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NORMAL REAL AFFINE VARIETIES WITH
CIRCLE ACTIONS

by Adrien DUBOULOZ & Alvaro LIENDO (*)

Dedicated to Mikhail Zaidenberg on his 70th birthday

Abstract. — We provide a complete description of normal affine algebraic va-
rieties over the real numbers endowed with an effective action of the real circle,
that is, the real form of the complex multiplicative group whose real locus consists
of the unitary circle in the real plane. Our approach builds on the geometrico-
combinatorial description of normal affine varieties with effective actions of split
tori in terms of proper polyhedral divisors on semiprojective varieties due to Alt-
mann and Hausen.
Résumé. — On donne une description complète des variétés algébriques affines

normales sur le corps des réels munies d’une action effective du cercle réel, c’est-à-
dire la forme réelle du groupe complexe multiplicatif dont le locus réel est constitué
du cercle unité dans le plan réel. Notre approche repose sur une description géo-
métrique et combinatoire des variétés normales affines avec des actions effectives
de tores en termes de diviseurs propres polyédraux sur des variétés semiprojectives
dues à Altmann et Hausen.

Introduction

Normal algebraic varieties X over a field k endowed with actions of split
tori T = Gnm,k are quite well understood in terms of various geometrico-
combinatorial presentations. The case where T acts faithfully on X and
dim(T) = dim(X) is known as toric varieties and was first studied by De-
mazure in [4]. These varieties are fully described in combinatorial terms by
means of suitable collections of convex polyhedral cones in the real vector
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space NR = N ⊗Z R obtained from the lattice N of 1-parameter subgroups
of T. Successive further generalizations [1, 2, 5, 9] have led to complete
descriptions of normal k-varieties endowed with T-actions in terms of cer-
tain collections of so-called polyhedral divisors, which are Weil divisors D
on suitable rational quotients for the action, whose coefficients are convex
rational polyhedra in the vector space NR.

For normal algebraic k-varieties endowed with actions of non-split tori,
that is, algebraic groups G defined over k whose base extensions to an
algebraic closure k of k are isomorphic to split tori Gn

m,k
but which are

not isomorphic over k to Gnm,k, much less is known regarding the existence
of geometrico-combinatorial descriptions similar to the split case. Toric
varieties with respect to non-split tori have been considered by several
authors, see for instance [7, 8, 17]. In another direction, the geometrico-
combinatorial presentation of Altmann–Hausen was partially extended by
Langlois [13] to yield a description of affine varieties X endowed with an
effective action of a quasi-split torus G of dimension dim(X)−1. Neverthe-
less, the general case remains elusive. A natural and crucial step towards a
geometrico-combinatorial description of such varieties would be to extend
the Altmann–Hausen presentation in terms of polyhedral divisors [1] to ar-
bitrary normal affine k-varieties X endowed with effective actions of tori G,
split or not. Since every torus G splits after base change to a finite Galois
extension K/k of k, this naturally leads to seek for such an extension in the
form of a geometrico-combinatorial description of affine K-varieties X with
effective actions of split tori T which are compatible with additional Galois
descent data on X and T for the finite Galois cover Spec(K)→ Spec(k).
In this article we lend support to this approach by considering a simple

case of independant geometric interest for which both the combinatorics
and the Galois descent machinery are reduced to their minimum: normal
real affine varieties with an effective action of the unit circle

S1 = Spec(R[x, y]/(x2 + y2 − 1)),

the only non-split real form of Gm,R. In this context, a descent datum on a
normal complex affine variety V for the Galois cover Spec(C) → Spec(R)
boils down to anti-regular involution σ of V called a real structure.
Our main results, Theorem 2.7 and Theorem 2.11, give a description

of S1-actions in the language of [1] extended to complex affine varieties
with real structures. We chose to use the Altmann–Hausen formalism since
it is particularly suited for a generalization to any non-necessarily split
algebraic torus over a field of characteristic zero which we will tackle in
a near future. Nevertheless, it is well-known that for a 1-dimensional split
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torus, polyhedral divisors in the sense of [1] correspond equivalently to
data consisting of certain pairs of Weil Q-divisors, a formalism first used
by Dolgachev, Pinkham and Demazure and then extended by Flenner–
Zaidenberg to describe Gm,C-actions on normal complex affine surfaces
via Q-divisors on their quotients (see the references in [9]). Corollary 2.16
provides a description of normal real affine varieties with an effective S1-
action in this equivalent language, which can be summarized as follows:

Theorem. — A normal real affine variety X endowed with an effective
S1-action is uniquely determined by the following data:

(1) A normal real semiprojective variety Z corresponding to a normal
complex semi-projective variety with real structure (Y, τ) represent-
ing the “real Altmann–Hausen quotient” of X by S1 (see Defini-
tion 2.1)

(2) A pair (D,h) consisting of a big and semiample Q-Cartier divisor
D on Y and a τ -invariant rational function h on Y satisfying D +
τ∗D 6 div(h).

The contents of the article is as follows. In Section 1 we recall the clas-
sical equivalence of categories between quasi-projective real varieties and
quasi-projective complex varieties equipped with a real structure. We es-
tablish in Lemma 1.4 the corresponding representation of quasi-projective
real varieties with circle actions under this equivalence of categories. In Sec-
tion 2 we establish the main classification results extending the description
by Altmann and Hausen for split torus actions to the case of circle ac-
tions on normal real affine varieties. Finally, in Sections 3 and 4 we present
several instances of applications of our techniques to examples taken from
algebraic and differential geometry.

Acknowledgments

The authors would like to thank the anonymous referee for their valuable
comments which helped to improve the exposition of the paper.

1. Basic facts on real algebraic varieties and circle actions

In what follows, we identify the field R of real numbers with a subfield of
C via the standard inclusion j∗ : R ↪→ C = R[i]/(i2 + 1) so that the usual
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1834 Adrien DUBOULOZ & Alvaro LIENDO

complex conjugation J : C→ C, z 7→ z coincides with the homomorphism
of R-algebra defined by i 7→ −i.

The term k-variety, where k = R or C, will refer to a geometrically
integral scheme X of finite type over k. A morphism of k-varieties is a
morphism of k-schemes.

1.1. Real quasi-projective varieties as complex varieties with
real structures

Let us briefly recall the classical correspondence [3] between quasi-projec-
tive real algebraic varieties and quasi-projective complex algebraic varieties
equipped with a real structure.

Every complex algebraic variety p : V → Spec(C) can be viewed as an
R-scheme j ◦ p : V → Spec(R), and a real structure on such a variety V
is an involution σ : V → V of R-schemes such that p ◦ σ = J ◦ p, where J
denotes the complex conjugation.
Every complex variety XC = X ×Spec(R) Spec(C) obtained from a real

algebraic variety X by the base change Spec(C) → Spec(R) is canoni-
cally endowed with a real structure σX = idX ×J for which the mor-
phism pr1 : XC → X coincides with the quotient XC/〈σX〉. Conversely,
if p : V → Spec(C) is equipped with a real structure σ and covered by
σ-invariant affine open subsets (so for instance if V is quasi-projective),
then the quotient π : V → V/〈σ〉 exists in the category of schemes and the
structure morphism p : V → Spec(C) descends to a morphism V/〈σ〉 →
Spec(R) = Spec(C)/〈τ〉 making V/〈σ〉 into a real algebraic variety X such
that V ' XC. This correspondence extends to a well-known equivalence of
categories which can be summarized as follows (see e.g. [11, Exposé VIII]).

Lemma 1.1. — The category of quasi-projective real algebraic varieties
is equivalent to the category C whose objects are pairs (V, σ) consisting
of a quasi-projective complex algebraic variety V and a real structure σ :
V → V and whose morphisms (V, σ)→ (V ′, σ′) are morphisms of complex
algebraic varieties f : V → V ′ such that σ′ ◦ f = f ◦ σ.

In particular, two real structures σ and σ′ on the same quasi-projective
complex variety V define isomorphic real algebraic varieties V/〈σ〉 and
V/〈σ′〉 if and only if there exists an isomorphism of complex algebraic
varieties f : V → V such that σ′ ◦ f = f ◦ σ.

