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THE LEADING COEFFICIENT OF THE
L2-ALEXANDER TORSION

by Fathi BEN ARIBI,
Stefan FRIEDL & Gerrit HERRMANN (*)

Abstract. — We give upper and lower bounds on the leading coefficients of
the L2-Alexander torsions of a 3-manifold M in terms of hyperbolic volumes and
of relative L2-torsions of sutured manifolds obtained by cutting M along certain
surfaces.

We prove that for numerous families of knot exteriors the lower and upper
bounds are equal, notably for exteriors of 2-bridge knots. In particular we compute
the leading coefficient explicitly for 2-bridge knots.
Résumé. — Nous trouvons des bornes supérieure et inférieure des coefficients

dominants des torsions d’Alexander L2 d’une variété de dimension 3 M , en fonction
de volumes hyperboliques et de torsions L2 relatives de variétés suturées qu’on
obtient en découpant M le long de certaines surfaces.

Nous démontrons que pour de nombreuses familles d’extérieurs de nœuds, les
bornes inférieure et supérieure sont égales, notamment pour les extérieurs des
nœuds à deux ponts. En particulier, nous calculons explicitement le coefficient
dominant pour les nœuds à deux ponts.

1. Introduction

We start out with introducing the following convention: throughout the
paper we assume that all manifolds are compact and oriented. By a hy-
perbolic 3-manifold we always mean a 3-manifold with empty or toroidal
boundary such that the interior admits a complete hyperbolic metric.
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1.1. Introduction to the L2-Alexander torsion

Let N be an irreducible 3-manifold with empty or toroidal boundary and
let φ ∈ H1(N ; R). The L2-Alexander torsion τ (2)(N,φ) is a function R>0 →
R>0 that was introduced by Dubois, Lück and the second author [11]. We
will recall the definition in Section 2. The L2-Alexander torsion of (N,φ) is
well-defined up to multiplication by a function of the form t 7→ tk for some
k ∈ R. In the following, given two functions f(t), g(t) : R>0 → R we write
f(t) .= g(t) if there exists a k ∈ R such that f(t) = tk · g(t) for all t ∈ R>0.
Perhaps the most interesting example is to consider a knot K ⊂ S3. We

denote by EK = S3 \ νK the knot exterior, i.e. the complement of an open
tubular neighborhood of K. Furthermore we denote by φK ∈ H1(EK ; Z) ∼=
Z a generator. The L2-Alexander torsion τ (2)(K) := τ (2)(EK , φK) was
initially introduced by Li–Zhang [23] and has been known under the name
of L2-Alexander invariant (up to multiplication by a function of the form
t 7→ max{1, t}).

From the definition using L2-torsions the L2-Alexander torsion might
appear to be a rather mysterious invariant, but as is argued in [10], it can
and should be viewed as a sibling of the more familiar twisted Alexander
polynomials [15, 41] and of the higher-order Alexander polynomials [8].
Over the last few years the L2-Alexander torsion has been the focus of

intensive research. In the following theorem we summarize some of the key
results regarding the L2-Alexander torsion.

Theorem 1.1. — Let N be an irreducible 3-manifold with empty or
toroidal boundary and φ ∈ H1(N ; R). The following statements hold:

(1) The evaluation of τ (2)(N,φ) at t = 1 equals exp(vol(N)/6π), where
the volume vol(N) of N is defined as the sum of the volumes of the
hyperbolic pieces in the JSJ-decomposition of N .

(2) If N = N1 tN2 is the disjoint union of two 3-manifolds, then

τ (2)(N,φ) = τ (2)(N1, φ|N1) · τ (2)(N2, φ|N2).

(3) If N is obtained from a (possibly disconnected) 3-manifold M by
gluing M to itself via pairing up incompressible tori components of
its boundary ∂M , then τ (2)(N,φ) = τ (2)(M,φ|M ).

(4) The L2-Alexander torsion τ (2)(N,φ) : R>0 → R>0 takes values in
R>0.

(5) The L2-Alexander torsion τ (2)(N,φ) : R>0 → R>0 is continuous.

