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ON FUNCTIONS WHOSE TRANSLATES ARE INDEPENDENT
by R. E. EDWARDS (London).

1. — Introduction and generalities.

It is the object of this paper to study some special cases of an
apparently new problem concerning the translates of functions on
a group. In order to ennunciate the problem in its general form and
to indicate its origin, some definitions will be made at once. Let G
be a group, assumed topological, abelian, and locally compact: of
these conditions the first is essential for our problem to have
meaning, and the second and third appear to be temporarily
inevitable in so far as a fairly complete and detailed theory of
harmonic analysis seems to be an almost indispensable tool. G will
be written additively, and its elements denoted by x, y , ... Let £ be
a translation-invariant, topological vector space offunctions/==/(a?),
g=^g(x), ... defined on G. If fe ^, and if A is a subset of G, let
.1(/, A) == «^(/, A, ()') denote the closed vector subspace of 6 generated
by the translates f^=if^(x) -==.f(x-^-a) off when a ranges over A ;
for brevity we shall write .1(/)==:3(/, 8) in place of3(/, G, 6).

For many special choices of G and of 8, the problem of
determining the extent of »^(/) (in particular, the problem of
determining when ^(/) ==:('', the problem of the fundamentality or
totality of translates) has been discussed in considerable detail. The
following cases are well known : for K^zL^G we have the theorem
of Wiener-Godement (i) , (2), ( f ) ; for ^==1^0 the discussion
given by Wiener ( i) for the group R of reals is easily extended;
for ^=UG n L^G we have the results ofSegal (3) and Pollard (/I);
for F) = L00 G we have the theorem of Beurling-Godement (2), (5).

P) Numbers in brackets refer to the list of references at the end of the paper.
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Interest has also been shown in the case 8 :=CG, the space of all
continuous functions on G, the topology being that of convergence
uniform on every compact subset of G : little difficulty attaches to
this case when G is compact, but problems of great interest arise
when G is not compact. Thus, when G=R, we have the work of
L. Schwartz (6).

Whilst in many of these cases the interest has centred on a study
of 3(y*), thus using translates of / corresponding to all the group
elements, little has been written about the study of 3(/, A) for
comparatively sparse sets A. Fragmentary results are to be found in
Edwards (7), (8), '(g), (10) and various other results are included
in an unpublished thesis of the present author. These results are all
concerned with showing that, for special functions f, 3(y, A)==3(/)
for sparse sets A, (. e. that some translates of/are « approximately
linearly dependent )) on certain others. And this brings us to the
problem to be discussed in this paper, namely, the discussion of
those functions for which no such approximate linear dependence
is possible.

To the best of my knowledge, the only existing results of this
nature occur in Edwards (8), (10): in (8) the question concerns
functions of a complex variable, but in (10) we have a veritable
special case of the problem for functions on groups (namely the case
6==CG and G==T •= R/27r). This special case exhibits the general
difficulties : the problem is a rather delicate constructional one
involving the relationship between harmonic analysis on the one
hand and quasi-analytic classes of functions on the other. The
relevance of this latter notion is the main difficulty in the path of
discussing the problem fora general group, and the case of a general
non-discrete group remains almost entirely untouched.

In this paper we confine our main attention to the case in which
G is either a discrete abelian group, or T, orR, or again finite direct
products of these latter groups, whilst the choice of 6 is usually
L^G. This latter choice is technically the simplest in view of the
symmetrical theory of harmonic analysis available. However, as
will be indicated, the methods employed in this case yield non-trivial
results for certain other choices of 6.

Notation. — The symbols G and ^ will have the meaning
already explained. In addition to this, G will denote the dual group
of bounded, continuous characters ofG ; elements ofG will be denoted
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by y, . . . , the value at the point xeG of the character y being written
/x4

We denote by K ' the topological dual of 6, the symbols/', g\ . . .
being used to denote elements of 8'; the bilinear functional expres-
sing the duality between 8 and V is written <if, f >.

The notation in connection with Fourier transforms will be
explained a little later.

Summary. — Section 2 is devoted to the reduction of the pro-
blem to a form suitable for analysis on the basis of the Hahn-Banach
theorem, and to a few general remarks. This leads to a complete
solution of the problem for (i^L^G, G discrete, given in Section 3.
The solution for the case G=iN, the discrete additive group of
integers, may be interpreted in terms of translational bases in the
space of Paley-Wiener functions on the real axis.

Section [\ is concerned mainly with the case G==T and S^L^G,
the results obtained being supplementary to those given in
Edwards (10). Section 5 is devoted largely to the analogous problem
for G==R. In either case there is no difficulty in deducing non-
trivial results for the groups T771 and R771. At the end of Section !\ we
derive criteria for a periodic distribution to liave its translates inde-
pendent ; the analogous problem for distributions on R or R771 is
discussed briefly at the end of Section 5.

Section 6 contains some remarks on the case G = R or R771 and
C==CG. For functions in GR771 of slow growth (2), Schwartz's
theory of generalised Fourier transforms proves to be useful, but it
is to be hoped that the restriction to such functions may be ultima-
tely removed. For this reason, we have confined ourselves to broad
indications and to some examples. The independence of translates
of distributions of slow growth on R771 is also discussed briefly at the
end of this section.

The method employed throughout is much the same whatever the
space fi in question, the essential step being the construction, or
proof of the existence of, continuous functions on the group G which
(i) are supported by small neighbourhoods of zero, and («) have
Fourier transforms which are as small as possible at infinity on G.
As is indicated in Section 7, tills problem is more or less closely
connected with that of deciding the regularity of a suitably chosen

(2) The phrase «. of slow growth » is used throughout as an equivalent of Schwartz's
K a croissancc lontc » or « tcmpcrcc » ; sec L. Schwariz (11).
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normed ring. Unfortunately, this approach has a strictly limited
practical value outside the case in which G is compact owing to the
difficulty experienced in reducing the known sufficient conditions
of regularity to a sufficiently simple form.

Finally, in Section 8 we mention some extensions of the problem
to non-abelian groups and interpret the problem as one concerning
the continuous functions of positive type on G, or, equivalently,
the bounded, positive Radon measures on G when G is abelian. Some
other extensions are also mentioned.

My debt to Mr J. Deny will be obvious at many points:
I wish to express here my sincere gratitude to him for his many
helpful suggestions. The problem dealt with in this paper is a natural
consequence of work undertaken in connection with a thesis
approved for the degree of Ph. D. in the University of London.
This thesis was written under the direction of Professor J. L. B.
Cooper; to him and to Dr. F. Smithies I wish to offer my thanks
for their help and encouragement during the early stages of my
work on this problem. I am also particularly grateful to Professor
G. W. Mackey in connection with parts of the substance of Section 8.
Finally, my thanks are due to Dr. P. Vermes for drawing my
attention to the recent paper (4) of Pollard.

2. — Reduction of the general problem.

The notion of independence of translates is specified by the
following

DEFINITION i. — If G and £ are as in Section i, an fe. 6 has its
translates independent if, whenever A as in a closed subset of G and
a is a point of G not in A, we have fa nonr- e 3(y, A, 8).

The notion is thus dependent on the topology on 8, but this will
be taken for granted once the space 8 has been fixed in any given
instance. Further, although we speak of the elements of 8 as func-
tions, these elements may strictly speaking be equivalence classes of
functions (as w^ll be the case if, for example, 8 is one of the Lebesgue
spaces built over G) : this licence will be taken without further
comment. When we come to speak of the independence of translates
of entities other functions, we shall not explicitly reformulate
Definition i since the necessary amendments are quite trivial.
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The following assumptions are valid in all the cases we shall
consider and bring with them certain simplifications :

(I) The space 8 is locally convex.
(II) For fixed a e G, the mapping f-^fa is continuous from S into 8.
These hypotheses allow one to frame the definition of indepen-

dence translates in a form more suitable for analysis, namely :

THEOREM i. — For/eg to have its translates independent the fol-
lowing conditionis necessary and sufficient^. Denoting by^>\f) the vector
space of functions on G having the form ?(a?)== < /,, /' > when /'
ranges over £', to every member U of a basis of neighbourhoods of zero
in G shall correspond a fonction oeg^/), depending on U, with
the properties

( 2 . 1 ) (p(o)=^o, (f(x)=o for x non-& U.

Proof. — It is a consequence of (II) that the translates of f are
independent if and only if, whenever A is a closed subset of G not
containing zero, / is not in 3(/ A, 6). Hypothesis (I) ensures that
the Hahn-Banach theorem is valid for 8. By virtue of this theorem,
the assertion that/non-e 3(/, A, 8) is equivalent to the existence
of / 'eg' such that </, f>^o and </„ f > =o for
x e A. Whence the theorem.

It is also true that in all cases considered here the following
assumption is satisfied :

(III) For a fixed ^ e G, the mapping f(x) -^f{x). ̂ (x) leaves 8
invariant and is continuous from 6 into g.

Granted this, we shall have.

THEOREM 2. — For a fixed y e G and/eg, the functions f and
/. ̂  together have their translates independent or not.

The result is useful in certain cases since it shows that we can
assume at will that the Fourier transform of / is non-zero at any
particular one point of G".

