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EXAMPLES OF K-UNSTABLE FANO MANIFOLDS

by Thibaut DELCROIX (*)

Abstract. — We examine various examples of horosymmetric manifolds which
exhibit interesting properties with respect to canonical metrics. In particular, we
determine when the blow-up of a quadric along a linear subquadric admits Kähler–
Einstein metrics, providing infinitely many examples of manifolds with no Kähler–
Ricci solitons that are not K-semistable. Using a different construction, we provide
an infinite family of Fano manifolds with no Kähler–Einstein metrics but which
admit coupled Kähler–Einstein metrics. Finally, we elaborate on the relationship
between Kähler–Ricci solitons and the more general concept of multiplier Hermitian
structures and illustrate this with examples related to the two previous families.
Résumé. — Nous considérons différents exemples de variétés horosymétriques

qui possèdent des propriétés intéressantes pour l’étude de métriques canoniques.
En particulier, nous déterminons quand l’éclatement d’une quadrique le long d’une
sous-quadrique linéaire admet une métrique de Kähler–Einstein, ce qui fournit
une infinité d’exemples de variétés de Fano lisses sans solitons de Kähler–Ricci
et qui ne sont pas K-semistables. Au moyen d’une construction différente, nous
construisons une famille infinie de variétés de Fano sans métriques de Kähler–
Einstein qui admettent des métriques de Kähler–Einstein couplées. Enfin, nous
mentionnons un lien possible entre solitons de Kähler–Ricci et des familles plus
générales de structures multiplicative hermitiennes, et illustrons ce phénomène avec
des exemples liés aux familles précédentes.

1. Introduction

When does a Fano manifold admit a Kähler–Einstein metric? If it does
not, how can we measure this failure? What alternative canonical metric
can we obtain on a Fano manifold? The goal of this article is not to answer
these questions but to give them more visibility and provide a detailed study

Keywords: K-stability, Fano manifold, Kähler–Einstein metrics, Mabuchi soliton,
horosymmetric varieties.
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of a few examples. By studying the blow-ups of projective spaces at two
disjoint linear subspaces, we provide an infinite family of examples of mani-
folds with no Kähler–Einstein metrics but coupled Kähler–Einstein metrics.
By studying the blow-ups of quadrics at a linear subquadric, we provide
an infinite family of examples of manifolds that are not K-semistable and
admit no Kähler–Ricci solitons.
Let us be a bit more precise. Consider a Fano manifold X. A Kähler form

(abusively, metric) ω ∈ c1(X) is Kähler–Einstein if it satisfies the equation

Ric(ω) = ω

where Ric(ω) denotes the Ricci form of ω. We say a Fano manifold is
Kähler–Einstein if it admits a Kähler–Einstein form. A convincing numer-
ical measure of how a Fano manifold fails to be Kähler–Einstein is given
by the greatest Ricci lower bound:

R(X) = sup {t ∈ [0, 1] | ∃ω ∈ c1(X),Ric(ω) > tω} .

If X is Kähler–Einstein then R(X) = 1 while the converse direction does
not hold. In K-stability terms, R(X) = 1 is equivalent to K-semistability
of X.

Several candidate alternative metrics on Fano manifolds with no Kähler–
Einstein metrics have been proposed over the years. The best known are
the Kähler–Ricci solitons, which satisfy the equation

Ric(ω)− Lξω = ω

where ξ is a holomorphic vector field and Lξ denotes the Lie derivative
with respect to ξ. They actually belong to a large family of metrics intro-
duced by Mabuchi as multiplier Hermitian structures: X is equipped with
a multiplier Hermitian structure if there exists a Kähler form ω ∈ c1(X),
a holomorphic vector field ξ and a smooth real valued concave function h
such that

(1.1) Ric(ω)−
√
−1∂∂̄h ◦ θ = ω

where θ is defined by Lξω =
√
−1∂∂̄θ. Kähler–Einstein metrics correspond

to the case h = 0 and Kähler–Ricci solitons to the case h = id. When h is
the logarithm of an affine function, such metrics are called Mabuchi metrics.
The advantage of Mabuchi metrics over Kähler–Ricci solitons is that such
metrics have a more algebraic nature. For example, the holomorphic vector
field is essentially well determined by the manifold alone in the case of
Kähler–Ricci solitons or of Mabuchi metrics. In the case of solitons, the
vector field may very well generate a non-closed subgroup whereas this is
impossible for Mabuchi metrics. This can make an important difference

ANNALES DE L’INSTITUT FOURIER
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in the study of moduli spaces of Fano manifolds with canonical metrics.
Motivated by this, we want to advertise the following open question.

Question 1.1. — Is it true that a Fano manifold X admits a Kähler–
Ricci soliton if and only if there exists a multiplier Hermitian structure as
defined by Equation (1.1), where h is the logarithm of a polynomial?

Another candidate for canonical metrics is given by coupled Kähler–
Einstein metrics. These were introduced by Hultgren and Witt Nyström
in [12] and in the simplest case of pairs of metrics, may be defined as follows.
A Fano manifold X admits a pair of coupled Kähler–Einstein metrics if
there exists a pair (ω1, ω2) of Kähler forms such that

Ric(ω1) = Ric(ω2) = ω1 + ω2.

The advantage here is that no holomorphic vector field is involved, and
the drawback is that several Kähler classes have to be considered. Until
the present paper, only two examples of Fano manifolds with no Kähler–
Einstein metrics but a pair of coupled Kähler–Einstein metrics were
known [8, 11].
The first example of a Fano manifold X with no Kähler–Ricci solitons

and R(X) < 1 was obtained by the author in [4, 5]. The example is a
biequivariant compactification of the group Sp4, obtained by blowing up
the unique closed orbit in the wonderful compactification of this group.
The author later provided two additional examples in [6], as compactifica-
tions of the group SO4, however the examples were still sporadic at that
point. Such examples provide a useful illustration of the variety of situations
regarding K-stability, and are the only known illustrations of type 2 singu-
larity formation along the Kähler–Ricci flow on Fano manifolds (see [13]).
It should be noted that Fujita obtained in [9] examples of Fano manifolds
of Picard number one which are K-unstable. To the author’s knowledge, it
is not known if these examples admit Kähler–Ricci solitons.
The infinite family of examples presented here share a strong similar-

ity with the previous examples: they are equivariant compactifications of
symmetric spaces (actually one of the above mentioned compactifications
of SO4 is part of this family). This allows us to use the K-stability criteri-
ons proved by the author in [6], which reduces the problem to determining
the sign of a finite number of integrals of polynomials on polytopes. While
such integrals can be computed, it yields in general complicated expres-
sions. In particular, the sign is not easily determined without an explicit
computation, making the determination of K-stability on infinite families
a challenging task.

TOME 72 (2022), FASCICULE 5
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The family of examples we consider here is formed as we said by blow-
ups of quadrics along lower dimensional linear subquadrics. An infinity of
these are Kähler–Einstein, and an infinity are as stated (not K-semistable
and with no Kähler–Ricci solitons).

Theorem 1.2. — Let Qn denote the quadric of dimension n, and Qk

denote a linear subquadric of Qn of dimension k. Then if 2 6 k 6 n − 3,
the blow-up BlQk(Qn) of Qn along Qk is K-unstable and does not admit
any Kähler–Ricci soliton. In the other cases, BlQk(Qn) is Kähler–Einstein.

