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THE DECOMPOSITION FORMULA
FOR VERLINDE SUMS

by Yiannis LOIZIDES & Eckhard MEINRENKEN

Abstract. — We prove a decomposition formula for Verlinde sums (rational
trigonometric sums), as a discrete counterpart to the Boysal–Vergne decomposition
formula for Bernoulli series. Motivated by applications to fixed point formulas in
Hamiltonian geometry, we develop differential form valued version of Bernoulli
series and Verlinde sums, and extend the decomposition formula to this wider
context.
Résumé. — Nous prouvons une formule de décomposition des sommes de Ver-

linde (sommes rationnelles trigonométriques), comme contrepartie discrète de la
formule de décomposition de Boysal–Vergne pour les séries de Bernoulli. Motivés
par des applications aux formules à point fixe en géométrie hamiltonienne, nous
développons une version à valeur dans les formes différentielles des séries de Ber-
noulli et des sommes de Verlinde, et nous étendons la formule de décomposition à
ce contexte plus général.

1. Introduction

The prototypical example of a Verlinde sum is the function, for a given
natural number n,

(1.1) Vn(λ, `) =
∑

q`=1, q 6=1

qλ

(1− q−1)n , (λ, `) ∈ Z× N.

It may be seen as a discrete analogue of the Bernoulli series

(1.2) Bn(λ) =
∑
j∈Z6=0

e2πijλ

(2πij)n , λ ∈ R.

The Bernoulli series is invariant under integer translation, and its restric-
tion to the open unit interval (0, 1) is given by a polynomial Bern of degree
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n in λ. For n > 1, these are − 1
n! times the Bernoulli polynomials. Simi-

larly, the Verlinde sum for fixed ` is `Z-periodic in λ, and its restriction
to the set of all (λ, `) such that λ/` ∈ (0, 1) is a polynomial Vern of de-
gree n in the two variables λ, `. Its part of homogeneity n in (λ, `) is given
by `n Bern(λ/`). These polynomials may be described through generating
functions:

(1.3)
∞∑
n=0

(1− e−z)n Vern(λ, `) = 1− `eλz e
z − 1
e`z − 1

and

(1.4)
∞∑
n=0

zn Bern(λ) = 1− eλz z

ez − 1 .

The Bernoulli series make an appearance in the volume formula for mod-
uli spaces of flat connections of flat SU(2)-bundles over surfaces, due to
Thaddeus [21] and Witten [27]. Similarly, the Verlinde sums appear in the
Verlinde formulas [26] for the quantization of these moduli spaces.
The versions for higher rank Lie groups lead to higher-dimensional mul-

tiple Bernoulli series and Verlinde sums. The multiple Bernoulli series ex-
hibit a piecewise polynomial behavior, while the multiple Verlinde sums
are piecewise quasi-polynomial. Aside from the context of 2-dimensional
gauge theory, they also appear in the localization formulas for volumes
and quantizations of Hamiltonian loop group spaces or, equivalently, quasi-
Hamiltonian G-spaces [1, 2, 12].
The combinatorics of the (multiple) Verlinde sums, also known as rational

trigonometric sums, was developed by Szenes [18]. The main result in [18]
is a residue formula for the Verlinde sums, similar to his earlier result [17]
for Bernoulli series. The Szenes formula allows for efficient computations,
and in particular leads to a proof of the (quasi-)polynomial behavior (for
example, (1.3) and (1.4) may be obtained from his theorem).
The main purpose of this article is to prove a decomposition formula

for multiple Verlinde sums, similar to the Boysal–Vergne decomposition
formula [6] for Bernoulli series. For the Verlinde sums Vn, the formula is

Vn(λ, `) = Vern(λ, `) + `

∞∑
µ=1

Pn(λ− `µ) + (−1)n`
0∑

µ=−∞
Pn(`µ− λ− n),

where Pn(µ) is the partition function, i.e., the number of ways of writing
µ as a sum of n non-negative integers. It expresses Vn as a central polyno-
mial contribution, plus correction terms supported on affine half lines; the
support properties are such that for any given (λ, `) the sum is finite.
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THE DECOMPOSITION FORMULA FOR VERLINDE SUMS 1209

We will need the decomposition formula for Verlinde sums for our com-
binatorial proof of the “quantization commutes with reduction” theorem
for Hamiltonian loop group spaces, in the spirit of Szenes–Vergne’s argu-
ment [20] for ordinary Hamiltonian spaces. In turn, this approach is moti-
vated by Paradan’s norm-square formulas for Hamiltonian spaces [13, 14].
With these applications in mind, we are led to consider more general Ver-
linde sums with “equivariant parameters”; under the Chern–Weil homo-
morphism this produces the required formulas for expressions arising in
the fixed point formula.

Acknowledgments

We thank Michèle Vergne for discussions and helpful comments. Most of
the results described in this paper are natural extensions of work by Arzu
Boysal and Michèle Vergne on Bernoulli series, and a number of steps in
this direction are already explained in Vergne’s lecture notes [23]; as well as
the slides [22] from her lecture at the 2010 AMS meeting in San Francisco.

2. Verlinde sums

2.1. Lattices

Let Λ be a lattice, with dual lattice Λ∗ = Hom(Λ,Z). We denote by
t = Λ ⊗Z R the real vector space spanned by Λ and by tQ = Λ ⊗Z Q its
rational points. A subspace h ⊆ t is rational if it is spanned by h ∩ tQ; in
this case, ann(h) ⊆ t∗ is rational and (h ∩ Λ)∗ ∼= Λ∗/Λ∗ ∩ ann(h).
Let T = t/Λ the torus; the quotient map is the exponential map exp: t→

T for this torus. Thus Λ = ker(exp) becomes the integral lattice of T, and
Λ∗ is identified with the weight lattice Hom(T,U(1)). For λ ∈ Λ∗, we denote
by T→ U(1), t 7→ tλ the corresponding homomorphism; thus

(2.1) tλ = e2πi〈λ,X〉

for t = exp(X). Suppose Ξ ⊆ t is a lattice containing Λ. For ` ∈ N we
consider the finite subgroup

T` = `−1Ξ/Λ ⊆ T.

For example, if B is an inner product on t which is integral in the sense
that it restricts to a Z-valued bilinear form on Λ, then the inverse image of
Λ∗ under the isomorphism B[ : t→ t∗ can play the role of such a lattice Ξ.

TOME 72 (2022), FASCICULE 3



1210 Yiannis LOIZIDES & Eckhard MEINRENKEN

Example 2.1. — The following setting plays a role for the Verlinde for-
mula: Let G be a compact, simple, simply connected Lie group, T ⊆ G a
maximal torus, and Λ ⊆ t the integral lattice, so that T = t/Λ. The basic
inner product B on g is the unique invariant inner product such that the
shortest vectors in Λ−{0} have length

√
2. This is an integral inner prod-

uct, and we take Ξ = Λ∗ under the resulting identification t ∼= t∗. Given
a level k ∈ N, the level k fusion ring (or Verlinde algebra) Rk(G) can be
abstractly defined as quotient ring R(G)/Ik(G), where R(G) is regarded
as the ring of characters of G-representations, and Ik(G) is the ideal of
characters vanishing on the regular elements of

Tk+h∨ ⊆ T.

Here h∨ is the dual Coxeter number of G, and an element of G is called
regular if its centralizer is a maximal torus.

In this article we will refer to a set “with multiplicities” S as a list.
Equivalently, this amounts to a map S → N∪{0}. For finite lists, it is often
convenient to use set-theoretic notation A = {s1, . . . , sn}, where elements
appear several times, according to their multiplicity. The notation s ∈ A
means that s appears with multiplicity at least 1, and A−{s} is the new list
in which the multiplicity of s has been reduced by 1. The Verlinde sums in
the following section will involve a choice of list α = {α1, . . . , αn} of weights
αi ∈ Λ∗. Note that finite lists of weights in Λ∗ are in 1-1 correspondence
with isomorphism classes of finite-dimensional unitary T-representations.

Definition 2.2. — For a list α = {α1, . . . , αn} of weights, we define:
• The zonotope

�α =
{

n∑
k=1

tkαk ∈ t∗

∣∣∣∣∣ 0 6 tk 6 1
}
.

• The collection S = S(α) of affine subspaces of t∗, consisting of
subspaces spanned by sublists of α, together with Ξ∗-translates of
such subspaces. The elements ∆ ∈ S are referred to as admissible
subspaces [6].

• For ∆ ∈ S(α), we denote by t∆ ⊆ t the rational subspace of vectors
orthogonal to ∆, and by T∆ = exp(t∆) the corresponding torus. If
∆ is a Ξ∗-translate of the span of some α ∈ α, these coincide with
tα = ker(α), Tα = exp(tα).

• Given ∆ ∈ S(α), an element µ ∈ ∆ is called regular in ∆ if it is not
contained in any ∆′ ∈ S(α) with dim ∆′ < dim ∆. The connected
components of regular elements in ∆ are called the (open) chambers
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in ∆. If ∆0 := spanR α is all of t∗, the chambers of ∆0 ∈ S(α) will
simply be referred to as the chambers.

Example 2.3. — In Example 2.1, consider the list α = R− of negative
roots of G. The collection S of admissible subspaces consists of subspaces
spanned by subsets of roots, together with their Ξ∗ ∼= Λ-translates. Letting
ρ be the half-sum of positive roots, the zonotope is given by

�R− = hull(W · ρ)− ρ,

the −ρ shift of the convex hull of the Weyl group orbit of ρ. This follows
from the formula for the character of the ρ-representation,

χρ(t) = tρ
∏
α∈R−

(1 + tα)

by comparing the set of weights appearing on both sides.

2.2. Definition of the Verlinde sum.

Suppose Λ ⊆ Ξ are full-rank lattices in a finite-dimensional vector space
t of dimension r, and recall T` = ( 1

`Ξ)/Λ. Consider a list of weights α =
{α1, . . . , αn}, and a list u = {u1, . . . , un} of complex numbers which are
roots of unity (that is, some positive power of uk is 1). We will call the
pairs αk = (αk, uk) augmented weights, and denote the corresponding list
of augmented pairs by α = (α,u).

Definition 2.4. — The Verlinde sum associated to the list of aug-
mented weights α is the function Vα : Λ∗ × N→ C defined by

(2.2) Vα(λ, `) =
∑′

t∈T`

tλ∏
(α,u)∈α (1− u t−α) .

Here the prime next to the summation symbol means that the summation
only extends over elements t ∈ T` for which the denominator does not
vanish. If all uk are equal to 1, we also use the notation Vα.

The functions Vα are called rational trigonometric sums in [18]; the term
Verlinde sum was used in [22]. Since tλ for t ∈ T` depends only on the
equivalence class of λ modulo `Ξ∗, the Verlinde sum has the periodicity
property

Vα(λ+ `µ, `) = Vα(λ, `), µ ∈ Ξ∗.
Two special cases are worth pointing out:

TOME 72 (2022), FASCICULE 3



1212 Yiannis LOIZIDES & Eckhard MEINRENKEN

(i) If the list α includes the trivial augmented weight α = (0, 1), then
the summation is over an empty set, hence Vα = 0.

(ii) If α = ∅, then the denominator in Equation (2.2) is equal to 1, and
the summation is over all of T`. We hence obtain, by finite Fourier
transform,

(2.3) V∅(λ, `) = (#T`) δ`Ξ∗(λ)

where δ`Ξ∗(λ) equals 1 if λ ∈ `Ξ∗, 0 otherwise.

The Verlinde sum (2.2) is the discrete counterpart to the multiple
Bernoulli series

(2.4) Bα(λ) =
∑′

ξ∈Ξ

e2πi〈λ,ξ〉∏
α∈α 2πi〈α, ξ〉 , λ ∈ t∗

where the infinite sum is defined as a generalized function of λ. These
series satisfy Bα(λ+ µ) = Bα(λ) for µ ∈ Ξ∗, and turn out to be piecewise
polynomial. The multiple Bernoulli series have been studied in [4, 6, 17, 22].

Example 2.5 (cf. [22]). — Let t = R, with Λ = Ξ = Z. Let α = {1, . . . , 1}
(where 1 denotes the weight 1 ∈ Z = Λ∗) be the list consisting of the
element 1 repeated n times. For n > 0, the corresponding Bernoulli series
Bn := Bα and Verlinde sum Vn := Vα are given by

Bn(λ) =
∑
j∈Z6=0

e2πijλ

(2πij)n , Vn(λ, `) =
l−1∑
j=1

e2πijλ/`

(1− e−2πij/`)n
.