ANNALES DE L’INSTITUT FOURIER
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(6) If φ is rational, i.e. if φ ∈ H1(N ; Q), then the L2-Alexander torsion
is symmetric in the sense that

τ (2)(N,φ)(t) .= τ (2)(N,φ)(t−1).

Here the first statement follows from the definitions and the work of
Lück–Schick [28]. The second statement holds by definition. The proof of
the third statement is basically identical to the proof of [11, Theorem 5.5].
The fourth statement was proved independently by Liu [25, Theorem 1.2]
and Lück [27, Theorem 7.5]. The fifth statement was proved by Liu [25,
Theorem 1.2]. Finally the last statement, which is a relatively straightfor-
ward consequence of Poincaré Duality, was proved by Dubois, Lück and the
second author [9, Theorem 1.1]. Note that we assume N to be irreducible
because the L2-torsions are never defined for reducible 3-manifolds.

Given (N,φ) as above it is interesting to study the behavior of the L2-
Alexander torsion τ(N,φ)(t) as t→∞. To formulate the known results we
need to recall the definition of the Thurston norm of a connected irreducible
3-manifold N . Recall that for each φ ∈ H1(N ; Z) there is a properly em-
bedded surface Σ that represents φ, via the Poincaré duality isomorphism
PD: H2(N, ∂N ; Z) → H1(N ; Z). Following [37] we define the Thurston
norm of a class φ ∈ H1(N ; Z) as

xN (φ) := min
{
χ−(Σ)

∣∣∣∣Σ is a properly embedded surface
with PD([Σ]) = φ

}
,

where given a surface Σ with components Σ1, . . . ,Σk we define its com-
plexity as

χ−(Σ) :=
k∑
i=1

max{−χ(Σi), 0}.

Thurston [37] showed that xN is indeed a seminorm on H1(N ; Z). It follows
easily that xN can be extended to a seminorm onH1(N ; R) which we denote
again by xN . Two natural cases jump to mind:

(1) First of all, if K ⊂ S3 is a non-trivial knot, then a straightforward
argument implies that xEK (φK) = 2g(K)− 1, where g(K) denotes
the minimal genus of a Seifert surface of K.

(2) If φ ∈ H1(N ; Z) is a fibered class, which means that there exists a
surface bundle p : N → S1 such that p∗ = φ ∈ Hom(π1(N),Z) ∼=
H1(N ; Z), then by [37, Theorem 3] we have xN (φ) = χ−(F ), where
F denotes the fiber of the surface bundle.

Now we can formulate the following theorem which supplements Theo-
rem 1.1.

TOME 0 (0), FASCICULE 0



4 Fathi BEN ARIBI, Stefan FRIEDL & Gerrit HERRMANN

Theorem 1.2. � Let N 6= S1 � D 2 be a connected irreducible 3-
manifold with empty or toroidal boundary and let � 2 H 1(N ; R). The
following statements hold:

(1) If N is a graph manifold, then � (2) (N; � )( t)
:
= max

�
1; tx N ( � )

	
.

(2) If � is an integral �bered class, then there exists aT > 1 such that

� (2) (N; � )( t)
:
=

(
tx N ( � ) ; if t > T;

1; if t < 1
T :

In fact one can take T to be the entropy of the monodromy of the
�bration.

(3) For any representative � of � (2) (N; � ) we have

lim
t !1

ln( � (t))
ln( t)

� lim
t ! 0+

ln( � (t))
ln( t)

= xN (� ):

In particular both limits on the left hand side exist.
(4) There exists aC(N; � ) 2 R> 0 such that for any representative � of

� (2) (N; � ) there exists ak 2 R with

lim
t !1

C(N; � ) � tk

� (t)
= 1 :

The �rst statement was proved by the third author [20, Corollary 1.2],
extending earlier work of Dubois�Wegner [12] and the �rst author [5]. The
second statement is proved in [9, Theorem 1.3]. The third statement was
proved by Liu [25, Theorem 1.2]. For rational � , i.e. for � 2 H 1(N ; Q), the
statement was independently obtained by the second author and Lück [14,
Theorem 0.1]. Finally the last statement is again due to Liu [25, Theo-
rem 1.2]. Both proofs of the third statement relies in both cases on the
work of Agol [1, 2], Przytycki�Wise [35] and Wise [42].

