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NEWTON–OKOUNKOV BODIES FOR CATEGORIES
OF MODULES OVER QUIVER HECKE ALGEBRAS

by Elie CASBI (*)

Abstract. — We show that for a finite-type Lie algebra g, the representation
theory of quiver Hecke algebras provides a natural framework for the construction
of Newton–Okounkov bodies associated to the quantum coordinate rings Aq(n(w)).
When g is simply-laced, we use Kang–Kashiwara–Kim–Oh’s monoidal categorifica-
tion to investigate the cluster theory of these bodies. In particular, our construction
yields a simplex ∆S for every seed S of Aq(n(w)). We exhibit various properties of
these simplices by characterizing their rational points, normal fans, and volumes.
As an application, we prove an equality of rational functions relating Nakada’s hook
formula with the root partitions associated to cluster variables, suggesting further
connections between cluster theory and the combinatorics of fully-commutative
elements of Weyl groups.
Résumé. — Nous montrons que pour toute algèbre de Lie g de type fini, la

théorie des représentations des algèbres de Hecke carquois fournit un cadre naturel
pour la construction de corps de Newton–Okounkov associés aux anneaux de co-
ordonnée quantiques Aq(n(w)). Lorsque g est simplement lacée, nous utilisons les
catégorifications monoïdales de Kang–Kashiwara–Kim–Oh pour étudier ces corps
en lien avec la théorie des algèbres amassées. En particulier, nous construisons des
simplexes ∆S pour chaque graine S de Aq(n(w)). Nous étudions diverses propriétés
de ces simplexes, notamment leurs points rationnels, leurs éventails normaux, ainsi
que leurs volumes. Comme application, nous établissons une égalité entre fractions
rationnelles reliant la formule des équerres de Nakada avec les partitions de racines
associées aux variables d’amas, ce qui suggère davantage de liens possibles entre
la théorie des algèbres amassées et la combinatoire des éléments complètement
commutatifs des groupes de Weyl.
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1. Introduction

Cluster algebras were introduced by Fomin–Zelevinsky [10] in order to
study total positivity and canonical bases for quantum groups. They are
commutative subalgebras of Q(x1, . . . , xN ) where x1, . . . , xN are some
algebraically independent variables. More precisely, they are generated by
a certain (finite or infinite) number of rational functions in x1, . . . , xN ,
which are called cluster variables. These cluster variables are defined in-
ductively via a process called mutation: the initial data consists in the vari-
ables x1, . . . , xN together with a quiver Q (i.e. an oriented graph) with N
vertices. Such a data is called a seed. The set of vertices of Q splits into
two parts: the unfrozen part and the frozen part. For every vertex k in the
unfrozen part, the mutation in the direction k of the seed ((x1, . . . , xN ), Q)
consists in producing a new variable x′k as well as a new quiver Q′. This new
quiver has the same set of vertices than Q but has different arrows. Thus
one gets a new seed given by the variables x1, . . . , xk−1, x

′
k, xk+1, . . . , xN

and the quiver Q′. In other words, a mutation in the direction k replaces xk
by x′k and leaves all the variables attached to the vertices j 6= k unchanged.
This process is involutive, i.e. the mutation in the direction k transforms
this new seed into the initial seed. Then one can iterate this procedure and
all the new variables obtained from the initial seed after an arbitrary finite
number of mutations are the cluster variables. Thus the data of an initial
seed yields a unique (up to Q-algebra isomorphism) cluster algebra, usu-
ally denoted by A((x1, . . . , xN ), Q). The monomials involving only cluster
variables belonging to the same seed are called cluster monomials.