The lowest dimensional example is BlQ2(Q5). It has dimension five, so
the following question remains open.

Question 1.3. — Does there exist examples of Fano threefolds with no
Kähler–Ricci solitons that are K-unstable? What about Fano fourfolds?

In the process of introducing the symmetric structure on the family of
manifolds that provide our examples, a natural detour is to start by consid-
ering the blow-ups of projective spaces along linear subspaces. The blow-up
of a projective space along a linear subspace has a non-reductive automor-
phism group, satisfying Matsushima’s obstruction [15]. They provided as
such the first example of a Fano manifold with no Kähler–Einstein metrics:
the blow-up of P2 at a point.
Furthermore, the blow-up of P4 along a line and a disjoint plane provided

the first example of a Fano manifold with reductive automorphism group
and non-vanishing Futaki invariant as highlighted by Futaki himself [10]. As
a toric manifold, BlP1,P2 P4 admits a Kähler–Ricci soliton: Wang and Zhu
proved in [18] that any toric Fano manifold admits a Kähler–Ricci soliton. It
actually admits better metrics in two directions: it admits Mabuchi metrics
and coupled Kähler–Einstein metrics.
More generally, the blow-up of a projective space along two complemen-

tary linear subspaces also has reductive automorphism group and non-
vanishing Futaki invariant. We show that an infinity of these manifolds are
manifolds with no Kähler–Einstein metrics but pairs of coupled Kähler–
Einstein metrics.

Theorem 1.4. — For k large enough, BlPk−1,Pk P2k+1 admits pairs of
coupled Kähler–Einstein metrics but no Kähler–Einstein metrics.

We believe this holds more generally and our proof could easily be
adapted to prove other particular cases but we found no general proof.

ANNALES DE L’INSTITUT FOURIER
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Question 1.5. — Does there exist a pair of coupled Kähler–Einstein
metrics on all blow-ups of the projective space along complementary sub-
spaces? Is it true that there exist no coupled Kähler–Einstein metrics on
BlQk Qn, for 2 6 k 6 n− 3?

Similarly, we are convinced that Mabuchi metrics exist on all blow-ups
of projective space we consider. Finding no elegant general proof of this
fact, we instead provide a positive answer to Question 1.1 in a particular
case.

Theorem 1.6. — Let X be a homogeneous P1-bundle over a rational
homogeneous manifold G/P , where G is a reductive group and P a para-
bolic subgroup of G. Assume X is Fano, then X admits Kähler–Ricci soli-
tons, and X admits multiplier Hermitian structures as in Equation (1.1),
where h is the logarithm of a polynomial of degree equal to the dimension
of G/P .

In the body of the paper we will prove the results stated in this in-
troduction. The results to prove are translated into combinatorial condi-
tions by using [8]. More precisely, Theorem 1.2 is proved using [8, Corol-
lary 1.3], Theorem 1.4 is proved using [8, Corollary 1.5], and Theorem 1.6 is
proved using [8, Theorem 1.2]. As already mentioned, it does not mean that
checking the conditions is trivial, as soon as we consider infinite families.
Nonetheless the arguments to be used pertain to elementary mathematics.
An additional goal of the paper is the description of all the combinatorial
data associated to the families of examples considered (in particular a full
description of the Picard group and moment polytopes associated to am-
ple line bundles). Our hope is that these detailed examples will provide an
easier entry point to the theory of horosymmetric and spherical manifolds,
and can more readily be used to check properties of other canonical metrics
or other geometric properties.

In Section 2 we consider the blow-ups of projective spaces along com-
plementary linear subspaces as horospherical manifolds (the combinatorial
data can be used as well to study blow-ups at a single linear subspace
as horospherical manifolds), and prove Theorem 1.4 and Theorem 1.6. In
Sections 3 and 4, we study the blow-up of a quadric along a linear sub-
quadric as a symmetric variety and prove Theorem 1.2. In Section 3 we
treat the case when the symmetric space is semisimple, which contains the
K-unstable cases. In Section 4 we treat the remaining case. This final sec-
tion also contains an interesting family: the blow-up of a quadric at a point
admits no Mabuchi metrics, starting from dimension three.

TOME 72 (2022), FASCICULE 5
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Each one of the three sections follows the same structure. We begin by a
geometric description of the manifolds and of the orbits under the natural
group action to consider. We then describe the full combinatorial data
associated to these manifolds, as horosymmetric varieties. First we describe
the combinatorial data encoding the manifold itself, then we describe the
combinatorial data associated to each ample R-divisor. Finally we examine
the combinatorial conditions encoding the existence of canonical metrics to
prove our main results.

Acknowledgements

It is my pleasure to thank Jakob Hultgren for our joint work which
allowed to prove half of the results in this article, and which provided
motivation to study these particular families of examples. Part of this work
was initially written in preparation for talks at two conferences during
the summer of 2019. I thank Ivan Cheltsov and Simone Calamai for the
invitations to these conferences.

2. Blow-ups of projective space along complementary
linear subspaces

2.1. Description of the manifolds

Let p and n be two integers such that

2 6 p 6 n− 2,

Consider the complex reductive group G := S(GLp×GLn−p). We consider
G as embedded in GLn by block-diagonal matrices: if (A,B) ∈ G, we
identify it with (A 0

0 B ).
Write Cn = Cp ⊕ Cq and consider the induced action of the group G.

There are four orbits under this action: the fixed point {0}, the pointed
linear subspaces (Cp \ {0})×{0} and {0}× (Cq \ {0}), and the open dense
orbit (Cp \{0})× (Cq \{0}). It induces as well an action of G on Pn−1 with
three corresponding G-orbits: an open dense orbit, and two disjoint linear
subspaces (which we denote by Pp−1 and Pq−1 in an abuse of notations).
The blow-ups of the projective space along one or both of these linear

subspaces are Fano manifolds. We will focus on the manifold obtained by
blowing up both orbits, and we will denote the manifold by

Xn,p := BlPp−1,Pq−1(Pn−1).

ANNALES DE L’INSTITUT FOURIER



EXAMPLES OF K-UNSTABLE FANO MANIFOLDS 2085

By the description above, this manifold is equipped with an action of G.
It is a standard fact, though not obvious, that the neutral components

of the automorphism group Aut(BlY (X)) of a blow-up and of the stabilizer
StabAut(X)(Y ) of the blown-up submanifold in the automorphism group of
the initial manifold are isomorphic. The non-obvious direction may be seen
as a consequence of Blanchard’s Lemma (see [1, 3]).
The stabilizer of Pp−1 in the automorphism group Aut(Pn−1) = PGLn

of the projective space is the image of the group of upper block-triangular
invertible matrices with two square diagonal blocks of size p and q. The neu-
tral component Aut0(BlPp−1(Pn−1)) of Aut(BlPp−1(Pn−1)) is thus exactly
the stabilizer described above. In particular, this group is not reductive and
the image of G in it is a Levi subgroup. For BlPp−1,Pq−1(Pn−1), the same
argument shows that Aut0(BlPp−1,Pq−1(Pn−1)) is the Levi subgroup above,
hence the image of G is the full connected automorphism group. Note in
particular that the automorphism group of Xn,p is reductive.
Under the action of G, the manifold Xn,p is a horospherical manifold, as

we will explain in the next section. This structure, taking into account the
full group of automorphisms, is the most natural to consider. However, we
should note that Xn,p is:

• a toric manifold if we consider only the action of a maximal torus,
• a cohomogeneity one manifold if we consider only the action of a
maximal compact subgroup,

• a P1-bundle over the product of projective spaces Pp−1 × Pq−1.