In the sequel, we will represent a quasi-projective real variety X by a
pair (V, σ) where V is a quasi-projective complex variety and σ is a real
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structure on V such that V/〈σ〉 is isomorphic to X. Similarly, we will
represent a morphism (resp. a rational map) f : X → X ′ between real
varieties represented by pairs (V, σ) and (V ′, σ′) respectively by a morphism
(resp. a rational map) f̃ : V → V ′ such that σ′ ◦ f̃ = f̃ ◦ σ. We sometimes
abbreviate this condition by saying that f̃ is a real morphism (resp real
rational map).

Definition 1.2. — A real form of a real algebraic variety X = (V, σ)
is a real algebraic variety X ′ = (V ′, σ′) such that V and V ′ are isomorphic
as complex varieties. Isomorphism classes of real forms of X are classified
by the Galois cohomology group H1(Gal(C/R),AutC(V )) where the non-
trivial element of Gal(C/R) = µ2 acts on AutC(V ) by conjugation f 7→
σfσ−1.

Recall that an algebraic variety V is said to be semi-projective if its
coordinate ring Γ(V,OV ) is finitely generated and the canonical morphism
V → Spec(Γ(V,OV )) is projective. When X is a real algebraic variety
represented by a pair (V, σ), we denote by Γ(σ) the unique real structure
on Spec(Γ(V,OV )) for which the canonical morphism given by (V, σ) →
(Spec(Γ(V,OV ),Γ(σ)) is a real morphism.

1.2. Circle actions on quasi-projective real varieties

Definition 1.3. — The real circle is the only non-split real form

S1 = Spec(R[x, y]/(x2 + y2 − 1))

of the multiplicative group Gm,R. The group structure on S1 is given by

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + yx′),

and the morphism of group schemes

(1.1)
ρ0 : S1 −→ SL2,R = Spec(R[a11, a12, a21, a22]/(a11a22 − a12a21 − 1))
(x, y) 7−→ (x, y,−y, x)

induces an isomorphism between S1 and the closed subgroup SO2,R defined
by the equation a11 − a22 = a12 + a21 = 0.

It is straighforward to check that the map

(1.2)
ϕ : Gm,C = Spec(C[t±1]) −→ S1

C,

t 7−→ (x, y) = ((t+ t−1)/2, (t− t−1)/2i)
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1836 Adrien DUBOULOZ & Alvaro LIENDO

is an isomorphism of complex group schemes. The pull-back of the canonical
real structure σS1 on S1

C by ϕ is the real structure ρ on Gm,C defined
as the composition of the involution t 7→ t−1, induced by the involution
− idM : m 7→ −m of the character lattice M ' Z of Gm,C, with the
complex conjugation. We henceforth identify the group object S1 in the
category of real algebraic varieties with the pair (Gm,C, ρ).

Lemma 1.4. — There is a one-to-one correspondence between quasi-
projective real algebraic varieties endowed with an effective S1-action and
triples (V, σ, µ) consisting of a quasi-projective real algebraic variety X =
(V, σ) and an effective Gm,C-action µ : Gm,C × V → V such that the
following diagram commutes:

(1.3)

Gm,C × V
µ //

ρ×σ
��

V

σ

��
Gm,C × V

µ // V.

Proof. — An S1-action on X = (V, σ) corresponds by definition to an
effective S1

C-action η on V such that σ ◦η = η ◦ (σS1 ×σ), hence, composing
with the real isomorphism ϕ of (1.2), to an effective Gm,C-action µ =
η ◦ (ϕ× idV ) with the announced property. �

Convention. — In the rest of the article, we will represent a quasi-proj-
ective real variety X endowed with an effective S1-action by one of the
following equivalent data:

(1) a quasi-projective real algebraic variety X and a morphism of real
algebraic varieties S1 ×X → X defining an effective S1-action; or

(2) a triple (V, σ, µ) consisting of a quasi-projective complex algebraic
variety V endowed with a real structure σ and a morphism of com-
plex algebraic varieties µ : Gm,C × V → V defining an effective
Gm,C-action on V such that µ ◦ (ρ× σ) = σ ◦ µ.

By an S1-equivariant morphism between quasi-projective real S1-varieties
(V, σ, µ) and (V ′, σ′, µ′), we mean a strictly S1-equivariant one, that is, a
real morphism f : V → V ′ such that the following diagram commutes

Gm,C × V
µ //

idGm,C ×f
��

V

f

��
Gm,C × V ′

µ′ // V ′.
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Definition 1.5. — A real form of a quasi-projective real S1-variety
X = (V, σ, µ) is a quasi-projective real S1-variety X ′ = (V ′, σ′, µ′) such
that V is Gm,C-equivariantly isomorphic to V ′.

1.3. The case of real affine varieties

Specializing further to the case where X = (V, σ) is a real affine algebraic
variety, say V = Spec(A) for some finitely generated integral C-algebra A,
the Gm,C-action µ on V is equivalently determined by its co-morphism µ∗ :
A → A ⊗C C[t±1]. Recall that a semi-invariant regular function of weight
m ∈ Z on V for the action µ is an element f ∈ A such that µ∗f = f ⊗ tm,
and that A is then Z-graded in a natural way by its sub-spaces Am of semi-
invariants of weight m for all m ∈ Z. The action µ is said to be hyperbolic
if there exists m < 0 and m′ > 0 such that Am and Am′ are non-zero.

Lemma 1.6. — Let X = (V = Spec(A), σ, µ) be a real affine algebraic
variety endowed with an effective S1-action and let A =

⊕
m∈ZAm be the

decomposition of A into semi-invariants sub-spaces for the Gm,C-action µ.
Then the following hold:

(i) The action µ is hyperbolic and Am 6= 0 for all m ∈ Z
(ii) For all m ∈ Z, σ∗(Am) = A−m,
(iii) The restriction of σ∗ to A0 = AGm,C is the co-morphism of a real

structure σ on the algebraic quotient V//Gm,C = Spec(A0) of V .

Proof. — The commutativity of the diagram (1.3) implies that for every
semi-invariant f of weight m ∈ Z, we have

µ∗σ∗(f) = (σ∗ ⊗ ρ∗)(f ⊗ tm) = σ∗(f)⊗ t−m,

hence that σ∗(f) is a semi-invariant of weight −m. The equality σ∗(Am) =
A−m follows from the fact that σ∗ is an automorphism of A, which proves
the second assertion. Since µ is non trivial, there exists a semi-invariant
function f of non-zero weight m, and hence a semi-invariant function σ∗(f)
of non-zero weight −m. This shows that µ is hyperbolic, and the second
part of the first assertion is a standard fact for such actions. Indeed, since
the action is effective, the set {m ∈ Z | Am 6= {0}} is not contained in any
proper sublattice d ·Z, d > 1. Hence, there exists e < 0 and e′ > 0 relatively
prime such that Ae and Ae′ are non-zero. Let f and g be non-zero elements
in Ae and Ae′ , respectively. Now, for every integer m ∈ Z, there exist
integers a < 0 and b > 0 such that ae − be′ = m. Then fagb ∈ Am is a
non-zero element, as desired.
The last assertion is straightforward. �
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1838 Adrien DUBOULOZ & Alvaro LIENDO

With the notation above, it follows from Lemma 1.6(iii) that X//S1 =
(V//Gm,C, σ) is a real affine algebraic variety and that the morphism

π : X = (V, σ)→ X//S1 = (V//Gm,C, σ)

induced by the inclusion A0 ↪→ A is an S1-invariant morphism of real
algebraic varieties, which is a categorical quotient in the category of real
affine algebraic varieties.

2. Altmann–Hausen presentation of a circle action

The aim of this section is to establish a counter-part for real affine va-
rieties with circle actions of the geometrico-combinatorial presentation of
affine varieties with split tori actions developed by Altmann and Hausen
in [1].

We first need to introduce a special kind of rational quotient for a real
affine algebraic variety endowed with an effective S1-action which is the
real counterpart of the quotient constructed in [1] for normal affine varieties
with split tori actions. Keeping the same notation as in Section 1.3 above,
we let d > 0 be minimal such that

⊕
m∈ZAdm is generated by A±d as a

graded A0-algebra. By virtue of Lemma 1.6(ii) and (iii), the closed sub-
scheme W of Y0(V ) = V//Gm,C = Spec(A0) with defining ideal I = 〈Ad ·
A−d〉 ⊂ A0 is σ-invariant.