Definition 1.3. � Let N be a connected irreducible 3-manifold with
empty or toroidal boundary and let � 2 H 1(N ; R). The number C(N; � ) 2
R> 0 of Theorem 1.2(4) will be referred as the leading coe�cient of
� (2) (N; � ).

The following proposition lists several properties of the leading coe�-
cient, following from the de�nitions or from the work of [25].

Proposition 1.4. � Let N be a connected irreducible 3-manifold with
empty or toroidal boundary and let � 2 H 1(N ; R).

(1) If � = 0 then C(N; � ) = � (2) (N ).
(2) If � is a �bered class thenC(N; � ) = 1 .
(3) For any r 2 R� , C(N; r� ) = C(N; � ).

ANNALES DE L'INSTITUT FOURIER
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(4) The function H 1(N ; R) ! R given by � 7! C(N; � ) is upper semi-
continuous.

(5) The leading coe�cient C(N; � ) lies in the interval
�
1; evol( N )=6�

�
.

Proposition 1.4(2) may remind the reader of the similar monicity of the
Alexander polynomial of a �bered knot. Note also that Proposition 1.4(1),
(3) and (4) (respectively value at 0, constancy on rays and upper semi-
continuity) together with Theorem 1.1(1) imply the upper bound of Propo-
sition 1.4(5). Finally we point out that Liu [25, Chapter 9] shows that the
function � 7! C(N; � ) is in general not continuous.

1.2. The main results

In this paper we are mostly concerned with the following question.

Question 1.5. � Given a connected irreducible 3-manifoldN with
empty or toroidal boundary and � 2 H 1(N ; Z), how can we expressC(N; � )
in terms of the topology and geometry ofN ?

Before we can state our main theorem we need to introduce some nota-
tion. Let � be a properly embedded surface in an irreducible 3-manifoldN .

(1) We say that � is Thurston norm minimizing if xN ([�]) = � � (�)
and if no component of� is a sphere, a disk, a compressible torus or
a boundary parallel annulus. If N 6= S1 � D 2, then it follows from
standard arguments and from our hypothesis thatN is irreducible
that any � can be represented by a Thurston norm minimizing
surface. Indeed, any component that is a compressible torus or a
boundary parallel annulus is always null homologous, and spheres
and disks are null homologous as well whenN is irreducible and
not S1 � D 2. Note that the empty surface is the unique Thurston
norm minimizing surface representing the trivial homology class.

(2) We denote by � � [� 1; 1] a closed tubular neighborhood of � .
Furthermore we write N nn � := N n � � (� 1; 1) and we write
� � := � � f� 1g.

(3) We denote by J (N ) the set of JSJ-components ofN .

The following theorem is proved in [21].

Theorem 1.6. � Let N 6= S1 � D 2 be a connected irreducible3-
manifold with empty or toroidal boundary and let � be a properly em-
bedded surface inN . If � is Thurston norm minimizing in N , then the L 2-
Betti numbers of the pair (N nn � ; � � ) vanish and the relative L 2-torsion
� (2) (N nn� ; � � ) 2 R> 0 is de�ned.

TOME 0 (0), FASCICULE 0
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See Section 2 for a precise de�nition of the term� (2) (N nn � ; � � ). The
following is now our main theorem.

Theorem 1.7. � Let N be a connected irreducible3-manifold with
empty or toroidal boundary. Furthermore let � 2 H 1(N ; Z) and let � be
a Thurston norm minimizing surface dual to � . Then the following two
inequalities hold:

Y

M 2J (N )
with � jM =0

evol( M )=6� 6 C(N; � ) 6 � (2) (N nn� ; � � ):

It is natural to ask for which cases the inequalities of Theorem 1.7 are
in fact equalities. In Section 5 we de�ne the class of ahyperbolic surfaces.
The precise de�nition is irrelevant at the moment, but in Proposition 5.5
we show that for an ahyperbolic surface all three terms in Theorem 1.7 are
in fact equal to 1.