2.2. Combinatorial data associated to the manifold

2.2.1. The open orbit

Let T ⊂ SLn denote the maximal torus (both in G and SLn) formed by
diagonal matrices, and denote the roots of SLn with respect to T by

αi,j : T → C∗

t 7→ di
dj

where t = diag(d1, . . . , dn), for 1 6 i 6= j 6 n. The roots of G are the αi,j
with 1 6 i 6= j 6 p or p + 1 6 i 6= j 6 n. The set of characters of T
is denoted by X(T ) and the set of one-parameter subgroups is denoted by
Y(T ). The Killing form of G is denoted by {x, y} for x, y ∈ g.

TOME 72 (2022), FASCICULE 5
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It is immediate to determine the stabilizer H of the point (1 : 0 · · · : 0 :
1 : 0 : · · · : 0) in Pn−1, which is in the open orbit (the 1 are at position 1
and (p+ 1)). Let P denote the parabolic subgroup of G containing T such
that the roots of its unipotent radical are

ΦPu = {α1,2, . . . , α1,p, αp+1,p+2, . . . , αp+1,n}.

Then H is the kernel in P of the character of P defined by α1,p+1.
As a consequence, H contains the unipotent radical of P , and G/H is a

rank one horospherical homogeneous space. To be consistent with the con-
ventions in [8] and [7], we fix an involution σ of t such that tσ = ker(α1,p+1).
It amounts to choosing the fixed point set of σ, a complement to Rα1,p+1
in X(T )⊗R. Here, we choose the orthogonal of α1,p+1 with respect to the
Killing form to define σ.
Let us describe the combinatorial invariants corresponding to the spheri-

cal homogeneous space G/H. We do this with respect to the Borel subgroup
B of G containing T whose corresponding simple roots are

S = {α2,1, . . . , αp,p−1, αp+2,p+1, . . . αn,n−1},

to ensure again consistency with the conventions in [8] and [7]. The spherical
latticeM is then X(T/T ∩H) = Zα1,p+1. The valuation cone is the vector
space generated by α1,p+1: V =M⊗R. The colors are in bijection with the
set −ΦPu ∩ S = {α2,1, αp+2,p+1}, we denote these by Dα2,1 and Dαp+2,p+1

respectively. Recall that given a root α ∈ X(T ) of G, the coroot α∨ ∈ Y(T )
is defined by α(x) = 2 {x,α

∨}
{α∨,α∨} for all x ∈ Y(T ) ⊗ R. The color map sends

Dα to the restriction α∨|M⊗R for α ∈ {α2,1, αp+2,p+1}. The images are
thus respectively −e and e where e = α∗1,p+1 denotes the element dual to
α1,p+1 in (M⊗ R)∗, as illustrated in Figure 2.1.

•
0

•
e = α∗1,p+1 = α∨p+2,p+1|M⊗R

•
−e = α∨2,1|M⊗R

Figure 2.1. M⊗ R

Note that if we considered the case p = 1 or n − p = 1, only one of the
two roots α2,1 or αp+2,p+1 would be a well defined roots of G. There would
correspondingly be only one projective subspace giving rise to a non-trivial
blow-up. We will not give the details but the combinatorial description is
a minor variation of the one presented here.

ANNALES DE L’INSTITUT FOURIER
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2.2.2. Colored fans and embeddings

The colored fan of Pn−1 is the fully colored fan

{(R+e,Dαp+2,p+1), (−R+e,Dα2,1), ({0}, ∅)},

where the first cone corresponds to the orbit Pp−1, the second to Pq−1 and
the last to the open orbit. The colored fan of BlPq−1 Pn−1 is

{(R+e,Dαp+2,p+1), (−R+e, ∅), ({0}, ∅)}.

The colored fan of BlPp−1 Pn−1 is

{(R+e, ∅), (−R+e,Dα2,1), ({0}, ∅)}.

Finally, the colored fan of BlPp−1,Pq−1 Pn−1 is the colorless fan

{(R+e, ∅), (−R+e, ∅), ({0}, ∅)}.

2.3. Combinatorial data associated to divisors

2.3.1. Picard group, isotropy characters and polytopes:

Recall that the Picard group of a general spherical variety is described by
Brion in [2]. We recalled this description and introduced a few convenient
notions in [7, 8] to deal with moment polytopes in the special case of
horosymmetric manifolds. We will use the language of [7] here, notably we
will use the terms special divisor and isotropy character as defined in that
paper.
The Picard group of BlPp−1,Pq−1 Pn−1 is of rank 3. Let D± denote the G-

invariant divisor associated to the ray ±R+e. The Picard group is generated
by Dα2,1 , Dαp+2,p+1 , D+ and D− with the relation

D+ +Dαp+2,p+1 = D− +Dα2,1 .

For D±, they already are special divisors, and the isotropy characters are
trivial. Up to renormalizing the action by a character of G, the linearized
line bundle associated to Dα2,1 admits a B-semi-invariant section whose B-
weight $2,1 is given by diag(d1, · · · , dn) 7→ d−1

1 (this is, up to a character of
the reductive group G the fundamental weight of α2,1). Then the linearly
equivalent special Q-divisor is

Dα2,1 −
{$2,1, α1,p+1}
{α1,p+1, α1,p+1}

(D+ +Dαp+2,p+1 −D− −Dα2,1)

= 1
2(D+ +Dαp+2,p+1 +Dα2,1 −D−)

TOME 72 (2022), FASCICULE 5



2088 Thibaut DELCROIX

and its isotropy character is

χ2,1 := $2,1 −
{$2,1, α1,p+1}
{α1,p+1, α1,p+1}

α1,p+1 = $2,1 + 1
2α1,p+1.

As a consequence, special R-divisors are all the

D(ac, a+, a−) := ac(Dα2,1 +Dαp+2,p+1) + a+D+ + a−D−

for ac, a+, a− ∈ R. The isotropy character of such a divisor is 2acχ2,1, and
the associated special polytope is defined by

∆(ac, a+, a−) = {tα1,p+1 | max(−a+,−ac) 6 t 6 min(a−, ac)}.

The moment polytope, provided the divisor is ample, is

∆+(ac, a+, a−) = 2acχ2,1 + ∆(ac, a+, a−).

Note that Brion’s ampleness criterion [2, Théorème 3.3] states, in our case,
thatD(ac, a+, a−) is ample if and only if a+ < ac, a− < ac and a++a− > 0.

