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LOGARITHMIC p-BASES AND ARITHMETICAL
DIFFERENTIAL MODULES

by Daniel CARO & David VAUCLAIR (*)

Abstract. — We introduce the notion of log p-smoothness which weakens that
of log-smoothness and that of having locally p-bases. We extend Berthelot’s theory
of arithmetic D-modules in this context, in particular on the construction of the
sheaf of differential operators and its properties.
Résumé. — Nous introduisons la notion de log p-lissité. Cette notion étend à

la fois celle de lissité logarithmique et celle d’avoir localement des p-bases. Nous
vérifions que la théorie des D-modules arithmétiques de Berthelot se généralise
bien dans ce cadre, notamment sur la construction du faisceau des opérateurs
différentiels et de ses propriétés.

Introduction

Berthelot’s theory of arithmetic D-modules in the context of varieties
over a perfect field k of characteristic p > 0 gives a p-adic cohomology
satisfying properties analogous to that in Grothendieck’s theory of l-adic
étale cohomology. For instance, we have the stability under six operations
of the overholonomicity with Frobenius structures (see [9]) and a theory
of weights (see [1]) which are respectively the analogue of Grothendieck’s
stability of constructible l-adic sheaves and of Deligne’s theory of weights of
constructible l-adic complexes. However, we also need a theory of arithmetic
D-modules in a wider context. For instance, nearby cycles or vanishing
cycles require to work over certain schemes which are not varieties over
k (e.g. the spectrum of a henselian ring). In relation to the p-adic local
monodromy theorem (see [2, 23, 26]), Crew studied the case of k[[t]]/k
(e.g. he proved the holonomicity of F -isocrystals on the bounded Robba

Keywords: p-base, smoothness, log scheme, arithmetic D-module.
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1012 Daniel CARO & David VAUCLAIR

ring in [10]). More recently, D. Pigeon in [29] extended the construction of
Berthelot’s sheaf of differential operators in the context of schemes having
locally p-bases. Roughly speaking, his generalization relies on replacing
the notion of etaleness by relative perfectness. For instance, since k[[t]]/k[t]
is relatively perfect (for details, see Example 1.39), Pigeon’s context also
“englobes” Crew’s case k[[t]]/k. In fact, to be more precise, the objects in
Crew’s construction live over Spf V[[t]] endowed with the (p, t)-adic topology
whereas in Pigeon’s context (and in our work here) we only consider the p-
adic topology. In other words, objects are living over the topological space of
Spec k[[t]] in Pigeon or our context whereas in Crew’s one they are living over
that of Spec k. Taking global sections, one might consider some comparison
theorems between both contexts; but this is not the purpose of the paper.
On the other hand, it would also be useful (e.g. to be able to use Kedlaya’s
semistable reduction theorem ([24])) to work with log schemes as in C.
Montagnon’s thesis (see [27]). This is the goal of the present paper where we
introduce the notion of log p-smoothness that generalizes at the same time
the notions of having p-bases locally and of log smoothness. We extend in
this work Berthelot’s construction of arithmetic D-modules in this context
which generalizes Berthelot, Montagnon and Pigeon’s one. Over Laurent
series fields, it would be interesting to compare our constructions with the
theory of rigid cohomology as developed by C. Lazda and A. Pál (see [25]),
which would be a stimulating continuation of the present paper. Moreover,
we might hope to check some finiteness properties by using the framework
of arithmetic D-modules.
Let us describe the content of the paper. We introduce the notion of

weakly log smooth morphism X → S (see Definition 1.70). This notion is
the most general one we could find so that the usual sheaf of differential
operators DX/S is locally free as OX -module (and with finite “differential
variables”) (see Definition 2.9). Similarly, we introduce the notion of weakly
log smooth morphism of level m (see Definition 1.73) which is the most
general one we find so that Berthelot’s sheaf of differential operators of
level m of X/S, denoted by D(m)

X/S , is locally free as OX -module and finitely
generated as anOX -ring (see Point 2.29). This latter geometrical notion is a
generalization of the notions of (log-)étaleness, (log) basis, (log) smoothness
and relative perfectness see (Propositions 1.25 and 1.74), which yields a
unification of theses notions. By definition, a morphism of log schemes
X → S is weakly log smooth of level m if, étale locally on X, f has formal
log bases of level m. This latter notion of formal log basis of level m is
related with Tsuji’s notion of p-basis defined in [31, 1.4] (see Remark 1.72).
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LOGARITHMIC p-BASES AND D-MODULES 1013

We also introduce the notion of a log p-smooth morphism of formal log
schemes which is a more restrictive notion than that of weakly log smooth
morphism of level m, for any integer m (see Point 3.30). This yields that,
when X→ S := Spf V is a log p-smooth morphism of log formal V-schemes,
then Berthelot’s sheaf of differential operators of finite level and infinite
orders of X/S, denoted by D†X/S , has the usual description (see Point 3.35).

Moreover, when X → S is a log p-smooth morphism of log formal V-
schemes such that X has no p-torsion, we put a canonical structure of right
D†X/S -module on ωX/S (see Proposition 3.39). A standard elegant proof
of this fact needs Grothendieck’s extraordinary pullback as defined in [19].
Since we do not know a suitable generalization of Grothendieck’s extraordi-
nary pullback in our context, we construct the canonical right D†X/S -module
structure on ωX/S by glueing local computations using logarithmic trans-
position. We conclude by defining extraordinary pull-backs, pushforwards
and duals similarly to Berthelot in his theory of arithmetic D-modules.

Acknowledgment

The first author acknowledges Ambrus Pál and Christopher Lazda for
an invitation to a conference in London where their talks were related to
this paper.

Convention, notation of the paper

Let V be a complete discrete valued ring of mixed characteristic (0, p), π
be a uniformizer,K its field of fractions, k its residue field which is supposed
to be perfect. IfX → Y is a morphism of log schemes, we denote by f : X →
Y the underlying morphism of schemes. A scheme means a log schemes
endowed with the trivial log structure. By convention, a fine log scheme
X is noetherian means that X is noetherian as a scheme. A fs log scheme
means a fine saturated log scheme. The formal scheme Spf V is meant for
the p-adic topology. A formal V-scheme means a p-adic formal scheme over
Spf V. When we say “etale locally” this means we use Definition IV.6.3
of [11] of the etale topology (see also [11, Proposition IV.6.3.1(iv)] for an
alternative definition). In the category of fine log schemes, replacing the
morphisms of schemes by the strict morphisms of fine log schemes, we get
the similar notion of étale locality (see Remark 1.7(3)).
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1014 Daniel CARO & David VAUCLAIR

Unless otherwise stated fiber products of fine log schemes (resp. fine
formal log schemes) are always computed in the category of fine log schemes
(resp. fine formal log schemes). The sheaves of monoids are by convention
sheaves for the étale topology. Notice that since we are working with fine
log schemes, from [28, III.1.4.1 and III.1.4.4], the reader who prefers to
work with sheaves of monoids for the Zarisky topology can switch to it
without any problem. Remark 2.17 should convince the reader why it is
too pathological to work with coherent log structures instead of fine log
structures.

1. Log p-étaleness, relative log perfection, m-PD envelope

Let i be an integer and S be a fine log scheme over the scheme
Spec(Z/pi+1Z).

1.1. Formal log etaleness, nth infinitesimal neighborhood

In this subsection, the reader might notice that we could consider the
case where S = Spec(Z/pi+1Z) without loss of generality. But, we will need
in Section 1.4 the case where S is any fine log scheme over Spec(Z/pi+1Z).
In order to keep notation as homogenous as possible, S will remain any
fine log scheme over Spec(Z/pi+1Z).

Notation 1.1. — If X is a log scheme over Spec(Z/pi+1Z), then for any
integer 0 6 k 6 i we put Xk := X×Spec(Z/pi+1Z) Spec(Z/pk+1Z). If f : X →
Y is a morphism of Spec(Z/pi+1Z)-log schemes, then for any integer 0 6
k 6 i we set fk : Xk → Yk the morphism canonically induced by f .
Let I be a quasi-coherent sheaf (for the Zariski topology) on a log scheme

X. The preasheaf which associates I(U)(n) (the subideal of I(U) generated
by nth powers of elements of I(U)) to an affine open set U of X is a quasi-
coherent sheaf. We denote it by I(n). Similarly, using [5, A.1.5.(ii)], when I
is endowed with an m-PD structure, we get a quasi-coherent sheaf I{n}(m)

(which depends on the m-PD structure of I) such that for an affine open
set U of X, I{n}(m)(U) = I(U){n}(m) .
If X is a fine log scheme over Fp, we denote by FX : X → X the absolute

Frobenius of X as defined by Kato in [21, 4.7].

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC p-BASES AND D-MODULES 1015

Definition 1.2. — Let u : Z → X be a morphism of log-schemes.

(1) According to [28, II.1.1.12], we say that u is an immersion (resp.
closed immersion) if u is an immersion (resp. a closed immersion)
of schemes and if u∗MX → MZ is surjective (here u∗ means the
pullback of log structures [21, 1.4]). An immersion (resp. a closed
immersion) is exact if and only if u∗MX →MZ is an isomorphism.

(2) We say that u is an open immersion if u is an exact immersion such
that u is an open immersion of schemes.

(3) Let n be an integer. A “log thickening of order (n)” (resp. “log
thickening of order n”) is an exact closed immersion u : U ↪→ T

such that I(n) = 0 (resp. such that In+1 = 0), where I is the
ideal associated with the closed immersion u. The convention of
the respective case is that of [28, IV.2.1.1] and is convenient when
we are dealing with n-infinitesimal neighborhood.

(4) Let a ∈ N. A “(p)-nilpotent log thickening of order a” is a log
thickening of order (pa+1). A “(p)-nilpotent log thickening” is a
(p)-nilpotent log thickening of order a for some a ∈ N large enough.

An S-immersion (resp. S-log thickening) is an immersion (resp. log thick-
ening) which is an S-morphism.

Remark 1.3.

(1) If u : Z → X and f : X → Y are two S-morphisms of log schemes
such that f ◦ u is an S-immersion, then so is u (use [13, 5.3.13]).

(2) If u : Z → X and f : X → Y are two S-morphisms of log schemes
such that f ◦ u is a closed S-immersion and f is separated, then u
is a closed immersion (use [13, 5.4.4]).

(3) We can decompose a (strict) S-immersion u into u = u1 ◦u2, where
u1 is an open S-immersion and u2 is a (strict) closed S-immersion.

(4) Let u : U ↪→ T be an S-log thickening of order (pa) for some integer
a. Since p is nilpotent in OT , by applying finitely many times the
functor I 7→ I(p) to the ideal defined by u we obtain the zero ideal,
which justifies the definition of “(p)-nilpotent log thickening”. This
also implies that u is the composition of several S-log thickenings
of order (p).

Definition 1.4.

(1) We denote by C the category whose objects are S-immersions of
fine log-schemes and whose morphisms u′ → u are commutative

TOME 72 (2022), FASCICULE 3



1016 Daniel CARO & David VAUCLAIR

diagrams of the form

(1.1)

X ′
f // X

Z ′
?�

u′

OO

// Z.
?�

u

OO

We say that u′ → u is strict (resp. flat, resp. cartesian) if f is strict
(resp. f is flat, resp. the square (1.1) is cartesian).

(2) Let n ∈ N. We denote by C(n) (resp. Cn, resp. T hick(p)) the full
subcategory of C whose objects are S-log thickenings of order (n)
(resp. S-log thickening of order n, resp. (p)-nilpotent S-log thick-
enings).

(3) Let u be an object of C . A “log thickening of order (n) (resp. of order
n) induced by u” is an object u′ of C(n) (resp. Cn) endowed with a
morphism u′ → u of C satisfying the following universal property:
for any object u′′ of C(n) (resp. Cn) endowed with a morphism
f : u′′ → u of C there exists a unique morphism u′′ → u′ of C(n)
(resp. Cn) whose composition with u′ → u is f . The unicity up
to canonical isomorphism of the log thickening of order (n) (resp.
of order n) induced by u is obvious. We will denote by P (n)(u)
(resp. Pn(u)) the log thickening of order (n) (resp. of order n)
induced by u. We also say that Pn(u) is the “nth infinitesimal
neighbourhood of u” (see [21, 5.8]). The existence is checked below
(see Propositions 1.11 and 1.28).

(4) We denote by C sat (resp. C sat
(n) , resp. C sat

n , resp. T hicksat
(p)) the full

subcategory of C (resp. C(n), resp. Cn, resp. T hick(p)) whose ob-
jects are also morphisms of fs log-schemes.

Remark 1.5.
(1) If u′ → u is a strict cartesian morphism of C with u ∈ C(n) (resp.

u ∈ Cn, resp. u ∈ T hick(p)), then u′ ∈ C(n) (resp. u′ ∈ Cn, resp.
u′ ∈ T hick(p)). Indeed, the corresponding square of the form (1.1)
of u′ → u remains cartesian after applying the forgetful functor
from the category of fine log schemes to the category of schemes (to
check this fact, we need a priori the strictness of u′ → u).

(2) The category C has fibered products. More precisely, let u : Z ↪→ X,
u′ : Z ′ ↪→ X ′, u′′ : Z ′′ ↪→ X ′′ be some objects of C ; let u′ → u and
u′′ → u be two morphisms of C . Then u′ ×u u′′ is the immersion
Z ′ ×Z Z ′′ ↪→ X ′ ×X X ′′. If u′ → u is moreover cartesian, then so is
the projection u′ ×u u′′ → u′′.

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC p-BASES AND D-MODULES 1017

In order to be precise, let us clarify the standard definitions.

Definition 1.6. — Let f : X→Y be an S-morphism of fine log schemes.
(1) We say that f is “fine formally log étale” (resp. “fine formally log

unramified”) if it satisfies the following property: for any commu-
tative diagram of fine log schemes of the form

(1.2)
U

u0 //
� _

ι

��

X

f

��
T

v // Y

such that ι is an object of C1, there exists a unique morphism (resp.
there exists at most one morphism) u : T → X such that u ◦ ι = u0
and f ◦ u = v.

(2) Replacing C1 by C sat
1 we get the notion of “fs formally log étale”

morphism and of “fs formally log unramified”) morphism.
(3) We say that f is “log étale” if f is fine formally log étale and if f

is locally of finite presentation.
(4) We say that f is “étale” if f is log étale and strict (which is equiv-

alent to saying that f is étale and f is strict).

Remark 1.7.
(1) The definitions appearing in Definition 1.6 (or Definition 1.14) do

not depend on the choice of the fine log scheme S over Z/pi+1Z.
More precisely, let f : X → Y be an S-morphism of fine log schemes.
Then we can consider f as a Spec(Z/pi+1Z)-morphism of fine log
schemes. We notice that the properties satisfied by f can be checked
equivalently when S is equal to Spec(Z/pi+1Z) (i.e. we replace S
by Spec(Z/pi+1Z) in the corresponding categories defined in Defi-
nition 1.4).

(2) Let f : X → Y be an S-morphism of fine log schemes. The notion of
etaleness of Kato appearing in [21, 3.3] is what we have defined as
“log etaleness”. We distinguish by definition “log etale” from “etale”
morphisms in order to avoid confusion when we say for instance
“etale locally”.

(3) There exists in the literature a notion of etale morphism of log
schemes with coherent log structures (see in Ogus’s book at [28,
IV.3.1.1]). This notion is compatible with Kato’s notion of etale
morphism of fine log schemes. Indeed, both notions have the same
characterization when we focus on morphisms of fine log schemes
(see resp. [21, Theorem 3.5] and [28, Theorem IV.3.3.1]).

TOME 72 (2022), FASCICULE 3



1018 Daniel CARO & David VAUCLAIR

To avoid confusion with the etale notion in the classical sense,
we will call such a morphism a “log etale” morphism of log schemes
with coherent log structures (instead of “etale morphism”).
Moreover, let f : X → Y be a morphism of log schemes with

coherent log structures. From [28, IV.3.1.11], X int → X and Y int →
Y are log etale (see [28, III.2.1.5.1] concerning the functor X 7→
X int). Hence, using Remark IV.3.1.2 of [28], we can check that f is
log etale if and only if f int is log etale.

Point 1.8. — We recall in the paragraph how we can exactify an immer-
sion. Let u : Z ↪→ X be an S-immersion of fine log-schemes. Let z be a geo-
metric point of Z. Using the proof of [21, 4.10.1] and Proposition IV.18.1.1
of [18], we can check that there exists a commutative diagram of the form

X̃
f // X ′

g //

�

X

Z ′
� ?

u′

OO

O/
v′

__

h // Z
?�

u

OO

such that the square is cartesian, f is log étale, f is affine, g is étale, v′ is
an exact closed S-immersion and h is an étale neighborhood of z in Z.

Lemma 1.9. — Let u′ → u be a strict cartesian morphism of C . Suppose
that the P (n)(u) (resp. Pn(u)), the log thickening of order (n) (resp. of
order n) induced by u, exists. Then the log thickening of order (n) (resp. of
order n) induced by u′ exists and we have P (n)(u′) = P (n)(u)×u u′ (resp.
Pn(u′) = Pn(u)×u u′).

Proof. — Using Remark 1.5, since u′ → u is strict and cartesian, then
so is the projection P (n)(u) ×u u′ → P (n)(u) and then P (n)(u) ×u u′ ∈
C(n). Hence, we can check easily that P (n)(u) ×u u′ endowed with the
projection P (n)(u)×uu′ → u′ satisfies the corresponding universal property
of P (n)(u′). We can check similarly the respective case. �

Lemma 1.10. — Let n ∈ N, f : X → Y be a fine formally log étale
morphism of fine log S-schemes, u : Z ↪→ X and v : Z ↪→ Y be two S-
immersions of fine log schemes such that v = f ◦ u. If Pn(u) exists, then
Pn(v) exists and we have Pn(u) = Pn(v).

Proof. — Abstract nonsense. �

Proposition 1.11. — For any integer n, the inclusion functor Forn :
Cn → C has a right adjoint functor which we will denote by Pn : C → Cn.

ANNALES DE L’INSTITUT FOURIER
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Let u : Z ↪→ X be an object of C . Then Z is also the source of Pn(u).
Moreover, denoting abusively by Pn(u) the target of the arrow Pn(u), the
underlying morphism of schemes of Pn(u) → X is affine. We denote by
Pn(u) the quasi-coherent OX -algebra so that Pn(u) = Spec(Pn(u)). If X
is noetherian, then so is Pn(u).

Proof. — The construction of Pn is given in [21, 5.8]. Since Proposi-
tion 1.11 is slightly more precise than the existence of Pn, for the reader
convenience, let us give a detailled proof. Let u : Z ↪→ X be an S-immersion
of fine log-schemes. Using Lemma 1.9, the existence of Pn(u) (and then the
whole proposition) is étale local on X (i.e. following our convention, this
is local for the Zariski topology and we can proceed by descent of a finite
covering with étale quasi-compact morphisms). Hence, by Point 1.8, we
may thus assume that there exists a commutative diagram of the form

X̃
f // X

Z
� ?

u

OO

O/
ũ

__

such that f is log étale, f is affine and ũ is an exact closed S-immersion.
Let I be the ideal defined by ũ. Let Pn ↪→ X̃ be the exact closed immersion
which is induced by In+1. Using Lemma 1.10, we can check that Pn(u) is
the exact closed immersion Z ↪→ Pn. When X is noetherian, then so are
X̃ and Pn. �

Lemma 1.12. — Let u → v be a morphism of C . Let w := Pn(v)×v u
(this is the product in C ). Then Pn(w) and Pn(u) are isomorphic in Cn.

Proof. — We can easily check that the composition Pn(w) → w → u

satisfies the universal property of Pn(u)→ u. Hence, we are done. �

Proposition 1.13. — Let f : X → Y be an S-morphism of fine log
schemes and ∆X/Y : X ↪→ X ×Y X (as always the product is taken in the
category of fine log schemes) be the diagonal S-immersion. The following
assertions are equivalent:

(1) the morphism P 1(∆X/Y ) is an isomorphism;
(2) the morphism f is fine formally log unramified;
(3) the morphism f is formally log unramified (this notion is defined

at [28, IV.3.1.1]).

TOME 72 (2022), FASCICULE 3



1020 Daniel CARO & David VAUCLAIR

Proof. — Following [28, IV.3.1.3], the last two assertions are equivalent.
Moreover, by definition, if f is formally log unramified then f is fine for-
mally log unramified. Using [21, 5.8] and with Notation 2.5, the property
ΩX/Y = 0 is equivalent to say that P 1(∆X/Y ) is an isomorphism. Copying
the proof of “if f is formally log unramified then ΩX/Y = 0” of [28, IV.3.1.3]
we can check in the same way that if f is fine formally log unramified then
ΩX/Y = 0 (indeed, since X fine, then the log scheme T := X ⊕ ΩX/Y is
fine because its log structure is MX ⊕ ΩX/Y : see [28, IV.2.1.5]). �

1.2. Log p-étaleness

Definition 1.14. — Let f : X → Y be an S-morphism of fine log
schemes.

(1) We say that f is “log p-étale” (resp. “log p-unramified”) if it satisfies
the following property: for any commutative diagram of fine log
schemes of the form

(1.3)
U

u0 //
� _

ι

��

X

f

��
T

v // Y

such that ι is an object of C(p), there exists a unique morphism
(resp. there exists at most one morphism) u : T → X such that
u ◦ ι = u0 and f ◦ u = v.

(2) Replacing C(p) by C sat
(p) we get the notion of “fs log p-étale” and of

“fs log p-unramified”.
(3) Replacing “fine log S-schemes” by “S-schemes” in (1), we get the

notion of “p-étale” (resp. “p-unramified”) morphism of schemes.

Remark 1.15. — With Remark 1.3(4) in mind, we can replace C(p) by
T hick(p) (resp. C sat

(p) by T hicksat
(p)) in the definition of log p-étale or log

p-unramified (resp. fs log p-étale or fs log p-unramified).
Moreover, since C(p) contains C1, then a log p-étale (resp. a log p-unram-

ified) morphism is fine formally étale (resp. fine formally unramified). Since
C sat

(p) contains C sat
1 , then a fs formally log p-étale (resp. fs formally log p-

unramified) is fs formally log étale (resp. fs formally log unramified). We
have similar remarks without logarithmic structures, e.g. a p-étale mor-
phism is an étale morphism.

ANNALES DE L’INSTITUT FOURIER
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Lemma 1.16. — Let f : X → Y be an S-morphism of fine log-schemes.
Then f is fs log p-étale (resp. fs formally log etale, resp. fs log p-unramified,
resp. fs formally log unramified) if and only if so is f sat.

Proof. — This is checked by using the fact that the functor X 7→ Xsat is
a right adjoint of the inclusion functor from the category of fs log schemes
to the category of fine log schemes (see [28, III.2.1.5]). �

Lemma 1.17. — Let f : X → Y be a strict S-morphism of fine log
schemes, f : X → Y , f sat : Xsat → Y satf sat : Xsat → Y sat be the induced
morphisms (see [28, III.2.1.5] concerning the functor X 7→ Xsat).

(1) The morphism f is log p-étale if and only if f is p-étale.
(2) The morphism f is fs log p-étale if and only if f sat is p-étale.

Proof. — If f is log p-étale then this is straightforward that f is p-étale
(from a diagram of the form (1.3) in the category of schemes, use the
diagram of fine log schemes with strict morphisms which is induced by
base change with Y → Y ). To check the converse, using the fact that any
morphism u : T → Y of fine log schemes factorizes uniquely of the form
T → T ′ → Y where T ′ → Y is strict and T = T ′, we reduce to check the
universal property of lop p-étaleness in the case where the morphisms of
the diagram (1.3) are strict, which is clear. The second part of the Lemma
is proved similarly. �

Lemma 1.18. — Let f : X → Y be a strict S-morphism of fine log
schemes. We suppose f is locally of finite presentation. In that case, the
morphism f is log p-étale if and only if f is étale.

Proof. — Since f is strict, following Lemma 1.17, then a morphism is log
p-étale if and only if f is p-étale. Moreover, since f is strict, then f is étale
if and only if f is étale. Hence, we reduce to check f is p-étale and locally
of finite presentation if and only if f is étale. Since a p-étale morphism is
formally étale (see Remark 1.15), since a formally étale morphism locally of
finite presentation is étale we get one implication. Let us check the converse.
Since this is Zariski local on Y , we can suppose Y affine. In that case, Y
is a filtrant projective limit of schemes of finite type over Z. Since f is
locally of finite presentation, then using [17, 8.8.2.(ii)], we reduce to the
case where Y is noetherian. Since this is Zariski local on X, we can also
suppose X affine and f is of finite type. In particular X is also noetherian.
In that case, we can easily check the f satisfies the universal property of
p-étaleness if f satisfies that of étaleness. �
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Lemma 1.19. — Let f : X → Y and g : Y ′ → Y be two S-morphisms
of fine log-schemes. Set X ′ := X ×Y Y ′ in the category of fine log schemes
and f ′ : X ′ → Y ′ the projection. If f is log p-étale (resp. fine formally log
étale, resp. log étale, resp. fine formally log unramified, resp. fs log p-étale,
resp. fs formally log etale, resp. fs formally log unramified), then so is f ′.

Proof. — Abstract nonsense and standard. �

Lemma 1.20. — Let f : X → Y be an S-morphism of fine log-schemes
and f0 : X0 → Y0 be the induced S0-morphism. The morphism f is log
p-étale (fs log p-étale) if and only if f is fine formally log etale (resp. fs
formally log étale) and f0 is log p-étale (resp. fs log p-étale). Similarly
replacing everywhere “étale” by “unramified”.

Proof. — If f is log p-étale then by definition f is fine formally log etale
and by using Lemma 1.19 f0 is log p-étale. Conversely, suppose that f is
fine formally log etale and f0 is log p-étale. Let

(1.4)

U
u //

� _

ι

��

X

f

��
T

w // Y

be a commutative diagram of fine log schemes such that ι is an object of
C(p). Since f0 is log p-étale, there exists a unique morphism υ0 : T0 → X0
such that υ0 ◦ ι0 = u0 and f0 ◦ υ0 = w0 (recall f0, w0, ι0, u0 mean the
reduction modulo p). Let αT : T0 ↪→ T , αX : X0 ↪→ X, and αU : U0 ↪→ U

be the canonical nilpotent exact closed immersions. Since αT is a nilpotent
exact closed immersion, since f is in particular fine formally log etale then
there exists a unique morphism υ : T → X such that υ ◦αT = αX ◦ υ0 and
f ◦ υ = w. Since αU : U0 ↪→ U is a nilpotent exact closed immersion, since
f is in particular fine formally unramified, since (υ ◦ ι) ◦ αU = u ◦ αU , and
f ◦ (υ ◦ ι) = f ◦ u, then υ ◦ ι = u. Hence, the morphism υ : T → X is such
that f ◦ υ = w and υ ◦ ι = u. To check the uniqueness of such morphism
υ : T → X, since f0 is log p-unramified then υ0, the reduction of such υ,
is unique. Since f is in particular fine formally unramified, then such υ is
unique. The unramified or fs cases are checked similarly. �

Lemma 1.21. — Let f : X → Y and g : Y → Z be two S-morphisms of
fine log schemes. The morphisms f and g are log p-étale (resp. fine formally
log etale, resp. log étale, resp. fs log p-étale, resp. fs formally log etale) if
and only if so are g ◦ f and g.