Theorem i also makes apparent the relevance of relations between
harmonic analysis and quasi-analyticity. In many cases, the
functions of^(/) take the form of a convolution /*/' of/ with //,
/' being a function, a measure, or a Schwartzian distribution. And,
assuming that the Fourier transforms of / and/ / exist as functions,
the transform of /*/' will be small at infinity to much the same

(3) The sulnciency of tlie condition is clearly independent of hypothesis (i).
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degree as is the transform of/- But a function cannot have a Fourier
transform which is « very small » at infinity without being a
member of a quasi-analytic class : in particular, such a function
cannot vanish outside small neighbourhoods of zero without
vanishing identically. One is thus led to expect that a restriction on
the smallness at infinity of the Fourier transform of / will be a
necessary condition for / to have its translates independent: this
point is illustrated by the results of Edwards (10) andbymostofthe
results to follow.

Again, in many cases the equation

/v/=?
is equivalent to

F.F':=<I> (p. p. on G),

capital letters denoting passage to the Fourier transform. It there-
fore appears that conditions of a local character restricting the
number or density of zeros of the Fourier transform Fof / will also
be necessary for the translates of / to be independent. These
conditions appear to be much more difficult to make precise than
those involving the behaviour of F at infinity. Nearly all the results
to follow7 are concerned w-ith establishing the sufficiency of certain
sets of conditions and it w^uld be of great interest to develop some
necessary conditions.

Some general negative results can be formulated at least for all
spaces 8 built over the groups R7" or T7". Unlike the positive results
we are able to prove, these are quite naturally formulated in terms
of the function itself rather than its Fourier transform. For
simplicity, let us consider the case of a space ( > built over the
group R. We may define a function/ e= g to be weakly differen-
tiable in S if there is a function g e 8 such that

l imC/a—/)/a==y
a-^Q

weakly in fi ; g will then be called the weak derivative of/ in P and
will be denoted by D/. The successive weak derivatives D/*, D/, . . .
may then be defined induclively. When all tliese weak derivatives
exist, every function o in {^(/) has derivative of all orders in the
usual sense. If, in addition, we impose restrictions on the rate of
growth of the nth derivative o^ (x), we shall be able to affirm that
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^(x), if zero on any non-void open set, is identically zero. We shall
have in fact for every n=.o, i , 2, . . . ,

^\x) =< (D"/),, / > = < D"/,, / >.
Accordingly, if we suppose that the semi-norms p^i el) define

the topology on 8, and if we write for any integer n ̂ > o, any i e I,
and any neighbourhood V of zero in R,

M(AI; i, v)= supply,),
a-ev

then we can impose such restrictions on the rate of increase of
M(n\ i, V) with respect to n as will ensure that the restrictions to
V of the functions in S\f) form a quasi-analytic class. For example,
write

T(r; i, \)=^prn/M{n', ;, V)
n>,

for r > o. Then we may assert that: if, for some V and each i the
integral

J"logT(r; i, V)rfr/r2

is divergent, then the translates off are not independent.
In fact, if U is a neighbourhood of zero contained in V and such

that V-U is not void, and if o e= S\f) is supported by U, then all
derivatives of o vanish at all points of V-U; consequently, by well
known results on quasi-analytic classes, c? vanishes identically on V
and hence, in particular, at the origin. This suffices to show that the
translates off are not independent.

Naturally, there are close connections between conditions of this
type and the behaviour at infinity of the Fourier transforms of func-
tions belonging to K^/). For, if 9 belongs to 8'(/) and has a compact
support cV, we shall have a system of inequalities of the form

r^^ld^M^; i, V)

holding for a suitable fixed i depending on y and for all /z. If then
<I>(^) is the Fourier transform of (p(a?) :

^^(^e-^dx,

integration by parts n times gives

K^TT^.^yjKM^; I, V).
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Choosing n suitably, we deduce that

|^)|<I/T(^|yj; ;, V),

which is generally enough to show that 9(a?), known to vanish
outside a neighbourhood of zero, is identically zero. For example, if
M(n; i, V)==Ai! . Q" for some Q independent of n, then we can
conclude in this manner that $(^) is of order at most exp(—|^|/Q) tor
large |^[, hence that <p(a?) is regular-analytic in a strip containing the
real axis.

We adopt an approach in w^hich the Fourier transform plays the
basic role for the obvious reason that the operation of point-wise
multiplication is easier to handle than that of convolution and so
leads most easily to the positive results w^hich constitute our main aim
in this paper.

It is convenient at this stage to explain the notation concerning
Fourier transforms. If/is a function or a measure (or a distribution
in the case of special groups) on G, we shall denote by ^(/) the
Fourier transform of/; the sense in w^hich this transform is to be
taken will usually be obvious from the context. When no confusion
can arise, the transform of/will be denoted by F, and likewise for
other functions, measures or distributions.

3. — The case 8 == 1^0, G discrete.

The simplicity of this case is due solely to the fact that a basis of
neighbourhoods of zero in G is comprised of the single set |o^ .
Accordingly Theorem i tells us that / e I^G will have its translates
independent if and only if there is f <= L^G such that

9=/^
has the properties

<p(o)==i and <p(a?)=o if x =7^0.

This is equivalent to

F.F'=i p . p . on G,

where F=^(/) and F'r^/'). and this is soluble for P e L'G if
and only if i/F e L^G. Thus we may state

THEOREM 3. — If G is discrete, a necessary and sufficient condition
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for f e L^G to have its translates independent in this space is that
i/F^UG(F=W).

The hypothesis of Theorem 3 implies that F vanishes on a null set
at most in G and hence, as is easily seen to follow from the Hahn-
Banach theorem, that the translates of/are fundamental in I^G :
these translates therefore form a sort of basis for UG. We may legi-
timately digress here to the extent of a brief discussion of this last
fact.

Suppose that/ e L^G satisfies the hypothesis of Theorem 3. The
translates of/ being fundamental in L^G, one may hope to expand
any given h <= L^G in the form

(3- i) ^-SW^
a

the numbers ^ depending upon A. Since the translates of / are
independent, we may choose ^ e L^G such that

(3.2) CHx)^x)dx=\1 l f a=o
v / J J a \ ^\ ^ ^ otherwise;

by Parseval's formula, this is equivalent to

r/(«)F(x)4<7)^=i1 lfa==o
j /A ; WYV.; ^ ^ otherwise,

where F=^(/) and {r=^). Thus (3. 2) is equivalent to

(3.3) F(yJ^)=i p . p . o n G .

Now we know that, given £ > o, there is a finite subset S of G
and numbers \ (a e S) such that

II^-SV^^.
a6S

From this relation follows

\j'h^(x-{-~a) dx - ̂  \^f,{x)^(x^-~a) dx < e .||̂ ||̂ ,

that is by, (3. i),

\—fh{x}^x)dx <£.||^G(a eS).
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It is therefore natural to study the formal development (3. i ) with
the following choice of the constants :

(3. 4) \=fh(x^jx)dx.

or equivalently, by ParsevaFs formula and (3. 3),

(3. V) ^=/H(yj5c(«WF(yJ.

where i{=.9(K). This shows that \ is, as a function of a, the
inverse Fourier transform of the function H/F e L/G, hence that
\-^o as a—^oo on G, and so that \,=o except for a countable
set ( a ^ : A i = = = i , 2, . . . i of values of a. The right member of (3. i)
is thus extended over this countable set only.

In general, the question of the convergence of the development
(3. i) is rather delicate, but it is easy to see that convergence will take
place in the L^-sense under suitable restrictions on A. For example, if

(3.5) 2N<+^
a

(the sum extending in reality only over the aforesaid countable
set of values of a), then the right member of (3. i) is absolutely
convergent in norm and so defines an element h* ofI^G. Further,
for every a e G, (3. 2) yields

fh\x)^x)dx = 2 ̂ ff^(x)^xjdx

=2^,,//^4-«n-")-K7)rfy {y=x+a)
_(X^ ifa==c^ for some n,

^0 otherwise.
Thus __ __

fh\x) ̂ (x) dx =fh(x) ̂ (x) dx

for all a e G, that is

/H*(;0^//F(%) =/H(^)3c(«WF(x)

for all aeG, and so, since i/F=^o p. p. on G, H*=:H p. p. on
G and h*==h everywhere on G.

Condition (3. 5) will be satisfied whenever H/F is equal p. p.
on G to a linear combination ofsummable and continuous functions
of positive type. Of course, for special groups, the validity of (3. 5)
can be ensured in others ways. For example, i fG==N, the discrete
additive group of integers/then G=T, and (3. 5) will hold at least
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whenever H(/)'F(y) is equal p. p. to a function having two continuous
derivatives. A special example arises wheny*(a?)=exp(—a|a?[)(a>o),
in which case

F(7.)=(I-^)/(I-2^cos^4-^2)(r=exp(-a)),
^^(i/s^rH^-^^i —srcos^+r2)^! —r2) ,

^/J^S^^'^^O, ±1, ±2, ...);
x

in this case, (3. 5) will be satisfied provided

S^IA^K+OO.
x

In case G==N, the discrete additive group of integers, Theorem
3 may be restated in an equivalent form concerning th class of
Paley-Wiener functions on the real axis. Recall that a function
p(x)(x real) is a Paley-Wiener function if it is continuous and of
summable square over the real axis, and if the Fourier transform
P(y) of p(x) is zero p. p. outside (—TT, 71). It is well known that
the class (PW) of such functions forms a Hilbert space wdth the
scalar product

(P. 9) =/_", P(x)Q(x)^ (P = 9{p\ Q = s^)).
It is also true that there is an isomorphism between (PW) and the
usual Hilbert sequence space P == L^N in which a function
p(x) e (PW) ' is mapped onto the sequence whose nth term is
p(Ai)(Ai=o, d= i , ±2, ...). The inverse mapping determines p(x)
as the mean-square limit of the series

00

^ p(n) . sin 7r(a7 — n)/T:(x — n).
—— 00

Theorem 3 proves then to be equivalent to

THEOREM 3'. — For a function p(x) e (PW) to have its integral
translates independent in (PW), it is necessary and sufficient that
i/P(^) be of summable square over (—TT, -rr). The Hahn-Banach
theorem shows that for these integral translates to be fundamental
in (PW), it is necessary and sufficient that P(/) he non-zero p . p .
on (—TC, TC).

