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HIGHER DIMENSIONAL ESSENTIAL MINIMA AND
EQUIDISTRIBUTION OF CYCLES

by Roberto GUALDI & César MARTÍNEZ (*)

Abstract. — The essential minimum and equidistribution of small points are
two well-established interrelated subjects in arithmetic geometry. However, there
is lack of an analogue of essential minimum dealing with higher dimensional sub-
varieties, and the equidistribution of these is a far less explored topic.

In this paper, we introduce a new notion of higher dimensional essential min-
imum and use it to prove equidistribution of generic and small effective cycles.
The latter generalizes the previous higher dimensional equidistribution theorems
by considering cycles and by allowing more flexibility on the arithmetic datum.
Résumé. — Le minimum essentiel et l’équirépartition des petits points sont deux

sujets entrelacés et bien établis en géométrie arithmétique. Cependant, on manque
d’un analogue pour le minimum essentiel pour des sous-variétés de dimension su-
périeure, et l’équirépartition de celles-ci est un sujet beaucoup moins exploré.

Dans cet article, on introduit une nouvelle notion de minimum essentiel de di-
mension supérieure et on l’utilise pour prouver un résultat d’équirépartition pour
des cycles effectifs. Celui-ci généralise les théorèmes d’équirépartition de dimension
supérieure précédents en permettant plus de flexibilité sur les données arithmé-
tiques.

1. Introduction

The well known Faltings’s theorem is one of the most celebrated exam-
ples of the motto according to which the geometry of a variety governs its
arithmetic. Equidistribution phenomena represent an instance of the con-
verse influence and show how certain arithmetic properties of a sequence of
subvarieties prescribe their limit geometrical behaviour. In addition to its
intrinsic beauty, equidistribution theory has proven to be a key ingredient
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in classical diophantine problems; most notably the proof of Bogomolov’s
conjecture in [37] and [42], which has inspired function field analogues and
generalizations for number fields (see for instance [38] and [12], and the
reference therein)
The first appearance of equidistribution in Arakelov geometry is due to

Szpiro, Ullmo and Zhang in their cornerstone paper [36]. This work inspired
a lot of progress in the following years: using totally different techniques,
Bilu proved in [4] an analogous theorem for strict sequences of points in
tori, while Chambert-Loir [10], and Favre and Rivera–Letelier [17] extended
the equidistribution result to non-archimedean places.

The most general form of the equidistribution theorem in varieties de-
fined over number fields was given by Yuan in [39]. The analogous result for
varieties defined over function fields was later obtained by Gubler in [21]. To
state them, let X be a projective variety defined over a field K as aforemen-
tioned, and L be an ample line bundle on X equipped with a semipositive
metric. This choice allows to define a suitable (normalized) height function
ĥL̄ on the set of algebraic cycles of XK̄ , making use of Arakelov geome-
try, see Section 2.2. Similarly, it associates to every subvariety Y of XK̄ a
measure

c1(Lv)∧ dim(Y ) ∧ δY an
v

on the analytification of X at a place v of K. If (xm)m is a generic sequence
of points in XK̄ such that

(1.1) ĥL̄(xm) −→ ĥL̄(X),

the equidistribution theorem of Yuan–Gubler asserts the weak convergence
of probability measures on Xan

v

1
#O(xm)

∑
y∈O(xm)

δyan
v
−→ 1

degL(X) c1(Lv)∧ dim(X) ∧ δXan
v

for every place v, where O(xm) denotes the Galois orbit of xm in XK̄ .
However, the existence of generic sequences of algebraic points satisfy-

ing (1.1) fails for general choices of X and L; in these cases the equidistri-
bution statement is empty. A convenient invariant to deal with this issue
is the essential minimum of X, that is defined as

(1.2) e1(X,L) := sup
H

inf
x6∈H

ĥL̄(x),

where H runs over all closed subsets of XK̄ of codimension 1. It is the
smallest limit value that the height of a generic net of points in XK̄ can
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HIGHER ESSENTIAL MINIMA AND EQUIDISTRIBUTION 1331

attain, and it can be shown that

(1.3) e1(X,L) > ĥL̄(X),

see for instance [40, Theorem 5.2]. This is known as Zhang’s inequality
and plays a significant role in equidistribution theory. For instance, the
statement of Yuan–Gubler’s theorem is nonempty precisely when (1.3) is
an equality.
However, even under a strict inequality in (1.3), it may happen that a

sequence of generic points whose height converges to the essential minimum
equidistributes with respect to a certain relevant measure.

A first example of this behaviour is when X is a toric variety and L is
a toric metrized line bundle. An exhaustive description of this situation
was given by Burgos Gil, Philippon, Rivera–Letelier and Sombra in [7].
They showed that equidistribution holds for a large class of toric metrized
line bundles for which (1.3) is not necessarily an equality, and explicitly
described the limit measure.
A second relevant case is the one of a semiabelian variety X defined over

a number field as studied by Kühne [26]. In this case, the essential minimum
of X vanishes, whereas ĥL̄(X) can be negative (if X is non-split).
Let us now consider the higher dimensional situation. In [39] (and also

implicitely in [21]) an extension of the equidistribution theorem for subva-
rieties is stated, generalizing a previous result by Autissier [1] (see also [2]
for the special case of the Néron–Tate height on abelian varieties). Assume
that the choice of the metric on L satisfies the hypothesis

(1.4) ĥL̄(Y ) > ĥL̄(X) for every subvariety Y of XK̄ .

If (Ym)m is a generic sequence of subvarieties of XK̄ of a fixed dimension
such that

(1.5) ĥL̄(Ym) −→ ĥL̄(X),

the higher dimensional equidistribution theorem asserts that, for every
place v, the Galois average of the v-adic probability measures associated
to Ym converges weakly to c1(L)∧ dim(X) ∧ δXan

v
/ degL(X).

The theorem relies on the fullfilment of Hypothesis (1.4), which is an
indispensable ingredient in the original proof of [1]. Even if it holds in
classical situations (such as the canonical height in toric varieties and the
Néron–Tate height on abelian varieties), this assumption fails for general
choices of X and L, see Example 6.2 for an explicit construction. Further-
more, as it happens for points, sequences of subvarieties satisfying (1.5) do
not need to exist. However, in contrast to the 0-dimensional case, there is
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1332 Roberto GUALDI & César MARTÍNEZ

no appearance in the literature of a notion of essential minimum for higher
dimensional subvarieties of X.
The main goal in this paper is to deal with these two limitations. In

particular, give an equidistribution theorem that generalizes the one of
Yuan to a situation where (1.4) is no longer needed, and determine the
cases in which this equidistribution theorem is nonempty by introducing a
notion of higher dimensional essential minimum comparable to the classical
one that suites this purpose.

Let K be a number field or the function field of a regular projective
curve. Let X be a projective variety defined over K and L be a semipositive
metrized line bundle L on X. We also fix d = 0, . . . ,dim(X).

We introduce in Definition 3.4 a notion of higher essential minimum.
For simplicity in the introduction, let us assume that L is ample. In this
situation, Proposition 3.11 allows the following equivalent definition.

Definition 1.1. — The d-dimensional essential minimum of X with
respect to L is defined as

e(d)
1 (X,L) := sup

H
inf
Y*H

(
(d+ 1)ĥL̄(Y )− inf

s∈H0(XK̄ ,L
⊗n
K̄

)
n∈N\{0}
Y*|div(s)|

d ĥL̄(div(s) · Y )
)
.

where H runs over all closed subsets of XK̄ of codimension 1, and Y over
all d-dimensional subvarieties of XK̄ .

The term in parenthesis in the above definition represents the highest
gap between the height of Y and the one of its divisors constructed from
sections of powers of L. Then, by Remark 5.6, the d-dimensional essential
minimum of X can be seen as the minimal limit of such a highest “height-
gap” for generic nets of d-dimensional subvarieties of X. When d = 0, it
agrees with the classical invariant defined in (1.2).
The explicit dependence of e(d)

1 (X,L) on the complete linear series of L
highlights the importance of understanding the arithmetic size of global
sections of powers of L. In this perspective, we make use of the arguments
of [39] and [21] to prove the existence of a global section of a tensor power
of L whose adelic norm is controlled by the height of X. This allows us to
deduce the following result, see Corollary 4.5.

Theorem 1.2 (Zhang’s inequality). — We have e(d)
1 (X,L) > ĥL̄(X).

This theorem is the precise reason why we could not take a naive defini-
tion of higher essential minimum, which only involves the infimum value of
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(normalized) heights of generic subvarieties of a fixed dimension. Indeed,
the inequality of this theorem may fail with this alternative definition, see
for instance Example 6.4.
Having established the definition of d-dimensional essential minimum, we

study its connection with equidistribution phenomena. For this, let (Ym)m
be a net of d-dimensional subvarieties of XK̄ .

Definition 1.3. — The net (Ym)m is said to be generic if for every
closed subset H of XK̄ of codimension 1, Ym * H for all m big enough. It
is called L-small if

lim
m

(
(d+ 1)ĥL̄(Ym)− inf

s∈H0(XK̄ ,L
⊗n
K̄

)
Ym*|div(s)|

d ĥL̄(div(s) · Ym)
)

= e(d)
1 (X,L).

The notion of smallness is novel, as it is related to the higher dimensional
essential minimum defined above. Loosely speaking, generic L-small nets of
subvarieties are the ones for which the highest “height-gap” of their mem-
bers has the smallest possible asymptotic behaviour. With these concepts,
we can predict the geometric behaviour of d-dimensional subvarieties as
follows.

Theorem 1.4 (equidistribution of subvarieties). — Let us assume that
e(d)
1 (X,L) = ĥL̄(X). If (Ym)m is a generic and L-small net of d-dimensional
subvarieties of XK̄ , the weak convergence of probability measures on Xan

v

1
#O(Ym) degL(Ym)

∑
Y σm∈O(Ym)

c1(Lv)∧d ∧ δY σ,an
m,v

−→ 1
degL(X) c1(Lv)∧ dim(X) ∧ δXan

v

holds for any place v, where O(Ym) denotes the set of Galois conjugates of
Ym in XK̄ .

As in the case of points, the nonemptyness of this statement is ensured by
the condition on the d-dimensional essential minimum, namely that Zhang’s
inequality is an equality. Moreover, the above convergence does not require
the extra assumption (1.4), and contains Yuan’s equidistribution theorem
in the higher dimensional situation (see Proposition 6.5 and the comment
that follows it).
In Theorem 5.12 we prove a more general version of the equidistribution

result, dealing with nets of effective cycles which are not necessarily Galois
orbits. In the case of points, a result of this kind can be deduced using
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a diagonal extraction argument, see for instance [16, Corollary 9.6] in the
dynamical case. Notice that our extension requires a generalization of the
definitions of genericity and smallness for nets of effective cycles, which are
given in Definition 5.1 and Definition 5.7 respectively.
The point of view adopted in this paper opens interesting questions ana-

logue to the case of points. More precisely, it would be interesting to explore
if, as in the case of points, the use of the higher dimensional essential min-
ima has applications beyond Theorem 1.3. For instance, can small and
generic nets of d-dimensional cycles equidistribute even when e(d)

1 (X,L) >
ĥL̄(X)? Under which conditions on the metrized line bundle does this hap-
pen? Can the limit measure be described explicitly in these cases? As for
the 0-dimensional situation, we hope that the toric and the semiabelian
worlds may offer new insight and testing grounds for such questions.
The paper is organized as follows. In Section 2, we recall some prelimi-

nary material on arithmetic geometry and height theory. In Section 3, we
introduce the notion of higher essential minima and deduce their basic prop-
erties. Section 4 is devoted to the proof of a key inequality (Theorem 4.1)
for the equidistribution theorem, and from which we deduce our analogue
of Zhang’s inequality (Corollary 4.5). In Section 5, we prove the equidistri-
bution theorem in its general form (Theorem 5.12). Finally, in Section 6,
we first compare our result with the ones already present in literature and
then explore its applications for heights arising from dynamical systems.
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Terminology and conventions

By a variety over a field K we mean a reduced and irreducible separated
scheme of finite type over SpecK. If X is a variety over K, L is a line
bundle on X and K ′ a field extension of K, we write XK′ and LK′ for the
base change of X and L to K ′. If X is a variety over a field, a subvariety Y
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ofX is a closed integral subscheme ofX. We simply write Y ⊆ X. A d-cycle
or a cycle of pure dimension d in X is a formal finite sum of d-dimensional
subvarieties of X.
For any place v of a field K, we denote by Kv the completion of K with

respect to the topology given by v. The algebraic closure of Kv is equipped
with a unique extension of | · |v, and its completion with respect to such an
absolute value is denoted by Cv. If X is variety over K and L a line bundle
on X, the notations Xan

v and Lan
v stand for the Berkovich analytifications

of the base change of X and L over Cv. The analytic space Xan
v comes with

an action of the Galois group Gal(Kv/Kv).

