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BILINEAR LOCAL CONTROLLABILITY TO THE
TRAJECTORIES OF THE FOKKER–PLANCK
EQUATION WITH A LOCALIZED CONTROL

by Michel DUPREZ & Pierre LISSY (*)

Abstract. — This work is devoted to the control of the Fokker–Planck equa-
tion, posed on a smooth bounded domain of Rd, with a localized drift force.
We prove that this equation is locally controllable to regular nonzero trajecto-
ries. Moreover, under some conditions, we explain how to reduce the number of
controls around the reference control. The results are obtained thanks to a stan-
dard linearization method and the fictitious control method. The main novelties
are twofold. First, the algebraic solvability is performed and used directly on the
adjoint problem. We then prove a new Carleman inequality for the heat equation
with a space-time varying first-order term: the right-hand side is the gradient of the
solution localized on an open subset. We finally give an example of regular trajec-
tory around which the Fokker–Planck equation is not controllable with a reduced
number of controls, to highlight that our conditions are relevant.
Résumé. — Ce travail est consacré au contrôle de l’équation de Fokker–Planck,

posée sur un domaine borné régulier de Rd, avec un terme de dérive localisé. Nous
démontrons que cette équation est localement contrôlable aux trajectoires régu-
lières non nulles. De plus, sous certaines conditions, nous expliquons comment
réduire le nombre de contrôles autour du contrôle de référence. Les résultats sont
obtenus à l’aide d’une méthode de linéarisation standard et la méthode de contrôle
fictif. Les principales nouveautés sont les suivantes. Premièrement, la résolubilité
algébrique est effectuée et utilisée directement sur le problème adjoint. Deuxiè-
mement, nous démontrons une nouvelle inégalité de Carleman pour l’équation de
la chaleur avec terme du premier ordre dépendant du temps et de l’espace : le
membre de droite est le gradient de la solution localisée sur un sous-ouvert. Pour
finir, nous donnons un exemple de trajectoire régulière autour de laquelle l’équation
de Fokker–Planck n’est pas contrôlable ave un nombre réduit de contrôles, pour
souligner que nos conditions sont pertinentes.
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1. Introduction and main results

1.1. Introduction

Let T > 0 and let Ω be a bounded domain in Rd (d ∈ N∗), regular
enough (for example of class C∞). Denote by QT := (0, T )× Ω and ΣT :=
(0, T )× ∂Ω. We consider the following system

(1.1)


∂ty = ∆y + div(uy) in QT ,
y = 0 on ΣT ,

y(0, · ) = y0 in Ω,

where y0 ∈ L2(Ω) is the initial data and u = (u1, . . . , ud) ∈ L∞((0, T )×Ω)d
is the control.
It is well-known (see for instance [22, Theorem and Proposition 3.1]) that

for every initial data y0 ∈ L2(Ω) and every control u ∈ L∞((0, T ) × Ω)d,
there exists a unique solution y to System (1.1) in the spaceW (0, T ), where

W (0, T ) := L2((0, T ), H1
0 (Ω)) ∩H1((0, T ), H−1(Ω)) ↪→ C0([0, T ];L2(Ω)).

Equation (1.1), introduced in [30], is called the Fokker–Planck equation.
When the Fokker–Planck equation is posed on the whole space Rd, it is
strongly related to the stochastic differential equation (SDE)

(1.2)
{

dXt =
∑d
i=1 ui(Xt)dt+ dWt in (0, T )× Rd,

X(0, · ) = X0 in Rd,

whereWt is the standard multi-dimensional Brownian motion starting from
0. System (1.2) describes the movement of a particle of negligible mass,
with constant and isotropic diffusion, under the action of a force field u =
(u1, . . . , ud).

Under some regularity conditions on the drift term U , it is well-known
that, by the Itô Lemma, the probability density function p associated
to (1.2) verifies

(1.3)
{

∂tp = 1
2∆p+ div(up) in (0, T )× Rd,

p(0, · ) = p0 in Rd,

where p0 is some initial probability density function (see e.g. [41, Sec-
tion 5.3]). By definition of a probability measure, we have p0 > 0 a.e.
and

∫
Rd p

0 = 1. Then, we can easily prove the preservation of these proper-
ties during the time: any solution p of System (1.3) verifies also p(t, · ) > 0
a.e. and

∫
Rd p(t, · ) = 1, for any t ∈ [0, T ] and hence remains a probabil-

ity measure. We refer to [42] for more explanations on the Fokker–Planck
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equation, notably in the case of nonlinear drift terms or non-constant and
anisotropic diffusion.
However, in the case where we impose Dirichlet boundary conditions as

in (1.1), the derivation of the Fokker–Planck equation from a SDE is more
complicated: the Brownian motion has to be replaced by an “absorbed” or
“killed” Brownian motion, see e.g. [10, p. 31–60]. Moreover, the total mass
of the initial condition is not conserved anymore, meaning that the proba-
bility of remaining inside Ω decreases in time, and the solution to (1.1) is
not a probability density function anymore. We refer to [22, Section 2] for
a discussion on the relevance of Dirichlet boundary conditions in this con-
text. Neumann boundary conditions (that would restore the conservation
of mass) are beyond the scope of the present article (see the last item of
Remark 2.7 for more explanations).
The controllability properties of the scalar linear heat equation in the

case of a distributed control on an open subset and Dirichlet boundary
condition are now well-understood (see notably [32] and [23]). The bilin-
ear controllability seems to have been less explored. The equation (1.1)
has been studied in [7], in the whole space and with controls localized
everywhere in space and time. Concerning bilinear control when the bi-
linear term div(uy) is replaced by uy with u ∈ L∞((0, T ) × Ω), we refer
to [8, 9, 27, 28, 26, 29, 34, 40, 45, 46].
Optimal bilinear control of parabolic equations has previously been stud-

ied. A first result was proved in [1], where a close fourth-order in time
model is investigated, with controls depending only on time. This result
has been extended to second-order parabolic equations firstly in [4] in the
one-dimensional case, then in [5] in the multi-dimensional case, still for
time-varying controls. For equation (1.1) (in a slightly more general form),
the case of space and time-varying controls is treated in [22]. Notably, for a
drift term that is affine in the control, the authors prove the existence of op-
timal controls for general cost functionals, and derive first-order necessary
optimality conditions using an adjoint state. The controllability of the con-
tinuity equation, i.e. System (1.1) without diffusion, has been investigated
in [18, 19].

The paper is organized as follows: in Section 1.2, we present the main
results of the article (Theorem 1.1, resp. Theorem 1.3, which provides a
result of local controllability to the trajectories with d controls, resp. a re-
duced number of controls around the reference control) and some remarks.
Section 2 is devoted to studying a linearized version of (1.1). In Section 2.1,
we prove a new Carleman estimate (Proposition 2.6) for solutions of the
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1624 Michel DUPREZ & Pierre LISSY

linear backward heat equation with first-order terms. The main novelty
is that the local observation term is the gradient of the solution of the
adjoint problem (2.4), which has already been proved in [16] for constant
coefficients. Moreover, we can put as many derivatives as we want on the
left-hand side of our Carleman estimate, which will be needed for the rest
of the proof. In Section 2.2, we explain how to remove some components
of the gradient in the Carleman inequality. To demonstrate that, we use
an argument of “algebraic solvability” (as introduced in [11] in the context
of the stabilization of ODEs and in [15] for the study of coupled systems
of PDEs), based on ideas developed by Gromov in [24, Section 2.3.8]. This
procedure has already been used successfully in [2, 16, 17, 14, 33, 43, 44].
The main novelty compared to the existing literature is that the algebraic
solvability is performed directly on the dual problem. Moreover, we can get
rid the high order derivatives of the right in order to obtain the final Car-
leman estimate (2.35). In Section 2.3, we use some arguments coming from
optimal control theory in order to derive from our observability inequality
the existence of regular enough controls, with a special form, in appropri-
ate weighted spaces. In Section 3, we go back to the nonlinear problem by
using a standard strategy coming from [37] together with some adapted
inverse mapping Theorem. To finish, in Section 4, we give an example of
a trajectory around which the local controllability does not hold with a
reduced number of controls.

1.2. Main results

Let (y, u) be a trajectory of (1.1), i.e. verifying

(1.4)


∂ty = ∆y + div(uy) in QT ,
y = 0 on ΣT ,

y(0, · ) = y0 ∈ L2(Ω) \ {0} in Ω.

1.2.1. Controls with d components

We first state a result of local controllability to the trajectories for Sys-
tem (1.1) with a control containing d components:

Theorem 1.1. — Let ω be any nonempty open subset of Ω. Assume
that the trajectory (y, u) with u = (u1, . . . , ud) of System (1.4) is regular
enough (for example of class C∞ on (0, T ) × Ω). Then, System (1.1) is
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locally controllable with localized controls, in the following sense: for every
ε > 0 and every T > 0, there exists η > 0 such that for any y0 ∈ L2(Ω)
verifying

(1.5) ‖y0 − y0‖L2(Ω) 6 η,

there exists a trajectory (y, u) to System (1.1) such that

y(T ) = y(T ),

u = u+ v for some v ∈ L∞((0, T )× Ω)d,
Supp(v) ⊂ (0, T )× ω,

‖v‖L∞((0,T )×Ω)d 6 ε,

‖y − y‖W (0,T ) 6 ε.

