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MODULI OF G-COVERS OF CURVES: GEOMETRY
AND SINGULARITIES

by Mattia GALEOTTI

Abstract. — We analyze the singular locus and the locus of non-canonical
singularities of the moduli space Rg,G of curves with a G-cover for any finite
group G. We show that non-canonical singularities are of two types: T -curves, that
is singularities lifted from the moduli space Mg of stable curves, and J-curves, that
is new singularities entirely characterized by the dual graph of the cover. Finally, we
prove that in the case G = S3, the J-locus is empty, which is the first fundamental
step in evaluating the Kodaira dimension of Rg,S3 .
Résumé. — Nous analysons le lieu singulier et le lieu des singularités non-

canoniques de l’espace de modules Rg,G des courbes avec un G-recouvrement où
G est un groupe fini. Nous montrons que les singularités non canoniques sont de
deux types: T -courbes, c’est-à-dire des singularités relevées de l’espace de modules

Mg des courbes stables, et J-courbes, c’est-à-dire des singularités nouvelles carac-
térisées entièrement par le graphe dual du recouvrement. Enfin, nous prouvons que
dans le cas G = S3, le lieu J est vide, une première étage très importante dans
l’évaluation de la dimension de Kodaira de Rg,S3

1. Introduction

This is the first of two papers whose goal is to analyze the birational
geometry of the moduli space of curves equipped with a G-cover, where
G is any finite group. In particular we focus on the case G = S3, the
symmetric group of order 3.

The moduli space Mg of smooth curves of genus g is a widely studied
object along with its Deligne–Mumford compactificationMg described for
the first time in [9]. This compactification is the moduli space of genus
g stable curves, that is curves admitting nodal singularities and a finite

Keywords: Moduli of curves, G-covers, curves, stable curves, curve coverings, singulari-
ties, birational geometry.
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2192 Mattia GALEOTTI

automorphism group. The birational geometry ofMg was first approached
by Eisenbud, Harris and Mumford [10, 15, 16], proving that it is a variety
of general type for genus g > 23. The cases g = 22, 23 were recently solved
by Farkas–Jensen–Payne [11], proving that M22 and M23 are of general
type too.
The present work fits in the framework of finite covers of Mg, whose

study is motivated by the fact that in many cases the transition to the
general type happens for genus lower than 22. Farkas and Verra (see [12])
focused in the case of odd spin curves; Chiodo–Eisenbud–Farkas–Schreyer
work [7] analyzes the moduli of curves with a 3-torsion bundle; in both
cases the moduli space is of general type for g > 12. For this type of results
is fundamental an analysis of the singular locus. This has been done by
Chiodo and Farkas in [8] for curves with an `-torsion bundle, also called
level ` curves. In his work [13], the author generalized this analysis to the
case of the moduli space Rkg,` of curves with a line bundle L such that
L⊗` ∼= ω⊗k.
Here we propose another generalization of Chiodo and Farkas approach,

by treating curves with a G-cover for any finite group G, where the case
of level ` curves is equivalent to G = µ` a cyclic group. In order to com-
pactify the moduli space Rg,G of genus g smooth curves with a princi-
pal G-bundle, we introduce two notions of covers: twisted G-covers and
admissible G-covers. Twisted covers are treated in [8] as balanced maps
φ : C → BG where C is a twisted curve, that is a Deligne–Mumford stack
whose coarse space is a stable curve and with non-trivial cyclic stabilizer
at some nodes. For a wide introduction to twisted curves and their mod-
uli see for example [1, 2, 6]. Admissible G-covers are principal G-bundles
admitting ramification points over some nodes. The two cover notions are
proved equivalent in [1], as recalled here in Theorem 2.38.
The main result we propose is the description of the singular locus

SingRg,G and the non-canonical singular locus SingncRg,G. In particular,
we are interested in characterizing the singularities outside the preimage
of singular points ofMg. In order to achieve this, for any twisted G-cover
(C, φ) we consider the group AutC(C, φ) of ghost automorphisms, i.e. C
automorphisms lifting to φ and acting trivially on the coarse curve C. As
any singularity of Rg,G is a quotient singularity, there are some tools allow-
ing its description, such as quasireflections (see Definition 4.9) and the age
invariant, in particular via the notion of junior group (see Definition 5.2).
We denote by QR ⊂ AutC(C, φ) the subgroup generated by quasireflec-
tions. Moreover, if π : Rg,G →Mg is the natural projection, we denote by
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Ng,G := SingRg,G∩π−1 SingMg and Tg,G := SingncRg,G∩π−1 SingncMg

the loci of singularities lifted from Mg. Theorems 4.20 and 5.8, summa-
rized below, say that the “new” singularities are characterized by their
ghost structure.

Theorem. — If Hg,G ⊂ Rg,G is the locus of twisted G-covers (C, φ)
such that AutC(C, φ) is not generated by quasireflections, then

SingRg,G = Ng,G ∪Hg,G.

If Jg,G ⊂ Rg,G is the locus such that AutC(C, φ)/QR is a junior group,
then

SingncRg,G = Tg,G ∪ Jg,G.

In order to approach the problem of evaluating the Kodaira dimension
of Rg,G, a fundamental step is proving the pluricanonical form extension
result, similarly to what has been done for Mg in [16]. As last result we
prove in Theorem 5.13 that the J-locus is empty for G = S3, and this
will be the starting point to the extension of pluricanonical forms over a
desingularization of Rg,S3 , because it allows the generalization of Harris–
Mumford techniques.

Theorem. — In the case of the symmetric group G = S3, the J-locus
Jg,S3 is empty for any genus g > 2. Therefore SingncRg,S3 = Tg,S3 .

As a direct application, in our next paper we are going to prove that the
moduli space of genus g connected twisted S3-covers is of general type for
any odd genus g > 13.

In section Section 2 we introduce the different notions of covers and recall
their equivalence. In Section 3 we review the dual graph and torsor notions,
they are very important in describing the structure of twisted covers and
their ghost automorphisms. In Section 4 and Section 5 we prove the main
results for the loci of singularities.
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2194 Mattia GALEOTTI

2. Moduli of curves with a G-cover

Consider G a finite group, Rg,G is the moduli space of genus g smooth
curves with a principal G-bundle. The moduli Rg,G comes with a natural
forgetful proper morphism π : Rg,G → Mg. As shown in [9], the moduli
space Mg of stable curves, is a compactification of Mg. In the case of
principal G-bundles over stable curves, the nodal singularities prevent the
forgetful projection π to be proper.
In order to find a compactification of Rg,G which is proper over Mg,

we introduce two equivalent stacks: the one of twisted G-covers of genus g,
denoted by Bbal

g (G), and the one of admissible G-covers of genus g, denoted
by AdmG

g . These stacks are Deligne–Mumford and are proven to be isomor-
phic by Abramovich, Corti and Vistoli (see [1]), we introduce both of them
because we will use different insights from both points of view. The coarse
space Rg,G of these spaces is a compactification of Rg,G, and it comes with
a proper forgetful morphism Rg,G →Mg which extends π.

2.1. Curves with principal G-bundles

Given any finite group G, in this section we explore the geometry of
principal G-bundles over stable curves and their automorphisms.

2.1.1. Moduli of stable curves

In [9], Deligne and Mumford carry a local analysis of the stack Mg,n

of stable curves, based on deformation theory. For every n-marked sta-
ble curve (C; p1, . . . , pn), the deformation functor is representable (see [22]
and [3, §11]) and it is represented by a smooth scheme Def(C; p1, . . . , pn)
of dimension 3g − 3 + n with one distinguished point q. The deforma-
tion scheme comes with a universal family X → Def(C; p1, . . . , pn) whose
central fiber Xq is identified with (C; p1, . . . , pn). Every automorphism of
the central fiber naturally extends to the whole family X by the universal
property of the deformation scheme. The strict henselization of Mg,n at the
geometric point [C; p1, . . . , pn] is the same of the Deligne–Mumford stack

[Def(C; p1, . . . , pn)/Aut(C; p1, . . . , pn)]

at q. As a consequence, for every geometric point [C; p1, . . . , pn] of the coarse
spaceMg,n, the strict Henselization at [C; p1, . . . , pn] is Def(C; p1, . . . , pn)/
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Aut(C; p1, . . . , pn). This implies that every singularity of Mg,n is a quo-
tient singularity. From now on, we will refer to the strict henselization of a
scheme X at a geometric point q as the local picture of X at q.
As showed in [3, §11.2], given a smooth curve C with n marked points

p1, . . . , pn, we have Def(C; p1, . . . , pn) ∼= H1(C, TC(−p1− · · · − pn)), where
TC is the tangent bundle to curve C.

Remark 2.1. — Given a stable n-marked curve C, we denote by
C1, C2, . . . , CV its irreducible components. Let nor : C → C be the normal-
ization morphism of C, and denote by Ci the normalization of component
Ci for every i, then C =

⊔
i Ci. We mark on C the preimage point via nor

of any marked point or node. We denote by gi the genus of Ci for any i,
by Di the divisor of marked points on Ci and by ni := deg(Di) its degree.
The stability condition for C is equivalent to 2gi − 2 + ni > 0 for all i.

Remark 2.2. — We follow [8] to give a more explicit description of the
deformation scheme. For a nodal curve C, consider Def(C; SingC) the uni-
versal deformation of curve C alongside with its nodes. We impose n = 0
in this for sake of simplicity, the n > 0 case is similar. If V is the number
of irreducible components of C, there is a canonical decomposition

(2.1) Def(C; SingC) =
V⊕
i=1

Def(Ci;Di) ∼=
V⊕
i=1

H1(Ci, TCi
(−Di)).

Furthermore, if δ is the number of nodes of C, the quotient Def(C)/
Def(C; SingC) has a canonical splitting

(2.2) Def(C)/Def(C; SingC) =
δ⊕
j=1

Mj ,

whereMj
∼= A1 is the deformation scheme of node qj of C. The isomorphism

Mj → A1 is non-canonical and choosing one isomorphism is equivalent to
choose a smoothing of the node.

2.1.2. Group actions

Given any finite group G and an element h in it, we call ch : G→ G the
conjugation automorphism such that ch : g 7→ h · g · h−1 for all g in G. The
subgroup of conjugation automorphisms, inside Aut(G), is called group of
the inner automorphisms and denoted by Inn(G). We call Sub(G) the set
of G subgroups and, for any subgroup H ∈ Sub(G), we call ZG(H) its
centralizer

ZG(H) := {g ∈ G | gh = hg ∀h ∈ H} .

TOME 72 (2022), FASCICULE 6



2196 Mattia GALEOTTI

We denote by ZG the center of the whole group. The group Inn(G) acts
naturally on Sub(G).

Definition 2.3. — We call T (G) the set of the orbits of the Inn(G)-
action in Sub(G). Equivalently, T (G) is the set of conjugacy classes of G
subgroups.

Definition 2.4. — Consider two subgroup conjugacy classes H1,H2 in
T (G), we say that H2 is a subclass of H1, denoted by H2 6 H1, if for one
element H2 ∈ H2 (and hence for all), there exists H1 ∈ H1 such that H2 is
a subgroup of H1. If the inclusion is strict, then H2 is a strict subclass of
H1 and the notation is H2 < H1.

Consider a transitive G-set T , i.e. a set T with a transitive left G-action
ψ : G × T → T . Any map η : T → G induces, via ψ, a map T → T . In
particular,

E 7→ ψ(η(E), E), ∀E ∈ T .
This induces a map

ψ∗ : GT → T T .
If we denote by ST ⊂ T T the subset of T permutations, we obtain that
ψ−1
∗ (ST ) is the subset of maps T → G inducing a T permutation.
Consider an element E in T . We denote by HE its stabilizer, i.e. the G

subgroup fixing E. Given any other element ψ(g,E) for some g in G, its
stabilizer is

Hψ(g,E) = g ·HE · g−1,

this proves the following lemma.

Lemma 2.5. — Given any transitive G-set T , there exists a canonical
conjugacy class H in T (G), and a canonical surjection T � H sending any
element to its stabilizer.

Given the transitive G-set T and the group G seen as a G-set with
respect to the Inn(G)-action, we consider the set of G-equivariant maps
HomG(T , G).

Lemma 2.6. — For any element E in T , and any map η in HomG(T , G),
η(E) ∈ ZG(HE).

Proof. — The equivariance condition means that

η(ψ(h,E)) = ch(η(E)) = h · η(E) · h−1

for all h in G. If h is in HE , the left hand side of the equality above is simply
η(E), therefore ch(η(E)) = η(E) for all h in HE , and this is possible if and
only if η(E) is in ZG(HE). �
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Proposition 2.7. — Given any object E in T , there exists a canonical
isomorphism

HomG(T , G) ∼= ZG(HE).
Moreover, the set of equivariant maps HomG(T , G) is uniquely determined
by the canonical class H associated to T (see Lemma 2.5).

Proof. — The first part of the proposition follows from Lemma 2.6. We
observe that if we consider another object E′ = ψ(s, E), then HE′ = s ·
HE · s−1 and

ZG(HE′) = s · ZG(HE) · s−1.

Therefore there exists an inclusion HomG(T , G) ↪→ G which is determined,
up to conjugation, by the class H of HE . �

2.1.3. Principal G-bundles

Definition 2.8 (principal G-bundle). — If G is a finite group, a prin-
cipal G-bundle over a scheme X is a fiber bundle F → X together with a
left action ψ : G× F → F such that the induced morphism

ψ̃ : G× F → F ×X F,

is an isomorphism. Here ψ̃ = ψ×π2, where π2 is the projection G×F → F .

Remark 2.9. — As a direct consequence of the definition, every geometric
fiber of F → X is isomorphic to the group G itself.

Remark 2.10. — The category of principal G-bundles is denoted by BG
and comes with a natural forgetful functor BG→ Sch.