2. Preliminaries in height theory

We collect in this section the definitions and results in algebraic geometry
and adelic Arakelov theory that are used throughout all the paper. In
particular, we recall the usual adelic structure on number fields and function
fields, the definition of local and global heights on varieties defined over
such fields, and some geometrical and arithmetical notions of positivity of
line bundles. We also introduce elementary perturbations of metrized line
bundles and study their influence on heights of cycles.

2.1. Number fields and function fields

Throughout this paper, K denotes either a number field or the function
field of a regular projective curve defined over any field. In both cases,K can
be given the structure of an adelic field in the sense of [8, Definition 1.5.1]
by specifying a collection of places MK on K, which we identify with a
choice, for each v ∈MK , of an absolute value | · |v on K representing v and
a positive real weight nv.

Definition 2.1. — The adelic structure of the field K is defined by the
following choices.

(1) If K = Q, the set MQ consists of the archimedean and the p-adic
places of Q, with corresponding absolute values normalized in the
standard way, see [5, Section 1.2], and all weights equal to 1.

(2) If K = k(C), with C a regular projective curve defined over a field
k, the set Mk(C) consists of all closed points of C. We associate to
every v ∈Mk(C) the absolute value and weight given by

| · |v= c
− ordv( · )
k and nv = [k(v) : k],

TOME 72 (2022), FASCICULE 4
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where ordv denotes the order of vanishing at v and

ck :=
{

#k if #k <∞,
e otherwise.

(3) If K is a finite field extension of F , where F = Q or F = k(C) as
in (2), the set MK consists of all the places of K which restrict to
a place in MF . We associate to all w ∈ MK the unique absolute
value | · |w on K in w restricting on F to | · |v for some v ∈MF and
the weight

nw = dimFv (Ew)
[K : F ] nv,

where the Ew’s are the local Artinian Fv-algebra that appear in the
decomposition of K ⊗F Fv and are in one-to-one correspondence
with absolute values on K over | · |v. We refer to [29, Definition 3.5]
or [18, Remark 2.5] for more details about this construction.

Remark 2.2. — The definitions of the adelic structure of K in (2) and (3)
are compatible. This means that if we have a finite map C → C ′, the
adelic structure on k(C) agrees with the one coming from k(C ′) by field
extension. On the other hand, any finite field extension of k(C) can be seen
as a function field of a finite cover of C. See [29, Example 3.9] for details.

Whenever it is clear from the context, the set of places of K will be
simply denoted by M. By construction, the adelic fields (K,M) introduced
in Definition 2.1 satisfy the product formula, that is∑

v∈M

nv log|α|v= 0 for every α ∈ K×,

see [5, Proposition 1.4.4 and Proposition 1.4.7].

2.2. Local and global heights

Let X be a projective variety over K, L a line bundle on X, and v ∈M a
fixed place of K. A (continuous) v-adic metric on L is the datum of a map
‖ · ‖v : Lan

v (U) → Cont(U,R>0) for each open subset U ⊆ Xan
v , satisfying

the properties in [11, Section 1.1.1], with the additional requirement that
it is invariant with respect to the action of Gal(Kv/Kv) on Xan

v . Whenever
we want to stress the invariance under the given Galois group, we say that
the metric is defined over K. A line bundle L with a continuous v-adic
metric ‖ · ‖v is called a v-adic metrized line bundle and it is denoted by
(L, ‖ · ‖v) or, for short, by Lv.

ANNALES DE L’INSTITUT FOURIER
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It is possible to define pull-backs, tensor products and inverses of v-
adic metrized line bundles. This gives the set of isometry classes of v-adic
metrized line bundles over X the structure of an abelian group, see [11, Sec-
tion 1.1.2]; the neutral element is the class of (OX , ‖ · ‖v,tr), with ‖1‖v,tr = 1
defining the v-adic trivial metric on OX . If Lv = (L, ‖ · ‖v) is a v-adic
metrized line bundle, we denote by ‖ · ‖⊗nv the metric of L⊗nv . Also, if
(K ′,M′) is an adelic finite field extension of (K,M) and w ∈ M′ is such
that w | v, a continuous v-adic metric on L defines a continuous w-adic
metric on the extension of L to K ′, as Gal(K ′w/K ′w) ⊆ Gal(Kv/Kv).

For two continuous v-adic metrics ‖ · ‖1,v and ‖ · ‖2,v on L, their distance
is defined to be

(2.1) dv(‖ · ‖1,v, ‖ · ‖2,v) := sup
p∈Xan

v \div(s)

∣∣ log(‖s(p)‖1,v/‖s(p)‖2,v)
∣∣

for any choice of a nonzero rational section s of L.
When v is an archimedean place of K, a continuous v-adic metric on

Lan
v is said to be semipositive if its associated first Chern current c1(Lv) is

semipositive, see [11, Section 1.2.8] for more details.
When v is a non-archimedean place of K, an algebraic v-adic metric on L

is a metric ‖ · ‖v on Lan
v such that there is a nonzero e ∈ N for which ‖ · ‖⊗ev

is induced by an algebraicK◦v -model (X ,L ) of (X,L⊗e) in the sense of [25,
Definition 2.5 and Remark 2.6]. Notice that this notion agrees with the one
of formal metrics introduced in [19, Section 7], see [24, Proposition 8.13].
The algebraic v-adic metric on L induced by L is said to be semipositive
if L · C > 0 for every closed integral vertical curve C in X . We refer
to [23, Theorem 0.1] for equivalent definitions of semipositivity of formal
metrics using the language of forms and currents on Berkovich spaces. More
generally, a v-adic metric ‖ · ‖v on L is said to be semipositive if there exists
a sequence of semipositive algebraic v-adic metrics on L converging to ‖ · ‖v
with respect to the distance defined in (2.1). For algebraic v-adic metrics,
this agrees with the previous definition, see [23, Proposition 7.2].
Finally, a metrized line bundle Lv is said to be DSP, short for difference

of semipositive, if there exist semipositive metrized line bundles Mv and
Nv such that

Lv 'Mv ⊗N−1
v .

For a d-dimensional subvariety Y of X and the choice of a d-tuple of
semipositive v-adic metrized line bundles L0,v, . . . , Ld−1,v on X, one can
construct a regular Borel measure c1(L0,v) ∧ · · · ∧ c1(Ld−1,v) ∧ δY an

v
on

Xan
v , which is supported on Y an

v . In the archimedean case, it can be de-
fined by Bedford–Taylor theory, see for instance [15, Corollary 2.3], while
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in the non-archimedean case it was first introduced in [10, Définition 2.4
and Proposition 2.7(b)] and later in [20, 3.8] under relaxed assumptions.
Furthermore, this measure can be extended by multilinearity to a d-cycle
Z of X, and we denote it by

(2.2) c1(L0,v) ∧ · · · ∧ c1(Ld−1,v) ∧ δZan
v
.

When all the v-adic metrized line bundles coincide with Lv, one may simply
write c1(Lv)∧d ∧ δZan

v
.

Proposition 2.3. — With the above hypotheses and notations, the
measure in (2.2) satisfies the following properties:

(1) it is a measure on Xan
v of total mass degL0,...,Ld−1

(Z), and positive
if Z is effective;

(2) it is symmetric and multilinear in the choice of L0,v, . . . , Ld−1,v;
(3) given, for all i = 0, . . . , d − 1, a sequence (‖ · ‖i,v,`)` of continuous

semipositive v-adic metrics on Li converging to ‖ · ‖i,v with respect
to the distance in (2.1), then there is a weak convergence of the
corresponding measures.

Proof. — We can assume that Z is a prime cycle. In the archimedean
case, the claims are a consequence of the definition of the first Chern current
and of the measure in (2.2), of [15, Proposition 1.2 and Corollary 1.10]
and of the classical Wirtinger theorem. In the non-archimedean case, these
properties are proven in [20, Corollary 3.9(a) and Proposition 3.12]. �

The measure in (2.2) allows the definition of the local height of a d-cycle
Z of X with respect to the choice of pairs (Li,v, si), i = 0, . . . , d, consisting
of a semipositive v-adic metrized line bundle on X and a rational section
si of Li, such that s0, . . . , sd intersect Z properly. We define h(∅) := 0 and,
for d > 0, we follow the recursive formula

(2.3) h(L̄0,v,s0),...,(L̄d,v,sd)(Z) := h(L̄0,v,s0),...,(L̄d−1,v,sd−1)(div(sd) · Z)

−
∫
Xan
v

log‖sd‖d,v c1(L0,v) ∧ · · · ∧ c1(Ld−1,v) ∧ δZan
v
.

It is symmetric and multilinear in the choice of L0,v, . . . , Ld,v. Moreover,
we can extend this definition to DSP v-adic metrized line bundles.

Remark 2.4. — Let Z be a d-cycle, and (L0, s0), . . . , (Ld, sd) fixed line
bundles on X equipped with rational sections intersecting Z properly.
By (2.3) and Proposition 2.3, the function

(‖ · ‖0, . . . , ‖ · ‖d) 7−→ h((L0,‖ · ‖0),s0),...,((Ld,‖ · ‖d),sd)(Z)

ANNALES DE L’INSTITUT FOURIER
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is Lipschitz continuous on the set of (d + 1)-tuples of DSP v-adic metrics
on L0, . . . , Ld respectively.

Next, we deal with the adelic structure of (K,M). For this we combine the
local pieces of information introduced above with some coherence condition.
A metrized line bundle L := (L, (‖ · ‖v)) is a line bundle L together with a
v-adic metric for each place v ∈ M. It is called semipositive (respectively
DSP) if the v-adic metric ‖ · ‖v is semipositive (respectively DSP) for all
v ∈M.

A metrized line bundle L is said to be quasi-algebraic if there exists a
finite set S ⊆ M containing all archimedean places, a nonzero e ∈ N and
an algebraic K◦S-model (X ,L ) of (X,L⊗e), such that for each v 6∈ S the
metric ‖ · ‖⊗ev is induced by localizing the model at v. A quasi-algebraic
metrized line bundle is called algebraic if S coincides precisely with the set
of archimedean places. Pull-backs, tensor products and inverses of quasi-
algebraic line bundles are again such.

Proposition 2.5. — Let L = (L, (‖ · ‖v)) be a quasi-algebraic metrized
line bundle on X, defined over K and such that ‖ · ‖v is an algebraic v-adic
metric on L for all non-archimedean places v of K. Then, there exists a
finite field extension K ′ of K such that the base change of L to K ′ is
algebraic.

Proof. — By considering a suitable positive integer tensor power of L,
we can assume that every non-archimedean v-adic metric is given by a K◦v -
model of (X,L). In such a case, this follows from [39, Lemma 3.5] and [21,
Proposition 3.4]. Notice that the equivalence between v-adic formal and
algebraic metrics is proven in [25, Theorem 1.1]. �

Recall that in our setting, saying that L is defined over K is solely in-
volved with the Gal(Kv/Kv)-invariance of the v-adic metrics.

Remark 2.6. — Given a DSP quasi-algebraic metrized line bundle L =
(L, (‖ · ‖v)), for every closed point p of X and every rational section s of L
such that p 6∈ |div(s)|, we have

‖s(pan
v )‖v= 1,

for almost every place v ∈M. This is enough to show that, given a d-cycle
Z of X and a family of DSP quasi-algebraic metrized line bundles together
with rational sections (Li, si), i = 0, . . . , d, such that s0, . . . , sd intersect Z
properly,

h((L0,‖ · ‖0,v),s0),...,((Ld,‖ · ‖d,v),sd)(Z) = 0,
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for almost every v ∈ M. We refer to [8, Propositions 1.5.8 and 1.5.14] for
more details about these statements.