Remark 1.2.

• The regularity assumptions on (y, u) can be improved, notably it
is enough that the reference trajectory is Cr for some r ∈ N∗ large
enough, on an open subset of (0, T )× ω.

• If y0 = 0, the only solution to (1.1) is y ≡ 0, whatever u is, so that
the only reachable state at time T is 0. As a consequence, η > 0
has notably to be chosen small enough such that y0 6= 0.

• From the results given in [6], as soon as y0 > 0, then any trajectory
to System (1.1) remains non-negative (see also [22]). This fact differs
from the usual linear heat equation with internal control (see [38]).

• We can also remark that we do not assume any relation between
the control domain ω and the support of ū. In particular, they can
be disjoint.

1.2.2. Controllability acting through a control operator

In this section, we give a result of local controllability to the trajectories
to System (1.4) with a control acting through a control operator B ∈
Md,m(R) with m ∈ N∗ such that m 6 d.
We first introduce some notations. For j ∈ {1, . . . ,m}, we call B∗j ∈ Rd

the j-th line of B∗, and

(B∗j · ∇) : ψ ∈ C∞(Rd,R) 7→ B∗j (∇ψ) ∈ C∞(Rd,R).

TOME 72 (2022), FASCICULE 4



1626 Michel DUPREZ & Pierre LISSY

For (α1, . . . αm) ∈ Nm, we introduce the following operator:

(B∗ · ∇)α1,...αm : ψ ∈ C∞(Rd,R) 7→ (B∗1 · ∇) . . . (B∗1 · ∇)︸ ︷︷ ︸
α1 times

. . .

(B∗m · ∇) . . . (B∗m · ∇)︸ ︷︷ ︸
αm times

ψ ∈ C∞(Rd,R),

and the family of Rd given by

M(ū)(t, x) = {B∗1 , . . . , B∗m}∪{((B∗ ·∇)αūi(t, x))i∈{1,...,d}, α ∈ Nm, α 6= 0}.

We have the following controllability result.

Theorem 1.3. — Let m ∈ N∗ (with possibly m < d). Under the hy-
pothesis of Theorem 1.1, assume that there exists some (t0, x0) ∈ (0, T )×ω
such that

(1.6) rank(M(u)(t0, x0)) = d.

Then, System (1.1) is locally controllable with localized controls, in the
following sense: for every ε > 0 and every T > 0, there exists η > 0 such
that for any y0 ∈ L2(Ω) verifying

‖y0 − y0‖L2(Ω) 6 η,

there exists a trajectory (y, u) to System (1.1) such that

y(T ) = y(T ),
u = u+Bv for some v ∈ L∞((0, T )× Ω)m,

Supp(v) ⊂ (0, T )× ω,
‖v‖L∞((0,T )×Ω)m 6 ε,

‖y − y‖W (0,T ) 6 ε.

Remark 1.4.

• Remark that if B = Id (i.e. we control every component of the
gradient of u), condition (1.6) is automatically verified for q = 0,
whatever u is. Hence Theorem 1.3 contains the result given in The-
orem 1.1. Thus we will only give a proof of Theorem 1.3.

• In Section 4, we give an example of trajectory which does not satisfy
condition (1.6) and for which the local controllability to the trajec-
tories does not hold. It highlights that Condition (1.6) is relevant.
Even if the authors think that Condition (1.6) is not optimal, find-
ing a necessary and sufficient condition remains an open problem.
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• We can also remark that condition (1.6) is local on ω. Notably,
contrary to Theorem 1.1, if m < d, we necessarily have that the
control domain ω and the support of ū intersect.

Example 1.5. — We give an explicit example, to explain better condi-
tion (1.6). Let us assume that we want to control only the m(< n) first
components of the gradient, i.e.

B =



1 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1
0 . . . . . . 0
...

...
0 . . . . . . 0


∈Mn,m(R).

For α = (α1, . . . αm) ∈ Nm, we have

(B∗ · ∇)α1,...αm(ψ) = ∂α1
x1
. . . ∂αmxm (ψ).

We deduce that

M(u)(t, x) = {e1, . . . , em}
∪ {(∂α1

x1
. . . ∂αmxm ūi(t, x))i∈{1,...,d}, α ∈ Nm, α 6= 0},

where the vector ei is the i-th element of the canonical basis of Rd.
We observe that there exists (t0, x0) ∈ (0, T ) × ω such that the rank of

the family M(u)(t0, x0) is equal to d if and only if there exists (t0, x0) ∈
(0, T )× ω such that the rank of the family

{(∂α1
x1
. . . ∂αmxm ūi(t, x))i∈{m+1,...,d}, α ∈ Nm, α 6= 0}

is equal to d−m.

2. Null controllability of the linearized system

In what follows, we always assume that the trajectory (y, u) of (1.4) ver-
ifies the hypothesis of Theorem 1.1. Consider the following linear parabolic
system

(2.1)


∂ty = ∆y + div(uy) + div(θu) in QT ,
y = 0 on ΣT ,

y(0, · ) = y0 in Ω,

TOME 72 (2022), FASCICULE 4



1628 Michel DUPREZ & Pierre LISSY

where y0 ∈ L2(Ω) and θ ∈ C∞(Ω) is such that

(2.2)


Supp(θ) ⊆ ω,

θ ≡ 1 in ω0,

0 6 θ 6 1 in Ω,
for some non-empty open subset ω0 which is strongly included in ω. The
goal of this section is to prove the null controllability of System (2.1), with
less controls than equations and regular enough controls in a special form.

Remark 2.1. — Notice that the null controllability of (2.1) is equivalent
to the null controllability of the “real” linearized version of (1.1) around
(y, u) given by

(2.3)


∂ty = ∆y + div(uy) + div(yũ) in QT ,
y = 0 on ΣT ,

y(0, · ) = y0 in Ω.

Indeed, since the solution of (y, u) of (1.4) is in C∞((0, T )×Ω), as soon as
y0 6= 0, on (0, T )×ω, y−1({0}) is a closed subset of (0, T )×ω, which cannot
be (0, T )×ω since it has a finite d-dimensional Hausdorff measure in Rd+1

(see [25]). Hence, (0, T ) × ω \ y−1({0}) contains a nonzero open subset,
there exists some subset (T1, T2)× ω̃ of (0, T )×ω such that |y| > C > 0 on
(T1, T2) × ω̃, that we can assume to be exactly (0, T ) × ω without loss of
generality. Hence, for any i ∈ {1, . . . , d}, one can solve (in ũi) the equation
θui = yũi by posing

ũi = θui
y
.

Remark that ũi enjoys the same regularity properties as ui.

2.1. Carleman estimates

Let us consider the following adjoint system associated to System (2.1)

(2.4)


−∂tψ = ∆ψ + u · ∇ψ in QT ,

ψ = 0 on ΣT ,

ψ(T, · ) = ψ0 in Ω.

First of all, we will introduce some notations. We denote by | · | the
euclidean norm on RM , whatever M ∈ N∗ is. For s, λ > 0 and p > 1, let us
define the two following functions:

(2.5) α(t, x) := exp((2p+ 2)λ‖η0‖∞)− exp[λ(2p‖η0‖∞ + η0(x))]
tp(T − t)p

ANNALES DE L’INSTITUT FOURIER



CONTROL OF THE FOKKER–PLANCK EQUATION 1629

and

(2.6) ξ(t, x) := exp[λ(2p‖η0‖∞ + η0(x))]
tp(T − t)p .

Here, η0 ∈ C∞(Ω) is a function satisfying

|∇η0| > κ in Ω\ω1, η0 > 0 in Ω and η0 = 0 on ∂Ω,

with κ > 0 and ω1 some open subset verifying ω1 ⊂⊂ ω0. The proof of the
existence of such a function η0 can be found in [23, Lemma 1.1, Chapter 1]
(see also [12, Lemma 2.68, Chapter 2]). We will use the two notations

(2.7) α∗(t) := max
x∈Ω

α(t, x) and ξ∗(t) := min
x∈Ω

ξ(t, x),

for all t ∈ (0, T ). Notice that these maximum and minimum are reached at
the boundary ∂Ω. For s, λ > 0, let us define

(2.8) I(s, λ;u) := s3λ4
∫∫

QT

e−2sαξ3u2 + sλ2
∫∫

QT

e−2sαξ|∇u|2.

Let us now give some useful auxiliary results that we will need in our
proofs. The first one is a Carleman estimate which holds for solutions of
the heat equation with non-homogeneous Neumann boundary conditions:

Lemma 2.2. — There exists a constant C > 0 such that for any u0 ∈
L2(Ω), f1 ∈ L2(QT ) and f2 ∈ L2(ΣT ), the solution to the system

−∂tu−∆u = f1 in QT ,
∂u

∂n
= f2 on ΣT ,

u(T, · ) = u0 in Ω

satisfies

I(s, λ;u) 6 C
(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3u2 + sλ

∫∫
ΣT

e−2sα∗ξ∗f
2
2

+
∫∫

QT

e−2sαf2
1

)
,

for all λ > C and s > C(T p + T 2p).