Returning to the case of the general discrete group G, it is not
difficult to obtain sufficient conditions for the independence of trans-
lates for other choices of 8, though it is very much more difficult to
decide the necessity of these same conditions. For example, if
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g^rI/G, &\f) comprises all convolutions/*/ with/' eL'G. It
may be shown that a sufficient condition for/eL^G to have its
translates independent in this space is that F =^= o everywhere on ̂ .
This follows from an extension of a result due to Wiener (i) concer-
ning absolutely convergent Fourier series. The extension is well
known as an application of the methods of Gelfand(i2), (i3), and
reads : If G is discrete, if/ e L/G, and if F = ̂ (/) is -=^ o everywhere
on G, then there is // <= UG (a fortiori in L^G, G being discrete)
such that F . F'== i everywhere on G.

4. — The case 8 = UQ, Q = T.

This section may be taken in conjunction with, and is supple-
mentary to, the relevant portions of Edwards (10). There are several
respects in which the presentation here differs from that in (10), but
in only one instance is the divergence of any great importance. Our
choice of 8 is different: here we take &=L2^, whereas in (10) the
choice is 8 = GT. Besides this, the results borrowed from the theory
of quasi-analytic classes are manipulated a little differently. However,
the important addition is the correction of an oversight on the part
of the present writer which led to a neglect in (10) of any discussion
of the influence on the independence of translates of vanishing Fou-
rier coefficients. This oversight is rectified here.

The elements ofT being real numbers modulo 2Tr, T may be iden-
tified with the discrete additive group N of integers. Accordingly,
^ will in this section denote an integer. The character functions are

^)=e^,

a? denoting a real number modulo 277. The Fourier transform of
a function/(a?) on T is now

W={i/^)f^f(x)e-^dx.

In what follows, h will denote a positive real number, the emphasis
being laid on its possible smallness.

The main theorem here is.

THEOREM [\. — jy/eL^, the following conditions are sufficient
for the translates off to be independent in I^T. There exists a func-
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tion p(t)(t real), even in t, such that t. Jt/(<)t-)- oo with t, and such
that

(4. i) f"p(t')dt/t'-<-}-^,

and a sequence i^i(/i:==o, i, 2, ...) of integers satisfying

(^ 2) 7.o=°' X f c > ° if ^^ S^X^^-00
k

for which

(4. 3) j lexp^j^/FOOI^+a).
l^^f.k

Proof. — According to Theorem 2, we may assume that
F(o)=^=o. According to the results of Mandelbrojt (i4), para-
graph 5g, p. 134, for any small A > o we can construct an infinitely
derivable periodic function a(a?), zero outside (—A, h) modulo 27r,
and having Fourier coefficients A(^) satisfying

A(o)^:o, A(/J=o for ^=±y,(/c==i, 2, . . . ) .
Again, by the arguments of pp. 78-88 of this same reference, we
can construct a function P(a?), infinitely derivable, periodic, non-
negative, such that ̂ (x) == o outside (— A, h) modulo 27r, and having
Fourier coefficients B(^) satisfying

B(o)^o, |B(r)|<exp(-pOc)).

Now consider the function (p=:a*(B, the convolution being taken
over a period (that is, in the sense of the group T); this has Fourier
coefficients

^(x)=A(x).B(x),
which vanish for 7==dr^(&== i, 2, ...) and which satisfy

|<i>(^)|< const. exp (—?(%)),
the constant depending on h. Further, (f(x) =/EO since $(o)=^o. On
the other hand, ^(x)-=o outside (—2/1, 2A) modulo 27r. Hence, by
translating (p by an amount 2/1 at most, we can arrange that
<p(o) =^ o and (5j(x)==zo outside (— !\h, !\h) modulo 27r.

It results that / w^ll have its translates independent provided we
can solve the equation

A/'-?
for // e LiT. This is equivalent to

F.P=:$
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with F==^(/) and F'irr:^/), and we require that F'e L'lN. Howe-
ver, since ^(y) = o for y = = ± y ^ ( A = = i , 2 , . . .) and since F(o) ^=- o,
this entails simply that (4. 3) be valid. This completes the proof.

Remarks. — It follows from Theorem 4 that the independance
of translates of/in I^T is compatible with F(/) being at infinity as
small as, say,

exp^l/log'-^!)
for any fixed e > o ; in fact, we could here replace log1 ̂ £ |%| by the
usual succession of refinements :

logixl-loglog^l/J,

et cetera. On the other hand, it is trivial that if F(y) is at infinity as
small exp (—a|y|) for any a > o, then the translates of/are not
independent, since in this case every function /*/' would be regular-
analytic in a strip containing the real axis. Indeed, the conditions
of Theorem 4 cease to imply the independence of the translates of
/as soon as the integral in (4. i) is allowed to diverge : see Man-
delbrojt(i4), pp. 78-83.

Again, the conditions cease to be sufficient as soon as the series in
(4. 2) is allowed to diverge, since the conditions would then be
satisfied by functions/having period T:, say, which are obviously
inadmissible. However, this constitutes a very crude infringement
of (4. 2) and it would be interesting to study more refined counter-
examples.

I do not know the form of the analogue of Theorem 4 tor a general
compact group. As regards the behaviour at infinity ofF, the methods
outlined in Section ^ may prove to be useful. But, as regards the
local behaviour of F, I have been able to prove only that, under one
subsidiary condition on G, the behaviour of F on any given finite
subset ofG has no influeuce on the independence of translates of/.

Naturally, there is no difficulty in passing from T to T"1: one has
only to utilise the functions on T7" of the form

?m(^) = ?m(^ , . . ., .̂ ) == O(^) . . . O(^)

having as Fourier transforms the functions

•Ux) = 'U/.. • • •, x.) == ̂ (z,) • • • ̂ )-
We shall conclude this section by considering briefly the problem

of independence of translates of distributions on T in the sense of
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Schwartz (11), Tome II, Chapitre vn. Notations introduced here
without explanation will have the same significance as in (i i). Since,
by the theorem of Ascoli, the bounded sets in (9)}r are relatively
compact, a theorem of Mackey-Arens tells us that the space (S))^ is
reflexive. Consequently, the weak and strong closures of vector
subspaces of^J^r coincide ; in particular, the problem of the indepen-
dence of translates of a distribution s e. (^T is the same for the weak
as for the strong topology.

If s <= (^)T has the Fourier coefficients

S(%)==<e-^),

then S(^) is of polynomial order at infinity, and the series

S W^
7.

of functions converges strongly to s itself. Conversely, given any
sequence \a.^\ (^==0, dz i , ± 2 , . . . ) of polynomial order at
infinity, the series

^a^Ss-
i.

of functions converges strongly to a distribution 5 e (3)')T tor which
S(y)===ay for every /.

If ^ e (®)r has the Fourier coefficients V(^), the eflect of applying
to ^ the distribution s is

^)=SS(xW-x),
l

the series being automatically absolutely convergent. In particular,
defining tlie translates s^ of s by

we shall have

^)==<d^) (^e(®)T),

^)=SS(xM-/>l/a•
Now, according to the proof of Theorem !\, we can find a continuous

periodic function ^(x) such that (p(o)=/=o and (p(a?)==o outside any
preassigned neighbourhood of zero in T, and such that the Fourier
coefficients ^(/) of o(x) satisfy the conditions

I ̂ (7) I < ̂ P (— PW)' ^(/J = o for / = ± y^,.
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We can therefore arrange that (p(a?) == 5^) for a suitable ^ e (3))r
provided we can arrange that

SOcW-x)==^(x)
for all ^. But this merely entails that, neglecting the values ^ == ± ̂ ,
$(^)/S(^) must be smaller at infinity than any power of i/|%|; this
we may express briefly by saying that ^OO/S^) must be (( of rapid
decrease )) ((( a decroissance rapide » in Schwartz's terminology) as
% =7^ ± ̂  tends to infinity. Thus we may state

THEOREM 5. — Let se(3)Vr have the Fourier coefficients S(^). A
sufficient condition for the translates of s to be independent in (SV^r is
that for some function p(t) and some sequence t^ j satisfying the
conditions of Theorem 4,

exp (-p(x))/S(/J

shall be of rapid decrease as ^ =7^ ± Xfc ^enc^ ^° i^fi^ity.

5. — The case 8 = UQ, Q == R.

The results obtained in this section bear close formal resemblance
to those of Section 4 in so far as is concerned the behaviour at infinity
of the Fourier transform in relation to the independence of translates.
However, there are important differences when one considers the
influence of the local behaviour of the Fourier transform.

