
sonable to ask whether RRX

∣∣
Z⩾0

is strictly monotonic for all irreducible
symplectic varieties. Conjecture 4.4 is a classical conjecture on irreducible
symplectic varieties. Furthermore all known examples of irreducible sym-
plectic varieties satisfy 2 and 3. It is not known, whether these conditions
hold for arbitrary irreducible symplectic varieties. I expect, that in general
the question whether RRX

∣∣
Z⩾0

is strictly monotonic should be easier to
answer than Conjecture 4.4.

Proof. — The polynomial RRX only depends on the deformation type
of X. Therefore by passing to a suitable deformation of X we may assume
that Pic(X) ∼= U . Let E, F ∈ Pic(X) be the generators of U that span the
boundary of the positive cone. For k > 0 define the element Bk := F +kE ∈
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U . Then q(Bk) = 2k and therefore

RRX(2k) = RRX(q(Bk)) = χ(X, BK).

The closure of the birational Kähler cone BK X is cut out by uniruled
irreducible (and reduced) divisors D with q(D) < 0 (compare Theorem 2.2).
By Lemma 3.5 every such divisor D satisfies 1

2 |q(D)| ⩽ div(D). Express D

as aE + bF for some a, b ∈ Z. Then the equality gives
1
2 |2ab| ⩽ gcd(a, b),

which has solutions for |a| = |b| = 1 or a = 0 or b = 0. Thus the only
solution with q(D) < 0 is ±(E − F ).

Therefore there are two possible cases:
Case 1: Both elements E − F and F − E are not effective, and thus

BK X = CX . — By Conjecture 4.4 both E and F are effective with
h0(X, E) = h0(X, F ) = n + 1 > 1, where n = dim(X)/2 (both are giving a
rational Lagrangian fibration to Pn). In particular observe that

h0(X, B1) = h0(X, E + F ) > h0(X, F ) = n + 1, and

h0(X, Bk+1) = h0(X, Bk + E) > h0(X, Bk) ∀ k > 0.

Case 2: BK X ̸= CX . — In this case there exists a unique prime excep-
tional divisor: either E − F or F − E. Without loss of generality we may
assume D := F −E is effective, and thus E ∈ BK X induces a rational La-
grangian fibration to Pn by Conjecture 4.4. Therefore h0(X, E) = n+1 > 1,
and F = E + D implies h0(X, F ) ⩾ h0(X, E) = n + 1 > 1. Thus

h0(X, B1) = h0(X, F + E) = h0(X, 2E + D) ⩾ h0(X, 2E) > n + 1

and
h0(X, Bk+1) = h0(X, Bk + E) > h0(X, Bk) ∀ k > 0.

In both cases the elements Bk are contained in BK X ∩CX (for Case 2
note that (Bk, D)q = (F + kE, F − E)q = k − 1 ⩾ 0). Therefore by
Lemma 2.13 χ(X, Bk) = h0(X, Bk).

Together, this yields that in both cases:

RRX(2) = χ(X, B1) = h0(X, B1) > n + 1 = RRX(0), and

RRX(2k + 2) = χ(X, Bk+1) = h0(X, Bk+1)

> h0(X, Bk) = χ(X, Bk) = RRX(2k) ∀ k > 0,

which concludes the proof. □

For arbitrary deformation types, the condition that RRX is strictly
monotonic is known to hold up to dimension 6:
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Proposition 6.3. — Let X be an irreducible symplectic variety of di-
mension ⩽ 6. Then in the Riemann–Roch polynomial RRX(x) :=

∑n
i=0 bix

i

all bi are non-negative. Since bn > 0 this implies that RRX is strictly mono-
tonic.

Proof. — For dimension 6 this is shown in [6]. In fact the proof of [6,
Corollary 3.4] gives an explicit description for the bi in this case and shows
that they are non-negative.