Proof. — Abstract nonsense and standard. �
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Lemma 1.22. — Let f : X → Y and g : X ′ → X be two S-morphisms
of fine log-schemes such that g is étale, quasi-compact and surjective. The
morphism f is log p-étale (resp. fine formally log etale, resp. log étale, resp.
fs log p-étale, resp. fs formally log etale) if and only so is f ◦ g.

Proof. — First, let us prove the non respective case. From Lemma 1.21,
since an étale morphism is log p-étale (see Lemma 1.18), we can check that
if f is log p-étale then so is f ◦ g. Conversely, suppose f ◦ g is log p-étale.
Let

(1.5)
U

u0 //
� _

ι

��

X

f

��
T

v // Y

be a commutative diagram of fine log schemes such that ι is an object
of C(p). Put U ′ := U ×X X ′ and u′0 : U ′ → X ′ the morphism induced
from u0 by base change by g. Since the projection g′ : U ′ → U is étale,
using Theorem [18, IV.18.1.2], there exists a unique (up to isomorphisms)
étale morphism h : T ′ → T such that we have an isomorphism of the form
U ′

∼−→ T ′ ×T U . Let ι′ : U ′ ↪→ T ′ be the projection. Since f ◦ g is log p-
étale, there exists a unique morphism u′ : T ′ → X ′ such that u′◦ι′ = u′0 and
f ◦g◦u′ = v◦h. Set T ′′ := T ′×T T ′, U ′′ := U ′×U U ′. Let p1 : T ′′ → T ′, and
p2 : T ′′ → T ′ (resp. p1 : U ′′ → U ′, and p2 : U ′′ → U ′) be respectively the
left and right projections. Let ι′′ := ι′×ι′ : U ′′ ↪→ T ′′. Since f ◦g◦(u′◦p1) =
f ◦ g ◦ (u′ ◦p2), (u′ ◦p1)◦ ι′′ = (u′ ◦p2)◦ ι′′, and since f ◦ g is log p-ramified,
we get u′ ◦ p1 = u′ ◦ p2 and then (g ◦ u′) ◦ p1 = (g ◦ u′) ◦ p2. Since T ′ → T

is a strict epimorphism, this yields that there exists a unique morphism
u : T → X such that g ◦u′ = u ◦h. Since u ◦ ι ◦ g′ = u0 ◦ g′, since g′ is étale
and surjective, then u ◦ ι = u0. Since f ◦ u ◦ h = v ◦ h, since h is étale and
surjective, then f ◦u = v. We conclude that f is log p-étale. The respective
cases are checked similarly. �

Lemma 1.23. — Let f : X → Y and g : Y ′ → Y be two S-morphisms
of fine log-schemes such that g is étale, quasi-compact and surjective. Set
X ′ := X ×Y Y ′ in the category of fine log schemes and f ′ : X ′ → Y ′ the
projection. The morphism f is log p-étale (resp. fine formally log etale,
resp. log étale, resp. fs log p-étale, resp. fs formally log etale) if and only so
is f ′.

Proof. — Since the respective cases are similar (for both last respective
cases, remark also that using Lemma 1.16 we can replace fiber products
in the category of fine log schemes by fiber products the category of fs log
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schemes), let us only prove the non respective case. From Lemma 1.19, if f
is log p-étale then so is f ′. Conversally, suppose that f ′ is log p-étale. Let

(1.6)
U

u0 //
� _

ι

��

X

f

��
T

v // Y

be a commutative diagram of fine log schemes such that ι is an object of
C(p). Put T ′ := T ×Y Y ′, U ′ := U ×Y Y ′, and let ι′ : U ′ ↪→ T ′, u′0 : U ′ →
X ′, v′ : T ′ → Y ′ be the morphism induced respectively from ι, u0, v by
base change by g. Since f ′ is log p-étale, there exists a unique morphism
w′ : T ′ → X ′ such that w′ ◦ ι′ = u′0 and f ′ ◦ w′ = v′. Set Y ′′ := Y ′ ×Y Y ′,
T ′′ := T ×Y Y ′′, U ′′ := U ×Y Y ′′, and let ι′′ : U ′ ↪→ T ′, u′′0 : U ′′ → X ′′,
v′′ : T ′′ → Y ′′, f ′′ : X ′′ → Y ′′ be the morphism induced respectively from
ι, u0, v, f by base change by Y ′′ → Y . Let p1 : Y ′′ → Y ′, p2 : Y ′′ → Y ′

(resp. p1 : X ′′ → X ′, p2 : X ′′ → X ′, resp. p1 : T ′′ → T ′, p2 : T ′′ → T ′) be
the left and right projections. Since f ′′ is log p-étale, there exists a unique
morphism w′′ : T ′′ → X ′′ such that w′′ ◦ ι′′ = u′′0 and f ′′ ◦ w′′ = v′′. Since
f ′ is log p-étale, by using the cube whose front square is (1.6) with primes,
whose back square is (1.6) with double primes, whose horizontal morphism
from the back square toward the front square are the first projections p1,
we can check w′ ◦ p1 = p1 ◦ w′′. Similarly, we can check w′ ◦ p2 = p2 ◦ w′′.
Hence, putting u′ := g ◦w′ : T ′ → X, we get u′ ◦ p1 = u′ ◦ p2. Since T ′ → T

is a strict epimorphism, we conclude that there exists a unique morphism
u : T → X such that u′ is the composition of u with T ′ → T . Since U ′ → U

(resp. T ′ → T ) is étale and surjective then u ◦ ι = u0 (resp. f ◦ u = v).
Hence, f is log p-étale. �

Lemma 1.24. — Let u : Z ↪→ X be an object of T hick(p) and I be the
ideal defined by the closed immersion u. Then 1 + I is a subgroup of O∗X .
Let n be an integer prime to p. The homomorphism 1+I → 1+I of groups
defined by x 7→ xn is an isomorphism. Moreover, if X is affine then for any
q > 0, we have the vanishing Hq(X, 1 + I) = 0.

Proof. — For N large enough, I(pN ) = 0 and pN = 0 in OS . Hence,
for any local section y of I, we compute (1 + y)pN = 1. This yields that
1 + I is a subgroup of O∗X . Since n be an integer prime to p, then there
exists m ∈ N such that nm ≡ 1 mod pN . Hence, the homomorphism
1 + I → 1 + I given by x 7→ xn is an isomorphism whose inverse function
is given by x 7→ xm. It remains to check the last statement. Suppose X
affine. The ideal I := Γ(X, I) is the filtrant inductive limit of its subideal
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of finite type. Since I(pN ) = 0, then I is the filtrant inductive limit of
nilpotent subideals. Since the canonical morphism OX ⊗Γ(X,OX) I → I is
an isomorphism, this yields that I is a filtrant inductive limit of nilpotent
quasi-coherent ideals of OX . Hence, 1 + I is a filtrant inductive limit of
sheaves of the form 1 + J , where J is a nilpotent quasi-coherent ideal of
OX . Using [12, VI.5.1], to check the last statement, we can suppose that I
is nilpotent. Let N > 2 be so that IN = 0. By induction on N , we reduce
to the case N = 2 as follows. Let v : X ′ ↪→ X be the exact closed immersion
given by IN−1. Then Z ↪→ X ′ is given by I := v−1(I/IN−1). By induction
hypothesis, for any q > 0, we have the vanishing Hq(X ′, 1 + I) = 0. Since
X ′ ↪→ X is an homeomorphism, this yields for any q > 0, we have the
vanishing Hq(X, 1 + I/IN−1) = 0. Using again the induction hypothesis,
for any q > 0, we have the vanishing Hq(X, 1+IN−1) = 0. Using the exact
sequence, 1 → 1 + IN−1 → 1 + I → 1 + I/IN−1 → 1, for any q > 0, we
get the vanishing Hq(X, 1 + I) = 0. Hence, we can suppose I2 = 0. In
that case, we have the isomorphism of groups (I,+)→ (1 + I,×) given by
y 7→ 1 + y. Since I is quasi-coherent, using [14, 1.3.1], we are done. �

Proposition 1.25. — Let f : X → Y be a log étale S-morphism of fine
log-schemes. Then f is log p-étale.

Proof. — Following Lemmas 1.22 and 1.23 the log p-étaleness is étale
local in bothX and Y . Hence, using [21, Theorem 3.5], we reduce to the case
where X = AP , Y = AQ and where there exists a chart of f subordinate
to a morphism φ : Q→ P of fine monoids (see the definition [28, II.2.4.1])
such that the kernel and cokernel of φgp is finite of order prime to p (i.e.
is invertible in Z/pi+1Z). Let ι : U ↪→ T be an object of C(p). A morphism
ι→ f can be thought of as commutative diagram

Q
θ //

h

��

P

g

��
g̃

xx
Γ(T,MT ) i // Γ(U,MU ).

We need to check the existence and unicity of a map g̃ : P → Γ(T,MT ) such
that i ◦ g̃ = g and g̃ ◦ θ = h. Since this is locally étale, we can suppose T
affine. Following [28, IV.2.1.2.4], the natural map MT →Mgr

T ×MU
Mgr
U is

an isomorphism. Moreover, the morphism MT ↪→ Mgr
T is injective. Hence,

we reduce to check there exists a unique morphism g̃ : P gr → Γ(T,Mgr
T )
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making commutative the diagram

(1.7)

Qgr θgr
//

h′

��

P gr

g′

��g̃′xx
Γ(T,Mgr

T ) i′ // Γ(U,Mgr
U ),

where h′, g′ are the morphism canonically induced from h, g and where i′
is induced from the map Mgr

T →Mgr
U . By [28, IV.2.1.2.2], we have 1 + I =

ker(Mgr
T → Mgr

U ), where I is the ideal defined by the closed immersion ι.
Using Lemma 1.24, since T is affine, we get the exact sequence

(1.8) 1→ Γ(T, 1 + I)→ Γ(T,Mgr
T )→ Γ(U,Mgr

U )→ 1.

First, let us check the unicity. Let g̃′1, g̃′2 : P gr → Γ(T,Mgr
T ) be two mor-

phisms making the diagram (1.7) commutative. Let us denote by g̃′1(g̃′2)−1 :
P gr → Γ(T,Mgr

T ) the morphism defined by x 7→ g̃′1(x)(g̃′2(x))−1. From the
exactness (1.8), since i′◦g̃′1 = i′◦g̃′2, we get the factorization g̃′1(g̃′2)−1 :P gr→
Γ(T, 1+I). Since (g̃′1(g̃′2)−1)◦θgr = 1, the morphism g̃′1(g̃′2)−1 has the canon-
ical factorization by a morphism of the form coker(θgr)→ Γ(T, 1 + I). Let
N be the cardinal of coker(θgr). Since N is of order prime to p, then the ho-
momorphism Γ(T, 1 +I)→ Γ(T, 1 +I) given by x 7→ xN is a bijection (see
Lemma 1.24). This yields that any homomorphism coker(θgr)→ Γ(T, 1+I)
is 1. Hence, g̃′1 = g̃′2.
Now, let us prove the existence. It is sufficient to copy in the proof of [28,

IV.3.1.8] the part corresponding to the implication 3.1.8(1)⇒ 3.1.8(2). For
the convenience of the reader, let us clarify it. Put E := Γ(T,Mgr

T )×Γ(U,Mgr
U

)
P gr (the morphisms used to define the fiber product are those appearing
in the diagram (1.7)). Taking the pullback of (1.8) by g′, we get the exact
sequence 1 → Γ(T, 1 + I) → E

π−→ P gr → 1, where the first map is given
by x 7→ (x, 1) and where the map π is the projection (x, y) → y. We put
φ := (h′, θgr) : Qgr → E. We get the commutative diagram

1 // ker(θgr) //

��

Qgr //

φ

��

θgr

&&

Qgr/ ker(θgr //

��

1

1 // Γ(T, 1 + I) // E
π //

��

P gr //

��

1

1 // Γ(T, 1 + I) // coker(φ) // coker(θgr) // 1
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whose top and middle rows are exact. Since the homomorphism Γ(T, 1 +
I)→ Γ(T, 1 + I) given by x 7→ xn is a bijection for any integer n prime to
p, since ker(θgr) is finite of order prime to p, then the morphism ker(θgr)→
Γ(T, 1+I) is equal to 1. Hence, using the snake lemma to the top and middle
rows, we can check that the bottom row is also exact. Since the homomor-
phism Γ(T, 1 + I)→ Γ(T, 1 + I) given by x 7→ xn is a bijection for n equal
to the cardinal of coker(θgr), then Ext1(coker(θgr),Γ(T, 1+I)) = 1. Hence,
the bottom row splits (and even uniquely). Let τ : P gr → coker(φ) be the
composition of P gr → coker(θgr) with a section coker(θgr) → coker(φ) of
the surjection of the bottom surjective map.
We remark that the set of morphisms g̃ : P gr → Γ(T,Mgr

T ) making com-
mutative the diagram (1.7) is equipotent with the set of sections σ : P gr →
E of π such that σ◦θgr = φ (the bijection is given by g̃ 7→ (g̃, id)). Since the
middle and bottow rows are exact, we get that the square on the bottom
right is exact. Hence, we get the morphism σ := (τ, π) : P gr → E. We can
check that this morphism is a section of π such that σ ◦ θgr = φ. �

Example 1.26. — We set k[T ] := k[T1, . . . , Tn] and k[[T ]] = k[[T1, . . . , Tn]].
Since k is perfect, then the morphism Spec k[[T ]] → Spec k[T ] is p-étale
because it is relatively perfect (see Lemma 1.31 and Example 1.39). Beware
that such a morphism is not of finite type and then not étale.
An important application of this fact is that a strictly semistable va-

riety over Spec k[[t]] is p-smooth over Spec k (see Definition 1.85 and Ex-
ample 1.89). Following de Jong desingularization theorem ([20, 6.5]), any
variety over Spec k[[t]] is strictly semistable up to some alteration. Remark
that a strictly semistable variety over Spec k[[t]] is not smooth over Spec k[[t]]
but only log smooth over the log scheme (Spec k[[t]],Mt) where Mt is the
log structure associated to the special fiber (see [21]). Hence, when we want
to construct p-adic coefficients in the context of schemes of finite type over
Spec k[[t]], on one hand we have to add logarithmic structures but on the
other hand log smoothness is a sufficient notion. The situation in the ab-
solute context is symmetric: when we want to study schemes of finite type
over Spec k[[t]] absolutely, i.e. we consider these geometrical objects over k,
on one hand we can avoid to bother with logarithmic structures but on the
other hand we do need to work with the notion of p-smoothness.
Lemma 1.27. — Let n ∈ N, f : X → Y be a log p-étale morphism of

fine log S-schemes, u : Z ↪→ X and v : Z ↪→ Y be two S-immersions of fine
log schemes such that v = f ◦u. If P (pn)(u) exists, then P (pn)(v) exists and
we have P (pn)(u) = P (pn)(v).

Proof. — Abstract nonsense. �
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Proposition 1.28. — For any integer n, the canonical functor C(pn) →
C has a right adjoint functor which we will denote by P (pn) : C → C(pn).
Let u : Z ↪→ X be an object of C . Then Z is also the source of P (pn)(u).
Moreover, denoting abusively by P (pn)(u) the target of the arrow P (pn)(u),
the underlying morphism of schemes of P (pn)(u)→ X is affine. When X is
noetherian, then so is P (pn)(u).

Proof. — The proof is similar to that of Proposition 1.11: Let u : Z ↪→ X

be an S-immersion of fine log-schemes. Using Lemma 1.9, the existence of
P (pn)(u) (and then the proposition) is étale local on X (i.e. following our
convention, this is local for the Zariski topology and we can proceed by
descent of a finite covering with étale quasi-compact morphisms). Hence,
by Point 1.8, we may thus assume that there exists a commutative diagram
of the form

X̃
f // X

Z
� ?

u

OO

O/
ũ

^^

such that f is log étale, f is affine and ũ is an exact closed S-immersion. Let
I be the ideal defined by ũ. Let P (pn) ↪→ X̃ be the exact closed immersion
which is induced by I(pn). Using Proposition 1.25 and Lemma 1.27, we can
check that P (pn)(u) is the exact closed immersion Z ↪→ P (pn). �

1.3. Log relative perfectness

The following definition will be extended in Definition 1.32.

Definition 1.29. — Let f : X → Y be an S0-morphism of fine log-
schemes. We say that f is “fine log relatively perfect” (resp. “fs log relatively
perfect”) if the diagram on the left (resp. on the right)

(1.9)
X

FX //

f

��

X

f

��
Y

FY // Y,

Xsat FXsat //

fsat

��

Xsat

fsat

��
Y sat FY sat // Y sat

is cartesian in the category of fine log-schemes (resp. fs log-schemes). This
definition does not depend on the choice of the fine log scheme S over
Z/pi+1Z. We remark that f is fs log relatively perfect if and only if so
is f sat.
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Remark 1.30. — Let ι : U ↪→ T be a log S0-thickening of order (p). Let
T ×FT ,T,ι U be the base change of FT by ι. Let p1 : T ×FT ,T,ι U → T , and
p2 : T ×FT ,T,ιU → U be the projections. Since ι is of order (p) then p1 is an
isomorphism. Put $ι := p2 ◦ p−1

1 : T → U . We remark that the morphism
$ι is the unique morphism T → U making commutative the diagram

(1.10)
U

FU //
� _

ι

��

U� _

ι

��
T

FT //

$ι

??

T.

Lemma 1.31. — Let f : X → Y be an S0-morphism of fine log-schemes.
If f is fine log relatively perfect (resp. fs log relatively perfect) then f is
log p-étale (resp. fs log p-étale).

Proof. — Let us check the fine version. Let

(1.11)
U

u0 //
� _

ι

��

X

f

��
T

v // Y

be a commutative diagram of fs S0-log schemes such that i is a log S0-
thickening of order (p). First, let us check the unicity. Let u : T → X be
a morphism such that u ◦ ι = u0 and f ◦ u = v. With the notation of
Remark 1.30, we get FX ◦ u = u ◦FT = u ◦ ι ◦$ι = u0 ◦$ι. Since we have
also f ◦u = v, we obtain the uniqueness of u from the cartesianity of (1.9).
Now, let us check the existence. We have FY ◦ v = v ◦ FT = v ◦ ι ◦ $ι =
f ◦ u0 ◦ $ι. Hence, via the cartesianity of (1.9), we get the Y -morphism
u = (v, u0◦$ι) : T → X = Y ×FY ,Y,fX. By definition, f ◦u = v. Moreover,
u ◦ ι = (v ◦ ι, u0 ◦$ι ◦ ι) = (f ◦ u0, u0 ◦FU ) = (f ◦ u0, FX ◦ u0) = u0 : T ′ →
X = Y ×FY ,Y,f X.
Suppose now that f is fs log relatively perfect. Using Lemma 1.16, we

reduce to check that f sat is fs log p-étale. Since f sat is fs log relatively
perfect, we can proceed in the same way by replacing “fine” by “fs”. �

Definition 1.32. — Let f : X → Y be an S-morphism of fine log-
schemes. We say that f is “fine log relatively perfect” (resp. “fs log relatively
perfect”) if f is fine formally log etale (resp. fs formally log etale) and if f0
is fine log relatively perfect (resp. fs log relatively perfect).
This definition does not depend on the choice of the fine log scheme

S over Spec(Z/pi+1Z). Let us clarify what it means. We can view f as
a Spec(Z/pi+1Z)-morphism of fine log-schemes. Then, we remark that f
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is fine formally log etale (resp. fs formally log etale) as a Spec(Z/pi+1Z)-
morphism if and only if so is f as an S-morphism (indeed, a log-scheme
over Y is an S-log-scheme). Finally f0 is fine log relatively perfect (resp. fs
log relatively perfect) as Spec(Z/pZ)-morphism if and only if so is f0 as an
S0-morphism.

Remark 1.33. — From Lemma 1.31, this definition of log relative per-
fectness of Definition 1.32 agrees that of Definition 1.29 when i = 0, i.e.
S = S0.

Lemma 1.34. — Let f : X → Y be an S-morphism of fine log-schemes.
Then f is fs log relatively perfect if and only if so is f sat.

Proof. — From Lemma 1.16, f is fs formally log étale if and only if so is
f sat. Moreover, since (f sat)0 = (f0)sat, then f0 is fs log relatively perfect if
and only if so is (f sat)0. �

Proposition 1.35. — A fine (resp. fs) log relatively perfect morphism
is log p-étale (resp. fs log p-étale).

Proof. — This is a consequence of Lemmas 1.20 and 1.31. �

Lemma 1.36. — Let f : X → Y and g : Y ′ → Y be two S-morphisms
of fine log-schemes. Set X ′ := X ×Y Y ′ in the category of fine log schemes
and f ′ : X ′ → Y ′ the projection. If f is fine log relatively perfect (resp. fs
log relatively perfect), then so is f ′.

Proof. — Since the fs part is similar, let us only consider the fine part.
Using Lemma 1.19, we reduce to the case where i = 0. Since the outline of
both diagrams

(1.12)
X ′

FX′ //

f ′

��

X ′ //

f ′

��
�

X

f

��
Y ′

FY ′ // Y ′ // Y,

X ′ //

f ′

��
�

X
FX //

f

��
�

X

f

��
Y ′ // Y

FY // Y

are the same, we conclude. �

Point 1.37 (Relative perfectnes in the sense of Kato). — Let A → B

be an homomorphism of k-algebras. We denote by A(p) be the A-algebra
given by the absolute Frobenius FA : A(p) → A, and similarly for B. Let
b1, . . . , bn ∈ B be some elements and A[T ] = A[T1, . . . , Tn] → B be the
homomorphism given by Ti 7→ bi.
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(a) By definition, the homomorphism A[T ] → B is relatively perfect
in the sense of Kato if and only if the canonical homomorphism
(A[T ])(p) ⊗A[T ] B → B(p) is an isomorphism (see [22, 1.1]).

(b) We have the canonical isomorphisms

(A[T ])(p) ⊗A[T ] B
∼−→ (A[T ])(p) ⊗A(p)[T ]

(
A(p)[T ]⊗A[T ] B

)
∼−→ (A[T ])(p) ⊗A(p)[T ]

(
A(p) ⊗A B

)
.

This yields that the homomorphism A[T ]→ B is relatively perfect
in the sense of Kato if and only if the canonical homomorphism

(1.13) (A[T ])(p) ⊗A(p)[T ]
(
A(p) ⊗A B

)
→ B(p)

is an isomorphism. Since (A[T ])(p) is a free A(p)[T ]-module with the
basis

∏d
i=1 T

ni
i , for ni < p for any i, then the homomorphism (1.13)

is an isomorphism if and only if B(p) is a free A(p) ⊗A B-module
with the basis

∏d
i=1 b

ni
i , for ni < p for any i. In that case, following

Kato’s terminology, b1, . . . , bn form a p-basis of B/A.

Lemma 1.38. — Let f : X → Y be a strict S-morphism of fine log
schemes (resp. fs log schemes). Then f is fine log relatively perfect (resp.
fs log relatively perfect) if and only if f is relatively perfect as defined by
Kato in [22, 1.1] (see Point 1.37 for the affine case).

Proof. — Since f is strict then f is the base change of f by Y → Y in the
category of fine log schemes (resp. fs log schemes). This yields that if f is
relatively perfect then f is fine log relatively perfect (resp. fs log relatively
perfect). Conversely, suppose that the morphism f is fine (resp. fs) formally
log étale. Then, similarly to the proof of Lemma 1.17, we can check that
f is formally étale. Hence, we reduce to the case i = 0. Moreover, since
f is strict then Y ×FY ,Y,f X = Y ×FY ,Y ,f X. Since f is fine log relatively
perfect (resp. fs log relatively perfect), we get Y = Y ×FY ,Y,fX. This yields
Y = Y ×FY ,Y ,f X and we are done. �

Example 1.39. — We set k[T ] := k[T1, . . . , Tn] and k[[T ]] = k[[T1, . . . , Tn]].
Since k is perfect (in particular, it has finite p-basis), then the morphism
Spec k[[T ]] → Spec k[T ] is relatively perfect (but this is not étale). Indeed,
since k[[T ]] is not a k[T ]-algebra of finite type, then it can not be étale.
It remains to check that k[T ] → k[[T ]] is relatively perfect, i.e. following
Point 1.37(b) that the canonical homomorphism

(k[T ])(p) ⊗k(p)[T ]

(
k(p) ⊗k k[[T ]]

)
→ (k[[T ]])(p)
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is an isomorphism, i.e. (k[[T ]])(p) is a free k(p)⊗kk[[T ]]-module with the basis∏d
i=1 T

ni
i , for ni < p for any i. Since k → k(p) is finite, then k(p)⊗k k[[T ]] =

k(p)[[T ]]. The induced map k(p)[[T ]] → (k[[T ]])(p) is given by
∑
akT

k →∑
akT

pk. Hence, we conclude by an easy computation.

Lemma 1.40. — Let f : X → Y and g : Y → Z be two S-morphisms
of fine log schemes. The morphisms f and g are fine log relatively perfect
(resp. fs log relatively perfect) if and only if so are g ◦ f and g.

Proof. — Using Lemma 1.21, we reduce to the case where i = 0. Then,
this is abstract nonsense. �

Lemma 1.41. — Let f : X → Y be an étale S-morphism of fine log-
schemes. Then f is fine log relatively perfect.

Proof. — Using Lemma 1.38, we reduce to check that an étale morphism
of schemes is relatively perfect as defined by Kato in [22, 1.1], which is well
known. �

Lemma 1.42. — Let f : X → Y and g : X ′ → X be two S-morphisms
of fine log-schemes such that g is étale, quasi-compact and surjective. The
morphism f is fine log relatively perfect (resp. fs log relatively perfect) if
and only so is f ◦ g.

Proof. — From Lemmas 1.40 and 1.41, if f is fine log relatively perfect
then so is f ◦ g. Conversely, suppose f ◦ g is fine log relatively perfect.
Using Lemma 1.22, we reduce to the case where i = 0. We have to check
that the morphism (FX , f) : X → X ×f,Y,FY Y is an isomorphism. Since
is Zariski local, we can suppose X affine. Since f ◦ g is fine log relatively
perfect, then (FX′ , f ◦ g) : X ′ → X ′ ×f◦g,Y,FY Y , is an isomorphism. We
notice that (FX′ , f ◦g), is the base change of (FX , f) by g×id : X ′×f◦g,Y,FY
Y → X ×f,Y,FY Y Since g× id is etale, quasi-compact and surjective, then
using [16, IV.2.7.1.(viii)], we can conclude. The fs log relatively perfect case
is checked similarly. �

Lemma 1.43. — Let f : X → Y and g : Y ′ → Y be two S-morphisms
of fine log-schemes such that g is étale, quasi-compact and surjective. Set
X ′ := X ×Y Y ′ in the category of fine log schemes and f ′ : X ′ → Y ′

the projection. The morphism f is fine log relatively perfect (resp. fs log
relatively perfect) if and only so is f ′.
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Proof. — From Lemma 1.36, f is fine log relatively perfect then so is f ′.
Let us check converse: suppose f ′ is fine log relatively perfect. Using Lem-
ma 1.23, we reduce to the case where i = 0. We have to check that the mor-
phism (FX , f) : X → X×f,Y,FY Y is an isomorphism. Since f ′ is fine log rel-
atively perfect then the base change of (FX , f) by id×g : X ′×f ′,Y ′,FY ′ Y

′ =
X ×f,Y,FY ◦g Y ′ → X ×f,Y,FY Y is an isomorphism (to check the equal-
ity, recall from Lemma 1.41 that g is relatively perfect). Hence, using [16,
IV.2.7.1.(viii)], we can check that (FX , f) is an isomorphism. The fs log
relatively perfect case is checked similarly. �

Notation 1.44. — Let P be a monoid. We denote by AP :=
(Spec(Z/pi+1Z[P ]),MP ) the log formal scheme whose underlying scheme
is Spec(Z/pi+1Z[P ]) and whose log structure is the log structure associated
with the pre-log structure induced canonically by P → Z/pi+1Z[P ].