Lemma 2.2 is proved in [21, Theorem 1] in the case p = 1. However,
following the steps of the proof given in [21], one can prove exactly the
same inequality for any p ∈ N∗.
From Lemma 2.2, one can deduce the following result:

TOME 72 (2022), FASCICULE 4



1630 Michel DUPREZ & Pierre LISSY

Lemma 2.3. — Let f ∈ L2(ΣT ), G = (g1, . . . gd) ∈ L∞(QT )d and h ∈
L2(QT ). Then, there exists a constant C > 0 such that for every ϕT ∈
L2(Ω), the solution ϕ to the system

−∂tϕ = ∆ϕ+G · ∇ϕ+ h in QT ,
∂ϕ

∂n
= f on ΣT ,

ϕ(T, · ) = ϕT in Ω

satisfies

I(s, λ;ϕ) 6 C
(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3ϕ2 + sλ

∫∫
ΣT

e−2sα∗ξ∗f
2

+
∫∫

QT

e−2sαh2
)
,

for every λ > C and s > s0 = C(T p + T 2p).

The proof of Lemma 2.3 is standard and is left to the reader (one just has
to apply Lemma 2.2 and absorb the remaining lower-order terms thanks to
the left-hand side).

We will also need the following estimates.

Lemma 2.4. — Let r ∈ R. Then, there exists C := C(r, ω1,Ω) > 0 such
that, for every T > 0 and every u ∈ L2((0, T ), H1(Ω)),

sr+2λr+2
∫∫

QT

e−2sαξr+2u2

6 C

(
srλr

∫∫
QT

e−2sαξr|∇u|2 + sr+2λr+2
∫∫

(0,T )×ω1

e−2sαξr+2u2

)
,

for every λ > C and s > C(T 2p).

The proof of this lemma can be found for example in [13, Lemma 3] in
the case p = 9. However, following the steps of the proof given in [13], one
can prove exactly the same inequality for any p ∈ N∗.

To deal with more regular solutions, one needs the following lemma.

Lemma 2.5. — Let z0 ∈ H1
0 (Ω), G ∈ C∞(QT )d and f ∈ L2(QT )m. Let

us denote by R := −∆−G · ∇ and consider the solution z to the system
∂tz = ∆z +G · ∇z + f in QT ,
z = 0 on ΣT ,

z(0, · ) = z0 in Ω.
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Let n ∈ N. Let us assume that z0 ∈ H2n+1(Ω), f ∈ L2((0, T ), H2n(Ω)) ∩
Hn((0, T ), L2(Ω)) and satisfy the following compatibility conditions:

(2.9)



g0 := z0 ∈ H1
0 (Ω),

g1 := f(0, · )−Rg0 ∈ H1
0 (Ω),

...

gn := ∂n−1
t f(0, · )−Rgn−1 ∈ H1

0 (Ω).

Then z ∈ L2((0, T ), H2n+2(Ω)) ∩ Hn+1((0, T ), L2(Ω)) and we have the
estimate

‖z‖L2((0,T ),H2n+2(Ω))∩Hn+1((0,T ),L2(Ω))

6 C(‖f‖L2((0,T ),H2n(Ω))∩Hn((0,T ),L2(Ω)) + ‖z0‖H2n+1(Ω)).

It is a classical result that can be easily deduced for example from [20,
Theorem 6, p. 365].

We are now able to prove the following crucial inequality:

Proposition 2.6. — Let µ > 0 and N ∈ N with N > 3. Then, there
exists p > 2 and C > 0 such that for every ψ0 ∈ L2(Ω), the corresponding
solution ψ to System (2.4) satisfies

(2.10) λ2
∫∫

QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2 + · · ·

+ λ2N+2
∫∫

QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2

+ λ2N+2
∫∫

QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2

6 Cλ2N+2
∫∫

(0,T )×ω0

e−2sα−2µsα∗ (sξ)2N+1 |∇ψ|2

for every λ > C and s > s0 = C(T p + T 2p).

Such a Carleman inequality seems new to the authors in the context
of non-constant coefficients (proved in [16] in the case of constant coeffi-
cients). The main improvement comes from the fact that the observation
is a gradient of the solution ψ on ω0 (and not the solution itself). We are
also able to introduce as many derivatives of ψ as we want in the left-hand
side, as soon as ui is regular enough.
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Remark 2.7.
• Notice that the proof proposed here relies on the fact that the lower-
order terms in equation (2.4) are of first order, and would fail in the
presence of lower-order terms of order 0. Indeed, in the first step of
our proof (inequality (2.13)), some terms that cannot be absorbed
will appear.

• Notice that inequality (2.10) automatically implies that any solu-
tion ψ of (2.4) lives in high order weighted Sobolev spaces. This is
not a surprise since we know that away from the final time t = T ,
any solution of (2.4) is regular.

• Remark that the proof provided here would fail for Neumann bound-
ary conditions, since the argument in our last step, based on a
Poincaré-like inequality, is not true anymore. It is not clear to the
authors how one can adapt it in this case.

Proof of Proposition 2.6. — The proof is inspired by [13] and is quite
similar to [16]. Let µ > 0. In all what follows, C > 0 is a constant that does
not depend on s or λ (but that might depend on the other parameters,
notably p, N , η, T , µ) and that might change from inequality to inequality.
We assume without loss of generality that N is odd (the case N even can
be treated similarly).
Let ψ the solution to System (2.4). We introduce the following auxiliary

functions:

(2.11) ρ∗1 := e−µsα
∗
, ψ1 := ρ∗1ψ.

Then ψ1 is solution of

(2.12)


−∂tψ1 = ∆ψ1 + u · ∇ψ1 − ∂tρ∗1ψ in QT ,

ψ1 = 0 on ΣT ,
ψ1(T, · ) = 0 in Ω.

We remark that φ := ∇Nψ1 (the operator ∇ applied N times, or in other
words, all the derivatives of order N of ψ1, ordered for example lexico-
graphically) satisfies the system

−∂tφ = ∆φ+
∑N
i=1Gi · ∇iψ1 + u · ∇φ− ∂tρ∗1∇Nψ in QT ,

∂φ
∂n = ∂φ

∂n on ΣT ,
φ(T, · ) = 0 in Ω,

where, for any i ∈ {1, . . . , N}, Gi is an essentially bounded tensor of appro-
priate size, whose coefficients are depending only on ui and its derivatives
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in space up to the order i. Applying Lemma 2.3 to the different components
of φ, we obtain the following estimate

(2.13) I(s, λ;φ) 6 C

sλ
∫∫

ΣT
e−2sα∗ξ∗

∣∣∣∣∂φ∂n
∣∣∣∣2︸ ︷︷ ︸

(I)

+
∫∫

QT

e−2sα|∂tρ∗1∇Nψ|2︸ ︷︷ ︸
(II)

+
∫∫

QT

e−2sα
N∑
i=1
|∇iψ1|2︸ ︷︷ ︸

(III)

+ s3λ4
∫∫

(0,T )×ω1

e−2sαξ3|φ|2

.

The rest of the proof is divided into four steps:

• In a first step, we will estimate the boundary term (I) by some
global interior term involving ψ1, which will be absorbed later on
(in the last step). We will also absorb the term (II) under some
conditions on p.

• In a second step, we will estimate the term (III) by some local terms
involving ∇ψ1 and its derivatives on ω1, and get rid of the third
term of the right-hand side.

• In a third step, we will estimate the high-order local terms created
at the previous step by some local terms involving only ∇ψ1 on ω0.

• In a last step, we will use some Poincaré-like inequality in order to
recover the variable ψ in the left-hand side and bound the global
interior term of the right-hand side involving ψ1 by an interior term
involving ∇ψ. We will conclude by coming back to the original
variable ψ, in order to establish (2.10).

Step 1. — Let θ̃ ∈ C2(Ω) a function satisfying

∂θ̃

∂n
= θ̃ = 1 on ∂Ω.

An integration by parts of the boundary term leads to

sλ

∫ T

0
e−2sα∗ξ∗

∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2 = sλ

∫ T

0
e−2sα∗ξ∗

∫
∂Ω

∂φ

∂n
∇φ · ∇θ̃

= sλ

∫ T

0
e−2sα∗ξ∗

∫
Ω

∆φ∇φ · ∇θ̃ + sλ

∫ T

0
e−2sα∗ξ∗

∫
Ω
∇(∇θ̃ · ∇φ) · ∇φ.
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Hence

sλ

∫ T

0
e−2sα∗ξ∗

∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2 6 Cλ∫ T

0
e−2sα∗sξ∗‖ψ1‖HN+2(Ω)‖ψ1‖HN+1(Ω).