For Bn, this is a (generalized) function of λ ∈ R; for Vn, we take λ to be
an integer. If n = 0 (corresponding to α = ∅) we have

B0(λ)dλ = δZ(λ), V0(λ, `) = `δ`Z(λ).

In the first formula, dλ is standard Lebesgue measure and δZ denotes the
measure on t whose integration against a test function f gives

∑
j∈Z f(j); in

the second formula, δ`Z denotes the characteristic function of `Z ⊆ Z. The
series Bn is periodic with period 1 in λ, while Vn is periodic with period `.
The Bernoulli series satisfy a differential equation ∂

∂λBn(λ) = Bn−1(λ) −
δn,1 (where δn,1 = 1 if n = 1 and is 0 otherwise), and a normalization∫ 1

0 Bn(λ) dλ = 0 for n > 1. These two properties can be used to compute
Bn recursively, see [22]. It turns out that Bn(λ) are given by polynomials
Bern(λ) on the interval 0 < λ < 1. We have that Ber0 = 0, while for n > 1,

ANNALES DE L’INSTITUT FOURIER
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Bern is −1
n! times the Bernoulli polynomials. For example,

Ber1(λ) = 1
2 − λ,

Ber2(λ) = −1
2λ

2 + 1
2λ−

1
12 .

Similarly, the Verlinde sums satisfy the difference equation

(2.5) Vn(λ, `)− Vn(λ− 1, `) = Vn−1(λ, `)− δn,1, n > 1

and the normalization

(2.6) Vn(0, `) + · · ·+ Vn(`− 1, `) = 0.

By Theorem 2.7 below, there are polynomials Vern in λ, ` such that
Vern(λ, `) = Vn(λ, `) for −n < λ < `. These can be computed recursively,
using (2.5) and (2.6). In low degrees,

Ver0(λ, `) = 0,

Ver1(λ, `) = −λ+ `− 1
2 ,

Ver2(λ, `) = −1
2λ

2 +
(
`

2 − 1
)
λ− `2

12 + `

2 −
5
12 .

The polynomials Bern(λ) are a “classical limit” of the polynomials
Vern(λ, `), in the sense that

(2.7) lim
`→∞

`−n Vern(`λ, `) = Bern(λ).

See Section 5.4 for an explanation of this fact.

2.3. Basic properties of Verlinde sums

Throughout this section, Λ ⊆ Ξ ⊆ t are given lattices of maximal rank,
and α = (α,u) is a list of augmented weights. We assume that α 6= 0 for all
α ∈ α. We will describe some general properties of the resulting Verlinde
sum.
(1). — Since the function Vα( · , `) on Λ∗ is `Ξ∗-periodic, it descends to

a function on the finite group Λ∗/`Ξ∗ (the dual group to T` = l−1Ξ/Λ).
By definition, this function is the finite Fourier transform of the function
T` → C, given by t 7→

∏
(α,u)∈α (1 − u t−α)−1 if all u t−α 6= 1, and t 7→ 0

TOME 72 (2022), FASCICULE 3
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otherwise. By inverse Fourier transform, the value of this function at t = e

is the sum of Vα( · , `) over Λ∗/`Ξ∗. That is,∑
[λ]∈Λ∗/`Ξ∗

Vα(λ, `) =
{∏

u∈u(1− u)−1 if 1 6∈ u,
0 if 1 ∈ u,

where the sum picks one representative λ from each equivalence class. This
generalizes (2.6).
(2). — The Bernoulli series (1.2) is real-valued, since complex conjuga-

tion amounts to replacing ξ with −ξ in the sum. Similarly, the Verlinde
sum satisfies

Vα(λ, `)∗ = Vα∗(λ, `),
where α∗ is the list of all (α, u∗) with (α, u) ∈ α.
(3). — One knows [6] that the Bernoulli series Bα is supported on

the union of (top-dimensional) admissible subspaces ∆ ∈ S(α). That is,
supp(Bα) ⊆ ∆0 + Ξ∗ where ∆0 = spanRα. We will see that similarly,
supp(Vα) is contained in the set of all λ, ` such that λ/` ∈ ∆0 + Ξ∗. If
∆0 is a proper subspace of t∗, then the Verlinde sum for α = (α, u) is
related to lower-dimensional Verlinde sums, as follows. Let t′ = t/t∆0 , and
denote by Λ′,Ξ′ be the images of Λ,Ξ under the quotient map, so that
(Λ′)∗ = Λ∗ ∩∆0, and similarly for (Ξ′)∗. Denote by α′ the list of weights
α, but regarded as weights for T′ = t′/Λ′, and put α′ = (α′,u).

Proposition 2.6. — The support of the Verlinde sum satisfies

supp(Vα) ⊆
{

(λ, `) ∈ Λ∗ × N
∣∣∣∣ 1
`
λ ∈ ∆0 + Ξ∗

}
.

That is, Vα(λ, `) is zero unless there exists λ′ ∈ (Λ′)∗ with λ−λ′ ∈ `Ξ∗. In
the latter case,

Vα(λ, `) = #(T` ∩ T∆0) Vα′(λ′, `).

Proof. — If t1 ∈ T` and t2 ∈ T` ∩ T∆0 , then (t1t2)−α = t−α1 t−α2 = t−α1
for all α ∈ α. We can therefore carry out the Verlinde sum in stages, by
first summing over all elements in a fixed equivalence class of T` modulo
T` ∩ T∆0 , followed by a sum over T`/(T` ∩ T∆0). For fixed t1 ∈ T` such
that ut−α1 6= 1 for all (α, u) ∈ α, we have that∑
t2∈T`∩T∆0

(t1t2)λ∏
(α,u)∈α 1− u (t1t2)−α = tλ1∏

(α,u)∈α 1− u t−α1

∑
t2∈T`∩T∆0

tλ2 .

The sum on the right hand side vanishes unless tλ2 = 1 for all t2 ∈ T`∩T∆0 ,
in which case it is #T`∩T∆0 . But this condition is equivalent to 〈λ, ξ〉 ∈ `Z

ANNALES DE L’INSTITUT FOURIER
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for all ξ ∈ Ξ∩t∆0 , that is, λ ∈ Λ∗∩(∆0+`Ξ∗) = (Λ′)∗+`Ξ∗. Assuming that
this is the case, pick λ′ ∈ (Λ′)∗ such that λ − λ′ ∈ `Ξ∗. Then tλ1 = (t′1)λ′ ,
where t′1 ∈ T`/(T` ∩ T∆0) is the image of t1. Similarly, t−αk1 = (t′1)−α′k .
Carrying out the sum over T`/(T`∩T∆0), we obtain #(T`∩T∆0) Vα′(λ′, `)
as desired. �

(4). — We may always reduce to the case that the lattice vectors from
the list α are primitive, i.e, not positive multiples of shorter lattice vectors.
Indeed, suppose (α, u) ∈ α with 1

mα ∈ Λ∗ for some integer m > 1. Let
α̃ be obtained from α by replacing (α, u) with ( αm , ζ1), . . . , ( αm , ζm), where
ζ1, . . . , ζm are the distinct solutions of ζm = u. Then Vα = Vα̃, since

(1− u t−α) =
m∏
k=1

(1− ζk t
−α
m ).

(5). — A function f : Γ→ C on a lattice Γ is quasi-polynomial if there
is a sublattice Γ′ ⊆ Γ of finite index such that f is given by a polynomial on
each coset of Γ′. More generally, given a subset S ⊆ Γ, a function f : S → C
is quasi-polynomial on S if it is the restriction of a quasi-polynomial on Γ.
(Note that this condition is vacuous if S is a finite subset.) If S contains
“sufficiently many points”, for example if it contains the intersection of Γ
with an open cone in the underlying vector space Γ⊗Z R, then the quasi-
polynomial on S extends uniquely to a quasi-polynomial on all of Γ.

Theorem 2.7 (Szenes [15]). — Suppose ∆ is a top-dimensional affine
subspace in S(α), and c ⊆ ∆ is a chamber (cf. Definition 2.2). Then the
restriction of the Verlinde sum Vα to the set

(2.8) {(λ, `) ∈ Λ∗ × N |λ ∈ `c−�α}

is quasi-polynomial.

Szenes’ paper does not state the result in this particular form (which
we took from Vergne’s lectures [22]), but it is a simple consequence of the
residue formula proved in [15]. See Section 5 below for details. Notice that
the theorem gives a quasi-polynomial behaviour not only on the lattice
points of the cone R>0(c× {1}), but even on a slightly larger region

{(x, t) ∈ t∗ × R>0 |x ∈ tc−�α} .

If ∆0 = spanRα = t∗, then these regions give an open cover of t∗ × R>0,
as c varies over all open chambers. The appearance of the zonotope may
be understood as follows: Note that if α̃ is obtained from α by replacing
some (β, v) with (−β, v−1), then Vα(λ, `) = −v−1 Vα̃(λ+β, `). Hence, the

TOME 72 (2022), FASCICULE 3



1216 Yiannis LOIZIDES & Eckhard MEINRENKEN

quasi-polynomial behavior of Vα̃ on the cone over c×{1} implies the quasi-
polynomial behavior of Vα on the β-shifted cone. Applying this observation
to all the weights, one obtains a quasi-polynomial behavior on the shifted
cone.

2.4. Difference equation

Recall that the Verlinde sums Vn in Example 2.5 satisfy a difference
equation (2.5), expressing Vn(λ, `)−Vn(λ−1, `) in terms of Vn−1(λ, `). We
are interested in a version of this equation for the general Verlinde sums
associated to a list α of augmented weights. For β = (β, v) ∈ α, denote by
α\β the list obtained by removing β. Define a finite difference operator on
functions f ∈ Map(Λ∗,C) (see Appendix A.4):

(∇βf)(λ) = f(λ)− v f(λ− β).

We will see that∇βVα is equal to Vα\β modulo correction terms involving a
lower-dimensional Verlinde sum. Let p ∈ N be the smallest natural number
such that there exists t0 ∈ Tp with

(2.9) v t−β0 = 1.

For any t ∈ T, denote by et : Λ∗ → C the map λ 7→ tλ. Recall the notation
tβ = kerβ, Tβ = exp(tβ) from Definition 2.2, and put Λβ = Λ ∩ tβ and
Ξβ = Ξ ∩ tβ .

Proposition 2.8 (Difference equation). — Given β ∈ α, define p ∈ N
and t0 ∈ Tp by (2.9). Then

(2.10) ∇βVα = Vα\β − et0 δpN π∗Vα′ .

Here π : Λ∗ → Λ∗β is the projection, and α′ is the list of all augmented
weights (π(α), t−α0 u) with (α, u) ∈ α\β.

Proof. — Under finite Fourier transform, the difference operator ∇β
amounts to multiplication by 1− vt−β . (See Section A.5.) Thus, the sum-
mands in the formula for ∇βVα(λ, `) are the same as those for Vα\β(λ, `),
but one is summing over t ∈ T` such that ut−α 6= 1 for all (α, u) ∈ α,
whereas in the sum defining Vα\β(λ, `) this is only required for (α, u) ∈
α\β. Thus,

(2.11) Vα\β(λ, `)−∇βVα(λ, `) =
∑′′

t∈T`

tλ∏
(α,u)∈α\β (1− u t−α)

ANNALES DE L’INSTITUT FOURIER
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where the sum
∑′′ is over all t ∈ T` such that ut−α 6= 1 for α 6= β, but

vt−β = 1. After fixing t0 satisfying (2.9), one can find t ∈ T` with v t−β = 1
if and only if ` is a multiple of p, and any such t differs from t0 by an element
of T` ∩ Tβ . Hence, if ` is not a multiple of p, then (2.11) is an empty sum.
If ` is a multiple of p, write t = t0t

′ as above. As t ranges over all elements
of T` such that vt−β = 1, the elements t′ range over T` ∩Tβ . Furthermore,

tλ = tλ0 (t′)π(λ), u t−α = u′ (t′)−α
′

for (α, u) ∈ α\β. Hence the sum on the right hand side becomes
tλ0 Vα′(π(λ), `). �

Remark 2.9.
(1) In Proposition 2.8, the Verlinde sum Vα′ depends on the choice of

t0, but its product with et0 does not.
(2) If there exists (α, u) 6= (β, v) in the list α such that ut−α = 1

whenever vt−β = 1, then the summation in (2.11) is over an empty
set, hence the sum is zero. In particular, this is the case if the list
α contains a second copy of β = (β, v).