The same arguments work for dimension < 6.
Finally, let us explain, why bn > 0. From the proof of [9, Corollary 23.18]

one sees that
∫

X
α2n = (2i)!bnq(α)i for every α ∈ H2(X,Z). Therefore bn

differs by a positive factor from the Fujiki constant, which is known to be
positive. □

7. Behaviour under deformation

In this section we discuss the behaviour of divisorial base loci of big and
nef line bundles on irreducible symplectic varieties under deformations.

For a given irreducible symplectic variety X, fix a marking η :
H2(X,Z)

∼=−→ Λ for some lattice Λ. Denote by M X
Λ the moduli space of

marked irreducible symplectic varieties deformation equivalent to (X, η).
Pick an element h ∈ Λ, such that H := η−1(h) is a big and nef line bun-
dle on X. Denote by M X

Λ,h the moduli space of semi-polarized marked
irreducible symplectic varieties deformation equivalent to (X, η), i.e. the
subspace of the moduli space M X

Λ , where the class h still corresponds to
a big and nef line bundle. To fix notation, t ∈ M X

Λ,h parametrizes an ir-
reducible symplectic variety Xt with marking ηt : H2(Xt,Z) ∼= Λ such that
Ht := η−1

t (h) is a big and nef line bundle.

Theorem 7.1. — Let X be an irreducible symplectic variety such that
its deformation type satisfies the conditions of the main theorem (Theo-
rem 4.7). Fix a marking η and a class h ∈ Λ as above. Then the locus in the
semi-polarized moduli space M X

Λ,h, where the semi-polarization has a non-
trivial base divisor, is a union of disjoint Noether–Lefschetz divisors (the
Noether–Lefschetz divisors corresponding to the possible base divisors).

Proof. — First note that the condition that RRXt
is strictly monotonic

ensures that for each t ∈ M X
Λ,h the semi-polarization Ht is effective (since

Ht is big and nef, it satisfies Kodaira vanishing and thus h0(Xt, Ht) =
χ(Xt, Ht) = RRXt

(q(Ht)) > 0 by assumption). Thus it makes sense to
study the base divisor.
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Consider a small open subset T ⊆ M X
Λ,h such that there exists a universal

family π : X → T with semi-polarization H ∈ Pic(X ) (this is possible
by [11, 1.12]). Let Xt := π−1t and Ht := H |Xt

. Then again by Kodaira
vanishing Hk(Xt, Ht) = 0 for all t ∈ T and k > 0. Therefore, by base
change π∗(H ) is a vector bundle with H0(Xt, Ht) = π∗H |t. Thus after
shrinking T , one can assume that all global sections of Ht are restrictions
of global sections of H . This implies that the base locus of H , which is
a closed set, is equal to the union of the base loci of the Ht. In particular,
the locus in T where Ht has a base divisor is closed. It thus suffices to
prove the statement locally in M X

Λ,h, and we can assume that there exists
a universal family.

If there exists t0 such that Ht0 has non-trivial divisorial base locus, then
one can apply the main theorem (Theorem 4.7). One sees that Ht0 is of
the form Ht0 = mLt0 + Ft0 , where m ⩾ 2, Lt0 is a primitive movable
line bundle with q(Lt0) = 0 and (Lt0 , Ft0)q > 0, such that h0(Xt0 , Ht0) =
RRXt0

(q(Ht0)) =
(

m+n
n

)
, Ft0 is a prime exceptional divisor with q(Ft0) < 0.

Consider T ′ ⊂ T the Noether–Lefschetz locus, where the class of Ft0

stays (1, 1), and thus there is a deformation F ∈ Pic(XT ′). We will show,
that Ht has non-trivial base divisor for all t ∈ T ′, and that the base divisor
is exactly Ft := F |Xt

.
As observed above, Kodaira vanishing implies that h0(Xt, Ht) is constant

and thus

(7.1) h0(Xt, Ht) = h0(Xt0 , Ht0) =
(

m + n

n

)
.

Since Ft0 is a prime exceptional divisor, it stays effective under deforma-
tion by [18, Proposition 5.2], i.e. for every t ∈ T ′ the divisor Ft is effective.

Set Lt := 1
m (Ht − Ft), which is a primitive, integral class. Since both Ht

and Ft are of (1, 1) type along T ′, the same holds for Lt.