Beware that the notation AP := (Spec(Z[P ]),MP ) seems more common
in the literature, but since we are always working over Z/pi+1Z this is much
more convenient for us to put AP := (Spec(Z/pi+1Z[P ]),MP ).

Proposition 1.45. — Let f : X → Y be a log étale S-morphism of fine
log-schemes. Then f is fs log relatively perfect.

Proof. — Since these notions do not depend on S, we can suppose S =
Spec(Z/pi+1Z). From [28, IV.3.1.11], Xsat → X and Y sat → Y are log
etale (see [28, III.2.1.5] concerning the functor X 7→ Xsat). Hence, using
Remark [28, IV.3.1.2], f sat : Xsat → Y sat is also log étale. From Lem-
mas 1.16 and 1.34, we can suppose that f = f sat. Since f is fs formally log
étale, then we are reduced to the case i = 0. Next we observe that the case
where f is strict is already known (see Lemmas 1.38 and 1.41). Following
Lemmas 1.42 and 1.43, the fs relative perfectness of f is étale local on both
X and Y . Hence, using [28, II.3.6] and [21, Theorem 3.5], we reduce to the
case where X = AP , Y = AQ (see Notation 1.44) and f is induced by a
morphism φ : Q → P of fs monoids such that the kernel and cokernel of
φgp is finite of order prime to p. It remains to prove that the left square
below is cartesian in the category of fs log schemes:

(1.14)
AP

f

��

FAP // AP

f

��
AQ

FAQ // AQ,

P P
poo

Q

φ

OO

Q.
poo

φ

OO

Since the functor P 7→ AP from the category of fine satured monoids to
the category of fs log-schemes over Spec(Z/pi+1Z) transforms cocartesian
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squares into cartesian squares, it is thus sufficient to check that the right
square of (1.14) is cocartesian in the category of fine satured monoids. Let
us check that P satisfies the universal property of the pushout.

Step 1. — First, we reduce to check the universal property in the case
where P = P gp, Q = Qgp and O = Ogp as follows.

Let γ1, γ2 : P → O be two morphisms of monoids such that for i = 1, 2
we have γi ◦ φ = α and γi ◦ p = β. Then γgp

i : P gp → Ogp is a morphism
of groups such that γgp

i ◦ φgp = αgp and γgp
i ◦ p = βgp. Hence, γgp

1 = γgp
2 .

Since O → Ogp is injective, this yields γ1 = γ2.
Suppose there exists a morphism of groups γ̃ : P gp → Ogp such that

γ̃ ◦φgp = αgp and γ̃ ◦p = βgp. Let x ∈ P . Then pγ̃(x) = γ̃(px) = βgp(px) =
β(px) ∈ O. Since O is a fine saturated monoid, then γ̃(x) ∈ O. Since
O → Ogp is injective, this yields the morphism of monoids γ : P → O such
that γgr = γ̃, γ ◦ φ = α and γ ◦ p = β.

Let α : P → O and β : Q→ O be two morphisms of fine satured monoids
such that α ◦φ = β ◦ p. Since O is saturated, if z is an element of Ogp such
that pz is in O then z is an element of O.

Step 2. — Let us conclude the proof. Let x0 ∈ P . There exist y ∈ Q and
x ∈ P such than x0 = φ(y)+px. (Indeed, let n be an integer prime to p such
that n · coker(φ) = 0. There exists y0 ∈ Q such that nx0 = φ(y0). Using
Bezout lemma, we get the desired result.) We define a morphism h : P → O

satisfying α = h ◦ p and β = h ◦ φ by putting h(x0) := β(y) + α(x). The
morphism h is well defined. Indeed, if x0 = φ(y) + px = φ(y′) + px′, then
φ(y − y′) = p (x′ − x) and then we can suppose y′ = 0 and x = 0, i.e.
x0 = φ(y) = px′. Since p is an isomorphism on coker(φ), there exists z′ ∈ Q
such that x′ = φ(z′). Since p is an isomorphism on ker(φ), there exists
z′′ ∈ ker(φ) such that y = p(z′ + z′′). We compute β(y) = β(p(z′ + z′′)) =
α ◦ φ(z′ + z′′) = α ◦ φ(z′) = α(x′). The unicity of such h is also clear. �

Remark 1.46. — The “fine” version of Proposition 1.45 is wrong, i.e. a
log étale morphism is not necessarily fine log relatively perfect. Indeed,
we have the following counter-example. Let n > 2 such that p - n. In the
category of fine (resp fine saturated) monoids the inductive limit of the
diagram N p←− N n−→ N is the submonoid of N generated by p and n (resp.
the associated saturated monoid, i.e. N itself). Let f : AN → AN denote the
morphism induced by n : N → N. Hence, the morphism f is log étale but
not fine relatively perfect.
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Point 1.47. — The following diagram summarizes the relations between
the first definitions we consider so far:

(1.15)

log étale

Prop. 1.25

'/

Prop. 1.45

&.
Rem. 1.46
��

fine log relatively perfect +3

Prop. 1.35
��

fs log relatively perfect

Prop. 1.35
��

log p-étale +3

��

fs log p-étale

��
fine formally log étale +3 fs formally log étale.

From now on we will work with fine (not necessarily saturated) log
schemes. The reader who is only interested in the category of fs log schemes
can replace log p-etaleness by fs log p-etaleness in the sequel.

1.4. Formally log-étaleness of level m, log p-étaleness of level m,
m-PD-envelopes, nth infinitesimal neighborhood of level m

Let (IS , JS , γ) be a quasi-coherent m-PD-ideal of OS . Let us fix some
definitions.

Definition 1.48. — Let n > 1 be an integer.
(1) Let C

(m)
γ (resp. C (m)

γ,n ) be the category whose objects are pairs (u, δ)
where u is an exact closed S-immersion Z ↪→ X of fine log-schemes
and δ is anm-PD-structure on the ideal I of OX given by u which is
compatible (see [4, Definition 1.3.2.(ii)]) with γ (resp. and such that
I{n+1}(m) = 0), where I{n+1}(m) is defined in the appendix of [5]);
whose morphisms (u′, δ′) → (u, δ) are commutative diagrams of
the form

(1.16)

X ′
f // X

Z ′
?�

u′

OO

// Z
?�

u

OO

such that f is an m-PD-morphism with respect to the m-PD-
structures δ and δ′ (i.e., denoting by I ′ the sheaf of ideals of OX′
defined by u′, for any affine open sets U ′ of X ′ and U of X such
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that f(U ′) ⊂ U , the morphism f induces the m-PD-morphism
(OX(U), I(U), δ)→ (OX′(U ′), I ′(U ′), δ′)). Beware that theses cat-
egories depend on S and also on the quasi-coherent m-PD-ideal
(IS , JS , γ). The objects of C

(m)
γ (resp. C

(m)
γ,n ) are called m-PD-S-

immersions compatible with γ (resp. m-PD-S-immersions of or-
der n compatible with γ). We remark that we have the inclusions
C

(m)
γ ⊂ C

(m′)
γ for any integer m′ > m (recall an m-PD-structure is

also an m′-PD-structure).
We say that a morphism (u′, δ′)→ (u, δ) of C

(m)
γ (resp. C

(m)
γ,n ) is

strict (resp. flat, resp. cartesian) if f is strict (resp. f is flat, resp.
the square (1.16) is cartesian).

(2) Let u be an object of C (see Definition 1.4). An “m-PD-envelope
compatible with γ of u” is an object (u′, δ′) of C

(m)
γ endowed with

a morphism u′ → u in C satisfying the following universal prop-
erty: for any object (u′′, δ′′) of C

(m)
γ endowed with a morphism

f : u′′ → u of C there exists a unique morphism (u′′, δ′′)→ (u′, δ′)
of C

(m)
γ whose composition with u′ → u is f . The unicity up to

canonical isomorphism of the m-PD-envelope compatible with γ

of u is obvious. We will denote by P(m),γ(u) the m-PD-envelope
compatible with γ of u. By abuse of notation we also denote by
P(m),γ(u) the underlying exact closed immersion or its target. The
existence is checked below (see Proposition 1.63).

(3) Let u be an object of C . An “m-PD-envelope of order n compatible
with γ of u” is an object (u′, δ′) of C

(m)
γ,n endowed with a morphism

u′ → u in C satisfying the following universal property: for any
object (u′′, δ′′) of C

(m)
γ,n endowed with a morphism f : u′′ → u of C

there exists a unique morphism (u′′, δ′′) → (u′, δ′) of C
(m)
γ,n whose

composition with u′ → u is f . The unicity up to canonical isomor-
phism of the m-PD-envelope of order n compatible with γ of u is
obvious. We will denote by Pn(m),γ(u) the m-PD-envelope of order
n compatible with γ of u. By abuse of notation we also denote by
Pn(m),γ(u) the underlying exact closed immersion or its target. The
existence is checked below (see Proposition 1.63).

(4) Since p is nilpotent in S, we get the forgetful functor For(m) : C
(m)
γ →

T hick(p) (resp. For(m)
n : C

(m)
γ,n → T hick(p)) given by (u, δ) 7→ u. We

denote by C ′(m)
γ (resp. C ′(m)

γ,n ) the image of For(m) (resp. For(m)
n ).

Notation 1.49. — In this paragraph, suppose JS = pOS . Then, there is
a unique PD-structure on JS which we will denote by γ∅. Let u : Z ↪→ X
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be an exact closed S-immersion of fine log-schemes and δ be an m-PD-
structure on the ideal I of OX defined by u. It follows from Lemma [4,
1.2.4] that the m-PD-structure δ of I is always compatible with γ∅. Hence,
in the description of C

(m)
γ∅ (resp. C

(m)
γ∅,n) we can remove “compatible with

γ∅” without changing the respective categories. For this reason, we put
C (m) := C

(m)
γ∅ (resp. C

(m)
n := C

(m)
γ∅,n). But, recall these categories depend

on S even if this is not written in the notation. Finally, for any quasi-
coherent m-PD-ideal (IS , JS , γ) of OS , we have the inclusions

(1.17) C (m)
γ ⊂ C (m), and C (m)

γ,n ⊂ C (m)
n .

Definition 1.50. — Let f : X → Y be an S-morphism of fine log
schemes.

(1) We say that f is “formally log étale of level m compatible with γ”
(resp. “formally log unramified of level m compatible with γ”) if
it satisfies the following property: for any commutative diagram of
fine log schemes of the form

(1.18)
U

u0 //
� _

ι

��

X

f

��
T

v // Y

such that ι is an object of C ′
(m)
γ,1 , there exists a unique morphism

(resp. there exists at most one morphism) u : T → X such that
u ◦ ι = u0 and f ◦ u = v.

(2) Replacing C ′
(m)
γ,1 by C ′(m)

γ , we get the notion of “log p-étale of level
m compatible with γ” (resp. “log p-unramified of levelm compatible
with γ”) morphism of fine log schemes. To justify the terminology,
the reader might see Proposition 1.55.

(3) Replacing “fine log S-schemes” by “S-schemes” inDefinition 1.50(1),
we get the notion of “formally étale of level m compatible with γ”
(resp. “formally unramified of level m compatible with γ”) mor-
phism of schemes and of “p-étale of level m compatible with γ”
(resp. “p-unramified of level m compatible with γ”) morphism of
schemes.

(4) When γ = γ∅ (see Notation 1.49), we remove for simplicity “com-
patible with γ∅” in the terminology.

Remark 1.51. — Let (u, δ) be an object of C
(m)
γ,n , i.e. u : Z ↪→ X is an

exact closed S-immersion of fine log-schemes and δ is an m-PD-structure
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on the ideal I of OX defined by u which is compatible (see [4, Defini-
tion 1.3.2.(ii)]) with γ and such that I{n+1}(m) = 0. Then, by applying
finitely many times the functor J 7→ J {2}(m) we obtain the zero ideal.
Hence, (u, δ) is a finite composition of objects of C

(m)
γ,1 . Hence, in Defini-

tion 1.50, we can replace C ′
(m)
γ,1 by C ′(m)

γ,n .

Lemma 1.52. — The collection of formally log étale (resp. log p-étale)
of level m compatible with γ morphisms of fine S-log schemes is stable
under base change and under composition. Similarly replacing “étale” by
“unramified” or/and removing “log”.

Proof. — This is checked similarly to Lemmas 1.19 and 1.21. �

Remark 1.53. — Let f : X → Y be an S-morphism of fine log schemes.
(1) If the morphism f is log p-étale then f is log p-étale of level m

compatible with γ for any m ∈ N (recall C ′(m)
γ ⊂ T hick(p)). If f

is log p-étale of level m compatible with γ then f is formally log
étale of level m compatible with γ (recall C ′

(m)
1,γ ⊂ C ′(m)

γ ). Sim-
ilarly replacing “étale” by “unramified”. Even if we do not have
counterexamples, the converse seems false in general.

(2) If f is log étale, then f is log p-étale (recall Proposition 1.25) and
then f is log p-étale of level m compatible with γ for any m ∈ N
and then f is formally log étale of level m compatible with γ for
any m ∈ N.

Lemma 1.54. — Suppose that JS + pOS is locally principal.
(1) We have the inclusion C1 ⊂ C ′

(m)
γ,1 .

(2) For any n,m ∈ N such that n + 1 6 pm, we have the inclusion
Cn ⊂ C ′(m)

γ,n ;
(3) We have the equality

⋃
m∈N C ′(m)

γ = T hick(p).

Proof. — Let us check the first two assertions. Let u : U ↪→ T a S-log
thickening of order n, let I be the ideal defined by the closed immersion
u. When I2 = 0, we get a PD-structure γ on I defined by putting γn = 0
for any integer n > 2. Since JS + pOS is locally principal, then from [4,
1.3.2.(i).b)] γ extends to T . Hence, C1 ⊂ C ′

(0)
γ,1, which yields the first in-

clusion to prove. Suppose now In+1 = 0 and n + 1 6 pm. In that case,
I(pm) = 0. Hence, (0, δ) is an m-PD-structure of I (where δ is the unique
PD-structure on 0). Let us check that the m-PD structure (0, δ) of I is
compatible with γ. By definition, we have to check two properties (see [4,
1.3.2.(ii))]). Since γ extends to T , then the property [4, 1.3.2.1] is satisfied
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(see Definition [4, 1.2.2]). The second one [4, 1.3.2.2] is a straightforward
consequence of Lemma [4, 1.2.4.(i)]. Hence, (u, δ) ∈ C

(m)
γ . Since In+1 = 0,

we have in fact (u, δ) ∈ C
(m)
γ,n . By definition, this yields u ∈ C ′(m)

γ,n .
Let us check the last statement. The inclusion

⋃
m∈N C ′(m)

γ ⊂ T hick(p)
is tautologic. Conversely, let u : U ↪→ T a S-log thickening of order (pm),
let I be the ideal defined by the closed immersion u. Since I(pm) = 0, then
following the first part of the proof, we get that the m-PD structure (0, δ)
is compatible with γ of I. Hence, u ∈ C ′(m)

γ , which concludes the proof of
the last statement. �

Proposition 1.55. — Suppose that JS + pOS is locally principal. Let
f : X → Y be an S-morphism of fine log schemes.

(1) The morphism f is log p-étale if and only if for any m ∈ N, f is log
p-étale of level m compatible with γ. Similarly replacing “étale” by
“unramified”.

(2) If f is formally log étale of level m compatible with γ then f is fine
formally log étale. Similarly replacing “étale” by “unramified”.

Proof. — This is a consequence of Lemma 1.54. �

Lemma 1.56. — Suppose that JS+pOS is locally principal. Let f : X →
Y be an S-morphism of fine log-schemes and f0 : X0 → Y0 be the induced
S0-morphism.

The morphism f is formally log étale of level m compatible with γ (log
p-étale of level m compatible with γ) if and only if f is fine formally log
etale and f0 is formally log étale of level m compatible with γ (log p-étale
of level m compatible with γ). Similarly replacing everywhere “étale” by
“unramified”.

Proof. — Using C1 ⊂ C ′
(m)
γ,1 (see Lemma 1.54), we proceed similarly to

Lemma 1.20. �

Point 1.57. — Forgetting log structures, i.e. replacing in Definitions 1.4
and 1.48 fine log-schemes by schemes, we define similarly the categories C ,
C (m)
γ and C (m)

γ,n . Following [4, 1.4.1 and 2.1.1], the forgetful functor For(m) :
C (m)
γ → C defined by (u, δ) 7→ u has a right adjoint that we will denote by

P (m),γ . If u is an object of C then P (m),γ(u) is called the “m-PD-envelope
compatible with γ of u”. Moreover, since p is nilpotent then the morphism
of schemes induced by the targets of P (m),γ(u)→ u is affine (see [4, 2.1.1]).

Point 1.58. — Let u : Z ↪→ X be an exact S-immersion of fine log-
schemes. Set (v, δ) := P (m),γ(u) (see Point 1.57). Let (v, δ) be the object
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of C
(m)
γ whose underlying object of C (m)

γ is (v, δ) and v is defined so that
the morphism v → u of C is strict (see Definition 1.4). Then (v, δ) is the
m-PD-envelope compatible with γ of u.

Remark 1.59. — Let α : (u′, δ′) → (u, δ) be a strict cartesian morphism
of C

(m)
γ . Let (u′′, δ′′) be an object of C

(m)
γ and β : u′′ → u′ be a morphism

of C . We remark that if For(m)(α) ◦ β is in the image of For(m) then
so is β. Indeed, the morphism α is defined by a cartesian diagram of the
form (1.16). Since α is moreover strict, then we remark that Z ′ = Z×XX ′,
i.e. the diagram (1.16) remains cartesian after applying the forgetful functor
from the category of fine log schemes to the category of schemes. Hence,
we can conclude.

Point 1.60. — Let u′ → u be a strict, flat, cartesian morphism of C , i.e.
let

X ′
g //

�

X

Z ′
?�

u′

OO

// Z
?�

u

OO

be a cartesian square whose morphism g is strict and g is flat. Suppose that
the m-PD-envelope compatible with γ of u exists (in fact, this existence
will be proved later in Proposition 1.63). Let (v, δ) be this m-PD-envelope.
Set v′ := v ×u u′ and let g′ : v′ → v be the projection. Since g is flat and
g is strict, then g′ is strict and g′ is flat. From [4, 1.3.2.(i)], there exists
a canonical m-PD-structure δ′ compatible with γ on the ideal defined by
v′ := v ×u u′ such that the projection g′ : v′ → v induces a strict cartesian
morphism of C

(m)
γ of the form (v′, δ′)→ (v, δ). With Remark 1.59, we can

check that (v′, δ′) is an m-PD-envelope compatible with γ of u′.

Lemma 1.61. — Let f : X → Y be formally log étale of levelm compat-
ible with γ S-morphism, u : Z ↪→ X and v : Z ↪→ Y be two S-immersions
of fine log schemes such that v = f ◦ u.

(1) If the m-PD envelope of order n compatible with γ of u exists then
it is also an m-PD envelope of order n of v.

(2) Suppose f is moreover log p-étale of level m compatible with γ. In
that case, if the m-PD envelope compatible with γ of u exists then
it is also an m-PD envelope of v.

Proof. — Let us check the second statement (resp. the first one). Let
(P (u), δ) be the m-PD envelope (resp. of order n) compatible with γ of u.
Let us check that the composition of the canonical morphism P (u) → u
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with the morphism u → v (induced by f) satisfies the universal property
of the m-PD envelope (resp. of order n) compatible with γ of v. Let (v′, δ′)
be an object of C

(m)
γ (resp. C

(m)
γ,n ) and g : v′ → v be a morphism of C .

Using the universal property of log p-étaleness of level m compatible with
γ (resp. formally log étaleness) of Definition 1.50, we get a unique morphism
h : v′ → u of C whose composition with u→ v gives g. Using the universal
property of the m-PD-envelope of u compatible with γ that there exists a
unique morphism (v′, δ′) → (P (u), δ) of C

(m)
γ (resp. C

(m)
γ,n ) such that the

composition of v′ → P (u) with P (u)→ u is h. �

Lemma 1.62. — The inclusion functor Forn : C
(m)
γ,n → C

(m)
γ has a right

adjoint. We denote by Qn(m),γ : C
(m)
γ → C

(m)
γ,n this right adjoint functor.

The functor Qn(m),γ preserves the sources.

Proof. — Let (u, δ) be an object of C
(m)
γ and I be the ideal defined by

the exact closed immersion u : Z ↪→ X. Let Qn ↪→ X be the exact closed
immersion which is defined by I{n+1}(m) . It follows from [4, 1.3.8.(iii)] that
Qn(m),γ(u) exists and is equal to the exact closed immersion Z ↪→ Qn. �

Proposition 1.63. — Let u : Z ↪→ X be an object of C .
(1) The m-PD-envelope compatible with γ of u exists. In other words,

the canonical functor For(m) : C
(m)
γ → C has a right adjoint. We de-

note by P(m),γ : C → C
(m)
γ this right adjoint functor. Similarly, the

m-PD-envelope of order n compatible with γ of u exists, i.e. we get
the right adjoint functor Pn(m),γ : C → C

(m)
γ,n of the canonical functor

For(m)
n : C

(m)
γ,n → C . We have the relation Pn(m),γ = Qn(m),γ ◦ P(m),γ .

(2) If γ extends to Z then the source of P(m),γ(u) is Z.
(3) By denoting abusively by P(m),γ(u) (resp. Pn(m),γ(u)) the target of

the arrow P(m),γ(u) (resp. Pn(m),γ(u)), the underlying morphism
of schemes of P(m),γ(u) → X (resp. Pn(m),γ(u) → X) is affine.
We denote by P(m),γ(u) (resp. Pn(m),γ(u)) the quasi-coherent OX -
algebra so that P(m),γ(u) = Spec(P(m),γ(u)) (resp. Pn(m),γ(u) =
Spec(Pn(m),γ(u))). The m-PD structure of P(m),γ(u) will be denoted
by (I(m),γ(u),J(m),γ(u),[ ] ).

(4) Suppose that JS+pOS is locally principal and that X is noetherian
(i.e. X is noetherian). Then Pn(m),γ(u) a noetherian scheme.

Proof.
Step 1. — First, let us check the proposition concerning the existence of

P(m),γ(u) and its properties (i.e. the second part of the proposition and the
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affinity of the morphism P(m),γ(u) → X). Using Point 1.60, the existence
of P(m),γ(u) and its properties are étale local on X. Hence, by Point 1.8,
we may thus assume that there exists a commutative diagram of the form

X̃
f // X

Z
� ?

u

OO

O/
ũ

^^

such that f is log étale, f is affine and ũ is an exact closed S-immersion. In
that case, following Point 1.58 the m-PD-envelope compatible with γ of ũ
exists and the induced object of C (m)

γ is P (m),γ(ũ). Following Lemma 1.61,
the m-PD-envelope compatible with γ of u exists and is isomorphic to that
of ũ. Concerning the second statement, when γ extends to Z, following [4,
2.1.1] (or [4, 1.4.5] for the affine version), the source of the immersion
P (m),γ(ũ) is Z. Since P(m),γ(ũ), ũ are exact closed immersion, since the
morphism P(m),γ(ũ)→ ũ is strict (see Point 1.58), then so is the morphism
of sources induced by P(m),γ(ũ)→ ũ. Hence, we get the second statement.
We can check the third statement by recalling that the target of P (m),γ(ũ) is
affine over X̃ (see Point 1.57) and that P (m),γ(ũ)→ ũ is strict. Concerning
the noetherianity, if X is noetherian then so is X̃. Hence, using [4, 1.4.4]
and the description of the m-PD filtration given in the proof of [4, A.2], we
get that Pn(m),γ(ũ) is noetherian (but not P (m),γ(ũ)).
Step 2. — From Lemma 1.62, we can check that the functor Qn(m),γ ◦

P(m),γ is a right adjoint of For(m)
n : C

(m)
γ,n → C . Moreover, with the descrip-

tion of the functor Qn(m),γ given in the proof of Lemma 1.62, we can check
the other properties concerning Pn(m),γ from that of P(m),γ . �

Definition 1.64. — Let u be an object of C . We say that Pn(m),γ(u) is
the “nth infinitesimal neighborhood of level m compatible with γ of u”.

Remark 1.65. — Let (u, δ) be an object of C
(m)
γ . Then P(m),δ(u) = (u, δ).

But, beware that P(m),γ(u) 6= (u, δ) in general.

Point 1.66 (The case of an exact closed immersion). — Let u : Z ↪→ X

be an exact closed S-immersion of fine log-schemes and I be the ideal
defined by u. We denote by u(m) : Z(m) ↪→ X the exact closed S-immersion
of fine log-schemes so that I(pm) is the ideal defined by u(m). Since the
closed immersion u is exact, in the proof of Proposition 1.63, we can skip
the part concerning the exactification of u (i.e. we can suppose f = id or
equivalently ũ = u). Hence, we remark that, as in the proof of [4, 1.4.1],
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we get the equality

P(m),γ(u) = P(0),γ(u(m)).(1.19)

We have also the same construction as in the proof of [4, 1.4.1] (too
technical to be described here in few words) of the m-PD ideal (I(m),γ(u),
J(m),γ(u),[ ] ) of P(m),γ(u) directly from the level 0 case. For the detailed
descriptions, see the proof of [4, 1.4.1]. These descriptions, in particu-
lar (1.19), are useful to check the Frobenius descent for arithmetic D-
modules (see [5, 2.3.6]).

Lemma 1.67. — We have the equality Pn(m),γ◦Forn◦Pn = Pn(m),γ , where
Forn : Cn → C is the canonical functor and Pn : C → Cn is its right adjoint
(see Proposition 1.11).

Proof. — Let u : Z ↪→ X be an object of C . Looking at the construction
of Pn and Pn(m),γ (see the proof of Proposition 1.11 and Proposition 1.63),
we reduce to the case where u is an exact closed immersion. In that case,
the Lemma is a reformulation of [4, 1.4.3.2]. �

The following proposition will not be useful later but it allows us to
extend Proposition 1.13 is some particular case.

Proposition 1.68. — Suppose that JS + pOS is locally principal. Let
f : X → Y be an S-morphism of fine log schemes and ∆X/Y : X ↪→ X×Y X
(as always the product is taken in the category of fine log schemes) be the
diagonal S-immersion. The following assertions are equivalent:

(1) the morphism f is fine formally log unramified;
(2) the morphism P 1(∆X/Y ) is an isomorphism;
(3) the morphism f is formally log unramified of level m compatible

with γ;
(4) the morphism P 1

(m),γ(∆X/Y ) is an isomorphism.

