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THEOREMS OF KREIN-MILMAN TYPE
FOR CERTAIN CONVEX SETS

OF FUNCTIONS AND OPERATORS
by Robert R. PHELPS

Let X be a compact Hausdorff space and E a real [or
complex] locally convex Hausdorff vector space. Denote by
C(X, E) the real [or complex] linear space of all continuous
functions from X to E, provided with the topology of
uniform convergence. (Thus, a typical neighborhood of 0
has the form

{/•eC(X,E):supxp(/^)) < 1}
where p is a continuous seminorm on E.)

For any subset A of E we let

c{x,A)={f^c(x,E):f{X)c:A}.
It follows that if B is a bounded closed convex subset of E,
then C(X, B) is a bounded closed convex subset of C(X, E).
We denote by exts the set of extreme points of a given
convex set S; it is readily verified that

C(X, ext B) c ext C(X, B).

[It is known [2, p. 755] that this inclusion can be proper,
even for four dimensional E. There are also examples where
ext C(X, B) is empty for every X; for instance, if E == CQ
in the norm topology and B is its unit ball.] The main purpose
of this note is to exhibit conditions under which the set
C(X, B) will be the closed convex hull co C(X, ext B) of
this subset of extreme points.
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[Note that, even for one dimensional B, the set C(X, B)
need not be compact, so the Krein-Milman theorem does not
apply.] Our main result was proved in two special cases in
[6] (Theorems 2.1 and 4.1), where applications were made to
various convex sets of bounded (or of compact) linear operators
from a Banach space into C(X). The more general result
of the present note may be applied to analogous sets of weakly
compact operators. We give one such application, as well
as two results which were overlooked in [6J.

As in [6], the problem is handled in two steps. First, we
consider a condition (D) (below) on a pair of spaces (X, A),
with X compact Hausdorff and A bounded in E, which
implies that

C(X, co A) - co C(X, A).

[This formulation was first considered by G. Seever [7].] We
then apply this to bounded closed convex subsets B of E
such that (with A = ext B), the pair (X, A) satisfies condi-
tion (D) and B == co A.

DEFINITION. — A pair of Hausdorff spaces (X, A) is said
to satisfy condition (D) if the following holds for each n > 0:

Given nonempty open sets U^, Ug, . . ., U^ in A and pair-
wise disjoint nonempty compact sets Ki, Kg, . . ., K^ in X,
there exists fe C(X, A) such that /'(K;) c U, i == 1, 2, . . ., n.

Condition (D) is a sort of density property for the subspace
C(X, A) in the space A.^ of all functions from X to A.
Indeed, condition (D) implies that C(X, A) is dense in the
pointwise topology on the space A^ while density of C(X, A)
in the compact-open topology implies condition (D). As
noted in [6], if X is a totally disconnected compact space,
then (X, A) satisfies condition (D) for any A. On the other
hand, if A is arcwise connected (or even only « almost arc-
wise connected » [6]), then (X, A) satisfies (D) for any
compact X.

THEOREM 1. — Let E be a real or complex locally convex
Hausdorff vector space, X a compact Hausdorff space and A
a bounded subset of E. If (X, A) satisfies condition (D),
then

C(X, co A) == co C(X, A).
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The proof of the theorem depends on the following two
technical lemmas.

LEMMA 1. — Suppose that L is a continuous linear functional
on C(X, E). Then there exists a continuous seminorm p on E
and a regular Borel positive measure (A on X such that ^(X) < 1
and

\Uf)\ ^ f^P{fW d^(x) {for each f^ C(X, E)).

LEMMA 2. — Suppose that X and A are as described in
the statement of the theorem. Given a continuous seminorm p
on E, e > 0, a regular Borel probability measure (JL on X
and f^ C(X, co A), there exist ge co C(X, A) and a compact
subset K c X such that

p{g{x) —f{x)) < e for r ceK and (Ji(X\K) < e.

Assuming that these lemmas have been proved, the theorem
follows readily. Indeed, since C(X, A) c C(X, co A) and since
the latter is closed and convex, we have

co C(X, A) c C(X, co A).

To show equality, it suffices to show that for each s > 0,
each L e C(X, E)* and each fe C(X, co A), there exists
geco C(X, A) with

Re L(g) > Re L{f) - s.

Choose p and (A according to Lemma 1, and let
M = sup{p(a) : aeA}. Choose K c X and geco C(X, A)
according to Lemma 2, with e replaced by e/2(M + 1).
It follows that

Re L{f) - Re L(g) < |L(/1- g)| ^ f^p(f{x) - g{x)) d^x).