Claim 7.2. — For every t ∈ T ′ the line bundle Lt is effective with
h0(Xt, mLt) ⩾ h0(Pn, OPn(m)) =

(
m+n

n

)
for all m.

Proof of claim. — Since Lt0 ∈ BK Xt0
, also for very general t ∈ T ′

the line bundle Lt ∈ BK Xt
(use Theorem 2.2 to see this is satisfied for

every t which does not admit an additional uniruled divisor in Pic(Xt)).
Further, note that q(Lt) = q(Lt0) = 0. Consequently, for general t ∈ T ′

Conjecture 4.4 implies that Lt induces a rational Lagrangian fibration to
Pn, and thus h0(Xt, mLt) ⩾ h0(Pn, OPn(m)) =

(
m+n

n

)
. The claim follows

by semicontinuity. □
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To conclude the proof of Theorem 7.1 use that by construction Ht =
mLt + Ft for every t ∈ T ′, where we saw above that all involved line
bundles are effective. We therefore have(

m + n

n

)
(7.1)= h0(Xt, Ht) ⩾ h0(Xt, mLt)

7.2
⩾

(
m + n

n

)
.

Thus all involved inequalities must be equalities, in particular h0(Xt, Ht) =
h0(Xt, mLt), which implies that Ft is contained in the base locus of Ht

and then Theorem 4.7 implies that the base divisor of Ht is irreducible and
reduced, and therefore coincides with Ft. □

8. Base divisors for K3[n]-type

In this section we improve the main theorem (Theorem 4.7) for irre-
ducible symplectic varieties of K3[n]-type. We need the following Riemann–
Roch formula.

Proposition 8.1 (Riemann–Roch for K3[n]-type, [9, Example 23.19]).
Let X be of K3[n]-type, and L ∈ Pic(X) be a line bundle. Then

χ(X, L) =
( 1

2 q(L) + n + 1
n

)
.

With this in mind, we find the following characterization for base divisors
of big and nef line bundles on irreducible symplectic varieties of K3[n]-type.

Proposition 8.2. — Let X be an irreducible symplectic variety of
K3[n]-type and H ∈ Pic(X) a line bundle that is big and nef. Then H

has a fixed divisor if and only if H is of the form H = mL + F , where
m ⩾ 2, L is movable with q(L) = 0, and F is an irreducible reduced divisor
of negative square with (L, F )q = 1. In this case F is the fixed divisor of H.

Proof. — Let H ∈ Pic(X) be a big and nef line bundle on X. Recall that
Theorem 4.7 can be applied for K3[n]-type by Section 6. This shows that H

has non-trivial base divisor if and only if H = mL + F where m ⩾ 2, L is
movable with q(L) = 0, and F is an irreducible reduced divisor of negative
square, and (L, F )q > 0, such that h0(X, H) =

(
m+n

n

)
. Therefore, we only

need to observe that the additional condition (L, F )q = 1 is equivalent to
h0(X, H) =

(
m+n

n

)
.

Since H is big and nef by assumption, Kodaira vanishing and the
Riemann–Roch for K3[n]-type (see Proposition 8.1) imply that

h0(X, H) = χ(X, H) =
( 1

2 q(H) + n + 1
n

)
.
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In this case H = mL + F shows that

(8.1) q(H) = q(mL + F ) = 2m(L, F )q + q(F )
= 2(m − 1)(L, F )q + 2(L, F )q + q(F )︸ ︷︷ ︸

⩾0

,

where the inequality of the last term follows from Lemma 3.5 since
(L, F )q > 0.

Therefore

h0(X, H) =
( 1

2 q(H) + n + 1
n

)
⩾

(
(m − 1)(L, F )q + n + 1

n

)
(∗)
⩾

(
(m − 1) + n + 1

n

)
=

(
m + n

n

)
,(8.2)

where equality in (∗) holds if only if (L, F )q = 1.
To see the equivalence h0(X, H) =

(
m+n

n

)
if and only if (L, F )q = 1, first

suppose h0(X, H) =
(

m+n
n

)
. In this case equality holds in all places in (8.2).