Proof. — The equivalence between (1) and (2) has already been checked
(see Proposition 1.13). Following Lemma 1.54, since JS + pOS is locally
principal, then C1 ⊂ C ′

(m)
γ,1 . Hence, we have (3) ⇒ (1). It follows from

Lemma 1.67 that P 1
(m),γ(P 1(∆X/Y )) = P 1

(m),γ(∆X/Y ). If P 1(∆X/Y ) is an
isomorphism, then P 1

(m),γ(P 1(∆X/Y )) = P 1(∆X/Y ). Hence, we get the im-
plication (2)⇒ (4). It remains to check (4)⇒ (3). Suppose P 1

(m),γ(∆X/Y )
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is an isomorphism and let (ι, δ) ∈ C
(m)
γ,1 and let

U
u0 //

� _

ι

��

X

f

��
T

v // Y

be a commutative diagram of fine log schemes. Suppose there exist a mor-
phism u : T → X such that u ◦ ι = u0 and f ◦ u = v, and a morphism
u′ : T → X such that u′ ◦ ι = u0 and f ◦ u′ = v. We get the morphism
(u, u′) : T → X×Y X. We denote by and φ : ι→ ∆X/Y be a morphism of C

induced by (u′, u) and u0. Using the universal property of the m-PD enve-
lope of order 1, there exists a unique morphism ψ : (ι, δ)→ P 1

(m),γ(∆X/Y )
of C

(m)
γ,1 such that the composition of For(m)

n (ψ) with the canonical map
P 1

(m),γ(∆X/Y ) → ∆X/Y is φ. Since P 1
(m),γ(∆X/Y ) is an isomorphism, this

yields that (u, u′) : T → X ×Y X is the composition of a morphism of the
form T → X with ∆X/Y . Hence, u = u′. �

Lemma 1.69. — Let u → v be a morphism of C . Let δ be the m-PD-
structure of P(m),γ(v) and w := P(m),γ(v)×v u (this is the product in C ).
We denote by P(m),δ(w) the m-PD-envelope of w compatible with δ. Then
P(m),δ(w) and P(m),γ(u) are isomorphic in C

(m)
γ . Moreover, Pn(m),δ(w) and

Pn(m),γ(u) are isomorphic in C
(m)
γ,n .

Proof. — Since the second assertion is checked in the same way, let us
prove the first one. Let us check that the composition P(m),δ(w)→ w → u

satisfies the universal property of P(m),γ(u) → u. Let (u′, δ′) ∈ C
(m)
γ and

f : u′ → u be a morphism of C . First let us check the existence. Composing
f with u → v we get a morphism g : u′ → v. Using the universal property
of the m-PD envelope, there exists a morphism φ : (u′, δ′)→ (P(m),γ(v), δ)
of C

(m)
γ such that the composition u′ → P(m),γ(v) → v is g. Hence,

we get the morphism (φ, f) : u′ → w. Using the universal property of
P(m),δ(w), we get a morphism u′ → P(m),δ(w) of C

(m)
δ (and then of C

(m)
γ )

whose composition with P(m),δ(w) → w → u is f . Let us check the unic-
ity. Let α : u′ → P(m),δ(w) be a morphism of C

(m)
γ whose composition

with P(m),δ(w) → w → u is f . This implies that the composition of
α with P(m),δ(w) → w → P(m),γ(v) → v is g. Since the composition
P(m),δ(w) → w → P(m),γ(v) is a morphism of C

(m)
δ , then so is the com-

position of α with P(m),δ(w) → w → P(m),γ(v) (in particular, this implies

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC p-BASES AND D-MODULES 1045

that α ∈ C
(m)
δ ). Using the universal property of P(m),γ(v), this latter com-

position morphism is uniquely determined by g. Hence, the composition
of α with P(m),δ(w) → w is a morphism of C uniquely determined by f .
Since α is a morphism of C

(m)
δ , we conclude using the universal property

of P(m),δ(w). �

1.5. Formal log-bases, weak log-smoothness, log p-bases, log
p-smoothness (of level m)

Let (IS , JS , γ) be a quasi-coherent m-PD-ideal of OS .

Definition 1.70. — Let f : X → Y be an morphism of fine S-log
schemes.

(1) We say that a set (bλ)λ∈Λ of elements of Γ(X,MX) is a “ formal log
basis of f” if the corresponding Y -morphism X → Y ×Z/pi+1ZAN(Λ)

is fine formally log étale (see Notation 1.44). When Λ is a finite set,
we say that (bλ)λ∈Λ is a “finite formal log basis of f”.

(2) We say that f is “weakly log smooth” if, étale locally on X, f has
finite formal log bases. Notice that this notion of weak log smooth-
ness is étale local on Y .

Definition 1.71. — Let f : X → Y be an morphism of fine S-log
schemes.

(1) We say that a set (bλ)λ∈Λ of elements of Γ(X,MX) is a “log p-basis
of f” if the corresponding Y -morphism X → Y ×Z/pi+1Z AN(Λ) is
log p-étale. When Λ is a finite set, we say that they (bλ)λ∈Λ is a
“finite log p-basis of f”

(2) We say that f “has log p-bases locally” if, étale locally on X, f has
log p-bases. Notice that this notion of “having log p-bases locally”
is étale local on Y .

(3) We say that f is “log p-smooth” if, étale locally on X, f has finite
log p-bases. Notice that this notion of log p-smoothness is étale local
on Y .

Remark 1.72. — Tsuji defined in [31, 1.4.1)] (resp. [31, 1.4.2)]) the notion
of “a morphism of log-schemes having p-basis” (resp. “a morphism of log-
schemes having p-bases locally”). Our notion of having log p-bases locally
(see Definition 1.71) is more general that Tsuji’s notion of having p-bases
locally. Indeed, this fact is a consequence of Lemmas 1.35 and 1.38 and [31,
Lemma 1.5].
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Definition 1.73. — Let f : X → Y be an morphism of fine S-log
schemes.

(1) We say that a finite set (bλ)λ=1,...,r of elements of Γ(X,MX) is
a “formal log basis of level m (compatible with γ) of f” if the
corresponding Y -morphism X → Y ×Z/pi+1Z ANr is formally log
étale of level m (compatible with γ).

(2) We say that f is “weakly log smooth of levelm (compatible with γ)”
if, étale locally on X, f has formal log bases of level m (compatible
with γ). Notice that this notion is étale local on Y (use the last
remark of Remark 1.53).

(3) We say that a finite set (bλ)λ=1,...,r of elements of Γ(X,MX) is a “log
p-basis of level m (compatible with γ) of f” if the corresponding Y -
morphism X → Y ×Z/pi+1ZANr is log p-étale of level m (compatible
with γ).

(4) We say that f is “log p-smooth of level m (compatible with γ)” if,
étale locally on X, f has finite log p-bases of level m (compatible
with γ). Notice that this notion of log p-smoothness of level m
(compatible with γ) is étale local on Y (use the last remark of
Remark 1.53).

The following Proposition indicates the link between our notions related
to log smoothness.

Proposition 1.74. — Let f : X → Y be an S-morphism of fine log-
schemes.

(1) If f is log smooth then f is log p-smooth.
(2) If f is log p-smooth then f is log p-smooth of level m compatible

with γ.
(3) If f is log p-smooth of level m compatible with γ then f is weakly

log smooth of level m compatible with γ.
(4) If f is weakly log smooth of level m compatible with γ then f is

weakly log smooth.
(5) If f is log p-smooth (resp. weakly log smooth) of level m+ 1 com-

patible with γ then f is log p-smooth (resp. weakly log smooth) of
level m compatible with γ.

Proof. — The first statement is a straightforward consequence of Theo-
rem [28, IV.3.2.6] and Proposition 1.25. Using Proposition 1.55.2, we get the
last assertion. The other implications are consequences of Remark 1.53. �

Proposition 1.75. — The collection of formally log étale of level m
compatible with γ (resp. log p-étale of level m compatible with γ, resp.
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log p-étale, resp. log smooth, resp. log p-smooth, resp. having log p-bases
locally, resp. weakly log smooth, resp. weakly log smooth of level m com-
patible with γ, resp. log p-smooth of level m compatible with γ) morphisms
of fine S-log schemes is stable under base change and under composition.

Proof. — The etale cases are already known (see Lemmas 1.19, 1.21 and
1.52). Let us check the stability of the collection of morphisms having log
p-bases locally. Using the étale case, the stability under base change is
obvious. Moreover, from the non respective case, if X → Y ×Z/pi+1Z AN(Λ)

and Y → Z ×Z/pi+1Z AN(Λ′) are log p-étale, then so is the composition
X → Z ×Z/pi+1Z A

N(Λ
∐

Λ′) . This implies the stability under composition.
The other cases are checked similarly. �

The following definition will not be useful but we add it for completeness.

Definition 1.76. — Let f : X → Y be an S-morphism of fine log
schemes. We say that f is formally log p-smooth if it satisfies the following
property: for any commutative diagram of fine log schemes of the form

(1.20) U
u0 //

� _

ι

��

X

f

��
T

v // Y

such that ι is an object of C(p), there exists etale locally on X a morphism
u : T → X such that u ◦ ι = u0 and f ◦ u = v.

Remark 1.77. — Let f : X → Y be an S-morphism of fine log schemes.
Using Theorem [18, IV.18.1.2], we can check that if f has log p-bases locally
then f is formally log p-smooth. (The converse seems to be false even if we
do not have a counter example.) In particular, if f is log p-smooth then f
is formally log p-smooth.
Finally, we remark that f is log p-étale if and only if f is log p-unramified

and formally log p-smooth.

Notation 1.78. — Let D be a fine log scheme over S. We denote by
OD〈T1, . . . , Tr〉(m) the m-PD-polynomial ring (see the definition just af-
ter [4, 1.5.1]). We denote by (ID,(m),r,JD,(m),r,

[ · ] ) its canonical m-PD-
structure.

Lemma 1.79. — Let r > 0 be an integer, (v, δ) ∈ C
(m)
γ where v : T ↪→ D

is an exact closed S-immersion of fine log-schemes and (K̃, δ) is an m-
PD-structure compatible with γ on the ideal K of OD defined by v. Let
(eλ)λ=1,...,r be the canonical basis of Zr. Let i : D → D×Z/pi+1ZAZr be the
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exact closed D-immersion defined by eλ 7→ 1 ∈ Γ(D,MD). With Proposi-
tion 1.63 and Notation 1.78, we have the following properties.

(1) The homomorphism of rings

OD〈T1, . . . , T 〉(m) → P(m),δ(i ◦ v)

given by Tλ 7→ eλ − 1 is an isomorphism.
(2) The structural m-PD structure (I(m),γ(i ◦ v),J(m),γ(i ◦ v),[ ] ) of
P(m),δ(i ◦ v) is given by

I(m),γ(i ◦ v) = ID,(m),r +KP(m),δ(i ◦ v),

J(m),γ(i ◦ v) = ID,(m),r + K̃P(m),δ(i ◦ v).

Proof. — By using Remark 1.4.3.(iii) of [4] and Point 1.58, we can sup-
pose that v = id. Since the ideal of the exact closed immersion i is generated
by the regular sequence (eλ − 1)λ=1,,...,r, using [4, 1.5.3] and Point 1.58
we can check that the morphism of OD-algebras OD〈T1, . . . , Tr〉(m) →
P(m),δ(i) given by Tλ 7→ eλ − 1 is an isomorphism. �

Notation 1.80. — With Lemma 1.79, we set O(v,δ)〈T1, . . . , Tr〉(m) :=
P(m),δ(i ◦ v) and O(v,δ)〈T1, . . . , Tr〉(m),n := Pn(m),δ(i ◦ v).

Lemma 1.81. — Let i : X ↪→ P be an exact closed S-immersion of fine
log schemes. Then ker(i−1O∗P → O∗X) = ker(i−1Mgr

P →Mgr
X ). In particular,

ker(O∗P,x → O∗X,x) = ker(Mgr
P,x →Mgr

X,x) for any geometric point x of X.

Proof. — Let x be a geometric point of X. Since i is an exact closed
immersion, we have (MP /O∗P )x = (MX/O∗X)x (use [21, 1.4.1]) and thus
(Mgp

P /O∗P )x = (Mgp
X /O∗X)x (because the functor M 7→ Mgr commutes

with inductive limits). Hence, the inclusion ker(O∗P,x → O∗X,x) ⊂
ker(Mgr

P,x → Mgr
X,x) is in fact an equality. Since we have the canonical

inclusion ker(i−1O∗P → O∗X) ⊂ ker(i−1Mgr
P → Mgr

X ), this yields that this
latter inclusion is an equality. �

The next result is our main motivation for defining weak log smooth-
ness of level m (compatible with γ) and log p-smoothness of level m (see
Definition 1.73).

Proposition 1.82. — Let f : X → Y be an S-morphism of fine log-
schemes, (bλ)λ=1,...,r be some elements of Γ(X,MX) such that (bλ)λ=1,...,r
is a formal log basis of level m compatible with γ of f .

Let u : Z ↪→ X and v : Z ↪→ Y be two S-immersions of fine log schemes
such that v = f◦u. Suppose given yλ ∈ Γ(Y,MY ) whose images in Γ(Z,MZ)
coincide with the images of bλ.
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Let P(m),γ(u) = (T ′ ↪→ D′, δ′), P(m),γ(v) = (T ↪→ D, δ), and α : D′ →
X be the canonical morphism. Using multiplicative notation, put uλ :=
α∗(bλ)

α∗(f∗(yλ)) ∈ ker(Γ(D′,Mgr
D′)→Γ(T ′,Mgr

T ′)) = ker(Γ(D′,O∗D′)→Γ(T ′,O∗T ′))
(see Lemma 1.81). Let Pn(m),γ(u) = (T ′ ↪→ D′n, δ

′
n), and uλ,n be the image

of uλ in ker(Γ(D′n,O∗D′n)→ Γ(T ′,O∗T ′)).
(1) By using Notation 1.80, we have the isomorphism of m-PD-OD-

algebras

(1.21)
OP(m),γ(v)〈T1, . . . , Tr〉(m),n

∼−→ Pn(m),γ(u)
Tλ 7−→ uλ,n − 1.

(2) If (bλ)λ=1,...,r is moreover a log p-basis of level m compatible with
γ of f , then, we have the isomorphism of m-PD-OD-algebras

(1.22)
OP(m),γ(v)〈T1, . . . , Tr〉(m)

∼−→ P(m),γ(u)
Tλ 7−→ uλ − 1.

Proof. — In order to check (1.21) (resp. (1.22)), using the first part of
Lemma 1.61 (resp. the second part of Lemma 1.61) and using the first
remark of Remark 1.3, we may assume thatX = Y ×Z/pi+1ZANr , f : X → Y

is the first projection, and that the family (bλ)λ=1,...,r are the elements of
Γ(X,MX) corresponding to the canonical basis (eλ)λ=1,...,r of Nr. Using
Lemma 1.69, we may furthermore assume that Y = S, Z ↪→ Y is the
exact closed immersion whose ideal of definition is IS . In particular, we get
D = Y and γ is the canonical m-PD structure of D.
Let z be a geometric point of Z. From Point 1.8, there exists a commu-

tative diagram of the form

(1.23)

U
g // X = Y ×Z/pi+1Z ANr

f // Y

W
� ?

w

OO

h // Z
?�

u

OO

* 

v

77

where g is log étale, h is an étale neighborhood of z in Z, and w is an
exact closed S-immersion. We set vλ := g∗(bλ)

(f◦g)∗(yλ) ∈ Ker(Γ(U,Mgp
U ) →

Γ(W,Mgp
W )). Since w is an exact closed immersion, using Lemma 1.81,

shrinking U if necessary we may thus assume that vλ ∈ Γ(U,O∗U ).
Step 1. — In this step, we reduce to the case where h = id. According

to [18, IV.18.1.1], there exist an étale neighborhood Y ′ → Y of z in Y and
an open Z-immersion (see Definition 1.2) ρ : Z ′ := Z×Y Y ′ →W which is a
morphism of étale neighborhoods of z in Z (in particular h◦ρ : Z×Y Y ′ → Z

is the canonical projection). Let us use the prime symbol to denote the base
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change by Y ′ → Y of a Y -log scheme or a morphism of Y -log schemes. Set
j := (ρ, v′) : Z ′ → W ×Y Y ′ = W ′. Since h ◦ ρ : Z ′ → Z is the canonical
projection, then we compute that h′ ◦j = id. Since id is an immersion, then
j is an immersion (see the first remark of Remark 1.3). Since h′ and id are
etale then so is j. Hence, j is an open Y -immersion. Using h′ ◦ j = id, we
get the commutative diagram over Y ′

U ′
g′ // X ′ = Y ′ ×Z/pi+1Z ANr

Z ′.T4
w′◦j

gg

?�
u′

OO

Using Remark 1.3(3) we may assume (shrinking U if necessary) that the
exact Y -immersion w′ ◦ j is closed. Since the proposition is étale local on
Y , we can drop the primes, i.e. we can suppose h = id.
Step 2. — Consider the Y -morphism φ : U → Y ×Z/pi+1Z ANr defined

by the vλ’s. Since the (dlog g∗(b1), . . . ,dlog g∗(br)) forms a basis of ΩU/Y
(because g is log étale), then so does (dlog v1, . . . ,dlog vr). This implies
that the canonical map φ∗ΩX/Y → ΩU/Y induced by φ is an isomorphism.
Since U/Y is log smooth we get that φ is log étale (use [21, 3.12]).
Let ι : Y → Y ×Z/pi+1Z ANr be the Y -morphism defined by eλ 7→ 1 ∈

Γ(Y,MY ), and i : Y → Y ×Z/pi+1Z AZr be the exact closed Y -immersion
defined by eλ 7→ 1 ∈ Γ(Y,MY ). We compute that the diagram of morphisms
of log schemes

(1.24)

U
φ // Y ×Z/pi+1Z ANr Y ×Z/pi+1Z AZroo p1 // Y

Z,S3

w

ee

?�

ι◦v

OO

) 	

i◦v
66

% �
v

33

where p1 is the first projection, is commutative.
Step 3. — In this step, we reduce to the case where u = i ◦ v, X =

Y ×Z/pi+1Z AZr , (bλ)λ=1,...,r are the elements of Γ(X,MX) corresponding
to the canonical basis of Zr, and (yλ)λ=1,...,r are equal to 1.
By using the commutativity of (1.23) (in the case where h = id thanks

to Step 1, and using Lemma 1.61, since g is log etale, then the m-PD
envelope compatible with γ of w is equal to T ′ ↪→ D′. Again, by using the
commutativity of (1.24), and using Lemma 1.61, since φ is log etale, then
the m-PD envelope compatible with γ of w (equal to T ′ ↪→ D′) is equal to
the m-PD envelope compatible with γ of ι◦v. More precisely, following the
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proof of Lemma 1.61, the composition of the structural morphism (T ′ ↪→
D′) → w with φ is equal to the structural morphism (T ′ ↪→ D′) → ι ◦ v).
Hence, we compute the image of bλ via the structural morphism (T ′ ↪→
D′) → ι ◦ v) is uλ. Again, since Y ×Z/pi+1Z AZr → Y ×Z/pi+1Z ANr is log
etale, then them-PD envelope compatible with γ of i◦v is equal to T ′ ↪→ D′.
Hence, the image of bλ via the structural morphism (T ′ ↪→ D′)→ i ◦ v) is
still uλ.

Step 4. — By using Lemma 1.79, we conclude. �

Remark 1.83. — Suppose we are in the situation of Proposition 1.82:
let f : X → Y be an S-morphism of fine log-schemes, (bλ)λ=1,...,r be some
elements of Γ(X,MX). Let u : Z ↪→ X and v : Z ↪→ Y be two S-immersions
of fine log schemes such that v = f ◦ u. Then, since v∗MY → MZ is
surjective (for the étale topology), then étale locally on Y , there exist yλ ∈
Γ(Y,MY ) whose images in Γ(Z,MZ) coincide with the images of bλ.

The next result is our main motivation for defining weak log smoothness
(see Definition 1.70).

Proposition 1.84. — Let f : X → Y be an S-morphism of fine log-
schemes endowed with a formal log basis (bλ)λ=1,...,r (see Definition 1.70).
Let u : Z ↪→ X and v : Z ↪→ Y be two S-immersions of fine log schemes
such that v = f ◦ u. Suppose given yλ ∈ Γ(Y,MY ) whose images in
Γ(Z,MZ) coincide with the images of bλ. Let Z ↪→ D′n and Z ↪→ Dn

be the nth infinitesimal neighborhood of order n of u and v respectively
(see Definition 1.4(3) and recall following Proposition 1.11, the source is
indeed Z). Let α : D′n → X be the canonical morphism. Using multiplica-
tive notation, put uλ := α∗(bλ)

α∗(f∗(yλ)) ∈ ker(Γ(D′n,M
gr
D′n

) → Γ(Z,Mgr
Z )) =

ker(Γ(D′n,O∗D′n)→ Γ(Z,O∗Z)) (see Lemma 1.81). We set

ODn [T1, . . . , Tr]n := ODn [T1, . . . , Tr]/ (IDn + (T1, . . . , Tr))n+1
,

where IDn is the ideal defined by the closed immersion Z ↪→ Dn. Then, we
have the isomorphism of ODn -algebras

(1.25)
ODn [T1, . . . , Tr]n

∼−→ OD′n
Tλ 7−→ uλ − 1.

Proof. — By using Lemma 1.10, we reduce to the case where X =
Y ×Z/pi+1Z ANr , f : X → Y is the first projection, and that the fam-
ily (bλ)λ=1,...,r of elements of Γ(X,MX) is given by the canonical basis
(eλ)λ=1,...,r of Nr. Using Lemma 1.12, we may furthermore assume that
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Y = S, Z ↪→ Y is an exact closed immersion of order n. In particular, we
get Dn = Y .
Let i : Y → Y ×Z/pi+1Z AZr be the exact closed Y -immersion defined by

eλ 7→ 1 ∈ Γ(Y,MY ). By copying the parts 1–3 of the proof of Proposi-
tion 1.82 (we replace the use of Lemma 1.61 by the use of Lemma 1.10),
we reduce to the case where u = i ◦ v, X = Y ×Z/pi+1ZAZr , (bλ)λ=1,...,r are
the elements of Γ(X,MX) corresponding to the canonical basis of Zr, and
(yλ)λ=1,...,r are equal to 1. This case is obvious. �

1.6. The case of schemes: local coordinates

Definition 1.85. — Let f : X → Y be an S-morphism of fine log-
schemes.

(1) We say that a finite set (tλ)λ=1,...,r of elements of Γ(X,OX) are
“log p-étale coordinates of f” (resp. “formal log étale coordinates
of f”, resp. “formal log étale coordinates of level m of f”, resp.
“log p-étale coordinates of level m of f”), if the corresponding Y -
morphism X → Y ×Z Ar, where Ar is the rth affine space over Z
endowed with the trivial logarithmic structure, is log p-étale (resp.
formally log étale, resp. formally log étale of level m, log p-étale of
level m).

When f is strict (this is equivalent to say that the Y -morphism
X → Y ×ZAr is strict) we remove “log” in the terminology, e.g. we
get the notion of “p-étale coordinates”.

(2) We say that f is “p-smooth” (resp. “weakly smooth”, resp. “weakly
smooth of level m”, resp. “p-smooth of level m”), if f is strict and
if, étale locally on X, f has p-étale coordinates” (resp. “formal étale
coordinates”, resp. “formal étale coordinates of level m”, resp. “p-
étale coordinates of level m”). Notice that these notions are étale
local on Y .

Lemma 1.86. — Let ? ∈ {log p-étale, formal log étale, formal log étale
of level m, log p-étale of level m}. Let f : X → Y be an S-morphism of fine
log-schemes.

(1) Let (tλ)λ=1,...,r in Γ(X,O∗X). Then (tλ)λ=1,...,r form a ?-basis if and
only if they are ?-coordinates.

(2) If the morphism f has ?-coordinates with r elements then, Zariski
locally on X, there exist r elements of Γ(X,O∗X) which are ?-
coordinates of f .
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Proof. — Since the other cases are treated similarly, let us consider the
case where ? = log p-étale. Let us check the first assertion. Using Lem-
ma 1.21 we can check that in both cases the elements (tλ)λ=1,...,r induce
a log p-étale morphism of the form X → Y ×Z Grm. We conclude by using
Lemma 1.21.
Let us check the second assertion. By hypothesis, we have a log p-étale

morphism of the form φ : X → Y ×Z Ar. Let (t1, . . . , tr) be the elements
of Γ(X,OX) defining φ. We have a covering of X by open subsets of the
form D(u1 · · ·ur) where uλ is either tλ or tλ − 1. Using a obvious change
of coordinates, we can check that the morphism D(u1 · · ·ur) → Y ×Z Ar
given by the restriction of (u1, . . . , ur) on D(u1 · · ·ur) is log p-étale. �

Lemma 1.87. — Let ? ∈ {p-smooth, weakly smooth, weakly smooth of
level m, p-smooth of level m}. Let f : X → Y be an S-morphism of fine
log-schemes.

(1) If f is ? then f is log ?.
(2) Suppose that f : X → Y is in fact an S-morphism of schemes. The

morphism f is log ? if and only if f is ?.

Proof. — Since the other cases are treated similarly, let us consider the
case where ? = p-smooth. Let us check the first assertion. Suppose that f
is p-smooth. Then f is p-smooth by definition. Hence, from (1) and (2), we
get that f is log p-smooth. Since f is strict, then f is the base change of f
by Y → Y . Hence, using Proposition 1.75, we get that f is log p-smooth.
Let us check the last assertion. Suppose that f is an S-morphism of

schemes which is log p-smooth. By definition, etale locally on X, there
exists a log p-étale of the form X → Y ×Z/pi+1ZANr given by some elements
(b1, . . . , br) of Γ(X,MX). Since X is a scheme,MX = O∗X . Hence, using (1),
we get that (b1, . . . , br) form also a finite p-basis. The converse is already
known from (??). �

Remark 1.88. — It is not clear that a strict log p-smooth morphism is
p-smooth.

Example 1.89. — Let X be a strictly semistable variety over Spec k[[t]]
(see Definition [20, 2.16]). We denote by Xs = V (t) the special fiber of X.
Then, Zariski locally on X, there exists a cartesian diagram of the form

X
f //

�

Adk

Xs
//?�

OO

V (t1 · · · tr)
?�

u

OO
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where r 6 d are two integers, f is a p-smooth morphism, Adk =
Spec k[t1, . . . , td], and u is the closed immersion induced by t1 · · · tr. In-
deed, the fact that X is a strictly semistable variety over Spec k[[t]] means
that, locally on X, there exists an integer r and a smooth morphism of
the form X → Spec k[[t]][T0, . . . , Tr]/(T0 · · ·Tr − t). We have the canonical
cartesian diagram

Spec k[[t]][T0, . . . , Tr]/(T0 · · ·Tr − t)
g //

�

Ar+1
k

V (t) //
?�

OO

V (t0 · · · tr)
?�

u

OO

where g is the morphism given by ti 7→ Ti mod T0 · · ·Tr − t, Ar+1
k =

Spec k[t0, . . . , tr], and u is the closed immersion induced by t0 · · · tr. Using
Example 1.39, since relative perfecness is stable under base change, then
we can check that g is a relatively perfect morphism.