We introduce the stack Rg,G of smooth curves of genus g with a principal
G-bundle.

Definition 2.11. — In the category Rg,G, the objects are smooth S-
curves X → S of genus g, equipped with a principal G-bundle F → X, for
any scheme S. The morphisms of Rg,G are commutative diagrams

F ′

b

��

// X ′

��

// S′

��
F // X // S

such that the two squares are cartesian and b is G-equivariant with respect
to the natural G-actions. The category Rg,G comes with a forgetful functor
π : Rg,G → Mg, sending any object or morphism on the underlying curve
or curve morphism.

TOME 72 (2022), FASCICULE 6



2198 Mattia GALEOTTI

Consider a connected normal scheme X and a principal G-bundle F →
X. We denote by AutCov(X,F ) its automorphism group in the category of
coverings, that is the automorphisms of F commuting with the projection
F → X. Furthermore, AutBG(X,F ) is its automorphism group in the
category of principal G-bundles, that is the covering automorphisms of F
compatible with the natural G-action.
We call T (F ) the set of connected components of any principal G-bundle

F → X. The group G acts transitively on T (F ), and by abuse of notation
we call ψ : G × T (F ) → T (F ) this action. As explained in Section 2.1.2,
this action induces a map ψ∗ : GT (F ) → T (F )T (F ).

Proposition 2.12. — If X is a connected normal scheme, and F → X

a principal G-bundle, then we have the following canonical identifications:
• AutCov(X,F ) = ψ−1

∗ (ST (F ));
• AutBG(X,F ) = HomG(T (F ), G).

Here we denoted by ST (F ) the set of T (F ) permutations.

Proof. — We start by showing the identification HomCov(F/X,F/X) =
GT (F ), where the first one is the set of covering automorphism of a principal
G-bundle F → X. Consider any covering morphism b : F → F over X,
given the isomorphism ψ̃ : G× F → F ×X F introduced in Definition 2.8,
we consider the chain of maps

(2.3) F
b×id−−−→ F ×X F

ψ̃−1

−−−→ G× F π1−→ G.

As G is discrete, the map above is constant on the connected components
and therefore it induces a map HomCov(F/X,F/X) η−→ GT (F ) which more-
over is bijective.
The morphism b is an automorphism if and only if η(b) acts bijectively

on T (F ), i.e. if and only if ψ∗(η(b)) ∈ ST (G).
The automorphisms of F as a principal G-bundle must moreover preserve

the G-action, i.e. we must have

bh := b ◦ ψ(−, h) = h · b(−) ∀h ∈ G,

where · is the multiplication in G. Observe that η(bh) = (η(b)◦ψ(−, h)) ·h,
where we denoted by ψ the G-action on F and T (F ) indistinctly. Therefore
η(b) ◦ ψ(−, h) = η(bh) · h−1, and so

η(b) ◦ ψ(−, h) = ch ◦ η(b),

which is the exact definition of η being in HomG(T (F ), G) ⊂ GT (F ). �
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Remark 2.13. — In the case of a connected principal G-bundle F →
X, the proposition above summarizes in AutCov(X,F ) = G and
AutBG(X,F ) = ZG.

For a general G-bundle F → X, the set of connected components T (F )
has a transitiveG-action. By Lemma 2.5, this induces a canonical conjugacy
class H in T (G).

Definition 2.14. — We call principal H-bundle, a principal G-bundle
whose canonical associated class in T (G) is H. Equivalently, the stabilizer
of every connected component in T (F ) is a G subgroup in H.

Remark 2.15. — By Proposition 2.7, the automorphism group of any
principal H-bundle, is isomorphic to ZG(H), where H is any G subgroup
in the H class.

2.2. Twisted G-covers

In order to enlarge the notion of principal G-bundles we admit non-trivial
stabilizers at the nodes of a stable curve, by defining twisted curves. The
twisting techniques are widely discussed in [1] and [2], furthermore twisted
curves are introduced in [8] in the case of a level structure on stable curves.

2.2.1. Definitions

Definition 2.16 (Twisted curve). — A twisted n-marked S-curve is a
diagram

Σ1,Σ2, . . . ,Σn ⊂ C
↓
C

↓
S.

Where:
(1) C is a Deligne–Mumford stack, proper over S, and étale locally it

is a nodal curve over S;
(2) the Σi ⊂ C are disjoint closed substacks in the smooth locus of

C→ S for all i;
(3) Σi → S is an étale gerbe for all i;
(4) C→ C exhibits C as the coarse space of C, and it is an isomorphism

over Cgen.

TOME 72 (2022), FASCICULE 6
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We recall that, given a scheme U and a finite abelian group µ acting on
U , the stack [U/µ] is the category of principal µ-bundles E → T , for any
scheme T , equipped with a µ-equivariant morphism f : E → U . The stack
[U/µ] is a proper Deligne–Mumford stack and has a natural morphism to
its coarse scheme U/µ.
By the definition of twisted curve we get the local pictures:
• at a marking, morphism C→ C → S is locally isomorphic to

[SpecA[x′]/µr]→ SpecA[x]→ SpecA

for some normal ring A and some integer r > 0. Here x = (x′)r,
and µr is the cyclic group of order r acting on SpecA[x′] by the
action ξ : x′ 7→ ξx′ for any ξ ∈ µr;

• at a node, morphism C→ C → S is locally isomorphic to[
Spec

(
A[x′, y′]

(x′y′ − a)

)
/µr

]
→ Spec

(
A[x, y]

(xy − a`)

)
→ SpecA

for some integer r > 0 and a ∈ A. Here x = (x′)`, y = (y′)`. The
group µr acts by the action

ξ : (x′, y′) 7→ (ξx′, ξmy′)

where m is an element of Z/r and ξ is a primitive rth root of the
unit. The action is called balanced if m ≡ −1 mod r. A curve with
balanced action at every node is called a balanced curve.

Definition 2.17 (Twisted G-cover). — Given an n-marked twisted
curve (Σ1, . . . ,Σn; C → C → S), a twisted G-cover is a representable
stack morphism φ : C → BG, i.e. an object of the category Fun(C, BG)
which moreover is representable.

Definition 2.18. — We introduce category Bg,n(G). Objects of Bg,n(G)
are twisted n-marked S-curves of genus g with a twisted G-cover, for any
scheme S.
Consider two twisted G-covers φ′ : C′ → BG and φ : C → BG over the

twisted n-marked curves C′ and C respectively. A morphism (C′, φ′) →
(C, φ) is a pair (f, α) such that f : C′ → C is a morphism of n-marked
twisted curves, and α : φ′ → φ ◦ f is an isomorphism in Fun(C′, BG).

Following [2], the category Bg,n(G) can be defined as the 2-category of
twisted stable n-pointed maps of genus g and degree 0 to the category BG.
In the same paper it is observed that the automorphism group of every 1-
morphism is trivial, therefore this 2-category is equivalent to the category
obtained by replacing 1-morphisms with their 2-isomorphism classes. In [2]
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this category is denoted by Kg,n(BG, 0), the notation Bg,n(G) for the case
of twisted G-covers appears for example in [1].

Definition 2.19. — A balanced twisted G-cover is a twisted G-cover
over a twisted balanced curve. We call Bbal

g,n(G) the full sub-functor of
twisted balanced G-covers.

Twisted G-covers generalize the notion of root of the trivial bundle. In-
deed, for any twisted curve C and any integer ` > 0, there exists a canonical
bijection between the set of twisted µ`-covers over C, and the set of `th
roots of OC. Here a faithful line bundle is a line bundle L → C such that
the associated morphism C→ BC∗ is representable, and an `th root of OC
is a faithful line bundle such that L⊗` ∼= OC.

2.2.2. Local structure of twisted covers

We consider a twisted curve C over a geometric point Spec(C). For any
marked or nodal point p, the local picture of C at p is the same as [U/µr]
at the origin, for some scheme U and positive integer r. Any principal G-
bundle over C, or equivalently any object of BG(C), is locally isomorphic
at p to a principal G-bundle on [U/µr].
In [1, §2.1.8] is explained how to realize twisted stable maps as twisted

objects over scheme theoretic curves. In particular, a principal G-bundle
on [U/µr] is the same as a principal G-bundle f : F̃ → U with the natural
G-action ψ : G× F̃ → F̃ , and also with a µr-action ν : µr × F̃ → F̃ which
is compatible with the µr-action on U and with ψ.

In formulas we have:
(1) f ◦ ν(ξ,−) = ξ · f : F̃ → U , for all ξ ∈ µr;
(2) ψ(h, ν(ξ,−)) = ν(ξ, ψ(h,−)) : F̃ → F̃ , for all h ∈ G and ξ ∈ µr.

Remark 2.20. — We consider at first the case of a marked point p of C
whose local picture is [A1/µr] with µr acting by multiplication. By what
we just said we have a principal G-bundle F̃ → A1, and for any ξ ∈ µr a
morphism α̃(ξ) : F̃ → F̃ such that

α̃(ξ) := ν(ξ,−).

If we fix a privileged rth root ξr = exp(2π/r), then α̃(ξr)(p̃) = ψ(hp̃, p̃), for
all preimages p̃ of p, where hp̃ is an element of group G depending on p̃.

Remark 2.21. — In the case of a node q of C, its local picture is [V/µr] for
some positive integer r where V ∼= {x′y′ = 0} ⊂ A2

x′,y′ and the µr-action
is given by ξ · (x′, y′) = (ξx′, ξ−1y′) for all ξ ∈ µr.
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The normalization of the node neighborhood V is naturally isomorphic
to A1

x′ tA1
y′ → V . We consider the normalization nor : C→ C of the twisted

curve C, the local picture of nor morphism at q is

[A1
x′/µrq

] t [A1
y′/µrq

]→ [V/µrq
].

We denote by q1 ∈ A1
x′ and q2 ∈ A1

y′ the two preimages of q. As before, a
twisted G-cover on [V/µr] is the same as a principal G-bundle F̃ → V plus
a µr-action on V with the right compatibilities. This induces

• two principal G-bundles F̃ ′ → A1
x′ and F̃ ′′ → A1

y′ with the natu-
rally associated µrq

-actions. We denote by ν′ : µrq
× F̃ ′ → F̃ ′ and

ν′′ : µrq
× F̃ ′′ → F̃ ′′ these actions;

• a gluing isomorphism between the central fibers κq : F̃ ′q
∼=−→ F̃ ′′q .

This means that
(i) κq(ψ(h,−)) = ψ(h, κq(−)) : F̃ ′q → F̃ ′′q for any h ∈ G;
(ii) κq(ν′(ξ,−)) = ν′′(ξ, κq(−)) : F̃ ′q → F̃ ′′q for any ξ ∈ µrq

.
And furthermore, F̃ = (F̃ ′ t F̃ ′′)/κq.

Following Remark 2.20, we define α′(ξ) := ν′(ξ,−) : F ′ → F ′, α′′(ξ) :=
ν′′(ξ,−) : F ′′ → F ′′ for any ξ ∈ µrq

. By the balancing condition, if we have
two points q̃1 and q̃2 in F ′q1

and F ′′q2
respectively, such that κq(q̃1) = q̃2,

then hq̃1 = h−1
q̃2

.

This local structure can be encoded in conjugation classes associated
to every marked or nodal point. Consider a marked point p of C and the
local picture [A1/µr] at p, then the twisted G-cover φ : C → BG induces
a morphism φ : [A1/µr] → BG. This induces a morphism φ̃p : µr → G

defined up to conjugation, which is an injection by the φ representability.

Definition 2.22. — The conjugacy class Jφ̃pK of φ̃p is called G-type of
φ at p.

In the case of a node q, the composition of φ with the normalization
induces

φ̃q1 : µr → G and φ̃q2 : µr → G,

and by the balancing condition the two G-types are the inverse of each
other, Jφ̃q1K = Jφ̃q2K−1. Once we choose a privileged branch of a node, we
call G-type of that node the G-type with respect to the restriction of the
cover to that branch. Switching the branches changes the G-type into its
inverse class.
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2.2.3. Local structure of Bbal
g,n(G)

The local structure of Bbal
g,n(G) can be described with a very similar ap-

proach to what we did for Mg,n. We work the case n = 0 of unmarked
twisted G-covers. Given a twisted G-cover (C, φ), its deformation functor is
representable and the associated scheme Def(C, φ) is isomorphic to Def(C)
via the forgetful functor (C, φ) 7→ C. The automorphism group Aut(C, φ)
naturally acts on Def(C, φ) = Def(C) and the local picture of Bbal

g (G) at
[C, φ] is the same of [Def(C)/Aut(C, φ)] at the central point.

Remark 2.23. — Consider a twisted curve C whose coarse space is the
curve C, we give a description of the scheme Def(C) as we did in Remark 2.2
for Def(C) with the notation of Remark 2.1. As C is a twisted curve, ev-
ery node qj has a possibly non-trivial stabilizer, which is a cyclic group of
order rj .

The deformation Def(C; Sing C) of C alongside with its nodes, is canon-
ically identified with the deformation of C alongside with its nodes
Def(C; Sing C) = Def(C; SingC). As in the previous case, the following
quotient has a canonical splitting.

(2.4) Def(C)/Def(C; Sing C) =
δ⊕
j=1

Rj .

In this case Rj ∼= A1 is the deformation scheme of the node qj together
with its stack structure. If we consider the schemes Mj of Equation (2.2)
in Remark 2.2, there exists for every j a canonical morphism Rj →Mj of
order rj ramified in exactly one point.

2.3. Admissible G-covers

In order to define admissible G-covers, in the next sections we introduce
admissible covers and we put a balancing condition on them.