It turns out that all Thurston norm minimizing surfaces in a graph
manifold are ahyperbolic. More interesting examples are given by Agol�
Dun�eld [3], who showed that all 2-bridge knots admit an ahyperbolic sur-
face. Since there exists a family of non-�bered hyperbolic 2-bridge knots,
namely the family of twist knots, we have the following corollary.

Corollary 5.7. � There exist in�nitely many non-�bered hyperbolic
knots K in S3 such that

C(EK ; � K ) = 1 :

Note that we already knew that C(EK ; � K ) was equal to1 in the case
K was �bered, thanks to Theorem 1.2(2).

At this point it is natural to wonder if 1 is the only possible value for
the leading coe�cient of a knot. We answer in the negative:

Corollary 6.6. � The set of leading coe�cients C(EK ; � K ) (where
the index K runs over the set of all knots) is in�nite.

Furthermore, this set of leading coe�cients contains a subset which is
bijective to the set of hyperbolic volumesvol(EK ) of hyperbolic knots.

We construct such examples of knots, with leading coe�cient greater
than 1, in Section 6 as Whitehead doubles of hyperbolic knots, and we can
compute the exact value of the leading coe�cient for these examples. In
particular the knots we provide to prove Corollary 6.6 are non-hyperbolic.
We propose the following conjecture.

ANNALES DE L'INSTITUT FOURIER
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Conjecture 1.8.

(1) For every irreducible 3-manifold N with empty or toroidal bound-
ary, any class� 2 H 1(N ; Z) and any two Thurston norm minimizing
surfaces� ; � 0 dual to � , we have

� (2) (N nn� ; � � ) = � (2) (N nn� 0; � 0
� ):

(2) For every irreducible 3-manifold N with empty or toroidal boundary
and any class� 2 H 1(N ; Z) the second inequality of Theorem 1.7
is an equality, i.e. we conjecture that for any Thurston norm mini-
mizing surface� dual to � we have

C(N; � ) = � (2) (N nn� ; � � ):

(3) There exists a hyperbolic 3-manifold N with empty or toroidal
boundary and a class� 2 H 1(N ; Z) n f 0g such that C(N; � ) > 1.

Note that part (2) of Conjecture 1.8 would immediately imply part (1).
A di�erent way of formulating Conjecture 1.8(1) is to say that we conjec-
ture that the �rst inequality of Theorem 1.7 is in general not an equality.
Furthermore Conjecture 1.8(2) says that we expect that the term on the
right-hand side is independent of the choice of� and that in fact the second
inequality of Theorem 1.7 is an equality.

Conjecture 1.8(2) is motivated by the case of the classical Alexander
polynomial. Indeed, for any knot K whose Alexander polynomial� K is of
maximal degree2g(K ) and for any � a minimal genus Seifert surface of
K , the leading coe�cient of � K is equal to the order ofH1(X K nn� ; � � ).
Conjecture 1.8(3) would follow from (2), from an expected (but only conjec-
tured at the moment) generalization of Theorem 1.1(1) to pairs(N nn� ; � � )
and from the fact that there exists examples of such pairs whose volume is
strictly greater than the volume in the �rst term of Theorem 1.7.

Note that Corollary 5.7 implies, perhaps somewhat disappointingly, that
in general the leading coe�cient does not detect �beredness of hyper-
bolic 3-manifolds. Nonetheless it is an interesting question whether the
L 2-Alexander torsion detects �beredness of hyperbolic 3-manifolds.

1.3. The L 2-Alexander torsion and quantum invariants

As a generalization of the volume conjecture [33], one can wonder if
and how we can expect theL 2-Alexander torsions to be approximated by
quantum invariants. As such, knowing values such as the leading coe�cient
can help test the plausibility of such conjectures. As an example, let us

TOME 0 (0), FASCICULE 0
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consider the following conjecture, formulated by Xiao-Song Lin [24, p. 9]
in 2005.