Definition 2.1. — The real AH-quotient of X = (V, σ, µ) by the S1-
action µ is the real quasi-projective variety formed by total space of the
blow-up π : Y (V ) → Y0(V ) of Y0(V ) with center at W , endowed with the
lift τ of the real structure σ.

The complex variety Y (V ) is semi-projective, and by virtue of [16, The-
orem 1.9] (see also [15]), it is isomorphic to the irreducible component of
the fiber product

Proj
(⊕
m60

Am

)
×Y0(V ) Proj

(⊕
m>0

Am

)

which dominates Y0(V ). So Y (V ) coincides with the AH-quotient of V for
the Gm,C-action µ in the sense of [1]. By construction, π : (Y (V ), τ) →
(Y0(V ), σ) is a morphism of real algebraic varieties.
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2.1. Proper hyperbolic segmental divisors

Recall that a Weil Q-divisor D on a normal algebraic variety Y is called
Q-Cartier if nD is Cartier for some n > 1. Furthermore, D is semiample if
there exits n > 1 such that the linear system |nD| is base point free, equiv-
alently such that the sheaf OY (nD) is invertible and globally generated.
The divisor D is called big if there exists E ∈ |nD| with affine comple-
ment for some n > 1. In the sequel, all our divisors will be Q-Cartier Weil
Q-divisors. We will refer to such divisors simply as Q-Cartier divisors.

Notation 2.2. — Given a Q-Cartier divisor D on a normal variety Y ,
we denote the round-down of D by bDc. We identify the Γ(Y,OY )-module
Γ(Y,OY (bDc)) with the sub-Γ(Y,OY )-module of the field of rational func-
tions Frac(Y ) of Y generated by rational functions g ∈ Frac(Y ) such that
div(g)+bDc > 0. Under this identification, a rational function g ∈ Frac(Y )
satisfies div(g) + bDc > 0 if and only if div(g) +D > 0. So we can set with-
out ambiguity Γ(Y,OY (bDc)) := Γ(Y,OY (D)) and remove the round-down
brackets from the notation.

We now review a simple special case adapted to our context of the general
notion of polyhedral divisor defined in [1]. Let N ' Z be a rank one lattice
and let M be its dual. Let J be the set of all closed intervals [a, b] of
N ⊗ZR ' R with rational bounds, where we admit singleton intervals with
a = b as [a, a] = {a}. The set J has the structure of an abelian semi-group
for the Minkowski sum [a, b] + [a′, b′] = [a+ a′, b+ b′], with identity [0, 0] =
{0}. Every element m ∈M determines a semi-group homomorphism

evm : J → Q, [a, b] 7→ min(ma,mb) =
{
ma if m > 0
mb if m < 0.

For a normal variety Y , we denote by J ⊗WDiv(Y ) the semi-group of
formal finite sums with coefficients in J of prime Weil divisors on Y .

Definition 2.3. — A segmental divisor [15] on a normal algebraic va-
riety Y is an element

D =
∑

[ai, bi]⊗Di ∈ J ⊗WDiv(Y )

A segmental divisor D =
∑

[ai, bi]⊗Di is called proper if for every m ∈ Z,
the Weil Q-divisor

D(m) := (evm⊗ id)(D) =
∑

min(mai,mbi)Di

is a big, semiample Q-Cartier divisor on Y .
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Every Weil divisor D on Y determines a segmental divisor {1} ⊗ D, in
particular every non-zero rational function f on Y determines a principal
segmental divisor {1} ⊗ div(f). Note in addition that the definition of the
evaluation homomorphisms evm guarantees that for every segmental divisor
D and every pair of integers m,n ∈ Z the Weil Q-divisors D(m) +D(n)−
D(m + n) are all anti-effective. In particular, D(m) + D(−m) 6 D(0) = 0
for all m ∈ Z.

Definition 2.4 ([1, Definition 8.3]). — Let ψ : Y ′ 99K Y be a rational
map between normal algebraic varieties and let D =

∑
[ai, bi] ⊗ Di be a

segmental divisor on Y such that none of the supports Supp(Di) contains
the image of Y ′. The pull-back of D by ψ is the segmental divisor ψ∗D :=∑

[ai, bi] ⊗ ψ∗Di on Y ′ where for every i, ψ∗Di is the pull-back on Y ′ of
the Weil divisor Di on Y by ψ.

Recall that the real structure ρ on Gm,C is given as the composition of the
automorphism induced by the involution − idM of its character latticeM '
Z with the complex conjugation. The dual involution − idN = (− idM )∗ of
the lattice N ' Z of 1-parameter subgroups of Gm,C induces an involution
of J . Moreover, when Z is a normal real algebraic variety represented by
a complex variety Y with real structure τ , the pull-back of Weil Q-divisors
on Y by the real structure τ induces an involution τ∗ on Q-divisors on Y .
Putting these two involutions together, we obtain an involution

(− idM )∗ ⊗ τ∗ : J ⊗WDiv(Y ) −→ J ⊗WDiv(Y )

D =
∑

[ai, bi]⊗Di 7−→
∑

[−bi,−ai]⊗ τ∗Di.

Definition 2.5. — A proper hyperbolic segmental pair (phs-pair) on
a normal real algebraic variety Z = (Y, τ) is a pair (D, h) consisting of
a proper segmental divisor D =

∑
[ai, bi] ⊗ Di and a τ -invariant rational

function h on Y such that

((− idM )∗ ⊗ τ∗)(D) = D + {1} ⊗ div(h).(2.1)

It will be convenient in practice to separate the homomorphism coming
from the real structure on Y from that coming from the real structure on
Gm,C. So, up to changing h for h−1, we can rewrite (2.1) equivalently as

τ∗(D) = D̂ + {1} ⊗ div(h),

where D̂ = ((− idM )∗ ⊗ id)(D) =
∑

[−bi,−ai]⊗Di.

Lemma 2.6. — Let (D, h) be a phs-pair on a normal semi-projective
real algebraic variety Z = (Y, τ). Then the following hold:

ANNALES DE L’INSTITUT FOURIER
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(i) The sheaf OY (D(m)) has a nonzero global section for all m ∈ Z.
(ii) The real structure τ induces an isomorphism of Γ(Y,OY )-modules

(2.2)
τ∗m : Γ(Y,OY (D(m))) '−→ Γ(Y,OY (D(−m))),

g 7−→ hm · τ∗g, for all m ∈ Z.

Furthermore, τ∗0 = Γ(τ)∗ and τ∗−m ◦ τ∗m = id.

Proof. — The first assertion, in analogy with Lemma 1.6(i), is again a
standard fact for proper segmental divisors. Since D(±1) is big, there exist
relatively prime positive integers e and e′ and non-zero global sections f
and g of OY (D(e)) and OY (D(−e′)), respectively. Now, for every integer
m ∈ Z, there exists integers a < 0 and b > 0 such that ae− be′ = m. Then
fagb is non-zero global section of D(ae− be′) = D(m) as desired.

For the second assertion, the fact that τ∗0 = Γ(τ)∗ follows from the def-
inition of the real structure Γ(τ) on Spec(Γ(Y,OY ) (see Section 2). Given
m ∈ Z \ {0}, it follows from the definition of a phs-pair that τ∗(D)(m) =
D(−m) + m div(h). This implies that the homomorphism τ∗m in (2.2)
is well-defined. Since τ∗ is an involution, τ∗−m ◦ τ∗m is the identity of
Γ(Y,OY (D(m))), and so τ∗m is an isomorphism with inverse τ∗−m. �

2.2. Real Altmann–Hausen presentations

In this section, we state and prove our main theorem giving a geometrico-
combinatorial presentation of normal real affine varieties endowed with a
circle action.