Here we are interested in a remarkable connection between cluster the-
ory and representation theory involving the notion of monoidal categorifi-
cation of cluster algebras introduced by Hernandez–Leclerc [16]. Given a
cluster algebra A, a monoidal categorification of A is a monoidal category
C such that there is a ring isomorphism A −→ K0(C) sending any cluster
monomial onto the class of a simple object in C. Here K0(C) denotes the
Grothendieck ring of C. This is a strong assumption and is difficult to prove
in general. The idea is to use results of cluster theory to understand the
structure of the category C. The first example of monoidal categorification
appeared in [16], where such a statement is proved for certain subcategories
of finite-dimensional representations of quantum affine algebras in types An
and D4. It was generalized to other simply-laced types by Nakajima [35]
using perverse sheaves on quiver varieties and Qin [40], and very recently
by Kashiwara–Kim–Oh–Park [24] who exhibited a large family of monoidal
categorifications of cluster algebras via categories of modules over quantum
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affine algebras of arbitrary finite types, relying on former constructions due
to Hernandez–Leclerc [17, 18]. In a different direction, Cautis–Williams [6]
showed that the coherent Satake category of the loop Grassmannian is
a monoidal categorification of certain affine coordinate rings. The works
of Kang–Kashiwara–Kim–Oh [20, 21, 22] provided another class of exam-
ples of monoidal categorifications of cluster algebras via categories of mod-
ules over quiver Hecke algebras. Introduced by Khovanov–Lauda [27] and
Rouquier [42], quiver Hecke algebras are Z-graded algebras which categorify
the negative part Uq(n) of the quantum group Uq(g) (here g is a symmetric
Kac–Moody algebra). Let R−gmod denote the monoidal category of finite-
dimensional graded modules over the quiver Hecke algebra corresponding
to g. It was shown by Rouquier [42] and Varagnolo–Vasserot [44] that the
elements of the dual canonical basis of Uq(n) are in bijection with the set
of isomorphism classes of simple objects in R − gmod. The results of [22]
show that the cluster structures on the quantum coordinate rings Aq(n(w))
(known from [13]) admit monoidal categorifications via subcategories Cw
of R− gmod. Here w runs over the Weyl group W of g.

In [5], we showed that these monoidal categorification statements im-
ply certain relationships between natural orderings of different natures. On
the one hand, the cluster-theoretic dominance order was introduced by F.
Qin [40]. This order depends on the choice of a seed: for any seed S in a clus-
ter algebra A, the dominance order for S, denoted 4S , is a partial ordering
on the set of Laurent monomials in the cluster variables of S. This order was
used in [40] to study certain bases in A, called common triangular bases.
On the other hand, we can consider orderings of representation-theoretic
nature, arising from parametrizations of simple objects in a monoidal cat-
egorification C of A. In the case of R − gmod or Cw, simple modules are
parametrized by dominant words (or root partitions): choose a labeling I
of the simple roots of g and fix a total order < on I. We still denote <
the induced lexicographic order on the set M of all (finite) words on the
alphabet I. Then there exists a finite subset GL ofM in bijection with the
positive roots of g such that the set of dominant words is

M := {j1 · · · jk|j1, . . . , jk ∈ GL, j1 > · · · > jk} .

The bijection between GL and Φ+ makes < into an ordering on Φ+. Fix
w ∈ W and consider the unique reduced expression w = (i1, . . . , iN ) of
w corresponding to the restriction of < to Φw+. Let Sw denote the seed
of Aq(n(w)) corresponding to w via [22, Theorem 11.2.2]. In the case of
a type An underlying Lie algebra g with < being the natural order on
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I = {1, . . . , n} and w = w0 the longest element of W , a compatibility be-
tween < and 4Sw0 was exhibited in [5]. We showed ([5, Theorem 6.2]) that
this compatibility implies certain relationships between dominant words
and g-vectors. Recently, Kashiwara–Kim [23] related the dominance orders
corresponding to the seeds of Aq(n(w)) with the homogeneous degrees of
certain renormalized R-matrices in Cw. For every seed S, they also con-
structed natural maps gLS and gRS from the set of classes of self-dual simple
objects in Cw into Zl(w). Using tropical transformation, they showed that
these maps are bijective (after localizing the frozen variables) and indeed
associate a cluster variable with its g-vector. Moreover, in the case where
S is one of the seeds given by [22, Theorem 11.2.2], they relate gRS (M) to
the cuspidal decomposition of M ([23, Proposition 3.14]). In Section 3, we
use these results to give an explicit description of the seed Sw in terms of
dominant words for an underlying Lie algebra g of type An, Dn or En and
an arbitrary order < on I.

Theorem (Theorem 3.7). — Fix w ∈W and a total order < on I. De-
note by w the corresponding reduced expression of w and let (x1, . . . , xN )
be the cluster variables of the seed Sw of Aq(n(w)). Let µk denote the dom-
inant word such that xk = [L(µk)] for every k ∈ J . Write the canonical
factorization of µk as

µk = (iN )cN · · · (i1)c1 .
Then the tuple (c1, . . . , cN ) is given by

cj =
{

1 if j 6 k and ij = ik

0 otherwise.