2.3.1. Admissible covers

Definition 2.24 (Admissible cover). — Given a nodal S-curve X → S

with marked points, an admissible cover u : F → X is a morphism such
that:

(1) the composition F → S is a nodal S-curve;
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(2) given a geometric point s ∈ S, every node of Fs maps via u to a
node of Xs;

(3) the restriction F |Xgen → Xgen is an étale cover of degree d;
(4) given a geometric point s ∈ S, the local picture of Fs

u−→ Xs at a
point of Fs mapping to a marked point of X is isomorphic to

SpecA[x′]→ SpecA[x]→ SpecA,

for some normal ring A, an integer r > 0 and u∗x = (x′)r;
(5) the local picture of Fs

u−→ Xs at a node of Fs is isomorphic to

Spec
(
A[x′, y′]

(x′y′ − a)

)
→ Spec

(
A[x, y]

(xy − ar)

)
→ SpecA,

for some integer r > 0 and an element a ∈ A, u∗x = (x′)r and
u∗y = (y′)r.

The category Admg,n,d of n-pointed stable curves of genus g with an
admissible cover of degree d, is a proper Deligne–Mumford stack.
Consider F → C an admissible cover of a nodal curve C, a G-action

on F such that the restriction F |Cgen → Cgen is a principal G-bundle, a
smooth point p of C, and a preimage p̃ ∈ F of p. We denote by Hp̃ ⊂ G

the stabilizer of p̃. By definition of admissible cover, if p ∈ Cgen (i.e. p is
non-marked), then Hp̃ = (1). Moreover, the G-action induces a primitive
character

χp̃ : Hp̃ → GL(Tp̃F ) = C∗,
where Tp̃F is the tangent space to F in p̃.
Given any subgroup H ⊂ G, for any primitive character χ : H → C∗ and

for any s ∈ G, we denote by χs the conjugated character χs : sHs−1 → C∗
such that χs(h) = χ(s−1hs) for all h ∈ G.

In the set of pairs (H,χ), with H a G subgroup and χ : H → C∗ a
character, we introduce the equivalence relation (H,χ) ∼ (H ′, χ′) iff there
exists s ∈ G such that H ′ = sHs−1 and χ′ = χs. Consider a point p̃ on
F with stabilizer Hp̃ and associated character χp̃. We observe that for any
point s · p̃ of the same fiber,

Hs·p̃ = sHp̃s
−1 and χs·p̃ = χsp̃.

Therefore the equivalence class of the pair (Hp̃, χp̃) only depends on the
point p.

Definition 2.25. — For any smooth point p̃ on F , we call local index
the associated pair (Hp̃, χp̃). For any smooth point p ∈ C, the conjugacy
class of the local index of any p̃ in Fp is called the G-type at p, following
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the notation in [4]. We denote the G-type by JHp, χpK, where Hp is the
stabilizer of one of the points in Fp, and χp the associated character.

The notion of G-type is equivalent to the one introduced in Defini-
tion 2.22. We will discuss this equivalence in Section 2.3.4.

2.3.2. Balancing the G-action

Lemma 2.26. — Consider u : F → C an admissible cover of a nodal
curve C such that the restriction F |Cgen → Cgen is a principal G-bundle.
If p̃ ∈ F is one of the preimages of a node or a marked point, then the
stabilizer Hp̃ is a cyclic group.

Proof. — If p̃ is the preimage of a marked point, the local picture of
morphism u at p̃ is

SpecA[x′]→ SpecA[x],
where x′ = xr for some integer r > 0. This local description induces an
action of Hp̃ on U := SpecA[x′] which is free and transitive on U\{p̃}. The
group of automorphisms of U\{p̃} preserving r is exactly µr, therefore Hp̃

must be cyclic too.
In the case of a node p̃ we observe that u is locally isomorphic to

Spec
(

A[x′, y′]
(x′y′ − ar)

)
→ Spec

(
A[x, y]

(xy − a)

)
,

where x′ = xr and y′ = yr, for an integer r > 0 and an element a ∈ A.
The scheme U ′ := Spec (A[x′, y′]/(x′y′ − ar)) is the union of two irreducible
components U1, U2, and we can apply the deduction above to Ui\{p̃} for
i = 1, 2. �

Observe that the set of characters χ : µr → C∗ of a cyclic group, is the
group Z/rZ. In particular, the character associated to k ∈ Z/rZ maps
ξ 7→ ξk for any ξ rth root of the unit.
Focusing on the case of a node p̃ ∈ F , we observe that Hp̃ acts inde-

pendently on the two branches U1 and U2. We denote by χ(1)
p̃ and χ(2)

p̃ the
characters of these actions.

Definition 2.27. — The G-action at node p̃ is balanced when χ(1)
p̃ =

−χ(2)
p̃ , that is they are opposite as elements of Z/rZ (where r depends on

the p̃ fiber).

Definition 2.28 (Admissible G-cover). — Given any finite group G,
consider an admissible cover F → C of a nodal curve C, it is an admissible
G-cover if
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(1) the restriction F |Cgen → Cgen is a principal G-bundle. This implies,
by Lemma 2.26, that for every node or marked point p̃ ∈ F , the
stabilizer Hp̃ is a cyclic group;

(2) the action of Hp̃ is balanced for every node p̃ ∈ F .

This notion was firstly developed by Abramovich, Corti and Vistoli in [1],
and also by Jarvis, Kaufmann and Kimura in [17].

Definition 2.29. — We call AdmG
g,n the stack of stable curves of genus

g with n marked points and equipped with an admissible G-cover.

Remark 2.30. — For any cyclic subgroup H ⊂ G, the image of a charac-
ter χ : H → C∗ is the group of |H|th roots of the unit, µ|H|. We choose a
privileged root in this set, which is exp(2πi/|H|). After this choice, The
datum of (H,χ), is equivalent to the datum of the H generator h =
χ−1(e2πi/|H|). As a consequence, the conjugacy class JH,χK is identified
with the conjugacy class JhK of h in G.

Definition 2.31. — Given an admissible G-cover F → C over an n-
marked stable curve, the series Jh1K, Jh2K, . . . , JhnK, of the G-types of the
singular fibers over the marked points, is called Hurwitz datum of the cover.
The stack of admissible G-covers of genus g with a given Hurwitz datum
is denoted by AdmG

g,Jh1K,...,JhnK.

Remark 2.32. — Given an admissible G-cover F → C, if p is a node of C
and p̃ one of its preimages on F , then the local index of p̃ and the G-type
of p are well defined once we fix a privileged branch of p. Switching the
branches sends the local index and the G-type in their inverses.

Consider a smooth curve C of genus g and n marked points p1, . . . , pn,
the fundamental group of Cgen = C\{p1, . . . , pn} has 2g + n generators
α1, α2, . . . αg, β1 . . . , βg, γ1, . . . , γn. These generators respect the following
relation,

(2.5) α1β1α
−1
1 β−1

1 · · ·αgβgα−1
g β−1

g · γ1 · · · γn = 1,

and this is sufficient to represent the fundamental group. This is called the
canonical representation of the fundamental group of a genus g smooth
curve.
It is possible to describe admissible G-covers over smooth curves by the

monodromy action, as done for example in [4, §2.3] and [21, §3.5]. Consider
a smooth curve C, a generic point p∗ on it and an admissible G-cover
F → C. We denote the points of the fiber Fp∗ by p̃

(g)
∗ for any g ∈ G, in such

a way that g · p̃(1)
∗ = p̃

(g)
∗ . This induces a group morphism π1(Cgen, p∗)→ G.
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This monodromy morphism is well defined up to relabelling the points
p̃

(i)
∗ , i.e. up to G conjugation. The following proposition is a rephrasing

of [4, Lemma 2.6].

Proposition 2.33. — Given a smooth n-marked curve (C; p1, . . . , pn)
and a point p∗ on its generic locus Cgen, the set of isomorphism classes of
admissible G-covers on C is naturally in bijection with the set of conjugacy
classes of maps

$ : π1(Cgen, p∗)→ G.

Remark 2.34. — We also point out that the monodromy of γi at any
point p(g)

∗ , with g ∈ G, is given by a small circular lacet around the deleted
point pi. Therefore by definition of G-type, if JhiK is the G-type of pi, then
J$(γi)K = JhiK.

2.3.3. Admissible G-cover automorphisms

Consider an admissible G-cover F → C over a smooth n-marked curve
(C; p1, . . . , pn). We denote by T (F ) the set of connected components of F ,
which inherits the G-action ψ. For any connected component E ⊂ F , we
denote by HE ⊂ G its stabilizer. The component ψ(s, E), for some element
s of G, has stabilizer s · HE · s−1. Therefore the conjugacy class of the
stabilizer is independent on the choice of E. As in the case of principal
G-bundles, for every admissible G-cover there exists a canonical class H in
T (G) such that the stabilizer of every E in T (F ) is a subgroup HE in H.
Moreover, we have a canonical surjective map

T (F )� H.

Definition 2.35. — Given the set T (G) of subgroup conjugacy classes
in G, and a class H in it, an admissible H-cover is an admissible G-cover
such that every connected component has stabilizer in H.

Definition 2.36. — We denote by AdmG,H
g the stack of admissible H-

covers over stable curves of genus g, and we denote by AdmG,H
g,Jh1K,...,JhnK the

stack of admissible H-cover with Hurwitz datum Jh1K, . . . , JhnK over the n
marked points.

It is possible to generalize the second point of Proposition 2.12. We de-
note by AutAdm(C,F ) the set of automorphisms of an admissible G-cover
F → C.
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Proposition 2.37. — Consider (C; p1, . . . , pn) a nodal n-marked curve,
and F → C an admissible G-cover, then

AutAdm(C,F ) = HomG(T (F ), G).

Proof. — In the case of a smooth curve C, we consider the general locus
Cgen = C\{p1, . . . , pn}. The restriction F |Cgen is a principal G-bundle,
therefore by Proposition 2.12,

AutAdm(C,F ) ⊂ AutBG(Cgen, Fgen) = HomG(T (F |Cgen), Cgen).

Since T (F |Cgen) = T (F ) and every automorphism of F |Cgen → Cgen ex-
tends to the whole F , the thesis follows in this case.
In the case of a general stable curve C, with C1, . . . , CV its connected

components, and Fi the restriction F |Ci
for any i, as a consequence of the

first part, we have

AutAdm(Ci, Fi) = HomG(T (Fi), Ci).

The balancing condition at the nodes imposes that any automorphism in
AutAdm(C,F ) acts as the same multiplicative factor on two touching com-
ponents. This means that a sequence of functions in

∏
i HomG(T (Fi), G),

induces a global automorphism if and only if it is the sequence of restric-
tions of a global function HomG(T (F ), G). �

2.3.4. Equivalence between twisted and admissible G-covers

We introduced the two categories Bbal
g (G) and AdmG

g with the purpose
of “well” defining the notion of principal G-bundle over stable non-smooth
curves. These two categories are proven isomorphic in [1].

Theorem 2.38 (see [1, Theorem 4.3.2]). — There exists a base preserv-
ing equivalence between Bbal

g (G) and AdmG
g , therefore in particular they

are isomorphic Deligne–Mumford stacks.

The proof proposed in [1] can be sketched quickly. Given a twisted G-
cover φ : C → BG, the restriction to Cgen = Cgen is a principal G-bundle
Fgen → Cgen on the generic locus of the coarse space C, and this can be
uniquely completed to an admissible G-cover F → C. Conversely, given
an admissible G-cover F → C, it induces a quotient stack C := [F/G]
and therefore a representable morphism C→ BG with balanced action on
nodes.
In what follows we will adopt the notation Rg,G for the equivalent stacks

Bbal
g (G) and AdmG

g . For every class H in T (G) we denote by RHg,G the full
substack of Rg,G whose objects are admissible H-covers.
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The correspondence of Theorem 2.38 allows the translation of every ma-
chinery we developed on twisted G-covers to admissible G-covers, and con-
versely. For example, the two definitions of G-type we introduced are equiv-
alent. Precisely, consider a twisted G-cover (C, φ), a point p whose G-type
is Jφ̃pK, and an element φ̃p : µr → G in the class of the G-type. Therefore
Im φ̃p = H ⊂ G is a cyclic subgroup and φ̃−1

p : H → µr is a character.
The class JH, φ̃−1

p K is precisely the G-type at p from the admissible G-cover
point of view.
Furthermore, we can use over twisted G-covers the notion of Hurwitz

datum. We will denote by RHg,Jh1K,...,JhnK the stack of admissible H-covers
of genus g with Hurwitz datum Jh1K, . . . , JhnK.
If there is no risk of confusion, we will say that a twisted G-cover (C, φ)

“is” an admissible G-cover F → C (or the other way around), meaning
that F → C is the naturally associated admissible G-cover to (C, φ).

3. Dual graphs and torsors

In this section we introduce the important tool of dual graphs to de-
scribe subloci of the moduli of curves with a twisted G-cover. This subject
was already treated by the author in [13] in the case of spin curves. Here
we update this tool in order to generalize this notion to the case of G-
covers. Furthermore, we introduce torsors and some of their fundamental
properties.

3.1. Decorated dual graphs and G-covers

3.1.1. Basic graph theory

Consider a graph Γ with vertex set V and edge set E, we call loop an
edge that starts and ends on the same vertex, we call separating an edge e
such that the graph with vertex set V and edge set E\{e} is disconnected.
We denote by Esep the set of separating edges, and by E the set of oriented
edges: the elements of this set are edges in E equipped with an orientation,
in particular for every edge e ∈ E we denote by e+ the head vertex and
by e− the tail. There is a canonical 2-to-1 projection E → E. We also
introduce a conjugation in E, such that for each e ∈ E, the conjugated
edge e is obtained by reversing the orientation, in particular (e)+ = e−.
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For every graph Γ, when there is no risk of confusion we denote by V the
cardinality of the vertex set V (Γ) and by E the cardinality of the edge
set E(Γ).
We consider a finite group G acting on graph Γ: That is, we consider two

G-actions on the vertex set and on the edge set,

G× V (Γ)→ V (Γ) and G× E(Γ)→ E(Γ).

