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ON THE HARTOGS EXTENSION THEOREM FOR
UNBOUNDED DOMAINS IN Cn

by Al BOGGESS, Roman DWILEWICZ† & Egmont PORTEN

To the memory of Roman Dwilewicz

Abstract. — Let Ω ⊂ Cn, n > 2, be a domain with smooth connected bound-
ary. If Ω is relatively compact, the Hartogs–Bochner theorem ensures that every
CR distribution on ∂Ω has a holomorphic extension to Ω. For unbounded domains
this extension property may fail, for example if Ω contains a complex hypersurface.
The main result in this paper tells that the extension property holds if and only if
the envelope of holomorphy of Cn \ Ω is Cn. It seems that it is the first result in
the literature which gives a geometric characterization of unbounded domains in
Cn for which the Hartogs phenomenon holds.

Comparing this to earlier work by the first two authors and Z. Słodkowski, one
observes that the extension problem changes in character if one restricts to CR
functions of higher regularity.
Résumé. — Soit Ω ⊂ Cn, n > 2, un domaine à bord lisse et connexe. Si Ω

est relativement compact, le théorème de Hartogs et Bochner assure que toute
distribution CR définie sur ∂Ω admet une extension holomorphe à Ω. Cela ne se
généralise pas forcément aux domaines non-bornés, par exemple si Ω contient une
hypersurface complexe. Le résultat principal de l’article dit que la propriété d’ex-
tension holomorphe a lieu si et seulement si l’enveloppe d’holomorphie de Cn\Ω est
Cn. Il apparaît que cela est le premier résultat connu à donner une caracterisation
géometrique des domaines non-bornés pour lesquels le phénomène de Hartogs est
valide.

En se référant à des résultats antérieurs des deux premiers auteurs et Z. Słod-
kowski, on constate que le problème d’extension change de nature si on se restreint
à des fonctions CR plus régulières.

1. Introduction

Throughout this article we consider a domain Ω = Ω− ⊂ Cn, n > 2,
with C∞-smooth connected boundary M . If Ω is relatively compact in Cn,
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the classical Hartogs–Bochner theorem tells that every CR function on
M admits holomorphic extension to Ω. Via a convenient notion of weak
boundary values, this result naturally generalizes to CR distributions.
The classical Hartogs extension theorem made an important influence

not only on Complex Analysis, but also on other areas of mathematics,
like Algebraic Geometry or Partial Differential Equations. The theorem
still inspires researchers and there is a renewed interest in recent years:
Harz–Shcherbina–Tomassini [15, 16], Øvrelid–Vassiliadou [28], Damiano–
Struppa–A.Vajiac–M.Vajiac [9], Palamodov [29], Ohsawa [27], Coltoiu–
Ruppenthal [8], Lewandowski [21], and papers by the authors with other
colleagues [3, 4, 5, 6], [24, 25].

A good deal of the mentioned contributions consider extension from
boundaries of unbounded domains. Easy examples show that the Hartogs–
Bochner theorem may fail for unbounded domains, leading to the problem
to understand the precise nature of the obstacles. The essence of the present
article is a geometric characterization of the Hartogs extension property for
CR distributions.

Let S be a smooth real hypersurface of Cn and ω ⊂ Cn a domain such
that ω\S has two connected components ω− and ω+. A function f ∈ O(ω−)
is said to have polynomial growth at p ∈ S∩ω, if there are k > 0 and ε > 0
such that

(1.1) |f(z)| 6 C dist(z, S)−k

holds for z ∈ ω− ∩Bε(p). We say that f has polynomial growth towards S
if it has polynomial growth at every p ∈ S ∩ ω. It is well-known that such
functions have unique weak boundary values in D′CR(S), the space of CR
distributions on S, see [1, Chapter VII] and also Section 2.

Definition 1.1. — We say that Hartogs extension holds for Ω, if every
u ∈ D′CR(M) is the boundary value of some f ∈ O(Ω) with polynomial
growth along M .

The most straightforward examples for domains without Hartogs exten-
sion are domains containing a complex hypersurface, but these are very far
from exhausting all possible obstructions. Despite of considerable recent
activity, see [9, 25, 27, 28, 31], or the older [22], to mention a few, a satisfy-
ing understanding of Hartogs extension for unbounded domains seems still
to be missing, even in the case that M is strictly pseudoconvex at every
point. The main result of the present note is a geometric characterization
that establishes a close link to envelopes of holomorphy.
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HARTOGS EXTENSION THEOREM FOR UNBOUNDED DOMAINS 1187

Theorem 1.2 (Main Theorem). — Let Ω ⊂ Cn, n > 2, be a domain
with connected smooth boundary M . Then Hartogs extension holds for Ω
if and only if the envelope of holomorphy of the outer domain Ω+ = Cn \Ω
is Cn.

Actually, Theorem 1.2 is the global version of the more general Theo-
rem 4.1, where Ω+ is replaced by arbitrary outer collars attached to M .
Moreover, Theorem 1.2 straightforwardly generalizes to domains in Stein
manifolds.

Theorem 1.3 (cf. Theorem 6.1). — Let X be a Stein manifold with
dimCX > 2, and let Ω ⊂ X be a domain with connected smooth boundary
M . Then Hartogs extension holds for Ω if and only if the envelope of
holomorphy of the outer domain Ω+ = X \ Ω is X.

Note also that Theorem 1.2 easily implies the classical Hartogs–Bochner
theorem for bounded domains, since holomorphic extension from the com-
plement of a closed round ball to Cn (containing Ω) can be proved by
combining the one-dimensional Cauchy formula along parallel slices.
Since pseudoconvex domains coincide with their envelope of holomorphy,

we immediately obtain

Corollary 1.4. — If Ω and M are as in Theorem 1.2 and Ω+ is con-
tained in a pseudoconvex proper subdomain of Cn, then Hartogs extension
fails. This holds in particular if Ω contains a closed complex subvariety of
Cn of dimension n− 1.