This statement is thus a generalization of [5, Theorem 6.1] where it was
proved for g of type An, I = {1, . . . , n} ordered with respect to the natural
ordering and w = w0 is the longest element of the W (in this case Cw
is the whole category R − gmod). As a consequence of this Theorem, the
lexicographic ordering < on GL induces a total ordering on the set of cluster
variables of every seed in Aq(n(w)). Such orderings play a key role in the
recent work of Rietsch–Williams [41] (see [41, Section 7]) and hence provide
us with a natural motivation for the construction of Newton–Okounkov
bodies using the monoidal categorification framework.
Newton–Okounkov bodies were introduced by Kaveh–Khovanskii [26]

and Lazarsfeld–Mustata [31] following an idea of Okounkov [37]. Their
construction requires the following elementary objects. Let A be a graded
algebra over an algebraically closed field k, i.e. one has a decomposi-
tion A =

⊕
n>0An where the An are vector subspaces of A satisfying

ANNALES DE L’INSTITUT FOURIER



NEWTON–OKOUNKOV BODIES AND QUIVER HECKE ALGEBRAS 1777

AnAm ⊂ An+m for any n,m > 0 with A0 = k. Assume we have a valua-
tion, i.e. a map Ψ from A to ZN equipped with a total ordering satisfying
certain axioms (see Definition 4.1). Under certain assumptions (see Sec-
tion 4.1), one has dimAn = ]Ψ(An \ {0}) and thus this valuation provides
a useful tool to study the asymptotics of dimAn as n→∞. The Newton–
Okounkov body associated to A is defined as

∆(A) := ConvexHull

⋃
n>1

1
n

Ψ(An \ {0})

.
It is a convex compact set but not a polytope in general. The main prop-
erty of these bodies is that their volume is closely related to the asymp-
totic behaviour of the Hilbert function of A (see e.g. [26, Theorem 2.31]).
The theory of Newton–Okounkov bodies has found applications in vari-
ous areas, in particular in algebraic geometry [4] and representation theory
[2, 8, 12, 25]. Recently, Newton–Okounkov bodies appeared in a differ-
ent context in the work of Rietsch–Williams [41]. In this case, Newton–
Okounkov bodies are associated to certain algebras of global sections of
line bundles over the Grassmannian Grn−k(Cn) (the variety of codimen-
sion k vector subspaces in Cn). The valuation is defined from the cluster
algebra structure on the ring of functions on Grn−k(Cn).
In this paper we show that the representation theory of quiver Hecke

algebras associated with a finite type simple Lie algebra g provides a nat-
ural setting to construct Newton–Okounkov bodies. We prove that the
parametrizations of simple objects in Cw in terms of dominant words pro-
vide natural valuations Ψw from Aq(n(w)) to Zl(w) (Section 4.3). There is
also a natural choice of grading x 7−→ |x| ∈ N on Aq(n(w)) coming from
the structure of the category Cw (Section 4.4). This allows us to associate
Newton–Okounkov bodies to the algebras Aq(n(w)) and more generally to
any (graded) subalgebra of Aq(n(w)) (Section 4.5). Two kind of subalge-
bras will be of particular interest for us: the algebras Aq(n(w)) themselves,
and the (free) subalgebras generated by the cluster variables of a same seed
in Aq(n(w)).

Assume g is simply-laced and let S = ((x1, . . . , xN ), B) be a seed in
Aq(n(w)). The Newton–Okounkov body ∆(Aq(n(w))) is a N − 1 dimen-
sional simplex inside an affine hyperplane H in RN (see Section 5.1). The
Newton–Okounkov body ∆S is also a simplex, contained in ∆(Aq(n(w))).
In Sections 5 and 5.4, we prove the following properties of the simplices ∆S :
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Proposition (cf. Proposition 5.3). — The rational points of ∆S corre-
spond to the cluster monomials for S in the following sense:

x is a cluster monomial for S ⇔ 1
|x|Ψ(x) ∈ ∆S .

Moreover, any rational point in ∆S is of the form 1
|x|Ψ(x) for some cluster

monomial x in Aq(n(w)).