Proposition 1.90. — The collection of p-smooth (resp. weakly smooth,
resp. weakly smooth of level m, resp. p-smooth of level m) is stable under
base change and under composition.

Proof. — This is similar to Proposition 1.75. �

Proposition 1.91. — Let f : X → Y be an S-morphism of fine log-
schemes, (tλ)λ=1,...,r be some elements of Γ(X,OX). Let u : Z ↪→ X and
v : Z ↪→ Y be two S-immersions of fine log schemes such that v = f ◦ u.
Suppose that there exist yλ ∈ Γ(Y,OY ) whose images in Γ(Z,OZ) coincide
with the images of tλ.

(1) If (tλ)λ=1,...,r are formal log étale coordinates of level m of f , then,
we have the following isomorphism of m-PD-OPn(m),γ(v)-algebras

(1.26)
OPn(m),γ(v)〈T1, . . . , Tr〉(m),n

∼−→ OPn(m),γ(u)

Tλ 7−→ tλ − f∗(yλ),

where by abuse of notation we denote by tλ and f∗(yλ) the canonical
image in OPn(m),γ(u).

(2) If (tλ)λ=1,...,r are log p-étale coordinates of level m of f , then, we
have the following isomorphism of m-PD-OP(m),γ(v)-algebras

(1.27)
OP(m),γ(v)〈T1, . . . , Tr〉(m)

∼−→ OP(m),γ(u)

Tλ 7−→ tλ − f∗(yλ).
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(3) If (tλ)λ=1,...,r are formal log étale coordinates of f , then, we have
the following isomorphism of OPn(v)-algebras

(1.28)
OPn(v)[T1, . . . , Tr]n

∼−→ OPn(u)

Tλ 7−→ tλ − f∗(yλ),

where OPn(v)[T1, . . . , Tr]/ (In + (T1, . . . , Tr))n+1 is denoted
OPn(v)[T1, . . . , Tr]n, with In is the ideal defined by the closed im-
mersion Pn(v).

Proof.
Step 1. — Using Lemma 1.61 for the first two or Lemma 1.10 for the

last one (and the first remark of Remark 1.3), we may assume that X =
Y ×Z Ar, f : X → Y is the first projection, and that the family (tλ)λ=1,...,r
are the elements of Γ(X,OX) corresponding to the coordinates of Ar. Using
Lemma 1.69 for the first two and Lemma 1.12 for the last one, we may
furthermore assume that Y = S, Z ↪→ Y is the exact closed immersion
whose ideal of definition is IS .

Let φ : Y ×ZAr → Y ×ZAr be the Y -morphism given by t1−f∗(y1), . . . ,
tr − f∗(yr). Let i : Y ↪→ Y ×Z Ar be the exact closed immersion defined by
tλ 7→ 0. Since φ is etale, since φ ◦ u = i, using Lemma 1.61 for the first two
or Lemma 1.10 for the last one, we reduce to the case where u is equal to
i, and (yλ)λ=1,...,r are equal to 0.
Step 2.
(a) Let us check (1.27). By using the remark [4, 1.4.3.(iii)] and

Point 1.58, we can suppose that v = id. Since the ideal of the exact
closed immersion i is generated by the regular sequence (tλ)λ=1,...,r,
using [4, 1.5.3] and Point 1.58 we can check that the morphism
OY 〈T1, . . . , Tr〉(m) → OP(m),γ(ι) = OP(m),γ(i) given by Tλ 7→ tλ is an
isomorphism.

(b) The case (a) implies (1.26).
(c) The check of (1.28) is obvious. �

2. Differential operators of level m over log p-smooth log
schemes

Let i be an integer and S be a fine log scheme over the scheme
Spec(Z/pi+1Z).
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2.1. Sheaf of principal parts, sheaf of differential operators

Let f : X → S be a weakly log smooth morphism of fine log-schemes.

Notation 2.1. — Let ∆X/S : X → X ×S X be the diagonal morphism,
∆n
X/S := Pn(∆X/S), PnX/S := Pn(∆X/S) (see Proposition 1.11). We denote

byMn
X/S the log structure of ∆n

X/S . We denote abusively the target of ∆n
X/S

by ∆n
X/S .

We denote by respectively pn1 , p
n
0 : ∆n

X/S,(m) → X the composition of
the canonical morphism ∆n

X/S → X ×S X with the right and left projec-
tion X ×S X → X.

If a ∈ MX , we denote by µ(a) the unique section of ker(O∗∆n
X/S
→ O∗X)

such that we get in Mn
X/S the equality pn∗1 (a) = pn∗0 (a)µn(a) (see Lem-

ma 1.81). We get µn : MX → ker(O∗∆n
X/S
→ O∗X) given by a 7→ µn(a).

Lemma 2.2. — The morphisms pn1 and pn0 are strict.

Proof. — This is similar to [27, 2.2.1]: let ιn : X ↪→ ∆n
X/S be the struc-

tural morphism. Since ι−1 = id, then from [21, 1.4.1] we get the isomor-
phisms

pn∗i (MX)/Pn∗X/S
∼−→ M/O∗X

and

Mn
X/S/P

n∗
X/S

∼−→ ιn∗(Mn
X/S)/O∗X

∼−→ MX/O∗X

(the last isomorphism is a consequence of the exactness of ιn). Hence,
pn∗i (MX)/Pn∗X/S

∼−→ Mn
X/S/P

n∗
X/S . This implies that the canonical mor-

phism pn∗i (MX)→Mn
X/S is an isomorphism. �

Proposition 2.3 (Local description of PnX/S). — Let (aλ)λ=1,...,r be
a formal log basis of f . Put ηλ,n := µn(aλ) − 1. We have the following
isomorphism of OX -algebras:

(2.1)
OX [T1, . . . , Tr]n

∼−→ PnX/S
Tλ 7−→ ηλ,n,

where the structure of OX -module of PnX/S is given by pn1 or pn0 .
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Proof. — Since the case of pn1 is checked symmetrically, let us compute
the case where the OX -module of PnX/S is given by pn0 . Consider the com-
mutative diagram

(2.2)

ANr

�

X ×S ANrp1
oo

p0

$$
X

a

OO

X ×S Xp1
oo p0 //

b

OO

X,

where p0, p1 means respectively the left and right projection, where a is
the S-morphism induced by a1, . . . , ar, where b is the X-morphism induced
by b1, . . . , br with bλ := p∗1(aλ). Since (bλ)λ=1,...,r is a formal log basis of
p0 (because the square of the diagram (2.2) is cartesian), we can apply
Proposition 1.84 in the case where f is p0, u is ∆X/S , bλ is as above, and
uλ is aλ. �

Remark 2.4. — From the local description of Proposition 2.3, we get
that the morphisms pn1 and pn0 are finite (i.e. the underlying morphism of
schemes is finite).

Notation 2.5. — We denote by I1
X/S the ideal of the closed immersion

∆1
X/S and by Ω1

X/S := (∆1
X/S)−1(I1

X/S) the corresponding OX -module
(recall ∆1

X/S∗ is an homeomorphism). To justify the notation, we refer to
the isomorphism [21, 5.8.1].

Remark 2.6. — Following the local description (2.1), since f has formal
log bases locally, then Ω1

X/S is a locally free OX -module of finite rank and
the rank is equal to the cardinal of the formal log basis (a basis is given by
η1, . . . , ηr).

Point 2.7. — The exact closed immersions ∆n
X/S and ∆n′

X/S induce
∆n,n′

X/S := (∆n
X/S ,∆n′

X/S) : X ↪→ ∆n
X/S ×X ∆n′

X/S . Since the morphisms pn1
and pn0 are strict (see Lemma 2.2), then ∆n,n′

X/S is also an exact closed
immersion. We get ∆n,n′

X/S ∈ Cn+n′ . Using the universal property of the
n + n′ infinitesimal neighborhood of ∆X/S , we get a unique morphism
∆n
X/S ×X ∆n′

X/S → ∆n+n′
X/S of Cn+n′ inducing the commutative diagram

(2.3)

X �
� // ∆n

X/S ×X ∆n′

X/S

��

// X ×S X ×S X

p02

��
X
� � // ∆n+n′

X/S
// X ×S X.
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We denote by δn,n
′ : Pn+n′

X/S → PnX/S ⊗OX P
n′

X/S the corresponding mor-
phism.
By replacing p02 by p01 (resp. p12), we get a unique morphism ∆n

X/S ×X
∆n′

X/S → ∆n+n′
X/S making commutative the diagram (2.7). We denote by

qn,n
′

0 : Pn+n′
X/S → P

n
X/S ⊗OX P

n′

X/S (resp. qn,n
′

1 : Pn+n′
X/S → P

n
X/S ⊗OX P

n′

X/S)
the corresponding morphism (or simply qn,n

′

0 or q0). We notice that qn,n
′

0 =
πn+n′,n
X/S ⊗1 and qn,n

′

1 = 1⊗πn+n′,n′
X/S , where πn1,n2

X/S is the projection Pn1
X/S →

Pn2
X/S for any integers n1 > n2.

Lemma 2.8. — For any a ∈ MX , for any integers n, n′ ∈ N, we have
δn,n

′(µn+n′(a)) = µn(a)⊗ µn′(a).

Proof. — We copy word by word the proof of Montagnon of Lemma [27,
2.3.1]. �

Definition 2.9. — The sheaf of differential operators of order 6 n of
f is defined by putting DX/S,n := H omOX (pn0∗PnX/S ,OX). The sheaf of
differential operators of f is defined by putting DX/S :=

⋃
n∈NDX/S,n.

Let P ∈ DX/S,n, P ′ ∈ DX/S,n′ . We define the product PP ′ ∈ DX/S,n+n′

to be the composition

(2.4) PP ′ : Pn+n′
X/S

δn,n
′

−→ PnX/S ⊗OX P
n′

X/S
Id⊗P ′−→ PnX/S

P−→ OX .

Suppose f has the formal log basis (aλ)λ=1,...,r. Put ηλ := µn(aλ) − 1.
Following Proposition 2.3, the elements {ηk}|k|6n form a basis of PnX/S .
The corresponding dual basis of D(m)

X/S,n will be denoted by {∂[k], |k| 6 n}.
Hence, D(m)

X/S is a free OX -module (for both structures) with the basis
{∂[k], k ∈ Nr}.

Proposition 2.10. — The sheaf DX/S is a sheaf of rings with the prod-
uct as defined in (2.4).

Proof. — Using Lemma 2.8 (instead of Lemma 2.27), we can check
Proposition 2.10 similarly to Proposition 2.28. �

2.2. Sheaf of principal parts of level m

Let f : X → S be a weakly log smooth of level m morphism of fine log-
schemes. Let (IS , JS , γ) be a quasi-coherent m-PD-ideal of OS that such
that γ extends to X (e.g. from [4, 1.3.2.(i).c)] when JS + pOS is locally
principal). Recall that f is also a weakly log smooth of level m compatible
with γ (this is a consequence of (1.17)).
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Remark 2.11. — Since γ extends to X, then the m-PD envelope com-
patible with γ (of order n) of the identity of X is the identity of X. Indeed,
using the arguments given in the proof of Lemma 1.54, we can check that
the ideal 0 of OX is endowed with a (unique) m-PD structure compatible
with γ.

Notation 2.12. — Let ∆X/S : X → X ×S X be the diagonal morphism,
∆X/S,(m),γ := P(m),γ(∆X/S), ∆n

X/S,(m),γ := Pn(m),γ(∆X/S), PnX/S,(m),γ :=
Pn(m),γ(∆X/S) (see Proposition 1.63). We denote by MX/S,(m),γ (resp.
Mn
X/S,(m),γ) the log structure of ∆X/S,(m),γ (resp. ∆n

X/S,(m),γ). We denote
abusively the target of ∆X/S,(m),γ by ∆X/S,(m),γ . Since γ extends to X,
the source of ∆n

X/S,(m),γ is X, i.e. ∆n
X/S,(m),γ is a closed immersion of the

form X ↪→ (SpecPnX/S,(m),γ ,M
n
X/S,(m),γ).

Let p1, p0 : ∆X/S,(m),γ → X be respectively the composition of the
canonical morphism ∆X/S,(m),γ → X ×S X with the right and left pro-
jection X ×S X → X. Similarly we get pn1 , pn0 : ∆n

X/S,(m),γ → X. As in
Lemma 2.2, we can check that p1 and p0 are strict morphisms.
If a ∈MX , we denote by µ(m),γ(a) the unique section of ker(O∗∆X/S,(m),γ

→
O∗X) such that we get in MX/S,(m),γ the equality p∗1(a) = p∗0(a)µ(m),γ(a)
(see Lemma 1.81). We get µ(m),γ : MX/S,(m),γ → ker(O∗∆X/S,(m),γ

→ O∗X)
given by a 7→ µ(m),γ(a). Similarly we define µn(m),γ : Mn

X/S,(m),γ →
ker(O∗∆n

X/S,(m),γ
→ O∗X).

Proposition 2.13 (Local description of PX/S,(m),γ). — Let (aλ)λ=1,...,r
be a finite set of Γ(X,MX) such that (aλ)λ=1,...,r is a formal log basis
of level m compatible with γ of f . Put ηλ(m),γ := µ(m),γ(aλ) − 1, and
ηλ(m),γ,n := µn(m),γ(aλ)− 1.

(1) We have he following OX -m-PD isomorphism

(2.5)
OX〈T1, . . . , Tr〉(m),n

∼−→ PnX/S,(m),γ

Tλ 7−→ ηλ,(m),γ,n,

where the structure of OX -module of PnX/S,(m),γ is given by pn1
or pn0 .

(2) If (aλ)λ=1,...,r is moreover a log p-basis of level m compatible with
γ of f then we have he following OX -m-PD isomorphism

(2.6)
OX〈T1, . . . , Tr〉(m)

∼−→ PX/S,(m),γ

Tλ 7−→ ηλ,(m),γ ,

where the structure of OX -module of PX/S,(m),γ is given by p1 or p0.
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Proof. — By symmetry, we can focus on the case where the structure
of OX -module of PnX/S,(m),γ (resp. PX/S,(m),γ) is given by pn0 (resp. p0).
In the first assertion (resp. the second one), we are in the situation to
use formula (1.21) (resp. (1.22)) in the case where u = ∆ and f is the left
projection p0 : X×SX → X. Indeed, we first remark that (p∗1(aλ))λ=1,...,r is
a formal log basis of level m compatible with γ of p0 (resp. (p∗1(aλ))λ=1,...,r
is a log p-basis of level m compatible with γ of p0). Indeed, the formal
p-étaleness of level m property (resp. log p-étaleness of level m property)
is stable under base change. Since the m-PD envelope compatible with γ
of order n (resp. m-PD envelope compatible with γ) of the identity of X is
X (see Remark 2.11), Proposition 1.82 yields the result. �

Remark 2.14.

(1) From the local description (2.5), we get that PnX/S,(m),γ does not
depend on them-PD-structure (satisfying the conditions of the sub-
section). Hence, from now, we reduce to the case where γ = γ∅ (see
Notation 1.49) and we remove γ in the notation: we simply write
PnX/S,(m), ∆n

X/S,(m), Mn
X/S,(m), µn(m), and ηλ(m),n.

(2) When f is log p-smooth of level m, from (2.6), PX/S,(m),γ does
not depend on the m-PD-structure (satisfying the conditions of the
subsection). Hence, we can remove γ in the corresponding notation.

Remark 2.15. — From the local description of Proposition 2.13, we get
that the morphisms pn1 and pn0 are finite (i.e. the underlying morphism of
schemes is finite).

Remark 2.16. — For any integer m′ > m, we remark that the canonical
map PnX/S,(m′) → PnX/S,(m) sends ηλ(m′) to ηλ(m).

Remark 2.17. — Noticing that the main Theorem [28, IV.3.2.6] on log
smoothness (this is the Theorem that leads us to our definition of log p-
smoothness) is valid for coherent log structures and not only fine log struc-
tures, one might wonder why we are focusing on fine log structures. The first
reason we have in mind is that the important tool consisting of exactifying
closed immersions (see Point 1.8) needs fine log structures. One might refute
that in the first chapter we might replace in the definition of C (see Defi-
nition 1.4) the word fine by the word coherent (but in the other categories,
e.g. C (m)

γ we keep fine log structures). But, if we replace in Proposition 2.13
fine log structures by coherent log structures, the isomorphism (2.5) is not
any more true: instead we have OXint〈T1, . . . , Tr〉(m),n

∼−→ PnX/S,(m). Re-
call that since X is only coherent and not fine then we have in general
OXint 6= OX .
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Point 2.18. — Let g : S′ → S be a morphism of fine log schemes over
Z/pi+1Z, let (IS′ , JS′ , γ′) be a quasi-coherent m-PD-ideal of OS′ such that
g becomes an m-PD-morphism. Put X ′ := X ×S S′. We suppose that γ′
extends to X ′. Then, the m-PD-morphism ∆X′/S′,(m) → ∆X/S,(m) induces
the isomorphism ∆X′/S′,(m)

∼−→ ∆X/S,(m) ×S S′. Indeed, since the mor-
phisms p0 : ∆X/S,(m) → X and p0 : ∆X′/S′,(m) → X ′ are strict, then the
morphism ∆X′/S′,(m) → ∆X/S,(m) ×S S′ is strict. Hence, this is sufficient
to check that the morphism g∗PX/S,(m) → PX′/S′,(m) is an isomorphism.
This can be checked by using the local description of (2.5).

Point 2.19. — Letm′ > m be two integers. Since C ′(m)
n ⊂ C ′(m

′)
n , then by

using the universal property defining ∆n
X/S,(m′) we get a morphism ψnm,m′ :

∆n
X/S,(m) → ∆n

X/S,(m′) and then the homomorphism ψn∗m,m′ : PnX/S,(m′) →
PnX/S,(m).
From Lemma 1.67, we get Pn(m)(Pn(∆X/S)) = Pn(m)(∆X/S). Hence, we

get a canonical map ψnm,m′ : ∆n
X/S,(m) → ∆n

X/S and then the homomor-
phism ψn∗m : PnX/S → PnX/S,(m).

Now, suppose that X → S is endowed with a formal log basis (bλ)λ=1,...,r

of levelm′. With the notation of Proposition 2.13, we have ψn∗m,m′(η
{k}(m′)
(m′) )=

q!
q′!η
{k}(m)
(m) , where kλ = pmqλ + rλ and k′λ = pm

′
q′λ + r′λ is the Euclid-

ian division of kλ by respectively pm and pm
′ , η{k}(m)

(m) :=
∏r
λ=1 η

{kλ}(m)
λ,(m) ,

q :=
∏r
λ=1 qλ and similarly with some primes. Moreover, we compute

ψn∗m (ηk) = q!η{k}(m)
(m) .

Notation 2.20. — Let I1
X/S,(m) be the ideal of the closed immersion

∆1
X/S,(m) and Ω1

X/S,(m) := (∆1
X/S,(m))−1(I1

X/S,(m)). Thanks to the local
description (2.1) (recall from Proposition 1.74 that since f is weakly log
smooth of levelm then f is weakly log smooth) and (2.5) and the local com-
putation of Point 2.19, we can check that the homomorphism ψ1∗

m : P1
X/S →

P1
X/S,(m) induces the isomorphism ψ1∗

m : Ω1
X/S

∼−→ Ω1
X/S,(m), and that the

homomorphism ψ1∗
m,m′ : P1

X/S,(m′) → P1
X/S,(m) induces the isomorphism

ψ1∗
m,m′ : Ω1

X/S,(m′)
∼−→ Ω1

X/S,(m). Hence, we can simply write Ω1
X/S instead

of Ω1
X/S,(m).

Remark 2.21. — If X/S has a formal log basis (bλ)λ=1,...,r of level m of
f then (2.5) implies that Ω1

X/S is free of rank r, a basis being given by the
images dlog bλ of the ηλ,(m)’s. This implies in particular that all formal log
bases of level m of f have the same cardinality. We put ωX/S := ∧rΩ1

X/S .
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More generally (i.e. we do not any more assume that X/S has a formal log
basis), we define ωX/S in the same way.

Notation 2.22. — Let E be an OX -module. By convention, PnX/S,(m)⊗OX
E means pn1∗(PnX/S,(m))⊗OXE and E⊗OXPnX/S,(m) means E⊗OXpn0∗(PnX/S,(m)).
For instance, PnX/S,(m) ⊗OX P

n′

X/S,(m) is pn1∗(PnX/S,(m))⊗OX pn
′

0∗(Pn
′

X/S,(m)).

Lemma 2.23. — We simply denote by ∆n
X/S,(m) ×X ∆n′

X/S,(m) the base
change of pn′0 : ∆n′

X/S,(m) → X by pn1 : ∆n
X/S,(m) → X. The immersion X ↪→

∆n
X/S,(m)×X∆n′

X/S,(m) induced by X ↪→ ∆n
X/S,(m) and X ↪→ ∆n′

X/S,(m) is an
exact closed immersion endowed with a canonical m-PD structure of order
n+n′. By abuse of notation, we denote by ∆n

X/S,(m)×X∆n′

X/S,(m) this object
of C

(m)
n+n′ . This m-PD structure on ∆n

X/S,(m) ×X ∆n′

X/S,(m) is characterized
by the following property: the projections qn,n

′

0 : ∆n
X/S,(m) ×X ∆n′

X/S,(m) →
∆n
X/S,(m) and qn,n

′

1 : ∆n
X/S,(m) ×X ∆n′

X/S,(m) → ∆n′

X/S,(m) are morphisms of
C

(m)
n+n′ .

Proof. — Since pn1 , pn0 : ∆n
X/S,(m),γ → X are strict, we can check that

X ↪→ ∆n
X/S,(m) ×X ∆n′

X/S,(m) is an exact closed immersion. Using the
local description (2.5), to check the uniqueness and existence of the m-
PD-structure of order n + n′, we proceed similarly to [4, 2.1.3.(i)] or [27,
2.3.2]. �

Point 2.24. — Using the universal property of the m-PD-envelope of or-
der n, we get a unique morphism ∆n

X/S,(m) ×X ∆n′

X/S,(m) → ∆n+n′
X/S,(m) of

C
(m)
n+n′ inducing the commutative diagram

(2.7)

X �
� // ∆n

X/S,(m) ×X ∆n′

X/S,(m)

��

// X ×S X ×S X

p02

��
X �
� // ∆n+n′

X/S,(m)
// X ×S X.

We denote by δn,n
′

(m) : Pn+n′
X/S,(m) → P

n
X/S,(m)⊗OX P

n′

X/S,(m) the corresponding
morphism.
By replacing p02 by p01 (resp. p12), we get a unique morphism ∆n

X/S,(m)×X
∆n′

X/S,(m) → ∆n+n′
X/S,(m) making commutative the diagram (2.7). We denote

by qn,n
′

0(m) : Pn+n′
X/S,(m) → P

n
X/S,(m) ⊗OX P

n′

X/S,(m) (resp. qn,n
′

1(m) : Pn+n′
X/S,(m) →

PnX/S,(m) ⊗OX P
n′

X/S,(m)) the corresponding morphism (or simply qn,n
′

0 or
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q0). We notice that qn,n
′

0(m) = πn+n′,n
X/S,(m) ⊗ 1 and qn,n

′

1(m) = 1⊗ πn+n′,n′
X/S,(m), where

πn1,n2
X/S,(m) is the projection Pn1

X/S,(m) → P
n2
X/S,(m) for any integers n1 > n2.

The following Lemma will be useful to check the associativity of the
product law of the sheaf of differential operator:

Lemma 2.25. — We denote by ∆n
X/S,(m)×X ∆n′

X/S,(m)×X ∆n′′

X/S,(m) the
base change of pn′0 ◦q

n′,n′′

0 : ∆n′

X/S,(m)×X∆n′′

X/S,(m) → X by pn1 : ∆n
X/S,(m) →

X. The exact closed immersion X ↪→ ∆n
X/S,(m) ×X ∆n′

X/S,(m) ×X ∆n′′

X/S,(m)

induced by X ↪→ ∆n
X/S,(m), X ↪→ ∆n′

X/S,(m) and X ↪→ ∆n′′

X/S,(m) is endowed
with a canonical m-PD structure. By abuse of notation, we denote by
∆n
X/S,(m) ×X ∆n′

X/S,(m) ×X ∆n′′

X/S,(m) this object of C
(m)
n+n′+n′′ . This m-PD

structure on ∆n
X/S,(m) ×X ∆n′

X/S,(m) ×X ∆n′′

X/S,(m) is characterized by the
following property: the projections ∆n

X/S,(m)×X ∆n′

X/S,(m)×X ∆n′′

X/S,(m) →
∆n
X/S,(m), ∆n

X/S,(m)×X∆n′

X/S,(m)×X∆n′′

X/S,(m) → ∆n′

X/S,(m), and ∆n
X/S,(m)×X

∆n′

X/S,(m) ×X ∆n′′

X/S,(m) → ∆n′′

X/S,(m) are morphisms of C
(m)
n+n′+n′′ .

Proof. — This is checked similarly to Lemma 2.23. �

2.3. Sheaf of differential operators of level m

We keep Section 2.2.

Definition 2.26. — The sheaf of differential operators of level m and
order 6 n of f is defined by putting

D(m)
X/S,n := H omOX (pn0,(m)∗P

n
X/S,(m),OX).

The sheaf of differential operators of level m of f is defined by putting

D(m)
X/S :=

⋃
n∈N
D(m)
X/S,n.

Let P ∈ D(m)
X/S,n, P

′ ∈ D(m)
X/S,n′ . We define the product PP ′ ∈ D(m)

X/S,n+n′
to be the composition

(2.8) PP ′ : Pn+n′
X/S,(m)

δn,n
′

(m)−→PnX/S,(m) ⊗OX P
n′

X/S,(m)
Id⊗P ′−→ PnX/S,(m)

P−→ OX .

Lemma 2.27. — For any a ∈ MX , for any integers n, n′ ∈ N, we have
δn,n

′

(m) (µn+n′
(m) (a)) = µn(a)(m) ⊗ µn

′

(m)(a).

Proof. — We copy word by word the proof of Montagnon of Lemma [27,
2.3.1]. �
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Proposition 2.28. — The sheaf D(m)
X/S is a sheaf of rings with the prod-

uct as defined in (2.8).