The previous remark allows to define global heights as finite weighted
sums of local heights. More precisely, given a family of DSP quasi-algebraic
metrized line bundles L0, . . . , Ld, the global height of a d-cycle Z of X is
set to be

hL̄0,...,L̄d
(Z) :=

∑
v∈M

nv h((L0,‖ · ‖0,v),s0),...,((Ld,‖ · ‖d,v),sd)(Z),

where si is a rational section of Li, i = 0, . . . , d, such that s0, . . . , sd in-
tersect Z properly. Whenever all metrized line bundles coincide, we write
hL̄(Z) for short.
This definition does not depend on the choice of the sections, by com-

bining [18, Corollary 3.8] and the fact that the product formula holds.
Moreover, it is symmetric and multilinear in the choice of L0, . . . , Ld, and
invariant by finite field extensions. In particular, one obtains a well-defined
height function on the d-dimensional cycles of X over K by considering
any finite field extensions of K over which a cycle is defined and equipping
it with the structure given in Definition 2.1.
The height can be seen as the arithmetic analogue of the notion of the

degree of a cycle with respect to a line bundle L. Indeed, recall that for
a closed point p of X one sets degL(p) := [K(p) : K], which extends by
linearity to 0-cycles of X. Furthermore, for any d-cycle Z of X, its degree is
defined recursively by degL(Z) := degL(div(s) ·Z) for an arbitrary rational
section s of L intersecting Z properly.

Remark 2.7. — When K is the function field of a curve and L is a semi-
positive algebraic metrized line bundle with metrics given by an algebraic
model (X ,L ) of (X,L⊗e), the height hL̄(Y ) of a subvariety Y of X equals
degL (Y ), where Y is the closure of Y in X .

If Y is a subvariety of X with degL(Y ) 6= 0, we set the normalized height
of Y with respect to a DSP quasi-algebraic metrized line bundle L to be

(2.4) ĥL̄(Y ) := hL̄(Y )
(dim(Y ) + 1) degL(Y ) .

Example 2.8. — When X = PnQ, there exists a choice of a canonical met-
ric on the line bundle O(1) for which the associated height agrees with
the classical one introduced by Weil and Northcott for algebraic numbers,
see [8, Examples 1.3.11 and 1.4.4] for the precise definition. In such a case,
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for instance, the closed point p of P1
Q = ProjQ[t0, t1] given by the homoge-

neous polynomial tk1 − 2tk0 satisfies

h ¯O(1)(p) = log 2 and ĥ ¯O(1)(p) = log 2
k

,

for all k > 1.

For any two collections (‖ · ‖1,v) and (‖ · ‖2,v) of v-adic metrics on L such
that ‖ · ‖1,v = ‖ · ‖2,v for all but finitely many v ∈ M, we define their
distance as

d
(
(‖ · ‖1,v), (‖ · ‖2,v)

)
:=
∑
v∈M

nvdv(‖ · ‖1,v, ‖ · ‖2,v).

The v-adic data of two quasi-algebraic metrics on a line bundle L coincide
in all but a finite number of places.

Lemma 2.9. — For every fixed d-cycle Z of X, the function

((‖ · ‖0,v), . . . , (‖ · ‖d,v)) 7−→ h(L0,(‖ · ‖0,v)),...,(Ld,(‖ · ‖d,v))(Z)

is Lipschitz continuous on the set of (d+ 1)-tuples of DSP quasi-algebraic
collections of v-adic metrics on L0, . . . , Ld respectively.

Proof. — This follows from Remark 2.4 and the multilinearity of heights
with respect to DSP metrized line bundles. �

2.3. Elementary perturbations of metrized line bundles

Let X be a projective variety over K. We here introduce a relevant class
of continuous functions on Xan

v , for some v ∈ M, that play a central role
in the proof of the equidistribution theorem in Section 4.
For the convenience of presentation, we unify two well-known archime-

dean and non-archimedean notions under a common name.

Definition 2.10. — Let v ∈ M. A real-valued function f on Xan
v is

said to be a v-adic elementary function if
(1) when v is archimedean, f is smooth;
(2) when v is non archimedean, f is piecewise Q-linear in the sense

of [25, Definition 2.11].
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The following proposition relates v-adic elementary functions with met-
rics on OX defined on a suitable finite field extension of K.

Proposition 2.11. — Let v ∈ M, and let f be a v-adic elementary
function on X. There exists a finite field extension K ′ of K, and a place w
of K ′ over v such that the choice − log ‖1‖ := f determines a w-adic metric
on OX which is defined over K ′. Moreover, when v is non-archimedean, the
so-defined w-adic metric is algebraic.

Proof. — First, notice that v-adic elementary functions are continuous
on Xan

v , see [25, Proposition 2.12(a)] for the non-archimedean case. Then,
the first claim follows from the fact that there exists a finite field extension
K ′ of K, and a place w of K ′, with w | v, for which the function f is
invariant under the action of Gal(K ′w/K ′w) on Xan

v . This statement is clear
in the archimedean case. If v is non-archimedean, [25, Proposition 2.18(b)]
implies that there exists a finite field extension F of Kv such that f is
Gal(Kv/F )-invariant. Since the extension F/(F ∩Ksep

v ) is purely insepara-
ble, such a group of automorphisms coincides with Gal(Kv/F ∩Ksep

v ), and
the conclusion follows from [34, Exercise 2 page 30].
For the last claim, notice that the metric is piecewise Q-linear in the sense

of [25, Definition 2.11]. This is equivalent, using the compactness of Xan
v ,

to the existence of a positive integer e such that ‖ · ‖e is a piecewise linear
metric on L⊗e according to [25, Definition 2.8]. It suffices to apply [24,
Propositions 8.11 and 8.13] (see also [25, Theorem 1.1]) to conclude that
‖ · ‖⊗e is induced by an algebraic (K ′w)◦-model of L⊗eK′ . �

Remark 2.12. — The proof of the previous proposition shows that non-
archimedean elementary functions coincide with the model functions of [39,
Definition 3.4].

Elementary functions are dense in the set C(Xan
v ,R) of real-valued con-

tinuous functions on Xan
v .

Theorem 2.13. — Let v ∈M. The set of v-adic elementary functions is
a Q-vector subspace of C(Xan

v ,R). Moreover, it is dense in C(Xan
v ,R) with

respect to the uniform convergence topology.

Proof. — When v is non-archimedean, the sum of two v-adic elementary
functions is again such because of [25, Proposition 2.12(b)]. The other
properties can be checked directly from the definitions.
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For the second claim, both the archimedean and non-archimedean case
are proved using the Stone–Weierstrass theorem. In particular, the non-
achimedean situation is shown in [19, Theorem 7.12], see also [25, Propo-
sition 2.15]. �

One of the main techniques in the proof of the equidistribution theorem
is to consider slight perturbations of a given metrized line bundle by means
of analytic functions.

Definition 2.14. — Let L = (L, (‖ · ‖v)) be a metrized line bundle over
X, v0 ∈ M, f a continuous real-valued Gal(Kv0/Kv0)-invariant function
on Xan

v0
, and t ∈ Q. The (v0, f, t)-perturbation of L is the line bundle L

together with the metric defined by

‖s‖′v :=
{
‖s‖v e−tf if v = v0,

‖s‖v otherwise

for all local section s of L. We denote this metrized line bundle by L(v0, f, t).

Remark 2.15. — Let L be a metrized line bundle over X, v0 ∈M and f
a v0-adic elementary function. It follows from the proof of Proposition 2.11
that f is Gal(K ′w0/K

′
w0

)-invariant for a certain finite field extension K ′ of
K and w0 | v0. Then, it determines a (w0, f, t)-perturbation of L defined
over K ′ for all t ∈ Q.

Perturbations via elementary functions satisfy the following favorable
property.

Lemma 2.16. — Let v0 ∈ M, f a v0-adic elementary function, and
t ∈ Q. Let also K ′ and w0 be as in Remark 2.15. If L is a DSP quasi-
algebraic metrized line bundle on X, then L(w0, f, t) is a DSP quasi-
algebraic metrized line bundle on XK′ .

Proof. — Finite base changes of quasi-algebraic metrized line bundles
are again such. Hence, the quasi-algebricity of L(w0, f, t) follows from the
fact that its metric coincides with the one of the extension of L to K ′ for
all except one place.
Denote by N the line bundle OX defined over K ′, equipped with the

w0-adic metric satisfying − log ‖1‖w0 = tf , and the trivial metric at all
other places of K ′. Since

L(w0, f, t) = LK′ ⊗N

and the tensor product of DSP metrized line bundles is again such, we can
restrict to prove that N is DSP.
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The trivial metric is semipositive; this follows from definition at archi-
medean places, and from [23, Proposition 6.4(b)] otherwise. So it is left to
show that ‖ · ‖w0 is DSP.

For the case when w0 is non-archimedean, by Proposition 2.11 and the
closure of elementary functions under rational multiplication, there exists
e ∈ N for which N⊗e comes from an algebraic line bundle N on a model
X over (K ′w0

)◦. Then, writing N as a difference of two ample line bundles
on X gives that N⊗e is DSP, then the result. When w0 is archimedean,
the smoothness of f implies that Nw0 is DSP by tensoring by sufficiently
positive metrized line bundle. �

The next lemma concerns the variation of the height of a cycle under
this kind of perturbations.

Lemma 2.17. — Let L be a semipositive quasi-algebraic metrized line
bundle over X. Let v0 ∈ M, f a v0-adic elementary function, t ∈ Q, and
K ′ and w0 as in Remark 2.15. For every d-cycle Z of X,

hL̄(w0,f,t)(Z) = hL̄(Z) + t (d+ 1)nw0

∫
Xan
v0

f c1(Lv0)∧d ∧ δZan
v0

+ t2P (t),

with P a polynomial with real coefficients and degree d − 1, depending
on L, Z and f .

Proof. — Denote by N the (w0, f, 1)-perturbation of the trivial metrized
line bundle, so that L(w0, f, t) = L⊗N⊗t. By Lemma 2.16, N is DSP and
quasi-algebraic on XK′ , hence we can write N 'M1⊗M−1

2 , whereM1 and
M2 are semipositive quasi-algebraic metrized line bundles defined over K ′.

Let s be a rational section of M1 that intersects Z properly; it is also
a rational section of M2. Then, by multilinearity on N and the inductive
definition of height,

hL̄,...,L̄,N̄ (Z) = hL̄,...,L̄,M̄1
(Z)− hL̄,...,L̄,M̄2

(Z)

= −
∑

w∈MK′

nw

∫
Xan
w

log ‖s‖M1,w

‖s‖M2,w
c1(Lw)∧d ∧ δZan

w

= −nw0

∫
Xan
w0

log‖1‖N̄,w0
c1(Lw0)∧d ∧ δZan

w0

= nw0

∫
Xan
w0

f c1(Lw0)∧d ∧ δZan
w0
.
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Since the global height of d-cycles is symmetric and multilinear in the
metrized line bundles, the above equality yields

hL̄(w0,f,t)(Z) = hL̄⊗N̄⊗t(Z) =
d+1∑
`=0

(
d+ 1
`

)
h
L̄,...,L̄,N⊗t, . . . , N⊗t︸ ︷︷ ︸

`

(Z)

=
d+1∑
`=0

(
d+ 1
`

)
t` h

L̄,...,L̄,N, . . . , N︸ ︷︷ ︸
`

(Z)

= hL̄(Z) + t (d+ 1)nw0

∫
Xan
w0

f c1(Lw0)∧d ∧ δZan
w0

+ t2P (t).

To conclude the proof, notice that since w0 | v0 and both L and Z are
defined over K, the integral coincides with the one over Xan

v0
. �

2.4. Positivity in arithmetic geometry

Let X be a projective variety over a field K. In this subsection, we recall
different notions of positivity in algebraic geometry and their arithmetic
counterparts.
A line bundle L on X is said to be nef if degL(C) > 0 for every curve C

in X. By Kleiman’s theorem, see [27, Theorem 1.4.9], this is equivalent to
the fact that degL(Y ) > 0 for all subvarieties Y of X. Proper pull-backs,
tensor products and positive powers of nef line bundles are again nef. A
line bundle L is said to be semiample if L⊗n is globally generated for some
n > 0. Notice that semiample line bundles are nef.

The volume of a line bundle L is defined as the nonnegative real number

vol(L) := lim sup
n→∞

dim H0(X,L⊗n)
ndim(X)/ dim(X)!

;

and L is said to be big if vol(L) > 0. If L is nef, [27, Corollary 1.4.41]
asserts that vol(L) = degL(X). In particular, if L is big and nef, then
degL(X) > 0.
Finally, big and nef line bundles rejoice the useful property that the de-
gree of generic subvarieties is strictly positive, in the sense of the following
proposition.