Let Y be a normal semi-projective complex variety and let D be a proper
segmental divisor on Y . Then it follows from [1, Theorem 3.1] that the C-
scheme

V = V (Y,D) := Spec
(⊕
m∈Z

Γ (Y,OY (D(m)))
)

is a normal complex affine variety of dimension dimY + 1. Furthermore,
the Z-grading of the coordinate ring of V uniquely determines an effective
Gm,C-action µ : Gm,C × V → V with algebraic quotient isomorphic to
Spec(Γ(Y,OY )) and whose AH-quotient is birationally dominated by Y .

Theorem 2.7. — Let Z = (Y, τ) be a normal semi-projective real al-
gebraic variety, represented by a complex variety Y with real structure τ ,
and let (D, h) be a phs-pair on Z. Then the following hold:

(1) The normal complex affine variety V = V (Y,D) carries a real struc-
ture σ such that σ ◦ µ = µ ◦ (ρ× σ).
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(2) The triple (V, σ, µ) is a normal real affine algebraic variety
X(Z, (D, h)) of dimension dimZ + 1 endowed with an effective S1-
action with algebraic quotient (Spec(Γ(Y,OY ),Γ(τ)) and real AH-
quotient birationally dominated to Z.

(3) Conversely, every normal real affine variety X = (V, σ, µ) endowed
with an effective S1-action is equivariantly isomorphic toX(Z, (D, h))
for a suitable phs-pair (D, h) on its real AH-quotient Z = (Y (V ), τ).

Proof. — Since (D, h) is a phs-pair, it follows from Lemma 2.6(ii) that
there exist isomorphisms τ∗m : Γ(Y,OY (D(m))) '−→ Γ(Y,OY (D(−m))) for
every m ∈ Z. These collect into an involution σ∗ =

⊕
m∈Z τ

∗
m on the direct

sumA =
⊕

m∈Z Γ(Y,OY (D(m))). The latter corresponds to a real structure
σ on V such that by construction σ ◦ µ = µ ◦ (ρ× σ). It then follows from
Lemma 1.6 that (V, σ, µ) represents a normal real affine variety X endowed
with an effective S1-action. The facts that X//S1 ' Spec(Γ(Y,OY ),Γ(τ))
and that the real AH-quotient of X is birationnally dominated by Z follow
from the corresponding assertions for V and the construction of σ. This
proves (1) and (2).
For the converse (3), let A =

⊕
m∈ZAm be the decomposition of the

coordinate ring of V into semi-invariants sub-spaces for the Gm,C-action
µ and let (Y0 = Spec(A0), σ) and (Y, τ) be the algebraic quotient and
the real AH-quotient of X respectively. By construction, Y is birational
to Y0, and we can therefore identify its field of rational functions with
the field of fractions Frac(A0) of A0. By Lemma 1.6(i), µ admits a semi-
invariant regular function s of weight 1. Then [1, Theorem 3.4] guarantees
the existence of a proper segmental divisor D on Y such that for every
m ∈ Z the sub-A0-module s−mAm of Frac(A0) is equal to Γ(Y,OY (D(m)))
and such that A is equal to

⊕
m∈Z Γ(Y,OY (D(m)) · sm as a graded sub-

A0-algebra of Frac(A0)(s).
We will now check that h = sσ∗(s) is a τ -invariant rational function on Y

making (D, h) a phs-pair. Note that by construction, h is a σ-invariant ratio-
nal function on V . Since by Lemma 1.6(ii), σ∗(s) is a semi-invariant regular
function of weight −1, it follows that h is a also Gm,C-invariant, hence an
element of Frac(A0). Since σ∗ coincides by definition with σ on A0 and τ is
lifted from σ, we can thus view h as a τ -invariant rational function on Y . Let
m > 1 be such that D(m) and D(−m) are Cartier and globally generated,
and let {Ui}i∈I be an open cover of Y such that D(m) and D(−m) are prin-
cipal in every Ui. Then, by the construction of D in [1, Theorem 3.4], for ev-
ery i ∈ I there exists a rational function g ∈ Frac(A0) such that gsm ∈ Am
and div(g)|Ui + D(m)|Ui = 0. In particular, we have div(τ∗g)|τ−1(Ui) =
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−τ∗D(m)|τ−1(Ui). Since σ∗(gsm) = (τ∗g)hms−m ∈ A−m, it follows from
the construction of D that (τ∗g)hm ∈ Γ(Y,OY (D(−m))) and hence, we
have

div(τ∗g) +mdiv(h) +D(−m) > 0.
Substituting div(τ∗g)|τ−1(Ui) = −τ∗D(m)|τ−1(Ui), we conclude that

(−τ∗D(m) +m div(h) +D(−m))|τ−1(Ui) > 0.

Since {τ−1(Ui)}i∈I is also an open cover of Y , this inequality is independant
on the open subset Ui, and we obtain

−τ∗D(m) +mdiv(h) +D(−m) > 0(2.3)

for every m ∈ Z since all the terms in (2.3) are linear on m. Taking now
a rational function g ∈ Frac(A0) such that gs−m ∈ A−m and D(−m)|Ui =
−div(g)|Ui

, we find by the same argument that −τ∗D(−m) −m div(h) +
D(m) > 0, hence applying the involution τ∗ to this inequality that

−τ∗D(m) +mdiv(h) +D(−m) 6 0(2.4)

for every m ∈ Z. The inequalities (2.3) and (2.4) together yield that
τ∗(D)(m) = D(−m) + m div(h) for every m ∈ Z, hence that τ∗D =
D̂ + {1} ⊗ div(h). �

Remark 2.8. — Given a normal real affine variety X = (V, σ, µ) endowed
with an effective S1-action, the construction of a proper segmental divisor
D on the AH-quotient Y (V ) such that V is Gm,C-equivariantly isomorphic
to V = V (Y,D) depends on the non-canonical choice of a semi-invariant
rational function s of weight 1 on V . Different choices for s lead of course to
different segmental divisors Ds on Y (V ). In the proof of Theorem 2.7, we
made a particular choice for s, but the proof actually shows that for every
other choice of s, the rational function hs = sσ∗(s) on Z = (Y (V ), τ)) is
τ -invariant and (Ds, hs) is a phs-pair on Z.

Definition 2.9. — A couple consisting of a real normal semiprojective
variety Z = (Y, τ) and a phs-pair (D, h) on it is called minimal if Z is the
real AH-quotient of X(Z, (D, h)).

It follows from the definition of the real AH-quotient of X(Z, (D, h))
that a couple (Z, (D, h)) is minimal if and only if Y is the AH-quotient
of V (Y,D). This definition is thus equivalent to requiring that the couple
(Y,D) is minimal in the sense of [1, Definition 8.7].

Corollary 2.10. — Let X = (V, σ, µ) be a normal real affine variety
endowed with an effective S1-action and let D be any proper segmental
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divisor on a complex semiprojective variety Y such that there exists a
Gm,C-equivariant isomorphism φ : V '→ V (Y,D).
If the real structure σon the algebraic quotient V//Gm,C'V (Y,D)//Gm,C

induced by σ lifts to a real structure τ on Y , which holds for instance if
(Y,D) is minimal, then there exists a τ -invariant rational function h on
Z = (Y, τ) making (Z, (D, h)) a minimal phs-pair such that X(Z, (D, h)) is
S1-equivariantly isomorphic to X.

Proof. — This follows from the same argument as in the proof of Theo-
rem 2.7(3), taking Y as in the corollary instead of the AH-quotient Y (V )
of V . �

Theorem 2.11. — For i = 1, 2, let Zi = (Yi, τi) be normal real semipro-
jective varieties and let Xi = X(Zi, (Di, hi)) be normal real affine varieties
with effective S1-actions determined by respective phs-pairs (Di, hi) on Zi.
Then X1 and X2 are S1-equivariantly isomorphic if and only if there

exits a normal real semiprojective variety Z = (Y, τ), a phs-pair (D, h) on
Z, real birational morphisms ψi : Zi → Z, and rational functions fi on Yi,
i = 1, 2, such that

ψ∗i (D) = Di + {1} ⊗ div(fi) and ψ∗i (h) = (fi · τ∗i fi) · hi.