Remark 2.10. — The counterpart to (2.10) for multiple Bernoulli series
expresses the directional derivative ∂βBα in terms of Bα\β , and possibly
a correction term involving a lower-dimensional Bernoulli series. See [6,
Proposition 3.1].

3. Partition functions

Let α = (α,u) be a list of augmented weights. We will assume that all
α ∈ α are nonzero. Replacing summation over T` in the definition of the
Verlinde sum by an integration over T, we obtain at a formal expression∫

T

tλ∏
(α,u)∈α (1− u t−α) dt.

As it stands, the integral is not well-defined due to the zeroes of the de-
nominator. To “regularize” the integral, choose a polarizing vector τ ∈ t

such that 〈α, τ〉 6= 0 for all α ∈ α. Then

(3.1) lim
ε→0+

∏
(α,u)∈α

(
1− u t−α e−ε〈α,τ〉

)−1

is a well-defined generalized function of t ∈ T. Taking its Fourier transform,
we arrive at the following definition.
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Definition 3.1. — The generalized partition function P(α,τ) : Λ∗ → C
is defined by

P(α,τ)(λ) = lim
ε→0+

∫
T

tλ∏
(α,u)∈α (1− u t−α e−ε〈α,τ〉)

dt.

If all u = 1 for all u ∈ u, we will also use the notation P(α,τ).

Generalized partition functions were studied, e.g., in [9, 10, 19]. They
are a discrete counterpart to the generalized Heaviside function

H(α,τ)(λ) = lim
ε→0+

∫
t

e2πi〈λ,ξ〉∏
α∈α〈α, 2πiξ + ετ〉

dξ,

here dξ is the measure on t corresponding to the normalized Haar measure
on T, and the integral is defined as a generalized function of λ ∈ t∗.

Example 3.2. — We continue Example 2.5, thus t = R, Λ = Ξ = Z, with
α the list consisting of the weight 1, repeated n times. Let τ = 1, and write
Hn(λ) = H(α,τ)(λ) and Pn(λ) = P(α,τ)(λ). One finds that

Hn(λ) =
{

λn−1

(n−1)! λ > 0,
0 λ < 0.

Similarly, Pn(λ) is the number of ways of writing λ ∈ Z as a sum λ =
k1 + · · ·+ kn where all ki > 0. Thus,

P1(λ) = 1, P2(λ) = λ+ 1, P3(λ) = 1
2λ

2 + 3
2λ+ 1, . . .

for λ > 0, while Pn(λ) = 0 for λ < 0.

Here are some of the basic properties of the generalized partition func-
tions.

(1). — Write α = {α1, . . . , αn} with αk = (αk, uk). If the list α is
polarized in the sense that 〈αk, τ〉 > 0 for all k, then the integrand (3.1)
can be expanded into a geometric series, and the limit ε→ 0 gives

n∏
k=1

 ∞∑
jk=0

ujkk t−jkαk

 ,

where the sum is defined as a generalized function on T. The integration
against tλ picks out the coefficient of t−λ in this expansion, i.e., P(α,τ)(λ) =∑
uj11 · · ·ujnn where the sum is over all solutions of j1α1 + · · ·+ jnαn = λ,

with jk ∈ Z>0. If all uk = 1, then it is simply the number of such solutions;
thus P(α,τ) becomes a vector partition function. If α is the set R+ of
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positive roots of a simple Lie algebra, and τ is in the positive Weyl chamber,
then P(α,τ) is the Kostant partition function.

In a similar fashion, H(α,τ)(λ) for a polarized list α is a constant (not
depending on λ) times the volume of the n− 1-dimensional polytope in Rn
defined by j1α1 + · · · + jnαn = λ, with jk ∈ R>0. See [10] for a detailed
discussion.
(2). — Suppose α̃ is obtained from α by replacing some element (β, v) ∈

α with (−β, v−1). Then

P(α,τ)(λ) = −v−1P(α̃,τ)(λ+ β).

This follows from (1− z)−1 = −z−1(1− z−1)−1.
(3). — Decompose the list α into two sublists α = α+ ∪ α−, where

α ∈ α+ if 〈α, τ〉 > 0 and α ∈ α− if 〈α, τ〉 < 0. Let αpol be the polarized
list, consisting of α+ together with all (−α, u−1) such that (α, u) ∈ α−.
Define

σ = −
∑
α∈α−

α.

Then 〈σ, τ〉 > 0, and item (2) above shows

P(α,τ)(λ) = (−1)#α−∏
u∈u− u

P(αpol,τ)(λ− σ).

In particular, using item (1) above, we see that the generalized partition
function is supported in the closed cone spanned by the polarized weights,
shifted by σ:

supp(P(α,τ)) ⊆ σ + Z>0 α
pol.

(4). — In the case α spans t∗, the functions H(α,τ) are piecewise poly-
nomial L1-functions on t∗, where the polynomials are supported on cones.
Similarly, the partition functions P(α,τ) exhibit a piecewise quasi-polyn-
omial behavior. In the case of vector partition functions, this goes back to
Dahmen–Micchelli [8]; see Szenes–Vergne [19, Theorem 3.6] for the more
general case.
(5). — If α is a disjoint union of two sublists α′,α′′, then

P(α,τ) = P(α′,τ) ? P(α′′,τ).

Here the convolution (of functions on Λ∗) is well-defined, due to the support
properties.
(6). — For β = (β, v) ∈ α, since the finite-difference operator ∇β has

the effect of multiplying the inverse Fourier transform by (1 − vt−β), we
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see that
∇βP(α,τ) = P(α\β,τ).

(7). — For h ∈ T, multiplication by the function eh : Λ∗ → C, λ 7→ hλ

has the effect of shifting the scalars of the augmented weights: That is,

eh P(α,τ) = P(α̃,τ)

where α̃ consists of all (α, u hα) with (α, u) ∈ α.
(8). — Suppose h ⊆ t is a rational hyperplane, and let π : Λ∗ → (Λ∩h)∗ =

Λ∗/(Λ∗∩ann(h)) be the quotient map. Suppose the restrictions α|h = π(α)
for α ∈ α are all non-zero. If τ ∈ h is polarizing for α, then τ is also
polarizing for the list α|h consisting of the restrictions, and

P(α|h,τ) = π∗P(α,τ)

where α|h = (α|h,u). Here the push-forward (cf. Appendix A.2) is well-
defined, since π is proper on the support of P(α,τ) by item (3) above.

4. Decomposition formula.

Consider a list of weights α, defining a Bernoulli series Bα. For any
admissible affine subspace ∆ ∈ S(α), let α∆ be the sublist consisting of
all α ∈ α ∩ ann(t∆); that is, α is parallel to ∆. Its complement is denoted
αc

∆ = α\α∆.
Fix an inner product on t, used to identify t ' t∗, and let γ ∈ t. Given

∆ ∈ S(α), let
γ∆ ∈ ∆

denote the orthogonal projection of γ onto ∆, and put

τ∆ = γ∆ − γ ∈ t∆.

For a generic choice of γ, all the projections γ∆ for ∆ ∈ S(α) are in open
chambers for ∆, while the τ∆ are polarizing vectors for the complement αc

∆.
Suppose µ ∈ ∆ is regular in ∆, i.e., contained in one of the chambers c

of ∆. Boysal–Vergne defined

Ber(α∆;µ) : t∗ → C

to be the generalized function on t∗ with support on the affine subspace ∆,
which is given by a polynomial on ∆ times a δ-distribution in directions
transverse to ∆, and which coincides with Bα∆ on the chamber c. We will
call this the polynomial germ of Bα with respect to c. In [6, Theorem 9.3],
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A. Boysal and M. Vergne proved the following decomposition formula for
Bernoulli series:

(4.1) Bα =
∑
∆∈S

Ber(α∆;γ∆) ?H(αc
∆,τ∆),

(equality of generalized functions on t∗). The formula expresses the periodic
generalized function Bα as a locally finite sum of generalized functions.
The term indexed by ∆ is supported on the affine cone ∆ + R>0{αc

∆}; a
given point of t∗ is contained in only finitely many of these affine cones. In
particular, none of the cones with ∆ 6= t∗ contains the center of expansion.
If ∆0 = span(α) = t∗, then ∆0 gives a leading polynomial contribution
supported on t∗, while the other terms give successive corrections away
from the center of expansion.
In this section, we will give an analogous result for the Verlinde sums. Let

α be a list of augmented weights. For ∆ ∈ S(α), denote by α∆ = (α∆,u∆)
the sublist consisting of all (α, u) ∈ α such that α ∈ ann(t∆). According
to Theorem 2.7, if c is a chamber of ∆, the Verlinde sum Vα∆

is quasi-
polynomial on the set of (λ, `) such that λ ∈ `c. Given µ ∈ c, we define

(4.2) Ver(α∆;µ) : Λ∗ × N→ C

to be the unique function supported on the set of (λ, `) with λ ∈ `∆,
such that this function is quasi-polynomial on this set and agrees with Vα∆

on the set of all (λ, `) with λ ∈ `c. We refer to Ver(α∆;µ) as the quasi-
polynomial germ of Vα∆

at µ.

Remark 4.1. — By Theorem 2.7, the Verlinde sum Vα∆
agrees with

Ver(α∆;µ) on the slightly larger set where λ ∈ `c−�α∆.

Pick a generic γ ∈ t, and define γ∆, τ∆ for ∆ ∈ S(α) as above. The
polarizing vectors τ∆ define partition functions P(αc

∆,τ∆), with support in
a shifted cone σ∆ + R>0(αc

∆)pol where (see Section 3(3))

(4.3) σ∆ = −
∑

α∈(αc
∆)−

α,

a sum over weights α in αc
∆ such that 〈α, τ∆〉 < 0. Then 〈σ∆, τ∆〉 > 0; in

fact 〈µ, τ∆〉 > 0 for all elements in this shifted cone.

Theorem 4.2 (Decomposition formula for Verlinde sums). — Let α be
a list of augmented weights, and let γ ∈ t∗ be generic. Then

(4.4) Vα =
∑
∆∈S

Ver(α∆;γ∆) ?P(αc
∆,τ∆)
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(a locally finite sum). Here the term indexed by ∆ is a (well-defined) con-
volution of functions on Λ∗, for fixed ` ∈ N.

Proof. — We first show that the right hand side of the decomposition
formula is locally finite, and hence well defined. The first factor in each
term

(4.5) V ∆
α = Ver(α∆;γ∆) ?P(αc

∆,τ∆)

is supported in the set of (λ, `) such that λ ∈ `∆, while according to
Section 3(3), the second factor is supported in σ∆ + R>0(αc

∆)pol, using
the polarization of αc

∆ defined by τ∆. This shows that the convolution has
support in the set of all (λ, `) ∈ Λ∗ × N such that λ is contained in the
affine cone

(4.6) σ∆ + `∆ + R>0(αc
∆)pol.

For fixed λ ∈ Λ∗, there are only finitely many ∆ such that λ is contained
in (4.6). Hence the sum in (4.4) is locally finite.
The proof of the equality Vα =

∑
∆ V ∆

α involves an induction on the
number n of elements in α. Consider first the base case n = 0, so that
the admissible subspaces are all 0-dimensional: S(∅) = Ξ∗. For ∆ = {µ}
with µ ∈ Ξ∗, we have that T∆ = T, γ∆ = µ, and consequently V ∆

∅ (λ, `) =
#T` δ`µ(λ). Summation over all ∆ = {µ} gives the expression (2.3) for V∅.

Suppose now that α has n > 0 elements, and that the decomposition
formula has been proved for lists with at most n − 1 elements. The argu-
ment for Vα splits into two stages. In the first step, we will show that the
difference Vα −

∑
∆ V ∆

α is annihilated by all difference operators ∇β , for
β ∈ α. By definition of the difference operator, this implies that for any
given `, this difference is quasi-invariant under the action of the sublattice
Zα ⊆ Λ∗, i.e. invariant up to some character Zα → U(1). In the second
step, we show that Vα coincides with

∑
∆ V ∆

α on the lattice points of some
fundamental domain for the action of Zα. Together, these two steps show
that they agree everywhere.