Conjecture 1.9 (Xiao-Song Lin [24]). � Let K � S3 be a knot. For
every N 2 N we denote byJK (N; x ) 2 Z[q� 1] the normalized N -th colored
Jones polynomial. (We refer to [32] and [33] for the de�nition.) For every
t 2 C� the following equality holds:

(1.1) lim
N !1

�
�
�
�JK

�
N; exp

�
2�it
N

�� �
�
�
�

1
3N

_=� (2) (K )( t) � maxf 1; jt jg:

Xiao-Song Lin adds the comment that �the �nal form of this conjecture is
subject to modi�cation�.

The motivation for the conjecture surely stems from the fact that for
t = 1 the above question is equivalent to the volume conjecture [33]. There
are at least two reasons why (1.1) cannot hold as stated:

(a) Morton and Traczyk [31] showed that colored Jones polynomials are
invariant under mutation. On the other hand � (2) (K ) is not invari-
ant under mutation. This can be seen as follows: by Theorem 1.2 the
invariant � (2) (K ) detects the genus, but the genus is not a muta-
tion invariant. In fact the Conway knot and the Kinoshita�Terasaka
knot are mutants, but their genera are respectively2 and 3.

(b) It follows from [18, Theorem 1] that for any knot K there exists
an r > 0 such that for any t 2 (0; r ) the left hand side of (1.1)
converges to1. Were the conjecture true, the right hand side would
be 1 too, and the leading coe�cient as well; however Corollary 6.6
implies that this cannot hold in general.

We take the freedom to rephrase Lin's question as follows:

Question 1.10. � Is the L 2-Alexander invariant � (2) (K ) determined
by quantum invariants?

A rather speculative idea is that perhaps the results of Futer, Kalfagianni
and Purcell [16] can be used to build a bridge between quantum invariants
and the L 2-Alexander invariant.

Organization

This paper is organized as follows. In Section 2 we recall the de�nitions
of the L 2-torsion and of the L 2-Alexander torsion. In Section 3 we apply
Turaev's algorithm on embedded surfaces to compare relativeL 2-torsions.

ANNALES DE L'INSTITUT FOURIER
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In Section 4 we prove the main Theorem 1.7. In Section 5 we introduce
ahyperbolic surfaces and study their corresponding relativeL 2-torsions.
Finally in Section 6 we compute the leading coe�cient for the Borromean
rings and prove Corollary 6.6.

Conventions

As mentioned in the beginning, throughout the paper, unless we say
explicitly otherwise, we assume that all manifolds are compact and oriented.
Furthermore all groups are understood to be countable.

Acknowledgements

We thank the referees for their many helpful comments and suggestions.

2. Preliminaries

In this section, for the most part we follow [11] and [26]. We refer to
these references for more details.

2.1. The von Neumann dimension

Given a group G, the completion of the algebraC[G] endowed with the
scalar product


 P
g2 G � gg;

P
g2 G � gg

�
:=

P
g2 G � g � g is the Hilbert space

`2(G) :=

8
<

:

X

g2 G

� gg

�
�
�
�
�
�
� g 2 C;

X

g2 G

j� g j2 < 1

9
=

;

of square-summable complex functions onG. We denote by B (`2(G)) the
algebra of operators oǹ 2(G) that are bounded with respect to the operator
norm.

Given h 2 G, we de�ne the correspondingleft- and right-multiplication
operators L h and Rh in B (`2(G)) as extensions of the classical automor-
phisms of G (g 7! hg) and (g 7! gh). One can extend the operators
Rh C-linearly to an operator Rw : `2(G) ! `2(G) for any w 2 C[G].
Moreover, if `2(G)n is endowed with its usual Hilbert space structure

TOME 0 (0), FASCICULE 0
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and A = ( ai;j ) 2 M p;q (C[G]) is a C[G]-valued p � q matrix, then the
right multiplication by

RA :=
�
Ra i;j

�
16 i 6 p;16 j 6 q

provides a bounded operator̀ 2(G)p ! `2(G)q. Note that here we consider
the vectors of `2(G)p as row vectors and the �matrix operator� RA acts
on the right; notably one gets RAB = RB � RA . In most cases, when there
is no danger of confusion, givenA 2 M p;q (C[G]) we denote byA also the
corresponding operator, i.e. we just writeA instead of RA .