If M is unbounded the assumptions of Theorem 1.2 are symmetric with
respect to the sides Ω±. In view of Corollary 1.4, the reader may wonder
about similarities with the theorem of Trépreau [35] on local extension of
CR functions from real hypersurfaces. We will elaborate on the relation
between the two results in Section 7.
The picture changes significantly, if we restrict to extension of smooth

CR functions from the boundary of Ω. Obviously extension still fails if Ω
contains a complex hypersurface. The case where Ω contains a complex hy-
persurface but Ω does not is more delicate: Examples constructed in [5] by
the first two authors and Z. Słodkowski show that simultaneous extension of
smooth CR functions to Ω may be valid or not, depending on a finer geom-
etry of intersection of the complex hypersurface and the boundary. These
examples are constructed as domains Ω ⊂ C2 with variables (z, w) ∈ C2

which contain the complex line L = {(0, w) : w ∈ C} in the boundary of Ω.
Note that the envelope E(C2 \ Ω) is different from C2 and hence Hartogs
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1188 Al BOGGESS, Roman DWILEWICZ & Egmont PORTEN

extension does not hold for such domains. However, for each w ∈ C, let
Ωw = {z ∈ C : (z, w) ∈ Ω} be the “cross section” of Ω at (0, w) ∈ ∂Ω.
Depending on how much Ωw “twists” around the origin in C as w varies,
Ω may or may not have the property that smooth CR functions on ∂Ω
extend continuously to holomorphic functions on Ω. Therefore combining
Theorem 1.2 with these examples constructed in [5, Section 5] we get

Corollary 1.5. — There are domains Ω ⊂ C2 with smooth connected
boundary such that Hartogs extension fails but every C∞-smooth CR func-
tion on ∂Ω has a holomorphic extension to Ω (which is smooth up to ∂Ω).

For more results and questions on particular domains (bounded or un-
bounded) we refer to [3, 4, 5, 6, 11, 15, 16, 22, 32]. It may also be interest-
ing to study domains obtained by intersecting smoothly bounded domains
in CP2 with C2, for example with respect to extension from parts of the
boundary, see [26] for domains in C2 and further references.

The paper is organised as follows: After some preliminaries collected
in Section 2, we prove the easier direction in Theorem 1.2 in Section 3.
More precisely, we show how properties of the envelope of holomorphy of
Ω+ imply Hartogs extension by using jump formulas and ∂-methods. The
converse direction is treated in the Sections 4 and 5. Section 4 contains
topological preparations, which permit in particular, to localise to envelopes
of thin collars of the domain. Section 5 completes the proof of Theorem 1.2.
The main ingredient is the use of holomorphic functions with polynomial
growth in order to construct nonextendible CR distributions. In Section 6,
a generalisation of the main theorem to domains in Stein manifolds is given.
The final section relates our result to the topic of removable singularities.
More precisely, we analyse obstructions to extension confined to M and
exhibit analogies to Trépreau’s theorem.
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2. Preliminaries

Riemann domains. First we recall basic material on Riemann domains
and envelopes of holomorphy, referring to the monograph [18] for a thor-
ough introduction. For a domainD ⊂ Cn, we denote by πD : E(D)→ Cn its
envelope of holomorphy. It is a Riemann domain (i.e. πD is a local biholo-
morphism) and there is a canonical embedding ιD : D ↪→ E(D) satisfying
πD ◦ ιD = idD, allowing us to identify D with ιD(D) ⊂ E(D). A classical
theorem based on the solution of the Levi problem tells that E(D) is Stein.

Following Grauert and Remmert [12], one may associate to every Rie-
mann domain π : X → Cn an abstract closure π : X → Cn and an abstract
boundary bX = X \X. Referring to [18, Section 1.5] for a careful treatment
of the subtle construction, see also Section 6, we record that X is equipped
with a natural topology which restricts to the standard topology on X.
Moreover X is the closure of X in X, and π is the continuous extension of
π. For C1-smoothly bounded domains D ⊂ Cn, the abstract closure coin-
cides with the usual one, but for rough boundaries the abstract boundary
bD may be multi-sheeted above the standard boundary ∂D.

Distributions. Recall some basic facts on distributions on a real man-
ifold M . We consider a covering {ωj} of M by coordinate neighborhoods
ωj , i.e. open sets equipped with diffeomorphisms κj : ωj → ω̃j ⊂ Rm,
m = dimM . Following [17, Section 6.3] a distribution on M is given by
such a covering together with distributions uj ∈ D′(ω̃j) satisfying

(2.1) ui[ϕ] = uj
[
|Jκij
|ϕ ◦ κij

]
for every ϕ ∈ D(κi(ωi ∩ ωj)), where κij = κi ◦ κ−1

j and Jκij is the Ja-
cobian determinant of the transition map. This definition of distributions
on M is natural in so far that every function g ∈ C(M) identifies with
the distribution gj : ϕ 7→

∫
(g ◦ κ−1

j )ϕdx, ϕ ∈ D(ω̃j), because of the
transformation formula. Note on the other hand that distributions do not
canonically correspond to elements of the dual space of D(M). In the proof
of Proposition 3.1, we shall see how to use metrics to this end.