••
−a+α1,p+1

•
a−α1,p+1

• •∆+(ac, a+, a−)•
2acχ2,1

Figure 2.2. Moment polytope for an ample divisor on BlPp−1,Pq−1 Pn−1

The special divisor D
(
n
2 , p+ 1− n

2 ,
n
2 − p+ 1

)
represents the anticanon-

ical divisor, its isotropy character is nχ2,1, thus the corresponding moment
polytope is

∆+
(n

2 , p+ 1− n

2 ,
n

2 − p+ 1
)

= nχ2,1 + ∆
(n

2 , p+ 1− n

2 ,
n

2 − p+ 1
)
.

2.3.2. Duistermaat–Heckman polynomial and barycenters

Key ingredients in the combinatorial criterions for existence of canoni-
cal metrics are the Duistermaat–Heckman polynomial and barycenters of
moment polytopes with respect to this polynomial. We give here a first
expression of these in our special case.

ANNALES DE L’INSTITUT FOURIER
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It is enough to express the Duistermaat–Heckman polynomial PDH in
the plane generated by α1,p+1 and 2χ2,1 since every moment polytope lives
in this plane. We have

PDH(xα1,p+1 + 2yχ2,1) =
∏

α∈−ΦPu
{α, xα1,p+1 + 2yχ2,1}

= (−x+ y)p−1(x+ y)n−p−1.

The Duistermaat–Heckman barycenter corresponding to the ample divisor
D(ac, a+, a−) is, for any choice of Lebesgue measure d p,

Bar(ac, a+, a−) =

∫
∆+(ac,a+,a−) pPDH(p) d p∫
∆+(ac,a+,a−) PDH(p) d p

= 2acχ2,1 +
(∫ a−
−a+

t(t+ ac)n−p−1(ac − t)p−1 d t∫ a−
−a+

(t+ ac)n−p−1(ac − t)p−1 d t

)
α1,p+1.

2.4. Kähler–Einstein criterion

Since X is a toroidal horospherical manifold, the combinatorial criterion
ruling the existence of Kähler–Einstein metrics on X was originally proved
by Podesta and Spiro [17]. It was reproved on several occasions by the au-
thor, in [6] and [7]. The criterion states that X is Kähler–Einstein if and
only if the barycenter of the moment polytope associated to the anticanon-
ical divisor with respect to the Duistermaat–Heckman polynomial PDH
coincides with the opposite of the sum of positive roots of the parabolic
subgroup P . In formulas:

Proposition 2.1 (application of Theorem B and Proposition 4.7 in [17]).
The manifold BlPp−1,Pq−1 Pn−1 is Kähler–Einstein if and only if

Bar
(n

2 , p+ 1− n

2 ,
n

2 − p+ 1
)

=
∑

α∈−ΦPu
α.

Note that∑
α∈−ΦPu

α = α2,1 + · · ·+ αp,1 + αp+2,p+1 + · · ·+ αn,p+1

= nχ2,1 +
(n

2 − p
)
α1,p+1.

Hence the manifold BlPp−1,Pq−1 Pn−1 is Kähler–Einstein if and only if

I(n, p) :=
∫ n

2−p+1

−(p+1−n2 )

(
t+ p− n

2

)(
t+ n

2

)n−p−1 (n
2 − t

)p−1
d t = 0.

TOME 72 (2022), FASCICULE 5
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Lemma 2.2. — The manifold BlPp−1,Pq−1 Pn−1 is Kähler–Einstein if and
only if n is even and p = n

2 . Else we have I(n, p) > 0 if p < n
2 and I(n, p) < 0

if p > n
2 .

Proof. — By using the variable x = t+ p− n
2 , we get

I(n, p) =
∫ 1

−1
x(x+ n− p)n−p−1(p− x)p−1 dx.

The integrand has a simple primitive, providing the explicit formula

I(n, p) =
[
−1
n

(p− x)p(n− p+ x)n−p
]1

−1

= −1
n

(
(p− 1)p(n− p+ 1)n−p − (p+ 1)p(n− p− 1)n−p

)
.

We claim that the function f : x 7→ (x−1
x+1 )x is strictly increasing on [1,∞[.

Once the claim is proved, the theorem is as well in view of the last expres-
sion of I(n, p). A direct computation of the derivative yields

f ′(x) =
(

ln
(
x− 1
x+ 1

)
+ 2x
x2 − 1

)(
x− 1
x+ 1

)x
.

By a power series expansion, for 0 < y < 1 we have

ln (1− y) + y(2− y)
2

1
1− y =

∑
k∈N

k + 1
2(k + 3)y

k+3 > 0.

Setting y = 2
x+1 , we obtain f ′(x) > 0 for x > 1, thus the claim. �

2.5. Mabuchi-type metrics

The combinatorial criterion, proved by the author and Jakob Hultgren [8,
Corollary 1.5], ruling the existence of Mabuchi metrics on BlPp−1,Pq−1 Pn−1

reads as follows. We place ourselves in the situation where the manifold
does not admit any Kähler–Eintein metrics, that is p 6= n

2 . Set

J :=
∫ 1

−1
x2(x+ n− p)n−p−1(p− x)p−1 dx > 0.

Choose A and B ∈ R such that∫ 1

−1
x(Ax+B)(x+ n− p)n−p−1(p− x)p−1 dx = AJ +BI = 0.

There does not exist a Mabuchi metric if and only if for all such choices,
the affine function x 7→ Ax + B vanishes on [−1, 1], that is, if and only
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if −BA = J
I ∈ [−1, 1]. If p < n

2 then I > 0 and the latter condition is
equivalent to J − I 6 0. If p > n

2 then it is equivalent to J + I 6 0.
From checking on examples, it appears that the manifolds BlPp−1,Pq−1Pn−1

admit Mabuchi metrics in all cases. However we did not find an elegant way
to prove this. On the other hand, we can easily show that there always exists
a Mabuchi-type metric (or multiplier Hermitian structure) on any rank one
toroidal horospherical Fano manifold.
Recall that the notion of multiplier Hermitian structure was introduced

by Mabuchi in [14] and consists of a Kähler metric ω ∈ c1(X) solving the
complex Monge–Ampère equation

Ric(ω)−
√
−1∂∂̄h(θ) = ω

for some smooth real valued concave function h defined on the range of θ,
where θ is the Hamiltonian function of ω with respect to some holomorphic
vector field.
In the remaining of this subsection, we consider a Fano manifold X,

which is an arbitrary rank one toroidal horospherical manifold under the
action of a reductive groupG with a one-dimensional center containing a C∗
subgroup. Equivalently, the manifold X is a homogeneous P1-bundle over
a rational homogeneous space G/P . The action of the central subgroup C∗
is the natural action on the fibers.

Proof of Theorem 1.6. — Let G/H be the open orbit in X. Let P denote
the normalizer of H in G and choose a Borel subgroup B opposite to P ,
and T a maximal torus in B ∩ P . Then the moment polytope ∆+ of X is
of the form

∆+ =

t$ +
∑

α∈−ΦPu
α

∣∣∣∣∣∣−1 6 t 6 1


where $ is a generator of the one dimensional latticeM (see [16, p. 207]).
Then by [8, Theorem 1.2], there exists a multiplier Hermitian structure on
X if and only if we can find a smooth, real valued, concave function h on
[−1, 1] such that

∫ 1

−1
teh(t)PDH

t$ +
∑

α∈−ΦPu
α

d t = 0

where, as usual, PDH denotes the Duistermaat–Heckman polynomial for
X: PDH(x) =

∏
α∈−ΦPu {α, x} for x ∈ X(T ). Thanks to the symmetry of
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the polytope, an obvious choice is given by

eh(t) = PDH

−t$ +
∑

α∈−ΦPu
α

 .