Using the interpolation inequality

‖ψ1‖HN+2(Ω) 6 C‖ψ1‖1/2HN+1(Ω)‖ψ1‖1/2HN+3(Ω)

and Young’s inequality ab 6 aq

q + bq
′

q′ ( 1
q + 1

q′ = 1) for a, b > 0 and q = 4,
we deduce that for any c ∈ R, we have

(2.14) λ

∫ T

0
e−2sα∗sξ∗

∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2

6 Cλ
∫ T

0
e−2sα∗(sξ∗)c‖ψ1‖1/2HN+3(Ω)(sξ∗)

(1−c)‖ψ1‖3/2HN+1(Ω)

6 Cλ
∫ T

0
e−2(1+µ)sα∗(sξ∗)4c‖ψ‖2HN+3(Ω)

+ Cλ

∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 ‖ψ‖2HN+1(Ω).

Consider the function ψ2 := ρ∗2ψ, where

(2.15) ρ∗2 := (sξ∗)
2(1−c)

3 e−(1+µ)sα∗ .

The function ψ2 is solution to the system
−∂tψ2 = ∆ψ2 + u · ∇ψ2 − ∂t(ρ∗2)ψ in QT ,

ψ2 = 0 on ΣT ,
ψ2(T, · ) = 0 in Ω.

Using Lemma 2.5 for ψ2 (remark that the compatibility conditions (2.9) are
verified, since ψ2(T, · ) = 0 and ∂jt ρ∗2(T, · ) = 0 for any j ∈ N), we deduce
that

(2.16) ‖ψ2‖L2((0,T ),H2n+2(Ω))∩Hn+1((0,T ),L2(Ω))

6 C‖∂t(ρ∗2)ψ‖L2((0,T ),H2n(Ω))∩Hn((0,T ),L2(Ω)),

for n = 1, 2, . . . , (N + 1)/2. The definitions of ξ∗ and α∗ given in (2.7), the
definition of ρ∗2 given in (2.15) lead to

(2.17) |∂kt ρ∗2| 6 C(sξ∗)
2(1−c)

3 +k+ k
p e−s(1+µ)α∗

for k ∈ {1, . . . , N+3
2 } (we recall that C can depend on µ). Remark that for

any k 6 l, we have

(2.18) |∂kt ρ∗2| 6 C|∂ltρ∗2|.
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Combining (2.16) for n = (N − 1)/2, (2.17), (2.18) and the equations
satisfied by ψ and ψ1, we obtain

(2.19) λ

∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 ‖ψ‖2HN+1(Ω)

6 Cλ

(∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 +N+1+N+1

p ‖ψ‖2L2(Ω)

+
∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 +2+ 2

p ‖ψ‖2HN−1(Ω)

)
.

In the right-hand side of (2.19), we would like to estimate the term∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 +2+ 2

p ‖ψ‖2HN−1(Ω).

This can be done using exactly the same process by introducing some
appropriate auxiliary weight that multiplies ψ or ψ2 as in (2.15), using
Lemma 2.5 successively for n = (N − 1)/2, . . . , 0, (2.17) and (2.18). At the
end, by gathering all the inequalities, we obtain

(2.20) λ

∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 ‖ψ‖2HN+1(Ω)

6 Cλ
∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 +N+1+N+1

p ‖ψ‖2L2(Ω).

Applying the same technique also leads to

(2.21) λ

∫ T

0
e−2(1+µ)sα∗(sξ∗)4c‖ψ‖2HN+3(Ω)

6 Cλ
∫ T

0
e−2(1+µ)sα∗(sξ∗)4c+N+3+N+3

p ‖ψ‖2L2(Ω).

From (2.14), (2.20) and (2.21), we deduce that

(2.22) λ

∫ T

0
e−2(1+µ)sα∗sξ∗

∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2

6 Cλ

(∫ T

0
e−2(1+µ)sα∗(sξ∗)

4(1−c)
3 +N+1+N+1

p ‖ψ‖2L2(Ω)

+
∫ T

0
e−2(1+µ)sα∗(sξ∗)4c+N+3+N+3

p ‖ψ‖2L2(Ω)

)
.
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Since we would like the powers in the right-hand side to be equal, it is
natural to impose that

4c+N + 3 + N + 3
p

= 4(1− c)
3 +N + 1 + N + 1

p
,

i.e.

(2.23) c = −3− p
8p .

Thus, using (2.22) and (2.23), we deduce that

(2.24) λ

∫ T

0
e−2sα∗sξ∗

∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2

6 Cλ
∫ T

0
e−2(1+µ)sα∗(sξ∗)

2N(p+1)+5p+3
2p ‖ψ‖2L2(Ω).

From (2.13), (2.24), the first line of (2.17) and the definition of ψ1 given
in (2.11), we already deduce that

I(s, λ;φ) 6 C
(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2

+ λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2

+
∫∫

QT

e−2sα
N∑
i=1
|∇iψ1|2 +

∫∫
QT

e−2sα(sξ∗)2+ 2
p |∇Nψ1|2

)
.

By definition of ξ∗ given in (2.7), it is clear that ξ∗ 6 ξ. Hence, taking p
large enough such that 2 + 2

p 6 3 (i.e. p > 2), s, λ large enough and using
the definition of I(s, λ;φ) given in (2.8), we deduce that we can absorb the
last term of the right-hand-side, so that we obtain

(2.25) I(s, λ;φ) 6 C
(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2

+ λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2

+
∫∫

QT

e−2sα
N∑
i=1
|∇iψ1|2

)
.
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Step 2. — We apply Lemma 2.4 successively with

(u, r) = (∇N−1ψ1, 3), . . . , (u, r) = (∇ψ1, 2N − 1).

We obtain a sequence of inequalities of the form

s5λ6
∫∫

QT

e−2sαξ5|∇N−1ψ1|2

6 C

(
s3λ4

∫∫
QT

e−2sαξ3|∇Nψ1|2

+s5λ6
∫∫

(0,T )×ω1

e−2sαξ5|∇N−1ψ1|2
)
,

...

s2N+1λ2N+2
∫∫

QT

e−2sαξ2N+1|∇ψ1|2

6 C

(
s2N−1λ2N

∫∫
QT

e−2sαξ2N−1|∇2ψ1|2

+s2N+1λ2N+2
∫∫

(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2
)
.

We deduce by starting from the last inequality and using in cascade the
other ones that

(2.26) s5λ6
∫∫

QT

e−2sαξ5|∇N−1ψ1|2

+ · · ·+ s2N+1λ2N+2
∫∫

QT

e−2sαξ2N+1|∇ψ1|2

6 C

(
s3λ4

∫∫
QT

e−2sαξ3|∇Nψ1|2 + s5λ6
∫∫

(0,T )×ω1

e−2sαξ5|∇N−1ψ1|2

+ · · ·+ s2N+1λ2N+2
∫∫

(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2
)
.

Combining (2.25), (2.26) and using the definition of I(s, λ, φ) given in
(2.8), we deduce that we can absorb the first term on the right-hand side
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of (2.26) and obtain

sλ2
∫∫

QT

e−2sαξ|∇N+1ψ1|2 + · · ·+s2N+1λ2N+2
∫∫

QT

e−2sαξ2N+1|∇ψ1|2

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2 +
∫∫

QT

e−2sα
N−1∑
i=1
|∇iψ1|2

+ s3λ4
∫∫

(0,T )×ω1

e−2sαξ3|∇Nψ1|2 + s5λ6
∫∫

(0,T )×ω1

e−2sαξ5|∇Nψ1|2

+ · · ·+ s2N+1λ2N+2
∫∫

(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2
)
.

Absorbing the second term of the right-hand side, we deduce that for s, λ
large enough, we have

(2.27) sλ2
∫∫

QT

e−2sαξ|∇N+1ψ1|2 + · · ·

+ s2N+1λ2N+2
∫∫

QT

e−2sαξ2N+1|∇ψ1|2

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2 + s3λ4
∫∫

(0,T )×ω1

e−2sαξ3|∇Nψ1|2

+ · · ·+ s2N+1λ2N
∫∫

(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2
)
.

Step 3. — Now, we consider some open subset ω2 such that ω1 ⊂⊂
ω2 ⊂⊂ ω0. We consider some function θ̃ ∈ C∞(Ω,R) such that:

• Supp(θ̃) ⊂ ω2,
• θ̃ = 1 on ω1,
• θ̃ ∈ [0, 1].

Some integrations by parts give

s3λ4
∫∫

(0,T )×ω1

e−2sαξ3|∇Nψ1|2

6 s3λ4
∫∫

(0,T )×ω2

θe−2sαξ3|∇Nψ1|2

6 Cs3λ4
∫∫

(0,T )×ω2

(
|∇(θe−2sαξ3)|.|∇Nψ1|.|∇N−1ψ1|

+|θe−2sαξ3|.|∇N+1ψ1|.|∇N−1ψ1|
)
.
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From the definition of ξ and α given in (2.5) and (2.6), we deduce that

(2.28) |∇(θe−2sαξ3)| 6 Csλe−2sαξ4.

Combining this estimate with Young’s inequality, we obtain that for any
ε > 0, there exists Cε > 0 such that for any s and λ large enough, we have

(2.29) s3λ4
∫∫

(0,T )×ω1

e−2sαξ3|∇Nψ1|2

6 C

(
εs3λ4

∫∫
(0,T )×ω2

e−2sαξ3|∇Nψ1|2

+ εsλ2
∫∫

(0,T )×ω2

e−2sαξ|∇N+1ψ1|2

+ Cεs
5λ6

∫∫
(0,T )×ω2

e−2sαξ5|∇N−1ψ1|2
)
.