We denote these actions by h · v and h · e for every h in G and every vertex
v and oriented edge e. These actions must respect the following natural
intersection conditions

(1) (h · e)+ = h · e+ ∀h ∈ G, e ∈ E(Γ);
(2) h · e = h · e ∀h ∈ G, e ∈ E(Γ).

Observe that there are no faithfulness conditions, therefore any vertex or
edge may have a non-trivial stabilizer. We denote by Hv and He the sta-
bilizers of vertex v and edge e respectively. We have Hs·v = s ·Hv · s−1 for
any v ∈ V (Γ) and s ∈ G, and the same is true for He. In general, every
orbit of vertices (or oriented edges) is characterized by a conjugacy class
H in T (G), and every element of H is the stabilizer of some object in the
orbit.

Definition 3.1 (Cochains). — The group of 0-cochains is the group of
G-valued functions on V (Γ) compatible with the G-action

C0(Γ;G) :=
{
a : V (Γ)→ G

∣∣ a(g · v) = g · a(v) · g−1} .
The group of 1-cochains is the group of antisymmetric functions on E

with the same compatibility condition

C1(Γ;G) :=
{
b : E→ G

∣∣ b(e) = b(e)−1, b(g · e) = g · b(e) · g−1} .
These groups generalize the cochain groups defined by Chiodo and Farkas

in [8]. In particular the Chiodo–Farkas groups refer to the case of a trivial
G-action on Γ.

There exists a natural differential δ : C0(Γ;G)→ C1(Γ;G) such that

δa(e) := a(e+) · a(e−)−1, ∀a ∈ C0(Γ;G) ∀e ∈ E.

Consider the set T (Γ) of the connected components of the graph, with
the naturally induced G-action. The exterior differential fits into an useful
exact sequence of groups

(3.1) 0→ HomG(T (Γ), G) i−→ C0(Γ;G) δ−→ C1(Γ;G).

Here the injection i sends f ∈ HomG(T (Γ), G) on the cochain a such that
for every component γ ∈ T (Γ), a is constantly equal to f(γ) on γ. If Γ is
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a connected graph, then the first term of the exact sequence is the group
G and i sends g ∈ G to the associated constant cochain. We recall that for
any group we can define a (non-associative) Z-action via h · n := hn for all
h in G and n ∈ Z.

Proposition 3.2. — A 1-cochain b is in Im δ if and only if, for every
circuit K = (e1, . . . , ek) in E, we have

b(K) := b(e1) · b(e2) · · · b(ek) = 1.

Proof. — If b ∈ Im δ, the condition above is easily verified. To complete
the proof we show that if the condition si verified, then there exists a
cochain a ∈ C0(Γ;G) such that δa = b. We choose a vertex v ∈ V (Γ)
and impose a(v) = 1, for any other vertex w ∈ V (Γ) we consider a path
P = (e1, . . . , em) starting in v and ending in w. We set

a(w) := b(P) = b(e1) · · · b(em).

By the condition on circuits, the cochain a is well defined, independently
of path P, and by construction we have b = δa. �

3.1.2. Trees and tree-like graphs

Definition 3.3. — A tree is a graph that does not contain any circuit.
A tree-like graph is a connected graph whose only circuits are loops.

Remark 3.4. — For every connected graph Γ, the first Betti number
b1(Γ) = E − V + 1 is the dimension rank of the homology group H1(Γ;Z).
Note that, b1 being positive, E > V − 1. This inequality is an equality if
and only if Γ is a tree.

For every connected graph Γ with vertex set V and edge set E, we can
choose a connected subgraph T with the same vertex set and edge set
ET ⊂ E such that T is a tree.

Definition 3.5. — The graph T is called a spanning tree for Γ.

Lemma 3.6. — If Esep ⊂ E is the set of edges in Γ that are separating,
then Esep 6 V − 1 with equality if and only if Γ is tree-like.

Proof. — If T is a spanning tree for Γ and ET its edge set, then Esep ⊂
ET . Indeed, an edge e ∈ Esep is the only path between its two extremities,
therefore, since T is connected, e must be in ET . Thus Esep 6 ET = V −1,
with equality if and only if all the edges of Γ are loops or separating edges,
i.e. if Γ is a tree-like graph. �
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3.1.3. Graph contraction and graph G-covers

Consider a graph Γ with vertex set V and edge set E, we choose a subset
D ⊂ E which is stable by the G-action.

Definition 3.7. — Consider the graph Γ0 such that:
(1) the edge set of Γ0 is E0 := E\D;
(2) given the relation in V , v ∼ w if v and w are linked by an edge

e ∈ D, the vertex set of Γ0 is V0 := V/ ∼.
The graph Γ0 inherits naturally a G-action. The natural morphism Γ→ Γ0
is called contraction of D or D-contraction.

Edge contraction will be useful, in particular we will consider the image
of the exterior differential δ and its restriction over contractions of a given
graph. If Γ0 is a contraction of Γ, then E(Γ0) is canonically a subset of
E(Γ). As a consequence, cochains over Γ0 are cochains over Γ with the
additional condition that the values on E(Γ)\E(Γ0) are all the identity.
Then we have a natural immersion Ci(Γ0;G) ↪→ Ci(Γ;G). Consider the
two exterior differentials

δ : C0(Γ;G)→ C1(Γ;G) and δ0 : C0(Γ0;G)→ C1(Γ0;G).

The following proposition follows.

Proposition 3.8. — The differential δ0 is the restriction of δ on
C0(Γ0;G).

Im δ0 = C1(Γ0;Z/`) ∩ Im δ.

Given any graph Γ with a G-action, we define its G-quotient Γ/G by
V (Γ/G) := V (Γ)/G and E(Γ/G) := E(Γ)/G. The conditions on the G-
action assure that Γ/G is well defined. Moreover, the edge contraction of a
subset D ⊂ E(Γ) stable under G-action, is compatible with the quotient, so
that if Γ→ Γ0 is the D-contraction, then Γ/G→ Γ0/G is the contraction
of D/G (the G-action on the new quotiented graphs is trivial).
We call a G-graph morphism Γ̃ → Γ a graph G-cover if Γ ∼= Γ̃/G and

Γ̃→ Γ is the natural quotient morphism. For any vertex ṽ of Γ̃, we denote
by Hṽ its stabilizer in G. For any vertex v of Γ, its preimages in V (Γ̃) all
have a stabilizer in the same conjugacy class H in T (G), i.e. for all ṽ in
f−1(v) we have Hṽ ∈ H. Moreover, for every subgroup H in the class H,
there exists a vertex preimage ṽ of v with stabilizer exactly H. In particular
the cardinality of the v fiber is |G|/|H| where |H| is the cardinality of any
subgroup in H. The same is true for any edge e in E(Γ).
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We observe that it is possible to give another description of the cochain
groups of Γ̃ by considering the graph G-cover Γ̃ → Γ. Given a set T with
a G-action and a conjugation e 7→ e, define HomG(T,G) as the set of
morphisms f : T → G compatible with the G-action and such that f(e) =
f(e)−1. We extend the G-action on E(Γ̃) by defining it as a fibered product
in the category of G-sets, E(Γ̃) := E(Γ̃) ×E(Γ) E(Γ), this prevents that
h · e = e for some e ∈ E(Γ̃) and h ∈ G.

Proposition 3.9. — Consider a graph G-cover f : Γ̃→ Γ. We have the
identification

C0(Γ̃;G) =
∏

v∈V (Γ)

HomG(f−1(v), G).

Moreover,
C1(Γ̃;G) =

∏
e∈E(Γ)

HomG(f−1(e), G).

3.1.4. Graph G-cover of an admissible G-cover

Definition 3.10 (dual graph). — Consider a nodal curve C, its dual
graph Γ(C) is defined by

V (Γ(C)) := {irreducible components of C}
E(Γ(C)) := {nodes of C}

with the natural link relations.

Remark 3.11. — We observe that the set of oriented edges E(Γ(C)) is
naturally identified with the set of nodes equipped with a privileged branch,
or equivalently with the set of node preimages on the normalization C.

For any admissible G-cover F → C, consider the dual graphs Γ̃ := Γ(F )
and Γ := Γ(C). Therefore Γ = Γ̃/G and Γ̃ → Γ is a graph G-cover. We
recall the correspondence between admissible G-covers over a stable curve
C, and twisted G-covers over C, treated in section 2.3.4. As a consequence,
the dual graphs Γ̃ and Γ introduced for any admissible G-cover, are well
defined for the associated twisted G-cover, too.
Consider the function bF defined on E(Γ̃) that sends any oriented edge ẽ

to the local index (H,χ) of the associated node, where the privileged node
branch (necessary to define the local index) is given by the ẽ orientation
(see the Definition 2.32 of the local index). We observe that for any h ∈ G,
bF (h · ẽ) = (hHh−1, χh). Furthermore, we associate to bF another function
MbF

sending any e in E(Γ) to the G-type JH,χK of the associated node.
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Definition 3.12. — We call index cochain of the admissible G-cover
F → C, the function bF . Moreover, we call type function of F → C,
the function MbF

. When there is no risk of confusion, we denote the type
function of F → C simply by M .

Remark 3.13. — Once we choose a privileged rth root of the unit ξr =
exp(2πi/r) for every positive integer r, the index cochain bF is identified
with a 1-cochain in C1(Γ̃;G), and the associated type function is a function
MbF

: E(Γ)→ JGK.

Remark 3.14. — In the case of an admissible G-cover with G abelian
group, the type function uniquely determines the index cochain. In the
case of G = µ`, our notation reduces to the multiplicity index notation of
Chiodo and Farkas [8].

We observe that the order of MbF
(e) is well defined for any e ∈ E(Γ)

as the order of any element in the conjugacy class, therefore we define the
function r : E(Γ(C))→ Z>0. Clearly r(e) = r(e) for any e.

Definition 3.15. — A pair (Γ, r(−)), where r : E(Γ)→ Z>0 is an even
function, is called decorated graph. The pair (Γ(C), r(−)) given by the
admissible G-cover F → C (or equivalently, the associated twisted G-cover
(C, φ)) is called decorated graph of the cover. If there is no risk of confusion,
we will refer also to Γ(C) or Γ alone as the decorated graph.

Let D ⊂ E(Γ̃) be the subset of edges where the cochain bF of local indices
is trivial, that is

D := {ẽ ∈ E(Γ̃)| bF (ẽ) = 1}.

Definition 3.16. — The graph Γ̃0 is the result of the D-contraction on
Γ̃. The graph Γ0 is the quotient Γ̃0/G. Equivalently, it is the graph Γ after
the conctraction of the edges where the type function M has value J1K.

3.2. Basic theory of sheaves in groups and torsors

In this section we refer in particular to Calmès and Fasel paper [5] for
notations and definitions. Consider a scheme S and a site T over the cat-
egory Sch/S of S-schemes. An S-sheaf for us will be a sheaf over (Sch/
S,T). Consider G an S-sheaf in groups, and P an S-sheaf in sets with a left
G-action.

Definition 3.17 (torsor). — The sheaf P is a torsor under G, or a
G-torsor, if
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(1) the application G × P → P × P , where the components are the
action and the identity, is an isomorphism;

(2) for every covering {Si} of S, P (Si) is non-empty for every i.

For example, if G is a finite group, a principal G-bundle over a scheme S,
is a G-torsor, where G is the S-sheaf in groups defined by G(S′) := S′ ×G
for any S-scheme S′. When we consider any S-sheaf in groups G as acting
on itself, we get a G-torsor called trivial G-torsor.

Proposition 3.18 (see [5, Proposition 2.2.2.4]). — An S-sheaf P with
a left G-action is a torsor if and only if it is T-locally isomorphic to the
trivial torsor G.

Consider two S-sheaves P and P ′ with G-action respectively on the left
and on the right.

Definition 3.19. — We denote by P ′ ∧G P the cokernel sheaf of the
two morphisms

G × P ′ × P ⇒ P ′ × P

given by the G-action on P and P ′ respectively. This is called contracted
product. Equivalently, P ′ ∧G P is the sheafification of the presheaf of the
orbits of G acting on P ′ × P by

(h, (z′, z)) 7→ (z′h−1, hz).

Remark 3.20. — If G is the sheaf in groups constantly equal to C∗ and
P, P ′ are two line bundles, then the contracted product is simply the usual
tensor product P ⊗ P ′.

If another S-sheaf in groups G′ acts on the left on P ′, then the contracted
product P ′ ∧G P has a G′-action on the left, too. The same is true for a
G′-action on the right on P .

Lemma 3.21 (see [5, Lemma 2.2.2.10]). — The ∧ construction is asso-
ciative. Consider G and G′ two S-sheaves in groups, P and P ′ two S-sheaves
with respectively left G-action and right G′-action, finally P ′′ an S-sheaf
with G′-action on the left and G-action on the right, and the actions com-
mute. Then there exists a canonical isomorphism

(P ′ ∧G
′
P ′′) ∧G P ∼= P ′ ∧G

′
(P ′′ ∧G P ).

Moreover, we have G ∧G P ∼= P for every G-torsor P .
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Proposition 3.22 (see [5, Proposition 2.2.2.12]). — Consider a mor-
phism G → G′ of S-sheaves in groups and the associated G-action (on the
right) on G′. The map

P 7→ G′ ∧G P,

from the category of G-torsors to G′-torsors, is a functor.

Definition 3.23. — Given an S-scheme S′ and a site T on Sch/S, we
denote by H1

T(S′,G) the pointed set of G-torsors (on the left) over S′ with
respect to the T topology. The base point of the set being the torsor G
itself.

We observe that if P ′ is a G-bitorsor, on the left and on the right, over
S′, then the contracted product P ′∧G P is a G-torsor (on the left) for every
G-torsor P . Therefore P ′ induces a map

P ′ ∧G − : H1
T(S′,G)→ H1

T(S′,G).

