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UNIFORM PERFECTNESS FOR INTERVAL
EXCHANGE TRANSFORMATIONS WITH OR

WITHOUT FLIPS

by Nancy GUELMAN & Isabelle LIOUSSE (*)

Abstract. — Let G be the group of all Interval Exchange Transformations.
Results of Arnoux–Fathi, Sah and Vorobets state that G0 the subgroup of G gener-
ated by its commutators is simple. Arnoux proved that the group G of all Interval
Exchange Transformations with flips is simple.

We establish that the commutator length is at most 6 for any element of G.
Moreover, we give conditions on G that guarantee that the commutator lengths of
the elements of G0 are uniformly bounded, and in this case for any g ∈ G0 this
length is at most 5.
Résumé. — Soit G le groupe des échanges d’intervalles. Des résultats d’Arnoux–

Fathi, Sah et Vorobets indiquent que G0 le sous-groupe de G engendré par ses
commutateurs est simple. Arnoux prouve que le groupe G des échanges d’intervalles
avec flips est simple.

Nous établissons que tout élément de G a une longueur des commutateur infé-
rieure ou égale à 6. De plus, nous exhibons des conditions sur G qui garantissent
que les longueurs des commutateurs des éléments de G0 sont uniformément bornées
et dans ce cas pour tout g ∈ G0 nous montrons que cette longueur est au plus 5.

1. Introduction

Let J = [a, b) be a half-open interval.
An interval exchange transformation (IET) of J is a right continuous

bijective map f : J → J defined by a finite partition of J into half-open

Keywords: Interval exchange transformation, Commutator, Perfect groups, Commutator
length.
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1478 Nancy GUELMAN & Isabelle LIOUSSE

subintervals Ii and a reordering of these intervals by translations. We de-
note by GJ the group consisting in all IET of J .
An interval exchange transformations with flips (FIET) on J is a bijec-

tion f : J → J for which there exists a subdivision a = a1 < · · · < am <

am+1 = b such that f |(ai,ai+1) is a continuous isometry. Note that f is not
necessarily right continuous since the orientation of some intervals can be
reversed, and there exists a flip-vector U(f) = (u1, . . . , um) ∈ {−1, 1}n
such that f |(ai,ai+1) is a direct isometry if ui = 1 or an indirect one if
ui = −1.

It is worth noting that several authors consider FIET as piecewise isome-
tries of J with a finite number of discontinuity points reversing at least one
of the intervals of continuity. This is not our case, so an IET is an FIET.
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Figure 1.1. Two equivalent FIET.

We say that two FIET on J , f and g are equivalent if the set {x ∈ J :
f(x) 6= g(x)} is finite (see Figure 1.1). We denote by GJ the corresponding
quotient set. Note that GJ is the quotient group of the FIET group by its
normal subgroup consisting of elements which are trivial except possibly at
finitely many points. By abuse of terminology, elements of GJ are also called
FIET. The map U is still well defined on GJ and the set of all elements of
GJ such that U(f) ⊂ {1}m is identified with GJ .

Let f be an IET or an FIET on J . The continuity intervals of f are
the maximal connected subsets of J on which f is continuous and they
are denoted by I1, . . . , Im. The associated permutation π = π(f) ∈ Sm
is defined by f(Ii) = Jπ(i), where the Jj ’s are the ordered images of the
Ii’s. By convention, f is not continuous at the left endpoint of J and we
define BP (f) to be the set of the discontinuity points of f . Note that
BP (f−1) = f(BP (f)) and BP (f ◦ g) ⊂ BP (g) ∪ g−1(BP (f)).

ANNALES DE L’INSTITUT FOURIER



UNIFORM PERFECTNESS OF IET AND FIET 1479

Let m be a positive integer, we denote by Gm (resp. Gm,π) the set of all
elements of G having at mostm discontinuity points (resp. whose associated
permutation is π ∈ Sm).
From now on, without mention of the defining interval J , an IET or an

FIET is defined on I = [0, 1) and GI and GI will be denoted by G and G
respectively.

Remark 1.1. — The group GJ (resp. GJ) is conjugated by the direct
homothecy that sends J to I to the group G (resp. G). The subgroup of
G (resp. G) consisting of elements with support in J can be identified, by
taking restriction, with GJ (resp. GJ).

Since the late seventies, the dynamics and the ergodic properties of a
single interval exchange transformation were intensively studied (see e.g.
Viana survey [36]). A natural extension is to consider the dynamics in terms
of group actions. The most famous problem was raised by Katok: does G
contain copies of F2, the free group of rank 2? Dahmani, Fujiwara and
Guirardel established that such subgroups are rare ([7, Theorem 5.2]).
More generally, one can ask for a description of possible subgroups of G.

According to Novak there is no distortion in G ([27, Theorem 1.3]) and as
a standard consequence any finitely generated nilpotent subgroup of G is
virtually abelian (see e.g. [13]).
Among many things, Dahmani, Fujiwara and Guirardel proved that any

finitely generated subgroup of G is residually finite ([7, Theorem 7.1]), G
contains no infinite Kazhdan groups ([7, Theorem 6.2]), any finitely gen-
erated torsion free solvable subgroup of G is virtually abelian ([8, Theo-
rem 3]) and provide examples of non virtually abelian solvable subgroups
of G ([8, Theorem 6]). Thus, finding torsion free finitely generated non vir-
tually abelian subgroups of G seems very difficult, especially as works of
Juchenko, Monod ([18]) suggest that G could be amenable as it is conjec-
tured by Cornulier.
The group G shares many of the properties of the group of piecewise affine

increasing homeomorphisms of the unit interval, PL+(I). For instance these
two groups are not simple but have simple derivated subgroups (see [10] for
the PL case). As noted in Remark 1.2 of [28], they satisfy no law (i.e. there
does not exist ω ∈ F2 \ {e} such that φ(ω) = Id for every homomorphism
φ : F2 → G), their nilpotent subgroups are virtually abelian (see [11] for
the PL case) and the main result of [7] can be seen has a generic version of
the Brin and Squier theorem [5] which asserts that PL+(I) does not contain
non abelian free subgroups. It’s however still unknown whether PL+(I) is
amenable.

TOME 72 (2022), FASCICULE 4



1480 Nancy GUELMAN & Isabelle LIOUSSE

Considerably less is known about G. However, due to their connections
with non oriented measured foliations on surfaces and billiards, the dy-
namics and ergodic properties of a single FIET were firstly explored by
Gutierrez ([15]) and Arnoux ([2]).
Dealing with irreducible permutations, Keane ([19]) proved that almost

all IET are minimal and Masur ([23]) and Veech ([35]) that almost all
are uniquely ergodic. For FIET that reverse orientation in at least one
interval, Nogueira ([25]) proved that almost all have periodic points so are
nonergodic. He also exhibited an example of a minimal uniquely ergodic
one (see also [16] and [22]). Recently, Skripchenko and Troubetzkoy gave
bounds for the Hausdorff dimension of the set of minimal maps ([33]) and
Hubert and Paris-Romaskevich described all the minimal maps having 4
continuity intervals (see [17, Theorem 6 p. 39–40]).
The decomposition into minimal and periodic components was first stud-

ied for measured surfaces flows by Mayer ([24]) and restated for IET by
Arnoux ([1]) and Keane ([19]). For FIET that reverse orientation in at
least one interval of the m continuity intervals, Nogueira, Pires and Trou-
betzkoy proved that the sum of number of periodic components and twice
the number of minimal components is bounded by m ([26]).
As mentioned by Paris-Romaskevich in [30], one can interest ourselves in

the dynamics of FIET from the point of view of geometrical group theory:
describe the possible groups that can be realized as groups of FIET or
establish algebraic properties of the whole group.
Here we shall be concerned solely with the structure of the whole groups

G and G. This is also motivated by the algebraic study of other transfor-
mation groups, particularly groups of homeomorphisms of low dimensional
manifolds, that was initiated by Schreier and Ulam in 1934 ([32]) who were
interested in the simplicity of such groups.