CR distributions. For a C∞-smooth hypersurfaceM in Cn, we say that
a distribution u = {uj} is a CR distribution if the uj satisfy the tangential
Cauchy–Riemann equations in the weak sense. To a function f ∈ O(Ω)
satisfying (1.1) we associate weak boundary values in the following way:
Locally we can represent M as a graph

(2.2) yn = h(z1, . . . , zn−1, xn) = h(z′, xn),

TOME 72 (2022), FASCICULE 3



1190 Al BOGGESS, Roman DWILEWICZ & Egmont PORTEN

with h ∈ C∞(ω̃) with ω̃open ⊂ Cn−1
z′ × Rxn

, so that Ω lies on the side
{yn > h}. Then the distributions fε ∈ D′(ω̃) defined by

fε[ϕ] =
∫
f(z′, xn + i(h(z′, xn) + ε))ϕ(z′, xn) dx1 dy1 . . . dxn−1 dyn−1 dxn

tend to a CR distribution f∗ ∈ D′(ω̃) for ε ↓ 0, see [1, Theorem 7.2.6]. We
can select a cover of M by open sets ωj graphed over ω̃open

j ⊂ Cn−1 × R
and obtain distributions f∗j ∈ D′(ω̃j) as above. By the Baouendi–Trèves
approximation theorem we can locally approximate the f∗j by (pullbacks
of) restrictions of entire functions and derive that the f∗j satisfy (2.1).

Boundary values of holomorphic functions. For detailed informa-
tion on CR functions, we refer to [2, 24]. We will need the following fact:
Let D be a full neighborhood of M in Cn and let f ∈ O(D \ M) have
polynomial growth towards M from both sides. If near every z ∈ M the
two local boundary values of f from opposite sides coincide, then f extends
holomorphically through M .
We sketch a proof based on the hypoanalytic wave front set WFha(u),

which is defined for CR distributions u on C∞-smooth embedded CR man-
ifolds, and refer to [36] for a thorough introduction and the basic structure
theorems we use in the sequel. By definition WFha(u) is a R>0-invariant
subset of the pointed characteristic bundle. More precisely, the character-
istic bundle is the real line bundle

H0M =
⋃
p∈M
{ξ ∈ T ∗pM : ξ|HpM ≡ 0} ⊂ T ∗M,

and WFha(u) is a subset of H0M minus the zero section. Now the two
local weak boundary values f− = f+ = f∗ coincide. The existence of each
of the local extensions f± rules out one side of the zero section in H0M

from WFha(f∗). Hence WFha(f∗) is locally empty, whence f∗ extends
holomorphically to an ambient neighborhood.

3. Holomorphic extension

The following proposition yields sufficiency in Theorem 1.2.

Proposition 3.1. — Let Ω ⊂ Cn, n > 2, be a domain with smooth
connected boundary M . If the envelope of holomorphy of Cn \ Ω is Cn,
Hartogs extension is valid for Ω.

ANNALES DE L’INSTITUT FOURIER
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We will indicate how the proof can be pieced together from known tech-
niques. Straightforward modifications yield versions for varying degrees of
regularity, for example for continuous CR functions defined on a C1-smooth
boundary.
Proof. — On M we select a smooth Riemannian metric µ and fix the

orientation induced on M as the boundary of Ω. We may restrict to graph
representations as in (2.2) such that

dx1 ∧ dy1 ∧ . . . ∧ dxn−1 ∧ dyn−1 ∧ dxn
is positive and write µ’s volume form σ in the local coordinates κj as

σ = σj dx1 ∧ dy1 ∧ . . . ∧ dxn−1 ∧ dyn−1 ∧ dxn.

Since σi = Jκji
σj by the transformation formula, the coordinate-wise de-

fined products σjuj glue to an element of uµ ∈ D′(M), if u = {uj} is a
distribution.
To every CR distribution u = {uj} on M , we may canonically associate

a current Tu on Cn of bidegree (0, 1) in the following way: For a smooth
compactly supported (2n − 1)-form ψ ∈ D(2n−1)(M) the function ψ/σ

(defined as the unique function ψ̃ satisfying ψ = ψ̃σ) has compact support.
Hence

Tu,M [ψ] = (uµ)[ψ/σ]
is a (2n− 1)-dimensional current Tu,M on M . Writing

ωx,y′ = dx1 ∧ dy1 ∧ . . . ∧ dxn−1 ∧ dyn−1 ∧ dxn,

the equality

(uj)µj

[
ψ

σjωx,y′

]
= uj [ψ/ωx,y′ ]

holds locally. Thus Tu,M is independent of µ. Finally we set

Tu[ϕ] = Tu,M [(ιM )∗ϕ]

for smooth (n, n−1)-forms ϕ ∈ D(n,n−1)(Cn). Here ιM is the embedding of
M and (ιM )∗ϕ is the pullback of ϕ to M . Again Tu is µ-independent and
∂-closed. For the last property, one may observe that ∂-closedness is a local
property (since M is properly embedded) and use the Baouendi–Trèves
approximation theorem.
Since H1

∂̄
(Cn) = 0, the Dolbeault isomorphism gives a distribution solu-

tion f ∈ D′(Cn) of
∂f = Tu.