Combining (2.27) and (2.29), we can absorb the local terms in |∇N+1ψ1|2
and |∇Nψ1|2 to deduce

sλ2
∫∫

QT

e−2sαξ|∇N+1ψ1|2 + · · ·+s2N+1λ2N+2
∫∫

QT

e−2sαξ2N+1|∇ψ1|2

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2

+ s5λ6
∫∫

(0,T )×ω2

e−2sαξ5|∇N−1ψ1|2 + · · ·

+ s2N+1λ2N+2
∫∫

(0,T )×ω2

e−2sαξ2N+1|∇ψ1|2
)
.

We can perform exactly the same procedure on the terms

s5λ6
∫∫

(0,T )×ω2

e−2sαξ5|∇N−1ψ1|2, . . . ,

s2N−1λ2N−2
∫∫

(0,T )×ω2

e−2sαξ2N−1|∇2ψ1|2
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in order to obtain the following estimate:

(2.30) sλ2
∫∫

QT

e−2sαξ|∇N+1ψ1|2 + · · ·

+ s2N+1λ2N+2
∫∫

QT

e−2sαξ2N+1|∇ψ1|2

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(r+1)+5r+3

2r |ψ1|2

+ s2N+1λ2N+2
∫∫

(0,T )×ω0

e−2sαξ2N+1|∇ψ1|2
)
.

Step 4. — Since the weight (sξ∗)2N−1 does not depend on the space
variable, sξ∗ is bounded from below by a positive number, and using the
definition of α∗ and ξ∗ given in (2.7), the following Poincaré’s inequality
holds:

(2.31) λ2N+2
∫∫

QT

e−2sα∗(sξ∗)2N+1|ψ1|2

6 Cλ2N+2
∫∫

QT

e−2sα∗(sξ∗)2N+1|∇ψ1|2

6 Cλ2N+2
∫∫

QT

e−2sα(sξ)2N+1|∇ψ1|2.

Combining (2.30) and (2.31), we deduce that for s large enough

(2.32) λ2
∫∫

QT

e−2sαsξ|∇N+1ψ1|2 + · · ·

+ λ2N+2
∫∫

QT

e−2sα(sξ)2N+1|∇ψ1|2

+ λ2N+2
∫∫

QT

e−2sα∗(sξ∗)2N+1|ψ1|2

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2

+ λ2N+2
∫∫

(0,T )×ω0

e−2sα(sξ)2N+1|∇ψ1|2
)
.

We now fix p > 2 large enough such that

2N(p+ 1) + 5p+ 3
2p < 2N + 1,
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which is clearly possible since 2N(p+1)+5p+3
2p → N+ 5

2 as p→∞ and N > 3
(so that N + 5/2 < 2N + 1).
Using that e−2sα∗(sξ∗)

2N(p+1)+5p+3
2p 6 Ce−2sα(sξ)2N+1, we deduce by ab-

sorbing the first term of the right-hand side of (2.32) that

λ2
∫∫

QT

e−2sα(sξ)|∇N+1ψ1|2 + · · ·+ λ2N+2
∫∫

QT

e−2sα(sξ)2N+1|∇ψ1|2

+ λ2N+2
∫∫

QT

e−2sα∗(sξ∗)2N+1|ψ1|2

6 Cλ2N+2
∫∫

(0,T )×ω0

e−2sα(sξ)2N+1|∇ψ1|2.

Going back to ψ thanks to (2.12), we deduce (2.10). �

2.2. Algebraic resolubility

In this section, we will derive a new Carleman inequality, adapted to the
control problem with less controls we want to prove.

Lemma 2.8. — Let m ∈ N∗ such that m 6 d− 1. Assume that the u is
regular enough (for example of class C∞).
Consider two partial differential operators L1 : C∞(Rd) → C∞(Rd)m

and L2 : C∞(Rd)→ C∞(Rd) defined for every ϕ ∈ C∞(Rd) by

L1ϕ := B∗(∇ϕ) and L2ϕ := ∂tϕ+ ∆ϕ+ (u · ∇)ϕ.

Assume that (1.6) holds, and let q ∈ N such that

(2.33) rank({B∗1 , . . . , B∗m}
∪ {((B∗ · ∇)αūi(t, x))i∈{1,...,d}, α ∈ Nm, α 6= 0, ‖α‖1 6 q}) = d.

There exists an open subset (t1, t2)× ω̃ of (0, T )×ω and there exist two
partial differential operators M1 : C∞(Rd)m → C∞(Rd)d (of order 1 in
time and q + 1 in space) andM2 : C∞(R)→ C∞(Rd)d (of order 0 in time
and q in space) such that

(2.34) M1 ◦ L1 +M2 ◦ L2 = ∇ in C∞((t1, t2)× ω̃).

Proof of Lemma 2.8. — If q = 0, necessarily, by condition (1.6), we have
m = d and we can takeM1 = (B∗)−1 andM2 = 0. We assume from now
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on that q ∈ N∗. Let j ∈ {1, . . . ,m}. We call Lj1 the j − th line of L1. We
remark that

(B∗j · ∇)L2ϕ− (∂t + ∆)Lj1ϕ− (u · ∇)Lj1ϕ
= (B∗j · ∇)(u · ∇)ϕ− (u · ∇)(B∗j · ∇)ϕ

= (u · ∇)(B∗j · ∇)ϕ+
d∑
k=1

((B∗j · ∇)uk)∂kϕ− (u · ∇)(B∗j · ∇)ϕ

=
d∑
k=1

((B∗j · ∇)uk)∂kϕ

=: Lj3.

Now, for some l ∈ {1, . . . ,m}, the same computations easily give

(B∗l · ∇)Lj3ϕ−
d∑
k=1

((B∗j · ∇)uk)∂kLl1ϕ

=
d∑
k=1

((B∗l · ∇)(B∗j · ∇)uk)∂kϕ =: Lj,l4 ϕ.

Continuing this procedure, we can easily create two partial differential
operators M̃1 (of order 1 in time and q + 1 in space) and M̃2 (of order 0
in time and q in space) such that

M̃1(L1(ϕ))(t0, x0) + M̃2(L2(ϕ))(t0, x0) = M̃(u)(∇ϕ)(t0, x0),

where M̃(u)(t0, x0) is a matrix composed by d independent vectors of the
family M(u)(t0, x0) with ‖α‖1 6 q (which is possible since (2.33) is ver-
ified). By continuity, there exists an open neighbourhood (t1, t2) × ω̃ of
(t0, x0) in (0, T )× ω and C > 0 such that |det(M̃(u))| > C on (t1, t2)× ω̃.
We call M̃(u)−1(t, x) the inverse of M̃(u)(t, x) for (t, x) ∈ (t1, t2)×ω̃. Then,
it is clear that M1 := M̃(u)−1M̃1 and M2 := M̃(u)−1M̃2 verify (2.34)
and have C∞ coefficients on (t1, t2)× ω̃. �

We now have all the tools to deduce our final Carleman inequality:

Proposition 2.9. — Assume that Condition (1.6) and the hypotheses
of Proposition 2.6 hold. Then, for all η ∈ (0, 1), there exists p > 2, C > 0
and K > 0 such that for every ψ0 ∈ L2(Ω), the corresponding solution ψ
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to System (2.4) satisfies

(2.35)
∫

Ω
ψ(0)2dx+

∫∫
QT

e
−2K

η(T−t)p {ψ2 + |∂tψ|2 + · · ·+ |∂b
N+1

2 c
t...t ψ|2

+ |∇ψ|2 + · · ·+ |∇N+1ψ|2}

6 CeK/T
p

∫∫
(0,T )×ω0

e
−2K

(T−t)p |B∗(∇ψ)|2.

Proof of Proposition 2.9. — Let ω1 some open subset strongly included
in ω0. Combining Proposition 2.6, Lemma 2.8 (that is still true by replacing
ω0 by ω1), and the fact that any solution ψ of (2.4) verifies by definition
L2ψ = 0, we deduce that, for any ψ0 ∈ L2(Ω), the corresponding solution
ψ to System (2.4) satisfies

λ2
∫∫

QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2 + · · ·

+ λ2N+2
∫∫

QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2

+ λ2N+2
∫∫

QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2

6 Cλ2N+2
∫∫

QT

θ̃e−2sα−2µsα∗ (sξ)2N+1 |M1B
∗(∇ψ)|2,

where M1 is a linear partial differential operator of order 1 in time and
q + 1 in space, and θ̃ ∈ C∞(Ω,R) such that:

• θ̃ = 1 on ω1,
• Supp(θ̃) ⊂ ω0,
• θ̃ ∈ [0, 1].

We first remark that∫∫
QT

θe−2sα−2µsα∗ (sξ)2N+1 |M1B
∗(∇ψ)|2

6 C
∫∫

QT

θe−2sα−2µsα∗ (sξ)2N+1

(
q+1∑
i=0

(
|∇iB∗∇ψ|2 + |∂t∇iB∗∇ψ|2

))
.