This cohomology type notation fits with the cohomology type behavior
we are going to describe. We refer for the following results to [5, §2.2.5]
or [14, Chap. 3]. Consider three S-sheaves in groups fitting in a short exact
sequence

(3.2) 1→ G1 → G2 → G3 → 1.

Theorem 3.24. — This gives a long exact sequence in cohomology

(3.3) 1→ G1(S)→ G2(S) δ−→ G3(S) τ−→ H1
T(S,G1)

w−→ H1
T(S,G2)→ H1

T(S,G3).

This is an exact sequence of pointed sets, and it is exact in G1(S) and G2(S)
as a sequence of groups.

To describe the map τ , observe that G3 = G2/G1. By [14, Proposi-
tion 3.1.2], the set G3(S) is in bijection with the set of sub-G1-torsors of
G2. Any object Q in G3(S) in sent by τ on the G1-torsor induced by the
pullback along G2 → G2/G1. As a consequence τ(Q) is a G1-bitorsor.
Via the τ map we also have a G3(S)-action onH1

T(S,G1). Indeed, for every
Q in G3(S) and for every G1-torsor P , we obtain by contracted product the
G1-torsor τ(Q) ∧G1 P .

To state the next proposition, we observe that G1 acts trivially on the
right on G3, therefore given any G1-torsor P (on the left), we have the
identification of sheaves G3 ∧G1 P = G3. Consider the map G2 → G3 in
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the short exact sequence (3.2), and its image via the contracted product
functor of Proposition 3.22,

G2 ∧G1 P
−∧P−−−→ G3 ∧G1 P = G3.

We define GP2 := G2 ∧G1 P , and δP : GP2 (S)→ G3(S).

Proposition 3.25 (see [14, Proposition 3.3.3]). — For every P in
H1

T(S,G1), the stabilizer of P with respect to the G3(S)-action induced
by τ , is the image of δP : GP2 (S)→ G3(S).

4. Singularities of Rg,G

4.1. Ghost automorphisms of a twisted curve

Consider a twisted G-cover (C, φ), its automorphism group is

Aut(C, φ) :=
{

(f, ρ)
∣∣∣ f ∈ Aut(C), ρ : φ

∼=−→ f∗φ
}
.

We observe that this group does not act faithfully on the universal defor-
mation Def(C, φ). Indeed, Proposition 2.37 describes the group AutC(C, φ)
of automorphisms of (C, φ) acting trivially on C, and these automorphisms
are the ones acting trivially on Def(C, φ), too. It becomes natural to con-
sider the group

Aut(C, φ) : = Aut(C, φ)/AutC(C, φ)
= {f ∈ Aut(C) | f∗φ ∼= φ as twisted G-covers} .

Remark 4.1. — The local description of Rg,G at [C, φ] could be rewritten

Def(C)/Aut(C, φ).

The coarsening C→ C induces moreover a group morphism Aut(C, φ)→
Aut(C). We denote the kernel and the image of this morphism by AutC(C, φ)
and Aut′(C) (see also [8, Chap. 2]). They fit into the following short exact
sequence,

(4.1) 1→ AutC(C, φ)→ Aut(C, φ)→ Aut′(C)→ 1.

Definition 4.2. — The group AutC(C, φ) is called the group of ghost
automorphisms of (C, φ).
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To describe the ghost automorphisms of a twisted G-cover, we start by
describing AutC(C), the group of ghost automorphisms of the curve (not
necessarily lifting to the cover). Consider a node q of C whose local picture
is [{x′y′ = 0}/µr]. Given an automorphism η ∈ AutC(C), the local action
of η at q can be represented by an automorphism of V = {x′y′ = 0} ⊂ A2

such that
(x′, y′) 7→ (ξx′, y′),

with ξ a primitive root in µr. We observe moreover that (ξx′, y′) ≡
(ξu+1x′, ξ−uy′) for any integer u, by the µr-action on V . Anyway, when it
is not specified otherwise, we will use the lifting that acts trivially on the y′
coordinate. Consider the dual decorated graph (Γ(C), r(−)) associated to
the twisted G-cover (C, φ), by definition r(e) is the order of the q-stabilizer
where q is the node associated to edge e ∈ E(Γ(C)). We naturally extend
the function r over E(Γ). As a consequence of the definition of AutC(C), the
action of η outside the C nodes is trivial. Then the whole group AutC(C)
is generated by automorphisms of the form (x′, y′) 7→ (ξx′, y′) on a node,
and trivial elsewhere. We are interested in representing AutC(C) as acting
on the edges of the dual graph, thus we introduce the following group.

Definition 4.3. — Consider a decorated graph (Γ, r(−)), we denote by
rlcm the least common multiple of all the orders r(e) of the edges of Γ. We
define the group

S(Γ; r(−)) := {f : E(Γ)→ Z/rlcm | f(e) = f(e) ∈ Z/r(e) ⊂ Z/rlcm} .

We recall that E(Γ) is the set of Γ edges while E(Γ) is the set of Γ edges
with an orientation. If e ∈ E(Γ) is an oriented Γ edge, then we denote by e
the same edge with reversed orientation.
If (Γ(C), r(−)) is the decorated dual graph of the twisted G-cover (C, φ),

we define a morphism S(Γ(C); r(−)) → AutC(C), sending any function a
on the automorphism whose action at the node associated to e ∈ E(Γ) is

(x′, y′) 7→ (a(e) · x′, y′).

The morphism above is a canonical isomorphism, and we have the following
identification

AutC(C) = S(Γ(C); r(−)) =
⊕

e∈E(Γ)

µr(e).

Clearly the action is trivial on nodes with order r = 1, so S(Γ(C); r(−)) =
S(Γ0(C); r(−)). We observe again that by choosing a privileged rth root
exp(2πi/r) for any positive integer r, µr is identified to Z/r, and then
S(Γ0(C); r(−)) ∼=

⊕
e∈E(Γ0) Z/r(e).
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The group of ghost automorphisms

AutC(C, φ) = {a ∈ AutC(C)| a∗φ ∼= φ}

is a subset of AutC(C). To describe it we will characterize the automor-
phisms in AutC(C) lifting to the twisted G-cover φ.

If C is the coarse space of C, we consider the admissible G-cover F → C

associated to (C, φ), and the normalization morphism nor : C → C. We de-
note by Ci the irreducible components of C, by Ci their normalizations and
by Fi := F |Ci

the F restrictions. For any open subscheme U ↪→ C, F |U → U

is an admissible G-cover. Finally we define the pullbacks F := nor∗F and
U := nor∗U . Consider the category Sch/C of C-schemes and the Zarisky
site TZar on it. Given the definition of automorphisms for admissibile G-
covers as stated in Section 2.3.3, we introduce the following definition.

Definition 4.4. — The C-sheaf in groups HF is defined for any open
C-scheme U ↪→ C by,

HF (U) := AutAdm(U,F |U ).

We observe that F is a C-sheaf with a left HF -action, and we have a
short exact sequence of C-sheaves in groups,

(4.2) 1→ HF → nor∗nor∗HF t−→ HF |SingC → 1.

The central sheaf is defined over any open subscheme U ↪→ C as

nor∗nor∗HF (U) = AutAdm(U,F |U ).

There exists a 2 : 1 cover F |SingC → F |SingC . If ε is a section of
nor∗nor∗HF (U), its image via t is obtained on every point p of F |Sing(U) by
taking the difference between the actions of ε on the two preimages, and
therefore t(ε) is well defined up to ordering the branches of every node.
We pass to the associated long exact sequence. We observe that HF (C) =

HomG(T (F ), G) = HomG(T (Γ̃), G) by Proposition 2.12. Moreover,

nor∗nor∗HF (C) = AutAdm(C,F ) =
∏
i

HomG(T (Fi), G),

because the Ci are the connected components of C. If we denote by f : Γ̃→
Γ the graph G-cover associated to F → C, by Proposition 3.9 we have

nor∗nor∗HF (C) = C0(Γ̃;G).

Finally, if q1, . . . , qδ are the nodes of C, then

HF |SingC(C) =
∏
j

AutAdm(qj , Fqj ) =
∏
j

HomG(Fqj , G).
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By the definition of the dual graph Γ̃, the right hand side of the equality
above is identified with

∏
e∈E(Γ) HomG(f−1(e), G), and by Proposition 3.9

we have HF |SingC(C) ∼= C1(Γ̃;G).
We consider the long exact sequence (3.3) associated to any short exact

sequence of C-sheaves. In this case, the site over Sch/C is the Zariski site
TZar and taking the long exact sequence associated to (4.2), we get

(4.3)

1 HomG(T (Γ̃), G) C0(Γ̃;G)

C1(Γ̃;G) H1
TZar

(C;HF )

H1
TZar

(C; nor∗nor∗HF ) 1,

i δ

τ w

where H1
TZar

(C;HF ) is the set of HF -torsors, H1
TZar

(C; nor∗nor∗HF ) is the
set of nor∗nor∗HF -torsors on C, and it is identified with H1

TZar
(C; nor∗HF ).

Moreover, the only object ofH1
TZar

(C;HF |Sing) is the trivial torsor. The first
part of this sequence is exactly the sequence (3.1). To describe explicitly
the map w, consider the normalization nor : C → C. Then,

w : (F → C) 7→ (F = nor∗F → C).

Given any cochain b ∈ C1(Γ̃;G), by what we saw in Section 3.2 we know
that HF acts on the right on τ(b). Therefore we can define an admissible
G-cover by the contracted product τ(b) ∧HF

F (see Definition 3.19).
Recall that to every admissible G-cover F → C is assigned an index

cochain bF (see Definition 3.12). Now consider an automorphism

a ∈ AutC(C) = S(Γ(C); r(−)).

We define a 1-cochain bF · a ∈ C1(Γ̃(C);G): for every oriented edge ẽ of
Γ̃(C), bF (ẽ) = (H,χ) that is a character χ : H → C where H ⊂ G is a cyclic
subgroup. If e ∈ E(Γ(C)) is the projection of ẽ, we define

(bF · a)(ẽ) := χ−1(a(e)) ∈ H ⊂ G.

Proposition 4.5. — Given a finite group G and a twisted G-cover
(C, φ) consider the associated admissible G-cover F → C, whose index
cochain is bF . If a ∈ AutC(C) = S(Γ(C), r(−)) is a ghost automorphism of
C, the pullback twisted G-cover (C, a∗φ), where a∗φ = φ ◦ a, is associated
to the admissible G-cover

τ(bF · a) ∧H
F

F.

Proof. — Consider a node q of the twisted curve C. In Remark 2.21 we
observed that the local picture of (C, φ) at q can be seen as a twisted object
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on V ∼= {x′y′ = 0}. This is equivalent to a principal G-bundle F̃ → V with
a compatible µr-action and the other conditions of the same Remark. We
remark that F̃ /µr → V/µr

∼= V is isomorphic to the local picture of F → C

around q.
We start by characterizing a∗φ with respect to φ. Again from Remark 2.21

we know that F̃ = (F̃ ′ t F̃ ′′)/κq locally at node q, where F̃ ′ and F̃ ′′ are
the two pullbacks of F̃ on the node branches A1

x′ , A1
y′ , and κq : F̃ ′q → F̃ ′′q

is the gluing morphism of the central fibers. We consider the oriented edge
e ∈ E(Γ(C)) associated to q with privileged branch A1

x′ . We can lift the
a-action to the twisted object by acting trivially on A1

y′ and by a(e) multi-
plication on A1

x′ . By the same Remark 2.21 we can lift the action to F̃ ′,

F̃ ′ F̃ ′

A1
x′ A1

x′ .

α′(a(e))

a(e)·−

We observe that a∗F̃ ′ ∼= F̃ ′ and a∗F̃ ′′ ∼= F̃ ′′, what really changes is the
gluing morphism. Indeed,

a∗F̃ = (F̃ ′ t F̃ ′′)/(κq ◦ α′(a(e))).

By definition of α′, for any point q̃′ on the fiber F̃ ′q, we have α′(a(e))(q̃′) =
ν′(a(e), q̃′). Again by the α′ definition, α′(a(e))(q̃′) = ψ(hq̃′ , q̃′), where
(H,χ) is the local index at q̃′ and hq̃′ = χ−1(a(e)), that is hq̃′ = (bF · a)(ẽ),
where ẽ ∈ E(Γ̃) is the edge associated to q̃′ and the privileged branch
associated to ẽ orientation is A1

x′ .
By the definition of contracted product, if we denote by a∗F the admis-

sible G-cover associated to a∗F̃ , then a∗F = τ(bF · a) ∧HF

F as we wanted
to prove. �

Theorem 4.6. — Given a twisted G-cover (C, φ) with associated ad-
missible G-cover F → C, any ghost automorphism a ∈ AutC(C) lifts to
a ghost automorphism of (C, φ) if and only if the 1-cochain bF · a is in
Ker τ = Im δ of sequence (4.3).

Proof. — After the proposition above, we have that φ ∼= a∗φ if and only
if τ(bF · a) acts trivially via the contracted product on F . We consider
the restriction Fgen → Cgen over the generic locus. We observe that Fgen
is an HF -torsor on Cgen, then we apply Proposition 3.25 to obtain that
τ(bF · a) ∧HF

Fgen = Fgen if and only if bF · a ∈ Im δF . This is a necessary
condition to have τ(bF · a)∧HF

F = F , but it is also sufficient because Fgen
completes uniquely to F .
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It remains to prove that Im δF = Im δ. In particular we observe that the
contracted product does not act on the δ morphism, so δF = δ and the
proof is concluded. �

Remark 4.7. — Given the dual graph G-cover Γ̃ → Γ associated to
F → C, and the contracted decorated graph (Γ̃0, r(−)), we recall the sub-
complexes inclusion Ci(Γ̃0;G) ⊂ Ci(Γ̃;G) for i = 0, 1. We also consider the
exterior differential δ0 on C0(Γ̃;G), i.e. the restriction of the δ operator to
this group. Because of Proposition 3.8, we have Im(δ0) = C1(Γ̃0;G)∩ Im δ.