The von Neumann algebraN (G) of the group G is the sub-algebra of
B (`2(G)) made up ofG-equivariant operators (i.e. operators that commute
with all left multiplications L h ). A �nitely generated Hilbert N (G)-module
consists of a Hilbert spaceV together with a left G-action by isometries such
that there exists a positive integerm and aG-equivariant embedding' of V
into

L m
i =1 `2(G). A morphism of �nitely generated Hilbert N (G)-modules

f : U ! V is a linear bounded map which isG-equivariant.
Denoting by e the neutral element of G, the von Neumann algebra ofG

is endowed with the trace tr N (G) : N (G) ! C; � 7! h� (e); ei which extends
to tr N (G) : M n;n (N (G)) ! C by summing up the traces of the diagonal
elements.

Definition 2.1. � The von Neumann dimensionof a �nitely generated
Hilbert N (G)-module V is de�ned as

dimN (G) (V ) := tr N (G)
�
pr ' (V )

�
2 R> 0;

where pr ' (V ) :
L m

i =1 `2(G) !
L m

i =1 `2(G) is the orthogonal projection
onto ' (V ).

By [26, Chapter 1.1.3] the von Neumann dimension does not depend on
the embedding ofV into the �nite direct sum of copies of `2(G).

2.2. The Fuglede�Kadison determinant

The spectral density F (f ) : R> 0 ! R> 0 of a morphism f : U ! V
of �nitely generated Hilbert N (G)-modules is de�ned as the map that
sends� 2 R> 0 to

F (f )( � ) := sup f dimN (G) (L ) j L 2 L (f; � )g;

whereL (f; � ) is the set of �nitely generated Hilbert N (G)-submodules ofU
on which the restriction of f has a norm smaller or equal to� . SinceF (f )( � )

ANNALES DE L'INSTITUT FOURIER
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is monotonous and right-continuous it de�nes a measuredF (f ) on the Borel
set of R> 0 that is uniquely determined by the equation dF (f )(( a; b]) =
F (f )(b) � F (f )(a) for all a < b.

Definition 2.2. � The Fuglede�Kadison determinant of f is de�ned by

detG (f ) =

(
exp

� R1
0+ ln( � )dF (f )( � )

�
if

R1
0+ ln( � )dF (f )( � ) > �1 ;

0 otherwise.

Moreover, when
R1

0+ ln( � )dF (f )( � ) > �1 , one says that f is of determi-
nant class.

If A 2 M n;n (C[G]) then we de�ne the regular Fuglede�Kadison determi-
nant of A by

detrG (A) =

(
detG (RA ) if RA is injective and of determinant class,

0 otherwise.

The following proposition lists some basic properties of the regular
Fuglede�Kadison determinant that will be used in later computations. The
proposition follows easily from the results in [26, Section 3.2].

Proposition 2.3. � Let G be a group, andn; p 2 Z> 0. Then:

(1) For all � 2 C, g 2 G, one hasdetrG (�g ) = j� j.
(2) For all A; B 2 M n;n (C[G]), one hasdetrG (AB ) = det r

G (A)detr
G (B ).

(3) For all A 2 M n;n (C[G]); C 2 M n;p (C[G]); D 2 M p;p (C[G]), one has

detrG

�
A C
0 D

�
= det r

G (A)detr
G (D ):

(4) Taking the transpose or permuting rows or columns leavesdetrG
unchanged.

(5) For any group inclusion i : H ,! G, and any E 2 M n;n (C[H ]), one
has

detrG (i (E )) = det r
H (E ):

(6) Let g 2 G be an element of in�nite order. Then for any t 2 C we
have

detrG (1 � t � g) = max f 1; jt jg:

The regular Fuglede�Kadison determinant sometimes behaves better
than the usual Fuglede�Kadison determinant. For example we will make
use of the following fact recently proven by Liu [25, Lemma 3.1].