Proof. — Recall that by definition,Xi = (Vi, σi, µi) where Vi = V (Yi,Di)
and σi is the real structure on Vi constructed in Theorem 2.7(1). Assume
first that X1 and X2 are S1-equivariantly isomorphic, let Z = (Y, τ) be the
AH-quotient of V1 endowed with the real structure induced by σ1. By [1,
Definition 8.7], there exists a proper segmental divisor D on Y such that
V = V (Y,D) is Gm,C-equivariantly isomorphic to V1. It then follows from
Corollary 2.10 that there exists a τ -invariant function h on Y such that
(D, h) is phs-pair and such that X(Z, (D, h)) = (V, σ, µ) is S1-equivariantly
isomorphic to X1. By [1, Theorem 8.8], there exist birational morphisms
ψi : Yi → Y such that ψ∗i (D) = Di + {1} ⊗ div(fi) for some rational
functions fi on Yi. Indeed, the existence of such birational morphisms is
obtained in the notation of [1, Theorem 8.8] by taking D′ = (Z, (D, h)),
D = (Zi, (Di, hi)) and κ = id.

Furthermore, the real structures τi on Yi and τ on Y are all lifts of
the real structure σ1 on the algebraic quotient V1//Gm,C, which is bira-
tional to Yi and Y since the Gm,C-actions considered are all hyperbolic by
Lemma 1.6(i). Hence, we have τ ◦ψi = ψi ◦ τi which shows that ψi is a real
birational morphism. By [1, Proposition 8.6], the isomorphism between V
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and Vi is given by the collection of isomorphisms

Ψ∗i : Γ(Y,OY (D(m))) '−→ Γ(Yi,OYi(Di(m))), g 7−→ f−mi · ψ∗i (g).(2.5)

Let s and si be the regular functions on V and Vi corresponding respec-
tively to 1 in degree 1 in the grading of their coordinate rings by the sub-
spaces Γ(Y,OY (D(m))) and Γ(Y,OY (Di(m))). By construction, we have
h = sσ∗(s) and hi = siσ

∗
i (si). Since on the other hand Ψ∗i (s) = fisi, we

have

ψ∗i (h) = ψ∗i (sσ∗(s)) = Ψ∗i (s) ·Ψ∗i ◦ σ∗(s) = Ψ∗i (s) · σ∗i ◦Ψ∗i (s)
= fisi · σ∗i (fi)σ∗i (si) = fi · σ∗i (fi) · hi = (fi · τ∗i fi) · hi.

We now prove the converse statement. Let i = 1 or i = 2. By [1, The-
orem 8.8], V is isomorphic to Vi and the isomorphism is given by (2.5).
The real structures σ on V and σi on Vi are given as in the proof of The-
orem 2.7(1) via the collection of isomorphisms (2.2). To conclude that X
is S1-equivariantly isomorphic to Xi we only need to check that σ∗i ◦Ψ∗i =
Ψ∗i ◦ σ∗. But for every g ∈ Γ(Y,OY (D(m))), we have

Ψ∗i ◦ σ∗(g) = Ψ∗i (hmτ∗(g)) = f−mi · ψ∗i (hm) · ψ∗i τ∗(g)

= f−mi · fmi · τ∗i (fmi ) · hmi · ψ∗i τ∗(g)
= τ∗i (fmi ) · hmi · τ∗i ψ∗i (g) = σ∗i (fmi ψ∗i (g)) = σ∗i ◦Ψ∗i (g),

which concludes the proof. �

Corollary 2.12. — Let (Zi, (Di, hi)) be minimal couples on real nor-
mal semiprojective varieties Zi = (Yi, τi), i = 1, 2, determining normal
real affine varieties Xi = X(Zi, (Di, hi)) with effective S1-actions. Then X1
and X2 are S1-equivariantly isomorphic if and only if there exists a real
isomorphism ψ : Z1 → Z2 and a rational function f1 on Y1 such that

ψ∗(D2) = D1 + {1} ⊗ div(f1) and ψ∗(h2) = (f1 · τ∗1 f1) · h1.

Proof. — This follows directly from [1, Theorem 8.8] which asserts that
ψ1 and ψ2 in Theorem 2.11 are both isomorphisms. �

Corollary 2.13. — Let (Z, (D, h)) be a minimal couple on a real nor-
mal semiprojective variety Z = (Y, τ) determining a normal real affine va-
riety X = X(Z, (D, h)) with an effective S1-action. Then every real form of
the S1-variety X is S1-equivariantly isomorphic to X(Z ′, (D, h′)) for some
real form Z ′ = (Y, τ ′) of Z and a τ ′-invariant rational function h′ on Y

making (D, h′) a phs-pair on Z ′.
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Proof. — Recall that by definition X = (V, σ, µ) where V = V (D, h′)
is endowed with the Gm,C-action µ given by the Z-grading of its coordi-
nate ring, and σ is the real structure on V constructed in the proof of
Theorem 2.7(1). On the other hand, by Theorem 2.7(3), every real form
X1 = (V1, µ1, σ1) of X is S1 equivariantly isomorphic to X(Z1, (D1, h1)) for
a suitable phs-pair (D1, h1) on its real AH-quotient Z1 = (Y1, τ1). Since by
definition V1 is Gm,C-equivariantly isomorphic to V and the couple (Y,D)
is minimal, it follows from [1, Theorem 8.8] that there exist an isomor-
phism of complex varieties ψ : Y → Y1 such that D = ψ∗D1 + div(f)
for some rational function f on Y . Letting τ ′ = ψ∗(τ1), the rational
function h′ = f(ψ−1τ1ψ(f))−1ψ∗h1 on Y is τ ′-invariant, and (D, h′) is
a phs pair on Z ′ = (Y, τ ′) such that X1 is S1-equivariantly isomorphic to
X(Z ′, (D, h′)). �

Remark 2.14. — A direct adaptation of [1, Section 8] in our context pro-
vides a notion ofmorphism of phs-pairs for which the appropriate extension
of Theorem 2.11 yields that the assignment (Z, (D, h)) 7→ X(Z, (D, h)) is
a faithful covariant functor from the category of phs-pairs on normal real
semiprojective varieties to the category of normal real affine varieties with
effective S1-actions.

2.3. Real DPD presentations

It is well-known that proper segmental divisors can be described by a
simpler datum consisting of a suitable pair of Q-divisors. Indeed, given a
proper segmental divisor D on a normal complex algebraic variety Y , we
let D+ = D(1) and D− = D(−1). The identity

D = {1} ⊗D+ + [0, 1]⊗ (−D+ −D−)(2.6)

implies that D is equivalently fully determined by a pair of big and semi-
ample Q-Cartier divisors D+ and D− on Y satisfying D+ + D− 6 0 (see
Section 2.1). Furthermore, if (D, h) is a phs-pair for a given additional real
structure τ on Y , then the identity τ∗D = D̂ + {1} ⊗ div(h) is equivalent
to D− = τ∗D+ − div(h). Summing up, a phs-pair (D, h) on a normal real
algebraic variety Z = (Y, τ) is equivalently fully determined via (2.6) by
a pair (D,h) satisfying D + τ∗D 6 div(h). The original data is recovered
from (2.6) by setting D+ = D and D− = τ∗D−div(h). By analogy with the
terminology introduced by Flenner and Zaidenberg [9] for the description
of normal complex affine surfaces with Gm,C-actions, we set the following
definition:
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Definition 2.15. — A real DPD pair on a normal real algebraic variety
Z = (Y, τ) is a pair (D,h) consisting of a big and semiample Q-Cartier
divisor D and a τ -invariant rational function h on Y satisfying D+ τ∗D 6
div(h).

Here, DPD stands for Dolgachev, Pinkham and Demazure, respectively
who where the first to describe split Gm,C-actions via Q-divisors on their
quotients, see the references in [9]. The following corollary is a straightfor-
ward reformulation of Theorem 2.7 and Corollary 2.12 in terms of DPD-
pairs:

Corollary 2.16. — A normal real affine variety X with an effective
S1-action is determined by the following data:

(1) A real normal semiprojective variety Z = (Y, τ) representing the
real AH-quotient of X,

(2) A pair (D,h) consisting of a big and semiample Q-Cartier divisor
D and a τ -invariant rational function h on Y satisfying D+ τ∗D 6
div(h).