We recall that, given G a group,

• a commutator in G is an element of G of the form [f, g] = fgf−1g−1

with f, g ∈ G.
• G is perfect if G = [G,G] the subgroup of G generated by its
commutators.

• G is simple if any normal subgroup of G is either G or trivial.

In the seventies, lots of homeomorphisms or diffeomorphisms groups were
studied by Epstein, Herman, Thurston, Mather, Banyaga, and proved to be
simple; these works are survey in the books [3] or [4]. For interval exchange
transformations, it has been shown by Arnoux ([2, III §2.4]), Sah ([31]) and
Vorobets ([37]) that the subgroup G0 of G generated by its commutators is

ANNALES DE L’INSTITUT FOURIER



UNIFORM PERFECTNESS OF IET AND FIET 1481

simple. In [2, III §1.4], Arnoux proved that G is simple, this unpublished
result has been recently recovered by Lacourte ([21]). In order to sharpen
this property, it is convenient to give

Definition 1.2. — Let G be a group and g ∈ [G,G], the commutator
length of g, denoted by c(g), is the least number c such that g is a product
of c commutators. We set c(G) = sup{c(g), g ∈ [G,G]} and we say that G
is uniformly perfect if c(G) is finite.

The main theorems of this paper are

Theorem 1.3. — c(G) 6 6.

For the group G we are not able to decide if c(G) is finite. However, in
the affirmative case, we give an explicit bound in the following

Theorem 1.4. — If G is uniformly perfect then c(G) 6 5.

In Section 6, we will prove stronger results, Theorems 6.1 and 6.5, which
only require that commutator lengths are bounded when prescribing the
number of discontinuity points or the arithmetic, that is when the elements
considered belong to Γα := {g ∈ G : BP (g) ⊂ ∆α}, where ∆α is the abelian
subgroup of R generated by p real numbers α1, . . . , αp and 1.
Our proofs are based on an adaptation of a result of Dennis and Vaser-

stein giving a criterion for uniform perfectness ([9]). This is explained in
Section 4.

It is plain that a simple group G is generated by any subset S which
is invariant under conjugation. In particular, S can be the set consisting
of commutators, involutions or finite order elements. Group invariants are
therefore provided by considering S-lengths that is the least number lS
such that any element can be written as product of lS elements of S. These
lengths can be simultaneously considered by using the following

Definition 1.5. — A group G is uniformly simple if there exists a
positive integer N such that for any f, g ∈ G \ {Id}, the element g can be
written as a product of at most N conjugates of f or f−1.

Ulam and Von Neumann ([34]) showed that the group of homeomor-
phisms of S1 is uniformly simple. Burago and Ivanov ([6]) obtained im-
plicitely the same conclusion for PL+(S1) and [PL+(I),PL+(I)] (see also
[12, Theorem 1.1]). The question of the uniform simplicity of [G,G] and G
is formulated in [30]. However, Cornulier communicated us that [G,G] and
G are not uniformly simple. Indeed, if the support of an IET or FIET f has

TOME 72 (2022), FASCICULE 4



1482 Nancy GUELMAN & Isabelle LIOUSSE

length less than 1
N then any product of N conjugates of f or f−1 can not

have full support.
In a forthcoming paper we will prove the uniform simplicity of A, the

group of affine interval exchange transformations of I, i.e. bijections I → I

defined by a finite partition of I into half-open subintervals such that the
restriction to each of these intervals is a direct affine map. More generally,
we will give conditions on groups of piecewise continuous bijective maps on
I that ensure uniform simplicity. This study and the work of [12] suggest
that most simple transformation groups are uniformly simple. The group
G provides an example of a non uniformly simple group with bounded com-
mutator length. As far as we know it is an open problem to determine
whether G has bounded involution length. Recently, O. Lacourte ([20]) de-
fined the analogues of Γα in G, namely Γα. He proved that [Γα,Γα] are
simple and it would be relevant to study their uniform perfectness.

Acknowledgements

We thank E. Ghys for communicating us, a long time ago, how Propo-
sition 1 of [9] allows to conclude that certain groups of homeomorphisms
are uniformly perfect. We thank Y. Cornulier and O. Lacourte for fruitful
discussions. We also thank the anonymous referee for several comments
which improved the clarity of the paper.

2. Preliminaries

The aim of this section is to fix notations and terminology, to collect a
few results and to prove some basic results to be used in the sequel.

2.1. Restricted rotations and periodic IET

Definition 2.1. — An IET with two continuity intervals is called a
rotation and it is denoted by Ra, where a is the image of 0.
An IET g whose support, supp(g) = {x ∈ I : g(x) 6= x}, is J = [a, b) ⊂

[0, 1) is a restricted rotation if the direct homothecy that sends J to [0, 1)
conjugates g|J to a rotation. We denote it by Rα,J where α is given by
Rα,J(x) = x+ α (mod |b− a|) for x ∈ J .

An element g of G (resp. G) is periodic if every g-orbit is finite.

ANNALES DE L’INSTITUT FOURIER



UNIFORM PERFECTNESS OF IET AND FIET 1483

By [2, III p. 3], [27, Lemma 6.5] or [37, Lemma 2.1], any interval exchange
transformation is a product of restricted rotations (see also our Lemma 3.3
for a proof). For periodic IET, Novak showed a sharper statement.

Lemma 2.2 ([27, Proof of Corollary 5.6]). — Any periodic element g of
G is conjugated in G to a product of finite order restricted rotations with
disjoint supports. In particular, any periodic IET has finite order.

2.2. Basic properties on commutators

Definition 2.3. — Let G be a group. An element a ∈ G is reversible
in G if there exists h ∈ G such that a = ha−1h−1.

Properties 2.4. — Let G be a group and let a, b, a′, b′ and h be ele-
ments of G.

(1) If a and b commute with both a′ and b′ then [a, b][a′, b′] = [aa′, bb′].
(2) If a′ = ha−1h−1 then aa′ = [a, h].
(3) If a is reversible in G then a2 is a commutator.
(4) h[a, b]h−1 = [hah−1, hbh−1].

Proof.
(1). — As a′ commutes with a and b, we have

[a, b][a′, b′] = aba−1b−1a′b′a′−1b′−1 = aa′ba−1b−1b′a′−1b′−1.

Repeating this process with b′ and then a′−1, we get

[a, b][a′, b′] = aa′bb′a−1a′−1b−1b′−1 = aa′bb′a′−1a−1b′−1b−1 = [aa′, bb′].