Step 1.

Claim. — For all β ∈ α, we have that ∇βVα =
∑

∆∈S(α)∇βV ∆
α .

Recall the difference equation (2.10): ∇βVα = Vα\β − et0 δpN π∗Vα′ . To
compare with the sum over all ∇βV ∆

α with ∆ ∈ S(α), we consider two
cases:
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Case (i): β ∈ αc
∆. — Apply ∇β to (4.5), using the property ∇β(f ? g) =

f?∇β(g) of the convolution. Since∇βP(αc
∆,τ∆) =P(αc

∆\β; τ∆) by Section 3(6),
and since α∆ = (α\β)∆, we obtain

(4.7) ∇βV ∆
α = V ∆

α\β .

Case (ii): β ∈ α∆. — Apply ∇β to (4.5), using the property ∇β(f ?g) =
∇β(f) ? g of the convolution. Lemma 4.3 below gives

(4.8) ∇β Ver(α∆;γ∆) = Ver(α∆\β;γ∆)−et0 δpN π∗ Ver(α′
π(∆);π(γ∆)) .

Taking a convolution with P(αc
∆,τ∆), the first term produces V ∆

α\β . For the
second term, we use the property et(f ? g) = (et f) ? (et g) and (π∗f) ? g =
π∗(f ? π∗g) of the convolution. Thus

(4.9) ∇βV ∆
α = V ∆

α\β − δpN et0 π∗
(
Ver(α′

π(∆);π(γ∆)) ∗π∗
(
e−t0P(αc

∆,τ∆)
))
.

Multiplying the partition function P(αc
∆,τ∆) by et−1

0
amounts to replacing

every (α, u) ∈ αc
∆ with (α, t−α0 u), while push-forward π∗ amounts to a

restriction to tβ . Hence

π∗
(
et−1

0
P(αc

∆,τ∆)
)

= P((α′
π(∆))

c;π(τ∆)).

The inner product on t restricts to an inner product on tβ ' t∗β satisfying
π(γ∆) = π(γ)π(∆), which implies that

τπ(∆) := π(τ∆) = π(γ)π(∆) − π(γ)

is the polarizing vector defined by π(γ). We hence arrive at

(4.10) ∇βV ∆
α = V ∆

α\β − et0 δpN π∗V
π(∆)
α′ ,

where the generic element used in defining V π(∆)
α′ is π(γ).

Having worked out ∇βV ∆
α for the two cases, let us now take the sum

over all admissible affine subspaces ∆ ∈ S(α).
Observe that if ∆ 6∈ S(α\β), then the term V ∆

α\β is zero. Indeed, ∆ 6∈
S(α\β) means that ann(t∆) is spanned by a subset of α, but not by a subset
of α\β. As a consequence, the restriction of the Verlinde sum Vα∆\β to ∆
is supported on a union of affine subspaces of codimension at least one in
∆, and consequently Ver

(
α′π(∆); γ∆

)
= 0, thus V ∆

α\β = 0.
On the other hand, the projection π : t∗ → t∗β gives a bijection from the

set of ∆ ∈ S(α) for which β ∈ α∆ (case (ii) above), with the set S(α′) of
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admissible affine subspaces for the list α′. From equations (4.7), (4.10) we
therefore obtain

(4.11) ∇β
∑

∆∈S(α)

V ∆
α =

∑
∆∈S(α\β)

V ∆
α\β − et0 δpN π∗

∑
∆′∈S(α′)

V ∆′
α′ .

Applying the induction hypothesis to the right hand side, this is becomes

(4.12) ∇β
∑

∆∈S(α)

V ∆
α = Vα\β − et0 δpN π∗Vα′ .

Finally, by the difference equation (2.10) this equals ∇βVα.

Step 2.

Claim. — Vα agrees with the sum
∑

∆ V ∆
α on a set of representatives

for the translation action of the lattice Zα ⊆ Λ∗ in Λ∗ × N.

Recall that by Proposition (2.6), the Verlinde sum Vα( · , `) for fixed
` ∈ N is supported on the union of all `∆1, for ∆1 ∈ S(α) top-dimensional
(i.e., a Ξ∗-translate of ∆0 = span α). The same is true for each of the
summands V ∆

α . Since each `∆1 is invariant under the Zα-action, it suffices
to show that the functions Vα( · , `) and

∑
∆ V ∆

α ( · , `) agree on a set of
representatives for the Zα ⊆ Λ∗ action on `∆1, for any given ` and ∆1.
The set

(4.13) Λ∗ ∩
(
` γ∆1 −�α

)
contains such a set of representatives. By Remark 4.1, and the definition of
the quasi-polynomial germ, Vα( · , `) and Ver(α∆1

;γ∆1 )( · , `) agree on (4.13).
Since αc

∆1
= ∅, the corresponding partition function P(αc

∆1
,τ∆1 ) is simply

δ0 : Λ∗ → C. That is,
Vα( · , `) = V ∆1

α ( · , `)
on (4.13). We claim that the supports of all other terms V ∆

α ( · , `) with
∆ 6= ∆1 do not meet (4.13). This is immediate when ∆ is not contained in
∆1, thus suppose ∆ ⊆ ∆1. Note that

(4.14) n := γ∆ − γ∆1 = τ∆ − τ∆1

is a normal vector to ∆ as an affine subspace of ∆1. Since τ∆1 is normal to
∆1, it is orthogonal to all α ∈ α. In the defining the polarization of αc

∆, and
hence in the description (4.6) of supp(V ∆

α ( · , `)), we may therefore replace
τ∆ with n. It follows that the elements λ ∈ Λ∗ in the support of V ∆

α ( · , `)
satisfy

〈λ− `γ∆1 , n〉 > 〈λ− `γ∆, n〉 > 〈σ∆, n〉.
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On the other hand, if λ ∈ `γ∆1 −
∑
α∈α[0, 1]α, then

〈λ− `γ∆1 , n〉 6 −
∑

α∈(αc
∆)−

〈α, n〉 = 〈σ∆, n〉.

Hence, these elements are never in the support of V ∆
α ( · , `) when ∆ is

properly contained in ∆1.
This concludes the argument for Step 2, and completes the proof of the

theorem. �

In the proof we used the following difference equation for the quasi-
polynomial germs, which is obtained as a consequence of the difference
equation for Verlinde sums in Proposition 2.8. Using the notation from
that proposition we have:

Lemma 4.3. — Suppose β = (β, v) ∈ α∆, and let p ∈ N be the smallest
number such that there exists t0 ∈ Tp with v t−β0 = 1. Let α′π(∆) be the
list of augmented weights (π(α), u t−α0 ) for (α, u) ∈ α∆ with α 6= β. Then

Ver(α∆\β;µ) = ∇βVer(α∆;µ) + et0 δpN π∗Ver(α′
π(∆);π(µ)) .

Here π : Λ∗ → Λ∗β is the projection.

Proof. — On the set of all (λ, `) such that λ ∈ `c, this formula coincides
with the difference equation for Verlinde sums (Proposition 2.8, with α re-
placed by α∆). Since all terms in the deletion formula are quasi-polynomial
on this set, the result follows. �

Example 4.4. — We illustrate the decomposition formulas for the
Bernoulli series Bn(λ) and the Verlinde sums Vn(λ, `), using the notation
from Examples 2.5 and 3.2. Take γ ∈ c = (0, 1). The contribution from
∆0 = t∗ give the leading term

H∆0
α (λ) = Bern(λ), V ∆0

α (λ, `) = Vern(λ, `).

The other contributions come from ∆ = {µ} with µ ∈ Ξ∗ = Z. We have
α∆ = ∅, hence

Ber(α∆,γ∆)(λ) = δµ(λ), Ver(α∆,γ∆)(λ, `) = `δ`µ(λ).

Since τ∆ = µ−γ, the weight α = +1 is polarized if and only if µ > 0. With
the partition functions from Example 3.2, this gives

H(αc
∆,τ∆)(λ) = Hn(λ), P(αc

∆,τ∆)(λ) = Pn(λ)

for ∆ = {µ} with µ > 0 while

H(αc
∆,τ∆)(λ) = (−1)nHn(−λ), P(αc

∆,τ∆)(λ) = (−1)nPn(−λ− n)
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for ∆ = {µ} with µ 6 0. The resulting decomposition formulas hence read
as

Bn(λ) = Bern(λ) +
∞∑
n=1

Hn(λ− µ) + (−1)n
0∑

µ=−∞
Hn(µ− λ)

and

Vn(λ, `) = Vern(λ, `) + `
∞∑
µ=1

Pn(λ− `µ) + (−1)n`
0∑

µ=−∞
Pn(`µ− λ− n),

respectively.

See also Example 6 further below, where we describe the decomposition
formula for Example 2.3 in the case G = SU(3).

5. Szenes’ Residue Theorem

In this Section, we will review Szenes’ residue theorem for the Verlinde
sums [15] (see also [16]). The formula is a powerful tool for explicit compu-
tations of such sums. We will explain how it implies the quasi-polynomial
behaviour, in the form stated in Theorem 2.7.

5.1. The constant term functional

The formula in [15] is expressed in terms of iterated “constant-term”
functionals. We describe these briefly here; for further background see [7,
15, 17, 19]. For a meromorphic function f of a single variable z, defined
on a neighborhood of 0 ∈ C, the constant term CTz=0(f) is defined to be
the constant term in the Laurent expansion of f(z) about the point 0. In
terms of residues,

(5.1) CT
z=0

(f) = Resz=0

(
f(z)dz

z

)
.

Let Λ ⊆ t be a maximal rank lattice, and consider a Λ-periodic affine
hyperplane arrangement A in t. For p ∈ t we denote by Ap ⊆ A the
collection of affine hyperplanes passing through p. The point p is called a
vertex of the arrangement if the intersection of affine hyperplanes in Ap
is {p}. Let vx(A) denote the set of all vertices. A subset of Ap is called
linearly independent if the conormal directions to the hyperplanes in this
subset are linearly independent.
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Let MA be the ring of meromorphic functions on tC whose singularities
are contained in

⋃
H∈AH. Suppose p ∈ vx(A), and consider an ordered

r-tuple H = (H1, . . . ,Hr) of r = dim t linearly independent affine hyper-
planes Hk ∈ Ap. The iterated constant term functional

iCT
H

: MA → C

is defined as follows: Choose affine-linear functions βk with Hk = β−1
k (0);

the collection β = (β1, . . . , βr) defines an isomorphism β : tC → Cr, taking
p to 0. Thus f ◦ β−1 is a function of z1, . . . , zr. One defines

(5.2) iCT
H

(f) = CT
z1=0

· · · CT
zr=0

(f ◦ β−1).

That is, one first computes CTzr=0(f ◦β−1) as a meromorphic function of
z1, . . . , zr−1, one next computes CTzr−1=0 of the result, and so forth. This
definition is independent of the choice of βk defining Hk, due to the fact
that the constant term (5.1) is invariant under coordinate changes of the
form z  cz. On the other hand, it does in general depend on the ordering
of the hyperplanes. Note that the definition of iCTH extends to the space
MA,p of germs at p of meromorphic functions with poles in A.

5.2. nbc bases

Szenes’ Theorem 5.3 expresses the Verlinde sum Vα as a finite sum
over iterated residues, for suitable r-tuples H of affine hyperplanes. Given
p ∈ vx(A), choose an ordering on the set Ap. This determines a unique col-
lection Bp of r-tuples H of linearly independent hyperplanes in Ap, with
the following property: For every H ∈ Bp, the set

{H ′ ∈H : H < H ′} ∪H

is linearly independent. The collection Bp is known in the theory of hyper-
plane arrangements as an nbc basis of Ap, where nbc stands for no broken
circuit basis (cf. [15, 17]).

Example 5.1. — If dim(t) = 2, the nbc basis Bp for a given ordering of
Ap is the collection of all 2-tuples H = (H0, H), where H0 is the unique
smallest element of Ap, and H is any of the other elements.

Remark 5.2.
(1) In [7], it is shown that Bp corresponds naturally to a vector space

basis for the subspace of simple fractions, in the ring of rational
functions generated by the inverses of the affine-linear functions
defining the hyperplanes in Ap.
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(2) In Szenes’ formula one can also use more general orthogonal bases,
which need not arise from a linear ordering of Ap, see [15]. For
simplicity we have only described nbc bases, which are a special
case.