Theorem (cf. Theorem 5.13). — The normal fan of the simplex ∆S can
be explicitly related to the dominance order for S. More precisely, let

−−→
NS

be the linear cone such that for any simple M in Cw one has

Ψ([M ]) +
−−→
NS =

{
Ψ([N ]), [N ] 4S [M ]

}
.

There exists a unique explicit universal transformation T ∈ MN (Q) (by
universal we mean independent of the seed), such that for any seed S, the
cone T

−−→
NS is a face of the normal fan of ∆S . The explicit expression of T

is given by Corollary 5.17.

This statement provides a natural geometric interpretation of the gen-
eralized parameters µ̂j introduced in [5, Section 4.2]. The proof is based
on considering an epsilon tropical mutation in the sense of [36] satisfied
by the rays of the normal fan of ∆S . This mutation relation is strongly
related to the dominance order for S. Then the desired transformation T
can be explicitly known from Theorem 3.7. Note that under the enlight-
ment of [23], one can think about dominant words as certain g-vectors
and thus this statement can be seen as an analog of the well-known du-
ality between c-vectors and g-vectors (see for instance [9, 19]). However
in the purely cluster-theoretic setting, one always considers g-vectors and
c-vectors with respect to an initial seed, whereas our statement is of a more
representation-theoretic nature and does not rely on such a choice.
In Section 6, we focus on the case of finite type cluster algebras. In

this case, the simplices ∆S cover all of the simplex ∆(Aq(n(w))). Using
Theorem 3.7, we prove the following equality of rational functions:

Theorem (cf. Theorem 6.3). — Assume w ∈W is such that the cluster
algebra Aq(n(w)) is of finite type. Then

(1.1)
∏
β∈Φw+

1
β

=
∑
S

∏
16j6N

1
βSj

.

Here βS1 , . . . , βSN denote the weights of the cluster variables of every
seed S. In [34], Nakada proved a colored hook formula that has a very
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similar form. However the underlying combinatorics is a priori very dif-
ferent from cluster theory. We end the section by discussing an example.
We also note that possibly up to some universal constant, the formula ob-
tained for V ol(∆(Aq(n(w)))) is the Peterson–Proctor hook formula (see
for instance [30, Section 8.1]) whereas V ol(∆S) is similar but involves the
heights of the cluster variables of S instead of the positive roots in ∆w

+.
The paper is organized as follows: we begin in Section 2 with some

reminders on the representation theory of quiver Hecke algebras (Sec-
tion 2.1) especially in the context of monoidal categorification of cluster
algebras, following [22, 23] (Section 2.2). We also recall (Section 2.3) sev-
eral basic objects introduced in [5]. In Section 3, we use the recent results of
Kashiwara–Kim [23] to prove the main result of this paper (Theorem 3.7).
In Section 4 we construct certain Newton–Okounkov bodies in a natural
way using the setting of the previous sections. Section 5 is devoted to ex-
hibiting some properties of the Newton–Okounkov bodies corresponding to
monoidal seeds via this construction. Then we study the behaviour of these
bodies under cluster mutation. The main tool is the tropical ε-mutation in
the sense of [36] (see Section 5.3). We show in Section 5.4 that the normal
fan of these bodies essentially describes Qin’s dominance order. Finally in
Section 6 we prove Theorem 6.3 and conclude with some possible connec-
tions with the combinatorics of colored hook formulas studied in [34].
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2. Quiver Hecke algebras and monoidal categorifications
of quantum coordinate rings

In this section we recall some representation-theoretic background and
we fix notations. We begin with some reminders about Kleshchev–Ram’s
classification of finite-dimensional irreducible representations of finite type
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quiver Hecke algebras [30]. Then we recall how quiver Hecke algebras pro-
vide a useful framework for monoidal categorifications of cluster algebras
following [22] and more recently [23]. Finally we recall several technical
tools from [5] that will be useful in the next sections.

2.1. General reminders on quiver Hecke algebras

Let g be a semisimple Lie algebra of finite type, I the set of vertices of the
Dynkin diagram of g. We use the following standard Lie-theoretic notations:
Π = {αi, i ∈ I} stands for the set of simple roots, Q+ :=

⊕
i∈I Nαi, and Φ+

denotes the set of positive roots. We also let M denote the set of (finite)
words over the alphabet I. For ν = h1, . . . , hr ∈ M, we define the weight
of ν as the element of Q+ given by

wt(ν) :=
∑
i∈I

] {k, hk = i}αi.

