ROBERT R. PHELPS

Theorems of Krein Milman type for certain convex sets of functions operators

Annales de l'institut Fourier, tome 20, nº 2 (1970), p. 45-54 http://www.numdam.org/item?id=AIF 1970 20 2 45 0>

© Annales de l'institut Fourier, 1970, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THEOREMS OF KREIN-MILMAN TYPE FOR CERTAIN CONVEX SETS OF FUNCTIONS AND OPERATORS

by Robert R. PHELPS

Let X be a compact Hausdorff space and E a real [or complex] locally convex Hausdorff vector space. Denote by C(X, E) the real [or complex] linear space of all continuous functions from X to E, provided with the topology of uniform convergence. (Thus, a typical neighborhood of 0 has the form

$$\{f \in \mathcal{C}(\mathcal{X}, \mathcal{E}) : \sup_{\mathbf{X}} p(f(x)) \leq 1\}$$

where p is a continuous seminorm on E.)

For any subset A of E we let

$$C(X, A) = \{ f \in C(X, E) : f(X) \subset A \}.$$

It follows that if B is a bounded closed convex subset of E, then C(X, B) is a bounded closed convex subset of C(X, E). We denote by exts the set of extreme points of a given convex set S; it is readily verified that

$$C(X, ext B) \subset ext C(X, B).$$

[It is known [2, p. 755] that this inclusion can be proper, even for four dimensional E. There are also examples where ext C(X, B) is empty for every X; for instance, if $E = c_0$ in the norm topology and B is its unit ball.] The main purpose of this note is to exhibit conditions under which the set C(X, B) will be the closed convex hull \overline{co} C(X, ext B) of this subset of extreme points. [Note that, even for one dimensional B, the set C(X, B) need not be compact, so the Krein-Milman theorem does not apply.] Our main result was proved in two special cases in [6] (Theorems 2.1 and 4.1), where applications were made to various convex sets of bounded (or of compact) linear operators from a Banach space into C(X). The more general result of the present note may be applied to analogous sets of *weakly* compact operators. We give one such application, as well as two results which were overlooked in [6].

As in [6], the problem is handled in two steps. First, we consider a condition (D) (below) on a pair of spaces (X, A), with X compact Hausdorff and A bounded in E, which implies that

$$C(X, \overline{co} A) = \overline{co} C(X, A).$$

[This formulation was first considered by G. Seever [7].] We then apply this to bounded closed convex subsets B of E such that (with A = ext B), the pair (X, A) satisfies condition (D) and $B = \overline{\text{co}} A$.

DEFINITION. — A pair of Hausdorff spaces (X, A) is said to satisfy condition (D) if the following holds for each n > 0:

Given nonempty open sets U_1, U_2, \ldots, U_n in A and pairwise disjoint nonempty compact sets K_1, K_2, \ldots, K_n in X, there exists $f \in C(X, A)$ such that $f(K_i) \subset U_i$, $i = 1, 2, \ldots, n$.

Condition (D) is a sort of density property for the subspace C(X, A) in the space A^x of all functions from X to A. Indeed, condition (D) implies that C(X, A) is dense in the pointwise topology on the space A^x , while density of C(X, A) in the compact-open topology implies condition (D). As noted in [6], if X is a totally disconnected compact space, then (X, A) satisfies condition (D) for any A. On the other hand, if A is arcwise connected (or even only « almost arcwise connected » [6]), then (X, A) satisfies (D) for any compact X.

THEOREM 1. — Let E be a real or complex locally convex Hausdorff vector space, X a compact Hausdorff space and A a bounded subset of E. If (X, A) satisfies condition (D), then

 $C(X, \overline{co} A) = \overline{co} C(X, A).$

THEOREMS OF KREIN-MILMAN TYPE FOR CERTAIN CONVEX SETS 47

The proof of the theorem depends on the following two technical lemmas.