Furthermore, for a fixed Z = (Y, τ), two pairs (D1, h1) and (D2, h2)
determine S1-equivariantly isomorphic affine varieties if and only if there
exists a real automorphism ψ of Z and a rational function f on Y such
that

ψ∗D2 = D1 + div(f) and ψ∗(h2) = (f · τ∗f) · h1.

Remark 2.17. — Given a real algebraic variety Z = (Y, τ), the group
K(Y )∗ of invertible rational functions on Y has the structure of Galois
module under the action of τ . In terms of this structure, the condition
ψ∗(h2) = (f · τ∗f) · h1 in Corollary 2.12 and Corollary 2.16 means that h1
and ψ∗(h2) have the same class in the Galois cohomology group

H2(Gal(C/R),K(Y )∗) = (K(Y )∗)τ
∗
/ Im(id×τ∗).

3. Low dimensional examples

In this section we consider real affine curves and surfaces with S1-actions.
In the surface case, rephrasing Corollary 2.16, we obtain in particular a real
counterpart of Flenner–Zaidenberg DPD-presentation of normal complex
affine surfaces with Gm,C-actions [9]. We illustrate the methods to explicitly
find phs-pairs and DPD-pairs corresponding to given S1-actions on various
examples.
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3.1. Real affine curves with S1-actions

Let us first explain how to re-derive the following classical characteriza-
tion of real affine curves with a effective S1-actions:

Proposition 3.1. — Up to equivariant isomorphism there exists pre-
cisely two normal real affine curves with an effective S1-action:

(a) The circle S1 = Spec(R[x, y, ]/(x2 +y2−1) acting on itself by trans-
lations

(b) The curve C = Spec(R[u, v]/(u2 + v2 + 1)) ⊂ A2
R on which S1 acts

by restriction of the representation ρ0 : S1 → SO2,R defined in (1.1).

Proof. — Since the complex punctured affine line A1
∗ = Spec(C[z±1])

is the only normal complex affine curve admitting an effective hyperbolic
Gm,C-action, namely the one µ by translations t · z = tz, a normal real
affine curve X endowed with an effective S1-action is represented by a
triple (V = A1

∗, σ, µ). Its real AH-quotient is thus isomorphic to Spec(C),
endowed with the complex conjugation, an a phs-pair (D, h) on it consists
of the trivial divisor and a non-zero real number h ∈ R∗. By Theorem 2.11
and Remark 2.17, two real numbers h and h′ determine S1-equivariantly
isomorphic curves if and only if they have the same class in H2(Z2,C∗) '
R/R+, that is, if and only if they have the same sign. We thus have two
cases:

• h = 1. The corresponding real structure σ on A1
∗ as constructed in

Theorem 2.7 is given by the composition of the involution z 7→ z−1

with the complex conjugation. The invariants are then generated
by x = 1

2 (z + z−1) and y = 1
2i (z − z−1), and we conclude that

X = Spec(C[z±1]σ∗) ' S1 on which S1 acts by translations.
• h = −1. The corresponding real structure σ is given by the com-
position of the involution z 7→ −z−1 with the complex conjugation
The invariants are generated by u = 1

2 (z−z−1) and v = 1
2i (z+z−1),

and the corresponding real affine curve X = Spec(C[z±1]σ∗) is iso-
morphic to C with the announced S1-action.

�

3.2. Real DPD-presentation of affine surfaces with S1-actions

Given a normal real affine surface endowed with an effective S1-action
X = (V, σ, µ), the AH-quotient Y (V ) of V coincides with its algebraic
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quotient Y0(V ) = V//Gm,C, which is a normal, hence smooth complex affine
curve. The pair (Y0(V ), σ) is thus a smooth real affine curve. Corollary 2.16
can be rephrased in the form of the following real counterpart of Flenner–
Zaidenberg DPD-presentation of normal complex affine surfaces with Gm,C-
actions [9].

Proposition 3.2. — A normal real affine surface X with an effective
S1-action is determined by a smooth real affine curve C = (Y, τ) and a pair
(D,h) consisting of a Weil Q-divisor D and a τ -invariant rational function
h on Y such that D + τ∗D 6 div(h).

Example 3.3. — Given a non-constant polynomial P ∈ R[w], we let
X(P ) be the normal real affine surface in A2

R × A1
R = Spec(R[x, y][w])

defined by the equation x2 + y2 − P (w) = 0. The action of S1 on A2
R ×A1

R
defined by the direct sum of the representation ρ0 : S1 → SO2,R of (1.1)
on the first factor with the trivial representation on the second factor
restricts to an effective S1-action on X(P ). We will show that a DPD-
presentation forX(P ) is (D,h) = (0, P (w)) on the curve C = Spec(R[w]) =
(Spec(C[w]), τ), where τ is the complex conjugation.

Indeed, by making the complex coordinate change (u, v) = (x+iy, x−iy),
we see that X(P ) endowed with its S1-action is represented by the triple
(V (P ), σ, µ) where V (P ) is the normal complex surface with equation uv−
P (w) = 0 in A3

C, σ is the real structure defined as the composition of
the involution (u, v) 7→ (v, u) with the complex conjugation and µ is the
effective Gm,C-action induced by the linear action t·(u, v, w) = (t−1u, tv, w)
on A3

C. The quotient V (P )//Gm,C is isomorphic to Spec(C[w]) on which σ
induces the complex conjugation τ . Choosing v as a semi-invariant function
of weight 1 on V (P ) as in the proof of Theorem 2.7, we deduce from the
identification:

Γ(V (P ),OV (P )) '
⊕
n<0

C[w] · P (w)−nvn ⊕ C[w]⊕
⊕
n>0

C[w] · vn ⊂ C(w)(v)

that V (P ) is Gm,C-equivariantly isomorphic to V (Spec(C[w]),D), where D
is determined by D(n) = div(1) = 0 and D(−n) = div(P (w)−n), for all
n > 0. We obtain from (2.6) that

D =
∑

[0, pi]⊗ {ai}+
∑

[0, qi]⊗ ({bi}+ {bi}) ,

where ai, bi and bi are the real and complex roots of P respectively, and
pi, qi are their respective multiplicities. Furthermore, h = vσ∗v = vu =
P (w), and so, the DPD-presentation of X(P ) is (D(1), P (w)) = (0, P (w))
as claimed.
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Note that in Example 3.3 above, the special case where P (w) = w cor-
responds to a surface X(P ) equivariantly isomorphic to the affine plane
A2

R endowed with the effective S1-action defined by the representation ρ0 :
S1 → SO2,R. The following is a counter-part for S1-actions of Gutwirth’s
linearisation theorem [12] for Gm-actions on the plane:

Proposition 3.4. — Every effective S1-action on A2
R is conjugate by an

automorphism of A2
R to that defined by the representation ρ0 : S1 → SO2,R.

Proof. — Indeed, let (V = A2
C, σA2

R
, µ) be a triple representing the given

S1-action on X = A2
R. Since by virtue of Lemma 1.6, the Gm,C-action µ

is hyperbolic, it follows from Gutwirth’s theorem [12] that µ is conjugate
by an automorphism ϕ of A2

C to a linear action ν of the form t · (u, v) =
(t−pu, tqv) for some relatively prime positive integers p and q. It follows
that X endowed with its S1-action is also represented by the triple (V, σ, ν)
where σ = ϕ∗σA2

R
= ϕ−1σA2

R
ϕ is the pull-back of σA2

R
by ϕ.

The algebraic quotient V//Gm,C is isomorphic to Spec(C[z]) ' A1
C, where

z = uqvp. Letting a and b be positive integers such that −ap + bq =
1, s = uavb is a semi-invariant regular function of weight 1 on V which
determines a Gm,C-equivariant isomorphism between V and V (A1

C,D′) for
the segmental divisor D′ = [−a/q, b/p] ⊗ {0}. Since C = (V//Gm,C, σ)
is a real form of A1

R, hence is isomorphic to the trivial one, there exists
an automorphism ψ : z 7→ αz + β of V//Gm,C, where α ∈ C∗ and β ∈
C, such that σ = ψ∗σA1

R
. So σ is the composition of the automorphism

z 7→ αα−1z + α−1(β − β) of V//Gm,C with the complex conjugation. The
condition σ∗D′ = D̂′ + 1 ⊗ div(h′) for some σ-invariant rational function
h′ ∈ C(z) then reads

[−a/q, b/p]⊗ {α−1(β − β)/} = [−b/p, a/q]⊗ {0}+ 1⊗ div(h′).