Proposition 2.18. — Let X be a projective variety over a field K and
L a big and nef line bundle on X. Then, there exists a Zariski closed subset
H0 ⊆ XK̄ of codimension 1, such that for every subvariety Y of XK̄ that
is not contained in H0 one has degL(Y ) > 0.
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Proof. — As L is defined over K and the degree is invariant under base
field extension and Galois action, the restriction of LK̄ to each irreducible
component of XK̄ is again big and nef. Then, the statement follows from
the fact that the generic restriction of a big line bundle on an irreducible
projective variety is again big, see [27, Corollary 2.2.11]. �

Remark 2.19. — Notice that when L is ample, the strict positivity of the
degree holds for every subvariety Y of X by the Nakai–Moishezon criterion,
see [27, Theorem 1.2.23].

There exist analogous notions for nefness and bigness in the arithmetic
case. Let L be a semipositive quasi-algebraic metrized line bundle on X.
We say that L is (arithmetically) nef if L is nef and hL̄(p) > 0 for every
closed point p in X.
A global section s ∈ H0(X,L) is called L-small if

(2.5) log sup‖s‖v6 0 for every v ∈M.

In the context of Arakelov geometry, such sections are the arithmetic ana-
logue of global sections in the geometric case. This analogy is strengthened
by the following observation, which characterizes the small sections of an
algebraically metrized line bundle on a variety defined over a function field.

Remark 2.20. — When K is a function field, and L is endowed with the
algebraic metric coming from a model L , L-small sections are identified
with global sections of L , see the proof of [13, Proposition 2.2].

Moriwaki introduced in [31] the notion of arithmetic volume of a quasi-
algebraic metrized line bundle L, which is defined as

v̂ol(L) := lim sup
n→∞

log #
{
s ∈ H0(X,L⊗n) | s is L⊗n-small

}
ndim(X)+1/(dim(X) + 1)!

in analogy with the geometric situation.
This is especially useful when K is a number field, where small sections

are more delicate to control than in the setting of Remark 2.20. In this case,
assuming that L is algebraically metrized, Chen showed that the arithmetic
volume is in fact a limit, see [14, Theorem 5.2].

Remark 2.21. — Let K be the function field of a smooth projective curve
defined over a finite field k, and L an algebraically metrized line bundle on
X defined by the model (X ,L ). Then v̂ol(L) = log(#k) vol(L ).

The relevance of the existence of small sections for some integer power
of a metrized line bundle leads to the definition of arithmetic bigness.
Following [39, Definition 2.1], a quasi-algebraic metrized line bundle L is
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said to be (arithmetically) big if v̂ol(L) > 0. The reader is referred to [30,
Section 2], [39, Section 2.2] and [31] for equivalent definitions and properties
regarding this notion.

Remark 2.22. — If K is a number field, and L is a big algebraic metrized
line bundle on X, then L is geometrically big; see [14, Proposition 5.1].

The following is a consequence to the generalized Hodge index theorem
of Moriwaki, see [33, Corollary 6.14], together with the continuity property
of the arithmetic volume given by [32, Theorem 5.1] and of the height
function proven in Lemma 2.9.

Lemma 2.23. — Let K be a number field, and L be a semipositive
algebraic metrized line bundle on X. Then

v̂ol(L) > hL̄(X).

In particular, if hL̄(X) > 0, then L is big.

Analogously, one proves the following extension of the translation made
by Moriwaki in [33, Remark 6.5] of Yuan’s version of Siu’s theorem [39].

Lemma 2.24. — LetK be a number field, and L1, L2 be nef semipositive
algebraic metrized line bundles on X. Then

v̂ol(L1 ⊗ L−1
2 ) > hL̄1

(X)− (dim(X) + 1) hL̄1,...,L̄1,L̄2
(X).

3. Higher dimensional essential minima

Let X be a projective variety over K, and L = (L, (‖ · ‖v)) a semipos-
itive quasi-algebraic metrized line bundle on X. In this section we define
the successive minima of X with respect to L for arbitrary dimensional
subvarieties and we prove some basic properties of them, mainly focusing
on the essential minimum. We work analytically with algebraically closed
complete fields, reason for which we refer to the treatment of [22].

3.1. Correcting integrals

Let Y be a subvariety of XK̄ of dimension d and s a nonzero rational
section of an integer power L⊗n

K̄
of the line bundle L, satisfying Y * |div(s)|.

TOME 72 (2022), FASCICULE 4



1348 Roberto GUALDI & César MARTÍNEZ

After choosing a finite field extension K ′ of K over which Y and s are
defined, we set, for every w ∈MK′ ,

(3.1) IL̄w(Y, s) := 1
n

∫
Xan
w

− log ‖s‖⊗nw c1(Lw)∧d ∧ δY an
w
.

It is a well defined real number because of [22, Theorem I]. Moreover,
it is invariant under the tensor powering application s 7→ s⊗m from the
set of rational sections of L⊗nK′ to the ones of L⊗nmK′ , for all n,m ∈ N>0.
As L is quasi-algebraic, [22, Theorem 3.1.13] ensures that the function
w 7→ |IL̄w(Y, s)| is summable on MK′ , so one can define the real number

(3.2) IL̄(Y, s) :=
∑

w∈MK′

nw IL̄w(Y, s).

Remark 3.1. — It follows from the global induction formula of [22, The-
orem 3.1.13] and the multilinearity of the height with respect to the choice
of metrized line bundles that

IL̄(Y, s) = hL̄(Y )− hL̄(div(s) · Y )
n

,

for every rational section s of L⊗n
K̄

with Y * |div(s)|. In particular, IL̄(Y, s)
is independent on the choice of K ′.

Consider a d-cycle Z of XK̄ and a section s of L⊗n
K̄

intersecting Z prop-
erly, that is, no summand of the base change of Z to K is contained in
|div(s)|. Then, (3.2) extends linearly to define IL̄(Z, s).

We can readily compute the influence of the perturbation of a metric as
in Section 2.3 on the correcting integrals.

Lemma 3.2. — Let L be a semipositive quasi-algebraic metrized line
bundle on X, and Z a d-cycle of X. Let v0 ∈ M, f a v0-adic elementary
function, t ∈ Q, and K ′ and w0 as in Remark 2.15. Then,

IL̄(Z, s) = IL̄(w0,f,t)(Z, s)− nw0 t

∫
Xan
v0

f c1(Lv0)∧d ∧ δZan
v0

for every rational section s of L⊗n
K̄

intersecting Z properly.

Proof. — The fact that both Z and L are defined over K ensures that
the integrals of f over Xan

w0
and Xan

v0
coincides. With this observation, the

claim follows by the definition of the metric of L(w0, f, t) and by comparing
correcting integrals over a finite extension of K ′ over which s is defined. �
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3.2. Successive minima

The goal of this subsection is to give a tool to control the values of
the correcting integrals in (3.1) for generic subvarieties of X of a fixed
dimension. To do so, consider first, for any d = 0, . . . ,dim(X) and η ∈ R,
the closed subset of XK̄

X(d)(η, L) :=
⋃
Y Zar,

where the union ranges over all d-dimensional subvarieties Y of XK̄ that
satisfy the inequality

(3.3) sup
{
IL̄(Y, s)

∣∣∣ s ∈ H0(XK̄ , L
⊗n
K̄

)
, n ∈ N \ {0}, Y * |div(s)|

}
6 η degL(Y ),

with the convention that the supremum of the empty set is −∞.

Remark 3.3. — As a consequence to Remark 3.1 we can rewrite condi-
tion (3.3) as

hL̄(Y )− inf
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}
Y*|div(s)|

hL̄(div(s) · Y )
n

6 η degL(Y ),

expressing it in terms of “height-gaps” with respect to its Cartier divisors.

Definition 3.4. — For d = 0, . . . ,dim(X) and j = 1, . . . ,dim(X)+1−
d, we define the j-th d-dimensional successive minimum of X with respect
to L as

e(d)
j (X,L) := inf

{
η ∈ R

∣∣ dim
(
X(d)(η, L)

)
> dim(X) + 1− j

}
∈ R∪{±∞}.

The first d-dimensional successive minimum is referred to as the d-
dimensional essential minimum of X with respect to L. In particular, when
X is geometrically irreducible one has

e(d)
1 (X,L) = inf{η ∈ R | X(d)(η, L) = XK̄}.

Roughly speaking, the d-dimensional essential minimum encodes the
generic highest jump that can be realized in the first step of the induc-
tive definition of the height of d-dimensional subvarieties.

Remark 3.5. — Since by definition hL̄(∅) = 0 and degL(p) = 1 for ev-
ery point p of XK̄ , the set X(0)(η, L) is the Zariski closure in XK̄ of
the set of points whose height is upper bounded by η. In particular, for
each j = 1, . . . ,dim(X) + 1, the invariant e(0)

j (X,L) coincides with the
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classical notion of j-th successive minimum of X with respect to L, see for
instance [40, Section 5].

Example 3.6. — Let L = (OX , (‖ · ‖v,tr)). The degree of any subvariety Y
of dimension at least 1 with respect to OX is zero, as well as the quantity
IL̄(Y, s) for all nonzero global section s of OX , because of the product
formula. Hence

e(d)
j (X,L) = −∞,

for all d = 1, . . . ,dim(X) and j = 1, . . . ,dim(X) + 1− d.

The situation is better behaved under some geometrical assumptions on
the line bundle L. Recall that L is said to have infinite Iitaka dimension
if H0(X,L⊗n) = {0} for all n > 0; see [27, Section 2.1] for a more general
definition and treatment in the case of normal varieties.

Lemma 3.7. — Let d = 0, . . . ,dim(X). Then
(1) with the usual order relation on R ∪ {±∞},

e(d)
dim(X)+1−d(X,L) 6 · · · 6 e(d)

2 (X,L) 6 e(d)
1 (X,L);

(2) if L has infinite Itaka dimension, then all the d-dimensional succes-
sive minima equal −∞;

(3) if L is nef, for all η1, η2 ∈ R,

η1 6 η2 =⇒ X(d)(η1, L) ⊆ X(d)(η2, L);

(4) if L is big and nef, the d-dimensional essential minimum differs from
−∞.

Proof. — The first and third statements follow directly from the defi-
nition. To prove (2), notice that if L has infinite Iitaka dimension, condi-
tion (3.3) is satisfied for all subvarieties Y of XK̄ and for all η ∈ R.

Finally, assume that L is big and nef. Let H0 be the Zariski closed subset
of XK̄ given by Proposition 2.18. By bigness, there exists a nonzero global
section s of L⊗n

K̄
for some n > 0. For every v ∈M, the compactness of Xan

v

and the continuity of the metric imply that ‖s‖⊗nv is upper bounded by a
strictly positive real constant Cv on Xan

v . Moreover, one can take Cv = 1
for almost all v ∈ M because of the quasi-algebricity of the metric. Write
C := −

∑
v∈M nv logCv ∈ R and set

ηs := −|C|
n
− 1.

Notice that if Y is a d-dimensional subvariety of XK̄ satisfying condi-
tion (3.3) for such ηs, then Y has to be contained in H0 ∪ |div(s)|. Indeed,
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if not, one would have

ηs degL(Y ) > IL̄(Y, s) > C

n
degL(Y ) > ηs degL(Y ),

which is a contradiction. Then,

X(d)(ηs, L) ⊆ H0 ∪ |div(s)|.

Together with point (3), this implies that dim(X(d)(η, L)) 6 dim(X)−1 for
all η 6 ηs, which in turn yields e(d)

1 (X,L) > ηs, concluding the proof. �

Remark 3.8. — It is easy to adapt the proof of the fourth bullet of
Lemma 3.7 to prove that −|C|/n is in fact a lower bound for the d-
dimensional essential minimum. More generally, the idea of controlling the
size of global sections of L to deduce lower bounds on the d-dimensional
essential minimum is a central strategy in this paper and is exploited in the
next section to relate such an arithmetic invariant with the (normalized)
height of the ambient variety.

Under the assumption that L is semiample, a stronger conclusion than
the one of Lemma 3.7(4) can be obtained. We phrase it allowing fexibility
in the choice of the base field, as follows.

Lemma 3.9. — LetK ′ be an algebraic extension ofK. If L is semiample,
there exists an absolute real constant CL̄,K′ such that

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

s intersects Y properly

IL̄(Y, s) > CL̄,K′ degL(Y )

for every subvariety Y of XK′ .