Since Tu has no mass outside M , f restricts to holomorphic functions f−
on Ω− = Ω and f+ on Ω+ = Cn \ Ω, by elliptic regularity. By [7, 20], u

TOME 72 (2022), FASCICULE 3
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is the jump from f− to f+ in the following sense: If r ∈ C∞(U) is a local
defining function of M ∩ U , U b Cn, then∫

r=ε
f+ϕ −

∫
r=−ε

f−ϕ −→ Tu[ϕ], if ε ↓ 0,

holds for all ϕ ∈ C∞(n,n−1)(U) with suppϕ ⊂ U . Now f+ extends to a
holomorphic function on Cn by assumption, and

lim
ε↓0

∫
r=ε

f+ϕ = lim
ε↓0

∫
r=−ε

f+ϕ =
∫
M

f+ϕ

holds by continuity. Hence f+ − f− defines the desired extension of u
to Ω. �

4. Localization near M

A domain C ⊂ Cn \ Ω is called an outer collar of M if C ∪ M is a
relative neighborhood of M in Cn \Ω = Ω+ ∪M , see Figure 4.1. Of course
Ω+ = Cn \ Ω itself is an outer collar. In this section we show that Ω+ can
be replaced by an arbitrary outer collar in the assumptions of Theorem 1.2.
The most general version of our main result is

Ω+ = Cn \ Ω

M
C

Ω

Figure 4.1. Outer collar C

ANNALES DE L’INSTITUT FOURIER
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Theorem 4.1. — For a domain Ω ⊂ Cn, n > 2, with connected smooth
boundary M the following properties are equivalent:

(a) The envelope of holomorphy of Ω+ is Cn.
(b) For every outer collar C of M , the canonical embedding ιC : C ↪→

E(C) extends to a (unique) lifting of Ω ∪M ∪ C to E(C).
(c) There is an outer collar C of M such that ιC extends as in (b).
(d) Every u ∈ D′CR(M) has a holomorphic extension to Ω.

Here we give the topological part of the proof, postponing the extension
part (d) to the next section.

Proof that (a) ⇔ (b) ⇔ (c). — Since the implications (b) ⇒ (a) ⇒
(c) are tautological, it suffices to show (c) ⇒ (b). We let C1 be a collar
as granted by (c) and have to show the lifting property for an arbitrary
collar C2. �

Lemma 4.2. — If the lifting property holds for some subcollar C ′2 ⊂ C2,
it also holds for C2.

Proof. — The lifting property is equivalent to the fact that all f ∈ O(C ′2)
extend to Ω∪M∪C ′2. Applying this extension property to restrictions g|C′2 ,
g ∈ O(C2), we get the extension property and thereby the lifting property
for C2. �

Hence it suffices to prove the lifting property for an appropriate subcollar
of C2, allowing us to assume that C2 ⊂ C1.

Lemma 4.3. — LetM ′ be a smooth hypersurface obtained by isotoping
M into C2. Then M ′1 = ιC1(M ′) disconnects E(C1), and M ′2 = ιC2(M ′)
disconnects E(C2) (see Figure 4.2).

Proof. — The argument is the same for M ′1 and M ′2. Since M ′1 is con-
nected, E(C1) \M ′1 has at most two connected components. If there is only
one, there is a smoothly embedded loop γ ⊂ E(C1), which has exactly one
transverse intersection point with M ′1 (take a small arc transverse to M ′1
and link the endpoints by another arc that does not intersect M ′1). By a
result of Kerner [19], see also [33], ιC1 induces a surjective homomorphism
(ιC1)∗ : π(C1) ↪→ π(E(C1)) between the fundamental groups. Hence there
is a loop γ̃ ⊂ C1 such that ιC1(γ̃) and γ are homotopic within E(C1).
We use intersection numbers of oriented loops λ ⊂ Cn with M ′, which

can be defined as follows: Let Ω′ be the domain in Cn bounded by M ′ and
containing Ω. For λ transverse to M ′, we compute the intersection number
by subtracting the number of points where λ enters Ω′ from the number of
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points where λ leaves Ω′. The definition extends to general λ because the
intersection number is homotopy invariant, see [13] for details.
SinceM∩C1 = ∅ the intersection number of γ̃ andM is zero and the same

holds for the intersection of γ̃ and M ′ (which is isotopic to M). Pushing
forwards by ιC1 , we get zero intersection number between ιC1(γ̃) and M ′1
(the intersection number is calculated locally at the intersection points).
This contradicts the stability of intersection numbers under homotopy and
the fact that the intersection number of γ and M ′1 is ±1. �

M

M ′
1 = ιC1(M ′)

M ′
2 = ιC2(M ′)

M ′

Cn

E(C1) gluing E(C1)+ and E(C2)−

along M ′
1 and M ′

2

E(C1)+

Ω

E(C2)−

C2

ιC1 ιC2

E(C2)

C1

Figure 4.2. Two collars and corresponding envelopes

Continuation of the proof (c)⇒ (b). — Denote by E(C2)− the connected
component of E(C2) \M ′2 which lies on the side of Ω, see Figure 4.2. More
precisely, M can be identified, via the canonic embedding C2 ↪→ E(C2),
with a subset of the abstract closure of E(C2), and E(C2)− is the connected
component containing the lifting of M in its closure. It suffices to show
that the domain Ω′ considered in the proof of Lemma 4.3 lifts to E(C2)−
biholomorphically.
To this end, we construct a new Riemann domain πX′ : X ′ → Cn by

gluing E(C2)− with E(C1)+ along M ′. More precisely, E(C1)+ is the con-
nected component of E(C1)\M ′1 on the side opposite to M , and the gluing
identifiesM ′2 withM ′1. Denote by M̃ the corresponding hypersurface of X ′.
Note that there is a natural embedding ι′ of C1 into X ′, which coincides
with ιC1 along M ′.

ANNALES DE L’INSTITUT FOURIER
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Since pseudoconvexity is a local property at points of the abstract bound-
ary andX ′ is obtained by gluing two pseudoconvex Riemann domains along
a set in the interior, X ′ is pseudoconvex by [10]. Treating the sides of M̃
separately, we see that every f ∈ O(C1) extends to X ′. Hence X ′ is an
extension of C1 in the terminology of [18, Section 1.4], and by the pseu-
doconvexity of X ′, this extension is maximal. Hence X ′ is equivalent to
the envelope of holomorphy E(C1) as a Riemann domain over Cn, meaning
that Ω′ lifts to X ′. Since the lifting has image in the side of M̃ which is
equivalent with E(C2)−, we have proved the existence of the desired lifting
for C2.