Throughout this section, all integrals are taken over the entire real
axis unless the contrary is explicitly indicated ; h denotes a positive
number, emphasis again being laid on its possible smallness. Fourier
transforms of functions concerned are to be taken in an appropriate
classical sense which will be obvious from the membership of the
functions to L/R or L^R.

Our starting point is the Theorem XII of Paley-Wiener (i5),
which we restate in the following form convenient for our present
purpose.

THEOREM A. — Let p(<) (t real) be real and measurable and
satisfy

(5. i)

j exp(—p(f)\ dt < -+- oo, I expf— 2jo(<)) dt < -+- oo.
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A necessary and sufficient condition for there to exist a function
a(a?) e L^R, zero on a neignbourhood of -+- oo, a^rf having a
Fourier transform

A(^)= C^e-^^dx

satisfying

(5. 2) |A(x)|=exp(-pOO),

is that

(5. 3) r[p(^/(i+r»<-4-oo.

Observe that the relation (5. 2) is invariant with respect to
translations of a, so that the neighbourhood of -4- oo on which a
vanishes may be varied at will. A direct corollary of this theorem
which has immediate application is

COROLLARY (4). — Let (5. i) and (5. 3) be true, and let

9(0 = f ex? { —P ̂  -+-a) —P(") j du.

Let h > o be arbitrary. Then there is a function y(a?), continuous,
zero for x\^ A, satisfying y(o)=^ o, and having a Fourier transform
<i>(^) satisfying

(5. A) IWI<9(X)-

Proof. — Letj^(<) be any function satisfying (5. i) and (5. 3). By
Theorem A, we can find a function a^(a?) e L^R such that a^(a?)== o
fora?> i and [A^)|=exp(—p^ (yjV where \ ==3?(^). This a^ is
certainly not equivalent to zero, and so we can choose a > i so large
that oc^ is not equivalent to zero on (—a, a). Put

Pî ) = ̂ (2aa?//i);

this vanishes for x > — A and is not equivalent to zero on
/ \ 2

(—- s- /^ -^-/M- Further, its transform B^==^(^) is

B,Oc)=(/»/2a)A.(A;c/2a),

(4) Cf. Paley-Wiener(i5), pp. 2^-25.
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so that

|B,(x)|=(A/2^).expt-p,(A/y2a)j=C.expt-^(C^^

where C==/i/2a. Next put p.^(.r)==^(—a?) : this vanishes for

a; <^ — -L /i is not equivalent to zero on ( — — A, — A ̂  and has a
2 A \ 2 2 /

Fourier transform B^(j) === ^((^) = B^(— ^).
Consider for fixed 6 the function

^x)==^x)^x-b).

Since the transform of ^^x — 6) is exp (— 2m6/)B^(/), that o!^{x)
is

r^jB^-^B^-2^.
Now this cannot be identically zero in £ for every b : for otherwise
we should have B^—OB.,($) equivalent to zero in $ for each ^,
and in particular (taking ^==0), B/—£) equivalent to zero, which
would imply that j^(a?) is equivalent to zero. Moreover a simple
argument shows that any value of b making V(j) not equivalent to
zero must be in the interval (— A, h). For example, since ^(.r)==o

if a?>±A and ^(x— b)=^(b—x)= o if x<b—^-h, if 6

were greater than A, [^(a? — 6) would be zero for x < — A, in which^s
case y^) would be zero save perhaps for x-=— /i, hence would be^
equivalent to zero, contrary to the assumption that F(/) is not
equivalent to zero. A similar argument shows that b must be greater
than -A.

Now we have

|r(x)|<J'|B,(x-01. B,(0 dS=J B,(y.+^)|.|B^)|^

=C2Jexp|-pJC(x+^ .expi-p,(C^;

the last member here is </(%) provided we put

jo(0=p,(C<)-logC,

winch satisfies (5. i) and (5. 3) al the same time as p^i)-
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In view of (5. i) it follows in particular that F(y) is summable,
so that the inversion formula yields

y^^Jnyy2^^^^),

say, holding p . p . in x and certainly at all points of continuity of

y(.r). It therefore holds if a- < 6—^- h or if a- > -i- h. Thus o^a?) is

not identically zero and vanishes for x <" 6 — — h and for x > — A.
2 2

Choose a-Q so that & — — ^ < ^o <^ — ^ an^ PuC^o) ̂  °- Then the
function 2 2

?(a0=?o(lr-+-a?o)

is continuous, is non-zero for a?==o, is zero if X-\-XQ^>—A, a
.z

fortiori if a? >/i, or if a? -^-a^< b——A, a fortiori if a?<—2/1
ji

(recall that 6 lies in the interval (—/i, h)Y Further, the transform
of (p is equal in modulus to that of (pp. and so is equal in modulus
to |r|. This completes the proof.

The corollary just proved implies non trivial sufficient conditions
for a function f e l^R to have its translates independent. Indeed,
for this to be the case, it is clearly enough that the equation f*f == <p
be soluble for f e L^R, o denoting the function constructed in
the above proof. Since o is continuous and summable, this equation
is equivalent to

F.F'^4) p. p.

were F=^(/), F'^SV) and $=^(o). This is soluble for
F' e L^R provided $/F e L^R and so certainly provided ^/FeI-^R.
Thus we have.

THEOREM 6. — Forfel^l^ to have its translates independent in
this space, it is sufficient that, for somep^t) satisfying (5. i) a/ic?(5. 3),
we have y(^)/F(/) e L^R, were F =.?(/) and where q{f) is defined
in terms of p(t) as in the Corollary.

It is readily verified that the condition of Theorem 6 is compatible
with F(^) being at infinity as small as, say, exp (—[y l'"6) for any
fixed e > o. As in section 1\, the translates of/fail to be independent
ifF(y)==:o exp(—a|/J) for any a > o ; indeed, more than this is
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true, as can be seen by using well known results on quasi-analytic
classes.

Observe however that there is an important difference between
the cases G==T and G==R. In the former case a function with
independent translates can have a Fourier transform vanishing on a
set of infinite Haar measure in the dual group; but in the case G== R,
the transform can vanish on a set of zero measure at most. For if/
and /' are in L/R, and if <p is continuous and has a compact support,
then from/*/'== cp follows F.F'^r^ p. p. Hence, if F vanishes
on a set of positive measure, the same is true of 4> ; and, 0 being
an entire function, this would imply that $, an hence cp also, is
identically null. This observation has a general significance : if <p,
continuous and having a compact support, has the transform ^,
then $ is in some sense analytic and is determined throughout any
connected set by its values on a relatively sparce subset thereof.
When G is compact and G discrete, this has no importance since the
only connected sets in G are single points. But when G is connected,
one can expect results approximating those for the simple case G= R.

Another point of interest is that the above arguments yield non-
trivial results for the space 8 ==1^. In this case, for/ e L^R to
have its translates independent in this space, it is enough that we
can sol ve/*/'^^ y for/' e L°°R.

However, if q/F e I/R n L^R, the same is true of $/ F, and we can
then define

nx)=fW/F^)^d^.

this /' will be bounded and in L^R, hence in L^R. So we have
THEOREM 7. — For f € L/R to have its translates independent in

this space, it is sufficient that, for some jo(/) salsify ing (5. i) and
(5. 3), we have ^(^)/F(^) e L/R n L'R. where F=^(/) and where
q(t) is defined in terms of p(t) as in the Corollary.

The remainder of this section is devoted to some remarks on the
independence of translates of a distribution on R'". This question is
considerably more complicated than the problem for periodic
distributions discussed at the end of Section /i, and we shall confine
ourselves, to a brief survey of the problem. To begin with, it seems
likely that distinctly stronger results can be obtained for the
distributions of slow growth than for distributions in general, and
that therefore the problem may well be treated in two distinct parts.
Using the notations of Schwartz (n), Tome II, Chapitre vn, the
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strong topology of (tf') is finer than that induced on it by the strong
topology of (3)'). Hence, a priori, the notion of independence of
translates of a distribution s of slow growth will depend on whether
we regard s as a member of (^T) or of (3)'). The independence of
translates of s in (3)') implies their independence in (tf').

On the other hand, since both spaces (if) and (3)) are reflexive
(the bounded sets being relatively compact), the weak and strong
independence of translates in (^f) are equivalent, and likewise in (3Y).

As M. Deny has pointed out to me, a sufficient condition for a
distribution s to have its translates independent in (3)') is that it be
inversible with a distribution having a compact support.: by this
it is meant that there exists a distribution t with a compact support
such that

s^t=S,

S being the Dirac measure (mass 4- 1 at the origin). Indeed, it is
enough that a distribution t with a compact support and a distribution
u =^= o with a point support at the origin exist such that

(5. 5) s*t=u.

For, if this is the case, whenever ae(3)),

9==: <* a, (p==a*a

are in (3)), and (5, 5) yields

(5. 6) 5*9==<p ;

that we have here a case of associativity and commutativity of the
convolution follows from p. i/i, Tome II, of Schwartz (i i). Now if a
is supported by a neighbourhood of zero which becomes smaller and
smaller, the same is true of <p ; also

<p(o)=u(a) (^)=:a(—a?)),

and this can be made non-zero for suitably chosen y. e (3)) supported
by arbitrarily small neighbourhoods of zero (since u, supported at
the origin, is not identically zero). This is plainly enough to show
than the translates ofs are independent in (3V).