LEMMA 1. — Suppose that L is a continuous linear functional on C(X, E). Then there exists a continuous seminorm p on E and a regular Borel positive measure μ on X such that $\mu(X) \leq 1$ and

$$|\mathcal{L}(f)| \leq \int_{\mathbf{x}}^{r} p(f(x)) d\mu(x) \quad (for \ each \ f \in \mathcal{C}(\mathcal{X}, \ \mathcal{E})).$$

LEMMA 2. — Suppose that X and A are as described in the statement of the theorem. Given a continuous seminorm p on E, $\varepsilon > 0$, a regular Borel probability measure μ on X and $f \in C(X, \overline{co} A)$, there exist $g \in \overline{co} C(X, A)$ and a compact subset $K \subset X$ such that

$$p(g(x) - f(x)) < \varepsilon$$
 for $x \in K$ and $\mu(X \setminus K) < \varepsilon$.

Assuming that these lemmas have been proved, the theorem follows readily. Indeed, since $C(X, A) \subset C(X, \overline{co} A)$ and since the latter is closed and convex, we have

$$\overline{\operatorname{co}} \operatorname{C}(\operatorname{X}, \operatorname{A}) \subset \operatorname{C}(\operatorname{X}, \overline{\operatorname{co}} \operatorname{A}).$$

To show equality, it suffices to show that for each $\varepsilon > 0$, each $L \in C(X, E)^*$ and each $f \in C(X, \overline{co} A)$, there exists $g \in \overline{co} C(X, A)$ with

Re L(g) > Re L(f) -
$$\varepsilon$$
.

Choose p and μ according to Lemma 1, and let $M = \sup\{p(a) : a \in A\}$. Choose $K \subset X$ and $g \in \overline{co} C(X, A)$ according to Lemma 2, with ε replaced by $\varepsilon/2(M + 1)$. It follows that

$$\operatorname{Re} L(f) - \operatorname{Re} L(g) \leq |L(f - g)| \leq \int_{\mathbf{x}} p(f(x) - g(x)) \ d\mu(x).$$

The integral on the right is the sum of the integral over K and the integral over X\K. From Lemma 2, the first summand is at most $\varepsilon/2(M + 1)$, while the second is at most $M\varepsilon/2(M + 1)$, hence the total is at most ε .

We now turn to the proof of Lemma 1. Since L is continuous on C(X, E) it is bounded in absolute value by 1 on a

neighborhood of the form

 $\{f\in \mathbb{C}\ (\mathrm{X},\ \mathbb{E}):\ p(f(x))\ \leqslant\ 1,\ x\in \mathrm{X}\},$

where p is a continuous seminorm on E. Thus,

$$(*) \qquad |\operatorname{L}(f)| \,\,\leqslant\,\, \sup\{p(f(x)):\, x\in \operatorname{X}\}, \quad f\in\operatorname{C}(\operatorname{X},\,\operatorname{E}).$$

Let N denote the closed subspace $p^{-1}(0)$ and consider the space E/N, normed by the quotient norm $\|\cdots\|$ defined by p. Let φ denote the quotient map from E into F = E/N; the composition $f \rightarrow \varphi \circ f$ defines a linear mapping of C(X, E) into C(X, F) which satisfies

$$\|\varphi(f(x))\| = p(f(x))$$

for all $f \in C(X, E)$, $x \in X$. The space C(X, F) has the norm $||g|| = \sup\{||g(x)|| : x \in X\}.$

It follows from (*) that the formula $J(\varphi \circ f) = L(f)$ defines a continuous linear functional J of norm at most 1 on the subspace $\varphi \circ C(X, E)$ of C(X, F), and we can extend J to a functional of norm at most 1 on all of C(X, F). At this point we could apply known results, which represent $C(X, F)^*$ in terms of dominated vector valued measures [4, p. 387], but we prefer to use the following direct (and simple) proof which was kindly furnished us by Dr. Erik Thomas. Let us define, for $h \in C(X), h \ge 0$,

$$(**) \quad \mu(h) = \sup \{ |\mathbf{J}(g)| : g \in \mathbf{C}(\mathbf{X}, \mathbf{F}), \\ \|g(x)\| \leq h(x) \quad \text{for} \quad x \text{ in } \mathbf{X} \}$$