(2). — aa′ = aha−1h−1 = [a, h].
(3). — a2 = aha−1h−1 = [a, h].
(4). — [hah−1, hbh−1]=hah−1hbh−1ha−1h−1hb−1h−1 =h[a, b]h−1. �

2.3. Periodic IET are commutators

In [14, Theorem 4], the authors proved that any periodic IET is reversible
in G. We recall this argument briefly. Let f be a periodic IET, by the Arnoux
Decomposition Theorem (see [2, Proposition p. 20]), the interval [0, 1) can
be written as the union of finitely many f -periodic components Mi, i =
1, . . . , n of period pi. In particular, Mi =

⊔pi
k=1 Jk, where Jk = fk−1(J1)

are half-open intervals and f is continuous on Jk.

TOME 72 (2022), FASCICULE 4



1484 Nancy GUELMAN & Isabelle LIOUSSE

Eventually conjugating f by an IET, we can suppose that the Jk’s are
ordered consecutive intervals so the Mi’s are intervals and π = π(f |Mi

) =
(1, 2, . . . , pi).

We consider the IET h, that is defined on each Mi by h is continuous
on Jk and h(Jk) = Jτ(k), where τ ∈ Spi satisfies τ−1πτ(k) = π−1 (such
a permutation exists by Proposition 3.4 of [29]). One has that h−1 ◦ f ◦ h
is continuous on Jk and h−1 ◦ f ◦ h(Jk) = Jτ−1πτ(k) = Jπ−1(k). Therefore
h−1 ◦ f ◦ h = f−1, meaning that f is reversible in G.
This implies

Proposition 2.5. — Any periodic IET is a commutator in G.

Indeed, we claim that any periodic IET can be written as the square of
another periodic element. To see this, it is enough to consider rotations,
by Lemma 2.2. This is obvious since Rα = R2

α
2
, so any periodic IET is the

square of a reversible IET. Finally, the result follows from Properties 2.4(3).

3. Generalities on commutators in G and G

3.1. Commutators in G

3.1.1. Fundamental examples

Let a, b satisfy that 0 6 a < b 6 1.
We denote by I[a,b] the symmetry of [a, b], i.e. the FIET defined by:

I[a,b](x) = x if x /∈ [a, b] and I[a,b](x) = a+ b− x if x ∈ [a, b].

Similarly, we denote by I(a,b) the symmetry of (a, b), i.e. the FIET defined
by:

I(a,b)(x) =
{
x if x /∈ (a, b)
a+ b− x if x ∈ (a, b).

I[a,b]

|
a

|
b

•

•

�
�
��

@
@@

�
�� I(a,b)

|
a

|
b

•

•

�
�
��

@
@@

�
�� Sθ,[a,b)

|
a
|
θ
|
b

•

•

•

�
�
��
@@
@@
�
��
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Clearly, I[a,b] and I(a,b) are involutions and they represent the same
element of G. Therefore, given J a subinterval of I, we define IJ to be the
element of G represented by IJ .
Let θ ∈ [a, b), we define another involution Sθ,[a,b) on [a, b) by

Sθ,[a,b) = I[a,θ] ◦ I(θ,b).

In particular, Sθ,[0,1) = θ − x (mod 1) and it is denoted by Sθ.

Property 3.1.
(1) Sθ ◦ Sθ′ = Rθ−θ′ .
(2) Rα ◦ Sθ ◦R−1

α = Sθ+2α.

Lemma 3.2 ([2, III p. 3]). — The maps I(a,b) and Rα,[a,b) are commu-
tators in G[a,b) and then in G.

Proof. — Taking restrictions and conjugating by a homothecy as in Re-
mark 1.1, it is sufficient to prove that I(0,1) et Rα,[0,1) are commutators.

It is easy to see that I(0,1) is the product of the involutions f1 and f2
described as below:

f1

|
1
4

|
3
4

�
�

@
@
@@

�
�

f2

|
1
4

|
3
4

@
@

�
�
��

@
@

As f2 is conjugated to f1 = f−1
1 by R 1

2
, Item (2) of Properties 2.4 implies

that the map I(0,1) is a commutator.
According to Property 3.1, any rotation is the product of 2 symmetries

that are conjugated by a rotation; thus Rα,[0,1) is a commutator. �

3.1.2. Decomposition in involutions and restricted rotations

Lemma 3.3 ([2, III p. 3]).
(1) Any f ∈ G can be written as the product of an element of G and

an involution that is a commutator.
(2) Any g ∈ Gm can be written as the product of m − 1 restricted

rotations.

TOME 72 (2022), FASCICULE 4
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Proof.
(1). — Let f ∈ G, we denote by Ii its continuity intervals and by U =

(ui) its flip-vector. It is easy to check that f ◦
∏
{i|ui=−1} IIi belongs to G.

Moreover the IIi ’s have disjoint supports, so they commute and then
∏
i IIi

is an involution and a commutator by Lemma 3.2 and Properties 2.4.
(2). — For clarity, given J = [a, b) and K = [b, c) two consecutive half-

open intervals, we denote by RJ,K the restricted rotation of support J tK
whose interior discontinuity point is b.
Let g ∈ Gm,π with continuity intervals I1, . . . Im and let g(Ii) = Jπ(i).

We consider R1 = RJ,K , where J = J1 ∪ · · · ∪ Jπ(1)−1 and K = Jπ(1).
One directly has that R1 ◦ g|I1 = Id and #BP(g1) 6 m − 1, where g1 =
R1 ◦ g|I2∪···∪Im .
Starting with g1, we define similarly R2 and we get that R2 ◦ g1|I2 = Id

and #BP(g2) 6 m− 2, where g2 = R2 ◦ g1|I3∪···∪Im .
Repeating the previous argument m− 1 times leads to #BP(gm−1) 6 1

so gm−1 = Id.
Extending the restricted rotations Ri to [0, 1[ by the identity map, we

conclude that
Rm−1 ◦ · · · ◦R1 ◦ g = Id . �

A direct consequence of Lemmas 3.2 and 3.3 is

Proposition 3.4 ([2, III §1.4]). — The group G is perfect and any
g ∈ Gm is the product of m− 1 commutators in G.

3.2. Commutators in G

In the introduction, we have indicated a few similarities between the
groups G and PL+(I). In particular, the simplicity of their derivative sub-
groups relies on a result of Epstein (see [10, 1.1.Theorem]). In the context
of finding bounds for the commutator length, a substantial difference be-
tween these two groups is that an element f of [PL+(I),PL+(I)] is a map
whose support J satisfies J ⊂ (0, 1) and f can not be written as a product
of commutators of maps with support in J . This contrasts with

Remark 3.5. — Let J be a half-open subinterval of I. If g ∈ G has support
in J then g ∈ [G,G] if and only if g|J ∈ [GJ ,GJ ].

Indeed, according to Theorem 1.1 of [37], there is a morphism SAFJ :
GJ → R ⊗Q R such that [GJ ,GJ ] = SAF−1

J (0). More precisely for f ∈ GJ ,
SAFJ(f) =

∑
λk ⊗ δk, where the vectors (λk), (δk) encode the lengths

ANNALES DE L’INSTITUT FOURIER



UNIFORM PERFECTNESS OF IET AND FIET 1487

of exchanged intervals and the corresponding translation constants respec-
tively.
Let g ∈ G with support in J . From the previous definition, it is easy

to check that SAFI(g) = SAFJ(g|J). Therefore g ∈ [G,G] if and only if
g|J ∈ [GJ ,GJ ].