In particular, there is equality in (∗), whence (L, F )q = 1.
For the other implication, suppose that (L, F )q = 1. Since q(F ) < 0,

Lemma 1.2 implies that F is a fixed divisor, (L, F )q = 1 ensures that
div(F ) = 1. Note that the K3[n]-lattice ΛK3[n] is an even lattice. Therefore
use Lemma 3.5 to see that −q(F ) ⩽ 2 div(F ) = 2, and thus q(F ) = −2. In
particular, 2(L, F )q+q(L) = 2·1−2 = 0, which shows that both inequalities
in (8.2) are equalities in this case. Consequently, h0(X, H) =

(
m+n

n

)
. □

9. Base divisors for Kumn-type

Similar as in the previous section, we need the following

Proposition 9.1 (Riemann–Roch for Kumn-type, [9, Example 23.20]).
Let X be an irreducible symplectic variety of Kumn-type, and L ∈ Pic(X)
be a line bundle. Then

χ(X, L) = (n + 1)
( 1

2 q(L) + n

n

)
.

This can be used to exclude divisorial base components for big and nef
line bundles on varieties of Kumn-type:

Proposition 9.2. — Let X be an irreducible symplectic variety of
Kumn-type, and H a big and nef line bundle. Then H is movable, i.e. it
does not have a fixed divisor.
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Proof. — Suppose for contradiction that H has non-trivial base divisor.
Note that Theorem 4.7 can be applied to Kumn-type by Section 6. Thus
there exists an irreducible reduced divisor F of negative square such that
H is of the form H = mL + F , where m ⩾ 2, L is a primitive movable line
bundle with q(L) = 0 and (L, F )q > 0, such that RRX(q(H)) =

(
m+n

n

)
.

We only need to see that this cannot happen for X of Kumn-type.
As in (8.1)

q(H) = 2(m − 1)(L, F )q + 2(L, F )q + q(F )︸ ︷︷ ︸
⩾0

.

We will use this to show, that there are no positive integral values for m

and n such that

(9.1) RRX(q(H)) =
(

m + n

n

)
= (m + n)!

n! · m! .

Distinguish between two cases:

Case 1: If (L, F )q = 1. — Since the Kumn-lattice is even and q(F ) < 0,
in this case 0 ⩽ 2(L, F )q + q(F ) = 2 + q(F ) ⩽ 0, and thus in fact there is
equality everywhere, q(F ) = −2 and

(9.2) q(H) = 2(m − 1)(L, F )q = 2(m − 1).

With this in mind use Riemann–Roch for Kumn-type (Proposition 9.1) to
see that the left hand side of (9.1) is

RRX(q(H)) = χ(X, H) = (n + 1)
( 1

2 q(H) + n

n

)
(9.2)= (n + 1)

(
m − 1 + n

n

)
= (n + 1)(m + n − 1)!

n! · (m − 1)!

Therefore, (9.1) becomes

(n + 1)(m + n − 1)!
n! · (m − 1)! = (m + n)!

n! · m!

⇐⇒ (n + 1) · 1 = (m + n)
m

⇐⇒ nm + m = m + n

⇐⇒ 1 = m.

which is a contradiction to m ⩾ 2, which would hold if H were a big and
nef line bundle with a fixed divisor.
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Case 2: If (L, F )q ⩾ 2. — Again, we want to verify, that there are no
positive integral solutions m, n of (9.1). Note that in this case

q(H) = 2(m − 1)(L, F )q + 2(L, F )q + q(F )︸ ︷︷ ︸
⩾0

⩾ 4(m − 1).

In addition, m ⩾ 2 immediately implies that 2(m − 1) ⩾ m. Since RRX is
monotonic for Kumn-type this implies that

RRX(q(H)) = n

( 1
2 q(H) + n − 1

n − 1

)
⩾ (n + 1)

(
2(m − 1) + n

n

)
⩾ (n + 1)

(
m + n

n

)
>

(
m + n

n

)
.

This is the desired contradiction to the equality in (9.1). □
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