Proof. — The base change LK′ is semiample. Then, there exists a finite
family of nonzero global sections s0, . . . , sr of L⊗nK′ , for some n > 0, such
that for every subvariety Y of XK′ , there is an i = 0, . . . , r for which
Y * |div(si)|. By continuity of the metric of L, the compactness of the
analytifications of X and the quasi-algebricity of L, the quantity

CL̄,K′ := min
i=0,...,r

(
−

∑
w∈MK′

nw
1
n

log sup ‖si‖w

)
is a real number. Then, Proposition 2.3(1) gives

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

s intersects Y properly

IL̄(Y, s) > CL̄,K′ degL(Y ),

concluding the proof. �
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For the remaining of the paper, we focus on the notion of d-dimensional
essential minimum and its applications to equidistribution theory. An ex-
plicit form of this invariant in the case when d = 0 is described in Re-
mark 3.5; the other extreme case, d = dim(X), is illustrated in the following
example.

Example 3.10. — Assume that X is geometrically irreducible. If L is big
and nef, degL(X) > 0 and thus

e(dim(X))
1 (X,L) = sup

{
IL̄(X, s)
degL(X)

∣∣∣∣ s ∈ H0(XK̄ , L
⊗n
K̄

) \ {0}, n ∈ N \ {0}
}
.

Using Remark 3.1, such an arithmetic invariant is completely determined
by the knowledge of the height of X and of all 1-codimensional subvarieties
of XK̄ .

This example generalizes to the following alternative definition of the
d-dimensional essential minimum.

Proposition 3.11. — Let L be a big and nef line bundle on X and let
H0 denote the Zariski closed subset of XK̄ given by Proposition 2.18. For
every d = 0, . . . ,dim(X), we have

(3.4) e(d)
1 (X,L) = sup

H closed subset of XK̄
codim(H)=1

inf
Y⊆XK̄

dim(Y )=d
Y*H∪H0

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}
Y*|div(s)|

IL̄(Y, s)
degL(Y ) .

Proof. — Fix d = 0, . . . ,dim(X) and, to simplify the notation, let η̃
denote the quantity on the right hand side of (3.4). Fix an arbitrary choice
of ε > 0. For all closed subset H of XK̄ of codimension 1, the definitions
of supremum and infimum yield that there exists a subvariety Y of XK̄ , of
dimension d and not contained in H ∪H0, such that

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}
Y*|div(s)|

IL̄(Y, s)
degL(Y ) 6 η̃ + ε.

As degL(Y ) > 0, such a subvariety Y is contained in the set X(d)(η̃+ ε, L),
but not in H, hence X(d)(η̃+ε, L) * H. As this is true for all closed subsets
H of XK̄ of codimension 1, we have that

X(d)(η̃ + ε, L) = X,

which in turn implies, by the arbitrariness of ε, that e(d)
1 (X,L) 6 η̃.
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For the reverse inequality, consider again ε > 0. By definition of the
supremum, there exists a closed subset Hε of XK̄ of codimension 1, such
that

inf
Y⊆XK̄

dim(Y )=d
Y*Hε∪H0

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}
Y*|div(s)|

IL̄(Y, s)
degL(Y ) > η̃ − ε;

this means that for every subvariety Y of XK̄ of dimension d such that
Y * Hε ∪H0,

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}
Y*|div(s)|

IL̄(Y, s)
degL(Y ) > η̃ − ε.

This implies that such subvarieties Y can not satisfy the condition (3.3) for
η = η̃ − ε; otherwise said, if a subvariety Y satisfies the inequality in (3.3)
with η = η̃ − ε, then it must be contained in Hε ∪ H0 hence, by taking
Zariski closures,

X(d)(η̃ − ε, L) ⊆ Hε ∪H0.

As Hε ∪H0 has codimension 1, using Proposition 3.7(3) and the definition
of the d-dimensional essential minimum forces η̃ − ε 6 e(d)

1 (X,L). The
arbitrariness of ε > 0 yields η̃ 6 e(d)

1 (X,L), concluding the proof. �

4. Key inequality and Zhang’s inequality

Throughout this section, X denotes a projective variety of dimension N
defined over a field K. Moreover, L denotes a big semiample line bundle
on X.
The aim of this section is to prove the following key inequality, which is

the essential ingredient for the main equidistribution result in this paper.
In addition, we also use it to prove an analogue of Zhang’s inequality in
our setting in Section 4.4.

Theorem 4.1 (Key inequality). — Let (‖ · ‖v)v be a semipositive quasi-
algebraic metric on L, and OX = (OX , (‖ · ‖′v)v) be DSP quasi-algebraically
metrized. For t ∈ R, with t close to 0, and for n > 0 big enough, there is a
nonzero global section s ∈ H0(XK̄ , L

⊗n
K̄

) satisfying

(4.1)
∑
v∈M

nv sup log‖s‖⊗nv ‖1‖′⊗tv 6 n
(
− ĥL̄⊗ŌX⊗t

(X) +O(t2)
)
,

where the implicit constant on O(t2) does not depend on n.
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To prove this theorem we deal with two different cases depending on the
nature of K. In the function field case we mainly follow [21, Section 5],
whereas in the number field case we take Yuan’s approach that was in-
troduced in [39, Section 3]. For the convenience of the reader, we shall
nevertheless give the full argument of these proofs, to clear out the subtle
differences.

4.1. Function fields

We can assume that k is an algebraically closed field. Let K = k(C) be
the function field of a regular projective curve C over k.
Let π : X → C be a projective model of X, and let L be a vertically

nef model of L⊗e on X , for some nonzero e ∈ N. Let M be an ample line
bundle on C such that the metrized line bundle on L induced by the model
L ⊗ π∗M is nef; such a line bundle exists by [21, Lemma 5.3].

Proposition 4.2. — Let N be a line bundle on X that is trivial on
the generic fiber, and assume e = 1. For every t ∈ Q, with t close to 0, and
every r ∈ Q such that

r >
−hL⊗N ⊗t(X)

(N + 1) degM (C) degL(X) +O(t2),

with the implicit constant in O(t2) not depending on n, we have

h0(X , (L ⊗ π∗M⊗r ⊗N ⊗t)⊗n
)
> 0,

for every n > 0 big enough, with tn, rn ∈ Z.

Proof. — To begin with, as Gubler’s consequence to Siu’s theorem (see
[21, Lemma 5.6]) we have the following inequality

(4.2) h0(X ,
(
L ⊗ (π∗M )⊗r ⊗N ⊗t)⊗n)

>
1

(N + 1)!
(

degL⊗(π∗M )⊗r⊗N ⊗t(X ) +O(t2)
)
nN+1 + o(nN+1),

for every n ∈ N big enough, such that tn, rn ∈ Z, and every t ∈ Q close
to 0.

To compute the degree appearing on the right-hand side of this inequal-
ity, one remarks the following. Since C is a curve, the intersection product
of π∗M with itself is zero by the projection formula. In addition, as N

is trivial on the generic fiber of X , we have that it is trivial on all but
a finite number of fibers of π; therefore π∗M ·N = 0 by Chow’s moving
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lemma. We use these observations, in conjunction with the multilinearity
of the degree, to obtain

degL⊗(π∗M )⊗r⊗N ⊗t(X )
= degL⊗N ⊗t(X ) + (N + 1) degL ,...,L ,(π∗M )⊗r (X ).

Moreover, applying the projection formula to the second summand on the
right-hand side, we have that

degL⊗(π∗M )⊗r⊗N ⊗t(X ) = degL⊗N ⊗t(X ) + (N + 1)r degM (C) degL(X).

Finally, by Remark 2.7 and inequality (4.2), we get that for

r >
−hL⊗N ⊗t(X)

(N + 1) degM (C) degL(X) +O(t2)

and n big enough, the statement holds. �

Corollary 4.3. — Let N be a line bundle on X that is trivial on the
generic fiber. For every t ∈ Q close to 0 and n > 0 big enough, with nt ∈ Z,
there exists a nonzero global section s ∈ H0(X,L⊗n) such that∑

v∈M

nv log sup‖s‖⊗nL⊗N ⊗t,v6 n
(
− ĥL⊗N ⊗t(X) +O(t2)

)
,

with the implicit constant of O(t2) not depending on n.

Proof. — Without loss of generality, we can assume that e = 1, since we
can replace L by L⊗e which multiplies both sides of the equality by e.

Let
∑
vmv v be a divisor on C such that its associated line bundle

is M . Notice that degM (C) =
∑
v nvmv. For every nonzero global sec-

tion s ∈ H0(X,L⊗n), we have

log‖s‖⊗nL⊗(π∗M )⊗r⊗N ⊗t,v= log‖s‖⊗nL⊗N ⊗t,v−r nmv.

Hence∑
v∈M

nv log sup‖s‖⊗nL⊗(π∗M )⊗r⊗N ⊗t,v

=
∑
v∈M

nv log sup‖s‖⊗nL⊗N ⊗t,v−r n degM (C).

Furthermore, the metric of a global section of the model (L ⊗ (π∗M )⊗r ⊗
N ⊗t)⊗n upper bounds this equality by 0, see Remark 2.20. The existence
of such a nonzero model section is guaranteed by Proposition 4.2 whenever

r >
−hL⊗N ⊗t(X)

(N + 1) degM (C) degL(X) +O(t2).
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Hence, taking the limit

r −→
(

−hL⊗N ⊗t(X)
(N + 1) degM (C) degL(X) +O(t2)

)+

concludes the proof. �

4.2. Number fields

In this subsection, let L be only big and nef (not necessarily semiample).
Fix an archimededan place v0 ∈M. Given a metric (‖ · ‖v) on L, we denote
L(c) := L(v0, c/nv0 , 1) for c ∈ R, as in Definition 2.14. By construction, if
L is algebraic, then so is L(c).

Lemma 4.4. — Let L be algebraically metrized, OX be the trivial bun-
dle on X equipped with a DSP algebraic metric, and let t ∈ Q close to 0.
Then, for n big enough, there exists a nonzero section s ∈ H0(X,L⊗n) such
that

log sup‖s‖⊗n
L̄⊗ŌX⊗t,v

6

n
(
− 1

nv0
ĥL̄⊗ŌX⊗t

(X) +O(t2)
)

for v = v0,

0 for v 6= v0.

Proof. — First, let us prove that L(c)⊗ OX
⊗t is big for

(4.3) c = −ĥL̄⊗ŌX⊗t
(X) +O(t2) + ε,

for every ε > 0.
Let (X ,L ,N ) be an algebraic model over OK of (X,L⊗e,OX), such

that the non-archimedean v-adic metrics of L and OX are given by this
model. This is possible after taking a common model X , see for instance [8,
Proposition 1.3.6]. Up to taking OX

⊗−1 we may assume that t > 0. Let
N1, N2 be two algebraic semipositive nef metrized line bundles on X, in-
duced by line bundles N1,N2 on X , such that OX ' N1 ⊗ N⊗−1

2 ; this
comes from N ' N1 ⊗N ⊗−1

2 . Then, L1 = L(c) ⊗ N1
⊗t and L2 = N⊗t2

are two algebraic semipositive nef metrized Q-divisors such that

L(c)⊗ OX
⊗t ' L1 ⊗ L⊗−1

2 .

We can apply Lemma 2.24 to obtain

v̂ol(L1 ⊗ L⊗−1
2 ) > hL̄1

(X)− (N + 1) hL̄1,...,L̄1,L̄2
(X).

Moreover, by the multilinearity of the height function, we readily see that
the right-hand side of this inequality amounts to

hL̄(c)⊗ŌX⊗t
(X) +O(t2).
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Then, for c satisfying equality (4.3) and by the multilinearity of the height,
we have hL̄(c)⊗ŌX⊗t

(X) > 0. This implies the arithmetic bigness of L(c)⊗
OX

⊗t by Lemma 2.23.
Next, since L(c)⊗OX

⊗t is big, for n big enough, there exists a nonzero
section s ∈ H0(X,L⊗n) which is small with respect to the metrized line
bundle

(
L(c)⊗ OX⊗t

)⊗n.
Finally, the statement then follows from the equality

log sup‖s‖⊗n
L̄(c)⊗ŌX⊗t,v

=

log sup‖s‖⊗n
L̄⊗ŌX⊗t,v0

+n
(

1
nv0

ĥL̄⊗ŌX⊗t
(X) +O(t2)− ε

)
,

log sup‖s‖⊗n
L̄⊗ŌX⊗t,v

if v 6= v0,

and taking the limit ε→ 0. �

4.3. Proof of Theorem 4.1

Let us now prove the main theorem of this section, by using the previous
results. There is a double generalization step going on: first to consider
quasi-algebraic metrics, and then to consider their limits.