Proof. — We have to check the product as defined in (2.8) is associative.
One checks the commutativity of the diagram

(2.9)

Pn+n′+n′′

(PP ′)P ′′

��

Pn+n′+n′′
δn,n

′+n′′
(m) //

δn+n′,n′′
(m) ��

Pn ⊗O Pn
′+n′′

Id⊗δn
′,n′′

(m)��
Pn ⊗O Pn

′+n′′

id⊗P ′P ′′

��

Pn+n′ ⊗O Pn
′′

δn,n
′

(m) ⊗Id
//

id⊗P ′′ ��
Pn ⊗O Pn

′ ⊗O Pn
′′

id⊗ id⊗P ′′��
Pn+n′

δn,n
′

(m)

//

PP ′��

Pn ⊗O Pn
′

id⊗P ′��
O O Pn ⊗O Pn

′

P
oo Pn ⊗O Pn

′
,

where Pn := PnX/S,(m), i.e. we have removed the indication X/S, (m) and
where O := OX . Indeed, let us check the commutativity of the top square
of the middle. Since this is local, we can suppose that f has a formal
log basis (aλ)λ=1,...,r of level m. Using Lemma 2.27 and the notation of
Proposition 2.13, we compute that the images of η1,(m),n+n′ , . . . , ηr,(m),n+n′

by both maps Pn+n′+n′′
X/S,(m) → P

n
X/S,(m) ⊗OX P

n′

X/S,(m) ⊗OX P
n′′

X/S,(m) are the
same. Using Proposition 2.13, since both maps are m-PD-morphisms (see
Lemma 2.25 for the m-PD-structure), we get the desired commutativity.
Since the commutativity of the other squares are obvious, we conclude the
proof. �

Point 2.29 (Description in local coordinates). — Suppose that X → S is
endowed with a formal log basis (bλ)λ=1,...,r of level m. With the notion of
Point 2.19, the elements {η{k}(m)

(m) , |k| 6 n} form a basis of PnX/S,(m). The
corresponding dual basis of D(m)

X/S,n will be denoted by {∂〈k〉(m) , |k| 6 n}.
This yields the basis (as OX -module for both structures) {∂〈k〉(m) , k ∈ Nr}
of D(m)

X/S .
Let ε1, . . . , εr be the canonical basis of Nr, i.e. the coordinates of ελ are

0 except for the ith term which is 1. We put ∂λ := ∂〈ελ〉(m) . We have the
same formulas than in [27, 2.3.3]. For instance, for any section a ∈ OX , for
any k, k′, k′′ ∈ Nn,

∂〈k〉(m)a =
∑
i6k

{
k
i

}
∂〈k−i〉(m)(a)∂〈i〉(m) ;(2.10)

∂〈k
′〉(m)∂〈k

′′〉(m) =
k′+k′′∑

k=max{k′,k′′}

C
k

k′,k′′∂
〈k〉(m) ,(2.11)
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where q
k
means the quotient of the Euclidian division of k by pm and simi-

larly with some primes, and where Ckk′,k′′ := k!
(k′+k′′−k)!(k−k′)!(k−k′′)!

q
k′

!q
k′′

!

q
k
! .

The calculations of Montagnon in [27, 2.3.1] work here as well and show
that the OX -algebra D(m)

X/S (for its left or right structure) is generated by

the operators ∂〈p
j〉(m)

λ with 1 6 λ 6 r, 0 6 j 6 m. These formulas yield
that grD(m)

X/S is commutative and that, when X is affine and noetherian,
the ring Γ(X,D(m)

X/S) is left and right noetherian.

Point 2.30 (Comparison of the local description of differential operators
with or without logarithmic structure). — Suppose given formal étale co-
ordinates (tλ)λ=1,...,r of level m of X/S (see Definition 1.85).

(1) By Proposition 1.91, we get the following isomorphism of m-PD-
OX -algebras

OX〈T1, . . . , Tr〉(m),n
∼−→ PnX/S,(m)

Tλ 7−→ τλ,

where τλ := p∗1(tλ) − p∗0(tλ). The elements {τ{k}(m)}|k|6n form a
basis of PnX/S,(m). The corresponding dual basis of D(m)

X/S,n will be
denoted by {∂[〈k〉(m)}|k|6n.

(2) Consider the following diagram

(2.12)
Y

f

��

b // ANr × T

��
X

t // Ar × S

where the right arrow is induced by a morphism of fine log schemes
of the form T → S and by the canonical morphism ANr → Ar,
the bottom arrow is induced by the formal log étale coordinates
(tλ)λ=1,...,r of level m and where the top arrow is induced by a for-
mal log basis (bλ)λ=1,...,r of level m. Let η(m) (resp. ∂

〈k〉(m)) be the
element constructed from (bλ)λ=1,...,r as defined in Proposition 2.13
(resp. Point 2.29). Then the functorial morphism f∗PnX/S,(m) →
PnY/T,(m) and D(m)

Y/T → f∗D(m)
X/S (see Point 2.32) are explicitly de-

scribed by

(2.13) τ{k}(m) 7−→ tkη
{k}(m)
(m) ,
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where the action of tk is induced by the left structure of OY -algebra
of PnY/T,(m). Indeed, since f∗PnX/S,(m) → PnY/T,(m) is an m-PD-
morphism, we reduce to compute the image of τi. We compute the
image of τi is 1 ⊗ bi − bi ⊗ 1 = biηi,(m) = tiηi,(m) (recall Proposi-
tion 2.13 of ηi,(m)). Moreover, by duality, we get D(m)

Y/T → f∗D(m)
X/S

(see Point 2.32) is explicitly described by

(2.14) ∂〈k〉(m) 7→ tk∂
〈k〉(m)
[ .

(3) Suppose now that the tλ’s lie in Γ(X,O∗X). Then, from Lem-
ma 1.86(1) they are also a formal log basis of level m. We have

(2.15) τ{k}(m) = p∗0(tk)η{k}(m)
(m) and ∂〈k〉(m) = tk∂

〈k〉(m)
[ ,

where η(m) (resp. ∂〈k〉(m)) is defined in Proposition 2.13 (resp.
Point 2.29).

(4) Suppose now that the tλ’s lie in Γ(X,O∗X) and that X → S is
strict. Since X → S is strict, then PnX/S,(m) = PnX/S,(m). This yields
D(m)
X/S = D(m)

X/S , where D
(m)
X/S is the sheaf of differential operators

defined by Berthelot in [4]. Then the local description of (2.12)
extends that given in [4] when X/S has étale coordinates.

Point 2.31. — For any m′ > m, from the homomorphisms ψn∗m,m′ :
PnX/S,(m′) → P

n
X/S,(m) of Point 2.19, we get by duality, the homomorphisms

ρm′,m : D(m)
X/S → D

(m′)
X/S . Let kλ = pmqλ + rλ and k′λ = pm

′
q′λ + r′λ be the

Euclidian division of kλ and k′λ by respectively pm and pm′ . Now, suppose
that X → S is endowed with a log basis (bλ)λ=1,...,r of level m′. With its
notation, we get from Point 2.19 the equality ρm′,m(∂〈k〉(m)) = q!

q′!∂
〈k〉(m′) .

Point 2.32. — Let g : S′ → S be a morphism of fine log schemes over
Z/pi+1Z. Consider the commutative diagram

(2.16)
X ′

f //

πX′

��

X

πX

��
S′

g // S

such that πX and πX′ are formall log smooth of levelm. Using the universal
property of the m-PD envelope, we get the m-PD-morphism f∗PnX/S,(m) →
PnX′/S′,(m). This yields the morphism D(m)

X′/S′,n → f∗D(m)
X/S,n and then

D(m)
X′/S′ → f∗D(m)

X/S .
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When the diagram (2.16) is cartesian (in the category of fine log schemes),
the morphism f∗PnX/S,(m) → P

n
X′/S′,(m) is in fact an isomorphism of rings

and so is D(m)
X′/S′ → f∗D(m)

X/S .
When g = id and f is formally log étale of level m, then the morphism

f∗PnX/S,(m) → P
n
X′/S,(m) is in fact an isomorphism and so is D(m)

X′/S →
f∗D(m)

X/S .

2.4. Logarithmic PD stratification of level m

We keep Section 2.2. One can follow Berthelot’s construction of PD strat-
ifications of level m and check properties analogous to those of [6] or [4,
2.3] (or Montagnon logarithmic version in [27, 2.6]). Let us give a quick
exposition. Even if one might consider the étale topology, an OX -module
will mean an OX -module for the Zariski topology.

Definition 2.33. — Let E be an OX -module. An m-PD-stratification
(or a PD-stratification of level m) is the data of a family of compatible
(with respect to the projections πn+1,n

X/S,(m)) P
n
X/S,(m)-linear isomorphisms

εEn : PnX/S,(m) ⊗OX E
∼−→ E ⊗OX PnX/S,(m)

satisfying the following conditions:
(1) εE0 = IdE ;
(2) for any n, n′, the diagram

PnX/S,(m) ⊗OX P
n′

X/S,(m) ⊗OX E

δn,n
′∗

(m) (εE
n+n′ )∼

��

qn,n
′∗

1(m) (εE
n+n′ )

∼
++

PnX/S,(m) ⊗OX E ⊗OX P
n′

X/S,(m)

qn,n
′∗

0(m) (εE
n+n′ )

∼

ss
E ⊗OX PnX/S,(m) ⊗OX P

n′

X/S,(m)

is commutative

Proposition 2.34. — Let E be an OX -module. The following datas are
equivalent:

(1) A structure of left D(m)
X/S-module on E extending its structure of

OX -module.
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(2) A family of compatible OX -linear homomorphisms θEn : E → E ⊗OX
PnX/S,(m) such that θE0 = IdE and for any integers n, n′ the diagram

(2.17)

E ⊗OX PnX/S,(m)

Id⊗δn,n
′

(m)// E ⊗OX PnX/S,(m) ⊗OX P
n′

X/S,(m)

E

θE
n+n′

OO

θE
n′ // E ⊗OX Pn

′

X/S,(m)

θEn⊗Id

OO

is commutative.
(3) An m-PD-stratification on E .

An OX -linear morphism φ : E → F between two left D(m)
X/S-modules

is D(m)
X/S-linear if and only if it commutes with the homomorphisms θn

(resp. εn).

Proof. — The proof is identical to that of [27, 2.6.1] or [4, 2.3.2]. �

Point 2.35. — If X → S is endowed with a formal log basis (bλ)λ=1,...,n
of level m then for any x ∈ E we have the Taylor development

(2.18) θEn(x) =
∑
|k|6n

∂〈k〉(m) · x⊗ η{k}(m).

In order to define overconvergent isocrystals in our context (see
Point 3.37), we will need the following definition and proposition.

Definition 2.36. — Let B be a commutativeOX -algebra endowed with
a structure of left D(m)

X/S-module. We say that the structure of left D(m)
X/S-

module on B is compatible with its structure of OX -algebra if the iso-
morphisms εBn are isomorphisms of PnX/S,(m)-algebras. This compatibility
is equivalent to the following condition: for any f, g ∈ B and k ∈ Nd,

∂〈k〉(m)(fg) =
∑
i6k

{
k
i

}
∂〈i〉(m)(f)∂〈k−i〉(m)(g).

Proposition 2.37. — Let B be a commutative OX -algebra endowed
with a compatible structure of left D(m)

X/S-module. Then there exists on
the tensor product B ⊗OX D

(m)
X/S a unique structure of rings satisfying the

following conditions
(1) the canonical morphisms B → B ⊗OX D

(m)
X/S and D(m)

X/S → B ⊗OX
D(m)
X/S are homomorphisms of sheaf of rings,
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(2) if X → S is endowed with a formal log basis (bλ)λ=1,...,n of level m,
then, for any b ∈ B and k ∈ Nn, we have (b⊗1)(1⊗P ) = b⊗P and

(1⊗ ∂〈k〉(m))(b⊗ 1) =
∑
i6k

{
k
i

}
∂〈i〉(m)(b)⊗ ∂〈k−i〉(m) .

If B → B′ is a morphism of OX -algebras with compatible structure of left
D(m)
X/S-modules, then the induced morphism B ⊗OX D

(m)
X/S → B

′ ⊗OX D
(m)
X/S

is a homomorphism of rings.

Proof. — We copy [4, 2.3.5]. �

2.5. Logarithmic transposition

We suppose that X → S is endowed with a formal log basis (bλ)λ=1,...,n
of level m.

Notation 2.38.

(1) We set α0,0 := 1. Let j > 1 be an integer. We set α0,j = 0. For any
1 6 i 6 j, we set

αi,j := (−1)j
{
j
i

}
(m) q

(m)
j−i !

(
j−1
j−i

)
where q(m)

j−i means the quotient of the Euclidian division of j − i by
pm.
For any integer λ = 1, . . . , n, for any k > 0, we set

(2.19) ∂̃
〈k〉(m)
λ :=

∑
06i6k

αi,k∂
〈i〉(m)
λ .

In particular, ∂̃〈0〉(m)
λ = 1. Remark that when k > 1, we have in

fact, ∂̃〈k〉(m)
λ =

∑
16i6k αi,k∂

〈i〉(m)
λ .

(2) Let k = (k1, . . . , kn) ∈ Nn. We set ∂̃〈k〉(m) :=
∏n
λ=1 ∂̃

〈kλ〉(m)
λ . For

any i 6 k, we put αi,k :=
∏n
λ=1 αiλ,kλ ∈ Z.

(2.20) ∂̃〈k〉(m) :=
n∏
λ=1

∂̃
〈kλ〉(m)
λ =

∑
i6k

αi,k∂
〈i〉(m) .

(3) Let P ∈ Γ(X,D(m)
X/S) be differential operator. We can uniquely write

P of the form P =
∑
k ak∂

〈k〉(m) with ak ∈ Γ(X,OX). We set

(2.21) P̃ :=
∑
k

∂̃〈k〉(m)ak.

We say that P̃ is the “logarithmic transposition” of P .
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(4) For any differential operators P,Q ∈ Γ(X,D(m)
X/S), for any a ∈

Γ(X,OX), we can easily check ã = a, P̃ +Q = P̃+Q̃ and ãP = P̃ a.

Proposition 2.39 (Comparison between transposition with or without
logarithmic structure). — We suppose that f is weakly smooth of level m
and that b1, . . . , bn ∈ O∗X (and following Lemma 1.86 then they form also
some formal log-étale coordinates of level m). In that case, we prefer to
write tλ := bλ. With the notation of Point 2.30, any differential operator
P of Γ(X,D(m)

X/S) can be written of the form P =
∑
k ak∂

〈k〉(m)
[ , with ak ∈

Γ(X,OX). By extending the non logarithmic transposition as defined by
Berthelot (see [5, 1.3]) to our context by putting tP :=

∑
k(−1)|k|∂〈k〉(m)

[ ak,

we have the equality

(2.22) P̃ = t tP
1
t
,

where t = t1 = t1 · · · tn.

Proof. — Following (2.15), we have ∂〈k〉(m) = tk∂
〈k〉(m)
[ . By additivity of

the functors P 7→ P̃ and of P 7→ tP , since for any a ∈ Γ(X,OX) and
differential operator P ∈ Γ(X,D(m)

X/S), we have ãP = P̃ a and t(aP ) =
t(P )a, then we reduce to check the formula (2.22) to the case where P =
∂〈k〉(m) . We compute

t t(∂〈k〉(m)) 1
t

= t t(tk∂〈k〉(m)
[ ) 1

t

= t(−1)|k|∂〈k〉(m)
[ tk−1

= (−1)|k|t1−k∂〈k〉(m)tk−1

=
n∏
λ=1

(−1)kλt1−kλλ ∂
〈kλ〉(m)
λ tkλ−1

λ ,

where 1 := (1, 1, . . . , 1) ∈ Nn. Hence, we reduce to check ∂̃
〈k〉(m)
λ =

(−1)kt1−kλ ∂
〈k〉(m)
λ tk−1

λ , for any integer k > 0. When k = 0, the equality
is obvious since ∂〈k〉(m)

λ = 1 and ∂̃〈k〉(m)
λ = 1. Let us suppose k > 1. From

(2.10), we have ∂〈k〉(m)
λ tk−1

λ =
∑
i6k { ki } ∂

〈k−i〉(m)
λ (tk−1

λ )∂〈i〉(m)
λ . Following

the formula [27, 2.3.3.b)] (or we can use [4, 2.2.4.(ii)] and (2.15)), we have
∂
〈k−i〉(m)
λ (tk−1

λ ) = tk−1
λ qk−i!

(
k−1
k−i
)
if i > 1 and 0 if i = 0. Hence,

(−1)kt1−kλ ∂
〈k〉(m)
λ tk−1

λ = (−1)k
∑

16i6k
{ ki } qk−i!

(
k−1
k−i
)
∂
〈i〉(m)
λ = ∂̃

〈k〉(m)
λ .

�
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Remark 2.40. — With Remark 2.40, the definition of (2.21) was pre-
cisely introduced to get ∂̃〈k〉(m) = t t∂〈k〉(m) 1

t . One reason to introduce the
logarithmic transposition is the formula (3.7).

Proposition 2.41. — For any differential operators P and Q, we have
P̃Q = Q̃P̃ .

Proof.
Step 0. — When P ∈ OX , the proposition is obvious.
Step 1. — Suppose that P = ∂〈k〉(m) and Q = a ∈ OX .
(i). — On one side, from the formula (2.20), we get

a∂̃〈k〉(m) =
∑
h6k

αh,ka∂
〈h〉(m) .

(ii). — On the other side, from the formula

∂〈k〉(m)a =
∑
j6k

{
k
j

}
∂〈k−j〉(m)(a)∂〈j〉(m)

(see (2.10)), we get

(∂〈k〉(m)a)∼ =
∑
j6k

{
k
j

}
∂̃〈j〉(m)∂〈k−j〉(m)(a).

From (2.20), we have ∂̃〈j〉(m) =
∑
i6j αi,j∂

〈i〉(m) . Hence,

(∂〈k〉(m)a)∼ =
∑
j6k

∑
i6j

{
k
j

}
αi,j∂

〈i〉(m)∂〈k−j〉(m)(a).

Using again the formula (2.10), we get

∂〈i〉(m)∂〈k−j〉(m)(a) =
∑
h6i

{
i
h

}
∂〈i−h〉(m)∂〈k−j〉(m)(a)∂〈h〉(m) .

Hence,

(∂〈k〉(m)a)∼ =
∑
j6k

∑
i6j

∑
h6i

{
k
j

}
αi,j

{
i
h

}
∂〈i−h〉(m)∂〈k−j〉(m)(a)∂〈h〉(m)

=
∑
h6k

∑
h6i6j6k

Ph,i,j,k(a)∂〈h〉(m) ,

where for any h, i, j, k ∈ Nn so that h 6 i 6 j 6 k, we put Ph,i,j,k :=

αi,j

{
i
h

}{
k
j

}
∂〈i−h〉(m)∂〈k−j〉(m) . Hence, when h 6 k are fixed, this is suf-

ficient to check αh,k =
∑
h6i6j6k Ph,i,j,k.
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(iii). — Let A := Spec(Z[Nr]),MNr and T := SpecZ. Let U be an
open dense subset of A where the log structure is trivial. Since the map
Γ(A,D(m)

A/T ) → Γ(U,D(m)
U/T ) is injective, then to check the equality αh,k =∑

h6i6j6k Ph,i,j,k in Γ(A,D(m)
A/T ) (remark the coefficients of the differen-

tial operators Ph,i,j,k are integers, i.e. Ph,i,j,k ∈ Γ(A,D(m)
A/T )), we reduce

to check it in Γ(U,D(m)
U/T ). We can define the (resp. logarithmic) trans-

position in Γ(U,D(m)
U/T ). The formula (2.22) is still valid (the computa-

tion is identical). Since t(∂〈k〉(m)b) = bt(∂〈k〉(m)) (see [5]), then we get
b∂̃〈k〉(m) = (∂〈k〉(m)b)∼ for any b ∈ Γ(U,OU ). Hence, following the computa-
tion of (ii), we get αh,k =

∑
h6i6j6k Ph,i,j,k(b), for any b ∈ Γ(U,OU ). Since

D(m)
U/T → E ndOT (OA) is injective, this yields the equality in Γ(A,D(m)

A/T ):

(2.23) αh,k =
∑

h6i6j6k

Ph,i,j,k.

According to Notation 1.44, A×T Spec(Z/pi+1Z) = ANr . Hence, the equal-
ity (2.23) is also true in Γ(ANr ,D(m)

ANr/S
). Following Definition 1.73, the

formal log basis (bλ)λ=1,...,n of level m induces a formally log étale of level
m (compatible with γ) Y -morphism of the form g : X → S×Z/pi+1ZANr . By
considering the image via the homomorphism of rings g−1D(m)

S×Z/pi+1ZANr/S
→

D(m)
X/S , the equality (2.23) remains true in Γ(X,D(m)

X/S).

Step 2. — When P = ∂〈k〉(m) and Q = ∂〈k
′〉(m) , using the formulas (2.11)

and (2.20), we can check that both ∂̃〈k〉(m) ∂̃〈k
′〉(m) and (∂〈k′〉(m)∂〈k〉(m))∼

are of the form
∑
i6k+k′ αi∂

〈i〉(m) , with αi ∈ Z. Hence, using the same
arguments of Step 1(iii) of the proof, we reduce to the case
where b1, . . . , bn ∈ O∗X , i.e., we can use the formula (2.22). Since
(t∂〈k

′〉(m))(t∂〈k〉(m)) = t(∂〈k〉(m)∂〈k
′〉(m)), this yields the equality

(∂〈k〉(m)∂〈k
′〉(m))∼ = ∂̃〈k

′〉(m) ∂̃〈k〉(m) .

Step 3. — Suppose P = ∂〈k
′〉(m) and Q = ∂〈k

′′〉(m)a, with a ∈ OX . From
(2.10), we have the equality

∂〈k
′〉(m)∂〈k

′′〉(m)a =
k′+k′′∑

k=max{k′,k′′}

βk,k′,k′′∂
〈k〉(m)a,
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where βk,k′,k′′ := k!
(k′+k′′−k)!(k−k′)!(k−k′′)!

q
k′

!q
k′′

!

q
k
! ∈ Z. Hence, from Step 1,

by additivity we get

(∂〈k
′〉(m)∂〈k

′′〉(m)a)∼ = a

k′+k′′∑
k=max{k′,k′′}

βk,k′,k′′ ∂̃
〈k〉(m) .

From Step 2, the case a = 1 is already checked, i.e., we have

(∂〈k
′〉(m)∂〈k

′′〉(m))∼ = ∂̃〈k
′′〉(m) ∂̃〈k

′〉(m) .

Hence,
k′+k′′∑

k=max{k′,k′′}

βk,k′,k′′ ∂̃
〈k〉(m) = ∂̃〈k

′′〉(m) ∂̃〈k
′〉(m) .

Multiplying by a at the left, this yields, a
∑k′+k′′
k=max{k′,k′′} βk,k′,k′′ ∂̃

〈k〉(m) =
a∂̃〈k

′′〉(m) ∂̃〈k
′〉(m) . Since from Step 1 we have a∂̃〈k′′〉(m) = (∂〈k′′〉(m)a)∼, then

a∂̃〈k
′′〉(m) ∂̃〈k

′〉(m) = (∂〈k
′′〉(m)a)∼∂̃〈k′〉(m) . Hence,

(∂〈k
′〉(m)∂〈k

′′〉(m)a)∼ = a

k′+k′′∑
k=max{k′,k′′}

βk,k′,k′′ ∂̃
〈k〉(m)

= (∂〈k
′′〉(m)a)∼∂̃〈k

′〉(m) .

Step 4. — We can write P =
∑
k ak∂

〈k〉(m) and Q =
∑
k ∂
〈k′〉(m)a′k, with

ak, a
′
k ∈ Γ(X,OX). By additivity, we reduce to the case P = a∂〈k〉(m) and

Q = ∂〈k
′〉(m)a′, with a, a′ ∈ Γ(X,OX). Using Step 0, (a∂〈k〉(m)∂〈k

′〉(m)a′)∼ =
(∂〈k〉(m)∂〈k

′〉(m)a′)∼a. From Step 3 of the proof, (∂〈k〉(m)∂〈k
′〉(m)a′)∼ =

(∂〈k
′〉(m)a′)∼∂̃〈k〉(m) . Hence,

(a∂〈k〉(m)∂〈k
′〉(m)a′)∼ = (∂〈k

′〉(m)a′)∼∂̃〈k〉(m)a

= (∂〈k
′〉(m)a′)∼(a∂〈k〉(m))∼. �

Remark 2.42 (Logarithmic transposition at the level 0). — The defini-
tion of ∂̃〈k〉(m) given at (2.20) looks very complicated compared to the non
logarithmic transposition. At the level 0, this is possible to get a definition
as simple as in the non logarithmic case as follows. Any differential oper-
ator of D(0)

X/S can be written uniquely in the form P =
∑
k ak∂

k, where
∂k =

∏n
λ=1 ∂

kλ
λ with ∂λ = ∂

〈1〉(0)
λ . Beware that ∂k 6= ∂〈k〉(0) . Since ∂̃ = −∂,

we get P̃ =
∑
k(−1)|k|∂kak, which looks like the non logarithmic transpo-

sition definition.

Proposition 2.43. — For any differential operator P , we have ˜̃P = P .

TOME 72 (2022), FASCICULE 3



1074 Daniel CARO & David VAUCLAIR

Proof. — By additivity of the logarithmic transposition, we reduce to
check the case where P = (a∂〈k〉(m))∼, with a ∈ Γ(X,OX) and k ∈ Nd.
Using Proposition 2.41, we come down to the case where P = ∂〈k〉(m) , with
k ∈ Nd. Using (2.20) twice, we can write

(
(∂〈k〉(m))∼

)∼ =
∑
i6k βi,k∂

〈i〉(m) ,
with βi,k ∈ Z. Hence, using the same arguments of Step 1(iii) of the proof
of Proposition 2.41, we reduce to the case where b1, . . . , bn ∈ O∗X , i.e., we
can use the formula (2.22). Via the formula (2.22), we reduce to check
t(t(∂〈k〉(m)

[ )
)

= ∂
〈k〉(m)
[ , which is obvious. �

Remark 2.44. — Recall that from (2.10), we have

∂〈k〉(m)a =
∑
i6k

{
k
i

}
∂〈k−i〉(m)(a)∂〈i〉(m) .

Using Proposition 2.41, this yields

(2.24) a∂̃〈k〉(m) =
∑
i6k

∂̃〈i〉(m)
{
k
i

}
∂〈k−i〉(m)(a).

In the formula (2.24), beware that we can not replace ∂̃ by ∂.

Point 2.45. — The logarithmic transposition commutes with the canon-
ical morphism ρm+1,m : D(m)

X/S → D
(m+1)
X/S , i.e., for any P ∈ Γ(X,D(m)

X/S),
we have the formula ρm+1,m(P̃ ) = (ρm+1,m(P ))∼. Indeed, by additiv-
ity of the logarithmic transposition, we reduce to check the case where
P = a∂〈k〉(m) , with a ∈ Γ(X,OX) and k ∈ Nd. By OX -bilinearity of
ρm+1,m, we come down to the case where P = ∂〈k〉(m) . For any i ∈ Nd,
we have ρm+1,m(∂〈i〉(m)) = γi∂

〈i〉(m+1) , with γi ∈ Z. Hence, using (2.20), we
can check that both terms ρm+1,m(∂̃

〈k〉(m)) and (ρm+1,m(∂〈k〉(m))) ∼ are of
the form

∑
i6k αi∂

〈i〉(m) , with αi ∈ Z. Hence, using the same arguments of
Step 1(iii) of the proof, we reduce to the case where b1, . . . , bn ∈ O∗X , i.e.,
we can use the formula (2.22). Via the formula (2.22), we reduce to check
ρm+1,m(t∂

〈k〉(m)
[ ) = t(ρm+1,m(∂〈k〉(m)

[ )), which is obvious.