(3) For interesting and non-trivial examples, one might consult [4] where
the case of hyperplane arrangements arising from root systems of
the classical Lie algebras are discussed in detail, as well as many
computations of the associated multiple Bernoulli series.

5.3. Statement of Szenes’ theorem

For the remainder of this section, we assume that Ξ ⊆ t is a lattice con-
taining Λ, and that α = (α,u) is a list of augmented weights, where the
weights α ∈ α are all non-zero. Let A = A(α) be the resulting affine hy-
perplane arrangement in t, consisting of the affine hyperplanes α−1(s) such
that s ∈ Q with (α, e2πis) = (α, u) ∈ α. Using the procedure from Sub-
section 2.3(4), we will assume that the α ∈ α are primitive vectors in the
weight lattice. Note that this procedure does not change the arrangement
A(α).
We will also assume spanRα = t∗, so that the set vx(A) of vertices is

non-empty. For every vertex p ∈ vx(A), choose an ordering of the set Ap,
and let Bp be the resulting nbc basis, as in Subsection 5.2. Recall also the
set S = S(α) of admissible affine subspaces ∆ ⊆ t∗, and that a chamber is
a component of t∗ −

⋃
∆ 6=t∗ ∆ (cf. Definition 2.2).

For any chamber c ⊆ t∗, and any H ∈ Bp and (λ, `) ∈ Λ∗ × N, define a
meromorphic function

X 7→ Tc,H(λ, `)(X)

of X ∈ tC, as follows. Choose affine-linear functions β : t→ R defining the
hyperplanes H ∈ H, in such a way that their linear parts β0 = β − β(0)
lie in Ξ∗ ⊆ Λ∗. Let β be the list of these functions; the list of their linear
parts forms a basis β0 of t∗. Let volΞ∗(�β0) be the volume of the zonotope
with respect to Lebesgue measure on t∗ (normalized such that t∗/Ξ∗ has
volume 1). Equivalently,

volΞ∗(�β0) = #
(
Ξ∗ ∩ (ν +�β0)

)
for generic ν ∈ t∗. (The intersection on the right hand side does not change
as ν varies in a chamber of S(β0); in particular, we may also write it as
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Ξ∗ ∩ (c +�β0).) With these preparations, put

(5.3) Tc,H(λ, `)(X) = 1
volΞ∗(�β0)

∑
µ

e2πi〈λ−`µ,X〉
∏
β∈β

2πi`β(X)
1− e2πi`〈β0,X〉 ;

here the sum is over all µ ∈ Ξ∗ ∩ (c − �β0). As shown by Szenes [15],
this function does not depend on the choice of affine-linear functions β
defining H.
Observe that the function (5.3) is holomorphic for X near p. Indeed, the

singularities of X 7→ (1− e2πi`〈β0,X〉)−1 are contained in the subset where
`〈β0, X〉 ∈ Z; but for X = p, any such singularity is compensated by the
zero of X 7→ β(X) in the enumerator. Let fα ∈ MA be the meromorphic
function defined by

(5.4) fα(X) =
∏

(α,u)∈α

(
1− u e−2πi〈α,X〉

)−1
.

We are now in position to state Szenes’ theorem for Verlinde sums:

Theorem 5.3 (Szenes [15, Theorem 4.2]). — Let α be a list of aug-
mented weights, where all α ∈ α are primitive lattice vectors in Λ∗, such
that spanRα = t∗. Define A = A(α) as above. Then for every chamber c

of S(α), and all (λ, `) ∈ Λ∗ × N with λ ∈ `c − �α, the Verlinde sum is
given by the formula

(5.5) Vα(λ, `) =
∑

[p]∈vx(A)/Λ

∑
H∈Bp

iCT
H

(
Tc,H(λ, `)fα

)
.

Here the summation over [p] uses one representative p ∈ vx(A) from each
equivalence class modulo Λ.

Example 5.4. — In Example 2.5, let t = t∗ = R with pairing given by
multiplication, and let Λ = Ξ = Z. Let α = {1, . . . , 1} be the weight
1 ∈ Λ∗ = Z, repeated n times, defining the Verlinde sum Vα = Vn. Thus
fα(X) =

(
1− e−2πiX)−n, and �α = (0, n). The affine hyperplane arrange-

ment A is the set Z of integers, and has a single vertex (up to translation)
p = 0. The basis Bp consists of just one element H, which is given by the
single hyperplane H = {0}. For the chamber c = (0, 1), we obtain

Tc,H(λ, `)(X) = e2πiλX 2πi`X
1− e2πi`X .

Writing z = 2πiX, Szenes’ formula hence shows that Vn(λ, `) = Vern(λ, `)
for all n > 1 and all λ, ` such that λ ∈ (−n, `), with

(5.6) Vern(λ, `) = CT
z=0

(
eλz

`z

1− e`z
1

(1− e−z)n

)
.
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See [23, Theorem 4] for a direct proof of this formula, which may be refor-
mulated as the generating function (1.3) stated in the introduction.
In a similar way, Szenes’ formula for Bernoulli series reduces to the fact

that Bn(λ) agrees with Bern(λ) for 0 < λ < 1, where Bern(λ) is given by
the generating series (1.4).

A more elaborate example will be given in Section 6 below.

5.4. Relation between Bernoulli series and Verlinde sums

We briefly describe a Khovanskii–Pukhlikov-type formula, also due to
Szenes ([18, Proposition 4.9] with somewhat different notation), relating
Verlinde sums to Bernoulli series. See also [23, Theorem 5] for discussion of
the 1-dimensional case and, for example, [5] for the analogous relationship
between vector partition functions and convolutions of Heaviside distribu-
tions.

We first need the analogue of Bernoulli series centered at vertices p 6= 0.
Let p ∈ Λ ⊗ Q ⊆ t and α = (α1, . . . , αn) a list of weights. Let α̂ =
(α̂1, . . . , α̂n) be the list of affine linear functions vanishing at p, with linear
parts given by α. Define the Bernoulli-like sum

B
α̂

(λ, `) =
∑′

ξ∈ 1
`Ξ

e2πi〈λ,ξ〉∏
α̂∈α̂ 2πiα̂(ξ) ,

where the prime next to the summation means to omit terms such that
the denominator vanishes. If ` = 1 and p ∈ Ξ, then this is related to the
Bernoulli series Bα by a multiplicative factor. Szenes [17, 18] gave a version
of Theorem 5.3 for the Bernoulli series B

α̂
; the result has the same form,

but with fα(X) replaced by
∏
α∈α̂(2πiα̂(X))−1.

For α ∈ t∗, let α(∂) = α(∂λ) : Pol(t∗) → Pol(t∗) denote the directional
derivative in the direction α, a first-order linear differential operator acting
on the space of polynomial functions in t∗. The assignment α 7→ α(∂)
extends multiplicatively to a map from the completion of the symmetric
algebra Sym(t∗) to infinite-order differential operators, acting on Pol(t∗).
In other words, to each formal power series P(X) in X ∈ t, we assign
an infinite-order differential operator P(∂). More generally, if P(X) is the
Taylor expansion of a function at p ∈ t, we can define an infinite-order
differential operator P(∂), acting on the Pol(t∗)-module e〈λ,p〉 ·Pol(t∗). The
equation

α(∂λ − p)e〈λ,p〉g = e〈λ,p〉α(∂λ)g, α ∈ t∗,
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implies that only finitely many terms of the infinite series P(∂) act non-
trivially on any fixed element of this module.
Letα be a list of augmented weights. Choose representatives p ∈ Λ⊗Q for

vx(A)/Λ. Let αp be the sublist of α consisting of the α = (α, u) such that
ue−2πi〈α,p〉 = 1. For each α = (α, u) in αp, let α̂ be the unique affine linear
function vanishing at p and with linear part α. Denote the corresponding
list of affine linear functions by α̂p.
Let Tdα,p(X) denote the Taylor series at p of∏

α∈α
p

2πiα̂(X)
1− e−2πiα̂(X)

.

The function
fαc

p
(X) =

∏
(α,u)∈αc

p

(
1− ue−2πi〈α,X〉)−1

is holomorphic on a neighborhood of p, and we will use the same symbol
fαc

p
(X) to denote its Taylor series at this point. By differentiating inside

the constant term of the residue formula for Bernoulli series and comparing
with the residue formula for Verlinde sums one has, for a generic element
γ ∈ t∗,

(5.7) Ver(α;γ)(λ, `)

=
∑

p∈vx(A)/Λ

Tdα,p
(
(2πi)−1∂

)
fαc

p

(
(2πi)−1∂

)
Ber(α̂p;γ)(λ, `).

In case there is only a single vertex at p = 0, equation (5.7) simplifies:

(5.8) `−n Ver(α;γ)(λ, `) =
(

Tdα
(
(2πi`)−1∂

)
Ber(α;γ)

)
(λ/`),

where n is number of elements in the list α. Equation (2.7) follows from
(5.8). As a simple example of (5.8), consider Ber2(λ), Ver2(λ, `) introduced
in Example 2.5. One has(

1 + 1
2`

∂

∂λ
+ 1

12`2
∂2

∂λ2

)2

Ber2(λ) = −1
2λ

2 + 1
2λ−

1
12 −

λ

`
+ 1

2` −
5

12`2 .

Making the substitution λ λ/`, and then multiplying by `2, one arrives
at the formula for Ver2(λ, `).

5.5. Proof of Theorem 2.7

We now explain how to deduce the quasi-polynomial behavior (The-
orem 2.7) from Szenes’ Theorem 5.3. Using Proposition 2.6, and since
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#(T` ∩ T∆0) is a polynomial in `, we may assume that spanRα = t∗.
Furthermore, by Section 2.3(4), we may assume that the linear parts α are
primitive lattice vectors in Λ∗. We will show that each of the terms

(5.9) iCT
H

(
Tc,H(λ, `)fα

)
with Tc,H(λ, `)(X) given by (5.3) and fα(X) given by (5.4), is quasi-
polynomial in λ, `. Write β = (β1, . . . , βr). We have to compute the it-
erated constant term with respect to the coordinates zk = 2πiβk(X). We
have that

e2πi〈β0
k,X〉 = v−1

k ezk ,

with the phase factor vk = e2πiβk(0). The term

∏
β∈β

2πi`β(X)
1− e2πi`〈β0,X〉 =

r∏
k=1

`zk

1− v−`k e`zk

in (5.9) is holomorphic in z1, . . . , zr, and the coefficients of its power series
expansion in the zk are quasi-polynomial functions of `. (Here we are using
that the map ` 7→ v`k is periodic in `, since βk(0) are rational.) Next, letting
λk be the components of λ with respect to the basis β0

k, and similarly for
µ, we see that

e2πi〈λ−`µ,X〉 = (e−2πi〈µ,p〉)` tλp
r∏

k=1
e(λk−`µk)zk ,

with tp = exp(p) ∈ T. The phase factor (e−2πi〈µ,p〉)` tλp , is quasi-polynomial
in λ, `, while

∏r
k=1 e

(λk−`µk)zk is a holomorphic function of z1, . . . , zr whose
power series coefficients are polynomial in λ, `. In summary, Tc,H(λ, `)◦β−1,
is a meromorphic function of z1, . . . , zr whose Laurent series coefficients are
quasipolynomial in λ, `. Finally, fα ◦β−1 is a meromorphic function of the
z1, . . . , zr that does not depend on λ, `. Hence, (5.9) is a quasi-polynomial
function of λ, `.

Remark 5.5. — If α = (α,u) is such that all u = 1, and α is unimodular
(i.e., any vector space basis consisting of elements of α is also a basis of
Λ∗), then there is only the zero vertex p = 0, up to Λ-translation. Thus all
v’s are equal to 1 as well, and the argument above shows that Vα is not
only quasi-polynomial on the region (2.8), but is in fact as a polynomial
on that region.
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6. Example: Verlinde sum associated to G = SU(3)

In this Section, we work out the terms of the decomposition formula for
the case of G = SU(3), continuing Example 2.3. For a wealth of exam-
ples of this type in the case of Bernoulli series, see [4]; for calculations of
generalized Heaviside functions and partition functions associated to root
systems, see [3].
We begin with a general compact, simple, simply connected Lie group G.