The corresponding function h is obviously smooth, real valued, and concave:{
α,−t$ +

∑
α∈−ΦPu α

}
> 0 for all −1 6 t 6 1 and α ∈ −ΦPu since the

moment polytopes are strictly contained in the positive Weyl chamber for
toroidal horospherical manifolds. �

2.6. Coupled Kähler–Einstein metrics

In this section, we prove that there exists infinitely many couples (n, p)
such that the manifold Xn,p admits no Kähler–Einstein metrics but admits
a couple of coupled Kähler–Einstein metrics, by proving Theorem 1.4 as
stated in the introduction.
Proof of Theorem 1.4. — We place ourselves in the situation where

n = 2k + 1 is odd, and p = k.
Using Theorem 1.2 of [8], we want to find ac, a+ and a− such that
• Bar(ac, a+, a−)+Bar(k+ 1

2 −ac,
1
2 −a+,

3
2 −a−) = nχ2,1 + 1

2α1,k+1,
• a+ < ac < k + a+,
• a− < ac < k − 1 + a−,
• 0 < a+ + a− < 2.

Set a′c = k+ 1
2−ac, a

′
+ = 1

2−a+ and a′− = 3
2−a−. The three last conditions

ensure that the divisors D(ac, a+, a−) and D(a′c, a′+, a′−) are ample. Their
sum is obviously the anticanonical divisor, and the first condition means
that the coupled Kähler–Einstein equation is satisfied for this decomposi-
tion.
Let C(ac, a+, a−) denote the quantity∫ a−
−a+

t(t+ ac)k(ac − t)k−1 d t∫ a−
−a+

(t+ ac)k(ac − t)k−1 d t
+

∫ a′−
−a′+

t(t+ a′c)k(a′c − t)k−1 d t∫ a′−
−a′+

(t+ a′c)k(a′c − t)k−1 d t
− 1

2

then the first condition is equivalent to C(ac, a+, a−) = 0. Note that the
Kähler cone is connected and that (ac, a+, a−) 7→ C(ac, a+, a−) is continu-
ous. Since 2p = 2k < 2k+ 1 = n, Theorem 2.2 implies that C(n4 ,

1
4 ,

3
4 ) > 0,

hence it is enough to find a triple (ac, a+, a−) (satisfying the ampleness con-
ditions) with C(ac, a+, a−) < 0 to prove the existence of coupled Kähler–
Einstein metrics.
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Set ac = k − 2, a+ = 1
2 and a− = 0. Then we have ac = 5

2 , a+ = 0
and a− = 3

2 . Such a data satisfies the ampleness conditions. We will show
C(ac, a+, a−) < 0 for k large enough by showing that the first quotient of
integrals in C(ac, a+, a−) converges to − 1

4 and that the second quotient of
integrals converges to 0. In fact, if ac is linear in k, a+ and a− are constant,
then the quotient of integrals converges to the middle of [−a+, a−], and if
a+ = 0, a′c and a′− are constant, then the quotient of integrals converges
to 0.

Using the equation

(t+ k − 2)k(k − 2− t)k−1

(k − 1)2k−1

=
(

1 + t− 1
k − 1

)(
1 + t− 1

k − 1

)k−1(
1− t+ 1

k − 1

)k−1

we see that, uniformly in t ∈ [− 1
2 , 0],

lim
k→∞

(t+ k − 2)k(k − 2− t)k−1

(k − 1)2k−1 = e−2

hence

lim
k→∞

∫ 0
− 1

2
t(t+ k − 2)k(k − 2− t)k−1 d t∫ 0

− 1
2
(t+ k − 2)k(k − 2− t)k−1 d t

= −1
4 .

The other limit is a bit less immediate. Fix 0 < ε < 3
2 and consider

(2.1)
∫ 3

2

0
(t− ε)

(
t+ 5

2

)k (5
2 − t

)k−1
d t.

If we prove that the latter integral is negative for k large enough, then

0 <
∫ 3

2
0 t
(
t+ 5

2
)k ( 5

2 − t
)k−1 d t∫ 3

2
0
(
t+ 5

2
)k ( 5

2 − t
)k−1 d t

< ε

for k large enough. Actually, proving this for just one ε < 3
4 is enough to

get the conclusion. In the integral (2.1), the negative contribution is the
integral on [0, ε], while the positive contribution is the integral on [ε, 3

2 ].
For ε 6 t 6 3

2 , we have(
t+ 5

2

)k (5
2 − t

)k−1
=
(

5
2

)2k−1(
1 + 2t

5

)(
1−

(
2t
5

)2
)k−1

6

(
5
2

)2(k−1)(
1 + 3

5

)(
1−

(
2ε
5

)2
)k−1
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hence∫ 3
2

ε

(t− ε)
(
t+ 5

2

)k (5
2 − t

)k−1
d t

6

(
9
8 −

3ε
2 + ε2

2

)(
5
2

)2(k−1)(
1 + 3

5

)(
1−

(
2ε
5

)2
)k−1

.

For the negative contribution, it suffices to restrict to
[
0, 1

2(k−1)

]
. Set

t = s
k−1 where s ∈

[
0, 1

2
]
. Then

(t+ 5
2 )k( 5

2 − t)
k−1

( 5
2 )2k−1

=
(

1 + 2s
5(k − 1)

)(
1 + 2s

5(k − 1)

)k−1(
1− 2s

5(k − 1)

)k−1
.

Hence, uniformly in s ∈ [0, 1
2 ] (or in t ∈

[
0, 1

2(k−1)

]
),

lim
k→∞

(t+ 5
2 )k( 5

2 − t)
k−1

( 5
2 )2k−1 = 1.

We deduce that∫ 1
2(k−1)

0
(t− ε)

(
t+ 5

2

)k (5
2 − t

)k−1
d t ∼k→∞

−ε
( 5

2
)2k−1

2(k − 1)
Since(

9
8 −

3ε
2 + ε2

2

)(
5
2

)2(k−1)(
1 + 3

5

)(
1−

(
2ε
5

)2
)k−1

= o

(
−ε( 5

2 )2k−1

2(k − 1)

)
,

the negative contribution in integral (2.1) is dominant over the positive
contribution. We deduce that integral (2.1) is negative for k large enough.

�

3. Unstable blow-ups of quadrics along linear subquadrics

3.1. Description of the manifolds

Choose as before two positive integers p and q such that p+ q = n. For
this first section on blow-ups of quadrics, we assume 3 6 p 6 n − 3. We
will deal with the case p = n− 2 in the next section.
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Consider the standard quadratic form
∑n
j=1 z

2
j on Cn. Let Qn−2 denote

the associated n− 2-dimensional projective quadric. It is equipped with an
action of G := SOp× SOq ⊂ SOn with four orbits, easily described in terms
of the rational projections from Pn−1 to Pp−1 and Pq−1. There is an open
dense orbit, formed by the points at which both projections are defined and
no projection lie in the corresponding quadrics, the codimension one orbit
formed by the points at which both projections are defined and lie in the
corresponding quadrics, and two closed orbits formed by the points where
one of the projections is undefined.
We will be interested in the blow-up Yn,p of Qn−2 along one of the closed

orbits, say the quadric Qp−2 in Pp−1.
The group of automorphisms ofQn−2 is up to isogeny the group SOn. The

connected group of automorphisms of X is thus isogenous to the neutral
component of the stabilizer of the quadric in Pp−1 inside SOn. It is isogenous
to SOp×SOq.