If 5e(^), (5. 5) is equivalent to S. T=U, where S=9<(5),
T=3)(<), V=S(u). Taking, for example, a=S, this last equation
will be soluble for T the transform of a distribution t with a compact
support provided S is a function S(y) and i / S ( j ) is entire of expo-
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nential type and of polynomial order at infinity on tlie real axis.
These conditions are therefore certainly sufficient for a distribation
s e (if^ to have its translates independent, but they almost certainly
not necessary. In fact, by utilising functions o, continuous and
supported by arbitrarily small neighbourhoods of zero (constructed,
say, as in the Corollary to Theorem A), it is enough for indepen-
dence in (^') that we can solve s * d/ •===- ̂  for ^ e (3). And this will be
possible at least whenever S = 9{s) is a function S(^) such that i /S(^)
is infinitely derivable and O^exp (\^~°'}\ as|y|-^oo on the real
axis for some e > o.

6. — The case 8 = CO, G = R"1.

Recall that CG is the vector space of all continuous functions on G,
the topology being that of convergence uniform on every compact
set in G. As is well known, the dual space is isomorphic as a vector
space with the set A\) of all Radon measures on G having compact
supports, and we can arrange that the duality is expressed by the
bilinear functional

< /• v- > =ff(- x) W =ffdy-,
f being in CG and ;y. a measure with a compact support. In this case
we shall have therefore

(6. l) </,, y.>=ff(x-y-)dy.{y)=.f.y.(x).

The criteria I am able to give as sufficient to ensure the indepen-
dence of translates in CR^" are somewhat crude and, although they
are useful for fabricating certain examples which we shall discuss
shortly, their theoretical interest is strictly limited. For this reason,
I have refrained from elevating tliese criteria to the status of theorems.
Instead, they w^ill be included in a list of remarks to follow. A
detailed and systematic study of the independence of translates in
CRm promises to be both long and difficult and will not be under-
taken here.

Any/e CR"" can be regarded as a distribution e (^^ and arguments
similar to those at the end of Section 5 lead to the following criterion :

i° A sufficient condition for fe CR7" to have its translates independent
in this space is that to every given neighbourhood V of zero in R"1 shall
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correspond a distribution t with a compact support and a distribution
u =^= o supported by V sack that

f.t=u.

If/e CIV" is of slow growth, that is if

J^ld^i+H^+oo.
j_

x=(x,, . . . ,^)eIV", |a*[=(^4-...4-a^)2, dx=dx,... da^,

for some A depending on y, we can from 1°) deduce sufBcient
conditions involving the Fourier transform F== ^(f)' It is a corol-
lary of the generalised form of the Paley-Wiener theorem (due to
L. Schwartz (i i), Tome II, pp. i 27-1 29) that, for a distribution q to
be the Fourier transform of a distribution with a compact support,
it is necessary and sufficient that it be a function ^(yj, entire of
exponential type, and of polynomial order at infinity on the « real
axis » (that is, for real values of the coordinates of y e IV"). So i f (p is
a continuous function with a compact support, we can solve f* t=. y
for t a distribution with a compact support, provided that F is a
function, that i/F is entire of exponential type, and provided
^/F (<!>== <?((?)) is of polynomial order at infinity on the (( real axis )).
For, if this is so, T ==<t>/F, which is then a function, entire of expo-
nential type and of polynomial order at infinity on the (( real axis )),
is the transform of some distribution t with a compact support; and
from T. F=4> follows <*/== y. If we take <p to be of the type
constructed in the Corollary to Theorem A, we are led to.

2° For f <= CIV" of slow growth to have its translates independent,
it is enough that Fr^^y) be a function such that i/F is entire oj
exponential type and 0 (expdy)1"6)? for some e > o as ^—^ oo on
the (( real axis )).

Now we shall illustrate the use of these criteria in connection
with a few examples.

To begin with, it is easy to see that no monomial

f(x)=xl!t...xn^

has its translates independent in CIV" : on the contrary, the trans-
lates of such a function are very strongly coherent since, if U is any
non-void open set, then f e 3(f, U). For, if a e U, we can take
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derivatives (which are limits of linear combinations of translates)
and thus discover that

(^+a.y....(^4-a,y."e3(/, u),
where a=.(a^ . . . » a^) and the j\ are integers satisfying o ̂ ./i^ n^
for i ^i<^m. Then the binomial theroem shows that
/^)=^...^=|(^+^)-a^•..^(^+^)-a,jft-e.V, U).

This situation can also be predicted by use of the Fourier
transform. For the transform of xf1. . . x^ -is

>ni + ... 4- n,n^(—i/amy11-^---^1".-———-.v / / ^...w
Thus if p. is a measure e Jl!b, and if o is a function with a compact

support, and if
y^x^ .. .^=9,

then, taking transforms, we shall have

M(y.).(- ,/^".---^-^=$(y.),

where M^r:^^.) and ^mz^y). Since the left member here is a
distribution supported at the origin, equality can hold only if both
sides are zero distributions, in which case cp = o. The same argument
yields the more general proposition :

3° ForfeCR"1 of slozo growth to have its translates independent, it
is necessary that F = ̂ (f) have as support the entire space R"* (which
implies that 3(/) = CR"1).

A difference, at first sight a little surprising, appears in the case
m === i and f(x) == x^ where n > o is and odd integer. Here we can
show that f is inversible as a distribution (that is, satisfies the
hypothesis of i") with u===S), so that the translates of f are
independent. For f(x) has derivatives of all orders in the usual
sense for a-^:o, and f(n^i\x)=o forx^o. For o^:/)^:^,/^^)
has a jump Jp at a?==o given by Jp===o if o ^ p ^ n — i , and
J ^ = = 2 . A i J . The formula (11,28) of Schwarlz(i i), Tome I, gives
(with p •= n -4- i) ^

^^la^r^.All.^

which proves our assertion.
There are numerous other functions in CR which are inversible
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in the sense just explained, all of which therefore have their
translates independent. M. Deny communicated to me the
example f(x)=e\p(a\x\) (a^=o), which is inversible with the
distribution t = ( l / ^ a ) ( y / — a 2 ^ ) . When a<o, this function is of
slow growth and has as Fourier transform the function

F(y)=—2a/(a2+47^Y),

so that / satisfies the criterion 2°). More generally, one can start
from a function g(x), continous for x ̂  o, having derivatives of all
orders in the usual sense for x > o, and satisfying there a linear
differentia] equation with constant coefficients of the form

Sc^/^y^^o;
r

one then considers the function f(x) =g(\x\)e GR. Thus, starting
from g(x) =. ke^' -+- B^, it could be shown that if a -=f=- o, 6 -=f=- o,
and if A and B are suitably related, then

^^—(a^b^y—d^^f
is a non-vanishing linear combination ofS, S', 5'" and S^, so that
i°) is satisfied and/ has its translates independent.

We shall now give a proof of the following fact :
4° Consider the continuous function on IV" defined by

K^^^^c^/^+^^ixM
where a ̂ =- o and the integer p is > — m, the constant C^p being

^fi
chosen so that K^.p(o) == i. Then, if P(x) == P(a^, . . . , x^) ̂  o is a
polynomial, f(x) == Ka.pO )̂ • P )̂ nas ^s translates independent in CIV".
Further, K^p(x)—^ i as a—^o, and this in the sense of GtV", 50 that
the functions in CIV" having independent translates are everywhere
dense.

I had originally constructed a proof of this for the case m •= i
only, using the function K^(x)=G\p (a |a?|), but M. Deny
afterwards communicated to me an extension and simplification of
the arguments which cover also the case m > i. He has kindly
granted me permission to reproduce his proof here.

Let n be the degree ofP, and denote by A the Laplace distribution
on ̂  :

^ ^S
to?"^""^^'
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Consider the distribution

^^(A-a^^-^^p):
I assert that u is a distribution =^o having a point support at the
origin. Once this proved, i°) serves to show that f= K P has its
translates independent. Now, if q^ - ( -••• -^ q^ <; n,
^[(A-a2^^-^^...^^)]

^const.^+^yrr^^^

which is easily seen to be a polynomial. By addition the same is
therefore true of 3»(u), so that u must have a point support at the
origin. Also, u^fco, since, otherwise, we should, have on taking
transforms,

(^+Wrn•F=o (F=W.pP)),
hence F = o and so K^,p P = o, which is not the case.

Next, since p > —m,

fd%/(a2-^A^|y|2)p—+oo

as a—^o (by the theorem on the term-wise integration of monotone
sequences of functions). Hence Cgp-^o asa—^o. Further,

K,^)-i=K,^)-K,/o)
=c,,/(.-2^-i^/^+^i^ry.

Given any YI > o and any compact set C, we can choose a neigh-
bourhood V of zero such that

^-2^. __l|^

whenever x e=C and y e V. Thus, i f ^ e V ,

S'^^-'^^^/v^/^+^lyJ2/
. +C,p/^_^dyy(a2+^1x^)p<r-+2C^

Keeping r^ and hence V also, fixed and letting a—^o, we conclude
that

l imsup^supjKa p(x)—I|^Y).
a^o / /.ec ' )

Since Y) is arbitrary, this completes the proof.
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5° Iffe. Ct^ has independent translates, ifq =/=.o is a distribution
with a point support at the origin, andifg=zf*q e CFV", then g has
its translates independent in this space.