Remark 4.8. — Previously we obtained a characterization of the cochains
in Im(δ) that we could restate in our new setting. Indeed, because of Propo-
sition 3.2, an automorphism a ∈ S(Γ̃0; r(−)) is an element of AutC(C, φ) if
and only if for every circuit (ẽ1, . . . , ẽk) in Γ̃0 we have

∏k
i=1(bF · a)(ẽi) = 1.

4.2. Smooth points

In Remark 4.1 we discussed the fact that every point [C, φ] ∈ Rg,G has a
local picture isomorphic to Def(C)/Aut(C, φ). This is a quotient of the form
Cn/G where G is a finite subgroup of GL(Cn). In this setting we introduce
some automorphisms called quasireflections.

Definition 4.9 (Quasireflection). — Any finite order complex auto-
morphism h ∈ GL(Cn) is called a quasireflection if its fixed locus has dimen-
sion exactly n− 1. Equivalently, h is a quasireflection if, for an opportune
choice of the basis, we can diagonalize it as

h = Diag(ξ, 1, 1, . . . , 1),

where ξ is a primitive root of the unit of order equal to the order of h. Given
a finite group G ⊂ GL(Cn), we denote by QR(G) the subgroup generated
by quasireflections.

Quasireflections have the interesting property that any complex vector
space, quotiented by them, keeps being a smooth variety. In particular if
h ∈ GL(Cn) is a quasireflection, the variety Cn/h is isomorphic to Cn.

Proposition 4.10 (see [19]). — Consider any vector space quotient
V ′ := V/G, where V ∼= Cn is a complex vector space and G ⊂ GL(V ) is
a finite group. The variety V ′ is smooth if and only if G is generated by
quasireflections.
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Therefore, to find the smooth points of Rg,G, by Proposition 4.10 we
need to know when Aut(C, φ) is generated by quasireflections. We start by
recalling the quasireflection analysis in the case of stable scheme theoretic
curves.

Definition 4.11. — Within a stable curve C, an elliptic tail is an ir-
reducible component of geometric genus 1 that meets the rest of the curve
in only one point called an elliptic tail node. Equivalently, E is an elliptic
tail if and only if its algebraic genus is 1 and E ∩ C\E = {q}.

An element i ∈ Aut(C) is an elliptic tail automorphism if there exists
an elliptic tail E of C such that i fixes E and his restriction to C\E is
the identity. An elliptic tail automorphism of order 2 is called an elliptic
tail quasireflection (ETQR). In the literature ETQRs are called elliptic tail
involutions (or ETIs), we changed this convention in order to generalize
the notion.

Remark 4.12. — Every scheme theoretic curve of algebraic genus 1 with
one marked point has exactly one involution i. Then there is a unique
ETQR associated to every elliptic tail.
More precisely an elliptic tail E could be of two types. The first type is

a smooth curve of geometric genus 1 with one marked point, i.e. an elliptic
curve: in this case we have E = C/Λ, for Λ integral lattice of rank 2, the
marked point is the origin, and the only involution is the map induced by
x 7→ −x on C. The second type is the rational line with one marked point
and an autointersection point: in this case we can write E = P1/{0 ≡ ∞},
the marked point is the origin, and the only involution is the map induced
by z 7→ 1/z on P1.

From Remark 2.2 we have a coordinate system on Def(C) and on the
canonical subscheme Def(C; SingC). Furthermore, the quotient of these
two schemes has a splitting

Def(C)/Def(C; SingC) ∼=
δ⊕
j=1

A1
tj .

These coordinates systems on the space Def(C; SingC) and
Def(C)/Def(C; SingC) allow the detection of quasireflections. Indeed, the
diagonalizations of the a-action on the two spaces determines a diagonaliza-
tion of the a-action on the whole Def(C). Therefore, a is a quasireflection
if it acts non-trivially on exactly one coordinate of scheme Def(C; SingC)
or Def(C)/Def(C; SingC). The following theorem by Harris and Mumford
describes the action of the automorphism group Aut(C) on Def(C).
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Theorem 4.13 (See [16, Theorem 2]). — Consider a stable curve C of
genus g > 4. An element of Aut(C) acts as a quasireflection on Def(C) if
and only if it is an ETQR. In particular, if η ∈ Aut(C) is an ETQR acting
non trivially on the tail E with elliptic tail node qj , then η acts trivially on
Def(C; SingC), and its action on Def(C)/Def(C; SingC) is tj 7→ −tj on
the coordinate associated to qj , and the identity t 7→ t on the remaining
coordinates.

In Remark 2.23 we have seen that the deformations Def(C; SingC) and
Def(C; Sing C) are canonically identified. For the deformation of the nodes,
the description is slightly different. We denote by δ the number of nodes,
by r1, . . . , rδ the order of the cyclic stabilizers in C of the nodes q1, . . . , qδ
respectively. Then,

Def(C)/Def(C; Sing C) ∼=
δ⊕
j=1

A1
t̃j
,

and every node comes with a flat representable morphism of Deligne–
Mumford stacks, isomorphic to

[{x′y′ = t̃j}/µrj
]→ A1

t̃j
,

where the local stabilizer µrj
acts by ξ · (x′, y′, t̃j) = (ξx′, ξ−1y′, t̃j). Also

there exists a canonical morphism A1
t̃j
→ A1

tj such that (t̃j)rj = tj .

Remark 4.14. — Consider a stack-theoretic curve E whose coarse space
E is a genus 1 curve with a marked point. In the case of an elliptic tail of a
curve C, the marked point is the point of intersection between E and C\E.
If E is an elliptic curve, then E = E and the curve has exactly one

involution i0. In case E is rational, its normalization is the stack E = [P1/

µr], with µr acting by multiplication, and E = E/{0 ≡ ∞}. There exists
a canonical involution i0 in this case too: the pushforward of the inverse
involution on P1, i.e. z 7→ 1/z. We consider the autointersection node of
E and its local picture [{x′y′ = 0}/µr], then the local picture of the same
node in E is {xy = 0} with x = (x′)r and y = (y′)r. Therefore the i0-
action is represented locally by (x′, y′) 7→ (y′, x′) and the product x′y′ is
unchanged, so i0 acts trivially on the smoothing coordinate t̃ associated
to this node. We observe that of all the possible liftings of the canonical
involution i0 of E, i0 is the only E involution acting trivially on t̃.

Given any twisted curve C with an elliptic tail E whose elliptic tail node
is called q, the construction above defines a canonical involution i0 on E up
to non-trivial action on q.
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Definition 4.15. — An element i ∈ Aut(C, φ) is an ETQR if there
exists an elliptic tail E of C with elliptic tail node q, such that the action
of i on C\E is trivial, and the action on E, up to non-trivial action on q, is
the canonical involution i0.

Lemma 4.16. — Consider an element h of Aut(C, φ). It acts as a quasire-
flection on Def(C) if and only if one of the following is true:

(1) the automorphism h is a ghost quasireflection, i.e. an element of
AutC(C, φ) which moreover operates as a quasireflection;

(2) the automorphism h is an ETQR, using the generalized Defini-
tion 4.15.

Proof. — We first prove the “only if” part. If h acts trivially on certain
coordinates of Def(C), a fortiori we have that its coarsening h acts triv-
ially on the corresponding coordinates of Def(C). Therefore h acts as the
identity or as a quasireflection on Def(C). In the first case, h is a ghost
automorphism and we are in case (1). If h acts as a quasireflection, then
it is a classical ETQR as we pointed out on Theorem 4.13, and it acts
non-trivially on the coordinate associated to an elliptic tail node q.

As we know that the action of h is trivial on Def(C; SingC), so is the
action of h. It remains to know the action of h on the nodes with non-trivial
stabilizer and other than q. If the elliptic tail where h operates non trivially
is a rational component with an autointersection node q1, by hypothesis h
acts trivially on the universal deformation A1

t̃1
of this node. Therefore, the

h restriction to the elliptic tail has to be the canonical involution i0 (see
Remark 4.14). For every node other than q and q1, if the local picture is
[{x′y′ = 0}/µrj

], the action of h must be of the form

(x′, y′) 7→ (ξx′, y′) ≡ (x′, ξy′) for some ξ ∈ µrj
.

If ξ 6= 1 this gives a non-trivial action on the associated universal deforma-
tion A1

t̃j
, against our hypothesis. By Definition 4.15 this implies that h is

an ETQR of (C, φ).
For the “if” part, we observe that a ghost quasireflection is automatically

a quasireflection. It remains to prove the case of point (2). By definition
of ETQR, its action on Def(C) can be non-trivial only on the components
associated to the separating node q of the tail. As a consequence h acts as
the identity or as a quasireflection. The local coarse picture at q is {xy = 0},
where y = 0 is the branch lying on the elliptic tail. Then the action of h on
the coarse space is (x, y) 7→ (−x, y). Therefore the action is a fortiori non
trivial on the coordinate associated to the stack node q in Def(C). �
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Definition 4.17. — For any stable curve C we denote by QR(C) the
subgroup of Aut(C) generated by classical ETQRs. For any twisted G-
cover (C, φ) we denote by QR(C, φ) the subgroup of Aut(C, φ) generated
by ETQRs, and by QRC(C, φ) the subgroup of Aut(C, φ) generated by
ETQRs which moreover are ghosts.

Lemma 4.18. — Any element h ∈ QR(C) which could be lifted to
Aut(C, φ), has a lifting in QR(C, φ), too.

Proof. — By definition, Aut(C, φ) is the set of automorphisms s ∈ Aut(C)
such that s∗φ ∼= φ. Consider h ∈ QR(C) such that its decomposition in
ETQRs is h = i0i1 · · · im, and every ik acts non-trivially on an elliptic tail
Ek. Any lifting of h is in the form h = i0i1 · · · im · a, where it is an ETQR
acting non-trivially on a twisted elliptic tail Ek, and a is a ghost acting
non-trivially only on nodes other than the elliptic tail nodes of the Ek. We
observe that every ik is a lifting in Aut(C) of ik. Moreover, by construction,
h∗φ ∼= φ if and only if i∗kφ ∼= φ for every k and a∗φ ∼= φ. This implies that
every ik lies in Aut(C, φ), and therefore h · a−1 is a lifting of h lying in
QR(C, φ). �

We recall the short exact sequence (4.1),

1→ AutC(C, φ)→ Aut(C, φ) β−−→ Aut′(C)→ 1

and introduce the group QR′(C) ⊂ Aut′(C), generated by liftable quasi-
reflections, i.e. by those quasireflections h ∈ Aut(C) lying in Im β. By
Lemma 4.18, QR′(C) = β(QR(C, φ)). Using also Lemma 4.16, we obtain
that the following is a short exact sequence

1→ QRC(C, φ)→ QR(C, φ)→ QR′(C)→ 1.

Theorem 4.19. — The group Aut(C, φ) is generated by quasireflections
if and only if both AutC(C, φ) and Aut′(C) are generated by quasireflec-
tions.

Proof. — By combining the previous sequences,

1→ AutC(C, φ)
QRC(C, φ) →

Aut(C, φ)
QR(C, φ) →

Aut′(C)
QR′(C)

→ 1.

The theorem follows. �

This gives a first important result for the moduli space of twisted G-
covers Rg,G. As we know that any point [C, φ] ∈ Rg,G is smooth if and only
if the group Aut(C, φ) is generated by quasireflections, then the following
theorem is straightforward.
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Theorem 4.20. — Given a twisted G-cover φ : C→ BG over a twisted
curve C of genus g > 4 whose coarse space is C, the point [C, φ] of the
moduli space Rg,G is smooth if and only if the group Aut′(C) is generated
by ETQRs and the group of ghost automorphisms AutC(C, φ) is generated
by quasireflections.

We introduce two closed loci of Rg,G,

Ng,G :=
{

[C, φ]
∣∣Aut′(C) is not generated by ETQRs

}
,

Hg,G := {[C, φ] |AutC(C, φ) is not generated by quasireflections} .

We have by Theorem 4.20 that the singular locus SingRg,G is their union

(4.4) SingRg,G = Ng,G ∪Hg,G.

Remark 4.21. — Consider the natural moduli space projection π : Rg,G→
Mg, then we have the inclusion Ng,G ⊂ π−1 SingMg. Indeed, we saw
that QR′(C) = Aut′(C) ∩ QR(C) and therefore Aut(C) = QR(C) im-
plies Aut′(C) = QR′(C). This means that

(
π−1 SingMg

)c ⊂ (Ng,G)c, and
taking the complementary we obtain the result.
We can interpret equality (4.4) as the fact that the singular locus is the

union of two subloci: one coming from “old” singularities, the other coming
from data encoded only in the ghost structure of the twisted G-covers.

The following lemma allows to characterize quasireflections in the ghost
group. Consider the decorated graph (Γ(C), r(−)) associated to a twisted
G-cover (C, φ), and its contraction (Γ0, r(−)) (see Definition 3.16).

Lemma 4.22. — Consider a ghost automorphism a in the group
AutC(C) = S(Γ0; r(−)). If a is a quasireflection in AutC(C, φ) then a(e) = 1
for all edges but one that is a separating edge of Γ0(C).