To any β ∈ Q+ one associates a Z-graded associative algebra R(β) defined
by generators and relations. We refer to [27, 30, 20] for precise definitions.
Let us only outline the fact that among the generators of R(β), one has a
family of idempotents {e(ν), ν ∈ M such that wt(ν) = β}, satisfying the
relations

e(µ)e(ν) = δµ,νe(ν).
This family of algebras is called quiver Hecke algebras. For any β ∈ Q+,
one denotes by R(β)-gmod the category of finite-dimensional graded R(β)-
modules. One also sets

R− gmod :=
⊕
β

R(β)− gmod.

The main property of quiver Hecke algebras is that the category R− gmod
categorifies the quantum coordinate ring Aq(n) (which is isomorphic to
the positive part of the quantum group Uq(g)) in a way that sends the
isomorphism classes of simple objects in R − gmod bijectively onto the
elements of the dual canonical basis of Aq(n).
The construction of irreducible finite-dimensional representations over

quiver Hecke algebras of finite type was done by Kleshchev–Ram [30]. This
parametrization uses the combinatorics of Lyndon words, or root partitions.
It has been generalized by Kleshchev [28] and McNamara [33] to affine type
quiver Hecke algebras. Recall thatM denotes the set of finite words over
the alphabet I. Fix a total order < on I; thusM is totally ordered for the
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induced lexicographic order 6. For every β ∈ Q+, any finite-dimensional
R(β)-module V decomposes as

V =
⊕

ν,wt(ν)=β

e(ν) · V.

The subspace e(ν) ·V can be seen as some kind of weight space by analogy
with the representation theory of semisimple finite-dimensional Lie alge-
bras. Hence one can consider the highest word of V , i.e. the biggest ν (for
the total order 6) such that e(ν) · V is non zero. We set

M :=
{
ν ∈M

∣∣ ∃ V ∈ R(wt(ν))−mod, ν is the highest word of V
}
.

The following statement is the main result of [30] and shows that M is in
bijection with the set of isomorphism classes of simple modules in R−gmod.

Theorem 2.1 ([30, Theorem 7.2]).
(1) There exists a finite subset GL ofM in bijection with Φ+ such that

M is exactly the set{
j1 · · · jk

∣∣ j1, . . . , jk ∈ GL, j1 > · · · > jk
}
.

(2) For every µ ∈ M, there is a unique (up to isomorphism) finite-
dimensional simple module L(µ) of highest word µ. Moreover, write
µ = j1 · · · jk; then L(µ) is given by

L(µ) = hd
(
L(j1) ◦ · · · ◦ L(jk)

)
.

(3) For µ of the form jn with j ∈ GL, one has L(µ) = L(j)◦n.

The elements of GL are called good Lyndon words (or dominant Lyndon
words). Elements of M are called dominant words. The simple modules
corresponding to good Lyndon words are called cuspidal representations
(see also [33]). For a given total order < on I, the good Lyndon words can
be constructed explicitly using the algorithm described in [32, Section 4.3].

Example 2.2. — Assume g if of type A2 and choose the order 1 < 2.
Then GL = {1, 12, 2} ordered with respect to the lexicographic order in
an obvious way, and the corresponding order on Φ+ is given by α1 <

α1 + α2 < α2.

Remark 2.3. — For a dominant word µ ∈ M, the writing µ = i1 · · · ik
(with i1, . . . , ik good Lyndon words ranged in the decreasing order) is
known to be essentially unique (see [30] for a precise statement). It is called
the canonical factorization of µ.

TOME 72 (2022), FASCICULE 5
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2.2. Monoidal categorification of quantum coordinate rings

In their series of papers [20, 21, 22], Kang–Kashiwara–Kim–Oh con-
structed braiding operators for R − gmod and showed that this category
is a monoidal categorification (in the sense of [16]) of the cluster structure
on Aq(n). They also proved similar statements for various subcategories
of R − gmod, denoted Cw. This section is devoted to fixing notations and
recalling the main properties of these categories. Our exposition mainly
follows [23, Section 2.3].
Assume g is simply-laced. Let W denote the Weyl group of g. For any

w ∈ W , we denote by N := l(w) the length of w. The quantum coordi-
nate ring Aq(n(w)) is a subalgebra of Aq(n) defined in [13]. It is shown to
have a (quantum) cluster algebra structure. Kang–Kashiwara–Kim–Oh [22]
showed that Aq(n(w)) admits a monoidal categorification by a subcategory
Cw of R − gmod ([22, Theorem 11.2.3]). The category Cw is stable under
taking subquotients, extensions, and monoidal products. Following [23],
we set

Φw+ := Φ+ ∩ wΦ−
where Φ+ (resp. Φ−) stands for the set of positive (resp. negative) roots
of g. The set Φw+ has cardinality N and we write Φw+ = {βk, 1 6 k 6 N}.