The integral on the right is the sum of the integral over K
and the integral over X\K. From Lemma 2, the first
summand is at most e/2(M + I); while the second is at
most Me/2(M + I); hence the total is at most e.

We now turn to the proof of Lemma 1. Since L is conti-
nuous on C(X, E) it is bounded in absolute value by 1 on a
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neighborhood of the form

{f^C(X,E):p{f{x)) < l ,^eX},

where p is a continuous seminorm on E. Thus,

(*) mm < sup{p(^)): x^ X}, /•€ C(X, E).

Let N denote the closed subspace /^(O) and consider the
space E/N, normed by the quotient norm | | - - - 1 | defined
by p. Let 9 denote the quotient map from E into F == E/N;
the composition f -> 9 o f defines a linear mapping of C(X, E)
into C(X, F) which satisfies

MW)\\=p(fW)
for all jfe C(X, E), x e X. The space C(X, F) has the norm

igll =SUp{||g(^)||:^eX}.

It follows from (*) that the formula J(<p o f) = L(y) defines
a continuous linear functional J of norm at most 1 on the
subspace 9 o C(X, E) of C(X, F), and we can extend J
to a functional of norm at most 1 on all of C(X, F). At this
point we could apply known results, which represent C(X, F)*
in terms of dominated vector valued measures [4, p. 387],
but we prefer to use the following direct (and simple) proof
which was kindly furnished us by Dr. Erik Thomas. Let us
define, for AeC(X) , h ^ 0,

(**) ^ )=sup{ | J (g ) | : geC(X,F) ,
\\g{x)\\ ^ h{x) for x in X}

It is straightforward to verify that ^(K) < oo, that
(JL(U) = X(JI(A) for X > 0, and that pi(/ii + Ag) ^ (Ji(^i) + ^(/ig)
if /ii, h^ ^ 0 are in C(X). The reverse inequality follows
easily once we have the following fact: If h = h^ + ^2(^1 ^ 0)
and l|g(^)|| ^ h(x) for all x in X, then there exists gi, gg
in C(X, F) such that g = gi + ga and ||g^)|| ^ A;(rc),
i= l , 2 and ^eX. Indeed, let V = {x^X: \\g(x)\\ > 0}
and for x in V let

^{x) == min (1, h^x)l\\g{x)[\), ^(x) = 1 — ^{x).

If we define gi{x) = (^i{x)g{x) for x e V, == 0 for x e X\V,
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then g == gi + g2, \\g,{x)[\ < h,{x) and [\g,(x)[\ ^ ||g(a;)||
(^eX, i == 1, 2). (The last inequality shows that each g.
is continuous.) Thus, (JL is additive, non negative and positive
homogeneous on the positive cone in C(X), hence can be
considered as an integral with respect to a finite positive regular
Borel measure, say pi, on X. Furthermore, from (**) it is
obvious that |J(g)| ^f[\g{x)[\ d^(x) for all geC(X, F)
and that (JL(I) == ^J|[ ^ 1. Finally, for /•e C(X, E) we have
\Uf)\ = |J(? ° f)\ ^ f H?(/N)11 d[L(x) = fp(f{x)) d^(x), which
completes the proof of Lemma 1.

We next give the proof of Lemma 2. For xe X, let

V,={yeX:p(/^)-/^))< e/3};

this is an open neighborhood of x, and we can choose
x^ ..., x^ such that the collection {V^, .. ., V^} covers X,
and such that no proper subcollection covers "X. An easy
induction argument, using the regularity of p., shows that
we can find another cover {Vi, . . . , VJ of open sets V,
such that VfcV^. and such that (JI(D) < s, where
D = u {V, n V,: i, / = 1, 2, . . ., TZ; i + /}. Let

K,=V,\u{V,:/ ^ ,}=X\u{V,: / ^ i},i=i,2, ...,M.

Then each K, is compact, nonempty and K, n Kj is empty
if i ^ /. Furthermore, if K = u K,, then K is compact
and X\K c D, hence |A(X\K) < e. Now, for each
t == I? 2, . . ., n we have f(Xi) <= co A, hence we can find
u,eco A, with p[Ui—f(Xi)] < s/3, of the following form:

Ui = S ^^-fc, {^}i?Li c A, \, > 0, S ^.fc = 1fc==i ;̂ i

where each X,^ is a rational number, k = 1, 2, . . ., m^
We can assume that the numbers X^ have a common deno-
minator Q > 0, so by allowing repetitions of the points
Oik and by relabelling, we have

^ = Q-1 S b^ {&,,}^ c A, , = 1, 2, ..., n.
k=l

By property (D), for each A- = 1, 2, ..., Q, we can choose
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gfc e C(X, A) such that

g,(K,)c{peE:^-^) < e/3}.