3.2. Combinatorial data associated to the manifold

3.2.1. The open orbit

The quadric and its blow-up, equipped with the action of G, are symmet-
ric varieties. The open dense orbit is the symmetric space SOp×SOq /H

where H is the stabilizer of say [1 : 0 · · · : 0 : 1 : 0 · · · : 0]. It is the
unique proper subgroup sandwiched between {1} × SOp−1×{1} × SOq−1
and S(O1×Op−1)×S(O1×Oq−1). In particular, it is not, properly speak-
ing a product of symmetric spaces even though its restricted root system
does decompose as A1×A1. Let α and β denote the simple restricted roots
corresponding the first and second factor of G. We denote by α∨ and β∨
the corresponding simple restricted coroots. Note that the multiplicity of
the restricted root α is p− 2 and the multiplicity of β is q − 2.

Given the restricted root system, it is easy to determine the combinatorial
data associated to the spherical homogeneous space G/H. The spherical
lattice M is the unique proper lattice sandwiched between the restricted
weight lattice and the restricted root lattice for the restricted root system
of type A1 × A1. It is thus generated by α and 1

2 (α + β). The valuation
cone V is the negative restricted Weyl chamber. The colors are in bijection
with simple restricted roots and the image of the color map is the set of
simple restricted coroots. The description of colors in the last sentence
is not immediate as it is not immediate that the color map is injective.
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However, it follows for example from the description of the Picard group
which will follow in the next section, as the quadric is a Picard rank one
manifold.

3.2.2. Colored fans and embeddings

The colored fan of the quadric consists of the following colored cones:
• the point ({0}, ∅), for the open orbit,
• the ray (−R+(α∨ + β∨), ∅) for the codimension one orbit,
• (Cone(α∨,−(α∨ + β∨)), {α∨}) for the subquadric Qq−2,
• and (Cone(β∨,−(α∨ + β∨)), {β∨}) for the subquadric Qp−2.

To obtain the colored fan of the blow up Yn,p of the quadric along Qp−2,
one needs only replace the last cone by (Cone(−α∨,−(α∨ + β∨)), ∅) and
add the ray (−R+α

∨, ∅) (see Figure 3.1).

•

•
β∨

•α
∨

•

•
β∨

•α
∨

Figure 3.1. Colored fans of the quadric and its blow-up

3.3. Combinatorial data associated to divisors

3.3.1. Picard group, isotropy characters and polytopes

The Picard group of Yn,p is generated by: the two colors Dα and Dβ

whose image under the color map are respectively α∨ and β∨, and the G-
invariant divisors Dd and De, whose image in (M⊗ R)∗ are respectively
− 1

2 (α∨+β∨) and −α∨. There are two relations, given by 2(Dα−De)−Dd =
0 and Dα+Dβ −De−Dd. Since we are not interested in integrality issues,
we write R-divisors as combinations of the two G-invariant divisors:

D(ad, ae) = adDd + aeDe,
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and note that any such divisor is special and has trivial isotropy character.
The special polytope and moment polytope thus coincide and live inM⊗R,
where they are given by

∆(ad, ae) =
{
xα+ yβ

∣∣∣ 0 6 x 6 ae
2 , 0 6 y, x+ y 6 ad

}
.

Knowing the restricted root system (with multiplicities), it is easy to de-
termine the anticanonical divisor, which is here D(p+q2 −1, p−1). Note also
for later use that the half-sum of positive restricted roots with multiplicities
is (p2 − 1)α+ ( q2 − 1)β.

•

α

β

Figure 3.2. Moment polytope for Yn,p

3.3.2. Duistermaat–Heckman polynomial and barycenters

Up to a multiplicative constant, the Duistermaat–Heckman polynomial is

PDH(xα+ yβ) = {α, xα+ yβ}p−2 {β, xα+ yβ}q−2

= (2x)p−2(2y)q−2

we set the following notation for the barycenter of moment polytopes with
respect to PDH and an arbitrary Lebesgue measure d p.

Bar(ad, ae) =

∫
∆(ad,ae) pPDH(p) d p∫
∆(ad,ae) PDH(p) d p

.
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3.4. Existence of Kähler–Einstein metrics

The notation k = p − 1, l = q − 1 used in the following are introduced
for convenience in the proofs. With these notations, p − 2 = k − 1 is the
multiplicity of one of the restricted roots and q − 2 = l − 1 is the multi-
plicity of the other. The Duistermaat–Heckman polynomial is thus, up to
a constant, PDH(xα+ yβ) = xk−1yl−1.

3.4.1. Non-existence of Kähler–Einstein metrics

Set, for k, l in N>2,

I(k, l) :=
∫ k

x=0

∫ k+l−x

y=0
(x− (k − 1))xk−1yl−1 d y dx.

Lemma 3.1. — The expression I(k, l) is negative for k ∈ N>2 and l ∈
N> 2.

The direct translation in geometrical terms, by [8, Corollary 1.3], justifies
the K-unstable members of the family, a major step in proving Theorem 1.2:

Corollary 3.2. — The Fano manifold Yn,p = BlQp−2(Qn−2) does not
admit a Kähler–Einstein metric if 3 < p 6 n− 3.

It is a direct consequence from this and the fact that G is semisimple
that there cannot exist any Kähler–Ricci soliton or Mabuchi metrics on
these manifolds (the soliton or Mabuchi vector field must commute with
the action of G hence is zero here). Furthermore, the above Theorem has a
more precise interpretation: from [6, p. 653] we deduce that Yn,p is not K-
semistable, or similarly from [8, Corollary 1.3] we deduce that the greatest
Ricci lower bound R(Yn,p) is strictly less than 1.
Proof. — We first derive an explicit formula for the integral. Integration

in the y variable yields

I(k, l) =
∫ k

0
(xk − (k − 1)xk−1) (k + l − x)l

l
dx.

Using the change of variables t = x
k , we have

I(k, l) = kk+l+1

l

∫ 1

0

(
tk − k − 1

k
tk−1

)(
1− t+ l

k

)l
d t.

By the binomial formula applied to
(
1− t+ l

k

)l, we write this as a sum

kk+l+1

l

l∑
j=0

(
l

j

)
ll−j

kl−j

(
B(k + 1, j + 1)− k − 1

k
B(k, j + 1)

)
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where B denotes the beta function, defined by

B(a, b) =
∫ 1

0
ta−1(1− t)b−1 d t

= (a− 1)!(b− 1)!
(a+ b− 1)! at positive integers a, b.

Let Aj denote the j-th summand, so that lk−(k+l+1)I(k, l) =
∑l
j=0Aj .

We simplify a bit the expression of the summands:

Aj =
(
l

j

)
ll−j

kl−j

(
k!j!

(k + j + 1)! −
k − 1
k

(k − 1)!j!
(k + j)!