We fix the standard notation: T is a maximal torus, W the corresponding
Weyl group, Λ ⊆ t is the integral (i.e., root) lattice, Ξ = Λ∗ is the weight
lattice (using the basic inner product to identify t and t∗). We denote by t+
the closed positive Weyl chamber, corresponding to the set R+ of positive
roots, and let t− = −t+ and R− = −R+. We are interested in the Verlinde
sum Vα for α = R−.
Let Z ⊆ T be the center of G. The function t 7→ tα defined by roots α

descends to T/Z; hence the Verlinde sum can be written as a sum

Vα(λ, `) =
(∑
ζ∈Z

ζλ

) ∑
[t]∈T`/Z

tλ∏
α 1− t−α .

using a representative t for each equivalence class [t]. The sum
∑
ζ∈Z ζ

λ

vanishes unless λ is in the root lattice, in which case it is equal to #Z.
In particular, we see that Vα( · , `) is supported on the root lattice. if G
is simply laced, then the root lattice is equal to Λ, and the prefactor is
#Z δΛ(λ).
We now specialize to the case G = SU(3). Here Λ has a basis α1, α2

given by the simple roots, while Λ∗ has the dual basis $1, $2 given by the
fundamental weights. It will be convenient to denote by α3 = α1 + α2 the
highest root, so that α = {−α1,−α2,−α3}.
The collection S of admissible subspaces consists of subspaces spanned

by subsets of roots, together with their translates under the integral (i.e.,
root) lattice Ξ∗ = Λ. Take the open chamber c to be the interior of the
triangle spanned by 0, α2, α3. An element

γ ∈ c

satisfies the genericity assumption from Section 4 if and only if it lies in
the interior of an alcove from the Stiefel diagram; for convenience, we will
take it to be in the interior of the fundamental Weyl alcove (the triangle
spanned by 0, $1, $2).
The decomposition formula is a sum Vα =

∑
∆ V ∆

α over admissible sub-
spaces, where each V ∆

α is a convolution of a polynomial Ver(α∆,γ∆) and a
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partition function. We will discuss these terms separately, according to the
dimension of ∆.

6.1. Contribution from ∆ = t∗

The leading term in the decomposition formula for Vα is the polyno-
mial expression Ver(α;γ) associated to the admissible subspace ∆ = t∗. To
compute Ver(α;γ), we will use the Szenes formula.
The affine hyperplane arrangement A is given by the set of affine root

hyperplanes (the Stiefel diagram). Up to Λ-translation, it has three vertices
given by the vertices p = 0, $1, $2 of the Weyl alcove.
Let p ∈ {0, $1, $2}. Using the ordering of root hyperplanes Hα1 <

Hα2 < Hα3 , we obtain an nbc basis Bp = {Hp,1,Hp,2} where Hp,1,Hp,2
are defined by the linear functionals

βp,1 = {α1 − c1, α2 − c2}, βp,2 = {α1 − c1, α3 − c3},

respectively, with ck = 〈αk, p〉 ∈ {0, 1}. Explicitly (c1, c2, c3) = (0, 0, 0) for
p = 0, (1, 0, 1) for p = $1, and (0, 1, 1) for p = $2. Note that Ξ∗ = Λ, and

(c−�β0
p,1) ∩ Ξ∗ = {0}, (c−�β0

p,2) ∩ Ξ∗ = {−α1};

in particular volΞ∗(�β0
p,k) = 1 for k = 1, 2. The Szenes formula for Vα

reads as
Vα =

∑
p

iCT
Hp,1

(Tp,1fα) + iCT
Hp,2

(Tp,2fα)

where

Tp,1(X) = e2πi〈λ,X〉(2πi`)2(〈α1, X〉 − c1)(〈α2, X〉 − c2)
(1− e2πi`〈α1,X〉)(1− e2πi`〈α2,X〉);

Tp,2(X) = e2πi〈`α1+λ,X〉(2πi`)2(〈α1, X〉 − c1)(〈α3, X〉 − c3)
(1− e2πi`〈α1,X〉)(1− e2πi`〈α3,X〉);

To compute the iterated residue, introduce variables zk = 2πi(〈αk, X〉 −
ck), let tp = exp(p) ∈ Z, and write λ = µ1$1 + µ2$2. Using $1 = 2

3α1 +
1
3α2, $2 = 1

3α1 + 2
3α2 the first term reads as

iCT
Hp,1

(Tp,1fα)

= CT
z1=0

CT
z2=0

(
tλpe

( 2
3µ1+ 1

3µ2)z1+( 1
3µ1+ 2

3µ2)z2 `2 z1z2

(1− ez1)(1− ez2)(1− ez1+z2)(1− e`z1)(1− e`z2)

)
.
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For the second term, one uses the variable z3 = z1 + z2 in place of z2, and
finds

iCT
Hp,2

(Tp,2fα)

= CT
z1=0

CT
z3=0

(
tλpe

( 1
3µ1− 1

3µ2)z1+( 1
3µ1+ 2

3µ2)z3e`z1 `2 z1z3

(1− ez1)(1− ez3−z1)(1− ez3)(1− e`z1)(1− e`z3)

)
.

Note that the terms for p = 0, $1, $2 are the same except for the factor
tλp . These elements tp are just the elements of the center Z of SU(3), hence∑
p t
λ
p = 3δΛ(λ). Carrying out the calculations of the constant terms with

the help of Wolfram Alpha, we arrive at the following expression:

Ver(α;γ)(λ, `)

= 1
2(1− µ1)

(
`2 − (µ1 + 2µ2 − 3)`+ (µ2 − 1)(µ1 + µ2 − 2)

)
δΛ(λ).

This may also be written,

(6.1) Ver(α;γ)(λ, `) = −1
2(µ1 − 1)(µ2 − `− 1)(µ1 + µ2 − `− 2)δΛ(λ)

One may verify (as we did) that a different choice of nbc basis gives the
same result.
By the general theory, Vα(λ, `) coincides with Ver(α;γ)(λ, `) for all (λ, `) ∈

Λ∗ × N with λ in the region `c − �α = `c + �R+. A simple calculation
shows that this region is the interior of the hexagon spanned by the orbit
of 0 under the shifted Weyl group action

(6.2) w • λ = w(λ− τ) + τ,

where τ = `$2 +ρ is the barycenter of the hexagonal region. One can check
that the polynomial is anti-invariant under this action:

Ver(α;γ)(w • λ, `) = (−1)length(w) Ver(α;γ)(λ, `).

Remark 6.1. — Making the replacement µi  `µi in (6.1), dividing by
`3 and taking the limit as `→∞, the polynomial in the expression above
becomes

− 1
2µ1(µ2 − 1)(µ1 + µ2 − 1).

This is 3 times the polynomial (for the same chamber c) for the Bernoulli
series Bα(λ), as computed by Baldoni–Boysal–Vergne [4, Equation (2.5.2)].
The factor of 3 comes from the δΛ factor, and since #(Λ∗/Λ) = #Z = 3.
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6.2. Contributions with dim ∆ = 1

The 1-dimensional admissible subspaces are of the form ∆ = ξ + Rα
where α ∈ α and ξ ∈ Ξ∗ = Λ. The corresponding contribution V ∆

α is a
convolution of Ver(α∆;γ∆), where α∆ = {α}, with the partition function
P(αc

∆;τ∆), where αc
∆ are the two remaining roots in α. For the calculation

below, we will find it convenient to work with the basis α1, α2 of t, so we
will write λ = λ1α1 + λ2α2 and only later switch to the basis $1, $2.

We compute the contribution from ∆ = Rα1; thus α∆ = {−α1}. The
chambers of ∆ are the intervals (k, k + 1)α1 for k ∈ Z; here the chamber
of γ∆ is the interval for k = 0, while the polarizing vector τ∆ is a positive
multiple of −$2.
By Proposition 2.6, the restriction of Vα∆ to ∆ is #(T` ∩ T∆) times a

lower-dimensional Verlinde sum. In our case, #(T` ∩ T∆) = 3`, while the
lower-dimensional Verlinde sum is

λ 7−→
∑′

ζ`=1

ζλ1

1− ζ .

This is nearly the same as V1 defined in Section 2.2, and one finds similarly
that it is supported on ∆ ∩ Λ ⊆ ∆ ∩ Λ∗, and equals the polynomial λ 7→
λ1 − 1

2 (`+ 1) for λ1 ∈ (0, `+ 1) ∩ Z. It follows that

Ver(α∆;γ∆)(λ, `) = 3`
(
λ1 −

1
2(`+ 1)

)
δZ(λ1)δ0(λ2).

As for the partition function P(αc
∆;τ∆), note that the list αc

∆ = {−α2,−α3}
is polarized already. Hence, the partition function has support in the in-
tersection of Λ with the cone generated by −α2,−α3 (without shifts). In
terms of the coordinates λ1, λ2 it is given by

P(αc
∆;τ∆)(λ) =

{
1 if λ2 6 λ1 6 0, λi ∈ Z,
0 otherwise.

Taking the convolution, one obtains

(6.3) V Rα1
α (λ, `) = 3

2`(1− λ2)
(
2λ1 − λ2 − `− 1

)
H(−λ2) δΛ(λ),

where H is the Heaviside function supported on [0,∞). Finally, switching
to the coordinates µ1, µ2 defined by λ = µ1$1 + µ2$2 we arrive at the
following formula for the contribution from ∆ = Rα1:

(6.4) V Rα1
α (λ, `) = `(3− µ1 − 2µ2)(µ1 − `− 1)

2 H

(
−µ1 + 2µ2

3

)
δΛ(λ).

ANNALES DE L’INSTITUT FOURIER



THE DECOMPOSITION FORMULA FOR VERLINDE SUMS 1237

The contribution V ∆
α of general affine subspaces ∆, is obtained from V Rα1

α

as follows: Let L : t → t be the unique orientation preserving affine-linear
transformation, taking Rα1 to ∆, taking −$2 to a positive multiple of τ∆,
and taking (0, 1)α1 to the chamber of ∆ containing γ∆. For each `, let
L`(λ) = `L(λ/`) be the corresponding transformation at level `. Let σ∆
be the shift vector (cf. (4.3)), given as minus the sum of roots in αc

∆ that
are not polarized, and let ±1 be the determined by the number of sign
changes. (It is easy to see that one gets −1 if ∆ is parallel to α3, equal to
+1 otherwise.).

V ∆
α (λ, `) = ±V Rα1

α (L−1
` (λ− σ∆), `).

6.3. Contributions with dim ∆ = 0

The 0-dimensional admissible subspaces are given by ∆ = {ξ} for ξ ∈
Ξ∗ = Λ. Consider the contribution of a given ξ, Recall that γ∆ = ξ and
τ∆ = ξ − γ. The term V {ξ}( · , `) is the convolution of δ`ξ with a partition
function Pα∆,τ∆ . Convolution with δ`ξ amounts to shifting the argument λ
by `ξ, but the partition function depends on the polarization.
Since we took γ to be in the interior of the Weyl alcove, adding −γ to ξ

shifts it into the interior of one of the Weyl chambers.
Let us now first consider the case {ξ} = 0. Then τ∆ = −γ, so that α =

R− is already polarized. Let Λ∗ → Z, λ 7→ P(λ) be the Kostant partition
function, given as the number of ways of writing µ as a linear combination
of elements ofR+ with non-negative coefficients. Writing λ = µ1$1+µ2$2,
one has that

P(µ) =


1
3 (µ2 − µ1) δΛ(λ) µ2 > µ1 > − 1

2µ2
1
3 (µ1 − µ2) δΛ(λ) µ1 > µ2 > − 1

2µ1

0 otherwise

Then
V {0} = Pα{0},τ{0}(λ) = P(−λ).

More generally, for ξ ∈ Λ ∩ t−, we obtain a shifted version,

V {ξ} = P(`ξ − λ).

For more general ξ ∈ Λ∗, we have that τ∆ ∈ wt− for a unique w ∈ W ,
also characterized as the shortest Weyl group element with w−1ξ ∈ t−.
Equivalently, w is the unique element such that 〈α,w−1τ∆〉 > 0 for all
negative roots. We hence see that

αpol = wR−, α+ = R− ∩ wR−, α− = R− ∩ wR+.
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As is well-known, the set R− ∩ wR+ has cardinality l(w), and

σ := −
∑
α∈α−

α = ρ− wρ.