4. The adapted Dennis and Vaserstein argument

In this section, we first we recall Proposition 1(c) of Dennis and Vaser-
stein ([9]).

4.1. The original criterion

Definition 4.1. — Two subsets S1 and S2 of a group G are commuting
if any a ∈ S1 commutes with any a′ ∈ S2.

Dennis and Vaserstein’s criterion. — If a group G contains two
commuting subgroups H1 and H2 such that for each finite subset S of G
there are elements gi ∈ G, i = 1, 2, such that g−1

i Sgi 6 Hi for i = 1, 2,
then c(G) 6 3.

As an illustrating example indicated by Ghys, the group [PL+(I),PL+(I)]
consists in all g of PL+(I) such that g′(0) = g′(1) = 1. Thus, for any finite
collection {gi} in [PL+(I),PL+(I)] there exist 0 < a < b < 1 such that
(a, b) contains the support of all the gi. The required groups H1 and H2
are obtained as groups of maps with disjoint supports by setting H1 = 〈gi〉
and H2 = h〈gi〉h−1 where h is an element of [PL+(I),PL+(I)] that carries
(a, b) into (a2 , a).

Unfortunately, this argument doesn’t apply immediately in [G,G] and G.
This is essentially due to the facts that both groups contain maps with full
support and that if the length of the support of g ∈ G exceeds 1

2 then it is
impossible to find a conjugate of g in G with a disjoint support. To avoid
these difficulties, we will compose with suitable periodic maps to obtain
an IET with arbitrary small support (see Propositions 5.1 and 6.1) and
then we will apply the following iterated version of Dennis and Vaserstein’s
criterion.

TOME 72 (2022), FASCICULE 4



1488 Nancy GUELMAN & Isabelle LIOUSSE

4.2. The iterated version

Let n ∈ N∗, we denote by Hn (resp. Hn) the subgroup of G (resp. G) con-
sisting of elements whose support is included in [1− 1

n , 1). By Remark 1.1,
Hn (resp. Hn) is identified with G[1− 1

n ,1) (resp. G[1− 1
n ,1)). Moreover, Re-

mark 1.1 and Proposition 3.4 imply that Hn is perfect and Remark 3.5
leads to Hn ∩ [G,G] = [Hn, Hn].

Lemma 4.2.

(1) If g ∈ H2 ∩ [G,G] = [H2, H2] then cG(g) 6 1
2cH2(g) + 3

2 .

(2) If g ∈ H2 then cG(g) 6 1
2cH2

(g) + 3
2 .

Proof. — Proofs of Items (1) and (2) are similar, changing G for G and
H2 for H2, so we only prove Item (1).

Let g ∈ H2 ∩ [G,G]. We write cH2(g) = 2p− r with p ∈ N∗ and r = 0, 1.
Therefore

g = (c1 . . . cp)(cp+1 . . . c2p),
where ci = [ai, bi] with ai, bi in H2 and the last commutator c2p is eventu-
ally trivial.
Let R be the rotation of angle 1

2 . We denote by f ′ = R ◦ f ◦R−1.
Note that if f, k ∈ H2 then f and k′ have disjoint supports and they

commute. We write

g = (c1 . . . cp)(c′p+1 . . . c
′
2p)(c′p+1 . . . c

′
2p)−1(cp+1 . . . c2p)

= (c1c′p+1) . . . (cpc′2p)C,

where C = (c′p+1 . . . c
′
2p)−1(cp+1 . . . c2p).

On one hand, by Properties 2.4(1), we have that cic′p+i, i = 1, . . . , p, are
commutators.
On the other hand, by Properties 2.4(2), it holds that

C = (c′p+1 . . . c
′
2p)−1(cp+1 . . . c2p)

is a commutator since it is the product of (cp+1 . . . c2p) and the conjugate
by R of its inverse.
Finally, we have cG(g) 6 p+ 1, thus

2cG(g) 6 2p+ 2 = cH2(g) + r + 2 6 cH2(g) + 3. �

Repeatedly applying Lemma 4.2, we get

Proposition 4.3. — Let t ∈ N∗.
(1) If g ∈ H2t ∩ [G,G] = [H2t , H2t ] then cG(g) < 1

2t cH2t
(g) + 3.

(2) If g ∈ H2t then cG(g) < 1
2t cH2t

(g) + 3.
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Proof. — As noted earlier, we only prove Item (1).
Let t ∈ N∗ and g ∈ H2t ∩ [G,G]. From Remark 1.1 and Lemma 4.2, we

obtain
cH2t−1 (g) 6 1

2cH2t
(g) + 3

2 .

It is easy to check by induction that for s ∈ {1, . . . , t}, we have

(Es)cH2t−s
(g) 6 1

2s cH2t
(g) + 3

s∑
j=1

1
2j .

Indeed, for s = 1, (E1) is the first identity.
Fix s ∈ {1, . . . , t − 1} and suppose that (Es) holds. Then according to

Remark 1.1 and Lemma 4.2

CH2t−(s+1) (g) 6 1
2CH2t−s

(g) + 3
2 .

Thus, by induction hypothesis

CH2t−(s+1) (g) 6 1
2

 1
2sCH2t

(g) + 3
s∑
j=1

1
2j

+ 3
2 .

Therefore

CH2t−(s+1) (g) 6

 1
2s+1CH2t

(g) + 3
s∑
j=1

1
2j+1

+ 3
2 ,

which leads immediately to (Es+1).
Finally, noting that H1 = G and

∑t
j=1

1
2j = 1− 1

2t < 1, the identity (Et)
leads to

cG(g) < 1
2t cH2t

(g) + 3. �

5. The group G is uniformly perfect

The aim of this section is to prove Theorem 1.3.

5.1. Background material

Let g ∈ Gm. The combinatorial description of g is (λ(g), π(g)), where λ(g)
is an m-dimensional vector whose coordinates are the lengths of I1, . . . , Im,
the continuity intervals of g and π(g) ∈ Sm is the permutation on {1, . . . ,m}
that tells how the intervals Ii are rearranged by g.
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We denote by ai(g) the discontinuity points of g. If g is continuous on a
half-open interval J , we define δJ(g) := g(x)− x, for x ∈ J .
The translations of g are δi(g) := δIi(g), i = 1, . . . ,m.
Note that ai(g) and δi(g) are related to (λ(g), π(g)) by

(∗) ai(g) =
i−1∑
k=1

λk(g) and δi(g) = −
i−1∑
k=1

λk(g) +
π(i)−1∑
k=1

λπ−1(k)(g).

The map g is said to be rational if all its discontinuity points are rational.
It is easy to see that rational IET are periodic.

Definition 5.1. — Let m be a positive integer and π ∈ Sm, we define
a metric on Gm,π by

d(f, g) =
m∑
i=1
|λi(f)− λi(g)|.

Properties 5.2. — Let f and g be elements of Gm,π. Then
(1) d(f−1, g−1) = d(f, g),
(2) |ai(f)− ai(g)| 6 d(f, g),
(3) |δi(f)− δi(g)| 6 2d(f, g).