Remark 2.4. — The set of positive roots Φw+ does not depend on the
choice of a reduced expression for w. Moreover, Φw+ 6= Φw′+ if w 6= w′.

There is a natural bijection between (total) convex orderings on Φw+ and
reduced expressions of w. More precisely, if w := (i1, . . . , iN ) is a reduced
expression of w, then there is a natural corresponding convex order 6 on
Φw+ given by

β1 < · · · < βN

where βk := si1 · · · sik−1(αik) for every 1 6 k 6 N . We refer to [32] and
references therein for more details. Here we will be interested in a partic-
ular subfamily of convex orderings on Φw+ called Lyndon orderings. They
are defined as the restrictions to Φw+ of orderings on Φ+ arising from the
bijection of Theorem 2.1(1), for each choice of a total order < on I (see
also Section 3.2 below). Let i1 < · · · < iN denote the good Lyndon words
corresponding respectively to β1, . . . , βN via this bijection. It is known
(see [23, Section 2.3]) that the simple objects in Cw are exactly the L(µ)
for µ dominant word of the form (iN )cN · · · (i1)c1 , c1, . . . , cN ∈ N.
Geiss–Leclerc–Schröer [13] constructed an initial seed Sw in Aq(n(w))

corresponding to the chosen reduced expression w of w. The index set J
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of the cluster variables of this seed is J = {1, . . . , N}; it splits into the
disjoint union J = Jex t Jfr where Jex (resp. Jfr) denotes the index set of
the unfrozen variables (resp. the frozen variables). One has

Jfr = {k ∈ J, k+ = N + 1} and Jex = J \ Jfr
where k+ := min ({k|k < s 6 N, ik = is} t {N + 1}).

2.3. Dominance order and generalized parameters

We consider a Lie algebra g of type An, Dn or En and we fix an index
set I of simple roots. Recall that the category R − gmod associated to g

is a monoidal category, whose product is denoted ◦. We let < denote an
arbitrary ordering on I. The set M of dominant words is totally ordered for
the induced lexicographic order (still denoted <). It is naturally endowed
with a structure of abelian monoid, whose law is denoted �. By definition,
for any µ, ν ∈ M, µ � ν is defined as the greatest of the dominant words
corresponding to the Jordan–Hölder components of the product L(µ) ◦
L(ν). The monoid (M,�) is commutative (as K0(C) categorifies a cluster
algebra, which is commutative); hence it is naturally embedded into its
Grothendieck group G whose law is again denoted by �. This group is
abelian and inherits a total lexicographic order that extends the one on M
(see [5, Definition 4.4, Proposition 4.5]). Let r be the number of positive
roots and let us write j1 < · · · < jr the elements of GL ordered with respect
to <. Consider the following map:

ϕ : M −→ Nr

µ 7−→ t(c1, . . . , cr)
if (jr)cr · · · (j1)c1 is the canonical factorization of µ (the integers ci being
possibly zero). The following was proved for a type An underlying Lie
algebra g in [5]:

Proposition 2.5. — The map ϕ is a monoid isomorphism from (M,�)
to (Nr,+).

We delay the proof to the next section.
In [5, Section 4.2], we constructed a map

Ψ̃ : K0(R− gmod) −→M
sending the class of any simple module in R−gmod onto the corresponding
dominant word in M. This map satisfies

Ψ̃
(
[L(µ)][L(ν)]

)
= µ� ν
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for any µ, ν ∈M. In other words one has

(2.1) Ψ̃([M ][N ]) = Ψ̃([M ])� Ψ̃([N ])

for any simple objects M,N in R− gmod.
Now let w ∈W and N := l(w). Fix a reduced expression w of w. This is

equivalent to the choice of order on Φw+ as recalled in Section 2.2. As in the
previous section we write Φw+ = {β1 < · · · < βN}. By Theorem 2.1 there is
a unique word ik of GL with weight βk for every 1 6 k 6 N . Similarly the
simple objects in Cw are in bijection with the set

Mw :=
{

(iN )cN · · · (i)c11 , c1, . . . , cN > 0
}
.