Proof. — If a is a quasireflection in AutC(C, φ), the value on all but
one of the coordinates must be 0. Therefore a(e) = 1 ∈ µr(e) on all the
edges but one, say e1. If there exists a preimage ẽ1 in E(Γ̃0) that is in any
circuit (ẽ1, . . . , ẽk) of Γ̃0 with k > 1, then we have, by Remark 4.8, that∏

(bF · a)(ẽi) = 1. As a(e1) 6= 1, then (bF · a)(ẽ1) 6= 1 and therefore there
exists i > 1 such that (bF · a)(ẽi) 6= 1 too. This would imply that, if ei is
the image in Γ0 of ẽi, then a(ei) 6= 1, contradiction. Thus ẽ1 is not in any
circuit, then it is a separating edge and so is e1.
Reciprocally, consider an automorphism a ∈ S(Γ0; r(−)) such that there

exists an oriented separating edge e1 with the property that a(e) = 1 for
every e in E\{e1, e1} and a(e1) is a non-zero element of µr(e1). Then for
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every circuit (ẽ′1, . . . , ẽ′k) of E(Γ̃0), we have
∏

(bF · a)(ẽ′i) = 1 and so a is in
AutC(C, φ) by Theorem 4.6. �

5. Non-canonical singularities

5.1. Characterization of the non-canonical locus

In order to detect the singularity canonicity, we need a tool called age
invariant. After its introduction we will be able to prove the bipartition of
SingncRg,G.

5.1.1. The age invariant

Consider the case of a vector space quotient V/G. In the case of the
group G not being generated by quasireflections, we need another tool to
distinguish between canonical singularities and non-canonical singularities.
The age is a positive function G→ Q.

Definition 5.1 (Age). — Consider a G-representation ρ : G→ GL(V ).
For any element h ∈ G of order r, there exists a diagonalization h =
Diag(ξa1

r , ξ
a2
r , . . . , ξ

an
r ), where ξr = exp(2πi/r) is a privileged rth root of

the unit and 0 6 ai < r for any i = 1, . . . n. In this setting

age(h) = 1
r

n∑
i=1

ai.

Definition 5.2 (Junior group). — A finite group G ⊂ GL(Cm) that
contains no quasireflections is called junior if the image of the age function
intersects the open interval ]0, 1[,

ageG ∩ ]0, 1[ 6= ∅.

The group G is called senior if the intersection is empty.

Remark 5.3. — The definition of age depends on the non-canonical choice
of a privileged root ξr, but the image age(G) ⊂ Q does not depend on this
choice. Therefore junior and senior group are well defined.

Proposition 5.4 (Age criterion, see [20]). — Consider any vector space
quotient V ′ := V/G, where V ∼= Cn is a complex vector space and G ⊂
GL(V ) is a finite group containing no quasireflections. Then V ′ has a non-
canonical singularity if and only if G is junior.

ANNALES DE L’INSTITUT FOURIER



GEOMETRY OF MODULI OF G-COVERS 2229

We will use the Age Criterion to find non-canonical singularities by the
study of group Aut(C, φ) action on Def(C, φ). We point out that to satisfy
the hypothesis of Age Criterion, it is necessary for Aut(C, φ) to be quasire-
flection free. As this is often not the case, the following lemma is necessary
to represent the same singularity by a group with no quasireflections.

Proposition 5.5 (see [19]). — Consider a finite subgroupG ⊂ GL(Cn).
There exists an isomorphism u : Cn/QR(G) → Cn and a finite subgroup
K ⊂ GL(Cn) isomorphic to the quotient G/QR(G), such that the following
diagram is commutative.

Cn //

��

Cn/QR(G) u //

��

Cn

��
Cn/G

∼= // (Cn/QR(G))/(G/QR(G))
∼= // Cn/K

5.1.2. T -curves and J-curves

We introduce two closed loci which are central in our description.

Definition 5.6 (T -curve). — A twisted G-cover (C, φ) is a T -curve if
there exists an automorphism a ∈ Aut(C, φ) such that its coarsening a is
an elliptic tail automorphism of order 6. The locus of T -curves in Rg,G is
denoted by Tg,G.

Definition 5.7 (J-curve). — A twisted G-cover (C, φ) is a J-curve if
the group

AutC(C, φ)/QRC(C, φ),

which is the group of ghosts quotiented by its subgroup of quasireflections,
is junior. The locus of J-curve in Rg,G is denoted by Jg,G.

Theorem 5.8. — For g > 4, the non-canonical locus of Rg,G is the
union

SingncRg,G = Tg,G ∪ Jg,G.

Remark 5.9. — We observe that [8, Theorem 2.44], affirms exactly that
in the case G = µ` with ` 6 6 and ` 6= 5, the J-locus Jg,µ`

is empty for
every genus g, and therefore SingncRg,µ`

coincides with the T -locus for
these values of `.

We introduce the notion of ?-smoothing, following [16] and [18].
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Definition 5.10. — Consider a twisted G-cover (C, φ) and a junior
automorphism a ∈ Aut(C, φ)/QR(C, φ), we say that the triple (C, φ, a) is
?-smoothable if

• on the coarse curve C there exists a cycle ofm non-separating nodes
q0, . . . , qm−1, i.e. we have a(qi) = qi+1 for all i = 0, 1 . . . ,m− 2 and
a(qm−1) = q0;

• the action of am over the coordinate associated to every node is
trivial. Equivalently, am(t̃qi

) = t̃qi
for all i = 0, 1, . . . ,m− 2, where

t̃qi
is the coordinate on Def(C, φ) associated to the qi-smoothing

(see Remark 2.23).

If (C, φ, a) is ?-smoothable, there exists a deformation (C′, φ′, a′) that
smooths them nodes and with a′ ∈ Aut(C′, φ′). Moreover, this deformation
preserves the age of the a-action on Def(C, φ)/QR. Indeed, the eigenvalues
of a are a discrete and locally constant set, thus constant by deformation.
The T -locus and the J-locus are closed by ?-smoothing, i.e. if the deforma-
tion (C′, φ′) above is a T -curve or a J-curve, then (C, φ) is a T -curve or a
J-curve.

Therefore in proving Theorem 5.8, we can suppose that every triple
(C, φ, a) that we consider is ?-rigid, i.e. non-?-smoothable. Indeed, if there
exists a junior ?-smoothable automorphism a ∈ Aut(C, φ), we smooth it
until we obtain a rigid triple (C′, φ′, a′) of the same age. Then, if (C′, φ′) is
a T -curve or a J-curve, the same is true for (C, φ).

Proof of Theorem 5.8. — We will show in eight steps that if the group
Aut(C, φ)/QR (C, φ) is junior, and (C, φ) is not a J-curve, then it is a T -
curve. After the Age Criterion 5.4 and Proposition 5.5, this will prove Theo-
rem 5.8. From now on we work under the hypothesis that a ∈ AutC(C, φ)/
QR is a non-trivial automorphism aged less than 1, that (C, φ) is not a
J-curve and (C, φ, a) is ?-rigid.

In Steps 1 and 2 we fix the setting and prove two useful lemmata. In
Step 3 we prove that all the nodes of C are fixed by a except at most 2
of them which are exchanged. In Step 4 we show that every irreducible
component Z ⊂ C is fixed by a. In Step 5 we can therefore conclude that
there are no couple of exchanging nodes. In Step 6 and 7 we study the
action of a on the irreducible components of C and the contributions to
age a. Finally we prove the result in Step 8.

Step 1. — Consider the contracted decorated graph (Γ0, r(−)) of (C, φ).
As before, we call Esep the set of separating edges of Γ0. As stated in
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Remark 2.23, we have the following splitting,

(5.1) Def(C, φ) ∼= Def(C; Sing C)⊕
⊕
e∈Esep

At̃e ⊕
⊕

e′∈E\Esep

At̃e′ ,

where t̃e is a coordinate parametrizing the smoothing of the node associated
to the edge e. In particular for every vector subspace V ⊂ Def(C, φ) and
every automorphism a of (C, φ), we denote by age(a|V ) the age of the
restriction a|V . If Z is a subcurve of C, then there exists a canonical inclusion
Def(Z) ⊂ Def(C), and we define age(a|Z) := age(a|Def(Z)).

Every ghost automorphism in Aut(C,φ) fixes the three summands of (5.1).
Moreover, every quasireflection acts only on the summand

⊕
e∈Esep

At̃e by
Lemmata 4.16 and 4.22. As a consequence, by Propostion 5.5, the group
Aut(C, φ)/QR acts on

(5.2) Def(C, φ)/QR
Def(C; Sing C)

∼=

(⊕
e∈Esep

At̃e
QR(C, φ)

)
⊕

⊕
e′∈E\Esep

At̃e′ .

Every quasireflection acts on exactly one coordinate t̃e with e ∈ Esep. We
rescale all the coordinates t̃e by the action of QR(C, φ). We call τe, for e ∈
E(Γ0), the new set of coordinates. Obviously τe′ = t̃e′ if e′ ∈ E(Γ0)\Esep.

Step 2. — We show two lemmata about the age contribution of the a-
action on nodes, that we call aging on nodes.

Definition 5.11 (coarsening order). — If a ∈ Aut(C, φ) and a is its
coarsening, then we define

c-ord a := ord a.

The coarsening order is the least integer n for which an is a ghost auto-
morphism.

Lemma 5.12. — Suppose that Z ⊂ C is a subcurve of C such that a(Z) =
Z and q0, . . . qm−1 is a cycle, by a, of nodes in Z. Then we have the following
inequalities:

(1) age(a|Z) > m−1
2 ;

(2) if the nodes q0, . . . , qm−1 are non-separating, age(a) > m
ord(a|Z) +

m−1
2 ;

(3) if ac-ord a is a senior ghost, we have age(a) > 1
c-ord(a) + m−1

2 .

Proof. — We call τ0, τ1, . . . , τm−1 the coordinates associated to nodes
q0, . . . , qm−1 respectively. By hypothesis, a(τ0) = c1 · τ1 and ai(τ0) = ci · τi
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for all i = 2, . . . ,m−1, where the ci are complex numbers. If n′ = ord(a|Z),
we have

am(τ0) = ξumn′ · τ0

where ξn′ is a primitive n′th root of the unit and u is an integer such that
0 6 u < n′/m. The integer u is called exponent of the cycle (q0, . . . , qm−1)
with respect to the curve Z. Observe that a(τi−1) = (ci/ci−1) · τi and
am(τi) = ξumn′ · τi for every i.

We can explicitly write the eigenvectors for the action of a on the coor-
dinates τ0, . . . , τm−1. Set d := n′/m and b := sd + u with 0 6 s < m, and
consider the vector

vb := (τ0 = 1, τ1 = c1 · ξ−bn′ , . . . , τi = ci · ξ−ibn′ , . . . ).

Then a(vb) = ξbn′ · vb. The contribution to the age of the eigenvalue ξbn′ is
b/n′, thus we have

age a >
m−1∑
s=0

sd+ u

n′
= mu

n′
+ m− 1

2 ,

proving point (1).
If the nodes are non-separating, as we are supposing that (C, φ, a) is

?-rigid, we have u > 1 and the point (2) is proved.
Suppose that a has order n = ord a and its action on C has j nodes

cycles of order m1,m2, . . . ,mj and exponents respectively u1, . . . , uj with
respect to C. If k = c-ord a, then ak fixes every node, then we consider the
coordinate τi of a node of the first cycle and we have

ak(τi) = ξw·kn · τi,

where w is an integer such that 0 6 w < n/k. Repeating the same operation
for every cycle we obtain another series of integers w1, w2, . . . , wj . Therefore
the age of ak is

age ak =
j∑
i=1

miwik

n
,

and it is greater or equal to 1 by hypothesis.
We observe that mi divides k for all i = 1, . . . , j, and

ui ·mi ·
k

mi
≡ wi · k mod n.

This implies that ui > wi for every i.
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By the point (2), the age of a on the ith cycle is bounded from below by
miui/n+ (mi − 1)/2. As a consequence

age a >
j∑
i=1

(
miui
n

+ mi − 1
2

)

>
j∑
i=1

(
miwi
n

+ mi − 1
2

)
>

1
k

+ m1 − 1
2 . �

Step 3. — Because of Lemma 5.12, if the automorphism a induces a cycle
of m nodes, then this cycles contributes by at least m−1

2 to the aging of a.
Therefore, as a is junior, all the nodes of C are fixed except at most two
of them, that are exchanged. Moreover, if a pair of non-fixed nodes exists,
they contribute by at least 1/2.

Step 4. — Consider an irreducible component Z ⊂ C, we want to prove
a(Z) = Z. Suppose there is a cycle of irreducible components C1, . . . ,Cm
with m > 2 such that a(Ci) = Ci+1 for i = 1, . . . ,m− 1, and a(Cm) = C1.
We call Ci the normalizations of these components, andDi the preimages of
C nodes on Ci. We point out that this construction implies that (Ci, Di) ∼=
(Cj , Dj) for all i, j. Then, an argument of [16, p. 34] shows that the action
of a on Def(C; Sing C) gives a contribution of at least k · (m− 1)/2 to age a,
where

k = dimH1(Ci, TCi
(−Di)) = 3gi − 3 + |Di|.

This gives us two cases for which m could be greater than 1 with still a
junior age: k = 1 and m = 2 or k = 0.
If k = 1 and m = 2, we have gi = 0 or 1 for i = 1, 2. Moreover, the aging

of at least 1/2 sums to another aging of 1/2 if there is a pair of non-fixed
nodes. As a is junior, we conclude that C = C1 ∪ a(C1) but this implies
g(C) 6 3, contradiction.
If k = 0, we have gi = 1 or gi = 0, the first is excluded because it implies

|Di| = 0 but the component must intersect the curve somewhere. Thus, for
every component in the cycle, the normalization Ci is the projective line
P1 with 3 marked points. We have two cases: the component Ci intersects
C\Ci in 3 points or in 1 point, in the second case Ci has an autointersection
node and C = C1 ∪ a(C1), which is a contradiction because g(C) < 4. It
remains the case in the image below.
As C1,C2, . . . ,Cm are moved by a, every node on C1 is transposed with

another one or is fixed with its branches interchanged. If at least two
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C1

s s s

Figure 5.1. Case with C1 ∼= P1 and 3 marked points

nodes are transposed we have an age contribution bigger or equal to 1
by Lemma 5.12. If only one node is transposed we have two cases. In the
first case C = C1 ∪ a(C1)∪C2 ∪ a(C2), where C2 intersects only the compo-
nent C1 and in exactly one point. If g(C2) > 2, then the age is bigger than
1, if g(C2) < 2, then g(C) 6 3, contradiction.
In the second case, C = C1∪a(C1)∪C2 where C2 intersects C1 and a(C1),

both in exactly one point. If g(C2) < 2 we have another genus contradiction.
By the results of [16, p. 28], to have age(a|C2) < 1 we must have g(C2) = 2
and the coarsening of a has order 2. Therefore by Lemma 5.12 point (3), a
has age bigger or equal to 1.