Using that ψ verifies (2.4), we can deduce that

λ2N+2
∫∫

QT

θe−2sα−2µsα∗ (sξ)2N+1 |M1B
∗(∇ψ)|2

6 Cλ2N+2
∫∫

QT

θe−2sα−2µsα∗ (sξ)2N+1

(
q+3∑
i=0
|∇iB∗∇ψ|2

)
.
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Some integrations by parts give

λ2N+2
∫∫

QT

θ̃e−2sα−2µsα∗ (sξ)2N+1 |∇B∗(∇ψ)|2

6 Cλ2N+2
∫∫

QT

θ̃e−2sα−2µsα∗ (sξ)2N+1 |B∗(∇ψ)| |∇3ψ|

+ Cλ2N+2
∫∫

QT

|∇(θ̃e−2sα−2µsα∗ (sξ)2N+1)| |B∗(∇ψ)| |∇2ψ|.

Let ε > 0. Young’s inequality gives

λ2N+2
∫∫

QT

θ̃e−2sα−2µsα∗ (sξ)2N+1 |B∗(∇ψ)| |∇3ψ|

6 Cελ
2N+6

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)2N+5 |B∗(∇ψ)|2

+ ελ2N−2
∫∫

(0,T )×ω0

e−2sα−2µsα∗ (sξ)2N−3 |∇3ψ|2

and also, by (2.28),

λ2N+2
∫∫

QT

|∇(θ̃e−2sα−2µsα∗ (sξ)2N+1)| |B∗(∇ψ)| |∇2ψ|

6 Cλ2N+3
∫∫

QT

θ̃e−2sα−2µsα∗ (sξ)2N+2 |B∗(∇ψ)| |∇2ψ|

6 Cελ
2N+6

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)2N+5 |B∗(∇ψ)|2

+ ελ2N
∫∫

(0,T )×ω0

e−2sα−2µsα∗ (sξ)2N−1 |∇2ψ|2.

Thus, by taking ε small enough, we deduce that

λ2
∫∫

QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2 + · · ·

+ λ2N+2
∫∫

QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2

+ λ2N+2
∫∫

QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2

6 Cλ2N+6
∫∫

(0,T )×ω0

e−2sα−2µsα∗ (sξ)2N+5 |B∗(∇ψ)|2

+ Cλ2N+2
∫∫

QT

θ̃e−2sα−2µsα∗ (sξ)2N+1

(
q+3∑
i=2
|∇iB∗∇ψ|2

)
.
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By iterating this process for i = 2, . . . , q + 3, we can get rid of the sum in
the right-hand side and obtain

λ2
∫∫

QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2 + · · ·

+ λ2N+2
∫∫

QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2

+ λ2N+2
∫∫

QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2

6 Cλ2N+2+4(q+2)
∫∫

(0,T )×ω0

e−2sα−2µsα∗ (sξ)2N+1+4(q+2) |B∗(∇ψ)|2.

We deduce that

λ2
∫∫

QT

e−2(1+µ)sα∗(sξ∗)|∇N+1ψ|2 + · · ·

+ λ2N+2
∫∫

QT

e−2(1+µ)sα∗(sξ∗)2N+1|∇ψ|2

+ λ2N+2
∫∫

QT

e−2(1+µ)µsα∗(sξ∗)2N+1|ψ|2

6 Cλ2N+2+4(q+2)
∫∫

(0,T )×ω0

e−2µsα∗ (sξ∗)2N+1+4(q+2) |B∗(∇ψ)|2,

where ξ∗ = maxΩ ξ. Defining

α̃∗ =
{
α∗(T/2) on (0, T/2),
α∗ on (T/2, T ),

ξ̃∗ =
{
ξ∗(T/2) on (0, T/2),
ξ∗ on (T/2, T ),

ξ̃∗ =
{
ξ∗(T/2) on (0, T/2),
ξ∗ on (T/2, T ),
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then, for s and λ large enough, using usual energy estimates,

λ2
∫∫

QT

e−2(1+µ)sα̃∗(sξ̃∗)|∇N+1ψ|2 + · · ·

+ λ2N+2
∫∫

QT

e−2(1+µ)sα̃∗(sξ̃∗)2N+1|∇ψ|2

+ λ̃2N+2
∫∫

QT

e−2(1+µ)µsα̃∗(sξ̃∗)2N+1|ψ|2

6 Cλ2N+2+4(q+2)
∫∫

(0,T )×ω0

e−2µsα̃∗
(
sξ̃∗
)2N+1+4(q+2)

|B∗(∇ψ)|2.

Fixing s and λ, using (2.5) and (2.6), and remarking that ξ̃∗ does not
depend on µ, we deduce that there exists R > 0 such that for any µ > 0
large enough,∫∫

QT

e−
2(2+µ)R
(T−t)p {|∇N+1ψ|2+· · ·+|ψ|2} 6 C

∫∫
(0,T )×ω0

e−
2(µ−1)R
(T−t)p |B∗(∇ψ)|2.

We remark that the fact that ψ verifies (2.4) enables us to add all the
derivatives in time on the left-hand side. Hence, we can conclude by fixing
η ∈ (0, 1), introducing K = (µ − 1)R (for µ > 1), and taking µ > 0 large
enough so that

(µ− 1)R
η

> (2 + µ)R,

which is always possible since the ratio (µ− 1)/(2 + µ) tends to 1 as µ→
∞. �

2.3. Regular control

Our goal in this section is to construct regular enough controls. Remind
that θ is defined in (2.2).

Proposition 2.10. — Let r ∈ N. Assume that Condition (1.6) holds.
Under the hypotheses of Proposition 2.6, System

(2.36)


∂ty = ∆y + div(uy) + div(θBv) in QT ,
y = 0 on ΣT ,

y(0, · ) = y0 in Ω,

is null controllable at time T , i.e. for every y0 ∈ L2(Ω), there exists a
control v ∈ L2(QT )m such that the solution z to System (2.36) satisfies
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z(T ) ≡ 0 in Ω. Moreover, we can choose v ∈ L2((0, T ), H2r+2(Ω))m ∩
Hr+1((0, T ), L2(Ω))m with

‖v‖L2((0,T ),H2r+2(Ω))m∩Hr+2((0,T ),L2(Ω))m 6 Ce
K/Tp‖y0‖L2(Ω),

where K is the constant in (2.35).

Proof of Proposition 2.10. — Let k ∈ N∗ and let us consider the following
optimal control problem

(2.37)


minimize Jk(v) := 1

2‖ρ̃
−1/2v‖2L2(QT )m + k

2

∫
Ω
|z(T )|2dx,

v ∈ U := {w ∈ L2(QT )m : ρ̃−1/2w ∈ L2(QT )m},

where ρ̃ := e
−2K

(T−t)p (for the K > 0 given by Proposition 2.9 with N an
even number to be chosen later and some fixed η ∈ (1/2, 1)) and z is the
solution in W (0, T ) to

∂tz = Az + Bv in QT ,
y = 0 on ΣT ,

y(0, · ) = y0 in Ω,
where

(2.38)
{
A := ∆ + div(u · ),
B := div(Bθ · ).

Here, U is endowed with its natural weighted L2-norm.
The functional Jk : U → R+ is differentiable, coercive and strictly convex

on the space U . Therefore, following [35, p. 116], there exists a unique
solution to the optimal control problem (2.37) and the optimal control vk
is characterized thanks to the solution zk of the primal system by

(2.39)


∂tzk = Azk + Bvk in QT ,
zk = 0 on ΣT ,

zk(0, · ) = y0 in Ω,
the solution ϕk to the dual system

(2.40)


−∂tϕk = A∗ϕk in QT ,

ϕk = 0 on ΣT ,
ϕk(T, · ) = kzk(T, · ) in Ω

and the relation

(2.41)
{
vk = −ρ̃B∗ϕk in QT ,
vk ∈ U .
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The characterization (2.39), (2.40) and (2.41) of the minimizer vk of Jk
in U leads to the following computations:

(2.42)

Jk(vk) = −1
2 〈B

∗ϕk, vk〉L2(QT )m + 1
2 〈zk(T ), ϕk(T )〉L2(Ω)

= −1
2

∫ T

0
〈ϕk,Bvk〉L2(Ω) + 1

2

∫ T

0
{〈zk, ∂tϕk〉L2(Ω)

+ 〈∂tzk, ϕk〉L2(Ω)}+ 1
2 〈y

0, ϕk(0, · )〉L2(Ω)

= 1
2 〈y

0, ϕk(0, · )〉L2(Ω).

Moreover, using (2.35) and the expression of ρ̃, we infer

(2.43) ‖ϕk(0, · )‖L2(Ω) 6 Ce
K/Tp‖ρ̃−1/2vk‖L2(QT )m .

Now, using the definition of Jk, the expression (2.42), the inequality
(2.43) and the Cauchy–Schwarz inequality, we infer

‖ϕk(0, · )‖2L2(Ω) 6 Ce
2K/TpJk(vk) 6 Ce2K/Tp‖ϕk(0, · )‖L2(Ω)‖y0‖L2(Ω),

from which we deduce

(2.44) ‖ϕk(0, · )‖L2(Ω) 6 Ce
2K/Tp‖y0‖L2(Ω).