Q
Let g = Q~1 S g/c? so that ge co C(X, A).

fc==i
Suppose that a; e K; then re e K^ for some i and

p[g(^) - ̂ ] = pEQ^g^) - Q^s^]
< Q^p[g^) - ̂ ] < e/3.

Since KfcVfcV^. , we have p[f(x)—f{x^)'\ < e/3. Thus,

p[gW ~ /N] ^ p[gW ~ ^] + p[ui - f{x,)]
+ pl̂ ) ~ fW < ^

which completes Lemma 2.

COROLLARY 1. — Suppose that B 15 a bounded closed convex
subset of the locally convex space E, and that X is a compact
Hausdorff space. Let A c ext B. If B == co A and if (X, A)
satisfies condition (D), then

coC(X,A) =C(X,B) ;
in particular, the latter set is the closed convex hull of its extreme
points.

The hypothesis in Corollary 1 that B = co A is obviously
a necessary one for the conclusion; indeed, since

C(X, A) c C(X, co A)

and since the latter is closed and convex, it contains co C(X, A).
Thus, if C(X, B) = co C(X, A), then C(X, B) c C(X, co A),
whence B === co A.

In general, condition (D) is not a necessary one for the
validity of the equality C(X, co A) = co C(X, A). Consider,
for instance, X == [0, I], E = C (complex plane) and

A = {z: |z| < 1/4} u {z: 3/4 < \z\ < 1}.

Then co A == {z: \z\ ^1} is compact, and the above equality
holds, but it is easily seen that C(X, A) is not even pointwise
dense in A^ If, however, A is the set of extreme points of
co A — this is the situation we are mainly interested in —
then there is a partial converse to Theorem 1.
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THEOREM 2. — If B is a compact convex subset of the locally
convex space E and A = ext B {so B = co A), then the
equality

co C(X, A) = C(X, co A)

implies that C(X, A) is pointwise dense in A^
We omit the proof, since it, closely parallels that of Theorem

3.1 of [6], in which E is a dual Banach space (in the weak*
topology) and B is its unit ball. The same argument works
in the general case, using the fact that each extreme point of
B has a neighborhood base in B consisting of « slices »
[3, p. 108].

We now consider some applications of the foregoing results
to spaces of linear operators. Suppose that M is a real (resp.
complex) Banach space and let C(X) denote the real (resp.
complex) continuous functions on the compact Hausdorff
space X. The space ^(M, C(X)) (or simply ^ of all bounded
linear operators from M into C(X) is linearly isomorphic
to the space C(X, E), where E == M*.* is the space M*
in its weak* topology [5, p. 490]. The correspondence between
an operator T in ^ and a function f in C(X, E) is defined
by

(Tm)(^) = (m, f{x)\ {x e X, m e M).

Moreover, ||T|[ = sup {f(x)[\: x^ X} - \\f\\.
Thus, the unit ball U of ^ may be identified with the

subset C(X, U*) of C(X, E), where U* is the unit ball
of M*. This correspondence was used in [6] to obtain various
corollaries to Theorem 1, which was proved there for this
particular choice of E. Similarly, the subspace

^ - 2,(M, C(X))
of all compact operators in '£ can be identified with the sub-
space C(X, M*), of C(X, E), where M^ is M* in its norm
topology [5], and Theorem 1 was also proved in [6] for this
case. It is readily verified that the uniform topology on
C(X, E) carries over (under the correspondence indicated
above) to the strong operator topology on ^, and that in
C(X, M*) the uniform topology is the norm topology (norm
defined as above) and this identifies on ^ with the norm
(or « uniform operator ») topology. The fact that Theorem 1



52 ROBERT R. PHELPS

was proved for arbitrary E allows us to consider the case
where E = M^, the space M* in its weak (i.e. cr(M*, M**))
topology. Under the above correspondence, C(X, M^) is
exactly the space ^ == 2^c(M, C(X)) of all weakly compact
operators from M into C(X). The topology induced on ^
by the uniform topology on C(X, M^) is not one of the usual
« operator » topologies, but is easily seen to be between the
strong operator and norm topologies on ^-

We will denote by U, ̂  and °U^ the unit ball of ^, ^
and 2^ respectively. These are, of course, the same as the
sets C(X, U*), C(X, U:) and C(X, U^). An operator which
corresponds to an element f of one of these sets such that
jf(X) c ext U* is called a nice (resp. nice compact, nice weakly
compact) operator. They are of course, extreme points of the
sets ^ll, ̂  and ^ll^ respectively.