3. Differential operators over fine log formal schemes

We recall that Shiho introduced the notion of log formal V-schemes
(see [30, 2.1.1.(4)]) as follows: A log formal V-scheme X is a formal V-scheme
X endowed with a logarithmic structure α : MX → OX, where OX := OX

(this means that α is a logarithmic morphism of sheaves of monoids for
the étale topology over X, i.e. α is such that α−1(O∗X)→ O∗X is an isomor-
phism). When MX is fine as sheave for the étale topology over the special

ANNALES DE L’INSTITUT FOURIER



LOGARITHMIC p-BASES AND D-MODULES 1075

fiber of X (i.e. when MX is integral and MX is coherent in the sense de-
fined at the end of the remark [28, II.2.1.5]), we say that the logarithmic
structure MX is fine. We say that X is a fine log formal V-scheme if MX

is fine. Let S := Spf V be the formal V-scheme (endowed with the trivial
log structure). A fine S-log formal scheme X will be a morphism of fine log
formal V-schemes of the form X→ S.
If X is a fine log formal V-scheme and i ∈ N, then we denote by Xi the

fine log V/πi+1V-scheme so that Xi := X ×Spf(V) Spec(V/πi+1V) and the
morphism Xi → X is strict. For i = 0, we can simply denote X0 by X. If
f : X → Y is a morphism of fine log formal V-schemes, then we denote by
fi : Xi → Yi the induced morphism of fine log-schemes over V/πi+1V. We
remark that if f : X→ Y is a morphism of fine S-log formal schemes, then
fi : Xi → Yi is a morphism of fine log Si-schemes.

3.1. From log schemes to formal log schemes

Point 3.1 (Charts for log formal V-schemes). — Let P be a fine monoid
and V{P} be the p-adic completion of V[P ]. Since V is fixed, we denote
by AP the fine log formal V-scheme whose underlying formal V-scheme is
Spf(V{P}) and whose log structure is the log structure associated with the
pre-log structure induced canonically by P → V{P}.
Let X be a fine S-log formal scheme. We denote by PX the sheaf asso-

ciated to the constant presheaf of P over X. Following Shiho’s definition
of [30, 2.1.7], a chart of X is a morphism of monoids α : PX → OX whose
associated log structure is isomorphic to MX → OX. A chart of X is equiv-
alent to the data of a strict morphism of the form X→ AP .

Lemma 3.2. — Let X be a fine S-log formal scheme. Let i > 0 be an
integer. Then, the morphisms O∗X → O∗Xi and MX →MXi are surjective.

Proof. — The fact that O∗X → O∗Xi is surjective comes from the fact
that OX is complete for the p-adic topology. The fact that MX → MXi

is surjective is étale local on X. Hence, we can suppose there exists a fine
monoid P and a morphism of sheaves of monoids α : PX → OX (here PX

means the sheaf associated to the constant presheaf of P over X) which
induces the isomorphism of sheaves of monoids PX ⊕α−1(O∗

X
) O∗X

∼−→ MX

and the isomorphism PXi ⊕α−1
i

(O∗
Xi

) O∗Xi
∼−→ MXi . Since O∗X → O∗Xi is

surjective, we conclude. �

TOME 72 (2022), FASCICULE 3



1076 Daniel CARO & David VAUCLAIR

Proposition 3.3. — Let X be a fine S-log formal scheme. Then, in
the category of fine S-log formal schemes, X is the inductive limit of the
system (Xi)i.

Proof. — From [13, I.10.6.1], X is the inductive limit of the system (Xi)i.
It remains to check that the canonical morphism of sheaves of monoids
MX → lim←−iMXi is an isomorphism. Since this is étale local on X and since
X is fine then we can suppose there exists a fine monoid P and a morphism
of sheaves of monoids α : PX → OX which induces the isomorphism of
sheaves of monoids PX ⊕α−1(O∗

X
) O∗X

∼−→ MX. Let i > 0 be an integer.
We get the morphism of sheaves of monoids αi : PXi → OXi which induces
the isomorphism PXi ⊕α−1

i
(O∗

Xi
) O∗Xi

∼−→ MXi . Hence, we reduce to prove
that the canonical map PX ⊕α−1(O∗

X
) O∗X → lim←−i PXi ⊕α−1

i
(O∗

Xi
) O∗Xi is

an isomorphism. We put Fi := PXi“ ⊕ ”α−1
i

(O∗
Xi

)O∗Xi where “ ⊕ ” means
that the amalgamated sum is computed in the category of presheaves. We
put Ei := PXi ⊕O∗Xi , θi : Ei → Fi the canonical surjective morphism, Gi :=
PXi⊕α−1

i
(O∗

Xi
)O∗Xi and εi : Fi → Gi the canonical morphism from a presheaf

to its associated sheaf. We put φi := εi◦θi. We denote by πi : O∗Xi+1
→ O∗Xi ,

πi : Ei+1 → Eiπi : Fi+1 → Fi, πi : Gi+1 → Gi the canonical projections. Let
U→ X be an étale map such that U is connected.

Step 1. — Let si+1 ∈ Fi+1(Ui+1) and si := πi(si+1) ∈ Fi(Ui). Then
the canonical map πi : θ−1

i+1(si+1) → θ−1
i (si) induced by πi : Ei+1(Ui+1) →

Ei(Ui) is a bijection.

(a). — Let us check the injectivity. Let (x, a), (x′, a′) ∈ θ−1
i+1(si+1) such

that πi(x, a) = πi(x′, a′) (where x, x′ ∈ P and a, a′ ∈ O∗Xi+1
(Ui+1)). The

latter equality yields x = x′. Since P is integral, θi+1(x, a) = θi+1(x, a′)
implies a = a′ (for the computation, use the remark of [21, 1.3]).

(b). — Let us check the surjectivity. Let (y, b) ∈ θ−1
i (si). We remark

that α−1(O∗X)(U) = α−1
i (O∗Xi)(Ui) and we denote it by Q. Since θi+1 is

an epimorphism (in the category of presheaves) then there exists (x, a) ∈
θ−1
i+1(si+1). Since πi(x, a) = (x, πi(a)) ∈ θ−1

i (si), there exists q, q′ ∈ Q(Ui)
such that πi(a)αi(q) = bαi(q′) and xq′ = yq (see the remark of [21, 1.3]).
Set a′ := aαi+1(q)αi+1(q′)−1. Then πi(a′) = b and θi+1(x, a) = θi+1(y, a′),
i.e. πi(y, a′) = (y, b) and (y, a′) ∈ θ−1

i+1(si+1).

Step 2. — Let ti+1 ∈ Gi+1(Ui+1) and ti := πi(ti+1) ∈ Gi(Ui). Then the
canonical map πi : φ−1

i+1(ti+1)→ φ−1
i (ti) is a bijection.
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(a). — Let us check the injectivity. Let r, r′ ∈ φ−1
i+1(ti+1) such that

πi(r) = πi(r′). There exists an étale covering (Uλ → U)λ of U such that
θi+1(r)|Uλ = θ(r′)i+1|Uλ. From 1) (applied for Uλ instead of U), this yields
r|Uλ = r′|Uλ. Hence, r = r′.

(b). — Let us check the surjectivity. Let r ∈ φ−1
i (ti). Put s := θi(r).

There exist an étale covering (Uλ → U)λ of U and sections sλ ∈ Fi+1(Uλ)
such that εi+1(sλ) = ti+1|Uλ and πi(sλ) = s|Uλ. From 1.b), there exists
rλ ∈ Ei+1(Uλ) such that πi(rλ) = r|Uλ and θi+1(rλ) = sλ. Hence, πi(rλ) =
r|Uλ and φi+1(rλ) = ti+1|Uλ. From 2(a), this yields that (rλ)λ come from
a section of Ei+1(Ui+1).

Step 3. — Now, let us check that the canonical map PX⊕α−1(O∗
X

)O∗X →
lim←−i PXi⊕α−1

i
(O∗

Xi
)O∗Xi is an isomorphism. First, we start with the injectiv-

ity. As above, put E := PX⊕O∗X, F := PX“⊕”α−1(O∗
X

)O∗X, G := PX⊕α−1(O∗
X

)
O∗X, θ : E → F , ε : F → G, φ := ε ◦ θ. Let (x, a), (y, b) ∈ E(U) such that
the image of φ(x, a) and φ(y, b) in lim←−i PXi ⊕α−1

i
(O∗

Xi
) O∗Xi(U) are equal

(where x, y ∈ P , and a, b ∈ O∗X(U)). Since the injectivity is locally etale,
we reduce to check that φ(x, a) = φ(y, b). Denote by (x, ai), (y, bi) ∈ Ei
the image of (x, a), (y, b). Shrinking U if necessary, we can suppose that
θ0(x, a0) = θ0(y, b0). Doing the same computation as in 1(b), we can check
there exists c ∈ O∗X such that θ(x, a) = θ(y, c). Moreover, since P is inte-
gral, we can check that φi(y, ci) = φi(y, bi) if and only if ci = bi (since this
is etale local, we reduce to check θi(y, ci) = θi(y, bi) if and only if ci = bi).
Hence, b = c, which implies φ(x, a) = φ(y, b). Hence, we have checked the
injectivity. The surjectivity is an easy consequence of Step 2. �

Definition 3.4. — We define the category of strict inductive systems
of noetherian fine log schemes over (Si)i∈N as follows. A strict inductive
system of noetherian fine log schemes over (Si)i∈N is the data, for any in-
teger i ∈ N, of a noetherian fine Si-log scheme Xi, of an exact closed Si
immersionXi ↪→ Xi+1 such that the induced morphismXi → Xi+1×Si+1Si
is an isomorphism. A morphism (Xi)i∈N → (Yi)i∈N of strict inductive sys-
tems of noetherian fine log schemes over (Si)i∈N is a family of Si-morphism
Xi → Yi making commutative the diagram

Xi
//

��

Xi+1

��
Yi // Yi+1.
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Definition 3.5. — Let X be a scheme. Let M be a sheaf (for the étale
topology) of monoids over X

(1) Following [28, II.1.1.3], we say thatM is integral if for every x ∈ X,
Mx is integral.

(2) We say that M is coherent if there exists an open covering U such
that the restriction ofM to each U in U admits a chart subordinate
to a finitely generated monoid (see definition [28, II.2.1.5]).

(3) We say that M is fine if M is integral and coherent.
(4) Let f : M → N be a morphism of sheaves (for the étale topology)

of monoids over X. We say that f is local if the induced morphism
M∗ →M ×N N∗ is an isomorphism (see Definitions [28, I.4.1.1] for
monoids and we have taken a similar to [28, II.1.1.4] definition for
sheaves of monoids).

Lemma 3.6. — Let X be a scheme. Let M → N be a local morphism
of sheaves (for the étale topology) of monoids over X. Suppose M integral,
N fine. Then M is fine.

Proof. — Let us fix some notation. Let x be a geometric point of X.
Since N is fine, using [28, I.1.3.3 and II.1.8.1], we can check that Nx is fine.
Since M = N , we get that Mx is fine. Hence, there exist a free Z-module
of finite type L endowed with a morphism α : L → Mgr

x such that the
composition of α with the projection Mgr

x → Mgr
x is surjective (following

Ogus’s terminology appearing in [28, II.3.3], this means α : L → Mgr
x is

a markup of Mx). We put P := L ×Mgr
x̄
Mx. Since Mx is integral, then

following [28, I.4.2.1] the homomorphism of monoids Mx → Mx is exact.
Hence, we get the equality P := L×Mgr

x̄
Mx = L×Mgr

x̄
Mx. Following [28,

I.2.1.17.6], since L and Mx are fine and since Mgr
x is integral, then P =

L×Mgr
x̄
Mx is fine.

Let P → Mx be the projection. Using [28, II.2.2.4], there exist an étale
neighborhood u : U → X of x and a morphism of monoids P → M(U)
inducing P → Mx. Let β : PU → u∗M be the corresponding morphism.
We get the factorization of β of the form PU → P βU

βa

−→ u∗M , where βa is
the log structure associated to β i.e. the homomorphism of monoids βa is
logarithmic and is universal for such a factorization (see [28, II.1.1.5]).
We prove that, shrinking U is necessary, the morphism βa is an isomor-

phism (and then M is coherent). Following [28, I.4.1.2], for any geometric
point y of U , since βa

y is sharp and since My is quasi-integral, we can
check that the morphism βa

y : (P βU )y → My is an isomorphism if and only
if βa

y : : (P βU )y → My is an isomorphism (recall My = My). Using [28,
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II.1.8.1], we can check that the canonical morphism P/β−1
y (M∗y )→ (P βU )y

is an isomorphism. Hence, βa
y is an isomorphism if and only if the canonical

morphism P/β−1
y (M∗y )→My is an isomorphism.

Let β0 be the composition of β with u∗M → u∗N . We get the factoriza-
tion of β0 of the form PU → P β0

U

βa
0−→ u∗N , where βa

0 is the sharp localisation
of β0. Since P := L×Mgr

x̄
Mx = L×Mgr

x̄
Mx = L×Ngr

x̄
Nx = L×Ngr

x̄
Nx, since

N is fine, following [28, II.3.4] (which is checked similarly than [21, 2.10]),
replacing U if necessary, we can suppose that βa

0 is an isomorphism. For any
geometric point y of U , this yields that the morphism βa

0,y : (P β0
U )y → Ny

is an isomorphism. Hence so is βa
0y : (P β0

U )y → Ny, i.e., P/β−1
0,y(N∗y )→ Ny

is an isomorphism.
Since the morphism M → N is local, the induced morphism M∗ →

M ×N N∗ is an isomorphism. Hence, we get M∗y → My ×Ny N
∗
y , i.e. the

morphismMy → Ny is local. Hence, we get β−1
0,y(N∗y ) = β−1

y (M∗y ). Recalling
that My = Ny, this implies that P/β−1

y (M∗y ) → My is an isomorphism.
Hence, we are done. �

Proposition 3.7. — Let (Xi)i∈N be a strict inductive systems of noe-
therian fine log schemes over (Si)i∈N. Then lim−→i

Xi is a fine S-log formal
scheme. Moreover, the canonical morphism Xi → (lim−→i

Xi) ×S Si is an
isomorphism of fine log schemes.

Proof. — We already know that X := lim−→i
Xi is a formal V-scheme such

that Xi
∼−→ X ×S Si. We have lim−→i

Xi = (lim−→i
Xi, lim←−iMXi). Put M :=

lim←−iMXi , X := lim−→i
Xi. It remains to check that M is fine log structure of

X. This is checked in Step I.
Step I. —
(1). — The canonical map θ : M → OX, canonically induced by the

structural morphisms θi : MXi → OXi , is a log structure. Indeed, we com-
pute M∗(U) = (lim←−iMXi(Ui))∗ = lim←−i(MXi(Ui))∗ = lim←−iM

∗
Xi

(Ui) =
lim←−iO

∗
Xi

(Ui) = O∗X(U), for any etale morphism U→ X. Hence,M∗ = O∗X. It
remains to check that the morphism M∗ →M ×OX

O∗X is an isomorphism,
i.e.M∗(U)→M(U)×OX(U)OX(U)∗ is an isomorphism. SinceM(U)×OX(U)
OX(U)∗ ⊂ M(U), the injectivity is obvious. Let us check the surjectivity.
Let (ai)i∈N ∈ lim←−iMXi(Ui) such that (θi(ai))i∈N ∈ lim←−iO

∗
Xi

(Ui). Since
MXi is a log structure of Xi, we get ai ∈ O∗Xi(Ui), hence (ai)i∈N ∈M∗(U).
(2). — Let U → X be an etale morphism. Suppose U affine. We prove

in this step that the canonical morphisms Mgr
Xi+1

(Ui+1)/O∗Xi+1
(Ui+1) →

Mgr
Xi

(Ui)/O∗Xi(Ui) and MXi+1(Ui+1)/O∗Xi+1
(Ui+1) → MXi(Ui)/O∗Xi(Ui)
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are isomorphisms. First, we remark that since (πiOXi+1)2 = 0, then we have
the canonical isomorphism of groups (1 + πiOXi+1 ,×) ∼−→ (πiOXi+1 ,+).
Since Ui+1 is affine and πiOXi+1 is quasi-coherent, this yields H1(Ui+1, 1+
πiOXi+1) = 0. Hence, we get the commutative diagram (we use in the proof
multiplicative notation)

(3.1)

1 1

1 // O∗Xi(Ui) //

OO

Mgr
Xi

(Ui)

OO

// Mgr
Xi

(Ui)/O∗Xi(Ui) // 1

1 // O∗Xi+1
(Ui+1) //

OO

Mgr
Xi+1

(Ui+1) //

OO

Mgr
Xi+1

(Ui+1)/O∗Xi+1
(Ui+1) //

OO

1

1 + πiOXi+1(Ui+1)

OO

1 + πiOXi+1(Ui+1)

OO

1

OO

1

OO

whose two rows and two columns are exact. Hence, the morphism
Mgr
Xi+1

(Ui+1)/O∗Xi+1
(Ui+1) → Mgr

Xi
(Ui)/O∗Xi(Ui) is an isomorphism. Since

MXi+1 → MXi is are exact closed immersion, then following this is a log
thickening of finite order (see [28, Definition IV.2.1.1]). Following
[28, IV.2.1.2.4], this yields that we have the surjective projection
MXi+1(Ui+1) = Mgr

Xi+1
(Ui+1) ×Mgr

Xi
(Ui) MXi(Ui) → MXi(Ui). Hence,

MXi+1(Ui+1)/O∗Xi+1
(Ui+1) → MXi(Ui)/O∗Xi(Ui) is surjective. Since

MXi(Ui) andMXi+1(Ui+1) is integral, from [28, I.1.3.3], the horizontal mor-
phisms of the commutative diagram

MXi+1(Ui+1)/O∗Xi+1
(Ui+1) �

� //

��

Mgr
Xi+1

(Ui+1)/O∗Xi+1
(Ui+1)

∼
��

MXi(Ui)/O∗Xi(Ui)
� � // Mgr

Xi
(Ui)/O∗Xi(Ui)

are injective. Hence,MXi+1(Ui+1)/O∗Xi+1
(Ui+1)→MXi(Ui)/O∗Xi(Ui) is an

isomorphism.
(3). — Using Mittag-Leffler condition, we get the exact sequence

1→ lim←−
i

O∗Xi(Ui)→ lim←−
i

Mgr
Xi

(Ui)→ lim←−
i

Mgr
Xi

(Ui)/O∗Xi(Ui)→ 1.

Since O∗X(U) = lim←−iO
∗
Xi

(Ui), using Step 2 we obtain

(lim←−
i

Mgr
Xi

(Ui))/O∗X(U) ∼−→ Mgr
X0

(U0)/O∗X0
(U0).
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By considering the commutative diagram

(lim←−iM
gr
Xi

(Ui))/O∗X(U) ∼ // Mgr
X0

(U0)/O∗X0
(U0)

M(U)/O∗X(U) = (lim←−iMXi(Ui))/O∗X(U)
?�

OO

// MX0(U0)/O∗X0
(U0)

?�

OO

we get the injectivity of the mapM(U)/O∗X(U)→MX0(U0)/O∗X0
(U0). Since

the mapsMXi+1(Ui+1)→MXi(Ui) are surjective (this is checked in Step 2),
we get that M(U)→MX0(U0) is surjective and then so is M(U)/O∗X(U)→
MX0(U0)/O∗X0

(U0). Hence, the canonical morphism M(U)/O∗X(U) →
MX0(U0)/O∗X0

(U0) is an isomorphism. This yields M = M/M∗ =
MX0/M

∗
X0

= MX0 .

(4). — We compute that the induced morphism M∗ → M ×MX0
M∗X0

is an isomorphism, i.e. that the morphism M →MX0 is local. Hence, since
M = MX0 (see Step 3), since MX0 is fine and M is integral, using Lem-
ma 3.6, we get that M is fine.

Step II. — In this last step, we establish that Xi → X ×S Si is an iso-
morphism of fine log schemes. Let ui : Xi → X be the canonical morphism.
We already know that Xi

∼−→ X×S Si. It remains to check that the mor-
phism u∗iM →MXi is an isomorphism. Since this is a morphism of fine log
structures, then using [28, I.4.1.2], this is equivalent to check the isomor-
phism u∗iM

∼−→ MXi . Following [21, 1.4.1], u∗iM = M . From Step I(3),
we have M ∼−→ MXi and we are done. �

Theorem 3.8. — The functors X 7→ (Xi)i∈N and (Xi)i∈N 7→ lim−→i
Xi are

quasi-inverse equivalences of categories between the category of fine S-log
formal schemes to that of strict inductive systems of noetherian fine log
schemes over (Si)i∈N.

Proof. — This is a consequence of Propositions 3.3 and 3.7. �

Lemma 3.9. — Let f : X → Y be a morphism of fine S-log formal
schemes. Then f is strict if and only if, for any i ∈ N, fi is strict.

Proof. — If f is strict then fi, the base change of f by Si ↪→ S is strict.
Conversely, suppose that for any i ∈ N, fi is strict. Let Z be the fine S-log
formal scheme whose underlying fine formal S-scheme is X and whose log
structure is f∗(MY). Then Zi → Yi is strict and Zi = Xi. Hence, Zi = Xi.
Using Proposition 3.3, this yields that X = Z, i.e. f is strict. �
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3.2. Around log etaleness

Definition 3.10. — Let f : X→ Y be a morphism of fine S-log formal
schemes. We say that f is “log étale” (resp. “log smooth, resp. “formally
log étale”, resp. “log p-étale”, resp. “formally log étale of level m”, resp.
“log p-étale of level m”) if for any integer i ∈ N the morphism fi is log
étale (resp. log smooth, resp. fine formally log étale, resp. log p-étale, resp.
formally log étale of level m, resp. log p-étale of level m).
When the morphism is strict, we remove the word “log”. For instance, f

is p-étale means that f is strict and f is log p-étale.

Remark 3.11.
• We remark that our definition of log étaleness was named by Shiho
formal log étaleness (see [30, 2.2.2]). We hope there will be no con-
fusion.

• It is also possible define some “fine saturated” definition similar
to Definition 3.10 but we leave it to the interested reader. Since
we only consider the “fine” case, we have removed the word “fine”
in the terminology of Definition 3.10. We might also consider the
notion of “fine log relatively perfect” morphism of fine S-log formal
schemes, but it seems useless for us.

Point 3.12. — The following diagram summarizes the relations between
our definitions:

(3.2)

log étale
Prop. 1.25 +3 log p-étale

Prop. 1.55
��

Prop. 1.55
∀ m, log p-étale of level m

log p-étale of level m
Rem. 1.53

+3 formally log étale of level m

Prop. 1.55
��

formally log étale.

Proposition 3.13. — Let Y be a fine S-log formal schemes. Let f0 :
X0 → Y0 be a log smooth morphism of fine log S0-schemes such that X0
is affine. Then there exists a log smooth morphism of fine S-log formal
schemes of the form f : X → Y whose reduction modulo π is f0. We say
that such morphism f is a log smooth lifting of f0.

Proof. — From [21, 3.14.(1)], there exists a unique up to isomorphism
log smooth morphism of fine log Si-schemes fi : Xi → Yi endowed with
an isomorphism X0

∼−→ Xi ×Yi Y0. Put Y := lim−→i
Yi. Let f : Y → X be
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the induced morphism. Following Theorem 3.8, Y is a fine S-log formal
schemes. By construction, f is log smooth since fi is log smooth for any
i ∈ N. �

Proposition 3.14. — Let f : X → Y be a morphism of fine S-log for-
mal schemes. The morphism f is log étale (resp. log p-étale, resp. formally
log étale of level m, resp. log p-étale of level m) if and only if f is formally
log étale and f0 is log étale (resp. log p-étale, resp. formally log étale of
level m, resp. log p-étale of level m).

Proof. — If f0 is log étale then f0 is of finite type. This yields that fi is
of finite type, which proves the non respective case. The respective cases
are consequences of Lemma 1.20 or Lemma 1.56. �

Example 3.15. — For instance, when X := Spf V[[t]] and Y := Spf V[t],
the canonical morphism f : X→ Y is p-étale but not étale.

Let us check this fact. It follows from it from the example Example 1.26
that f0 is relatively perfect and then p-étale. By using Proposition 3.14,
it remains to check that f is formally (log) étale. Since W (k) → V is
finite (where W (k) is the ring of Witt vectors of k), since formal étaleness
is stable under base change, then we reduce to the case where W (k) = V.
SinceWi(k)[t]→Wi(k)[[t]] is flat, then it follows from [22, Lemma 1.6], that
SpecWi(k)[[t]]→SpecWi(k)[t] is relatively perfect. Hence, SpecWi(k)[[t]]→
SpecWi(k)[t] is in particular formally étale, and we are done.

Point 3.16. — Let f : X→ Y be a morphism of fine S-log formal schemes.
We set Ω1

X/Y := lim←−i Ω1
Xi/Yi

. When f is log smooth, then from [21, 3.10]
the OX-module Ω1

X/S is locally free of finite type. When f log smooth and
Y = S, then f is flat. Indeed, in that case, fi : Xi → Si is integral (use [21,
4.3]) and smooth and then flat (see [21, 4.4]). Since f is of finite type, then
f is flat.

Lemma 3.17. — Let f : X→ Y, g : Y → Z be two morphisms of fine S-
log formal schemes such that OX has no p-torsion, the structural morphism
g ◦ f is log smooth and f0 : X0 → Y0 is log étale. Then f is log étale.

Proof. — We construct by p-adic completion the morphism φ : f∗Ω1
Y/Z→

Ω1
X/Z , where we put f∗Ω1

Y/Z := lim←−i f
∗
i Ω1

Yi/Zi
. Since g ◦ f : X → Z is log

smooth, the OX-module Ω1
X/Z is locally free of finite type (see Point 3.16).

In particular, Ω1
X/Z has no p-torsion. The reduction of φmodulo π is canon-

ically isomorphic to f∗0 Ω1
Y0/Z0

→ Ω1
X0/Z0

. Since f0 is log étale, this latter
homomorphism is an isomorphism. Since Ω1

X/Z has no p-torsion, this yields
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that φ is an isomorphism (e.g. use Lemma [7, 2.2.15]). This implies that the
canonical morphism f∗i Ω1

Yi/Zi
→ Ω1

Xi/Zi
is an isomorphism. Since Xi → Zi

is log smooth, from [21, 3.12], we conclude that fi is log-étale. �

Proposition 3.18. — Let f : X → Y be a morphism of fine S-log for-
mal schemes such that OX has no p-torsion. The morphism f is log smooth
if and only if, étale locally on X there exists a log étale Y-morphism of the
form X→ Y ×V ANr .

Proof. — Suppose f is log smooth. Since f0 is log smooth, when can
suppose there exists a morphism X0 → ANr such that the induced Y0-
morphism X0 → Y0 × ANr is log-étale. Using Lemma 3.2, we can suppose
that X0 → ANr has the lifting of the form X → ANr . We get the Y-
morphism X→ Y ×V ANr . We conclude by applying Lemma 3.17 that this
latter morphism is log-étale. �

3.3. Sheaf of differential operators over weakly log smooth S-log
formal scheme

Definition 3.19. — As in Definition 1.4 we define the category C of
S-immersions of fine S-log formal schemes. For any integer n, we denote
by Cn the full subcategory of C whose objects are exact closed immersions
of order n.