Then, using (2.42) and (2.44), we deduce

(2.45) Jk(vk) 6 Ce2K/Tp‖y0‖2L2(Ω).

Furthermore, we have (see [35, p. 116])

(2.46)

‖zk‖W (0,T ) 6 C
(
‖Bvk‖L2((0,T ),H−1(Ω)) + ‖y0‖L2(Ω)

)
,

6 C
(
‖ρ̃−1/2vk‖L2(QT )m + ‖y0‖L2(Ω)

)
,

6 C(1 + CeK/T
p

)‖y0‖L2(Ω),

where C does not depend on y0 and k. Then, using inequalities (2.45)
and (2.46), we deduce that there exist subsequences, which are still denoted
vk, zk, such that the following weak convergences hold:

vk ⇀ v in U ,
zk ⇀ z in W (0, T ),

zk(T ) ⇀ 0 in L2(Ω).

Passing to the limit in k, z is solution to System (2.38). Moreover, using the
expression of Jk given in (2.37) and inequality (2.45), we deduce by letting
k going to ∞ that z(T ) ≡ 0 in Ω. Thus the solution z to System (2.38)
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with control v ∈ U satisfies z(T ) ≡ 0 in Ω and using (2.45), we obtain the
inequality

‖v‖2U 6 Ce2K/Tp‖y0‖2L2(Ω).

Since ρ̃−1 > 1, using the definition of the norm on U , we also deduce that

‖v‖2L2(QT )m 6 Ce
2K/Tp‖y0‖2L2(Ω).

Now, let us explain why the controls are more regular. First of all, using
the fact that ϕk verifies (2.40), we deduce that for any j ∈ N,

‖B∗∂jtϕk(t, · )‖2L2(Ω) 6 C‖∂
j+1
t ϕk(t, · )‖2L2(Ω), ∀ t ∈ (0, T ).

Hence, for each i ∈ {1, . . . , N2 − 1} and k ∈ N, using inequalities similar
to (2.17) and (2.18), we deduce that for any ε > 0, there exists C > 0 such
that

(2.47)

‖∂itvk‖2L2(QT )m =
∫∫

QT

∂it (| − ρ̃B∗ϕk|)2

6 C
∫∫

QT

ρ̃2−2ε{|ϕk|2 + · · ·+ |∂i+1
t ϕk|2}

6 C
∫∫

QT

ρ̃2−2ε− 1
η ρ̃

1
η {|ϕk|2 + · · ·+ |∂i+1

t ϕk|2}.

Now, we fix ε > 0 small enough (with respect to η) such that 2−2ε− 1
η > 0.

With this choice of ε, we infer that ρ̃2−2ε− 1
η 6 1. Hence, using (2.47)

together with (2.35) and (2.45), we deduce that, for each i ∈ {0, . . . , N2 −1},
‖∂itvk‖ ∈ L2(QT ) and

‖∂itvk‖2L2(QT )m 6 C
∫∫

QT

e
−2K

η(T−t)p {|ϕk|2 + · · ·+ |∂i+1
t ϕk|2}

6 C
∫∫

QT

e
−2K

(T−t)p |θB∗(ϕk)|2

6 C‖vk‖2U 6 Ce2K/Tp‖y0‖2L2(Ω).

‖B∗∂jtφk(t, · )‖2L2(Ω) 6 C‖∂
j+1
t φk(t, · )‖2L2(Ω), ∀ t ∈ (0, T ),

Thus, extracting one more time a subsequence if necessary and letting k
go to +∞, we deduce that for each i ∈ {1, . . . , N2 − 1},

‖∂itv‖L2(QT )m 6 Ce
2K/Tp‖y0‖2L2(Ω).

We similarly deduce that, for each i ∈ {1, . . . , N − 2},

‖∇iv‖L2(QT )m×i×d 6 Ce
2K/Tp‖y0‖2L2(Ω).

The proof is completed by setting r = N
2 + 1. �
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3. Controllability to the trajectories

Let r ∈ N. We use the strategy developed in [37], modifying it slightly
to fit our case. Usual interpolation estimates (see [36, Section 13.2, p. 96])
show that

L2((0, T ), H2r+2(Ω)) ∩Hr+1((0, T ), L2(Ω))

↪→ L2((0, T ), H2r+2(Ω)) ∩H1((0, T ), H2r(Ω)),

from which we deduce

L2((0, T ), H2r+2(Ω)) ∩Hr+1((0, T ), L2(Ω)) ↪→ L∞((0, T ), H2r(Ω)).

Now, there exists R > 0 large enough such that by Sobolev embeddings,
we have

L2((0, T ), H2R+2(Ω)) ∩HR+1((0, T ), L2(Ω)) ↪→ L∞((0, T ),W 1,∞(Ω)).

Hence, from Proposition 2.10 and Remark 2.1, for any y0 ∈ L2(Ω), there
exists a control v ∈ L∞((0, T ),W 1,∞(Ω))m such that the solution y to
System (2.3) satisfies y(T ) ≡ 0 in Ω and

‖v‖L∞((0,T ),W 1,∞(Ω))m 6 Ce
K/Tp‖y0‖L2(Ω),

where K > 0 is the constant given by Proposition 2.9 with N = 2R and
p > 2 is given in Proposition 2.6.
Letting the system evolve freely a little bit if needed, we may assume

without loss of generality that y0− y0 ∈ H1
0 (Ω). Indeed, by the regularizing

effect, it is very easy to deduce that for any solution (y, u) to (1.4), there
exists some C(T ) > 0 such that for any solution (y, 0) to (1.1) on [0, T2 ],
we have y

(
T
2
)
− y

(
T
2
)
∈ H1

0 (Ω) and∥∥∥∥y(T2
)
− y

(
T

2

)∥∥∥∥
H1(Ω)

6 C(T )‖y0 − y0‖L2(Ω).

Hence, if ‖y0 − y0‖L2(Ω) is small, so is ‖y(T2 ) − y(T2 )‖H1(Ω), so that the
condition (1.5) is sufficient for our argument to be valid.
Following [37, p. 24], we introduce the cost of controllability given by

γ(t) = CeK/t
p

, t ∈ (0, T ),

and the following weight functions

ρF (t) = e
− α

(T−t)p+1 , t ∈ [0, T ]

and

ρ0(t) = e
K

((q−1)(T−t))p−
α

q2p+2(T−t)p+1 , t ∈
[
T

(
1− 1

q2

)
, T

]
,
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extended on [0, T (1− 1
q2 )] by

ρ0(t) = ρ0

(
T

(
1− 1

q2

))
, t ∈

[
0, T

(
1− 1

q2

)]
,

for some parameters q > 1 and α > 0 to be chosen later on.
We remark that ρF and ρ0 are non-increasing, that they verify ρF (T ) =

ρ0(T ) = 0, and are related by

ρ0(t) = ρF (q2(T − t) + T )γ((q − 1)(T − t)), t ∈
[
T

(
1− 1

q2

)
, T

]
.

We introduce for some β > 0 the weight function

ρ(t) = e
− β

(T−t)p+1 .

We remark that

ρF 6 Cρ, ρ0 6 Cρ, |ρ′|ρ0 6 Cρ
2,

as soon as β > 0 is chosen small enough, precisely

(3.1) β <
α

q2p+2 .

We introduce the following spaces:

F =
{
f ∈ L2((0, T )× Ω), f

ρF
∈ L2((0, T )× Ω)

}
,

U =
{
u ∈ L2((0, T )× Ω), u

ρ0
∈ L∞((0, T ),W 1,∞)

}
and

Z =
{
z ∈ L2((0, T )× Ω), z

ρ
∈ H1((0, T ), L2) ∩ L2((0, T ), H2 ∩H1

0 )
}
,

endowed with the weighted Sobolev norms naturally induced by the defi-
nition of these spaces.
Following [37, Proofs of Propositions 2.5, 2.8] in the spirit of [31, Sec-

tion 7.2 and Appendix 5], it is easy to obtain the following result.

Proposition 3.1. — For any z0 ∈ H1
0 (Ω) and any f ∈ F , there exists

v ∈ U such that the solution z of
∂tz = ∆z + div(uz) + div(θyBv) + f in QT ,
z = 0 on ΣT ,

z(0, · ) = z0 in Ω,

verifies z ∈ Z (and hence z(T ) = 0).

To conclude, we use the following inverse mapping theorem:
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Theorem 3.2 (see [3]). — Let X and Y be Banach spaces and let M :
X 7→ Y be a C1 mapping. Consider x0 ∈ X and y0 := M(x0) ∈ Y. Assume
that the derivative M ′(x0) : X 7→ Y is onto. Then, there exist η > 0, a
mapping W : Bη(y0) ⊂ Y 7→ X and a constant K > 0 satisfying:{

W (z) ∈ X and M(W (z)) = z ∀ z ∈ Bη(y0),
‖W (z)− x0‖X 6 K‖z − y0‖Y ∀ z ∈ Bη(y0).