Proof of Theorem 4.1. — When the metrics L and OX are algebraic
and t ∈ Q, the result follows directly from Corollary 4.3 and Lemma 4.4.
Next, assume L and OX are quasi-algebraic, still defined locally by mod-

els of some positive integer power of L. By Proposition 2.5, up to a base
change to a finite field extension of K, the metrics can still be taken as al-
gebraic. Since v-adic metrics (and henceforth heights) are invariant under
finite field extensions, the result follows by the fact that

∑
w|v nw = nv.

It is left to prove the general case, which is obtained by limit from the
above one. Let t ∈ R. By definition, L = (L, (‖ · ‖v)) can be expressed as
the uniform limit of quasi-algebraic semipositive metrized line bundles Li
whose v-adic metrics are defined by K◦v -models of positive integer powers
of L. The same holds for OX

⊗t, which can be approximated by a sequence
OX ,

⊗ti of DSP quasi-algebraic metrized line bundles, with ti ∈ Q. Denote
by di = d(L⊗OX⊗t, Li⊗OX,i⊗ti). By Lemma 2.9, there exists a Lipschitz
continuous function in di bounding∣∣∣ĥL̄i⊗ ¯OX,i⊗ti

(X)− ĥL̄⊗ŌX⊗t
(X)

∣∣∣ .
By allowing di to get as small as necessary compared to t2, we obtain
equation (4.1) in general. �
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4.4. Zhang’s inequality

As a first simple application of Theorem 4.1, we give the following ana-
logue of Zhang’s lower inequality on the essential minimum [40, Theo-
rem 5.2].

Corollary 4.5. — Let X be a projective variety over K, and L a
big and semiample line bundle on X equipped with a semipositive quasi-
algebraic metric. Then, for every integer d = 0, . . . ,dim(X), we have

e(d)
1 (X,L) > ĥL̄(X).

Proof. — Equip OX with the trivial metric. For every ε > 0, choose t
close enough to 0 such that, by Theorem 4.1, there exists s ∈ H0(XK̄ , L

⊗n
K̄

)
for n big enough satisfying

IL̄(Y, s)
degL(Y ) > ĥL̄(X)− ε

for every d-dimensional subvariety Y of XK̄ that does not lie neither in
|div(s)| nor in the Zariski closed subset H0 defined in Proposition 2.18.
Therefore, by Proposition 3.11 we obtain the result. �

Notice that in the case of function fields (and d = 0), Gubler [21] gave
a proof of Zhang’s inequality that also allowed to consider the case of
function fields of higher dimensional varieties. However, his argument relies
on a reduction to the function field case of curves that strongly uses the
fact that e(0)

1 (X,L) (the essential minimum of points) does not depend on
the choice of the section, bypassing the need of a “Key inequality” (of the
form of Theorem 4.1) that holds for function fields of higher dimensional
varieties. It is our impression that, in the setting of this article, we cannot
avoid Theorem 4.1 to prove Corollary 4.5 in this case.

5. Equidistribution of small effective cycles

Fix for the entire section the choice of a projective variety X over K.
A cycle of XK̄ is an element of the free abelian group generated by the
subvarieties ofXK̄ . Recall that it is said to be effective if all of its coefficients
are nonnegative, it is called of pure dimension d (or a d-cycle) if it is a linear
combination of subvarieties ofXK̄ of dimension d, and it is said to be Galois
invariant if it is fixed by all the elements of Gal(K/K).

In this section, we are interested in the study of the interactions between
the geometric and arithmetic properties of a net (Zm)m of Galois invariant
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effective d-cycles of X. In this case, we write each member of the net as
the formal finite sum

(5.1) Zm =
∑
i

am,i Ym,i,

with am,i ∈ N and Ym,i being a subvariety of XK̄ of dimension d for all i.
After defining the notions of genericity and smallness for such nets, we
focus on the statement and proof of the equidistribution theorem by means
of the higher dimensional essential minima introduced above.

5.1. Generic and small nets of cycles

The two following definitions for nets of cycles over a directed set (J ,�)
are fundamental for equidistribution statements. The first one is of geo-
metric nature and formalizes the requirement that the members of the net
have a negligible summand in any closed subset of XK̄ of codimension 1.

Definition 5.1. — Let L be a big and nef line bundle on X. A net
(Zm)m∈J of cycles of XK̄ is said to be L-generic if the degree of Zm with
respect to L is eventually nonzero and, for every closed subset H ⊆ XK̄ of
codimension 1, we have that

lim
m

1
degL(Zm)

∑
Ym,i⊆H

am,i degL(Ym,i) = 0,

with notation as in (5.1).

Notice that, if (Ym)m is a net of subvarieties of XK̄ , Proposition 2.18
assures that the previous definition is equivalent to the following statement:
for every closed subset H of XK̄ of codimension 1 there exists m0 ∈ J such
that Ym * H for all m � m0. In such a case, and as in [21, 6.2], the net
(Ym)m is simply called generic, to underline its independence on the choice
of L. This agrees with Definition 1.3 in the Introduction.

Remark 5.2. — A sequence (Ym)m of subvarieties of XK̄ is generic if
and only if for every closed subset H ⊆ XK̄ of codimension 1, the set
{m ∈ N | Ym ⊆ H} is finite, which agrees with the classical definition.

Remark 5.3. — Let Y be a subvariety of XK̄ of dimension d. For every
element σ of the absolute Galois group of K, denote by Y σ the correspond-
ing Galois conjugate of Y ; it is again a subvariety of XK̄ of dimension d.
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The finite set O(Y ) := {Y σ | σ ∈ Gal(K/K)} is called the Galois orbit of
Y over K and the cycle

Y Gal :=
∑

Y σ∈O(Y )

Y σ

is called the Galois cycle of Y . It is a Galois invariant d-cycle of XK̄ by
construction, with degree #O(Y ) degL(Y ).

A net (Ym)m of subvarieties of XK̄ is L-generic if and only if the net of
their associated Galois cycles is. Indeed, if Ym lies in a one codimensional
closed subset H of XK̄ , then the support of Y Gal

m is contained in the union
of Galois conjugates of H. Conversely, if Y Gal

m has a summand contained
in H, then Ym lies in the union of Galois conjugates of H.

The notion of genericity of a net of d-dimensional subvarieties of XK̄ is
intimately related with the d-dimensional essential minimum of a semipos-
itive quasi-algebraic metrized line bundle, as the next statement shows.

Proposition 5.4. — Let L be a semipositive quasi-algebraic metrized
line bundle on X with L big and nef. Let d = 0, . . . ,dim(X), and (Ym)m∈J
be a generic net of d-dimensional subvarieties of XK̄ . Then,

(5.2) lim inf
m

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

IL̄(Ym, s)
degL(Ym) > e(d)

1 (X,L).

Moreover, there exists a generic net (Ym)m∈J of d-dimensional subvarieties
of XK̄ satisfying

(5.3) lim
m

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

IL̄(Ym, s)
degL(Ym) = e(d)

1 (X,L).

Proof. — Let H0 denote the closed subset of XK̄ introduced in Proposi-
tion 2.18. For simplicity of notation, write

F (Y ) := sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}
Y*|div(s)|

IL̄(Y, s)
degL(Y )

for every subvariety Y of XK̄ such that Y * H0. Let H be any closed
subset of XK̄ of codimension 1. By genericity of the net (Ym)m, there

ANNALES DE L’INSTITUT FOURIER



HIGHER ESSENTIAL MINIMA AND EQUIDISTRIBUTION 1361

exists kH ∈ J such that the subvariety Ym is not contained in H ∪ H0
whenever m � kH . Hence,

lim inf
m

F (Ym) = sup
k

inf
m�k

F (Ym) > inf
m�kH

F (Ym) > inf
Y⊆XK̄

dim(Y )=d
Y*H∪H0

F (Y ).

As this is true for all choice of H, Proposition 3.11 implies (5.2).
For the second claim, consider the directed set (J ,⊆) consisting of all

closed subsets of XK̄ of pure codimension 1 and containing H0, endowed
with the usual inclusion relation. For everyH ∈ J , Proposition 3.11 ensures
that

inf
Y⊆XK̄

dim(Y )=d
Y*H

F (Y ) 6 e(d)
1 (X,L).

Hence, there exists a subvariety YH ⊆ XK̄ of dimension d, not contained
in H and satisfying

(5.4) F (YH) 6 e(d)
1 (X,L) + 1

`H
,

with `H being the number of irreducible components of H. Notice that
the function `• from (J ,⊆) to N is strictly increasing. Therefore, combin-
ing (5.2) and (5.4),

e(d)
1 (X,L) 6 lim inf

H
F (YH) 6 lim sup

H
F (YH) 6 e(d)

1 (X,L).

This shows that the net (YH)H∈J satisfies (5.3). Moreover, for every closed
subset H of XK̄ of codimension 1 consider H ′ ∈ J such that H ⊆ H ′. By
construction, YH′ * H, so the definition of the preorder on J implies that
the net (YH)H∈J is generic. �

Remark 5.5. — When the base field K is countable (for instance when
K is a number field), equality (5.3) holds for a generic sequence (Ym)m∈N
of d-dimensional subvarieties of XK̄ . Indeed, in such a case the collection
of irreducible closed subsets of XK̄ of pure codimension 1 is countable. One
can write it as {H1, H2, . . .} and assume that H0 ⊆ H1, where H0 is the
closed subset of Proposition 2.18. To obtain the claim, it suffices to repeat
the argument in the previous proof by taking J to be the countable family
whose k-th element is H1 ∪ · · · ∪Hk.

Remark 5.6. — The relations proven in Proposition 5.4 give a third
equivalent definition for the d-dimensional essential minimum of a semi-
positive quasi-algebraic metrized line bundle L with L big and nef, that
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is
e(d)
1 (X,L) = min

(Ym)m
lim inf
m

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

IL̄(Ym, s)
degL(Ym) ,

where the minimum is taken over the family of generic nets (Ym)m∈J of
d-dimensional subvarieties of XK̄ .

The result of Proposition 5.4 suggests the following arithmetic notion for
a net of effective cycle.

Definition 5.7. — Let L be a semipositive quasi-algebraic metrized
line bundle on X and d = 0, . . . ,dim(X). A net (Zm)m of effective cycles
of pure dimension d in XK̄ , whose degrees with respect to L are eventually
nonzero, is said to be L-small if

lim
m

1
degL(Zm)

∑
i

am,i sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym,i*|div(s)|

IL̄(Ym,i, s) = e(d)
1 (X,L),

with notation as in (5.1).

In particular, a generic net of d-dimensional subvarieties is L-small if and
only if it satisfies (5.3), which agrees with Definition 1.3 in the Introduction.
Loosely speaking, this is equivalent to the requirement that the asymptotic
behavior of the (normalized) maximal “height-gap” of its members is as
small as possible, which justifies the adopted terminology.

Remark 5.8. — A net (pm)m of closed points in XK̄ is L-small if and
only if

lim
m

hL̄(pm) = e(0)
1 (X,L).

This agrees, for sequences, with the classical definition. A comparison to
previous notions of smallness for higher dimensional subvarieties is carried
out in Section 6.1.

Remark 5.9. — A net (Ym)m of d-dimensional subvarieties of XK̄ is L-
small if and only if the net of their associated Galois cycles, as in Re-
mark 5.3, is such. This follows from the observation that, for every Galois
automorphism σ of K, we have

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

IL̄(Ym, s) = sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Y σm*|div(s)|

IL̄(Y σm, s),
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since L is defined on K and correcting integrals are invariant under Ga-
lois action (using for instance Remark 3.1 and the analogous property for
heights).

Remark 5.10. — Let (Zm)m be a L-small net of Galois invariant effective
d-cycles in XK̄ . Then, each member of the net can be written as Zm =∑
i am,iY

Gal
m,i , with each Ym,i being a d-dimensional subvariety of XK̄ , and

Y Gal
m,i the corresponding Galois cycle as in Remark 5.3. The L-smallness

and the effectiveness of the net yield

e(d)
1 (X,L)

= lim sup
m

1
degL(Zm)

∑
i

am,i
∑

Y σ
m,i
∈O(Ym,i)

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
Y σm,i*|div(s)|

IL̄(Y σm,i, s)

> lim sup
m

1
degL(Zm)

∑
i

am,i sup
s
IL̄
(
Y Gal
m,i , s

)
,

where the last supremum is taken over the global sections s of tensor powers
of LK̄ which intersect Y Gal

m,i properly. As the sections are not necessarily
defined over K, the previous inequality may be strict; this is a reason for
Definition 5.7.