Lemma 3.20. — The inclusion functor Forn : Cn → C has a right adjoint
functor which we will denote by Pn : C→ Cn. Let u : Z ↪→ X be an object
of C. Then Z is also the source of Pn(u).

Proof. — Let u : Z ↪→ X be an object of C. Since ui : Zi ↪→ Xi is an
object of C , from Proposition 1.11, we get the object Pn(ui) : Zi ↪→ Pn(ui)
of C n such that Pn(ui) → Xi is affine and Pn(ui) is noetherian. Hence,
using Theorem 3.8, we get that lim−→i

Pn(ui) satisfies the universal property
of Pn(u). �

Definition 3.21. — Let f : X→ Y be a morphism of fine S-log formal
schemes.

(1) We say that a finite set (bλ)λ=1,...,r of elements of Γ(X,MX) is a “
formal log basis of f” if the induced Y-morphism X→ Y ×V ANr is
formally log étale (concerning ANr , see the notation of Point 3.1).

(2) We say that f is “weakly log smooth” if, étale locally on X, f has
formal log bases. Notice that this notion of weak log smoothness
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is étale local on Y. When Y = S, we say that X is a “weakly log
smooth S-log formal scheme” (following the terminology, the log
structure of such X is understood to be fine).

Remark 3.22. — Following Proposition 3.18, a log smooth morphism is
weakly log smooth which justifies the terminology.

Point 3.23 (nth infinitesimal neighborhood). — Let X be a weakly log
smooth S-log formal scheme. Let ∆X/S : X ↪→ X ×S X be the diagonal
immersion. Since ∆X/S is not necessarily an object of C (because X ×S X

is not noetherian in general, e.g. when X = Spf(V[[t]]) since its special fiber
is Spec(k[[t]]⊗k k[[t]]) which is not noetherian), we can not use Lemma 3.20
and we can not put ∆n

X/S := Pn(∆X/S). But this is possible to define ∆n
X/S

by taking inductive limits as follows. From Lemma 1.9, we have ∆n
Xi/Si

=
∆n
Xi+1/Si+1

×Si+1 Si. From Proposition 1.11, since ∆n
Xi/Si

are noetherian
schemes, using Theorem 3.8, we get the fine S-log formal schemes ∆n

X/S
by putting ∆n

X/S := lim−→i
∆n
Xi/Si

. Taking the inductive limits to the strict
morphisms of fine log schemes pn0 : ∆n

Xi/Si
→ Xi (resp. pn1 : ∆n

Xi/Si
→

Xi), using Lemma 3.9 we get the strict morphism of fine log formal V-
schemes pn0 : ∆n

X/S → X (resp. pn1 : ∆n
X/S → X). Using Remark 2.4, we can

check that the underlying morphism of formal V-schemes of pn0 : ∆n
X/S →

X and pn1 : ∆n
X/S → X are finite (more precisely, we can check the local

description (3.3)). Hence, we denote by PnX/S the coherent OX-algebra such
that Spf PnX/S = ∆n

X/S .
If a ∈MX, we denote by µ(m)(a) the unique section of ker(O∗∆n

X/S
→ O∗X)

such that we get in Mn
X/S the equality pn∗1 (a) = pn∗0 (a)µn(a) (see Lem-

ma 1.81). We get µn : MX → ker(O∗∆n
X/S
→ O∗X) given by a 7→ µn(a).

Proposition 3.24 (Local description of PnX/S). — Let (aλ)λ=1,...,r be
a formal log basis of f . Put ηλ,n := µn(aλ) − 1. We have the following
isomorphism of OX-algebras:

(3.3)
OX[T1, . . . , Tr]n

∼−→ PnX/S
Tλ 7−→ ηλ,n.

Proof. — This is a consequence of Proposition 2.3. �

Definition 3.25. — The sheaf of differential operators of order 6 n

of f is defined by putting DX/S,n := H omOX
(pn0∗PnX/S ,OX). The sheaf of

differential operators of f is defined by putting DX/S :=
⋃
n∈NDX/S,n.
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Let P ∈ DX/S,n, P ′ ∈ DX/S,n′ . We define the product PP ′ ∈ DX/S,n+n′

to be the composition

(3.4) PP ′ : Pn+n′
X/S

δn,n
′

−→ PnX/S ⊗OX
Pn
′

X/S
Id⊗P ′−→ PnX/S

P−→ OX.

Similarly to Proposition 2.10, we can check that the sheaf DX/S is a sheaf
of rings with the product as defined in (3.4)

3.4. Sheaf of differential operators of level m over weakly log
smooth of level m fine S-log formal schemes

Let m > 0 be an integer. The principal ideal (p) of V is endowed with a
canonical m-PD-structure, which we will denote by γ∅.

Definition 3.26. — As in Definition 1.48, we define the categories C(m)
n

whose objects are pairs (u, δ) where u is an exact closed S-immersion of
fine log S-schemes and δ is an m-PD-structure on the ideal I defined by u
(which is compatible with γ∅) and such that I{n+1}(m) = 0 and whose mor-
phisms (u′, δ′) → (u, δ) are morphisms u′ → u of C which are compatible
with the m-PD-structures δ and δ′.

Proposition 3.27.

(1) The canonical functor C(m)
n → C has a right adjoint, which we will

denote by Pn(m) : C→ C
(m)
n .

(2) Let u be an object of C. The source of Pn(m)(u) is the source of u.

Proof. — The first assertion is a consequence of Theorem 3.8 and Propo-
sition 1.63 (we need in particular Proposition 1.63(4). Since γ∅ extends to
any S-log formal schemes (because the ideal of the m-PD-structure γ∅ is
locally principal: see [4, 1.3.2.c)]), we get the second assertion. �

Point 3.28. — Let u be an object of C. We call Pn(m)(u) the m-PD-
envelope compatible of order n of u. We sometimes denote abusively by
Pn(m)(u) the target of the arrow Pn(m)(u).

Definition 3.29. — Let f : X→ Y be a morphism of fine S-log formal
schemes.

(1) We say that a finite set (bλ)λ=1,...,r of elements of Γ(X,MX) is a
“log p-basis of f” (resp. “formal log basis of level m of f”, resp. “log
p-basis of level m of f”) if the induced Y-morphism X→ Y ×V ANr

is log p-étale (resp. formally log étale of level m, resp. log p-étale of
level m).
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(2) We say that f is “log p-smooth” (resp. “weakly log smooth of level
m”, resp. “log p-smooth of level m”) if, étale locally on X, f has log
p-bases (resp. formal log bases of level m, resp. log p-bases of level
m). When Y = S, we say that X is a log p-smooth log-formal S-
scheme (resp. a weakly log smooth of level m log-formal S-scheme,
resp. a log p-smooth of level m log-formal S-scheme). Remark that
the log structure of such X is always fine following our terminology.

Point 3.30. — Using (3.2) and Proposition 3.18, we get the following
diagram summarizing the relations between our definitions:

log smooth =⇒ log p-smooth
=⇒ log p-smooth of level m
=⇒ weakly log smooth of level m
=⇒ weakly log smooth

Point 3.31. — Let X be a weakly log smooth of level m log-formal
S-scheme. Using Remark 2.15, we can check the underlying scheme of
∆n
Xi/Si,(m) is noetherian. Moreover, from the local description (2.5), we get

∆n
Xi/Si,(m)

∼−→ ∆n
Xi+1/Si+1,(m) ×Si+1 Si (recall also that pn0 : ∆n

Xi/Si,(m) →
Xi is strict). Using Theorem 3.8, we get the fine S-log formal schemes
∆n

X/S,(m) by putting ∆n
X/S,(m) := lim−→i

∆n
Xi/Si,(m). Let pn1 , p

n
0 :

∆n
X/S,(m) → X be the morphisms induced respectively by pn1 , p

n
0 :

∆n
Xi/Si,(m) → Xi. From Notation 2.12, Lemma 3.9 and Remark 2.15, the

morphisms pn1 , pn0 : ∆n
X/S,(m) → X are strict and finite (more precisely con-

cerning the finiteness, we have the local description (3.5)).
We denote by Mn

X/S,(m) the log structure of ∆n
X/S,(m). We denote by

PnX/S,(m) the coherent OX-algebra corresponding to the underlying formal
V-scheme of ∆n

X/S,(m). Hence, ∆n
X/S,(m) is an exact closed immersion of

the form ∆n
X/S,(m) : X ↪→ (Spf PnX/S,(m),M

n
X/S,(m)). We sometimes denote

abusively by ∆n
X/S,(m) the target of the arrow ∆n

X/S,(m).
As in paragraph Definition 2.26, we can define D(m)

X/S , the sheaf of differ-
ential operator on X of level m.

Point 3.32 (Local description). — Suppose in this paragraph that X →
S is endowed with a formal log basis of level m (bλ)λ=1,...,r of f . Put
ηλ(m) := µn(m)(bλ)−1 (or simply ηλ), where µn(m)(a) is the unique section of
ker(O∗∆n

X/S,(m)
→ O∗X) such that we get in Mn

X/S,(m) the equality pn∗1 (a) =
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pn∗0 (a)µn(m)(a). Taking the limits to Proposition 2.13, we get the isomor-
phism of m-PD-OX-algebras

(3.5)
OX〈T1, . . . , Tr〉(m),n

∼−→ PnX/S,(m)

Tλ 7−→ ηλ,(m),

where the first term is defined as in Notation 1.78. In particular, the el-
ements {η{k}(m)}|k|6n form an OX-basis of PnX/S,(m). The corresponding
dual basis of D(m)

X/S,n will be denoted by {∂〈k〉(m)}|k|6n. Let ε1, . . . , εr be
the canonical basis of Nr, i.e. the coordinates of εi are 0 except for the
ith term which is 1. We put ∂i := ∂〈εi〉(m) . We can define the logarithmic
transposition as in Notation 2.38 and we can check that the properties
analogous to the Section 2.5 are still satisfied in the formal context.

We finish the subsection by the formal version of the definition appearing
in Definition 1.85.

Definition 3.33. — Let f : X→ Y be a morphism of fine S-log formal
schemes.

(1) We say that a finite set (tλ)λ=1,...,r of elements of Γ(X,OX) are “log
p-étale coordinates” (resp. “formal log étale coordinates”, resp. “for-
mal log étale coordinates of level m”, resp. “log p-étale coordinates
of level m”), if the corresponding Y-morphism X→ Y×S ÂrS , where
ÂrS is the p-adic completion of the rth affine space over V endowed
with the trivial logarithmic structure, is log p-étale (resp. formally
log étale, resp. formally log étale of level m, log p-étale of level m).
When f is strict we remove “log” in the terminology, e.g. we get

the notion of “p-étale coordinates”.
(2) We say that f is “p-smooth” (resp. “weakly smooth”, resp. “weakly

smooth of level m”, resp. “p-smooth of level m”), if f is strict and
if, étale locally on X, f has p-étale coordinates” (resp. “formal étale
coordinates”, resp. “formal étale coordinates of level m”, resp. “p-
étale coordinates of level m”). Notice that these notions are étale
local on Y .

3.5. Sheaf of differential operators of finite level over log
p-smooth S-log formal schemes

Point 3.34. — Let X be a log p-smooth S-log formal schemes. We denote
by D̂(m)

X/S the p-adic completion of D(m)
X/S . As in Point 2.32, we can check that

D(m)
Xi/Si

∼−→ D(m)
X/S ⊗V V/π

i+1. Hence D̂(m)
X/S

∼−→ lim←−iD
(m)
Xi/Si

.
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Point 3.35. — Let X be a log p-smooth S-log-formal schemes. We put
D†X/S := lim−→m

D̂(m)
X/S . This is the “sheaf of differential operators of finite

level of X/S”. When X→ S is endowed with a log p-basis (bλ)λ=1,...,n, we
get the usual description ([4, 2.4.4]): an operator P of Γ(X,D†X/S) is of the
form

P =
∑
k∈Nn

ak∂
[k]

where ak ∈ Γ(X,OX) satisfy the condition: there exist some constants c, η ∈
R, with η < 1, such that for any k ∈ Nn we have

‖ak‖ 6 c η|k|,

where ‖ · ‖ is the p-adic norm i.e. whose basis of open neighbourhoods of 0
is given by (pnOX)n∈N.

Point 3.36. — Let X be a log p-smooth S-log-formal scheme. As in [4,
2.2.5], we can check that if U is a Zariski open set of X having a log p-
basis then Γ(Ui,D(m)

Xi/Si
) is right and left noetherian. As in [4, 3.1.2], we

can check that the sheaf D(m)
Xi/Si

is coherent on the right and on the left.
As in [4, 3.3.4], this yields that D̂(m)

X/S is coherent on the right and on the
left. As in [4, 3.4.2], this implies that D̂(m)

X/S,Q is coherent on the right and
on the left. By copying the proof of [8, 4.2] (indeed, we have the same
local description and X is noetherian), we can prove that the extension
D̂(m)

X/S,Q → D̂
(m+1)
X/S,Q is flat on the right and on the left. Hence, taking the

inductive limits, we obtain the coherence on the right and on the left of
D†X/S . Similarly, we have theorem of type B as in [4, 3]: if X is affine, for any
integer q > 1 we have the vanishing Hq(X,D(m)

Xi/Si
) = 0, Hq(X, D̂(m)

X/S) = 0,
Hq(X, D̂(m)

X/S,Q) = 0, Hq(X,D†X/S) = 0.

Point 3.37 (Overconvergent isocrystals). — Let X be a log p-smooth S-
log-formal schemes and Z be a Cartier divisor of X0. As in [4, 4.2.3] and
with its notation, the commutative OXi-algebra B

(m)
Xi

(Z) can be endowed
with a (canonical) compatible structure of left D(m)

Xi/Si
-module (see Def-

inition 2.36) such that B(m)
Xi

(Z) → B(m+1)
Xi

(Z) is D(m)
Xi/Si

-linear. We get
a structure of D̂(m)

X/S -module on B̂(m)
X (Z) = lim←−i B

(m)
Xi

(Z). From Proposi-
tion 2.37, we get the OX-algebra B̂(m)

X (Z)⊗̂D̂(m)
X/S such that the canoni-

cal map D̂(m)
X/S → B̂

(m)
X (Z)⊗̂D̂(m)

X/S is a morphism of OX-algebras. We set
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OX(†Z) := lim−→ mB̂(m)
X (Z) and D†X/S(†Z) := lim−→ mB̂(m)

X (Z)⊗̂D̂(m)
X/S . We de-

fine an isocrystal on X overconvergent along Z to be a coherent D†X/S(†Z)Q-
module which is also OX(†Z)Q-coherent (for the structure induced by the
canonical morphism OX(†Z)Q → D†X/S(†Z)Q).

3.6. Structure of right D†X/S-module on ωX/S

Proposition 3.38 (Structure of right D(0)
X/S-module on ωX/S). — Let

S be a fine log scheme over Z/pi+1Z and let (IS , JS , γ) be a quasi-coherent
m-PD-ideal of OS . Let f : X → S be a weakly log smooth of level m
compatible with γ morphism of fine log-schemes such that γ extends to X.

We have a canonical structure of right D(0)
X/S-module on ωX/S (see Re-

mark 2.21). Locally, this structure is characterized by the following descrip-
tion. Suppose that X → S is endowed with a formal log basis (bi)i=1,...,n of
levelm compatible with γ. Let dlog bi denotes the image of ηi in Γ(X,Ω1

X/S).
The action of P ∈ D(0)

X/S on the section a dlog b1 ∧ · · · ∧ dlog bn, where a is
section of OX is given by the formula

(3.6) (adlog b1 ∧ · · · ∧ dlog bn) · P = P̃ (a) dlog b1 ∧ · · · ∧ dlog bn.

Proof.

Step 0. — It is sufficient to check the independence of the formula (3.6)
with respect to the chosen formal log basis of level m compatible with γ.
Suppose that X → S is endowed with two formal log bases (bi)i=1,...,n and
(b′i)i=1,...,n of level m compatible with γ.

Step 1. — Let A = (aij) ∈Mn(OX) and A′ = (a′ij) ∈Mn(OX)) be the
matrices such that(

∂1
...
∂n

)
= A

 ∂′1
...
∂′n

 and

 ∂′1
...
∂′n

 = A′

(
∂1
...
∂n

)
.

Hence, we get

A′ = A−1,

 dlog b′1
...

dlog b′n

 = tA

( dlog b1
...

dlog bn

)
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and then dlog b1 ∧ · · · ∧ dlog bn = |A′|dlog b′1 ∧ · · · ∧ dlog b′n. We compute

∂i′∂i =
n∑
j=1

∂i′aij∂
′
j

=
n∑
j=1

aij∂i′∂
′
j +

n∑
j=1

∂i′(aij)∂′j

=
n∑

j,j′=1
aijai′j′∂

′
j′∂
′
j +

n∑
j=1

∂i′(aij)∂′j .

Since ∂i′∂i = ∂i∂i′ and ∂′j′∂′j = ∂′j∂
′
j′ , exchanging i with i′ yields

n∑
j=1

∂i′(aij)∂′j =
n∑
j=1

∂i(ai′j)∂′j .

Hence, for any i, i′, j, we have ∂i′(aij) = ∂i(ai′j) and then (by symmetry)
∂′i′(a′ij) = ∂′i(a′i′j).
Step 2. — By symmetry and OX -linearity, it is sufficient to check that

both actions of ∂1 on dlog b1 ∧ · · · ∧dlog bn coincides. With the first choice,
this is straightforward that we get 0. Now, we consider the action ∂1 on
dlog b1 ∧ · · · ∧ dlog bn for the second choice of log p-basis. Since ∂1 =∑n
j=1 a1j∂

′
j , we get dlog b1∧ · · · ∧dlog bn ·∂1 = (|A′|dlog b′1∧ · · · ∧dlog b′n) ·

∂1 = −
∑n
j=1 ∂

′
j(a1j |A′|) dlog b′1 ∧ · · · ∧ dlog b′n. Hence, we have to check∑n

j=1 ∂
′
j(a1j |A′|) = 0.

(a). — We compute a1j |A′| =
∑
σ∈Sn,σ(1)=j(−1)ε(σ)∏n

i=2 a
′
σ(i)i. Indeed,

let L′1, . . . , L′n be the rows of A′. We remark that a1j |A′| is equal to the
determinant of the matrix A′ whose row L′j is replaced by a1jL

′
j and then

by
∑n
l=1 a1lL

′
l. Since AA′ = In, we get

∑n
l=1 a1lL

′
l = (1, 0, . . . , 0). This

yields the desired formula.
(b). — We have

n∑
j=1

∂′j(a1j |A′|) =
∑

σ∈Sn,l∈{2,...,n}

(−1)ε(σ)∂′σ(1)(a′σ(l)l)
n∏

i=2,i6=l
a′σ(i)i.

Indeed, this is a consequence of the formula

∂′σ(1)(
n∏
i=2

a′σ(i)i) =
n∑
l=2

∂′σ(1)(a′σ(l)l)
n∏

i=2,i6=l
a′σ(i)i,

and of that of part (a).
(c). — We define on Sn × {2, . . . , n} the following equivalence relation.

Two elements (σ, l) and (σ′, l′) of Sn × {2, . . . , n} are equivalent if either
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(σ′, l′) = (σ, l) or (σ′, l′) = (σ ◦ (1, l), l). Let (σ, l) and (σ′, l′) = (σ ◦ (1, l), l)
be a class of Sn × {2, . . . , n}. Using the formula checked in Step 1 of the
proof, we get

(−1)ε(σ
′)∂′σ′(1)(a′σ′(l)l)

n∏
i=2,i6=l

a′σ′(i)i + (−1)ε(σ)∂′σ(1)(a′σ(l)l)
n∏

i=2,i6=l
a′σ(i)i = 0.

Since we have a partition of Sn × {2, . . . , n} by its classes, this implies∑
σ∈Sn,l∈{2,...,n}

(−1)ε(σ)∂′σ(1)(a′σ(l)l)
n∏

i=2,i6=l
a′σ(i)i = 0.

We conclude using (b). �

Proposition 3.39. — Let X be a log p-smooth S-log-formal scheme.
We suppose that X has no p-torsion. We put ωX/S := lim←−i ωXi/Si . There
exists a canonical structure of right D†X/S -module on ωX/S . It is character-
ized by the following local formula: suppose that X is endowed with a log
p-basis (bλ)λ=1,...,n. Let dlog bλ be the image of ηλ in Ω1

X/S . Then, for any
integer m, for any differential operator P ∈ D(m)

X/S and a ∈ OX we have

(3.7) (a dlog b1 ∧ · · · ∧ dlog bn) · P := P̃ (a) dlog b1 ∧ · · · ∧ dlog bn.

Proof. — Using Proposition 3.38, we get a canonical structure of right
D̂(0)

X -module on ωX/S = lim←−i ωXi/Si . Hence, we get a structure of right
D̂(0)

X,Q-module on ωX/S,Q. Since D
(m)
X/S ⊂ D̂

(0)
X/S,Q, we get a structure of right

D(m)
X/S -module on ωX/S,Q. Let us check that ωX/S is a sub D(m)

X/S -module of
ωX/S,Q. Since this is local, we can suppose that X is endowed with a log
p-basis (bλ)λ=1,...,n. We compute that the right D(m)

X/S -action on ωX/S,Q is
given by the formula (3.7). This implies that ωX/S is a sub D(m)

X/S -module
of ωX/S,Q. Using (a right log version of) [3, 3.1.3], this yields that ωX/S is
endowed with a canonical structure of D̂(m)

X -module. Since these structures
are compatible with D̂(m)

X → D̂(m+1)
X , we are done. �

Corollary 3.40. — Let X be a log p-smooth S-log-formal scheme such
that X has no p-torsion. Let i be an integer. There exists a canonical struc-
ture of right D(m)

Xi/Si
-module on ωXi/Si . It is characterized by the following

local formula: suppose that X is endowed with a log p-basis (bλ)λ=1,...,n.
Let dlog bλ be the image of ηλ in Ω1

Xi/Si
. Then, for any integer m, for any

differential operator P ∈ D(m)
Xi/Si

and a ∈ OXi we have

(3.8) (a dlog b1 ∧ · · · ∧ dlog bn) · P := P̃ (a) dlog b1 ∧ · · · ∧ dlog bn.
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Proof. — This is a consequence of Proposition 3.39. �

Corollary 3.41. — Let X be a log p-smooth S-log-formal scheme such
that X has no p-torsion. The functor − ⊗OXi ωXi (resp. − ⊗OX

ωX) is
an equivalence of categories between that of left D(m)

Xi/Si
-modules (resp.

left D†X/S -modules) and that of right D(m)
Xi/Si

-modules (resp. right D†X/S -
modules). The functor−⊗OXiω

−1
Xi

(resp.−⊗OX
ω−1
X ) is a quasi-inverse func-

tor. Both functors preserve the coherence. These functors are the “twisted
structures” of D-module.

3.7. Pushforwards, extraordinary pull-backs and duality

Let f : X→ Y be a morphism of log p-smooth S-log-formal schemes. We
suppose that the formal V-schemes X and Y have no p-torsion. We can
follow Berthelot’s construction of pushforwards, extraordinary pull-backs
and duality as explained in [6] or [5]. For the reader, let’s briefly sketch the
construction.

Notation 3.42 (dimension and rank of a p-basis).

(1) The OX-module ΩX/S is locally free of finite rank. We denote by
δX/S : X → N the locally constant function given by x 7→
rankOX,x

ΩX/S,x. Since X is noetherian and formally smooth over
Spec k, then X is regular (see [15, 0IV .19.3.8] and [15, 0IV .19.6.4]).
This yields that X is the sum of its irreducible components (see [13,
6.1.10]). If U is an irreducible component of X, then δX|U is a con-
stant function. If moreover U/S has a finite p-basis, then δX|U is
the constant function equal to the rank of ΩU/S , which is equal to
the number of elements of the p-basis.

(2) We have the locally constant function dX : X → N, given by x 7→
dimx X. In general dX 6= δX For instance, when X = Spf V((t)),
the Krull dimension of X is 0 but ΩX/S is OX-free of rank 1. The
function dX is not the right one in our context. The function δX/S
seems as fine as the dimension in the case of smooth formal V-
schemes. For instance, by copying the usual proof, with (3.11), we
can check the isomorphism DX(OX,Q) ∼−→ OX,Q.

(3) We set δX/Y := δX − δY ◦ f .

Point 3.43. — By functoriality, the left D(m)
Xi/Si

-module f∗D(m)
Yi/Si

is in fact
endowed with a structure of (D(m)

Xi/Si
, f−1D(m)

Yi/Si
)-bimodule which we will
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denote byD(m)
Xi→Yi/Si . By twisting (see Corollary 3.41), we get a (f−1D(m)

Yi/Si
,

D(m)
Xi/Si

)-bimodule by setting D(m)
Yi←Xi/Si := ωXi/Si ⊗OXi f

∗
g (D(m)

Yi/Si
⊗OYi

ω−1
Yi/Si

), where the index g means that we choose the left structure of
the left D(m)

Yi/Si
-bimodule D(m)

Yi/Si
⊗OYi ω

−1
Yi/Si

. Next, we put D̂(m)
X→Y/S :=

lim←−iD
(m)
Xi→Yi/Si and D̂(m)

Y←X/S := lim←−iD
(m)
Yi←Xi/Si . Finally, D†X→Y/S :=

lim−→m
D̂(m)

X→Y/S and D†Y←X/S := lim−→m
D̂(m)
Y←X/S . We denote by Db(D†X/S,Q),

(resp. Db
coh(D†X/S,Q), resp. Dparf(D†X/S,Q)) the derived category of bounded

(resp. and bounded and coherent, resp. perfect) complexes of left D†X/S,Q-
modules.

(1) As in [6, 4.3.2.2], we get the functor f !:Db
coh(D†Y/S,Q)→Db(D†X/S,Q)

by setting, for any object F of Db
coh(D†Y/S,Q),

(3.9) f !(F) := D†X→Y/S,Q ⊗
L
f−1D†Y/S,Q

f−1F [δX/Y ].

When f is log p-smooth, only by copying Berthelot’s proof
in the classical theory, we expect that the functor f ! preserves
the coherence, i.e. we have the factorization f ! : Db

coh(D†Y/S,Q) →
Db

coh(D†X/S,Q).
(2) As in [6, 4.3.7.1], we get the functor f+:Db

coh(D†X/S,Q)→Db(D†Y/S,Q)
by setting, for any object E of Db

coh(D†X/S,Q),

(3.10) f+(E) := Rf∗(D†Y←X/S,Q ⊗
L
D†

X/S,Q
E).

When f is proper, only by copying Berthelot’s proof in the classical
theory, we expect that the functor f ! preserves the coherence, i.e.
we have the factorization f+ : Db

coh(D†X/S,Q)→ Db
coh(D†Y/S,Q).

(3) As in [6, 4.3.10], we get the functor DX : Dparf(D†X/S,Q) →
Dparf(D†X/S,Q) by posing, for any object E of Dparf(D†X/S,Q),

(3.11) DX(E) := RH omD†
X/S,Q

(E ,D†X/S,Q ⊗OX,Q ω
−1
X/S,Q)[δX].
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