It is straightforward to verify that $\mu(h) < \infty$, that $\mu(\lambda h) = \lambda \mu(h)$ for $\lambda > 0$, and that $\mu(h_1 + h_2) \ge \mu(h_1) + \mu(h_2)$ if $h_1, h_2 \ge 0$ are in C(X). The reverse inequality follows easily once we have the following fact: If $h = h_1 + h_2(h_i \ge 0)$ and $||g(x)|| \le h(x)$ for all x in X, then there exists g_1, g_2 in C(X, F) such that $g = g_1 + g_2$ and $||g_i(x)|| \le h_i(x)$, i = 1, 2 and $x \in X$. Indeed, let $V = \{x \in X : ||g(x)|| > 0\}$ and for x in V let

 $\alpha_1(x) = \min (1, h_1(x) / ||g(x)||), \quad \alpha_2(x) = 1 - \alpha_1(x).$

If we define $g_i(x) = \alpha_i(x)g(x)$ for $x \in V$, = 0 for $x \in X \setminus V$,

48

THEOREMS OF KREIN-MILMAN TYPE FOR CERTAIN CONVEX SETS 49

then $g = g_1 + g_2$, $||g_i(x)|| \leq h_i(x)$ and $||g_i(x)|| \leq ||g(x)||$ ($x \in X$, i = 1, 2). (The last inequality shows that each g_i is continuous.) Thus, μ is additive, non negative and positive homogeneous on the positive cone in C(X), hence can be considered as an integral with respect to a finite positive regular Borel measure, say μ , on X. Furthermore, from (**) it is obvious that $|J(g)| \leq \int ||g(x)|| d\mu(x)$ for all $g \in C(X, F)$ and that $\mu(1) = ||J|| \leq 1$. Finally, for $f \in C(X, E)$ we have $|L(f)| = |J(\varphi \circ f)| \leq \int ||\varphi(f(x))|| d\mu(x) = \int p(f(x)) d\mu(x)$, which completes the proof of Lemma 1.

We next give the proof of Lemma 2. For $x \in X$, let

$$\mathbf{V}_{\boldsymbol{x}} = \{ \boldsymbol{y} \in \mathbf{X} : p(f(\boldsymbol{x}) - f(\boldsymbol{y})) < \varepsilon/3 \};$$

this is an open neighborhood of x, and we can choose x_1, \ldots, x_n such that the collection $\{V_{x_i}, \ldots, V_{x_n}\}$ covers X, and such that no proper subcollection covers X. An easy induction argument, using the regularity of μ , shows that we can find another cover $\{V_1, \ldots, V_n\}$ of open sets V_i such that $V_i \subset V_{x_i}$ and such that $\mu(D) < \varepsilon$, where $D = \cup \{V_i \cap V_j : i, j = 1, 2, \ldots, n; i \neq j\}$. Let

$$\mathbf{K}_i = \mathbf{V}_i \setminus \mathbf{U} \{ \mathbf{V}_j : j \neq i \} = \mathbf{X} \setminus \mathbf{U} \{ \mathbf{V}_j : j \neq i \}, i = 1, 2, \dots, n.$$

Then each K_i is compact, nonempty and $K_i \cap K_j$ is empty if $i \neq j$. Furthermore, if $K = \cup K_i$, then K is compact and $X \setminus K \subset D$, hence $\mu(X \setminus K) < \varepsilon$. Now, for each $i = 1, 2, \ldots, n$ we have $f(x_i) \in \overline{co}$ A, hence we can find $u_i \in co$ A, with $p[u_i - f(x_i)] < \varepsilon/3$, of the following form:

$$u_i = \sum_{k=1}^{m_i} \lambda_{ik} a_{ik}, \ \{a_{ik}\}_{k=1}^{m_i} \subset \Lambda, \ \lambda_{ik} > 0, \ \sum_{i=1}^{m_i} \lambda_{ik} = 1$$

where each λ_{ik} is a rational number, $k = 1, 2, \ldots, m_i$. We can assume that the numbers λ_{ik} have a common denominator Q > 0, so by allowing repetitions of the points a_{ik} and by relabelling, we have

$$u_i = \mathbf{Q}^{-1} \sum_{k=1}^{\mathbf{Q}} b_{ik}, \ \{b_{ik}\}_{k=1}^{\mathbf{Q}} \subset \mathbf{A}, \ i = 1, 2, \ldots, n.$$

By property (D), for each k = 1, 2, ..., Q, we can choose

 $g_k \in C(X, A)$ such that

 $g_k(\mathbf{K}_i) \subset \{ \boldsymbol{\nu} \in \mathbf{E} : p(\boldsymbol{\nu} - b_{ik}) < \varepsilon/3 \}.$

Let $g = Q^{-1} \sum_{k=1}^{Q} g_k$, so that $g \in \operatorname{co} C(X, A)$.