The next result is almost a direct application of Corollary 1
to the ball of weakly compact operators. The main point is
to account for the difference between the two topologies
involved.

PROPOSITION 1. — Let M and C(X) be as above, and let
U* be the unit ball of M*. Suppose that there is a subset
A c ext U* such that:

(i) The pair (X, Ay,) satisfies condition (D).
(ii) U* is the norm closed convex hull of A.

Then the unit ball U^ of ^c ts ^he strong operator closed
convex hull of the nice weakly compact operators.

Proof. — Hypotheses (i) and (ii) allow us to apply Corollary
1 to obtain the equality C(X, U^) = co C(X, A^), where the
closure is in the uniform topology of C(X, My,). Since
C(X, M^) c C(X, M^»), the uniform topology on the latter
space induces a topology on C(X, M^) which is weaker than
the original; we will call it the (( strong » topology since it
corresponds exactly to the strong operator topology on ^'
Thus, we want to show that C(X, U^) is the strong closed
convex hull of C(X, Ay,), since the latter is clearly a subset
of the nice weakly compact operators. But it is easily verified
that (since U* is weak* closed) C(X, U^) is strongly closed
in C(X, M^), hence contain the strong closure of co C(X, Ay,),
which in turn contains co C(X, Ay,) = C(X, U^).
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The fact that in hypothesis (ii) above we used the norm
closure instead of the weak closure (which Corollary 1 would
have allowed) is no loss in generality, of course, since the set
involved is convex.

Recall that a real or complex Banach space M is said to
be smooth if for each point ^eS(M) = {xeM: \\x\\ = 1}
there exists a unique functional fy; in the unit sphere S(M*)
of M* such that Re f^x) = 1. This is equivalent to Gateaux
differentiability of the norm (at each nonzero point), and the
functional ^ is the Gateaux differential of the norm at x.

THEOREM 3. — Let M be a real or complex Banach space
and X a compact Hausdorff space. In the real case, we assume
that dim M > 1.

(a) If M is smooth, then U is the strong operator closed
convex hull of the nice operators.

(6) If the norm in M is Frechet differentiable at each nonzero
point, then U^ [resp. ^HJ ls ^e strong operator [resp. norm]
closed convex hull of its nice operators.

Proof. — (a) It is well known (and easily proved) that if
M is smooth, then the map x -> fy; defined above is continuous
from S(M) in its norm topology into S(M*) in its weak*
topology. It is readily verified that U* is the weak* closed
convex hull of the image A of S(M) under this map, and
that A c ext U*. [In fact, A is known [1] to be norm dense
in S(M*).] Since S(M) is arcwise connected (in the real
case this assertion obviously requires that dim M > 1), the
set A is arcwise connected in the weak* topology. Thus,
(X, A) satisfies condition (D) so Corollary 1 yields the desired
conclusion.

(fc) The Fechet differentiability of the norm in M implies
that the derivative map x -> /a. defined above is continuous
from the norm topology on S(M) into the norm topology on
S(M*). With the same notation as in (a), the set A is norm
arcwise connected and norm dense in S(M*), hence U*
is the norm closed convex hull of A and Proposition 1 [resp.
Corollary 1] applies.

In the case when M == C(X) for some compact Hausdorff
space X, it is possible to obtain necessary and sufficient
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conditions on X and Y that U^c ̂ (C(X), C(Y)) be the
strong operator closed convex hull of the nice weakly compact
operators. These conditions are the same as those in Theorem
4.6 of [6], and the methods for obtaining them are essentially
the same. (We don't know, in this case, whether every extreme
element of U^ is a nice operator.) Similar results hold in the
real case for the set of positive normalized weakly compact
operators.

The following problem arises in the context of Corollary 1 :
Suppose that C(X, B) == co ext C(X, B). Must ext B be
nonempty?

[Note added in proof: J. Lindenstrauss (private communi-
cation) has answered this question in the negative by showing
that there exists a normed linear space E, a nonempty
convex closed and bounded subset B c E and a nonempty
compact Hausdorff space X such that ext B is empty, but
C(X,B) -= coextC(X,B) . ]
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