Proof.
(1). — The first item is due to the fact that λπ(i)(f−1) = λi(f).
We deduce the remaining items from (∗), indeed
(2). — |ai(f)− ai(g)| = |

∑i−1
k=1λk(f)− λk(g)| 6 d(f, g)

(3). — |δi(f) − δi(g)| = |
(
−
∑i−1
k=1λk(f) +

∑π(i)−1
k=1 λπ−1(k)(f)

)
−(

−
∑i−1
k=1λk(g) +

∑π(i)−1
k=1 λπ−1(k)(g)

)
| 6 2d(f, g). �

Lemma 5.3. — Let g ∈ Gm and let l = |Fix(g)| be the Lebesgue measure
of the fixed point set of g. Then, there exists h ∈ Gm such that

Fix(h ◦ g ◦ h−1) = [0, l).

In particular #BP(h ◦ g ◦ h−1) 6 3m.

Proof. — Denote by F1, F3, . . . , F2p−1 the p ordered connected compo-
nents of I \ Fix(g). We write Fi = [αi, αi+1), for i = 2k − 1, k = 1, . . . , p.
Note that αi ∈ BP (g). Hence the connected components of Fix(g) are the
possibly empty intervals F0 = [0, α1), F2p = [α2p, 1) and

F2k = [α2k, α2k+1), for k = 1, . . . , p− 1.
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The required map h is the IET whose combinatorial description is (λ, π)

with
{

λi = |Fi|, i = 0, . . . , 2p and π ∈ S({0, . . . , 2p}),
π(0) = 0, π(2k) = k and π(2k − 1) = k + p, k = 1, . . . , p.

Finally we note that h ∈ Gm since BP (h) ⊂ {αi} ⊂ BP (g). �

5.2. Proof of Theorem 1.3

For proving Theorem 1.3, we need the following

Proposition 5.4. — Let n be a positive integer and let f ∈ Gm. Then
there exist two periodic elements p, p′ ∈ G such that

|supp(p ◦ f ◦ p′)| 6 1
n

and #BP(p ◦ f ◦ p′) 6 5m.

Proof. — Let n be a positive integer and f ∈ Gm,π. We set BP (f) =
{ai, i = 1 . . .m}, Ii = [ai, ai+1) and BP (f−1) = {bi, i = 1, . . . ,m}. Fix
0 < ε < 1

2n small enough (ε � |Ii|). We consider p ∈ Gm,π−1 a rational
IET such that d(f−1, p) 6 ε

2m and BP (p) = {b′i, i = 1, . . . ,m} satisfies
bi − ε

2m < b′i 6 bi. This map p is periodic.

Claim 5.5. — By construction, fε = p ◦ f satisfies #BP(fε) 6 2m,
it is continuous on [ai, ai+1 − ε

2m ) and ∂i := δ[ai,ai+1− ε
2m )(p ◦ f) satisfies

|∂i| 6 ε
m .

Indeed, obviously #BP(fε) 6 #BP(f) + #BP(p) 6 2m.
For every x ∈ [ai, ai+1 − ε

2m ), one has f(x) = x+ δIi(f) and

f(x) ∈
[
bπ(i), bπ(i)+1 −

ε

2m

)
⊂ [b′π(i), b

′
π(i)+1),

then p ◦ f(x) = x+ δIi(f) + δ[b′
π(i),b

′
π(i)+1)(p).

Since d(f−1, p) 6 ε
2m , one has:

ε

m
> |δ[b′

π(i),b
′
π(i)+1)(p)− δ[bπ(i),bπ(i)+1)(f−1)| = |δ[b′

π(i),b
′
π(i)+1)(p) + δIi(f)|,

therefore |∂i| = |p ◦ f(x)− x| = |δIi(f) + δ[b′
π(i)),b′

π(i)+1)(p)| 6
ε

m
.
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This ends the proof of the claim which is summarized by the following
picture.

[
ai

[
ai+1− ε

2m

[
ai+1

[
bπ(i)

[
b′π(i)

[
bπ(i)+1− ε

2m

[
↙
b′π(i)+1

• [
bπ(i)+1

f 6

[ [•

p 6

•

We turn now on to the proof of Proposition 5.4. Let i ∈ {1, . . . ,m}.
If ∂i = 0, we set Ri = Id.
In the case that ∂i > 0, we define Ri to be the finite order restricted

rotation of support [ai, ai + ri∂i) and of angle ∂i, where ri is the greatest
integer such that ai + ri∂i 6 min{ai+1 − ( ε

2m − ∂i), ai+1}.
By definition Ri and fε coincide on the interval [ai, ai + (ri − 1)∂i) and

|[ai + ri∂i, ai+1)| 6 ε
m . Indeed, fε is continuous on [ai, ai+(ri−1)∂i), since

ai + (ri − 1)∂i = ai + ri∂i − ∂i 6 ai+1 −
( ε

2m − ∂i
)
− ∂i = ai+1 −

ε

2m.

In addition, by the maximality of ri, either ai + (ri + 1)∂i is greater
• than ai+1 − ( ε

2m − ∂i) and it follows that

|[ai + ri∂i, ai+1)| = ai+1 − (ai + ri∂i) < ∂i +
( ε

2m − ∂i
)

= ε

2m
• or than ai+1 and then |[ai+ri∂i, ai+1)| = ai+1−(ai+ri∂i) < ∂i 6 ε

m .
The same argument remains valid for negative ∂i by using non positive

integers ri.
Finally, the map g := fε ◦

∏m
1 Ri

−1 satisfies #BP(g) 6 5m because
#BP(Ri) 6 3.

Since supp(Ri) ⊂ [ai, ai+1), the supports of the Ri’s are disjoints and
p′ = (

∏m
1 Ri)−1 is periodic and it is also a commutator in G, according to

Proposition 2.5.
But g|Ri([ai , ai+(ri−1)∂i)) = Id and therefore

|supp(g)| 6 1−
m∑
i=1
|[ai, ai + (ri − 1)∂i)|

6 1−
m∑
i=1

(
|[ai, ai+1)| −

(
∂i + ε

m

))
6 2ε 6 1

n
. �

We turn now on to the proof of Theorem 1.3.
We first consider an IET f ∈ Gm,π viewed as an element of G. Let t ∈ N∗.
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Applying Proposition 5.4 to f and n = 2t, we get that there exist two
periodic elements p, p′ ∈ G such that the support of g = p ◦ f ◦ p′ ∈ G5m
has measure less than or equal to 1

2t .
By Lemma 5.3, the map g is conjugated to an element g′ of H2t for which

#BP(g′) 6 15m. Since p and p′ are periodic and g and g′ are conjugated,
we have

cG(f) 6 cG(g) + 2 = cG(g′) + 2.
Then by Proposition 4.3(2),

cG(f) < 1
2t cH2t

(g′) + 5.

As #BP(g′|[1− 1
2t ,1)) 6 #BP(g′), Remark 1.1 and Proposition 3.4 imply

that
cH2t

(g′) 6 15m− 1.
Finally, for any t ∈ N∗ one has

cG(f) < 15m− 1
2t + 5

and choosing t large enough, we obtain

cG(f) 6 5.

Thus we get cG(f) 6 5, for any f ∈ G.
For the general case, we consider F ∈ G. According to Lemma 3.3, the

map F can be decomposed as the product of an involution that is a commu-
tator and an element of G. Therefore, we have proved the required inequality
cG(F ) 6 1 + 5 = 6, for any F ∈ G. �

6. Conditions for uniform perfectness of G

In this section we give two sufficient conditions for G to be uniformly
perfect.