Suppose that $x \in K$; then $x \in K_i$ for some *i* and

$$p[g(x) - u_i] = p[Q^{-1}\Sigma g_k(x) - Q^{-1}\Sigma b_{ik}] \\ \leqslant Q^{-1}\Sigma p[g_k(x) - b_{ik}] < \varepsilon/3.$$

Since $K_i \in V_i \in V_{x_i}$, we have $p[f(x) - f(x_i)] < \varepsilon/3$. Thus, $p[g(x) - f(x)] \leq p[g(x) - u_i] + p[u_i - f(x_i)] + p[f(x_i) - f(x)] < \varepsilon$,

which completes Lemma 2.

COROLLARY 1. — Suppose that B is a bounded closed convex subset of the locally convex space E, and that X is a compact Hausdorff space. Let $A \subset ext B$. If $B = \overline{co} A$ and if (X, A)satisfies condition (D), then

$$\overline{\operatorname{co}} \operatorname{C}(\operatorname{X}, \operatorname{A}) = \operatorname{C}(\operatorname{X}, \operatorname{B});$$

in particular, the latter set is the closed convex hull of its extreme points.

The hypothesis in Corollary 1 that $B = \overline{co} A$ is obviously a necessary one for the conclusion; indeed, since

$$C(X, A) \subset C(X, \overline{co} A)$$

and since the latter is closed and convex, it contains $\overline{co} C(X, A)$. Thus, if $C(X, B) = \overline{co} C(X, A)$, then $C(X, B) \subset C(X, \overline{co} A)$, whence $B = \overline{co} A$.

In general, condition (D) is not a necessary one for the validity of the equality $C(X, \overline{co} A) = \overline{co} C(X, A)$. Consider, for instance, X = [0, 1], E = C (complex plane) and

$$\mathbf{A} = \{ z : |z| < 1/4 \} \cup \{ z : 3/4 < |z| < 1 \}.$$

Then $\overline{co} A = \{z : |z| \leq 1\}$ is compact, and the above equality holds, but it is easily seen that C(X, A) is not even pointwise dense in A^{x} . If, however, A is the set of extreme points of $\overline{co} A$ — this is the situation we are mainly interested in then there is a partial converse to Theorem 1.

50

THEOREM 2. — If B is a compact convex subset of the locally convex space E and A = ext B (so $B = \overline{co} A$), then the equality

$$\overline{\operatorname{co}} \operatorname{C}(\operatorname{X}, \operatorname{A}) = \operatorname{C}(\operatorname{X}, \overline{\operatorname{co}} \operatorname{A})$$

implies that C(X, A) is pointwise dense in A^{x} .

We omit the proof, since it, closely parallels that of Theorem 3.1 of [6], in which E is a dual Banach space (in the weak* topology) and B is its unit ball. The same argument works in the general case, using the fact that each extreme point of B has a neighborhood base in B consisting of « slices » [3, p. 108].

We now consider some applications of the foregoing results to spaces of linear operators. Suppose that M is a real (resp. complex) Banach space and let C(X) denote the real (resp. complex) continuous functions on the compact Hausdorff space X. The space $\mathcal{L}(M, C(X))$ (or simply \mathcal{L}) of all bounded linear operators from M into C(X) is linearly isomorphic to the space C(X, E), where $E = M_{w^*}^*$ is the space M* in its weak* topology [5, p. 490]. The correspondence between an operator T in \mathcal{L} and a function f in C(X, E) is defined by

$$(\mathbf{T}m)(x) = \langle m, f(x) \rangle, \qquad (x \in \mathbf{X}, m \in \mathbf{M}).$$