To see this, we know that for every neihgourhood V of zero in IV"
we can choose ^ e M) such that

y=:/^

satisfies y(o) =/= o and 9=0 outside V. Then

9 * V-= 9 * ? = ̂

say. Here ^ is supported by V. And ^ ^=o since otherwise a
Fourier transformation would yield

Q.<&=o (Q=^(9), ^^p)).

But this is impossible since both Q and <I> are entire functions,
neither identically zero, so that each can vanish on a non-dense set
at most. Consequently we can choose a e V such that the translate
6==^ satisfies 0(o)=^o and 9==o outside W = V ® V . Since we
have then 9==^*y , where v is a translate of (A, and since W is
arbitrarily small with V, this shows that the translates of g are
independent in CIV".

It follows in particular that no function which is a solution of
any linear partial differential equation with constant coefficients and
having an analytic second member can have its translates inde-
pendent in CIV".

Finally, let us interpret for the space 8=CR the remarks in
Sections. To begin with, it is easy to see that the weak differentia-
bility of/e CR is equivalent in this case to the existence of a conti-
nuous derivative in the ordinary (point-wise) sense. So we are to
consider those functions/e CR which have derivatives of all orders
in the ordinary sense. The numbers M(n; i, V) defined on p. 11
may here be replaced by the numbers

M(n;K)== sup 1/^)1.
a;€K

K denoting a general compact subset ofR and /^(x) being the ordinary
n th derivative of/: this number corresponds to the semi-norm

Pn^f) = sup \f(x)\ (H c R, compact)
a?€H
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and the symmetric and compact neighoourhood V of zero in R
whenever H®V ==. K. Accordingly we introduce the numbers

T(r; K)==supr7M(Ai; K).
n^: 1

and we may then assert
6° If/<= CR has derivatives of all orders in the usual sense, and if

for every compact K c R the integral

flogT^: K^/yr^+oo,

then the translates of f are not independent in CR.
In particular, if/ is analytic on the real axis its translates are not

independent.
It is in fact the case that the hypotheses of 6° are strong enough

to imply much more than that the translates of/are not independent
since they ensure that S^/) is quasi-analytic over every compact
interval of the real axis. A consequence of this is that, if/ satisfies
the hypotheses of 6°, then/e,1(/, S) whenever the set S having a
finite limiting point: for i f^eJI l ) is orthogonal to <1(/, S) the func-
tion o ==/*^ is zero at all points of S. If s is a limiting point ofS,
it results from successive application of Rolle's theorem that
rf(n\s)=o for n=o, i , 2, . . . ; whence, since the class 8'(/) is
quasi-analytic over every compact interval, o is identically zero
throughout any such interval containing S and hence everywhere.
This shows in particular that ^ is orthogonal to /, whence our
assertion. That all this is a consequence of hypotheses designed
merely to ensure the non-independence of translates appears to be
due in the last analysis to the fact lhat convergence in the space 8
concerned (namely CR) is at least as strong as convergence uniform
on every compact set. It seems highly likely that a different situation
would arise if we took on the vector space CR a less fine topology
(that defined by the simple convergence, for example).

7. Connections with the theory of normed rings.

It is possible in theory to use some results concerning the regu-
larity of normed rings given in Silov (19) in such a manner as to
derive sufficient conditions fora function f^L^G to have its translates
independent. In principle the method is applicable to an arbitrary
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group G, but the calculations appear to be much more complicated
when G is non-compact, and we shall illustrate the method in the
compact case. Such results would apply in particular to the groups
T or T^ considered in Section l\, but the proofs given there are more
direct and the results more manageable and deeper in so far as some
account is taken of vanishing Fourier coefficients. What is more,
results of the type of Theorem B to follow concerning the regularity
of normed rings presuppose those results on quasi-analytic classes
which are used directly for the study of the problem of independence
of translates for the spaces L^T and I^R.

The notion of regularity of a normed ring is defined in the following
manner. Let S{ be a normed ring in the sense of Gelfand (that is, a
commutative Banach algebra with unit) ; denote by M a typical
maximal ideal in 31, and by (o, M) the image of the element cp of S{
under the canonical homomorphism of A onto the complex field
defined by M ; finally, suppose the set TO of all maximal ideals in 3{
to be topologised after the manner of Gelfand. This last means that
we consider on TO the « strong topology )), characterised as the least
fine for which all the functions (o, M) ofM are continuous, or, again,
as the topology induced on TO as a subset of the dual space of the
Banach space rfl by the weak topology on the latter. 3{ is then said
to be regular if, given M^eTO and any neighbourhood °C of M^,
there exists <p e 3{ such that

(9, MQ)=^O, (9, M)=:o i fMnon—^T) .

In other words, ^ is regular if and only if the strong topology on TO
coincides with the « weak lopology )) ofWallman-Stone.

Silov (16) gives sufficient conditions for a normed ring having real
generators to be regular, an element 9 of ^ being termed real if
(9, M) is real for every M. In view of the fact that reference (16) is
very difficult to obtain, and for the sake of completeness, I include
here a proof of a result similar to that of Silov, whose article has
been available to me in the form of an abstract only.

Let us term « admissible » any function N(<) (< real), non-negative
and measurable, having the property that there exists for every S > o
a function A(f), summable over the real axis, and such that

(7- 0 J'N(0|A(0|rft<+oo;

(7. 2) (h^e-^dt satisfies H(o)= i and H(^)=o for [7J>S.
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The emphasis here rests on the possibility of choosing N(<) very large
at infinity. The Corollary to Theorem A shows that we may take, for
example. N(<)=exp (—1^) for any a < i. Since (7. i) is invariant
when we replace h(t) by exp (arr^/). h(t) (\ real), ifN(<)is admissible
and if 5>o and any real ). are given, we can find a summable
function h(t) satisfying (7. i) and such H(^)=i and H(^)=o if\i—n>^

Returning to the normed ring 3{, suppose that 9{ has a system
9fc(Ae K) of real generators ; let M^ be a maximal ideal in 31, and let
T) be any given neighbourhood of M^. Since the 9^ generate 31, we may
assume that ^ has the form

^M:^,. M)-(9,, M,)j<S for ^.Jj,

J being 9LJmite subset ofK. We take as an hypothesis that for each
K the function

W=||exp(-2mA)||

is admissible, exp (— 2m^) being defined as an element of S{ by the
usual power series. Since 9^ is real, we shall have

N((Q> sup!expi—27r;(.(9,, M ) i | = = i .v M€jn /" .
Granted this, we choose for each kej a function A^(<), summable
and such that

^N^)[^(0|rf«+oo,

and having a transform H^) such that

H,|(9,. M^=i, H,(x)=o i f [%—(9 , , M,)|>S.

Consider then the element of 31 defined by
9== II (pfc,

where
9,=J^(0,-^-e.dt,

the integral on the right being taken in the sense of Bochner (an
integral of a vector-valued function). For any M, one has

(9,. M^fWe-^^dt^,^ M)j,
and so

(<p, M)=HH,|(e,, M)|.
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By choice of the functions /^(<) we shall therefore have

(?- M,)=yH,K^ M,)|=gi=i;
on the other hand, if M non- ^ ^C, we have

|(9,. M)-(6,, M,)|>^

for at least one A e J : for any such k, H^(6,, M)^===o , and so
(y, M) r-== o whenever M non-^T). This shows that 31 is regular, and
we have thereby proved

THEOREM B. — Let 3{ be a normed ring having the Q^k e K) as
real generators. A sufficient condition for S{ to be regular is that for
each k e K the function

(7. 3) N,(0==l|exp(-^6,)||
be admissible.

We shall now see how this result can be applied to the problem
in hand. Take a compact group G and consider the problem of
independence of translates in UG. As will be amply clear from the
foregoing work, the crux of the problem is to construct continuous
functions <p on G, supported by arbitrarily small pre-assigned neigh-
bourhoods of zero in G, and having Fourier transforms as small as
possible at infinity on G. This, as we intend to show, is equivalent
to deciding the regularity of a class of suitably chosen normed rings
offunctions on G.

Take on G a real-valued function Q(%) having the properties

(7- ^
Q^-^/XQOO+t^/). Q(o)=o, luninfQ(%)>o.

7->-00

Denote by ^S{=.S{q(G) the class of all continuous functions (p(a?) on
G having a Fourier transform $(%) satisfying

(7. 5) ||9||Q=/exp(Q(7.)).|<D(y.)|dY<+oo.

Thanks to the conditions (7. l\), ^ proves to be a normed ring under
pointwise multiplication. Besides this, it is easy to see that the
maximal ideals in rf{ are in a bi-unique correspondence, x^—^M^,,
with the points x of G, M^, being defined by the relations
(<p, MLp) ==: (p(a?) for all <p in ^. This correspondence is bi-unique
since rfl always contains the continuous characters of G and these
separate the points of G. If we therefore identify (as sets) G and W,
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the Gelfand topology on G is none other than the natural topology
on G : this follows at once from the fact that, whatever the normed
ring 9{, the Gelfand topology on 'TfTC is uniquely characterised as being
the compact Hausdorff topology on W for which all the functions
((p, M) ofM are continuous.