)
=
(
l

j

)
ll−j

kl−j+1
(k − 1)!j!

(k + j + 1)!
(
k2 − (k − 1)(k + j + 1)

)
=
(
l

j

)
ll−j

kl−j+1
(k − 1)!j!

(k + j + 1)! (j(1− k) + 1).

The major advantage of this expression (over the numerous different ways
to compute the integral) is that for k > 3, all but the first term are negative.
It thus suffices to compensate the positive first term with some of the
negative terms to conclude.
For most cases, it is enough to consider the first two summands:

A0 +A1 = ll

kl+1
1

k(k + 1) + l
ll−1

kl
2− k

k(k + 1)(k + 2)

= ll

kl+2(k + 1)(k + 2)
(
−k2 + 3k + 2

)
.

The polynomial −x2 + 3x+ 2 is negative for x > 3+
√

17
2 , hence A0 +A1 is

negative for k > 4.
For the case k = 3, we consider the additional summand A2. We compute

A0 +A1 +A2 = ll−1

36 · 3l (−5l + 9)

and this is negative for l > 9
5 hence in particular for l > 2. �

3.4.2. Existence of Kähler–Einstein metrics

Lemma 3.3. — We have, for all l ∈ N>2,

J(l) :=
∫ 2

x=0

∫ 2+l−x

y=0
x(y − (l − 1))yl−1 d y dx > 0

I(l) :=
∫ 2

x=0

∫ 2+l−x

y=0
x(x− 1)yl−1 d y dx > 0.
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The geometrical translation of the above statement finishes the proof of
Theorem 1.2 in the cases 3 6 p 6 n− 3 by dealing with the case p = 3.

Proof. — Let us start with the first inequality. We compute

J(l) =
∫ 2

0
x

(
(2 + l − x)l+1

l + 1 − (l − 1)(2 + l − x)l

l

)
dx

=
∫ l+2

l

tl

l(l + 1)
(
−lt2 + (2l2 + 2l − 1)t− (l + 2)(l2 − 1)

)
d t

= (l + 2)l+1(4l2 + 7l − 2)− ll+1(−4l2 + l + 12)
l(l + 1)(l + 2)(l + 3) .

Note that, for l > 2, 4l2 + 7l − 2 is positive, and (l + 2)l+1 > ll+1, so we
have

l−l(l + 1)(l + 2)(l + 3)J(l) > (4l2 + 7l − 2)− (−4l2 + l + 12)

> 8l2 + 6l − 14.

It is easy to check that the latter polynomial is positive for l > 1 hence
a fortiori for l > 2.

For the second inequality, we compute using the same method

I(l) = (l + 2)l+2 − (7l + 12)ll+1

(l + 2)(l + 3)

= (l + 2)l+2

(l + 2)(l + 3)

(
1−

(
1− 2

l + 2

)l+2 7l + 12
l

)
.

By a classical inequality, (1− 2
l+2 )l+2 < e−2, hence it is enough to have

7l + 12 < le2.

The inequality above is satisfied as long as l > 31 and the statement is
proved in these cases. It remains to check a finite number of cases (for
2 6 l 6 30). We omit the details as it is tedious and without difficulty. �

4. Remaining cases of blow-ups of quadrics along a linear
subquadric

4.1. Description of the manifolds

In this last section, we will be interested in the blow-ups of Qn−2 along
Qn−4, the blow-up along Q0, and the blow up along a single point (which
is one half of Q0). In particular, in the notations of the previous section,
we deal with the cases p = 2 and p = n− 2.
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We hence consider the case when the group acting on the quadric is
G = SOn−2×SO2 (and we assume 5 6 n, the case of the blow up of
P1×P1 at one or two points being well-known). Since SO2 = C∗, the group
G is not semisimple. Furthermore, there are more orbits in the quadric: the
zero-dimensional quadric Q0 consists of two orbits of G, there is still the
closed orbit Qn−4, there are two codimension one orbits, formed by points
whose projections belong to Qn−4 and one point in Q0, and finally the
complement of all these lower dimensional orbits is the open dense orbit.

4.2. Combinatorial data associated to the manifolds

4.2.1. The open orbit

The open dense orbit is a (reductive) symmetric space of type A1 and
rank two. The simple root is denoted, consistently with the previous section,
by α. Its multiplicity is p− 2 = n− 4. The spherical latticeM is generated
by some element $ ∈ X(T/(T ∩ [G,G])) and $+α

2 The valuation cone V
is still the negative restricted Weyl chamber, defined here by α 6 0 in
(M⊗R)∗. There is a single color Dα which is sent to α∨ by the color map.
Let f be the element of (M⊗ R)∗ defined by α(f) = 0 and $(f) = 2, so
that f and f+α∨

2 generate the lattice dual toM.

4.2.2. Colored fans and embeddings

The colored fan of the quadric is formed by the following cones:
• ({0}, ∅) corresponding to the open dense orbit,
• the ray (R+(f − α∨), ∅) corresponding to a codimension one orbit
whose closure we denote by D+,

• the ray (−R+(f +α∨), ∅) corresponding to a codimension one orbit
whose closure we denote by D−,

• the colorless cone (Cone(f−α∨,−f−α∨), ∅) corresponding to Qn−4

• the colored cone (Cone(α∨, f − α∨), {α∨}) corresponding to one
point in Q0,

• and the colored cone (Cone(α∨,−f − α∨), {α∨}) corresponding to
the other point in Q0.

To obtain the colored fans of the blow-ups, it suffices to make the obvious
modifications while adding:
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• the ray (±R+f, ∅) for the blow-up at one point of Q0, or both for
the blow-up along the full Q0, we denote by E± the corresponding
divisors,

• the ray (−R+α
∨, ∅) for the blow-up at Qn−4, we denote by E the

corresponding divisor.
The images of the above divisors in (M⊗ R)∗ are as illustrated in Fig-

ure 4.1.

α∨

f

•
E+

•
E−

•
D+

•D−

•
Dα

•E

Figure 4.1. Images of divisors in (M⊗ R)∗

4.3. Combinatorial data associated to divisors

4.3.1. Picard group, isotropy characters and polytopes:

The Picard group of the blow-up ofQn−2 alongQn−4 is generated byD+,
D−, Dα, and E, with the relations D− = D+ and D++D−+2E−2Dα = 0.
It is convenient to represent the R-divisors as combinations

De(a, ae) = a(D+ +D−) + aeE

with a, ae ∈ R. They are special divisors, with trivial isotropy characters.
The corresponding special (or moment) polytope is

∆e(a, ae) =
{
xα+ y$

∣∣∣ 0 6 x 6 ae
2 , x− a 6 y 6 a− x

}
.

The divisor De(a, ae) is ample if and only if 0 < ae < 2a. The anticanonical
divisor is De(n2 − 1, n− 3).

We now consider the blow-up of Qn−2 along one point of Q0, say the one
whose exceptional divisor we denoted by E+. The relations in the Picard
group are 2E+ + D+ −D− = 0 and 2Dα1 −D+ −D− = 0. We may then
write any R-divisor as combinations

D+(a, a+) = a(D+ +D−) + a+E+
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•0

•
ae
2 α

•a$

Figure 4.2. The polytope ∆e(a, ae)

with a, a+ ∈ R. They are special divisors, with trivial isotropy characters.
The corresponding special (or moment) polytope is

∆+(a, a+) =
{
xα+ y$

∣∣∣∣ 0 6 x, −a+

2 6 y, x− a 6 y 6 a− x
}
.