As before we let Gw denote the Grothendieck group of Mw. The rings
K0(R − gmod) (resp. K0(Cw)) are domains and hence are embedded into
their fraction fields. The map Ψ̃ can be extended to these fields by setting:

Ψ̃
(
x

y

)
:= Ψ̃(x)� Ψ̃(y)�−1.

This map provides a way to study the cluster structure of Aq(n(w)) at the
level of the monoid Mw (or the group Gw). Let S be a seed in Aq(n(w)).
Let x1, . . . , xN denote the cluster variables and B = (bij)i,j the exchange
matrix of S. Following [11] we set

ŷj :=
∏

16i6N
x
bij
i

and we define (see [5, Definition 4.7]):

µ̂j := Ψ̃(ŷj) =
⊙

16i6N
µ
�bij
i ∈ Gw.

These elements are of particular interest from the perspective of monoidal
categorification of cluster algebras as they can be used to define remarkable
partial orderings as follows:

Definition 2.6 (Dominance order, [40]). — Let S = ((x1, . . . , xN ), B)
be a seed in A and consider the elements ŷj defined above. Then, given m

and m′ two Laurent monomials in the xi, we write

m 4 m′ ⇔∃ γ1, . . . , γn > 0,m′ = m×
∏
j

ŷj
γj .

Remark 2.7. — Note that we take opposite conventions compared with
[40].
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In the framework of monoidal categorification of quantum coordinate
rings using quiver Hecke algebras, Kashiwara–Kim [23] related this cluster-
theoretic partial ordering on monomials to homogeneous degrees of renor-
malized R-matrices constructed in [20]. In [5], we used the µ̂j as natural
analogs of ŷj in terms of parameters for simple modules of quiver Hecke
algebras. We introduced the notion of compatible seed (see [5, Defini-
tion 4.7]). The following statement is the main result of [5].

Theorem 2.8 ([5, Theorem 6.2]). — Take g = sln+1 and let w = w0 be
the longest element of the corresponding Weyl group. Consider the reduced
expression

w0 := (1, 2, 1, 3, 2, 1, . . . , n, n− 1, . . . , 1).
Then the seed Sw0 is a compatible seed in R− gmod.

3. Seeds associated with orderings on Lyndon words

In this section we generalize several results obtained in [5]. Let g be a
semisimple Lie algebra of finite type, I a fixed index set of simple roots
and < a total ordering on I. We begin by proving Proposition 2.5 in the
following cases: g of arbitrary finite type with the choice of the natural
ordering of I (see [30, Section 8]) and g of classical type with any ordering.
This generalizes [5, Proposition 5.1]. Then we assume g is simply-laced and
for any w in the Weyl group W of g, we consider a reduced expression w<

of w uniquely determined by <, together with the corresponding seed Sw<

in Aq(n(w)) following [13, 22]. We provide an explicit description in terms
of dominant words of the simple modules corresponding to the cluster vari-
ables of Sw< (see Theorem 3.7). It generalizes [5, Theorem 6.1] to any
subcategory Cw (not only R− gmod) and any finite-type underlying Lie al-
gebra g. The key tool for the proof is provided by [23, Proposition 3.14]. We
state several consequences, and in particular we prove [5, Conjecture 4.10]
in the cases where Proposition 2.5 hods.

3.1. The monoid structure on dominant words

This subsection is devoted to the proof of Proposition 2.5 for g of
arbitrary finite type. Let us outline the fact that for g of exceptional type,
we need to fix the natural order on I, as in [30, Section 8.2] (see Corol-
lary 3.6 below). The cuspidal representations in R − gmod (parametrized
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by elements of GL) are described in [30, Sections 8.8-8.10]. For arbitrary
orderings, our proof works for g of any classical type.