As a set of real generators in 9{=iS{q(G) it is natural to take the
functions

W=-l-^x)+^-^x),
2 2

e^)=^)/2i—^)/2^
$ ranging over G. Define therefore

(7. 6) NQ^)=||exp(-2^)[JQ, NQ^(<)= | |exp(-2^)| ]Q

for real t. According to Theorem B, the conditions

(7. 7) For each ^eC?, N(^(<) and NQ^(<) -are admissible ensure
that 9{ is regular.

Consequently, assuming (7. 7) to be true, given any neighbour-
hood U of zero in G, there is o in 3{ such that <p(o) ^= o and <p(a-) = o
for a?non—e= U. And then, if /e L^G is given, we can solve the
equation /*/==(p for /eL'G provided $/Fe Ud(F=9{f),
$ = ̂ (y)), and so surely if

exp(-Q(7))/F(,)eL2G.
We have therefore established the result

THEOREM 8. — Let G be compact. Le<Q(y), NQ^(<) and NQ.(<) be
defined as above in (7. 6). and let (7. 7) be true. Then for /e'L'G to
have its translates independent in this space, it is enough that

Jlexp^Q^/F^l^y^+oo.

As has been remarked before, the weakness of Theorem 8 lies in
the fact that the sufficient condition prescribed therein is not
compatible with the existence of any zeros of the Fourier transform
F=:9f(/)' whereas we know already that for Gr^T"", the non-
vanishing of F is not necessary for the translates of / to be inde-
pendent. It would appear that the above method cannot be adapted
in such a manner as to permit zeros of F since Q(y), if it is zero
anywhere, is identically zero by virtue of (7. ^ (which condition is
necessary to ensure that the class ^o(G) shall be a ring).
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8. — Various extensions.

Since the several extensions to be mentioned are somewhat
disconnected, we shall list them under separate headings,

A. — Non-linear spans of translates. — In a brief note which
is to appear in the Journal of the London Mathematical Society,
I have discussed the independence problem in a modified form.
Given a space 8, a function f e 8, and a subset A c G, let us
denote by M)(f, A)===jll)(/, A, 6) the closure in £ of the set of all
finite sums

(8. i) W.,,
m

where

(8. 3) ^ 6 A
and

(8-3) SIp-K1-
m

A sum of the form (8. i) with the a^ and p^ subject to (8. 2) and
(8. 3) respectively will be termed a « mean » of the translates ofy
corresponding to the set A. I have termed the translates ofy« mean-
independent)) if, whenever A is a closed subset of G with 0 non-e A,
f non-e «Afc(/, A). In the note already mentioned I have dealt with
the problem of mean-independence of translates for the space
Srr^L^G (G locally compact and abelian) : the solution for this
space is complete. The only functions / <= I^G whose translates are
not mean-independent are those whose failure can be predicted a
priori, namely those which are periodic (having for period a non-
trivial, closed subgroup of G). Further, if G is connected, the only
function of this space whose translates fail to be mean-independent
is the null function.

The problem of determining the extent of «IM')(/) ==cl'L(y*, G) also
presents some interest. A related problem concerns the study of the
convex span <^(/) of translates of/ [defined to be the closure in S
of the set of all finite sums (8. i) with the a^ arbitary in G and
(8. 3) replaced by

(8.37) p,>o, Sp.=iJ.
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Both of these problems appear to be new : in fact, I do not know
of any literature dealing with non-linear spans of translates whatever.
The solution of certain such problems is at hand. For a number of
interesting spaces 8 (including L/G), making the restriction to real
functions in the case of^(/), it turns out that the membership of
a function h to X(/yor to ^fc(/) depends solely on the behaviour
of the quotient H/F (H=3?(/i). F=^(/)) : in the case of ^(/),
for example, for /ie^(y*), it is necessary and sufficient that H/F be
a normalised (continuous) function of positive type on G. These
results are not surprising when one recalls the crucial role played
by the quotient H/F in the study of linear spans of translates.

B. — The I^G problem for non-abelian groups. — I owe much
of the substance to be given under this heading to Professor G. W-
Mackey, who has very kindly granted me permission to record his
suggestions here\

The problem of independence of translates in L^G over an abelian
group has a natural extension to non-abelian groups in which L^G
is replaced by the Hilbert space 3-6 underlying some continuous
unitary representation (<%, Ua.) of G [the notation is that of
Godement (17)]. The problem here is to determine those vectors
Xe 3-6 with the property that U^X is not in the closed vector subs-
pace of 3€ generated by the Ua.X with x e A (A a closed subset of G)
unless a^eA. In particular, if we restrict ourselves to those X for
which the Ua;X(a?e G) generate 36 [so that the system (<%, U^., X) is
a simple unitary representation o fG: vide Godement (17), p. i6],
since any such representation is uniquely determined by its « carac-
teristic function »

9(0*) =(X, U,X),
we may view the problem as one concerning the functions of positive
type on G. Namely : for what (continuous) functions 9 of positive
type on G is it true that from

a) x^ . . . , x^ e A, with A closed and fixed,
b) XQ fixed and non- e A,
c) Xy == — i , a, .... a^ arbitrary complex numbers,

follows

(8. A) inf ^ a,a,y(al^-l)>o?
i , 7 = 0

It should however be observed that the assumption that the Ua,X
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generate 96 is somewhat irrelevant a priori (and even eventually in
some cases) : in terms of the original problem, it is tantamount to
assuming that the functions / considered have their translates
fundamental and this, as we have seen in Section 4» is not necessary
for the translates of/ to be independent.

When G is abelian, there is a bi-unique correspondence between
the continuous functions <p of positive type on G and the bounded,

^s>

positive Radon measures [JL on G: to each <p corresponds a unique (A
such that

^x)=f^(x)dy^Y

In this case, (8. A) becomes

(8. 5) inf F
m

X^o)—— S ^••%(^)
i== 1

°̂ (%) > °-

Thus the problem can also stated thus : For each bounded positive
^s /-^s \

measure y. on G, form the Hilbert space L^G, y.); for which [A is it true
that a), 6) and c) imply (8. 5) ? This last inequality states that the
function y(a*o) of y is not a member of the closed vector subspace of
L^G, ;j-) generated by the functions y(a?) of % with x e A. The problem
is thus displayed as one concerning approximation by trigonometric
polynomials on G. In the original problem, this formulation arises
more directly from the Parseval formula and the measures ^ consi-
dered are all absolutely continuous with respect to the Haar measure
o n G : i n fact, rf^y) =|F(y)rdy where F(y)e L'Gis ??(/). Within
these limits, I had conceived this formulation of the problem prior
to Professor Mackey's communication.

If we denote by I((^) = I([A, V) the infinum of

f\l-^.y^d^)

for all finite sums Sa^. y(a^) with the x^ non- e V, our problem is to
determine those positive [j. of finite total mass for which !([/., V) > o
for all V. It is almost obvious that a necessary condition is that [A

-^s
shall be not too small at infinity on G. For example, ifG-==R, and if

f exp (a| y |)c^(y) < 4- oo

for some a > o, then I(^,, V) ==o for every V(=^= G) : this is easily
demonstrated by using the Hahn-Banach theorem to show that in
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this case we can choose the constants <x^ and the points a^ non-eV
such that

sup exp (— a|^|).|i — S^ exp (27r^/)|

is arbitrarily small. Stronger results of the same type follow from
the theory of qasi-analytic classes.

It is interesting to observe that if y. and v are two positive measures
on G of finite total mass, and if X=[j.*y, then for every V we have
I(^ V)>Jd;^(y).I(., V). For

/I'-^n.X^fd^)

=fd^f\i -So,. ̂ ). ̂ )j2 d^)j

>J*I(., V)d^).

In particular therefore, y^v has the desired property whenever either
^ or v has the property and the other is not the zero measure. In
other words, if <p and ^ are two continuous functions of positive type
on G, a), 6) and c) imply (8. A) for the product function <p. ^ whenever
this implication is valid for one of <p or ^ and the other function is
not identically zero.

A study of the variation of !((/.) as a function of (A would be of
great interest. Although it is obvious that I(^) -^ I(^i) whenever ̂  ->- a
weakly in the dual of the dual of the space of bounded continuous
functions on G, it is important to know whether this assertion can
be sharpened since it is on the basis of such results that one might
hope to study the adherence under limiting processes of the property
of a function on G havhig its translates independent.

Finally, I am indebted to Professor Mackey for the following
suggested extension in the case of discrete groups. This extension
consists of the passage from the case in which G is discrete and
abelian to the case in which it is discrete and non-abelian. As we
have seen, the problem of the independence of translates in L^G with
G abelian is entirely equivalent to a certain problem of trigonometric
approximation in the Hilbert space L^G', (/.), ^ being a bounded,
positive measure on G which is absolutely continuous with respect
to Haar measure. When G is non-abelian and discrete (so that 6 is
compact), a natural extension of this problem arises on replacing the
characters of G by the minimal, translation-invariant, finite dimen-
sional vector subspaces J ofL2^; see Mackey (18). Consequently,



ON FUNCTIONS WHOSE TRANSLATES ARE INDEPENDENT 67

the problem about compact abelian groups which is equivalent to our
original problem for the space I^G, G discrete and abelian, may be
formulated thus : Given a compact group K, for which bounded,
absolutely continuous, positive measures [j. on K is it true that the
closed vector subspace of L^K, ;j<) generated by a set @ ofS's contains
no ys except those in @? In discussing this, it would be natural to
define a priori a notion of closure for the sets ® (corresponding to
that following from the topology of G in the abelian case) and then
to discuss when the closure of @ in this sense is enough to ensure
the above property.