Moreover, $||T|| = \sup \{f(x)|| : x \in X\} = ||f||.$

Thus, the unit ball \mathfrak{U} of \mathfrak{L} may be identified with the subset $C(X, U^*)$ of C(X, E), where U^* is the unit ball of M^* . This correspondence was used in [6] to obtain various corollaries to Theorem 1, which was proved there for this particular choice of E. Similarly, the subspace

$$\mathfrak{L}_{c} = \mathfrak{L}_{c}(\mathbf{M}, \mathbf{C}(\mathbf{X}))$$

of all compact operators in \mathcal{L} can be identified with the subspace $C(X, M_n^*)$, of C(X, E), where M_n^* is M^* in its norm topology [5], and Theorem 1 was also proved in [6] for this case. It is readily verified that the uniform topology on C(X, E) carries over (under the correspondence indicated above) to the strong operator topology on \mathcal{L} , and that in $C(X, M_n^*)$ the uniform topology is the norm topology (norm defined as above) and this identifies on \mathcal{L}_c with the norm (or « uniform operator ») topology. The fact that Theorem 1 was proved for arbitrary E allows us to consider the case where $E = M_w^*$, the space M^* in its weak (i.e. $\sigma(M^*, M^{**})$) topology. Under the above correspondence, $C(X, M_w^*)$ is exactly the space $\mathscr{L}_{we} = \mathscr{L}_{we}(M, C(X))$ of all weakly compact operators from M into C(X). The topology induced on \mathscr{L}_{we} by the uniform topology on $C(X, M_w^*)$ is not one of the usual « operator » topologies, but is easily seen to be between the strong operator and norm topologies on \mathscr{L}_{we} .

We will denote by $\mathfrak{U}, \mathfrak{U}_{e}$ and \mathfrak{U}_{we} the unit ball of $\mathfrak{L}, \mathfrak{L}_{e}$ and \mathfrak{L}_{we} respectively. These are, of course, the same as the sets $C(X, U^*), C(X, U^*_n)$ and $C(X, U^*_w)$. An operator which corresponds to an element f of one of these sets such that $f(X) \subset \text{ext } U^*$ is called a *nice* (resp. nice compact, nice weakly compact) operator. They are of course, extreme points of the sets $\mathfrak{U}, \mathfrak{U}_{e}$ and \mathfrak{U}_{we} respectively.

The next result is almost a direct application of Corollary 1 to the ball of weakly compact operators. The main point is to account for the difference between the two topologies involved.

PROPOSITION 1. — Let M and C(X) be as above, and let U^{*} be the unit ball of M^{*}. Suppose that there is a subset A \subset ext U^{*} such that:

(i) The pair (X, A_w) satisfies condition (D).

(ii) U^* is the norm closed convex hull of A.

Then the unit ball \mathfrak{U}_{we} of \mathfrak{L}_{we} is the strong operator closed convex hull of the nice weakly compact operators.

Proof. — Hypotheses (i) and (ii) allow us to apply Corollary 1 to obtain the equality $C(X, U_w^*) = \overline{co} C(X, A_w)$, where the closure is in the uniform topology of $C(X, M_w^*)$. Since $C(X, M_w^*) \in C(X, M_{w^*}^*)$, the uniform topology on the latter space induces a topology on $C(X, M_w^*)$ which is weaker than the original; we will call it the « strong » topology since it corresponds exactly to the strong operator topology on \mathscr{L}_{wc} . Thus, we want to show that $C(X, U_w^*)$ is the strong closed convex hull of $C(X, A_w)$, since the latter is clearly a subset of the nice weakly compact operators. But it is easily verified that (since U* is weak* closed) $C(X, U_w^*)$ is strongly closed in $C(X, M_w^*)$, hence contain the strong closure of co $C(X, A_w)$, which in turn contains $\overline{co} C(X, A_w) = C(X, U_w^*)$. THEOREMS OF KREIN-MILMAN TYPE FOR CERTAIN CONVEX SETS 53

The fact that in hypothesis (ii) above we used the norm closure instead of the weak closure (which Corollary 1 would have allowed) is no loss in generality, of course, since the set involved is convex.