We hence obtain

Pα,τ∆(λ) = (−1)length(w)Pαpol,τ∆(λ− ρ+ wρ).

Observe that P(−µ) is the number of ways of writing µ as a linear combi-
nation of elements of R− with non-negative coefficients, and is thus also the
number of ways of writing wµ as a linear combination of elements of wR− =
αpol with non-negative coefficients. That is, P(−µ) = Pαpol,τ∆(wµ). This
shows

Pα,τ∆(λ) = (−1)l(w)P(−w−1(λ− ρ)− ρ).

Finally, convolution with δ`ξ amounts to replacing λ with λ− `ξ. We con-
clude that the contribution from ∆ = {ξ}, with ξ ∈ wt−, is

V ∆
α (λ, `) = (−1)l(w)P(w−1(`ξ − λ+ ρ)− ρ).

7. Equivariant Bernoulli series and Verlinde sums

In this section we define Verlinde sums and partition functions with ad-
ditional equivariant parameters. The decomposition formula for these sums
is relevant for applications to localization formulas in differential geometry,
with the parameters as the recipients for “curvatures”. Note that the idea
of using curvatures variables in the various partition functions is also used
in Vergne’s articles [24, 25].

7.1. Equivariant Bernoulli series

It will be convenient to consider the lists of weights α = {α1, . . . , αn} in
Λ∗ as the weights of a unitary T-representation

A : T −→ U(n), t 7−→ A(t),

where A(t)ei = tαi ei. We will use the same letter to denote the infinitesimal
representation A : t→ u(n). With this notation, the Bernoulli series can be
written as a sum BA(λ) =

∑′
ξ∈Ξe

2πi〈λ,ξ〉 det(A(ξ))−1. Letting H ⊆ U(n)
be the Lie group of transformations commuting with all A(t), and h its
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Lie algebra, we define the “H-equivariant” multiple Bernoulli sum as the
following (generalized) function of λ, for X ∈ h sufficiently small:

(7.1) BA(λ; X) =
∑′

ξ∈Ξ

e2πi〈λ,ξ〉

det(A(ξ) +X) .

Here
∑′ signifies, as before, a sum over all ξ ∈ Ξ such that det(A(ξ)) 6= 0.

A vector τ ∈ t is polarizing for the list α if and only if detA(τ) 6= 0, and
in this case we may define

(7.2) HA,τ (λ; X) = lim
ε→0+

∫
ξ∈t

e2πi〈λ,ξ〉

det(A(ξ − iετ) +X) dξ.

Both X 7→ BA(λ; X) and X 7→ HA(λ; X) depend analytically on X, for
X ∈ h in a sufficiently small neighborhood of zero, in the sense that the
integral against test functions is analytic. But for our purposes, it will be
quite enough to treat X as a formal parameter, and thus to consider the
Taylor expansions.
Consider the decomposition of the symmetric algebra as sum over multi-

indices J = (j1, . . . , jn) with jk > 0,

S(Cn) =
⊕
J

SJ(Cn),

where SJ(Cn) = Sj1(C) ⊗ · · · ⊗ Sjn(C). Since A(t) are diagonal matrices,
we obtain representations AJ of T on SJ(Cn).

Lemma 7.1. — We have the expansion, for X ∈ u(1)n,

det(A(ξ) +X)−1 =
∑
J

fJ(X) det(AJ(ξ))−1.

Here the sum is over multi-indices J = (j1, . . . , jn) with jk > 0, and the
Taylor expansion of fJ(X) starts with terms of order > |J | − n.

Proof. — Since both A(t) and X are diagonal it is enough to consider
the case n = 1. But for n = 1, the claim just follows from (t + z)−1 =∑∞
j=0 z

j(−1)jt−j−1. �

Using the lemma, we have the expansion

(7.3) BA(λ; X) =
∑
J

fJ(X)BAJ (λ)

for the Bernoulli series, and similarly

HA,τ (λ;X) =
∑
J

fJ(X)HAJ ,τ (λ)
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(with the same fJ). In particular, the Taylor coefficients of BA(λ;X) are
linear combinations of Bernoulli series for AJ . Since only J with jk >

0 appear, the list αJ of weights appearing in the representation AJ is
obtained from the original list α of weights appearing in A by increasing
some of the multiplicities. Hence, S(αJ) = S(α). Consequently, the Taylor
coefficients of BA(λ;X) are supported on the union of Ξ∗-translates of ∆0,
and are polynomial on each chamber of ∆0 and its translates. A similar
discussion applies to HA,τ .
As in Section 4, we fix an integral inner product on t, thus identifying t∗ ∼=

t, and we pick γ ∈ t, with the property that for all ∆ ∈ S, the orthogonal
projection γ∆ onto ∆ lies in a chamber for α∆, and τ∆ = γ∆−γ is polarizing
for αc

∆. Consider the orthogonal decomposition Cn = Cn∆ ⊕ (Cn)⊥∆, where
the first summand is the sum of the coordinate lines Cej with αj ∈ α∆, and
similarly the second summand is a sum of coordinate lines with αj ∈ αc

∆.
The two summands are subrepresentations A∆, Ac

∆ of T; the summand Cn∆
is the subspace on which the subtorus T∆ ⊆ T acts trivially.

The H-action preserves this decomposition. We hence obtain an H-equi-
variant Bernoulli series BA∆(λ; X), whose Taylor coefficients are polyno-
mial on each chamber of ∆. We define Ber(A∆;γ∆)(λ; X) with equivariant
variables X ∈ h, by requiring that its Taylor coefficients are generalized
functions supported on ∆, given by polynomials on ∆, and agreeing with
the Taylor coefficients of BA∆(λ; X) on the chamber containing γ∆.

Proposition 7.2 (Equivariant Boysal–Vergne decomposition formula).
For generic choices of γ as above, the equivariant Bernoulli series decom-
poses as

(7.4) BA(X) =
∑
∆∈S

Ber(A∆;γ∆)(X) ? H(Ac
∆,τ∆)(X),

(as an equality of formal power series in X, with coefficients that are func-
tions of λ ∈ t∗).

Proof. — By H-invariance, it suffices to prove the equality of both sides
over u(1)n. For X ∈ u(1)n, we have the expansions

Ber(A∆;γ∆)(λ; X) =
∑
J′

f∆
J′(X) Ber(AJ′∆ ;γ∆)(λ),

where the f∆
J′(X) are defined similar to the fJ(X), but using only the basis

elements belonging to Cn∆. Similarly,

H(Ac
∆,τ∆)(λ;X) =

∑
J′′

f∆,c
J′′ (X)H(AJ′′∆,c,τ∆)(λ)

ANNALES DE L’INSTITUT FOURIER



THE DECOMPOSITION FORMULA FOR VERLINDE SUMS 1241

where f∆,c
J′′ (X) are defined in terms of the representation on (Cn∆)⊥. Taking

the convolution of these expressions, and using,

fJ(X) = f∆
J′(X)f∆,c

J′′ (X)

for J = J ′ ∪ J ′′, we obtain

Ber(A∆;γ∆)(X) ? H(Ac
∆,τ∆)(X) =

∑
J

fJ(X) Ber(AJ′∆ ;γ∆) ?H(AJ′′∆,c,τ∆).

Summing over all ∆, and using the non-equivariant Boysal–Vergne decom-
position formula we recover (7.3). �

7.2. Equivariant Verlinde sums

For the Verlinde sums, we have the T-representation A as in the previ-
ous section, as well as possibly an additional diagonal matrix U ∈ U(n)
such that some power of U is the identity. We denote by A = (A,U) the
“augmented representation”; it determines a list α of augmented weights
(α, u) for the 1-dimensional weight spaces.
Take H ⊆ U(n) to be the subgroup of transformations commuting with

U and with all A(t), and h ⊆ u(n) its Lie algebra. As before, H contains
U(1)n. For X ∈ h sufficiently small, put

(7.5) VA(λ, `; X) =
∑′

t∈T`

tλ

det(1− U A(t−1) exp(−X))

where the sum is over all t ∈ T` such that U A(t−1) has no eigenvalue equal
to 1. This is a is a well-defined H-invariant analytic function of X, for X
sufficiently small, which reduces to the Verlinde sum Vα(λ, `) when X = 0.
We also have an equivariant version of the generalized partition function,
for a given polarizing vector τ ∈ t such that 〈α, τ〉 6= 0 for all weights α:

(7.6) P(A,τ)(λ; X) = lim
ε→0+

∫
T

tλ

det(1− U A(t−1 exp(iετ)) exp(−X)) dt.

As in the case of the Bernoulli series, we will consider X as a “formal
variable”, hence we will work with the Taylor expansions with respect to X.

For multi-indices J = (j1, . . . , jn) with jk > 0, we obtain T-represent-
ations AJ on SJ(Cn), with commuting endomorphisms UJ .

Lemma 7.3. — For X ∈ u(1)n, we have that(
det(1− UA(t−1) exp(−X))

)−1 =
∑
J

gJ(X) det(1− UJAJ(t−1))−1,
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where the sum is over multi-indices J = (j1, . . . , jn) with jk > 0, and where
the Taylor expansion of gJ(X) starts with terms of order |J | − n.

Proof. — Similar to the proof of Lemma 7.1, it suffices to consider the
case n = 1, where it follows from

(1− a−1 e−z)−1 =
∞∑
j=0

(−1)j(1− e−z)j(1− a−1)−j−1. �

It follows that

(7.7) VA(λ, `; X) =
∑
J

gJ(X) VAJ (λ, `),

and similarly for the partition function PA(λ; X), with the same coefficients
gJ(X). By a discussion parallel to that for Bernoulli series, the Taylor
coefficients of VA(λ, `; X) are quasi-polynomial on the same regions (e.g.,
(2.8)) as for X = 0.
Once again, we fix an element γ ∈ t that is generic with respect to S. For

∆ ∈ S we obtain an equivariant Verlinde sum VA∆
(X), and a H-equivariant

function
Ver(A∆;γ∆)(λ, `; X)

whose Taylor coefficients are quasi-polynomial on {(λ, `) : λ ∈ ∆} and
agrees with VA∆

(λ, `;X) whenever 1
`λ lies in the same chamber as γ∆.

The decomposition formula extends to the setting with parameters:

Proposition 7.4 (Equivariantdecomposition formula forVerlinde sums).

(7.8) VA(X) =
∑
∆∈S

Ver(A∆,γ∆)(X) ? P(Ac
∆,τ∆)(X)

(convolution of functions on Λ∗, for fixed `).

Outline of proof. — The proof is parallel to that of Proposition 7.2,
hence we will be brief. By H-invariance, it suffices to prove the identity for
X ∈ u(1)n. The terms on the right hand side have expansions

Ver(A∆;γ∆)(X) =
∑
J′

g∆
J′(X) Ver(AJ′∆ ;γ∆),

and
P(Ac

∆,τ∆)(X) =
∑
J′′

g∆,c
J′′ (X)P(AJ′′∆,c,τ∆).

Taking their convolution product, and using

g∆
J′(X)g∆,c

J′′ (X) = gJ(X)
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one may carry out the summation over ∆ by using the non-equivariant
decomposition formula for Verlinde sums. The resulting expression is the
expansion for VA(X). �

7.3. Differential form valued Bernoulli series and Verlinde sums.

Suppose now that E → M is a T-equivariant Hermitian vector bundle
over a connected base, where the action on the base M is trivial. The T -
action will be denoted AE : T → Aut(E); it may be regarded as a family
of unitary T-representations, smoothly labeled by the points of M . Letting
RE ∈ Ω2(M,End(E)) be the curvature of a T-invariant connection on E,
and Eul(E, ·) the corresponding T-equivariant Euler form, we have for all
ξ ∈ t

Eul(E,−2πiξ) = det
(
AE(ξ) + i

2πRE
)
∈ Ω(M).