This finishes the proof that the first three properties are equivalent. The
link to (d) will be completed in the subsequent section. �

5. Obstructions to Hartogs extension

In this section, we will prove the harder direction in Theorem 1.2.

Geometry of E(Ω+). Recall that we consider a domain Ω = Ω− with
smooth connected boundary M , and assume that the envelope of holomor-
phy πΩ+ : E(Ω+) → Cn of Ω+ = Cn \ Ω differs from Cn. For notational
simplicity we write X+ instead of E(Ω+), π instead of πΩ+ , π instead of the
continuous extension (πΩ+) : X+ → Cn, and ι : Ω+ ↪→ X+ instead of ιΩ+ .

LetM1 be a smooth hypersurface obtained by slightly deformingM into
Ω+. Let Ω1 be the domain that is bounded byM1 and contains Ω. Then the
intersection C = Ω1 ∩ Ω+ is a one-sided collar of M , lying opposite to Ω.
As in the proof of Theorem 4.1, we see that ι(M1) disconnects X+ into two
domains. Let X−1 be the connected component of X+ \ ι(M1) that contains
ι(C). Obviously X−1 = ι(C) ∪ (X+ \ ι(Ω+)). The arguments of Section 4
actually allow us to identify X−1 with a subdomain of the envelope of C,
but we will not need this here. Note that π(X−1 ) need not be contained
in Ω1 and that there may be multi-sheetedness over both sides of M , as
indicated in Figure 5.1.
We distinguish two cases:

Case 1: X+ is univalent. — In this case we may identify both X+ and
X−1 with domains in Cn, and the mappings ι and π are inclusions. Since
Ω1 is one of the sides of M1 in Cn and X−1 contains C, X−1 is contained
in Ω1. It has to be a proper subset, for X+ would be biholomorphic to
Cn otherwise. It follows that the abstract boundary bX−1 is the disjoint
union of M1 with a nonvoid set S satisfying π(S) ⊂ Ω. Note that π may

TOME 72 (2022), FASCICULE 3
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X+

M1

X−1

M

Ω+ = Cn \ Ω

C

π

ι(M1)

Ω = Ω−

Ω1

Figure 5.1. Multi-sheetedness

become multi-sheeted on S, which therefore cannot be identified with a
subset of Cn.

Case 2: X+ is multi-sheeted. — Obviously, this can only happen if ι(Ω+)
is a proper subset of X+. For later use, we will only need that there is a
p0 ∈ X+ \ ι(Ω+) such that the fiber π−1(π(p0)) contains at least two
elements.

Construction of CR distributions. Lifting the Euclidean distance,
we get a Riemannian metric on any Riemann domain π : X → Cn and
thereby the distance(1) dist(p, bX) between a point p ∈ X and the abstract
boundary bX. For a nonnegative integer k we consider the Banach space

O(k)(X) = {f ∈ O(X) : f(p) δkX(p) is bounded on X},

where

δX(p) = min
(

dist(p, bX), 1√
1 + |π(p)|2

)
,

(1) dist(p, bX) is the supremum of all r > 0 such that Br(π(p)) can be lifted to X so
that π(p) is mapped to p.
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see [18, Section 2.5] for detailed information. As observed in [26], see
also [30], these spaces are useful for constructing CR distributions with
prescribed singularities.

Lemma 5.1. — Let f ∈ O(k)(X+) be given.
(a) The restriction f+ = f |ι(Ω+) has a unique CR distribution f∗ ∈
D′CR(M) of order k + 1 as weak boundary values on M .

(b) If f∗ has a holomorphic extension f− ∈ O(Ω) then f− and f+ glue
to an entire function. In particular f∗ is smooth.

Proof. — For z ∈ Ω+ close to M , we have

|fΩ+(z)| 6 C dist−k(z, bX+) 6 C dist−k(z,M).

Thus f |Ω+ has at most polynomial growth towards M , and (a) follows
from classical results on boundary values of holomorphic functions, see [1,
Ch. VII]. If there is also an extension f− to the other side, the hypoanalytic
wave front set of f∗ is empty, meaning that f∗ is locally a restriction of a
holomorphic function, and (b) follows from the uniqueness of holomorphic
extension. �

From [26] we recall the following

Lemma 5.2. — Let πY : Y → Cn be a pseudoconvex Riemann domain
and q a point on the abstract boundary bY . Then there is a sequence
Y 3 pj → q and a function f ∈ O(2n+1)(Y ) such that |f(pj)| → ∞.

Now we are ready to construct a nonextendable CR distribution in the
two cases from our previous discussion of the geometry. In Case 1 there is
a point q ∈ bX+ ∩ π−1

X+(Ω), a sequence X+ 3 pj → q (convergence with
respect to topology of the abstract closure of X+, which may be finer than
the subspace topology coming from Cn) and a function f ∈ O(2n+1)(X+)
as in Lemma 5.2.
We claim that the CR distribution f∗ associated to f by Lemma 5.1 does

not extend holomorphically to Ω. Otherwise Lemma 5.1(b) yields an entire
function F . The identity principle shows that F is an extension of f (with
X+ considered as a subset of Cn), which is impossible since |f(pj)| → ∞.