It is clear that for a net of d-dimensional effective cycles of XK̄ being
generic and small are unrelated requirements. For instance, if X is the
projective line over the field of rational numbers and L is the line bundle
O(1) equipped with the canonical metric, the sequence which is constantly
equal to the point [1 : 1] is L-small but not generic, whereas the sequence
([1 : m])m∈N is generic but not L-small. The equidistribution result of next
section concerns the nets of effective cycles which are both generic and
small.

5.2. Equidistribution theorems

For a topological space X, denote by Cb(X,R) the real vector space of
bounded continuous real-valued functions on X. Recall that a net (µm)m
of Borel probability measures on X is said to converge weakly to another
Borel probability measure µ on X if

(5.5)
∫
X

f dµm −→
∫
X

f dµ
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for every f ∈ Cb(X,R). The following criterion allows to prove such a weak
convergence by only checking (5.5) for a big enough family of bounded
continuous functions on X.

Proposition 5.11 (Weyl’s criterion). — Let X be a topological space,
and A be a subset of Cb(X,R) such that the vector subspace generated by
A is dense in Cb(X,R) with respect to the uniform convergence topology.
Then, a net of Borel probability measures (µm)m∈J on X converges weakly
to a Borel probability measure µ if and only if the convergence in (5.5) holds
for every f ∈ A.

Proof. — One direction is obvious. For the converse, fix f ∈ Cb(X,R).
By density, for every ε > 0 there exists a linear combination fε of elements
of A such that ‖f − fε‖sup < ε/3. The linearity of the integral assures
that (5.5) holds for fε, then by hypothesis there exists m0 ∈ J such that∣∣∣∣ ∫

X

fε dµm −
∫
X

fε dµ
∣∣∣∣ < ε

3
for every m � m0. It follows that, for any such m ∈ J ,∣∣∣∣ ∫

X

f dµm −
∫
X

f dµ
∣∣∣∣

6

∣∣∣∣ ∫
X

(f − fε)dµm
∣∣∣∣+
∣∣∣∣ ∫
X

fεdµm −
∫
X

fεdµ
∣∣∣∣+
∣∣∣∣ ∫
X

(fε − f)dµ
∣∣∣∣ < ε,

which verifies the claim. �

Consider a Galois invariant effective d-cycle Z of XK̄ . By grouping to-
gether Galois orbits of subvarieties of K, Z can be seen as a cycle of X,
see [5, A.4.13]. This allows to consider, if v ∈ M and Lv is a semipositive
v-adic metrized line bundle on X, the measure

c1(L)∧d ∧ δZan
v

on Xan
v defined in (2.2). It is positive and of total mass degL(Z) by Propo-

sition 2.3, and it is independent on the choice of the embedding Kv ↪→ Kv

thanks to the Galois invariancy.
We are ready to prove the main result of the paper, that is an equidis-

tribution theorem for small and generic nets of Galois invariant effective
cycles ofXK̄ . Its proof is inspired by the classical strategy and involves suit-
able perturbations of metrized line bundles, as well as the Key inequality
of Section 4.

Theorem 5.12 (equidistribution of effective cycles). — Let X be a
projective variety over K, and L be a big and semiample line bundle
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on X equipped with a quasi-algebraic semipositive metric. Let also d =
0, . . . ,dim(X) and assume that e(d)

1 (X,L) = ĥL̄(X). Then, for every L-
generic and L-small net (Zm)m∈J of Galois invariant effective cycles of
XK̄ of pure dimension d, the weak convergence of probability measures
on Xan

v

1
degL(Zm) c1(Lv)∧d ∧ δZan

m,v
−→ 1

degL(X) c1(Lv)∧ dim(X)

holds for every v ∈M.

Proof. — Let (Zm)m be a L-generic and L-small net of Galois invariant
effective d-cycles of XK̄ of pure dimension d. By Galois invariancy, we can
write each member of the net as

Zm =
∑
i

am,i Ym,i,

with every Ym,i being a subvariety of X. By definition of L-genericity, up
to considering a queue of the net, we can assume that degL(Zm) > 0 for
all m ∈ J . Moreover, for every v ∈M, the probability measure

(5.6) 1
degL(Zm) c1(Lv)∧d ∧ δZan

m,v

is not affected by removing from the cycle Zm the subvarieties Ym,i whose
degree with respect to L vanishes, because of Proposition 2.3(1). Hence,
we can also assume that degL(Ym,i) > 0 for all i and m ∈ J . Therefore,
the measure (5.6) can be written as∑

i

am,i degL(Ym,i)
degL(Zm)

1
degL(Ym,i)

c1(Lv)∧d ∧ δY an
m,i,v

.

Fix a place v0 ∈M. Since X is proper, the analytic space Xan
v0

is compact
by [3, Theorem 3.4.8(ii)]. So, because of Theorem 2.13 and Proposition 5.11,
we can reduce to prove the convergence (5.5) for v0-adic elementary func-
tions.
From now on, let f be a v0-adic elementary function, and consider t ∈ Q

sufficiently close to 0. By Lemma 2.16, there exists a finite field extension
K ′ of K and a place w0 of K ′ dividing v0 such that L(w0, f, t) is a DSP
quasi-algebraic metrized line bundle defined over K ′. The key inequality
of Theorem 4.1 asserts that there exists n ∈ N and a global section st ∈
H0(XK̄ , L

⊗n
K̄

) for which

(5.7)
∑

w∈MK′

nw sup log ‖st‖L̄(w0,f,t),w 6 n
(
− ĥL̄(w0,f,t)(X) +O(t2)

)
.
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To simplify the notation in the remaining of the proof, set, for every
subvariety Y of X,

H(Y ) :=
{
s ∈ H0(XK̄ , L

⊗n
K̄

) | n ∈ N \ {0} and s intersects Y properly
}
.

By Remark 5.10, the L-smallness and the effectiveness of the net (Zm)m
ensure that

(5.8) e(d)
1 (X,L) > lim sup

m

1
degL(Zm)

∑
i

am,i sup
s∈H(Ym,i)

IL̄(Ym,i, s)

= lim sup
m

( ∑
i

st∈H(Ym,i)

am,i degL(Ym,i)
degL(Zm) sup

s∈H(Ym,i)

IL̄(Ym,i, s)
degL(Ym,i)

+
∑
i

st /∈H(Ym,i)

am,i degL(Ym,i)
degL(Zm) sup

s∈H(Ym,i)

IL̄(Ym,i, s)
degL(Ym,i)

)
.

Observe that, if st ∈ H(Ym,i) then it intersects Ym,i properly, so a combi-
nation of the definition of correcting integral, Lemma 3.2, (5.7) and Propo-
sition 2.3(1) yields

(5.9) sup
s∈H(Ym,i)

IL̄(Ym,i, s)
degL(Ym,i)

>
IL̄(Ym,i, st)
degL(Ym,i)

>
(

ĥL̄(w0,f,t)(X)−O(t2)
)

− nw0t

degL(Ym,i)

∫
Xan
v0

f c1(Lv0)∧d ∧ δY an
m,i,v0

.

To control the second summand in (5.8), since L is semiample, Lemma 3.9
ensures that there exists a real constant CL̄ for which, for all the d-dimen-
sional subvarieties Ym,i of X,

(5.10) sup
s∈H(Ym,i)

IL̄(Ym,i, s)
degL(Ym,i)

> CL̄

>
(
CL̄ + nw0t ·min f

)
− nw0t

degL(Ym,i)

∫
Xan
v0

f c1(Lv0)∧d ∧ δY an
m,i,v0

,

where the second inequality comes from the fact that the involved measure
is positive and of total mass degL(Ym,i).
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Plugging inequalities (5.9) and (5.10) in (5.8) and using the fact that the
coefficients am,i are nonnegative, one has after reordering the terms

e(d)
1 (X,L) > lim sup

m

(
−nw0t

degL(Zm)
∑
i

am,i

∫
Xan
v0

f c1(Lv0)∧d ∧ δY an
m,i,v0

+
(
ĥL̄(w0,f,t)(X)−O(t2)

) ∑
i

st∈H(Ym,i)

am,i degL(Ym,i)
degL(Zm)

+
(
CL̄ + nw0t ·min f

) ∑
i

st /∈H(Ym,i)

am,i degL(Ym,i)
degL(Zm)

)
.

Consider the union of the Galois conjugates of |div(st)|. It is a closed
subset of X of codimension 1; by construction, st intersects Ym,i properly
if Ym,i is not contained in it. Then, the definition of L-genericity implies
that the second and third summands in the right hand side of the above
inequality admit a limit with respect to m. These limits are, respectively,
ĥL̄(w0,f,t)(X)−O(t2) and 0. Therefore we obtain

(5.11) e(d)
1 (X,L) > lim sup

m

(
−nw0t

degL(Zm)

∫
Xan
v0

f c1(Lv0)∧d ∧ δZan
m,v0

)
+ ĥL̄(w0,f,t)(X)−O(t2).

The hypothesis e(d)
1 (X,L) = ĥL̄(X) and an application of Lemma 2.17

yield

(5.12) e(d)
1 (X,L) = ĥL̄(w0,f,t)(X)

− nw0t

degL(X)

∫
Xan
v0

f c1(Lv0)∧ dim(X) +O(t2).

It suffices to combine (5.11) and (5.12) and simplify the terms (the weight
nw0 is a positive real number) to obtain that

lim inf
m

t

degL(Zm)

∫
Xan
v0

f c1(Lv0)d ∧ δZan
m,v0

+O(t2)

>
t

degL(X)

∫
Xan
v0

f c1(Lv0)∧ dim(X) +O(t2).
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The previous inequality holds for every rational t sufficiently small in
absolute value. In particular, for t −→ 0+ one has

lim inf
m

1
degL(Zm)

∫
Xan
v0

f c1(Lv0)d ∧ δZan
m,v0

>
1

degL(X)

∫
Xan
v0

f c1(Lv0)∧ dim(X),

while for t −→ 0−

lim sup
m

1
degL(Zm)

∫
Xan
v0

f c1(Lv0)d ∧ δZan
m,v0

6
1

degL(X)

∫
Xan
v0

f c1(Lv0)∧ dim(X).

Comparing the two inequalities, one deduces that the net converges and
that the limit coincides with the claimed one. �

As a special case, we obtain Theorem 1.4 in the introduction.
Proof of Theorem 1.4. — Let (Ym)m be a generic and L-small net of

subvarieties of XK̄ of dimension d. The net of Galois cycles of Ym is a
generic and L-small net of Galois invariant effective d-cycles of XK̄ because
of Remark 5.3 and Remark 5.9. Therefore, the claim follows readily from
Theorem 5.12. �

Another consequence is an equidistribution statement over smaller Ber-
kovich spaces.

Remark 5.13. — Let (Zm)m be a L-generic and L-small net of effective
d-cycles of X. By considering push-forwards by any of the natural maps
Xan
v → Xan

Kv
, Theorem 5.12 implies the weak convergence of the associated

probability measures on Xan
Kv

. This is the higher dimensional version of [39,
Theorem 3.2].

We conclude the section with a question regarding a stronger (mixed)
version of the equidistribution theorem for higher dimensional cycles.

Question 5.14. — Let d = 0, . . . ,dim(X), and L be an ample line
bundle on X equipped with a semipositive quasi-algebraic metric. Consider
(Zm)m an L-generic and L-small net of Galois invariant effective cycles of
XK̄ of pure dimension d.
Is it true that for any choice of semipositive quasi-algebraic metrized

ample line bundles L1, . . . , Ld the weak convergence of probability measures
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on Xan
v

1
degL1,...,Ld

(Zm) c1(L1,v) ∧ · · · ∧ c1(Ld,v) ∧ δZan
m,v

−→ 1
degL1,...,Ld,L,...,L

(X) c1(L1,v) ∧ · · · ∧ c1(Ld,v) ∧ c1(L)∧(dim(X)−d)

holds for every place v?

6. Further comments

Throughout this section let X be a projective variety defined over K,
and L a semipositive quasi-algebraic metrized line bundle on X.