Step 5. — We prove that every node is fixed by a. Consider the normal-
ization nor :

⊔
i Ci → C already introduced. If the age of a is lower than 1,

a fortiori we have age(a|Ci) < 1 for all i. In [16, p.28] there is a list of those
smooth stable curves for which there exists a non-trivial junior action.

(i) The projective line P1 with a : z 7→ (−z) or (ξ4z);
(ii) an elliptic curve with a of order 2, 3, 4 or 6;
(iii) an hyperelliptic curve of genus 2 or 3 with a the hyperelliptic invo-

lution;
(iv) a bielliptic curve of genus 2 with a the canonical involution.

We observe that the order of the a-action on these components is always
2, 3, 4 or 6. As a consequence, if a is junior, then n = c-ord a = 2, 3, 4, 6
or 12, as it is the greatest common divisor between the c-ord

(
a|Ci

)
.

First we suppose ord a > c-ord a, thus ac-ord a is a ghost and it must be
senior. Indeed, if ac-ord a is aged less than 1, then (C, φ) admits junior ghosts,
contradicting our assumption. By point (3) of Lemma 5.12, if there exists a
pair of non-fixed nodes, we obtain an aging of 1/n+1/2 on node coordinates.
If ord a = c-ord a the bound is even greater. As every component is fixed
by a, the two nodes are non-separating, and by point (2) of Lemma 5.12
we obtain an aging of 2/n+ 1/2.
If Ci admits an automorphism of order 3, 4 or 6, by a previous analysis

of Harris and Mumford (see [16] again), this yields an aging of, respectively,
1/3, 1/2 and 1/3 on H1(Ci, TCi

(−Di)).
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These results combined, show that a non-fixed pair of nodes gives an age
greater than 1. Thus, if a is junior, every node is fixed.

Step 6. — We study the action of a separately on every irreducible com-
ponent. The a-action is non-trivial on at least one component Ci, and this
component must lie in the list above.
In case (i), Ci has at least 3 marked points because of the stability con-

dition. Actions of type x 7→ ξx have two fixed points on P1, thus at least
one of the marked points is non-fixed. A non-fixed preimage of a node has
order 2, thus the coarsening a of a is the involution z 7→ −z. Moreover, Ci
is the autointersection of the projective line and a exchanges the branches
of the node. Therefore a2|Ci

is a ghost automorphism of Ci. As a direct
consequence of Theorem 4.6 and Remark 4.8, the action of a2 on the co-
ordinate associated to the autointersection node, is trivial. Therefore the
action of a2 on the same coordinate gives an aging of 0 or 1/2, by ?-rigidity
it is 1/2.

The analysis for cases (iii) and (iv) is identical to that developed in [16]:
the only possibility of a junior action is the case of an hyperelliptic curve
E of genus 2 intersecting C\E in exactly one point, whose hyperinvolution
gives an aging of 1/2 on H1(Ci, TCi

(−Di)).
Finally, in case (ii), we use again the analysis of [16]. The elliptic com-

ponent E has 1 or 2 point of intersection with C\E. If there is 1 point of
intersection, elliptic tail case, for a good choice of coordinates the coarsen-
ing a acts as z 7→ ξnz, where n is 2, 3, 4 or 6. The aging is, respectively,
0, 1/3, 1/2, 1/3. If there are 2 points of intersection, elliptic ladder case,
the order of a on E must be 2 or 4 and the aging respectively 1/2 or 3/4.

Step 7. — Resuming what we saw until now, if a is a junior automor-
phism of (C, φ), a its coarsening and C1 an irreducible component of C,
then we have one of the following:

(A) component C1 is an hyperelliptic tail, crossing the curve in one
point, with a acting as the hyperelliptic involution and aging 1/2
on H1(C1, TCi

(−D1));
(B) component C1 is a projective line P1 autointersecting itself, crossing

the curve in one point, with a the involution which fixes the nodes,
and aging 1/2;

(C) component C1 is an elliptic ladder, crossing the curve in two points,
with a of order 2 or 4 and aging respectively 1/2 or 3/4;

(D) component C1 is an elliptic tail, crossing the curve in one point,
with a of order 2, 3, 4 or 6 and aging 0, 1/3, 1/2 or 1/3;

(E) automorphism a acts trivially on C1 with no aging.
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rg(C1) = 2
q rq rC1 = P1

rr g(C1) = 1

Figure 5.2. Components of type A, B and C.

We rule out cases (A), (B) and (C). At first we suppose there is a com-
ponent of type (A) or (B). For genus reasons, the component intersected
in both cases must be of type (E). We study the local action on the sep-
arating node q. The local picture at q is [{x′y′ = 0}/µr]. The smoothing
of the node is given by the stack

[
{xy = t̃q}/µr

]
. Consider the action of

the automorphism a at the node, as the coarsening of a has order 2, then
a : t̃q 7→ ς · t̃q and ς2 ∈ µr. Therefore a2 acts as the identity or as a quasire-
flection of factor ς2. Thus τq = t̃r

′

q where r′|r is the order of ς2. Therefore
the action of a on A1

t̃q
/QR = A1

τq
is τq 7→ ςr

′ · τq = −τq. The additional age
contribution is 1/2, ruling out this case.
In case there is a component of type (C), if its nodes are separating,

then one of them must intersect a component of type (E) and we use the
previous idea. In case nodes are non-separating, we use Lemma 5.12. If
ord a > c-ord a, then ac-ord a is a senior ghost because (C, φ) is not a J-
curve, thus by point (3) of the lemma there is an aging of (1/ c-ord a) on
the node coordinates. If ord a = c-ord a, the bound is even greater, as by
point (2) we have an aging of (2/ c-ord a). We observe that c-ord a = 2, 4
or 6, and in case c-ord a = 6 there must be a component of type (E). Using
additional contributions listed above we rule out the case (C).

Step 8. — We proved that C contains components of type (D) or (E),
i.e. the automorphism a acts non-trivially only on elliptic tails. If q is the
elliptic tail node, there are two quasireflections acting on the coordinate t̃q:
a ghost automorphism associated to this node and the elliptic tail quasire-
flection. If the order of the local stabilizer is r, then τq = t̃2rq .

If ord a = 2 we are in the ETQR case, this action is a quasireflection and
it contributes to rescaling the coordinate t̃q.

If ord a = 4, the action on the (coarse) elliptic tail is z 7→ ξ4z. The
space H1(Ci, TCi

(−Di)) is the space of 2-forms H0(Ci, ω⊗2
Ci

): this space is
generated by dz⊗2 and the action of a is dz⊗2 7→ ξ2

4dz
⊗2. Moreover, if the

local picture of the elliptic tail node is [{x′y′ = 0}/µr], then a : (x′, y′) 7→
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(ζx′, %y′) such that ζr = ξ4 and %r = 1. As a consequence a : t̃q 7→ ζ · % · t̃q
and therefore τq 7→ ξ2τq. Then, age a = 1/2+1/2, proving the seniority of a.
If E admits an automorphism a of order 6, the action on the (coarse) el-

liptic tail is a : z 7→ ξk6z. Then dz⊗2 7→ ξk3dz
⊗2 and τq 7→ ξk3 τq. For k = 1, 4

we have age lower than 1.

If (C, φ) is not a J-curve, we have shown that the only case where an
automorphism a in Aut(C, φ)/QR is junior, is when its coarsening a is an
elliptic tail automorphism of order 6. �

5.2. The J-locus in the case S3

We consider the case of Jg,S3 and prove, thanks to the tools we developed,
that this locus is empty.

Theorem 5.13. — If G is the symmetric group S3, then the non-canon-
ical locus coincides with the T -locus,

SingncRg,S3 = Tg,S3 .

In particular, a point [C, φ] is a non-canonical singular point if and only if
there exists an automorphism a ∈ Aut(C, φ) whose coarsening is an elliptic
tail automorphism of order 6.

In order to prove this, we start with a lemma about an admissible G′-
cover F → C over a 2-marked stable curve (C; p1, p2), where G′ is an
abelian group. We observe that any conjugacy class in an abelian group
contains exactly one element, therefore a G′-type (see Definition 2.25) is
an element of G′. Moreover, if p̃i is a preimage in F of a marked point pi,
then the local index at p̃i equals the G′-type at pi.

Lemma 5.14. — If G′ is an abelian group, (C; p1, p2) a 2-marked stable
curve, and F → C and admissible G′-cover over (C; p1, p2), then the G′-
types h1 and h2 at p1 and p2 respectively, are inverses, h1 = h−1

2 .

Proof. — We consider at first the case of a smooth 2-marked curve
(C; p1, p2). Because of the monodromy description given in Proposition 2.33
and Remark 2.34, the product h1h2 is in the commutators subgroup of G′,
which is trivial because G′ is abelian. Therefore h1h2 = 1.
In the case of a general stable curve C, we denote by p̃(i)

1 , . . . , p̃
(i)
mi the

marked points on Ci, i.e. the preimages of p1, p2 or the C nodes. By the
previous point, if h(i)

j is the G′-type of F at the marked point p̃(i)
j , then
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∏mi

j=1 h
(i)
j = 1, for every i. By the balancing condition, for every G′-type

h
(i)
j coming from a C-node, there exists another marked point on C with
G′-type h(i′)

j′ = (h(i)
j )−1. Therefore

1 =
∏
j,i

h
(i)
j = h1 · h2. �

Lemma 5.15. — If (C, φ) is a twisted S3-cover and a ∈ Aut
C

(C,φ)
QR(C,φ) is a

ghost automorphism, then age(a) > 1.

Proof. — Given a twisted S3-cover (C, φ), we denote by F → C the
associated admissible S3-cover and by Γ̃ → Γ the associated graph S3-
cover. We recall that bF is the index cochain of F .
We prove that if a is a ghost automorphism in AutC(C, φ) such that

a(e) = 1 for every separating edge of Γ, then age a > 1. By Lemma 4.22
this implies the thesis. By Remark 4.8, we have the cycle condition that
for any cycle (ẽ1, . . . , ẽk) of Γ̃,

∏
(bF · a)(ẽi) = 1. As any a(e) has order 2

or 3 for any e, and thus gives an aging of at least 1/2 or 1/3 respectively,
the only case where age a < 1 is if there exist two edges e1, e2 ∈ E(Γ) such
that a(e) = 1 if e /∈ {e1, e2} and a(e1) = a(e2) ∈ µ3. In order to respect the
cycles condition, we have a dual graph Γ of the type

Γ′ Γ′′,
e1

e2

where Γ1 and Γ2 are two subgraphs of Γ such that a(e) = 1 for every edge
in E(Γ1) or E(Γ2). These two subgraphs are associated to two components
C1, C2 of C such that C = C1 ∪C2 and they intersect in exactly two nodes
q1, q2, corresponding to edges e1, e2.
We denote by Γ̃1 and Γ̃2 the restrictions of Γ̃ over Γ1 and Γ2 respectively.

If both Γ̃1 and Γ̃2 are connected, we denote by ẽ1 and ẽ2 two preimages of
e1 and e2 in E(Γ̃) pointing at Γ̃2 and Γ̃1 respectively. By the cycle condition,
(bF ·a)(ẽ1)·(bF ·a)(ẽ2) = 1, but for the same reason (bF ·a)(ẽ1)·(bF ·a)(g·ẽ2) =
1 for any g in S3, but this is impossible because (bF · a)(ẽ2) is non-trivial.

If one between Γ̃1 and Γ̃2, say the first, is non-connected, we denote
by Γ̃′1, Γ̃′′1 its two components (as r(ei) = 3, there are no more than two
components). This means that the restriction F |C′ → C ′ is an admissible
N -cover, which means that F |C′ is the union of two admissible µ3-covers
over the 2-marked curve (C1; p1, p2). We denote by ẽ1, ẽ2 the two oriented
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edges over e1 and e2, both touching Γ̃′1, and pointing to Γ̃2 and Γ̃′1 respec-
tively. By Lemma 5.14, (bF · a)(ẽ1) = (bF · a)(ẽ2) and as a(e1) has order 3,
then (bF · a)(ẽ1) and (bF · a)(ẽ2) have order 3 too.
The oriented edges ẽ1 and ẽ2 touch the same connected components of

Γ̃′′. Indeed, if Γ̃′′ is non-connected, by local index considerations, both edges
have to touch the same component. Therefore there exists a cycle passing
through ẽ1 and ẽ2 and whose other edges have a(ẽ) = 1.

Γ̃′1 Γ̃′′

Γ̃′2

Γ′ Γ′′.

ẽ1

ẽ2

e1

e2

Finally, again by the cycle condition we have

(bF · a)(ẽ1) · (bF · a)(ẽ2) = (bF · a)(ẽ1)2 = 1,

but this is a contradiction because (bF · a)(e1) has order 3. �

We proved that, as in the case of G abelian group, also for G = S3
the non-canonical locus SingncRg,G coincides with the T -locus. This is a
fundamental result to approach the extension of pluricanonical forms over
a desingularization R̂g,G → Rg,G.
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