Since div(h′) is an integral Weil divisor, it follows that (−ap+bq)/pq = 1/pq
is an integer. Thus p = q = 1 and we can now assume further from the
very beginning that a = 0 and b = 1, so that s = v and D′ = [0, 1] ⊗ {0}.
The condition σ∗D′ = D̂′ + 1 ⊗ div(h′) then implies that div(h′) = {0} =
{α−1(β − β)}, hence that β ∈ R and h′ = γz for some γ in C∗. The fact
h′ is σ-invariant implies in turn that γ = cα for some c ∈ R∗. The phs-
pair (D′, h′) is thus the pull-back of the pair (D′′, h′′) = ([0, 1] ⊗ {β}, cz)
by the real isomorphism ψ : (A1

C, σ) '→ (A1
C, σA1

R
). Since c, β ∈ R, we see

that (D′′, h′′) is in turn the pull-back of the phs-pair (D, h) = ([0, 1] ⊗
{0}, z) by the real automorphism ϕ : z 7→ c(z − β) of (A1

C, σA1
R
). Summing

up, we conclude that X is S1-equivariantly isomorphic to X(Spec(R[z]),
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([0, 1]⊗{0}, z)) hence to A2
R endowed with the action defined by represen-

tation ρ0. �

Example 3.5 (An algebraic model of the open Moebius band). — Let
X ′ ' A1

R × S1 be the real surface endowed with the free S1-action by
translations on the second factor represented by the triple

(V ′ = A1
C ×Gm,C = Spec(C[w][z±1]), σ′, µ′),

where σ′ is the composition of the involution (w, z) 7→ (w, z−1) with the
complex conjugation and µ′ is the Gm,C-action by translations on the sec-
ond factor. A corresponding real DPD-presentation is given by the DPD-
pair (D,h) = ({0}, 1) on the real affine curve C ′ = (Spec(C[w]), τ) where
τ is the complex conjugation.
The involution (w, z) 7→ (−w,−z) of V ′ is both σ′ and Gm,C-equivariant.

The quotient of V ′ by this involution thus inherits a real structure and a
Gm,C-action which correspond to a smooth real affine surface X with an ef-
fective S1-action. Explicitly, letting x = wz−1 and y = z2, X is represented
by the triple (V, σ, µ) where V ' A1

C × Gm,C = Spec(C[x][y±1]), σ is the
composition of involution (x, y) 7→ (xy, y−1) with the complex conjugation,
and µ is the effective Gm,C-action induced by the linear action with weights
(−1, 2). A phs-pair for X is

(D, h) =
( 1

2 ⊗ {0}, x
2y
)
on the affine curve C =

(
Spec(C[x2y]), τ

)
' A1

R ,

where τ denotes the complex conjugation. A real DPD-presentation of X
is given by the DPD-pair (D(1), h) =

( 1
2 · {0}, x

2y
)
. Furthermore, we have

a commutative diagram of real morphisms:

X ′ = (V ′, σ′, µ′)
(w,z)7→(x,y)=(wz−1,z2) //

p1

��

X = (V, σ, µ)

(x,y)7→x2y

��
C ′

w 7→x2y=w2
// C.

The real locus X ′(R) of X ′ endowed with its natural structure of dif-
ferentiable manifold is diffeomorphic to R × S1, on which S1, identified
with the set of complex numbers exp(iθ) of norm 1, acts by translations
on the second factor. The real locus of X is then diffeomorphic to the
open Moebius band obtained as the quotient of R × S1 by the involution
(w, exp(iθ)) 7→ (−w, exp(−iθ)), endowed with the S1-action induced by
that on R× S1. We refer the reader to [6] for more examples of real DPD-
presentations of algebraic models of differentiable surfaces with S1-actions.
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4. Higher dimensional examples

In this section, to continue to illustrate the methods to explicitly find phs-
pairs corresponding to given S1-actions, we present two natural higher di-
mensional examples. We begin with a real form of the action of the maximal
torus Gm,R of SL2,R on SL2,R by multiplication, whose algebraic quotient
morphism turns out to provide an algebraic model of the Hopf fibration
S3 → S2. We then consider certain families of non-trivial forms of linear
S1-actions on A4

R constructed by Moser-Jauslin [14].

4.1. An algebraic model of the Hopf fibration S3 → S2

Recall that the Hopf fibration S3 → S2 realizes the real sphere S3 as
the total space of an S1-torsor over the real sphere S2 in the category of
differentiable real manifolds. Namely, the circle S1 identified with the set
of complex numbers z = x + iy ∈ C∗ of norm 1 acts by component-wise
multiplication on the real sphere S3 ⊂ R4 = C2 viewed as set of pairs of
complex numbers (z1 = x1 + iy1, z2 = x2 + iy2) such that |z1|2 + |z2|2 = 1.
Letting S2 ⊂ R3 be the 2-sphere with equation x2 + y2 + z2 = 1, the
quotient map S3 −→ S3/S1 ' S2 is defined by

(z1, z2) = (x1, y1, x2, y2) 7→ (x, y, z) =
(
|z1|2 − |z2|2, 2 Re(z1z2), 2 Im(z1z2)

)
Putting S3 = Spec(R[x1, y1, x2, y2]/(x2

1 + y2
1 + x2

2 + y2
2 − 1)) an algebraic

model of the action of S1 on S3 is given by the restriction to S3 of the S1-
action on A2

R×A2
R = Spec(R[x1, y1][x2, y2]) defined as the direct sum of two

copies of the representation ρ0 : S1 → SO2,R in (1.1). An algebraic model
of the quotient map is given by the morphism of real algebraic varieties

p : S3 −→ S2

(x1, y1, x2, y2) 7−→ (x2
1 + y2

1 − x2
2 − y2

2 , 2(x1x2 + y1y2), 2(x2y1 − x1y2)),

where S2 = Spec(R[x, y, z]/(x2 + y2 + z2− 1)). Recall that the divisor class
group of S2 is trivial whereas the divisor class group of S2

C is isomorphic to
Z, generated by the class of the Cartier divisor D = {x+ iy = 1− z = 0}.

Proposition 4.1. — The real affine threefold S3 endowed with the so-
defined S1-action is S1-equivariantly isomorphic to X(S2, ({1}⊗D, 1− z)).

Proof. — As a real threefold with S1-action, S3 can be equivalently rep-
resented by the smooth complex affine quadric V = {u1v1 + u2v2 = 1}
in A4

C, equipped with the real structure σ defined as the composition of
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the involution (u1, u2, v1, v2) 7→ (v1, v2, u1, u2) with the complex conjuga-
tion, and endowed with the Gm,C-action µ defined by t · (u1, v1, u2, v2) =
(tu1, t

−1v1, tu2, t
−1v2). The algebraic quotient V//Gm,C is isomorphic to

the smooth affine quadric S =
{
uv + z2 = 1

}
in A3

C and the quotient mor-
phism

V → V//Gm,C = S

(u1, v1, u2, v2) 7→ (u, v, w) = (2u1v2, 2u2v1, 2u1v1 − 1)

is a Gm,C-torsor whose class inH1(S,O∗S) ' Pic(S) ' Z coincides with that
of the line bundle associated to the Cartier divisor D′ = {u = 1 − z = 0}
on S. It follows that S is the AH-quotient of V and that D′ = {1} ⊗D′ is
a proper segmental divisor on S such that V is equivariantly isomorphic to
V (S,D′).
The real structure σ descends on S to the real structure σ defined as

the composition of the involution (u, v, w) 7→ (v, u, w) with the complex
conjugation. Since σ∗D′ = {v = 1 − z = 0} = −D′ + div(1 − z) where
1 − z is σ-invariant, we conclude that S3 is equivariantly isomorphic to
X((S, σ), ({1} ⊗ D′, 1 − z)). The assertion then follows by noticing that
the phs-pair ({1} ⊗ D, 1 − z) is the pull-back of ({1} ⊗ D′, 1 − z) by the
isomorphism of real algebraic surfaces

ϕ : (S2
C, σS2) '−→ (S, σ), (x, y, z) 7−→ (u, v, z) = (x+ iy, x− iy, z). �

More generally, recall that for every integer p > 1, the Lens space L(p, 1)
is the quotient of S3 = {(z1, z2), |z1|2 + |z2|2 = 1} by the free action of
the group Zp defined by (z1, z2) 7→ (ζz1, z2), where ζ = exp(2iπ/p). This
action is equivariant with respect to the S1-action on S3 by component-wise
multiplication, and so, L(p, 1) inherits a effective action of S1. A similar
argument as in the proof of the previous proposition shows that an algebraic
model of L(p, 1) endowed with this S1-action is given by the real affine
threefold L(p, 1) := X(S2, ({1} ⊗ (pD), (1− z)p)).