6.1. The commutator length is bounded when fixing the
number of discontinuity points

We prove the following statement that directly implies Theorem 1.4.

Theorem 6.1. — If for any positive integer m, it holds that Cm(G) :=
supp{cG(g), g ∈ [G,G] ∩ Gm} is finite, then G is uniformly perfect and
c(G) 6 5.
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Proof. — Let f ∈ [G,G]∩Gm and t ∈ N. Proposition 5.4 and Lemma 5.3
with n = 2t show that there exist two periodic elements p′, p ∈ G such
that g = p ◦ f ◦ p′ ∈ G5m is conjugated to an element g′ of H2t ∩ G15m. By
Proposition 2.5, p and p′ are commutators then g ∈ [G,G]. Moreover, [G,G]
is normal so g′ ∈ H2t ∩ [G,G].

Therefore, according to Proposition 4.3

cG(f) 6 cG(g) + 2 = cG(g′) + 2 < 1
2t cH2t

(g′) + 5.

As cH2t
(g′) 6 C15m(G), one has for any t ∈ N∗

cG(f) < C15m(G)
2t + 5.

Choosing t large enough, we get cG(f) 6 5. �

6.2. The commutator length is bounded when prescribing the
arithmetic

Let p ∈ N∗ and α = (α1, . . . , αp) ∈ [0, 1)p such that α1 /∈ Q.

6.2.1. Background material

We denote by ∆α the abelian subgroup of R generated by α1, . . . , αp and
1. Note that the condition α1 /∈ Q insures that ∆α is dense in [0, 1).

Let J be a half-open interval with endpoints in ∆α.

Definition 6.2. — We set Γα := {g ∈ G : BP (g) ⊂ ∆α} and Γα(J) :=
{g ∈ GJ : BP (g) ⊂ ∆α}.

It is plain that any g ∈ G is either periodic or belongs to some Γα.
Indeed, if g is not periodic then its length vector λ has at least one irrational
coordinate and α is obtained from λ by permutation.
Note that Γα(J) is the set of all maps g ∈ GJ whose extensions to I by

the identity map belong to Γα. But Γα(J) does not coincide with the set
obtained by conjugating Γα through the homothecy that carries J into I.
For J = [c, d), the last set is {g ∈ GJ : BP (g) ⊂ c+ ∆α

d−c}. For this reason,
the properties of Γα(J) are not direct consequences of the ones of Γα.

Properties 6.3. — Let g ∈ Γα(J) and Ii be its continuity intervals.
(1) The lengths of the Ii and the translations of g belong to ∆α.
(2) Γα(J) is a subgroup of GJ .
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(3) The endpoints of the connected components of Fix(g) are in ∆α.

Proof.
(1). — The endpoints of the Ii are the discontinuity points of g and the

left endpoint of J . Therefore if g ∈ Γα(J) any length λi = |Ii| belongs to
∆α. The translations of g also belong to ∆α, as linear combinations of the
λi’s with coefficients in {−1, 0, 1}.
(2). — According to (1), any f ∈ Γα(J) preserves ∆α. Therefore the

relations BP (f−1) = f(BP (f)) and BP (f1 ◦ f2) ⊂ BP (f2)∪ f−1
2 (BP (f1))

imply that Γα(J) is stable by taking inverse and composite.
(3). — From the definition of Fix(g), it follows that every endpoint of

a connected component of Fix(g) is a discontinuity point of g. �

Before stating our last theorem, we give

Definition 6.4. — We say that G has partial uniform perfectness if for
any p ∈ N∗ and α ∈ [0, 1)p it holds that Cα(G) := sup{cG(g), g ∈ [G,G]∩Γα}
is finite.

Theorem 6.5. — If G has partial uniform perfectness then G is uni-
formly perfect.

A consequence of Theorems 6.1 and 6.5 is

Corollary 6.6. — If G has partial uniform perfectness then c(G) 6 5.

The main tool for the proof of Theorem 6.5 is

Proposition 6.7. — Let f ∈ Γα. Let n be a positive integer and set
sn = [ ln(n)

ln(1.25) ] + 1.
Then there exist gn ∈ Hn∩Γα, a map h ∈ Γα and sn involutions ij ∈ Γα,

j = 1, 2, . . . , sn such that f = i1 ◦ · · · ◦ isn ◦ (h ◦ gn ◦ h−1).

For proving this proposition we use the following

Lemma 6.8. — Let ε ∈ (0, 1) and J be a half-open interval with end-
points in ∆α. If f ∈ Γα(J) then there exists an involution i ∈ Γα(J) such
that

|Fix(i ◦ f)| > |Fix(f)|+ |J | − |Fix f |
5 (1− ε).

Proof. — Let f ∈ Γα(J), BP (f) = {0 = a1, . . . , am} and set am+1 = 1.
Case 1: Fix(f) = ∅. — Fix δ ∈ ∆α such that 0 < δ < min{ |J|εm ; |f(x)−x|,

x ∈ I}.
For every j ∈ {1, . . . ,m − 1}, we consider the unique integer nj such

that (nj − 1)δ 6 |[aj , aj+1)| < njδ. It holds that [aj , aj+1) is the union of
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(nj − 1) intervals of length δ and an eventually empty interval Fj of length
less than δ.
Therefore J can be decomposed as a finite union of pairwise disjoint

half-open intervals I1, . . . , In and F1, . . . , Fm such that
• f is continuous on these intervals,
• |Ij | = δ for j = 1, . . . , n and |Fk| < δ for k = 1, . . . ,m.

It follows that nδ +
∑
|Fk| = |J |.

Since for any x it holds that |f(x)−x| > δ, one has f(Ij)∩Ij = ∅. There-
fore there exists an involution i1 of support I1∪f(I1) such that i1|I1 = f |I1

and then i1 ◦ f |I1 = Id |I1 . Now, we want to construct a similar involution
i2 on a second interval Ip2 so that i1 and i2 have disjoint supports. This
can be done if and only if (Ip2 ∪ f(Ip2))∩ (I1 ∪ f(I1)) = ∅. This means that

Ip2 ⊂ I \ (I1 ∪ f(I1) ∪ f−1(I1)).

Consequently, such an interval Ip2 and its corresponding involution i2
with support Ip2 ∪ f(Ip2) exist provided that

(6.1) I ′ \ (I1 ∪D(f(I1) ∪ f−1(I1)) 6= ∅,

where I ′ = I \ ∪Fk and D(K) =
⋃
{k|K∩Ik 6=∅} Ik.

As any half-open interval of length δ meets at most two intervals Ik, the
condition (6.1) means that n > 5.
By induction, we can define s involutions ij with disjoint supports Ipj ∪

f(Ipj ) provided that

I ′ \ (I1 ∪ . . . Ips−1 ∪D(f(I1 ∪ . . . Ips−1) ∪ f−1(I1 ∪ . . . Ips−1)) 6= ∅.