C. — The degree of dependence of translates. — If a function
has translates which fail to be independent, it may yet be of interest
to ascertain some measure of the extent of this failure. In other
words, it may be of interest to measure the degree of dependence of
the translates of the function in question. How this is to be done is
fairly obvious for the metrisable groups. For any number r > o, let
Sp be the exterior of the sphere centre 0 and radius r ; one might
then define the degree Dy of dependence of the translates of/as the
infinum of numbers r > o such that / non-e 3(/, S^). Naturally,
there is the difficulty that a number of uniformly equivalent metrics
may be available but, whichever one is used, the number D^ will
retain its essential property of measuring the relative degree of
dependence of the translates of/.

For simplicity, let us confine our attention to the group R and the
space L^R. It is easy to give examples of functions f for which Dyis
o, or positive and finite, or -[- oo : the first case corresponds to that
in which the translates of/ are independent, and the last case to that
in which /e 3(/, S^) for every r > o. Thus, examples of functions/
with Dy==o are discussed in Section 5 ; examples of functions/with
Dy=-(-oo are easy to find. In fact, Dy:=4-oo whenever the
Fourier transform F==9?(/) is exponentially small at infinity. Finally,
as a simple example of the intermediate case, consider the function

L i for[a?|^ L,
f o elsewhere,/(^:

L being any positive number : it is not difficult to show that Dy=iL.
For, to begin with,/e3(/, Sj,) and so Dy^L. To see this, suppose
that ^ e L^R is orthogonal to f(x — a) whenever \a\ ̂  L, so that

[f(x—d)^(x)dx=o if a|^L.
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This means that

C^ ^(x)dx=o if jaj^.L.
t/tt — L

Putting
Q(x)=f^(t)dt,

we have

9(a-+-L)—9(a—L)=o if a>L orit a<—L.

Taking first the case a ;> L, we see that 9(a? -(- aL) == 9(a?) if a; ̂  o
and so, differentiating with respect to x, ^(a?-4-2L)===^(a?)jD.p. for
a?^.o. Since ^eL 2 , this implies ^(x)-= op. jo. for x ̂ o. Likewise,
considering a^—L, we see that ^(a*)==o p - p ' for a?<^o. So
^(x) -=o p.p. so that ^ is orthogonal to /: this shows that/e 3(/, SL),
as asserted. On the other hand, if L'> L, /non—^(/^Si/),
whence Dy^ L. To see this, note that the transform ofy* is

F(%) -= sin 2TCL-//x%;
the function

$(%) == sin 2^7/^7. sin ̂ (L7 — L)y/TCy

is entire of exponential type 2^L' and belongs to L2 over the real axis.
By the Paley-Wiener theorem, $ == ^(cp) where <p e L2 and is zero for
|̂ | ̂ . L'; further, it is easy to see that (p is equivalent to a continuous
function non-vanishing at the origin. Finally, F'±= $/F e L2 and so
F' = 9{f) with /' <= L2 satisfying /* // == 9 p . p . Replacing 9 by the
continuous function to which it is equivalent, we see thaty* ff^) == o
for [a?) ̂  L' andy^^o) =7^= o : this proves our assertion.

The argument just completed may be generalised so as to yield a
method of evaluating Dy which is based upon the behaviour of the
Fourier transform F of /. We consider the class Ey of all functions
<I> == «t>(y) which satisfy the conditions

(a) <I>(^) is entire of exponential type and of class L2 over the real
axis;

(6) ^/FeL'R;
by (a) and (&), $ ===F.($/F) e= L^R, and we impose finally the
condition

(c) fW'/^o.

Then we shall have
D/=( I/a?:). inf( type of <I>)
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with 4> ranging over Ey. Of course, E^ may be void in wich case the
usual convention yields D^== -+- oo. This evaluation of the number
Dyis a consequence of the Paley-Wiener theorem.

It is clear that similar definitions and results could be formu-
lated for the groups ̂  and T^ For these groups, the function-
space under consideration could also be varied mthin limits. For
more general groups, it seems unlikely that any reasonable
numerical measure of the degree of dependence of translates can be
formulated, though this may be done if the group satisfies the first
countability axiom by using an « ecart » defining the uniform
structure of the group. At this level of generality there is at present
no means of effecting such a numerical estimate in terms of the
Fourier transform parallel to that based on the Paley-Wiener theorem
and indicated above.

D. — Relations with mean-periodicity. — Among the examples
we have treated there appear instances of some relationship between
mean-periodicity in the sense of Schwartz (6) and the independence
of translates, this relationship varying greatly from one case to the
next. Thus, for the space L^T we have seen that a function may be
mean-periodic and simultaneously have its translates independent.
On the other hand, for the space I^R, we have seen that these two
properties cannot be possessed simultaneously by any function. In
this respect, the spaces L2^ and C^ behave like L'T, whilst L'R^"
and CW behave like L'R. For example, in CR7", a function cannot
be mean-periodic and simultaneously have its translates independent:
indeed, if/e CR"" is mean-periodic, there is a measure a on R'"
having a compact support such that

(8.6) ^o, /^=o;

consequently, if v is a measure with a compact support and o a
continuous function with a compact support, and if

(8.7) /*.=?,

from (8. 6) and (8. 7) would follow ;7<*o==o and hence, taking
transforms, $.M=:o. Since ^=^0, and since M is an entire function,
M can vanish on a non-dense set at most, and so <1>, which is also
entire, must be identically zero.
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Both the grouping of the various cases and the arguments employed
show fairly clearly that it is the group G itself (rather than the
particular function-space over G which is under consideration)
which determines the form of the relationship between mean-
periodicity and independence of translates : in fact, it is the dual
group G which has direct influence. I think it would be of great
interest to be able to make predictions on the basis of the structure
ofG. To do this would involve, I think, developing some notion of
quasi-analyticity of functions on G and relating this notion to
harmonic analysis, which programme would be desirable even for
the study of independence of translates on its own account.

E. — The class of functions 8'(/). — Theorem i tells us that
if the translates of/are independent, then the functions of the class
^'(/*) separate the points of G. By analogy with the theorem of
Weierstrass-Stone, this suggests the study of connections between
the independence of translates of / on the one hand and density
theorems concerning the class ^(f) on the other. Of course, the
theorem of Weierstrass-Stone is not directly applicable to ̂ (/) since
this class is not an algebra under pointwise multiplication of its
members. Moreover, Theorem !\ shows that, even when SrrrI/G
and G is compact, a function / may have its translates independent
without the class £'(/) being dense in the sense of compact conver-
gence amongst all continuous functions on G. The converse assertion
is also certainly false.

Nevertheless, if K=:]^G, we can link the following propositions
in certain cases :

(a) Fr^S^/) is p. p. non-zero on G.
(6) S>\f) is uniformly dense amongst all continuous functions

which tend to zero at infinity on G.
(c) If p. is a bounded measure such that \ f^d[j\d)=^o, then

;^=o.
(rf) The translates of/are independent in VG.
In (c), j fyd[j.(a) denotes the integral of the bounded, continuous

vector-valued function a—^f^ from G into L^G ; this integration
process commutes with all continuous, linear operations from L^G
into itself so that, in particular, the Fourier transform of the element
of L^G represented by this integral is none other than F(v) .M(—y)
where F = ̂ (/) and M = 3^).
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It is almost immediate that (6) and (c) are equivalent. In fact, by
the last remark we have for any f e 6'

<fja W, // > =^?(a) d^(a)

where ?(a)= <fa, f > belongs to g'(/). Also, every member of
8'(/) belongs to the Banach space C^G formed of all continuous
functions on G which tend to zero at infinity. Finally, the general
continuous linear functional on CgG has the form

^fy{x)^(x) (all^eC.G),

v being a certain bounded Radon measure on G fixed by the functional
in question. Piecing these facts together, and using the Hahn-Banach
theorem, yields the postulated equivalence.

The implication (a) =^ (c) follows at once from the closing remark
of the last paragraph but one.

The relationship between (a) and (c?) is more complicated and
depends to begin with on G. For example, (d)=>-(a) i fG is discrete
(Theorem 3) or if G=R (remarks following Theorem tf), but the
implication is not valid if G==T (Theorem /i).

We know that (a) =^ (6) ; as regards the converse, it is easy to show
at any rate that if F ===o on a non-void open set (modulo null sets),
then (c), and hence also (6), is false. To see this, observe first of
all that for any fixed character y^ the classes S>\f) and (^(^ .f) are
together dense in Cfi or not. Hence, if F vanishes on a non-void
open set, we may assume (by replacing f by a function of the form
7o ' f ^ necessary) that F==o on a symetric neighbourhood U of zero
in G. We can then take a compact and symmetric neighbourhood V of
zero such that V C V c U, let R(%) be the characteristic function o fV,
and consider the function M(y) = R * R(y,) . M(%) is continuous, ̂  o,
of positive type, and vanishes outside U. Consequently, M(y) is the
Fourier transform a bounded, positive measure ^ on G, and from
F(%) . M(— %) •= o p . p . follows

fjady\a)=o.

Since ^=^=0, this shows that (c) is false.
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