Proof of Theorem 1.3. — We are looking for a solution in the form

y(x, t) = y(x, t) + w(x, t), u(x, t) = u(x, t) + θ(x)Br(x, t),

where (y, u) and (y, u) are solution to the Systems (1.1) and (1.4), respec-
tively. Then (w, r) is solution to

N(w, r) := ∂tw −∆w − div(uw + θBry + θBrw) = 0 in QT ,
w = 0 on ΣT ,

w(0, · ) = y0 − y0 in Ω.

We introduce the following spaces:

X := {(w, r) ∈ Z × U such that ∂tw −∆w − div(uw + θBry) ∈ F},

endowed with the norm

‖(w, r)‖X = ‖w‖Z + ‖r‖U + ‖∂tw −∆w − div(uw + θBry)‖F ,

and the space
Y = F ×H1

0 (Ω),

endowed with the norm

‖(f, z0)‖Y := ‖f‖F + ‖z0‖H1(Ω).

Introduce the mapping M given by

M : X −→ Y
(w, r) 7−→ (N(w, r), w(0, · )).

Let us determine what are the conditions on q, α, β ensuring that M is
well-defined. It is clear that

‖w(0, · )‖H1(Ω) 6 ‖w‖C0([0,T ],H1
0 (Ω)) 6 C

∥∥∥∥wρ
∥∥∥∥
C0([0,T ],H1

0 (Ω))
6 ‖(w, r)‖X .

Now, we remark that by definition of the space X , we have

‖∂tw −∆w − div(uw + θBry)‖F 6 ‖(w, r)‖X .
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Hence, the only difficulty is to treat the bilinear part div(θwBr). We
remark that∥∥∥∥div(θwBr)

ρF

∥∥∥∥
L2((0,T )×Ω)

6 C

∥∥∥∥∥ r

ρ
1
2
F

∥∥∥∥∥
L∞((0,T ),W 1,∞(Ω))

∥∥∥∥∥ wρ 1
2
F

∥∥∥∥∥
L2((0,T ),H1(Ω))

.

We can impose that ρ2 6 CρF and ρ2
0 6 CρF as soon as

(3.2) α < 2β and q2p+2 < 2.

Remark that these conditions are compatible with condition (3.1).
Hence, under conditions (3.1) and (3.2), we deduce that∥∥∥∥div(θwBr)

ρF

∥∥∥∥
L2((0,T )×Ω)

6 C

∥∥∥∥ rρ0

∥∥∥∥
L∞((0,T ),W 1,∞(Ω))

∥∥∥∥wρ
∥∥∥∥
L2((0,T ),H1(Ω))

6 C‖(w, r)‖2X .
We conclude that under these conditions, M is indeed well-defined and

continuous. Moreover, we remark that M(0, 0) = (0, 0) and M is of class
C1 as a sum of a continuous linear function and a continuous quadratic
function. Furthermore, Proposition 3.1 exactly means that M ′(0, 0) is onto
(see Remark 2.1), when

(3.3) α

q2p+p < 1

and η ∈ (0, 1) is chosen as
η := α

q2p+p .

Conditions (3.1), (3.2) and (3.3) can be summarized as follows:
α

2 < β <
α

q2p+p < 1 and q2p+2 < 2,

which is satisfied for q = (3/2)1/(2p+2) > 1 (remind that p > 2, so that
2p + p > 2p + 2 > 1), α = 1 and β = 7/12. Theorem 3.2 leads to the
conclusion. �

4. Example of a non-controllable trajectory with a
reduced number of controls

In this section, we give the example of a trajectory which does not satisfy
condition (1.6) and for which the local controllability to the trajectories
does not hold.

Consider u ∈ L∞(QT )m which is independent of the time variable and
will be determined later on. Assume that for each y0 ∈ L2(Ω) \ {0} the
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following system is locally controllable to the trajectories with a control
operator B to be chosen later on:

(4.1)


∂ty = ∆y + div(uy) in QT ,
y = 0 on ΣT ,

y(0, · ) = y0 in Ω.

Then, for any ε ∈ (0, 1), there exists u ∈ L∞(QT )m such that
∂ty = ∆y + div(uy) in QT ,
y = 0 on ΣT ,

y(0, · ) = (1− ε)y0 in Ω,
y(T, · ) = y(T ) in Ω,

where u = u + Bv with Supp(v) ⊂ (0, T ) × ω. We remark that (z, w) :=
(y − y, yv) is solution to

(4.2)


∂tz = ∆z + div(uz) + div(Bw) in QT ,
z = 0 on ΣT ,

z(0, · ) = εy0 in Ω,
z(T, · ) = 0 in Ω.

We deduce that the linear control system (4.2) is null controllable at time
T > 0, then approximately controllable at time T > 0. It is well known
that the approximate controllability of System (4.2) on (0, T ) implies the
following property, called the Fattorini–Hautus test (see e.g. [39]) : for every
s ∈ C and every ϕ ∈ H2(Ω) ∩H1

0 (Ω),

(4.3)
−∆ϕ− u · ∇ϕ = sϕ in Ω

B∗∇ϕ = 0 in ω

}
=⇒ ϕ = 0.

Now, we give an explicit situation in contradiction with (4.3). Consider
Ω = (0, π)2, B∗ = (1, 0) and s = 25 (ω and u will be chosen later on). The
goal is to find a nontrivial solution ϕ ∈ H2(Ω) ∩H1

0 (Ω) of

(4.4)
{
−∆ϕ− u · ∇ϕ = 25ϕ in Ω,

∂x1ϕ = 0 in ω.

We introduce two functions f and g defined on Ω and given by

f(x1, x2) = sin(3x1) sin(4x2), g(x1, x2) = 2
√

2
5 (− sin(5x2) + cos(5x2)) .
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Remark that f ∈ C∞(Ω) and g ∈ C∞(Ω) are chosen in such a way that

(4.5)



−∆f = 25f on Ω,
−∆g = 25g on Ω,
∂x1g = 0 on Ω,

f = 0 on ∂Ω,
f
(
π
2 ,

π
4
)

= g
(
π
2 ,

π
4
)
,

∇f
(
π
2 ,

π
4
)

= ∇g
(
π
2 ,

π
4
)
.

Now, let us consider some cut-off function χ ∈ C∞0 (R2) such that χ ∈
[0, 1], χ ≡ 0 on R \ [π4 ,

3π
4 ] × R \ [π8 ,

3π
8 ] and χ = 1 on [ 3π

8 ,
5π
8 ] × [ 3π

16 ,
5π
16 ].

For a parameter h ∈ (0, 1), we call

χh(x1, x2) := χ

(
π

2 + x1 − π/2
h

,
π

4 + x2 − π/4
h

)
.

Note that χh is supported in

Vh :=
[
π

2 −
hπ

4 ,
π

2 + hπ

4

]
×
[
π

4 −
hπ

8 ,
π

4 + hπ

8

]
,

verifies

(4.6) χh = 1 on
[
π

2 −
hπ

8 ,
π

2 + hπ

8

]
×
[
π

4 −
hπ

16 ,
π

4 + hπ

16

]
:= Wh

and

(4.7) |χh| 6 1, |∂x2χh| 6
C

h
on R2,

for some C > 0 independent on h. Now, we introduce

(4.8) ϕh = χhg + (1− χh)f.

We remark that for any h ∈ (0, 1), ϕh 6≡ 0 since it coincides with f outside
Vh 6= ∅ and with g on Wh 6= ∅. Moreover, one has

(4.9) ∂x2ϕh = ∂x2χh(g − f) + χh∂x2g + (1− χh)∂x2f.

By the two last lines of (4.5) and Taylor expansions, for h ∈ (0, 1), we have

(4.10) |f − g| 6 Ch2, |∂x2f − ∂x2g| 6 Ch on Vh,

for some C > 0 independent on h. From (4.7), (4.9) and (4.10), we deduce
that

|∂x2ϕh − ∂x2g| 6 |∂x2χh| |g − f |+ |1− χh| |∂x2g − ∂x2f | 6 Ch on Vh,

for some C > 0 independent on h. Since

∂x2g
(π

2 ,
π

4

)
= 4 > 0,
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we deduce that there exists h0 > 0 small enough such that, ∂x2ϕh0 > C on
Vh0 for some C > 0. Accordingly to (4.6), we choose ω = Wh0 , and

u :=
{

(0, 0) in (0, π)2 \ (Vh0 \Wh0),
(0,− 25ϕh0 +∆ϕh0

∂x2ϕh0
) otherwise.

Remark that u is well defined: by construction, ∂x2ϕh0 > C where
−∆ϕh0 − 25ϕh0 6= 0 (which is included in Vh0 \Wh0).

Moreover, u is of class C∞ on Ω. To conclude, we remark that by (4.5)
and (4.8), 

−∆ϕh0 − u · ∇ϕh0 = 25ϕh0 in Ω,
ϕh0 = 0 in ∂Ω,

∂x1ϕh0 = 0 in ω,
ϕh0 6= 0.

Hence, we obtain a contradiction with the Fattorini–Hautus test, which
concludes our proof.
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