In Case 2 we get a function f ∈ O(6n+1)(X) which separates the points in
the fiber π−1(π(p0)) from [18, Proposition 2.5.5]. Actually it suffices that f
attains different values at p0 and a second point p1 ∈ π−1(π(p0)). Again we
claim that the induced CR distribution f∗ does not extend to Ω. Otherwise
the extension and f |Ω+ glue along M to an entire function F . The identity
principle yields f = F ◦ π, and therefore f(p0) = f(p1), in contradiction to
the choice of f .
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Remark 5.3.
(a) In some cases (for example if M is strictly pseudoconvex at every

point and Ω is the pseudoconvex side) the CR distributions we find
to be obstructions to Hartogs extension are smooth onM . In general
this cannot always be achieved because of examples constructed
in [5], see Corollary 1.5.

(b) It may happen that each CR distribution u onM possesses a weaker
kind of holomorphic extension to Ω which attains u as weak bound-
ary values only along an open subset of M . We look at this in
Section 7.

Conclusion of the proof of Theorem 1.2. — Sufficiency was shown in
Section 3.1. To derive necessity, we argue by contraposition, assuming that
the envelope of Ω+ differs from Cn. In each of the occuring cases, we have
constructed a CR function without extension to Ω, which completes the
proof of Theorem 1.2 and Theorem 4.1. �

6. Generalisation of the main result to domains in Stein
manifolds

Theorem 6.1. — Theorem 4.1 is still valid if Cn is replaced by a Stein
manifold Y of complex dimension n > 2.

Most of the proof of Theorem 4.1 is easily generalised to Stein manifolds.
The only ingredient which is specifically related to domains over Cn are the
spaces O(k)(X). We shall give an extension to Stein manifolds, which is less
precise than the original results but still sufficient for our needs.
Let π : X → Y be a Riemann domain over a complex manifold Y . Recall

that an abstract boundary point q ∈ bX can be specified by associating to
every open neighborhood U ⊂ Y of p = π(q) the connected component V
of π−1(U) containing q in its closure. If U is relatively compact in Y and
z1, . . . , zn are local holomorphic coordinates defined in a neighborhood of
U , we may view V as a Riemann domain over Cn. Then we call V adapted
neighborhood and z1, . . . , zn adapted coordinates. We say that a function
f ∈ O(X) has polynomial growth of degree k at q ∈ bX, if there is an
adapted neighborhood V and k ∈ N0 such that f |V is an element ofO(k)(V )
with respect to the corresponding adapted coordinates. It is elementary
to verify that this property does not depend on the choice of adapted
coordinates. Define Opol(X) as the algebra of holomorphic functions of
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polynomial growth, i.e. of all f ∈ O(X) which have polynomial growth at
every q ∈ bX.
In contrast to the Banach algebras O(k)(X), defined for X spread over

Cn, Opol(Y ) is only Fréchet in general. However, the following theorem is
enough for constructing CR distributions and permits to extend the proof
of Theorem 4.1 to Theorem 6.1.

Theorem 6.2. — Let Y be a Stein manifold of dimension n and π :
X → Y a pseudoconvex Riemann domain over Y . Then the following hold:

(a) For every q0 ∈ bX, there is a sequence xj ∈ X with xj → q0 and a
function f ∈ Opol(X) with |f(xj)| → ∞.

(b) For every pair q1, q2 ∈ X with π(q1) = π(q2) and q1 6= q2, there is
f ∈ Opol(X) with f(q1) 6= f(q2).

Proof. — By the Bishop–Narasimhan–Remmert embedding theorem
(see [14, Chapter VII, Section C and Notes on p. 233]), we may assume that
Y is a properly embedded complex submanifold of Cm for some m > n.
The normal bundle πN : N → Y of Y in Cm (i.e. the bundle with fibers
TyCm/TyY , y ∈ Y ) has a natural holomorphic structure, with respect to
which it is a Stein manifold. Let o : Y ↪→ N be the canonical embed-
ding of Y as zero section. By [10, Satz 3], there is a holomorphic mapping
Φ : N → Cm which is a locally biholomorphic outside some purely (m−1)-
dimensional complex subvariety A of N that does not intersect o(Y ). Thus
Φ̃ = Φ|N\A : N \A→ Cm is a pseudoconvex Riemann domain.
Consider the Riemann domain π̃ : X̃ → N \A that is obtained by gluing

at every point x ∈ X the corresponding fiber Φ̃−1(π(x)) \A, or formally

X̃ = {(x, v) ∈ X × (N \A) : π(x) = Φ̃(v)}, π̃(x, v) = v.

It is straightforward to see that X̃ is Stein and that α : x 7→ (x, o ◦ π(x))
embeds X into X̃ in such a way that the image consists of the points lying
above the zero section of N . Moreover, Φ̃ ◦ π̃ turns X̃ into a Riemann
domain over Cm, and we get the commutative diagram

X̃ N \A

X Cm

π̃

Φ̃

π

α

where π is viewed as a mapping with values in Cm.
Hence we may apply results from [18] in the same way as in the proof

of [26, Lemma 2.2], in order to obtain functions f ∈ O(6m+1)(X̃) which
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explode at a given q̃0 ∈ bX̃ or separate two points q̃1 6= q̃2 lying in the
same fiber of Φ̃◦π̃. Here O(6m+1)(X̃) is defined with respect to the standard
structure of Cm.