Recall that a real or complex Banach space M is said to be *smooth* if for each point $x \in S(M) = \{x \in M : ||x|| = 1\}$ there exists a unique functional f_x in the unit sphere $S(M^*)$ of M^{*} such that Re $f_x(x) = 1$. This is equivalent to Gateaux differentiability of the norm (at each nonzero point), and the functional f_x is the Gateaux differential of the norm at x.

THEOREM 3. — Let M be a real or complex Banach space and X a compact Hausdorff space. In the real case, we assume that dim M > 1.

(a) If M is smooth, then \mathfrak{U} is the strong operator closed convex hull of the nice operators.

(b) If the norm in M is Fréchet differentiable at each nonzero point, then \mathfrak{U}_{wc} [resp. \mathfrak{U}_c] is the strong operator [resp. norm] closed convex hull of its nice operators.

Proof. — (a) It is well known (and easily proved) that if M is smooth, then the map $x \to f_x$ defined above is continuous from S(M) in its norm topology into S(M*) in its weak* topology. It is readily verified that U* is the weak* closed convex hull of the image A of S(M) under this map, and that A c ext U*. [In fact, A is known [1] to be norm dense in S(M*).] Since S(M) is arcwise connected (in the real case this assertion obviously requires that dim M > 1), the set A is arcwise connected in the weak* topology. Thus, (X, A) satisfies condition (D) so Corollary 1 yields the desired conclusion.

(b) The Féchet differentiability of the norm in M implies that the derivative map $x \to f_x$ defined above is continuous from the norm topology on S(M) into the norm topology on $S(M^*)$. With the same notation as in (a), the set A is norm arcwise connected and norm dense in $S(M^*)$, hence U^{*} is the norm closed convex hull of A and Proposition 1 [resp. Corollary 1] applies.

In the case when M = C(X) for some compact Hausdorff space X, it is possible to obtain necessary and sufficient conditions on X and Y that $\mathfrak{U}_{wc} \subset \mathfrak{L}_{wc}(C(X), C(Y))$ be the strong operator closed convex hull of the nice weakly compact operators. These conditions are the same as those in Theorem 4.6 of [6], and the methods for obtaining them are essentially the same. (We don't know, in this case, whether every extreme element of \mathfrak{U}_{wc} is a nice operator.) Similar results hold in the real case for the set of positive normalized weakly compact operators.

The following problem arises in the context of Corollary 1: Suppose that $C(X, B) = \overline{co} \text{ ext } C(X, B)$. Must ext B be nonempty?

[Note added in proof: J. Lindenstrauss (private communication) has answered this question in the negative by showing that there exists a normed linear space E, a nonempty convex closed and bounded subset $B \subset E$ and a nonempty compact Hausdorff space X such that ext B is empty, but $C(X, B) = \overline{co} \exp C(X, B)$.]

BIBLIOGRAPHY

- [1] Erret BISHOP and R. R. PHELPS, The support functionals of a convex set, Proc. Symp. Pure Math. vol 7 (Convexity), A.M.S. (1963), p. 27-35.
- [2] R. M. BLUMENTHAL, J. LINDENSTRAUSS and R. R. PHELPS, Extreme operators into C(K), Pacific J. Math. 15 (1965), p. 747-756.
- [3] N. BOURBAKI, Espaces vectoriels topologiques, Ch. 1 et 2, 2^e édition, Paris, 1966.
- [4] N. DINCULEANU, Vector measures, Berlin, 1967.
- [5] N. DUNFORD and J. T. SCHWARTZ, Linear operators Part I, (1958), Interscience.
- [6] P. D. MORRIS and R. R. PHELPS, Theorems of Krein-Milman type for certain convex sets of operators, *Trans. Amer. Math. Soc.* 150 (1970), 183-200.
- [7] G. SEEVER, Generalization of a theorem of Lindenstrauss (dittoed notes).

Manuscrit reçu le 6 mars 1970.

Robert R. Phelps,

Department of Mathematics, University of Washington Seattle, Wash, 98105 (USA..)

54