6.1. Comparing with the literature

Of course, Theorem 5.12 is equivalent, when studying the equidistribu-
tion of small points, to the classical results in this area, and does not convey
any new information, as the integral appearing in the definition of small-
ness is just the height of points. The fundamental divisive element is the
treatment of higher dimensional subvarieties.

In this subsection we compare Theorem 5.12 to other equidistribution
theorems for positive dimensional varieties present in literature. In par-
ticular, we refer to the work of Autissier [1], Yuan [39] and, implicitly,
Gubler [21].

The main difference between the equidistribution in Theorem 5.12 and
the aforementioned ones is in the hypothesis of the statements. Precisely,
the notion of a small sequence of d-dimensional subvarieties (Ym)m of X
in [1, 21, 39] is defined using the convergence of their normalized heights;
that is,

(6.1) lim
m→∞

ĥL̄(Ym) = ĥL̄(X).

Compare this equality to Definition 5.7, even under the assumption that
e(d)
1 (X,L) = hL̄(X). This “seemingly” simplification of the notion of small
comes however with the following required extra hypothesis on the metrized
line bundle so that the respective equidistribution theorems in loc. cit. hold.

Assumption 6.1. — Fixed d > 0,

ĥL̄(Y ) > ĥL̄(X),

for every subvariety Y of XK̄ of dimension (d− 1).
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Notice that this assumption implies also that every effective (d − 1)-
cycle Z of XK̄ satisfies the same inequality. This hypothesis is verified in a
large number of cases which are of intrinsic interest. For instance, canon-
ical metrics of toric line bundles, Néron–Tate height of abelian varieties,
and, more generally, canonical heights associated to dynamical systems,
see Section 6.2. Nevertheless, we can easily produce an example where As-
sumption 6.1 does not hold.

Example 6.2. — Let X = PnQ be the projective space over Q, and L =
O(1) together with the Fubini–Study metric. For a point p = (p0 : · · · :
pn) ∈ Pn(Q) and a regular section s of O(1), which we identify with a
homogeneous lineal polynomial f , these metrics are given by

‖s(p)‖v=


|f(p0,...,pn)|v(∑

i
|pi|2v

)1/2 , if v | ∞;

|f(p0,...,pn)|v
maxi(|pi|v) , if v -∞.

For short, we denote this metrized line bundle by O()FS.
One can compute explicitly the height of X with respect to this metric

h ¯O(1)FS(PnQ) = n+ 1
2

n+1∑
j=2

1
j
,

see for instance [6, Lemma 3.3.1].
The minimal height of points with respect to the metrized line bundle

O()FS is 0 (see [35, Théorème 0.1]) which already contradicts Assump-
tion 6.1 for d = 1. Further immediate examples can be given, when n = 3.
Let ζ = (ζ1, ζ2, ζ3) ∈ G3

m(Q) be a torsion point, and denote by Cζ ⊆ P3
Q̄

the translate of the Veronese curve of degree 3 by ζ, that is the closure of
the image of the morphism

Gm −→ P3, t 7−→ (1 : ζ1t : ζ2t2 : ζ3t3).

Then [8, Corollary 7.1.6] and the invariance of the Fubini–Study metric
under torsion translates give

h ¯O(1)FS(Cζ) = 3
2 + π

(
1− 2

4

)
cot
(
π

4

)
.

Hence this also contradicts Assumption 6.1 for d = 2, as

ĥ ¯O(1)FS(Cζ) =
h ¯O(1)FS(Cζ)
2 deg(Cζ) = 1

4 + π

12 <
13
24 =

h ¯O(1)FS(P3)
4 = ĥ ¯O(1)FS(P3).

Even if Assumption 6.1 does not hold in general, we restrict to its setting
to compare both notions of smallness, meaning Definition 5.7 and (6.1). To
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do so, we first give the following lemma, which may be related to Corol-
lary 4.5 and serves already as a first comparison point between both con-
texts. For simplicity, we assume also that L is ample, although this hypoth-
esis may be omitted by a careful use of genericity (using Proposition 2.18).

Lemma 6.3. — Let L be a semipositive metrized ample line bundle
satisfying Assumption 6.1 for a fixed d = 1, . . . ,dim(X). Then

(6.2) sup
H closed subset of XK̄

codim(H)=1

inf
Y⊆XK̄

dim(Y )=d
Y*H

ĥL̄(Y ) > ĥL̄(X).

Proof. — Combining Corollary 4.5, Proposition 3.11, Remark 3.1 and
Assumption 6.1, we have that ĥL̄(X) is bounded above by

sup
H closed

subset of XK̄
codim(H)=1

inf
Y⊆XK̄

dim(Y )=d
Y*H

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

(
(d+ 1)ĥL̄(Y )− d ĥL̄(div(s) · Y )

)

6 sup
H closed

subset of XK̄
codim(H)=1

inf
Y⊆XK̄

dim(Y )=d
Y*H

(d+ 1)ĥL̄(Y )− d ĥL̄(X),

from which we readily deduce the statement. �

Notice that this lemma and the notion of smallness in (6.1) motivate
the definition of an alternative version of d-dimensional essential minimum
as the value on the left-hand side of (6.2). However, the inequality in this
lemma does not hold in general.

Example 6.4. — Following the same notation as in Example 6.2, the
family (Cζ)ζ , where ζ ranges over all torsion points in G3

m(Q), is generic.
Therefore

sup
H closed subset of P3

Q̄
codim(H)=1

inf
Y⊆P3

Q̄
dim(Y )=1
Y*H

ĥ ¯O(1)FS(Y ) 6 1
4 + π

12 < ĥ ¯O(1)FS(P3).

To further display the difference between both notions of small generic
sequences we present the following result.

Proposition 6.5. — Let L be an ample line bundle on X. Fix d =
1, . . . ,dim(X), and let L be L together with a semipositive quasi-algebraic
metric such that Assumption 6.1 is satisfied for d. Let (Ym)m be a generic
net of d-dimensional subvarieties of XK̄ . If the equality (6.1) is satisfied
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for (Ym)m, then (Ym)m is L-small (as in Definition 5.7) and moreover
e(d)
1 (X,L) = ĥL̄(X).

Proof. — Assuming ĥL̄(Ym) converges to ĥL̄(X), write

Lsup := lim sup
m

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

IL̄(Ym, s)
degL(Ym)

= lim sup
m

sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

(
(d+ 1)ĥL̄(Ym)− d ĥL̄(div(s) · Ym)

)
,

where the second equality is due to Remark 3.1. Since the global height of
the Ym’s is independent on the choice of the section, we further get

Lsup = lim sup
m

(
(d+ 1) ĥL̄(Ym)− d inf

s∈H0(XK̄ ,L
⊗n
K̄

)
n∈N\{0}

Ym*|div(s)|

ĥL̄(div(s) · Ym)
)
.

By Assumption 6.1, for everym, the interior of the lim sup is bounded above
by (d+ 1) ĥL̄(Ym)− d ĥL̄(X). Since lim(d+ 1) ĥL̄(Ym) = (d+ 1) ĥL̄(X) by
hypothesis, we conclude that Lsup 6 ĥL̄(X).
On the other hand, let Linf be defined equivalently to Lsup, replacing

the limit superior by a limit inferior. Then, since (Ym)m is generic, by
Proposition 5.4 and Corollary 4.5 we have that Linf > e(d)

1 (X,L) > ĥL̄(X).
Therefore Lsup = Linf = ĥL̄(X) = e(d)

1 (X,L), which concludes the
proof. �

This proposition illustrates the fact that Theorem 1.4 contains the equi-
distribution theorems for positive dimensional varieties present in litera-
ture, in particular [1, 39].

6.2. Dynamical heights

Let L be ample. Let f : X → X be a surjective morphism such that
L⊗d ' f∗L for some integer d > 2. We call the triple (X, f, L) an algebraic
dynamical system.
A result of Zhang [41, Theorem 2.2] gives the construction of a canoni-

cal metric associated to (X, f, L). Fixed an isomorphism ϕ : L⊗d '−→ f∗L,
there exists a unique semipositive quasi-algebraic metric on L such that ϕ
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determines an isometry between L⊗d and f∗L. When X is a polarized toric
variety, choosing f as the extension of the morphism

Gnm −→ Gnm, t→ tk,

for any choice k ∈ N, corresponds to the canonical metric associated to
X [28, Section 3.4]; we also refer to [8, Proposition-Definition 4.3.15] for
the definition of the canonical metric on X. On the other hand, when X is
an abelian variety and f the multiplication-by-n endomorphism, n ∈ N>1,
we obtain the Néron–Tate metric on L [41, Section 3].
In the case of such dynamical metrics, every subvariety Y of XK̄ has

nonnegative height. Moreover, if Y is a preperiodic subvariety, that is
{fm(Y ),m ∈ N} is finite, then it has height 0. In particular hL̄(X) = 0,
which automatically guarantees that Assumption 6.1 is always satisfied in
the case of dynamical heights.
The dynamical version of Theorem 5.12 amounts to the following.

Theorem 6.6. — Let (X, f, L) be an algebraic dynamical system, defin-
ing the semipositive quasi-algebraic metrized line bundle L. Fix an integer
d = 0, . . . ,dim(X), and let (Zm)m be an L-generic net of Galois invariant
effective d-cycles of XK̄ . Write Zm =

∑
i am,i Ym,i. If

lim
m

1
degL(Zm)

∑
i

am,i sup
s∈H0(XK̄ ,L

⊗n
K̄

)
n∈N\{0}

Ym,i*|div(s)|

IL̄(Ym,i, s) = 0,

then the weak convergence of measures on Xan
v

1
degL(Zm) c1(Lv)∧d ∧ δZan

m,v
−→ 1

degL(X) c1(Lv)∧ dim(X)

holds for every place v ∈M.

In this setting, it is easy to give sufficient conditions for which the hy-
potheses of the equidistribution theorem are satisfied, namely e(d)

1 (X,L) =
ĥL̄(X) = 0.

Proposition 6.7. — Let (X, f, L) be an algebraic dynamical system,
L be its associated canonical height, and d = 0, . . . ,dim(X). Assume that
the d-dimensional subvarieties of XK̄ having height equal to 0 are dense
in XK̄ . Then e(d)

1 (X,L) = 0.
In particular, the equality holds if (X,L) is a polarized toric variety

endowed with the canonical metric, or a polarized abelian variety together
with the associated Néron–Tate metric.
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Proof. — By Corollary 4.5, we have that e(d)
1 (X,L) > 0. On the other

hand, for every closed subset H ⊆ XK̄ of codimension 1, we can find a
d-dimensional subvariety YH of height 0 such that YH * H. Therefore, by
Proposition 3.11,

e(d)
1 (X,L) 6 sup

H
sup
s

(
(d+ 1)ĥL̄(YH)− dĥL̄(div(s) · YH)

)
6 0,

where the second inequality follows from the fact that hL̄(YH) = 0 and
hL̄(Z) > 0 for every effective cycle on X. This concludes the proof. �

Remark 6.8. — The case of semiabelian varieties is of particular interest.
By taking a canonical height associated to a fixed semiabelian variety X,
that is, associated to a semipositive quasi-algebraic metrized line bundle L
on X as for instance in [9, Section 4], one sees that e(0)

1 (X,L) = 0 by the
proposition above.
The study of higher dimensional essential minima is far more difficult,

starting by the fact that already in the case of an abelian variety one cannot
expect there to be algebraic subgroups of every dimension (to then apply
Proposition 6.7). Let (Ym)m be a generic net of d-dimensional subvarieties
of XK̄ .
In the case when X is split (that is, isogenous to a product of a torus

and an abelian variety), we have that ĥL̄(X) = 0. Hence, if

sup
s

I(Ym, s)
degL(Ym) −→ 0,

then (Ym)m equidistributes in the sense of Theorem 1.4.
In the case when X is not split, the techniques developed by Kühne

in [26] are specially helpful for determining expected equidistribution. The
idea is to look at the whole isogeny class of X instead of merely X itself.
Following the discussion in Section 3 of loc. cit., one can choose a sequence
of pairs (Xn, Ln) such that Xn is isogenous to X and Ln defines a canonical
metric on Xn such that hL̄n(Xn)→ 0. In particular, if we denote by Ym,n
the image of Ym in Xn,

lim
m,n

sup
s

I(Ym,n, s)
degL(Ym,n) −→ 0

is a sufficient condition for the net (Ym)m to equidistribute in the sense
of Theorem 1.4, giving an example of higher dimensional equidistribution
without assuming necessarily e(d)

1 (X,L) = ĥL̄(X).
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