To prove (a) and (b), we choose q̃j = α(qj). Since X̃ is a product near
every point of π̃−1(Y ), the restriction f to α(X) defines an element of
Opol(X). The proofs of Theorem 6.2 and of Theorem 6.1 are complete. �

7. CR orbits and removable singularities

In this section we will slightly change our viewpoint by treating the sides
of M on equal footing. Let M ⊂ Cn be a smooth real hypersurface and
z ∈M . Consider ambient neighborhoods ω of z such that ω\M has exactly
two connected components ω±. Then z is called local obstruction point of
M if there is a neighborhood basis of z by neighborhoods ω as above and
functions f± ∈ O(ω±) which do not extend holomorphically to any neigh-
borhood of z. Trépreau’s theorem [35] says that z is a local obstruction
point of M if and only if there is a local holomorphic hypersurface Z sat-
isfying z ∈ Z ⊂M . In the literature, it is customary to call M minimal at
z iff z is no local obstruction point.
For M as in Theorem 1.2, with sides Ω− = Ω and Ω+ = Cn \ Ω, let

π± : X± → Cn denote the envelopes of holomorphy of Ω±, bX± their
abstract boundaries, π± the continuous extensions of π± to the abstract
closures X± ∪ bX±, and ι± : Ω± ↪→ X± the canonical embeddings. A
point z ∈ M is called a global obstruction point of M if there are liftings
z− ∈ bX− and z+ ∈ bX+ satisfying

(7.1) z± ∈ bX± ∩ ι±(Ω±) ∩ π−1
± (z).

Observe that (7.1) is equivalent to the existence of functions f± ∈ O(Ω±)
without holomorphic extension across z. We study the global obstruction
set Mobs ⊂M of all global obstruction points of M .
To investigate the geometry of Mobs, we recall the notion of CR orbits.

Two points of M lie in the same CR orbit if they can be linked by a piece-
wise smooth CR curve, i.e. a curve whose velocity vectors are contained
in the complex tangent bundle HM =

⋃
p∈M (TpM ∩ JpTpM). Obviously

the CR orbits form a disjoint decomposition of M . A fundamental result
of Sussmann [34] tells that every orbit is an injectively immersed smooth
manifold with real dimension at least equal to the rank 2n − 2 of HM .
From basic facts on ordinary differential equations, it follows that orbits
are either open subsets of M or injectively immersed complex manifolds of

ANNALES DE L’INSTITUT FOURIER



HARTOGS EXTENSION THEOREM FOR UNBOUNDED DOMAINS 1201

complex dimension n− 1, see [24, Section 3.1], and that the union Mhol of
the lower-dimensional orbits is closed in M .

The following theorem shows that the global obstruction set is completely
determined by the CR geometry of M .

Theorem 7.1. — In the situation of Theorem 1.2, the sets Mobs and
Mhol coincide. In particular, Mobs ⊂ M is either empty or unbounded and
of positive (2n− 2)-dimensional Hausdorff measure.

Proof. — First we claim that Mhol is contained in Mobs. To see this, we
fix z ∈Mhol. Since Cn\Mhol is Stein, there are functions f± ∈ O(6n+1)(Cn\
Mhol) and sequences {z±j } ⊂ Ω± approaching z from the Ω±-side, respec-
tively, such that |f(z±j )| → ∞. In X±, the lifted sequences {ι±(z±j )} con-
verge to elements z± ∈ bX± above z, and the claim follows.

Observe that Mobs is closed as the intersection of the two closed sets

π±

(
bX± ∩ (ι±(Ω±))

)
.

Fix z0 ∈Mobs. For any 0 < ε� 1 the open set Bε(z0)\M has two connected
components ω± ⊂ Ω±. The envelope E(ω±) is also a Riemann domain over
X± and it is readily verified that

z0 ∈ πω+

(
bE(ω+) ∩ ιω+(ω+)

)
∩ πω−

(
bE(ω−) ∩ ιω−(ω−)

)
.

Hence Trépreau’s theorem implies that there is a local complex hypersur-
face Z ⊂ M passing through z0. Since Z is the CR orbit through z0 with
respect to a sufficiently small neighborhood of z0, Z is smooth and tangent
to HM .
We claim that a neighborhood of z0 in Z is contained inMobs. Otherwise

there is a point z1 ∈ Z such that all functions in O(Ω∗), where ∗ is one of
the signs + or −, extend to a uniform ambient neighborhood of z1. Now
we get a contradiction to (7.1) from the general theorem about propaga-
tion of extension to full neighborhoods along complex submanifolds of M .
Below we provide some details on how to apply propagation arguments to
envelopes of holomorphy.
Consider the CR orbit O(z0,M) of z0 in M . The proof of Theorem 7.1

will be complete, as soon as we have shown that O(z0,M) is a lower-
dimensional orbit and satisfies

(7.2) O(z0,M) ⊂Mobs.

Let us first show (7.2) in case that O(z0,M) is lower-dimensional. Then
O(z0,M) can be parametrized by an injective holomorphic immersion α :
Z ↪→ O(z0,M) of a connected (n − 1)-dimensional complex manifold Z.
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Note that the manifold topology of O(z0,M), i.e. the pushforward of the
topology of Z under α, may be finer than the topology induced from am-
bient space. However, the above arguments imply that Mobs ∩ O(z0,M) is
both open and closed in O(z0,M) with respect to the manifold topology.
This proves (7.2) for O(z0,M) lower-dimensional.
It remains to rule out the case that O(z0,M) is open in M . Then M is

minimal at some point z1 ∈ O(z0,M) (otherwise O(z0,M) were foliated by
complex hypersurfaces), and Trépreau’s theorem implies that CR functions
locally extend to one side of M . Since this property propagates along CR
orbits, CR functions extend to one side at every point of O(z0,M), in
particular at z0. Below we will outline how the information on extension
of CR functions yields that z0 is contained in the envelope of at least one
of the domains Ω±. This contradicts z0 ∈ Mobs, and completes the proof
of (7.2).
Let us sketch the link between extension of CR functions fromM and the

envelopes of Ω±. We will use the method of analytic discs, see [1, 2, 24] for
detailed information. The tools necessary to realise the following outline are
explained in [24, Chapters 4 and 5], see also [23] for more on deformation
of discs. An analytic disc is a mapping A : D → Cn which is holomorphic
in D and has some smoothness up to the boundary T = ∂D (for our needs
C2,α with 0 < α < 1 is enough). One works with discs attached to M