Lemma 2.4. � Let Ak 2 M n;n (C[G]); k 2 N, be a sequence converging
to someA 2 M n;n (C[G]) in the norm topology, then

lim sup
k !1

detrG (Ak ) 6 detrG (A):

TOME 0 (0), FASCICULE 0



12 Fathi BEN ARIBI, Stefan FRIEDL & Gerrit HERRMANN

2.3. L 2-torsions

A �nite Hilbert N (G)-chain complex C� is a sequence of morphisms of
�nitely generated Hilbert N (G)-modules

C� = 0 ! Cn
@n�! Cn � 1

@n � 1�! : : :
@2�! C1

@1�! C0 ! 0

such that @p � @p+1 = 0 for all p. The p-th L 2-homology of such a chain
complex C� is the �nitely generated Hilbert N (G)-module

H (2)
p (C� ) := Ker( @p)=Im( @p+1 )

obtained by quotienting by the closure of the image of@p+1 . The p-th L 2-
Betti number of C� is de�ned as b(2)

p (C� ) := dim N (G) (H
(2)
p (C� )) . A �nite

Hilbert N (G)-chain complex C� is weakly acyclic if its L 2-homology is
trivial (i.e. if all its L 2-Betti numbers vanish) and of determinant class if
all the operators @p are of determinant class.

Definition 2.5. � If C� is weakly acyclic and of determinant class,
de�ne its L 2-torsion by

� (2) (C� ) :=
nY

i =1

det G (@i )( � 1) i
2 R> 0;

and set � (2) (C� ) = 0 otherwise.

Let X be a compact connected CW-complex endowed with a base pointz
and let Y be a CW-subcomplex ofX . We write G = � 1(X; z ), we denote
by p: eX ! X the universal cover of X and we write eY = p� 1(Y ). The
natural left action of G = � 1(X; z ) on eX gives rise to a left Z[G]-module
structure on the cellular chain complexC�

� eX; eY
�
. By picking a lift of each

cell of X n Y to eX n eY we can viewC�
� eX; eY

�
as a based free Z[G]-chain

complex.
Now suppose we are given a homomorphism� : G ! R and somet > 0.

We denote by � (G; �; t ) : Z[G] ! R[G] the ring homomorphism g 7! t � (g) g.
There is a right action of G on `2(G) given by a � g = R� (G;�;t )( g) (a)
where a 2 `2(G) and g 2 G; this turns `2(G) into a right Z[G]-module.
The N (G)-cellular chain complex of the pair (X; Y ) associated to(�; t ) is
the �nite Hilbert N (G)-chain complex

C(2)
� (X; Y; �; t ) := `2(G) 
 Z[G] C�

�
eX; eY

�
;

and the L 2-homology of (X; Y ) associated to(�; t ), denotedH (2)
� (X; Y; �; t ),

is obtained by taking the L 2-homology of C(2)
� (X; Y; �; t ).
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We de�ne the L 2-Alexander torsion of (X; Y; � ) at t > 0 to be

� (2) (X; Y; � )( t)

:=

8
>><

>>:

� (2)
�
C(2)

� (X; Y; �; t )
�
; if C(2)

� (X; Y; �; t ) is weakly acyclic

and of determinant class;

0; otherwise.

As is explained in [11, Lemma 4.1] the functiont 7! � (2) (X; Y; � )( t), up to
multiplication by a function of the form t 7! tk for some �xed k 2 R, does
not depend on the choice of the lift of the cells ofX n Y .

When Y = ; , we write C(2)
� (X; �; t ) instead of C(2)

� (X; Y; �; t ) and
� (2) (X; � ) instead of � (2) (X; Y; � ).

When � is the zero map,t becomes irrelevant and we writeC(2)
� (X; Y )

instead of C(2)
� (X; Y; �; t ) and � (2) (X; Y ) instead of � (2) (X; Y; � ). We call

� (2) (X; Y ) the relative L 2-torsion of (X; Y ) and � (2) (X ) = � (2) (X; ; ) the
L 2-torsion of X .