That is n > 5(s− 1).
Let s be the largest integer such that n > 5(s− 1), we can construct the

involutions ij , j = 1, . . . , s but n 6 5s.
By the definition of ij , the map g = is . . . i1 ◦ f satisfies

g|I1∪Ip2∪···∪Ips = Id |I1∪Ip2∪···∪Ips ,

then

|Fix(g)| >
s∑
j=1
|Ipj | = s.δ = s

n
(|J | −

∑
|Fk|)

>
1
5(|J | −

∑
|Fk|)

>
1
5(|J | −mδ) > 1

5(|J | − |J |ε).
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In conclusion, since ij have disjoint supports, the map i = is . . . i1 is an
involution and |Fix(i ◦ f)| > |J|

5 (1 − ε), this is the desired conclusion for
|Fix f | = 0.
It remains to prove that i ∈ Γα. Since the ai and δ are in ∆α, the

endpoints of Ii and f(Ii) also belong to ∆α. Combining this with the fact
that the discontinuity points of the involutions ij are endpoints of Ii or
f(Ii), we get that BP (ij) ⊂ ∆α, for j = 1, . . . , s. Therefore, by definition,
the maps ij ∈ Γα then so does i.

Case 2: Fix(f) 6= ∅. — We set J = [c, d).
As the endpoints of the connected components of Fix(f) belong to ∆α, it

holds that a = |Fix(f)| ∈ ∆α. Therefore a slight adaptation of Lemma 5.3
to f ∈ Γα(J), shows that there exists h ∈ Γα(J) such that Fix(h◦f ◦h−1) =
[c, c+ a).
Let f1 ∈ Γα([c + a, d)) be the restriction of h ◦ f ◦ h−1 to [c + a, d).

By construction, Fix(f1) = ∅ hence Case 1 applies to f1 and provides an
involution j1 ∈ Γα([c+ a, d)) such that

|Fix(j1 ◦ f1)| > |J | − a5 (1− ε).

Let j ∈ Γα(J) be the involution of J defined by j(x) = j1(x) if x ∈
[c+ a, d) and j(x) = x if x ∈ [c, c+ a). We have

|Fix(j ◦ h ◦ f ◦ h−1)| > |[c, c+ a)|+ |Fix(j1 ◦ f1)| > a+ |J | − a5 (1− ε).

In addition, as h preserves lengths, we have

|Fix(j◦h◦f ◦h−1)| = |Fix(h−1◦(j◦h◦f ◦h−1)◦h)| = |Fix((h−1◦j◦h)◦f)|.

Setting i = h−1 ◦ j ◦ h, we get

|Fix(i ◦ f)| > a+ |J | − a5 (1− ε),

which completes the proof. �

We turn now on to the proof of Proposition 6.7.
Let ε ∈ (0, 1) small enough and such that 1

5 (1−ε) ∈ ∆α. Consider f ∈ Γα
and set L0 = |Fix(f)|.
Applying Lemma 6.8 to f , there exists an involution i1 ∈ Γα such that

|Fix(i1 ◦ f)| > L0 + 1− L0

5 (1− ε) = φ(L0) := L1,

where φ(x) := x+ 1−x
5 (1− ε) = 4+ε

5 (x− 1) + 1 is a direct affine map whose
fixed point is 1.
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We now apply this argument again, with f replaced by i1 ◦ f , to obtain
an involution i2 ∈ Γα such that

|Fix(i2 ◦ i1 ◦ f)| > |Fix(i1 ◦ f)| + 1− |Fix(i1 ◦ f)|
5 (1− ε)

> φ(|Fix(i1 ◦ f)|)

> φ(L1) = φ2(L0).

Repeating this process s times, we get s involutions ik ∈ Γα such that

|Fix(is ◦ · · · ◦ i1 ◦ f)| > φs(L0).

We now prove that φs(L0) > 1− 1
n provided that s > sn =

[
ln(n)

ln(1.25)

]
+1.

In order to get this inequality, we are looking for integers s such that

φs(L0) =
(

4 + ε

5

)s
(L0 − 1) + 1 > 1− 1

n
,

that is
−
(

4 + ε

5

)s
(1− L0) > − 1

n
.

Using that L0 > 0, it suffices to determine s satisfying(
4 + ε

5

)s
6

1
n

s ln
(

4 + ε

5

)
6 ln

(
1
n

)
= − ln(n)

s >
ln(n)

ln( 5
4+ε )

Therefore, we can take s =
[

ln(n)
ln( 5

4+ε )

]
+1. In addition, as ln(n)

ln( 5
4 ) /∈ N, we have[

ln(n)
ln( 5

4+ε )

]
=
[

ln(n)
ln( 5

4 )

]
for ε > 0 small enough.

Finally is ◦· · ·◦ i1 ◦f ∈ Γα has a fixed point set of length at least 1− 1
n so

it is conjugated to an element of Hn by some h ∈ Γα, by a slight adaptation
of Lemma 5.3 to f ∈ Γα. �

6.2.2. Proof of Theorem 6.5

We consider g1 ∈ Γα∩ [G,G] that realizes Cα(G). By Proposition 6.7 with
n = 2 and thus s2 =

[
ln(2)

ln(1.25)

]
+ 1 = 4, there exist g2 ∈ H2 ∩ Γα, h ∈ Γα

and four involutions i1, . . . , i4 such that

g1 = i1 ◦ i2 ◦ i3 ◦ i4 ◦ (hg2h
−1).
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We can now estimate Cα(G). By Proposition 2.5 and the normality of [G,G],

Cα(G) = cG(g1) 6 4 + cG(g2).

According to Lemma 4.2, we have

cG(g2) 6 1
2cH2(g2) + 3

2 .

Using Remark 1.1, the group H2 inherits the partial uniform perfectness of
G and this implies that for any g ∈ [H2, H2]∩Γα

2
, one has cH2(g) 6 Cα(G).

In particular since Γα is a subgroup of Γα
2
, we have cH2(g2) 6 Cα(G).

Hence,

Cα(G) 6 4 + 1
2Cα(G) + 3

2
1
2Cα(G) 6 4 + 3

2 = 11
2

Cα(G) 6 11.

Finally, as any IET g is either periodic or it belongs to some Γα, we get
that cG(g) 6 11 for all g ∈ [G,G]. It means that G is uniformly perfect. �

BIBLIOGRAPHY

[1] P. Arnoux, “Échanges d’intervalles et flots sur les surfaces”, in Théorie ergodique
(Sem., Les Plans-sur-Bex, 1980) (French), Monographies de l’Enseignement Math-
ématique, vol. 29, L’Enseignement Mathématique, 1981, p. 5-38.

[2] ———, “Un invariant pour les échanges d’intervalles et les flots sur les surfaces”,
PhD Thesis, Université de Reims, 1981.

[3] A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and
its Applications, vol. 400, Kluwer Academic Publishers, 1997, xii+197 pages.

[4] A. Bounemoura, Simplicité des groupes de transformations de surfaces, Ensaios
Matemáticos, vol. 14, Sociedade Brasileira de Matemática, 2008, ii+147 pages.

[5] M. G. Brin & C. C. Squier, “Groups of piecewise linear homeomorphisms of the
real line”, Invent. Math. 79 (1985), no. 3, p. 485-498.

[6] D. Burago & S. Ivanov, “A remark on the group of PL-homeomorphisms in di-
mension one”, inGeometric and probabilistic structures in dynamics, Contemporary
Mathematics, vol. 469, American Mathematical Society, 2008, p. 141-148.

[7] F. Dahmani, K. Fujiwara & V. Guirardel, “Free groups of interval exchange
transformations are rare”, Groups Geom. Dyn. 7 (2013), no. 4, p. 883-910.