(i.e. A(T) ⊂ M) or with boundaries close to M . In our case, one starts
from a chain of discs Aj , j = 1, . . . ,m, attached to M and linking z1 and
z0 in the sense that A1(−1) = z1, Aj(1) = Aj+1(−1), j = 1, . . . ,m−1, and
Am(1) = z0. These discs are small in the sense that they are attached to
subsets ofM which can be represented as graphs and that the local solution
theory of the Bishop equation can be used to deform discs. Since z1 is a
minimal point, we can sweep out one local side of M at z1 by images of a
1-parameter family of discs. Then one uses this open set U0 attached to M
at z1 in order to deform A1 and produce a nearby disc Ã1, whose image,
viewed as a parametrised surface, is transverse to M at Ã1(1) = A1(1).
Sliding the Ã1 in the directions transverse to ∂Ã1

∂θ (where T = {eiθ, θ ∈ R})
yields a family that sweeps out a one-sided neighborhood U1 attached to
M at A1(1). Note that U0 and U1 may lie on opposite sides of M .
Iterating this procedure, we finally obtain a one-sided neighborhood Um

attached at Am(1). The continuity principle applied to the underlying fam-
ilies of discs shows that holomorphic functions defined in an arbitrarily thin
ambient neighborhood of (a sufficiently large subset of) M extend to the
open sets Uj . By construction Um intersects one of the sides of M . To
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fix ideas, we assume that this side is Ω+. Let Mt, t ∈ [0, 1], be a smooth
1-parameter deformation of M = M0 such that Mt ⊂ Ω−, 0 < t 6 1. To-
gether the deformations of discs constructed above depend on finitely many
parameters, the dependence being C2,β-smooth for some β ∈ (0, α). Inspec-
tion of the Bishop equation shows that we may extend these deformations
to the parameter t for 0 6 t� 1. More precisely, we locally write theMt as
families of graphs and obtain the families for t > 0 by using the same data
as for t = 0. Since the resulting discs depend C2,β-smoothly on all param-
eters including t, we get slightly deformed open sets Um,t attached to Mt

such that functions holomorphic near Mt extend to Um,t. If t is sufficiently
close to 0, we get z0 ∈ Um,t, and hence that holomorphic functions extend
from Ω− to a uniform neighborhood of z0, the desired contradiction. The
proof of Theorem 7.1 is complete. �

As an application, we revisit a special case of Theorem 1.2.

Proposition 7.2. — Let Ω ⊂ Cn, n > 2, be a domain with connected
smooth boundary M . Assume that X+ = E(Ω+) is univalent and that
Cn \ X+ is contained in M . Then we have Cn \ X+ = Mhol. Moreover,
Mhol is removable in the following sense: For every CR distribution u ∈
D′CR(M \ Mhol), there is a function ũ ∈ O(Ω) which attains u as weak
boundary value along M \Mhol.

Proof. — ClearlyMhol is a proper subset ofM , since otherwise Ω+ would
be Stein and coincide with X+. Theorem 7.1 directly implies thatMhol and
X+ are disjoint. If z ∈ M \Mhol we see like in the proof of Theorem 7.1
that holomorphic functions extend through z at least from one of the sides
Ω±. Since X+ is Stein and by assumption contains both sides, we conclude
z ∈ X+, and the first part of the proposition follows.

As for removability, we argue similarly as in the proof of Proposition 3.1:
The complement of M \Mhol in X+ = Cn \Mhol has two connected com-
ponents Ω±. Solving a suitable ∂ equation on the pseudoconvex domain
X+, we find f± ∈ O(Ω±) so that u is the jump between f− and f+ along
M \Mhol, in the sense of weak boundary values. By assumption f+ admits
an extension f̃+ ∈ O(X+), and ũ = f̃+|Ω − f− is the desired extension
of u. �

We do not get more even if u is a CR distribution onM that is the global
weak boundary value of a holomorphic function on Ω+, as shown by

Example 7.3. — Let G = {ζ ∈ C : ρ(ζ) < 0} b C1 be a smoothly
bounded disc such that 0 ∈ ∂G and T0 ∂G = {η = Re(ζ) = 0}. In addition,
we assume that G is strictly concave at 0 and that ∇ρ(0) is proportional
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to − ∂
∂η , meaning that all ζ ∈ ∂G \ {0} close to 0 are contained in {η < 0}.

The unbounded domain

Ω =
{

(z1, z2) ∈ C2 : ρ
(
z1 exp

(
1 + |z2|2

))
< 0
}

has smooth connected boundary M homeomorphic to the cylinder S1×C.
It is routine to verify thatM decomposes into two CR orbits, the z2-axis A
and the open orbit M \A. Applying the continuity principle to families of
complex lines parallel to A shows that C2\A is the envelope of Ω+ = C2\Ω.
Thus Proposition 7.2 implies that every CR distribution defined on M \A
has a holomorphic extension to Ω. The function

g(z) = exp(1/z1)|Ω+

is holomorphic and locally bounded along ∂Ω+. In fact, g is continuous
near ∂Ω+ \A and |g| < 1 holds near every z ∈ A. Hence its weak boundary
value g∗ is a CR function in L∞loc(M). Obviously the extension to Ω is
gΩ = exp(1/z1)|Ω. Note that gΩ does not have polynomial growth along A,
meaning that g∗ is not the weak boundary value of gΩ along A.
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