The expression

BE(λ) =
∑′

ξ∈Ξ∗

e2πi〈λ,ξ〉

Eul(E,−2πiξ) ∈ Ω(M)

appears in the fixed point formula for Duistermaat–Heckman measures of
Hamiltonian loop group spaces (see [11]). It may be regarded as the char-
acteristic form corresponding to an equivariant Bernoulli series. To see
this more clearly, note that by rigidity of actions of compact Lie groups,
the fibers of E are equivariantly isomorphic to a fixed T-representation
t 7→ A(t) on some Cn, which we may take to be a representation by di-
agonal matrices. The associated frame bundle Fr(E), with fibers the T-
equivariant unitary isomorphisms from fibers of E to Cn, has structure
group H the unitary automorphisms commuting with T. The Chern–Weil
map takes H-invariant formal power series on h to differential forms on the
base. Applying the Chern–Weil map to BA(λ,X) we obtain the closed dif-
ferential form BE(λ). As an Ω(M)-valued function of λ, it is polynomial on
chambers of S. Given ∆ ∈ S, and a generic choice of γ ∈ t as in previous
sections, we define Ω(M)-valued generalized functions of λ

(7.9) Ber(E∆;γ∆)(λ), H(E⊥∆ ,τ∆)(λ)

where E∆ ⊆ E is the subbundle fixed by T∆, and E⊥∆ its orthogonal com-
plement in E. Both are associated bundles to Fr(E), and the differential
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forms (7.9) are obtained by applying the Chern–Weil map to the corre-
sponding H-equivariant invariant functions. We obtain the form-valued de-
composition formula,

BE =
∑
∆∈S

Ber(E∆;γ∆) ?H(E⊥∆ ,τ∆).

For the Verlinde sums, we allow for a slightly more general setting where
E comes with a unitary automorphism UE , fixing the base and commut-
ing with AE , and such that some power of UE is the identity. We write
AE = (AE , UE). By rigidity of actions of compact groups, the fibers of
E are isomorphic to Cn with a given T-action by diagonal matrices and
an additional unitary automorphism U , also by diagonal matrices. Take
Fr(E) to be the corresponding frame bundle, consisting of unitary maps
from fibers of E to Cn intertwining AE , UE with A,U , respectively; it is a
principal H-bundle, where H ⊆ U(n) is the group of unitary automorphism
commuting with both A and U .
Choose a principal connection on Fr(E), and let RE ∈ Ω2(M,End(E))

be the curvature form of the resulting linear connection on E. Then

DC(E, t) = det(1− UE AE(t)−1e−
i

2πRE ) ∈ Ω(M),

for t∈T is the characteristic form corresponding to det(1−UA(t)−1exp(X)).
The expression

VE(λ, `) :=
∑′

t∈T`

tλ

DC(E, t) ∈ Ω(M)

arises from the localization formula for the quantization of Hamiltonian
loop group spaces [1, 12]; it is also obtained by applying the Chern–Weil
map to the equivariant Verlinde sum VA(λ, `;X). The decomposition for-
mula for these differential form-valued Verlinde sums reads as

(7.10) VE =
∑
∆∈S

Ver(E∆;γ∆) ?P(E⊥∆ ,τ∆),

for generic choice of γ ∈ t. Here Ver(E∆;γ∆) and P(E⊥∆ ,τ∆) are obtained
by applying the Chern–Weil map to the corresponding H-equivariant func-
tions.

Appendix A. Functions on lattices

Let Λ be a lattice, with dual lattice Λ∗ = Hom(Λ,Z). We denote by
t = Λ⊗Z R the vector space spanned by Λ and by T = t/Λ the torus.
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A.1. Functions on Λ∗.

Consider the vector space Map(Λ∗,C) of functions f : Λ∗ → C, and its
subspace Map0(Λ∗,C) of functions of compact (i.e., finite) support. Every
subset S ⊆ Λ∗ defines a delta-function

δS ∈ Map(Λ∗,C), δS(λ) =
{

1 λ ∈ S
0 λ 6∈ S

Every t ∈ T defines an evaluation function

et ∈ Map(Λ∗,C), et(λ) = tλ.

A.2. Push-forward, pull-back

Given a lattice homomorphism φ : (Λ′)∗ → Λ∗ (dual to some morphism
χ : Λ → Λ′) we define the usual pull-back map φ∗ : Map(Λ∗,C) →
Map((Λ′)∗,C), as well as the push-forward

φ∗ : Map0((Λ′)∗,C)→ Map0(Λ∗,C)

by duality to the pull-back under χ. Explicitly, (φ∗f)(λ)=
∑
λ′∈φ−1(λ) f(λ′).

A.3. Convolution

As a special case, letting Add: Λ∗×Λ∗ → Λ∗ be the addition (with dual
map Λ→ Λ× Λ the diagonal inclusion), we define the convolution

f1 ? f2 = Add∗(f1 ⊗ f2).

Thus, (f1 ? f2)(λ) =
∑
λ1+λ2=λ f1(λ1)f2(λ2). More generally, f1 ∗ f2 is

defined even for functions of non-compact support, provided Add restricts
to a proper map on the support of f1 ∗ f2. Some basic properties of the
convolution are

(A.1) (et f) ? (et g) = et (f ? g),

(A.2) (φ∗f ? g) = φ∗(f ? φ∗g).

Convolution with δµ for µ ∈ Λ∗ acts as a translation: (δµ?f)(λ) = f(λ−µ).

TOME 72 (2022), FASCICULE 3



1246 Yiannis LOIZIDES & Eckhard MEINRENKEN

A.4. Finite difference operators

For any pair β = (β, v), where β ∈ Λ∗ and v ∈ C (usually taken to be a
root of unity), define the following finite difference operator on the space
of functions f : Λ∗ → C:

(A.3) (∇βf)(λ) = f(λ)− v f(λ− β).

The finite difference operators for any two such functions β1, β2 commute.
Under convolution of functions

(A.4) ∇β(f ? g) = (∇βf) ? g = f ? (∇βg)

A.5. Finite Fourier transform

Suppose Ξ ⊆ t is a lattice containing Λ. Then Ξ/Λ is a finite group, with
dual group Λ∗/Ξ∗. If f ∈ Map(Λ∗,C) is Ξ∗-periodic, it has a finite Fourier
expansion

f(λ) =
∑
t∈Λ/Ξ

f∨(t) tλ; f∨(t) = 1
#(Ξ/Λ)

∑
Λ∗/Ξ∗

f(λ) t−λ.

We have that (∇βf)∨(t) = (1− v t−β) f∨(t).

A.6. Poisson summation formula

Given a rational subspace h ⊆ t, the (possibly disconnected) group
exp(Ξ + h) ⊆ T has a normalized Haar measure. By pull-back, this defines
a measure on Ξ + h ⊆ t, which in turn pushes forward to a delta-measure

δΞ+h ∈ D′(t)

supported on Ξ + h. We may write this distribution as a sum
∑
U δU of

delta-measures supported on affine subspaces ξ + h, where ξ ranges over
representatives of Ξ/h. We have the following version of the Poisson sum-
mation formula:

Proposition A.1. — Let Ξ ⊇ Λ be full rank lattices in t, and let h ⊆ t

be a rational subspace. Let dX be Lebesgue measure on t, normalized such
that the induced measure on T = t/Λ is normalized Haar measure. Then
we have an equality of distributions on t,( ∑

ν∈Ξ∗∩ann(h)

e2πi〈ν,X〉

)
dX = δΞ+h.
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Proof. — Both sides are Λ-invariant, hence are pullbacks of distributions
on T = t/Λ. The desired identity is equivalent to the equality of distribu-
tions on T, ∑

ν∈Ξ∗∩ann(h)

tν dt = δexp(Ξ+h)

where dt is the normalized Haar measure on T and δexp(Ξ+h) is the push-
forward of normalized Haar measure on exp(Ξ+h). To compare the Fourier
coefficients of these two distributions, integrate against the function t 7→
t−λ for λ ∈ Λ∗. If λ ∈ Ξ∗ ∩ ann(h), the Fourier coefficient on the left hand
side is 1, and likewise for the right hand side because t−λ restricts to the
constant function 1 on exp(Ξ + h). If λ 6∈ Ξ∗ ∩ ann(h), both sides integrate
to zero against t−λ. �

BIBLIOGRAPHY

[1] A. Alekseev, E. Meinrenken & C. Woodward, “The Verlinde formulas as fixed
point formulas”, J. Symplectic Geom. 1 (2001), no. 1, p. 1-46.

[2] ———, “Duistermaat–Heckman measures and moduli spaces of flat bundles over
surfaces”, Geom. Funct. Anal. 12 (2002), no. 1, p. 1-31.

[3] M. W. Baldoni, M. Beck, C. Cochet & M. Vergne, “Volume computation for
polytopes and partition functions for classical root systems”, Discrete Comput.
Geom. 35 (2006), no. 4, p. 551-595.

[4] M. W. Baldoni, A. Boysal & M. Vergne, “Multiple Bernoulli series and volumes
of moduli spaces of flat bundles over surfaces”, J. Symb. Comput. 68 (2015), no. 2,
p. 27-60.

[5] A. Boysal & M. Vergne, “Paradan’s wall crossing formula for partition functions
and Khovanski-Pukhlikov differential operator”, Ann. Inst. Fourier 59 (2009), no. 5,
p. 1715-1752.

[6] ———, “Multiple Bernoulli series, an Euler–MacLaurin formula, and wall cross-
ings”, Ann. Inst. Fourier 62 (2012), no. 2, p. 821-858.

[7] M. Brion & M. Vergne, “Arrangement of hyperplanes, I: Rational functions and
Jeffrey–Kirwan residue”, Ann. Sci. Éc. Norm. Supér. 32 (1999), no. 5, p. 715-741.

[8] W. Dahmen & C. A. Micchelli, “The number of solutions to linear Diophantine
equations and multivariate splines”, Trans. Am. Math. Soc. 308 (1988), no. 2,
p. 509-532.

[9] V. Guillemin & E. Prato, “Heckman, Kostant and Steinberg formulas for sym-
plectic manifolds”, Adv. Math. 82 (1990), no. 2, p. 160-179.

[10] V. W. Guillemin, E. M. Lerman & S. Sternberg, “On the Kostant multiplicity
formula”, J. Geom. Phys. 5 (1988), no. 4, p. 721-750.

[11] Y. Loizides, “Norm-square localization for Hamiltonian LG-spaces”, J. Geom.
Phys. 114 (2017), p. 420-449.

[12] E. Meinrenken, “Twisted K-homology and group-valued moment maps”, Int.
Math. Res. Not. 2012 (2012), no. 20, p. 4563-4618.

[13] P.-E. Paradan, “Localization of the Riemann–Roch character”, J. Funct. Anal.
187 (2001), no. 2, p. 442-509.

TOME 72 (2022), FASCICULE 3



1248 Yiannis LOIZIDES & Eckhard MEINRENKEN

[14] ———, “Wall-crossing formulas in Hamiltonian geometry”, in Geometric Aspects
of Analysis and Mechanics, Progress in Mathematics, vol. 292, Birkhäuser, 2011,
p. 295-343.

[15] A. Szenes, “Verification of Verlinde’s formulas for SU(2)”, Int. Math. Res. Not.
1991 (1991), no. 7, p. 93-98.

[16] ———, “The combinatorics of the Verlinde formula”, in Vector bundles in algebraic
geometry (Durham, 1993), London Mathematical Society Lecture Note Series, vol.
208, Cambridge University Press, 1995, p. 241-253.

[17] ———, “Iterated residues and multiple Bernoulli polynomials”, Int. Math. Res.
Not. 18 (1998), p. 937-956.

[18] ———, “Residue theorem for rational trigonometric sums and Verlinde’s formula”,
Duke Math. J. 118 (2003), no. 2, p. 189-227.

[19] A. Szenes & M. Vergne, “Residue formulae for vector partitions and Euler–
Maclaurin sums”, Adv. Appl. Math. 30 (2003), no. 1-2, p. 295-342.

[20] ———, “[Q, R] = 0 and Kostant partition functions”, Enseign. Math. 63 (2017),
no. 3-4, p. 471-516.

[21] M. Thaddeus, “Conformal field theory and the cohomology of the moduli space of
stable bundles”, J. Differ. Geom. 35 (1992), no. 1, p. 131-149.

[22] M. Vergne, “Multiple Bernoulli series and wall crossing”, Slides for AMS meeting
in San Francisco, 2010.

[23] ———, “Residue formulae for Verlinde sums, and for number of integral points
in convex rational polytopes”, in European women in mathematics (Malta, 2001),
World Scientific, 2003, p. 225-285.

[24] ———, “Poisson summation formula and box splines”, https://arxiv.org/abs/
1302.6599, 2013.
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