[8] ———, “Solvable groups of interval exchange transformations”, https://arxiv.
org/abs/1701.00377, 2017.

[9] R. K. Dennis & L. N. Vaserstein, “Commutators in linear groups”, K-Theory 2
(1989), no. 6, p. 761-767.

[10] D. B. A. Epstein, “The simplicity of certain groups of homeomorphisms”, Compos.
Math. 22 (1970), p. 165-173.

[11] B. Farb & J. Franks, “Groups of homeomorphisms of one-manifolds. III. Nilpotent
subgroups”, Ergodic Theory Dyn. Syst. 23 (2003), no. 5, p. 1467-1484.

TOME 72 (2022), FASCICULE 4

https://arxiv.org/abs/1701.00377
https://arxiv.org/abs/1701.00377


1500 Nancy GUELMAN & Isabelle LIOUSSE

[12] Ś. R. Gal & J. Gismatullin, “Uniform simplicity of groups with proximal action”,
Trans. Amer. Math. Soc., Ser. B 4 (2017), p. 110-130, With an appendix by N.
Lazarovich.

[13] N. Guelman & I. Liousse, “Distortion in groups of affine interval exchange trans-
formations”, Groups Geom. Dyn. 13 (2019), no. 3, p. 795-819.

[14] ———, “Reversible Maps and Products of Involutions in Groups of IETS”, https:
//arxiv.org/abs/1907.01808, 2019.

[15] C. Gutierrez, “Smooth nonorientable nontrivial recurrence on two-manifolds”, J.
Differ. Equations 29 (1978), no. 3, p. 388-395.

[16] C. Gutierrez, S. Lloyd, V. Medvedev, B. Pires & E. Zhuzhoma, “Transitive
circle exchange transformation with flips”, Discrete Contin. Dyn. Syst. 26 (2009),
no. 1, p. 251-263.

[17] P. Hubert & O. Paris-Romaskevich, “Triangle tiling billiards and the exceptional
family of their escaping trajectories: circumcenters and Rauzy gasket”, https://
arxiv.org/abs/1804.00181, 2018.

[18] K. Juschenko & N. Monod, “Cantor systems, piecewise translations and simple
amenable groups”, Ann. Math. 178 (2013), no. 2, p. 775-787.

[19] M. Keane, “Interval exchange transformations”, Math. Z. 141 (1975), p. 25-31.
[20] O. Lacourte, “Abelianization of some groups of interval exchanges”, https://

arxiv.org/abs/2009.07595, 2020.
[21] ———, “Signature for piecewise continuous groups”, https://arxiv.org/abs/

2002.12851, 2020.
[22] A. Linero Bas & G. Soler López, “Minimal interval exchange transformations

with flips”, Ergodic Theory Dyn. Syst. 38 (2018), no. 8, p. 3101-3144.
[23] H. Masur, “Interval exchange transformations and measured foliations”, Ann.

Math. 115 (1982), no. 1, p. 169-200.
[24] A. Mayer, “Trajectories on the closed orientable surfaces”,Mat. Sb., N. Ser. 12(54)

(1943), p. 71-84.
[25] A. Nogueira, “Almost all interval exchange transformations with flips are noner-

godic”, Ergodic Theory Dyn. Syst. 9 (1989), no. 3, p. 515-525.
[26] A. Nogueira, B. Pires & S. Troubetzkoy, “Orbit structure of interval exchange

transformations with flip”, Nonlinearity 26 (2013), no. 2, p. 525-537.
[27] C. F. Novak, “Discontinuity-growth of interval-exchange maps”, J. Mod. Dyn. 3

(2009), no. 3, p. 379-405.
[28] ———, “Interval exchanges that do not occur in free groups”, Groups Geom. Dyn.

6 (2012), no. 4, p. 755-763.
[29] A. G. O’Farrell & I. Short, Reversibility in dynamics and group theory, London

Mathematical Society Lecture Note Series, vol. 416, Cambridge University Press,
2015, xii+281 pages.

[30] O. Paris-Romaskevich, “Notes on Tilling billiards : Some thoughts and questions”,
http://pa-ro.net/doc/Tree-conjecture.pdf, 2019.

[31] C.-H. Sah, “Scissors congruences of the interval”, preprint, 1981.
[32] J. Schreier & S. M. Ulam, “Eine Bemerkung über die Gruppe der topologisehen

Abbildungen der Kreislinie auf sich selbst”, Stud. Math. 5 (1934), p. 155-159.
[33] A. Skripchenko & S. Troubetzkoy, “On the Hausdorff dimension of minimal

interval exchange transformations with flips”, J. Lond. Math. Soc. 97 (2018), no. 2,
p. 149-169.

[34] S. M. Ulam & J. von Neuman, “On the group of homeomorphisms of the surface
of a sphere”, Bull. Am. Math. Soc. 53 (1947), p. 506.

[35] W. A. Veech, “Gauss measures for transformations on the space of interval ex-
change maps”, Ann. Math. 115 (1982), no. 1, p. 201-242.

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1907.01808
https://arxiv.org/abs/1907.01808
https://arxiv.org/abs/1804.00181
https://arxiv.org/abs/1804.00181
https://arxiv.org/abs/2009.07595
https://arxiv.org/abs/2009.07595
https://arxiv.org/abs/2002.12851
https://arxiv.org/abs/2002.12851
http://pa-ro.net/doc/Tree-conjecture.pdf


UNIFORM PERFECTNESS OF IET AND FIET 1501

[36] M. Viana, “Ergodic theory of interval exchange maps”, Rev. Mat. Complut. 19
(2006), no. 1, p. 7-100.

[37] Y. Vorobets, “On the commutator group of the group of interval exchange trans-
formations”, Tr. Mat. Inst. Steklova 297 (2017), p. 313-325.

Manuscrit reçu le 27 octobre 2020,
accepté le 5 mars 2021.

Nancy GUELMAN
IMERL, Facultad de Ingeniería
Universidad de la República
C.C. 30, Montevideo (Uruguay)
nguelman@fing.edu.uy
Isabelle LIOUSSE
Univ. Lille, CNRS
UMR 8524 - Laboratoire Paul Painlevé
F-59000 Lille (France)
isabelle.liousse@univ-lille.fr

TOME 72 (2022), FASCICULE 4

mailto:nguelman@fing.edu.uy
mailto:isabelle.liousse@univ-lille.fr

	1. Introduction
	Acknowledgements

	2. Preliminaries
	2.1. Restricted rotations and periodic IET
	2.2. Basic properties on commutators
	2.3. Periodic IET are commutators

	3. Generalities on commutators in G and G
	3.1. Commutators in G
	3.1.1. Fundamental examples
	3.1.2. Decomposition in involutions and restricted rotations

	3.2. Commutators in G

	4. The adapted Dennis and Vaserstein argument
	4.1. The original criterion
	4.2. The iterated version

	5. The group G is uniformly perfect
	5.1. Background material
	5.2. Proof of Theorem 1.3

	6. Conditions for uniform perfectness of G
	6.1. The commutator length is bounded when fixing the number of discontinuity points
	6.2. The commutator length is bounded when prescribing the arithmetic
	6.2.1. Background material
	6.2.2. Proof of Theorem 6.5


	References