Given a connected manifoldM and a submanifold N we can use trian-
gulations to view the pair (M; N ) as a pair of CW-complexes. (Recall that
all manifolds are assumed to be compact.) As is discussed in [26, p. 160],
the correspondingL 2-torsions do not depend on the choice of triangulation.
Alternatively, if M is a 3-manifold one can also use that the Whitehead
group of � 1(M ) is trivial, see e.g. [4, (C.36)].

We de�ne the L 2-torsion of a disconnected 3-manifold pair as the product
of the L 2-torsions of the components.

The following lemma is proved for the caseN = ; in [26, Theorem 3.93].
The proofs carry over without any changes to the relative case.

Lemma 2.6. � Let (M; N ) be a pair of manifolds such thatM is con-
nected and such that� 1(M ) is residually �nite. (Note that the fundamental
group of any compact 3-manifold is residually �nite, see[4, 19].)

(1) If M = N � [0; 1], then for any s2 [0; 1] we have� (2) (M; N � f sg) =1 .
(2) Suppose that theL 2-Betti numbers of (M; N ) vanish. Let p: fM !

M be a �nite covering. We write eN := p� 1(N ). Then the L 2-Betti
numbers of (M; N ) also vanish and we have

� (2) � fM; eN
�

= � (2) (M; N )
�

eM :M
�
:

(3) If M is an S1-bundle over a manifold X , e.g. if M = S1 � X
for some manifoldX , then the L 2-Betti numbers of M vanish and
� (2) (M ) = 1 .
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(4) If the L 2-Betti numbers of M and N vanish, e.g. if M and N are
S1-bundles and if � 1(N ) ! � 1(M ) is a monomorphism, then

� (2) (M ) = � (2) (M; N ) � � (2) (N ):

(5) Suppose that theL 2-Betti numbers of (M; N ) vanish. Furthermore
suppose that(M; N ) = ( X [ Y; C[ D) whereX and Y are subman-
ifolds such that each component ofX \ Y is a submanifold of @X
and @Yand the same holds for(M; X; Y ) replaced by(N; C; D ). If
for each componentZ of X \ Y the L 2-Betti numbers of (Z; Z \ N )
vanish and if the induced maps� 1(Z ) ! � 1(X ) and � 1(Z ) ! � 1(Y )
are monomorphisms, then

� (2) (M; N ) = � (2) (X; C ) � � (2) (Y; D) � � (2) (X \ Y; C \ D) � 1:

We make the following trivial observation which follows immediately
from the de�nitions.

Lemma 2.7. � Let N be a manifold.

(1) For any � 2 H 1(N ; R) we have� (2) (N; � )( t = 1) = � (2) (N ).
(2) If � 2 H 1(N ; R) is the zero class, then� (2) (N; � ) is a constant map,

in particular � (2) (N; � )( t) = � (2) (N ) for all t 2 R> 0.
(3) For any � 2 H 1(N ; R) and any r 2 R we have � (2) (N; r� )( t) =

� (2) (N; � )( t r ).

We end this section with recalling the following lemma which allows
one to calculate the torsion for a chain complex of a 3-manifold. In this
way it was �rst stated in [11, Lemma 3.2] but the ideas go back to [39,
Theorem 2.2].

Lemma 2.8. � Let G be a group, j; k; l integers such that j < k and
A; B; C matrices with entries in C[G] of the respective sizes(k + l � j ) � l ,
k � (k + l � j ) and j � k. We consider the complex

C� : 0 �! `2(G) j R C�! `2(G)k R B�! `2(G)k+ l � j R A�! `2(G) l �! 0:

Let L � f 1; : : : ; k + l � j g be a subset of sizel and J � f 1; : : : kg a subset
of sizej . We write

A(L) := rows in A corresponding to L;

B (J; L ) := result of deleting the columns ofB corresponding toL

and deleting the rows corresponding to J;

C(J ) := columns of C corresponding toJ .
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