4.2. Linear and non-linearizable S1-actions on A4
R

Let again ρ0 : S1 → SO2,R be the representation defined in (1.1). For
every integer r > 0, the morphism

ν2,r : S1 × A4
R −→ A4

R

(s, (u1, v1, u2, v2)) 7−→ (ρ0(s)2 · (u1, v1), ρ0(s)2r+1 · (u2, v2))
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defines an effective action of S1 on A4
R = Spec(R[u1, v1][u2, v2]). With the

notation of Lemma 1.4, the latter is represented by the triple (V, σ, µ2,r),
where V = A4

C = Spec(C[a, b][x, y]), σ is the real structure defined as
the composition of the involution (a, b, x, y) 7→ (b, a, y, x) with the com-
plex conjugation, and µ2,r is the linear hyperbolic Gm,C-action weights
(2,−2, 2r + 1,−2r − 1).

For r = 1, Freudenburg and Moser-Jauslin [10] constructed an S1-action
ν′2,1 on A4

R which is a non-trivial form of ν2,1, hence in particular a non-
linearizable action. The construction was generalized later on by Moser-
Jauslin [14] for arbitrary r > 2 to yield infinite families of pairwise non-
conjugate non-linearizable S1-actions on A4

R. Our aim is to give a comple-
mentary description of these actions in terms of phs-pairs.
Given r > 1, we let Q2,r be the closed subvariety of the affine space A4

C =
Spec(C[u, v, z, w]) with equation uv = z2r+1w2 and we let π : Y2,r → Q2,r
be the blow-up of Q2,r with center at the closed subschemeW with defining
ideal (u, v, z2r+1, w2). We denote by E be the exceptional divisor of π, and
by Dz,u, Dz,v, Dw,u and Dw,v the respective proper transforms in Y2,r of
the Weil divisors {z = u = 0}, {z = v = 0}, {w = u = 0} and {w = v = 0}
on Q2,r. We let D2,r be the segmental divisor on Y2,r defined by

D2,r = r ⊗Dz,v + {1} ⊗Dw,v + [2r, 2r + 1]⊗ E.

The main result of [14] can now be reformulated as follows:

Theorem 4.2. — Let r > 1 be a fixed integer. Then for every polyno-
mial P ∈ R[z], there exists a real structure τP on Y2,r with the following
properties:

(1) The rational function hP = zr((1− zP 2(z))w + Pn(z)v) on Y2,r is
τP -invariant,

(2) (D2,r, hP ) is phs-pair on Z2,r,P = (Y2,r, τP ),
(3) The affine fourfold X(Z2,r,P , (D2,r, hP )) is isomorphic to A4

R.
Furthermore, two fourfolds X(Z2,r,Pi

, (D2,r, hPi
)), i = 1, 2, are S1-equiv-

ariantly isomorphic if and only if there exists c ∈ R∗ such that P2(z) ≡
cP1(c2z) modulo zr.

Proof. — Letting n = 2r + 1, the matrix

MP =
(

1− abP 2(ab) anPn(ab)
−bnPn(ab)

∑2r
j=0(abP 2(ab))j

)
∈ SL2(C[a, b])

defines an automorphism ϕP of V over Spec(C[a, b]) which is equivariant for
the Gm,C-action µ2,r. By [14, Theorem 3.1(i)], the composition σP = ϕP ◦σ
is a real structure on V such that (V, σP ) is isomorphic to A4

R. Since ϕP

ANNALES DE L’INSTITUT FOURIER



NORMAL REAL AFFINE VARIETIES WITH CIRCLE ACTIONS 1855

is Gm,C-equivariant, it follows from Lemma 1.4 that the triple (V, σP , µ2,r)
is a smooth real affine fourfold XP endowed with an effective S1-action
which is a real form of X0 = (V, σ, µ2,r). The main result in [14] asserts
that XP1 is S1-equivariantly isomorphic to XP2 if and only if there exists
c ∈ R∗ such that P2(z) ≡ cP1(c2z) modulo zr. So to complete the proof, it
suffices to show that the AH-quotient of V is equal to Y2,r, that V is Gm,C-
equivariantly isomorphic to V (Y2,r,D2,r), and that XP is S1-equivariantly
isomorphic to X(Z2,r,P , (D2,r, hP )) for the claimed rational function hP on
Y2,r endowed with the real structure τP induced by σP .
First, it is clear that Q2,r is the algebraic quotient of V , the quotient

morphism being given by (a, b, x, y) 7→ (u, v, z, w) = (any2, bnx2, ab, xy).
The fact that Y2,r is the AH-quotient of V then follows from the observa-
tion that the minimal d for which the graded sub-algebra of A = C[a, b, x, y]
consisting of semi-invariants of positive (resp. negative) weights divisible
by d is generated in degree 1, is equal to 2n, and that A2n · A−2n =(
any2, bnx2, anbn, x2y2) =

(
u, v, zn, w2) is precisely the defining ideal of

the center of the blow-up π : Y2,r → Q2,r.
The fact that V ' V (Y2,r,D2,r) can then be derived for instance from

the toric downgrading method described in [1, Section 11]. In our case,
V endowed with the Gm,C-action µ2,r is the restriction to the sub-torus
Gm,C ↪→ G4

m,C, t 7→ (t2, t−2, tn, t−n) of the usual structure of toric variety
of A4

C. This sub-torus corresponds to the injection F : Z → Z4, 1 7→
(2,−2, n,−n) between the respective lattices of 1-parameter subgroups,
and we have an exact sequence 0→ Z F→ Z4 G→ Z3 → 0 where

G : Z4 → Z3 is given by the matrix

 1 1 0 0
0 0 1 1
n 0 0 2

 .

Let Σ′ be the fan in Z4 ⊗Z R generated by the cone cone(e1, e2, e3, e4)
where ei are the standard basis vectors. The coarsest fan Σ in Z3 ⊗Z R
generated by the image by P of Σ′ is the simplicial fan generated by f1 =
(1, 0, n), f2 = (1, 0, 0), f3 = (0, 1, 0), f4 = (0, 1, 2) and the additional vector
f5 = (2, n, 2n) = 2f1 + nf3 = 2f2 + nf4. This fan describes Y2,r as a toric
threefold in which the invariant divisors corresponding the rays generated
by the fi are respectively D(f1) = Dz,u, D(f2) = Dz,v, D(f3) = Dw,v,
D(f4) = Dw,u, while D(f5) is the exceptional divisor E of π : Y2,r → Q2,r.
A direct calculation now shows that D2,r is equal to the proper segmental
divisor supported on the union of the D(fi) whose coefficients are the
images by the section γ = r pr2 + pr3 : Z4 → Z of F of the segments
γ
(
R4

>0 ∩ P−1(fi)
)
, i = 1, . . . , 5. This implies that V ' V (Y2,r,D2,r)
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Now recall from the proof of Theorem 2.7 and Remark 2.8 that XP

is then S1-equivariantly isomorphic to X(Z2,r,P , (D2,r, sσ
∗
P s)), where s is

the semi-invariant rational function of weight 1 on A4
C which provides the

identification C[a, b, x, y]m = Γ(Y2,r,OY2,r
(D2,r(m))) · sm for every m ∈ Z.

Our choice of section γ of F in the toric downgrading method used to
construct D2,r corresponds to the choice s = brx, and the fact that hP =
(brx)σ∗P (brx) then follows from a direct calculation. �
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