The divisor D+(a, a+) is ample if and only if 0 < a+ < 2a. The anticanon-
ical divisor is D+(n2 − 1, 1).

•0

•
aα

•
−a+

2 $

Figure 4.3. The polytope ∆+(a, a+)
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We now consider the blow-up of Qn−2 along both points of Q0. The
relations are now 2(E+−E−) +D+−D− = 0 and 2Dα1 − (D+ +D−) = 0.
We may then write any R-divisor as combinations

D±(a, a+, a−) = a(D+ +D−) + a+E+ + a−E−

with a, a+, a− ∈ R. They are special divisors, with trivial isotropy charac-
ters. The corresponding special (or moment) polytope is

∆±(a, a+, a−) =
{
xα+y$

∣∣∣∣06x, −a+

2 6 y6
a−
2 , x−a6 y6 a−x

}
.

The divisor D±(a, a+, a−) is ample if and only if 0 < a+ < 2a and 0 <

a− < 2a. The anticanonical divisor is D±(n2 − 1, 1, 1).

•0

•
aα

•
−a+

2 $

•
a−
2 $

Figure 4.4. The polytope ∆±(a, a+, a−)

4.3.2. Duistermaat–Heckman polynomial and barycenters

Up to a multiplicative constant, the Duistermaat–Heckman polynomial is

PDH(xα+ y$) = {α, xα+ y$}n−4

= (2x)n−4.

The half sum of restricted roots is (n2 − 2)α1.
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We set the following notations for the barycenters of the several blow-ups
of Qn−2:

Bare(a, ae) =

∫
∆e(a,ae) pPDH(p) d p∫
∆e(a,ae) PDH(p) d p

Bar+(a, a+) =

∫
∆+(a,a+) pPDH(p) d p∫
∆+(a,a+) PDH(p) d p

Bar±(a, a+, a−) =

∫
∆±(a,a+,a−) pPDH(p) d p∫
∆±(a,a+,a−) PDH(p) d p

.

4.4. Existence of Kähler–Einstein metrics for blow-ups along a
full quadric

We will now finish the proof of Theorem 1.2.

4.4.1. Case of BlQn−4Qn−2

Set

IV =
∫ n−3

x=0

∫ n−2−x

y=x−n+2
xn−4 d y dx

Iα =
∫ n−3

x=0

∫ n−2−x

y=x−n+2
xn−3 d y dx

I$ =
∫ n−3

x=0

∫ n−2−x

y=x−n+2
yxn−4 d y dx

then BlQn−4(Qn−2) is Kähler–Einstein if and only if

I$ = 0 and Iα
IV

> n− 4.

The vanishing I$ = 0 is obvious by symmetry with respect to the reflection
leaving R$ invariant, while a straightforward computation yields

Iα
IV

= 2(n− 3)2(n− 2)
(n− 1)(2n− 5) .

Then Iα
IV

> n− 4 is equivalent to 7n2 − 11n+ 2 > 0 which is true for n >
11+
√

65
14 hence certainly for all n > 5. So we have proved that BlQn−4 Qn−2

is Kähler–Einstein for all n > 5.
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4.4.2. Case of BlQ0Qn−2

Here there is an obvious symmetry of the polytope yielding the vanishing
of the Futaki character, hence no obstruction in the direction of $. It
remains to check the inequality

Iα
IV
− (n− 4) > 0

where

IV = 2
∫ 1

y=0

∫ n−2−y

x=0
xn−4 dx d y

Iα = 2
∫ 1

y=0

∫ n−2−y

x=0
xn−3 dx d y.

We have, by computation of the integrals,

Iα
IV

=
(n− 3)

(
(n− 2)n−1 − (n− 3)n−1)

(n− 1) ((n− 2)n−2 − (n− 3)n−2) .

Using the fact that(
(n− 2)n−1 − (n− 3)n−1) > (n− 2)

(
(n− 2)n−2 − (n− 3)n−2)

the previous inequality is implied by

(n− 3)(n− 2)− (n− 4)(n− 1) > 0

which is true (recall that we can assume n > 5 throughout). We have
proved that BlQ0 Qn−2 is Kähler–Einstein.

4.5. There are no Mabuchi metrics on BlptQ
n−2

We finally consider the blow-up of Qn−2 at a point. There is an obvious
lack of symmetry in the polytope (even with respect to the Duistermaat–
Heckman measure) which ensures that the Futaki character will not vanish.
Hence there are no Kähler–Einstein metrics on Blpt Q

n−2. An even shorter
proof is that the automorphism group is not reductive. We prove in fact a
stronger result:

Theorem 4.1. — For n > 5, the blow-up of Qn−2 at one point does
not admit Mabuchi metrics.
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Proof. — By [8, Corollary 1.4] and the combinatorial description above,
there exists a Mabuchi metric on Blpt Q

n−2 if and only if we can find a
linear function y 7→ Ay + B with 0 6= A, B ∈ R, such that the following
three conditions are satisfied:(∫ 0

y=−1
2

∫ n−2
2 +y

x=0
+
∫ n−2

2

y=0

∫ n−2
2 −y

x=0

)
y(Ay +B)xn−4 dxd y = 0,

(∫ 0

y=−1
2

∫ n−2
2 +y

x=0
+
∫ n−2

2

y=0

∫ n−2
2 −y

x=0

)
(x− n− 4

2 )(Ay +B)xn−4 dxd y = 0,

and
−B
A

<
−1
2 or −B

A
>
n− 2

2 .

We will show that when the first condition is satisfied, the third condition
is violated. Assume A and B are such that the first condition is satisfied.
Then −BA is equal to(∫ 0

y=−1
2

∫ n−2
2 +y

x=0 +
∫ n−2

2
y=0

∫ n−2
2 −y

x=0

)
y2xn−4 dx d y(∫ 0

y=−1
2

∫ n−2
2 +y

x=0 +
∫ n−2

2
y=0

∫ n−2
2 −y

x=0

)
yxn−4 dxd y

.

The numerator is obviously positive, and the denominator is positive thanks
to the lack of symmetry, and comparison with the Kähler–Einstein case of
BlQ0 Qn−2. In order to show that there are no Mabuchi metrics, it thus
suffices to show that(∫ 0

y=−1
2

∫ n−2
2 +y

x=0
+
∫ n−2

2

y=0

∫ n−2
2 −y

x=0

)
y(y − n− 2

2 )xn−4 dxd y 6 0.

Integrating, then multiplying by 2nn(n− 1)(n− 3), this is equivalent to

4(n− 2)n−1 − (n− 3)n−2(2n2 + n− 9) 6 0.

Since (
n− 2
n− 3

)n−3
=
(

1− 1
n− 3

)n−3
6 e−1,

the inequality is implied by

0 6 2n3 − 9n2 + 4n+ 11

which certainly holds for n > 5. We have shown that Blpt Q
n−2 admits no

Mabuchi metrics (for n > 5). �
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