We let < denote an arbitrary total ordering on I. Recall that a Lyndon
word is by definition a word which is strictly smaller than any of its proper
right factors.
Let µ, ν be two words of respective lengths m,n. We denote by µν the

concatenation of µ and ν. By shuffle of µ and ν we mean a word obtained by
applying a permutation σ to the letters of µν such that the restrictions of σ
to {1, . . . ,m} and {m+ 1, . . . ,m+n} are increasing (see [30, Section 4.2]).
We denote this word by σ · (µν).

We consider two dominant words µ, ν ∈M that we write

µ = i1 · · · ir, ν = j1 · · · js
where i1, . . . , ir, j1, . . . , js ∈ GL with i1 > · · · > ir and j1 > · · · > js. We
show that

(3.1) µ� ν = l1 · · · lr+s
where l1 > · · · > lr+s are the elements of the set {i1, . . . , ir, j1, . . . , js}
ranged in the decreasing order. Equivalently, we show that the right hand
side of Equation (3.1) is the biggest shuffle of µ and ν (for the lexicographic
order). As it is obviously a shuffle of µ and ν, it only remains to show that
it is bigger than any other shuffle of µ and ν.
We use an induction on r + s, i.e. we assume that i2 · · · ir � j1 · · · js is

the concatenation of i1, . . . , ir, j2, . . . , js and that i1 · · · ir � j2 · · · js is the
concatenation of i2, . . . , ir, j1, . . . , js ranged in the decreasing order.

Let σ be a shuffle permutation of µ and ν. We show that σ · (µν)
6 l1 · · · lr+s. We assume i1 > j1 the other case being analogous. Note
that this is equivalent to l1 = i1. Let us write

i1 = (a1, . . . , ap) , j1 = (b1, . . . , bq).

Lemma 3.1. — If a1 > b1 then σ shuffles j1 to the right of i1. Equiva-
lently σ(1) = 1, . . . , σ(p) = p.

Proof. — As the restrictions of σ to {1, . . . , m} and {m+1, . . . , m+n}
are increasing, the first letter of σ · (µν) is either a1 or b1. As b1 < a1,
σ · (µν) cannot begin with b1 as it would then be strictly smaller than the
right hand side of Equation (3.1). Hence the first letter of σ · (µν) is a1.
Then the second letter is either a2 or b1. As i1 is Lyndon, a2 > a1 and
thus a2 > b1. Hence as before the second letter of σ · (µν) has to be a2.
We conclude by a straightforward induction that σ · (µν) begins with i1
which proves the Lemma 3.1. �
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From now on we always assume i1 > j1 and a1 = b1.
Lemma 3.2. — Assume there is only one occurrence of a1 in i1 i.e. one

has ak > a1 for every k > 2. Then σ shuffles j1 to the right of i1 if i1 > j1
and either to the left or to the right of i1 if i1 = j1.
Proof. — Consider k maximal in {1, . . . , p} such that a1 = b1, . . . , ak =

bk. Assume k < p; then ak+1 > bk+1 and i1 > j1. If σ shuffles b1 to
the first letter of σ · (µν) then the second letter is either a1 or b2. But
(b1, a1 · · · ) = (a1, a1 · · · ) < (a1, a2 · · · ) by assumption hence σ shuffles b2
to the second letter of σ ·(µν). Similarly we get that σ shuffles b1, . . . , bk to
the first k letters of σ · (µν). Then the next letter is either a1 or bk+1. Both
of these letters are strictly smaller than ak+1 which contradicts the fact
that σ · (µν) is greater than the right hand side of Equation (3.1). Hence
we proved that the first letter of σ · (µν) is a1.

Then the second letter is either a2 or b1 but b1 = a1 < a2 by assumption
hence it has to be a2. Another induction shows that σ · (µν) begins with i1.

If k = p then i1 = j1. The same proof shows that the first letter of σ ·(µν)
is either a1 and in this case σ · (µν) begins with i1, or b1 and in this case
σ · (µν) begins with j1. �

The two previous lemmas were essentially proved in type An in [5, Sec-
tion 5.1]. In order to deal with the remaining types, we consider a slightly
more general version of Lemma 3.2. Recall that we assume i1 > j1 and
a1 = b1.
Lemma 3.3. — Assume there are exactly two occurrences of a1 in i1

and exactly one in j1. Then j1 is shuffled to the right of i1.
Proof. — We write i1 = akal, where k and l are words whose letters are

all strictly greater than a, and j1 = am. First note that the assumptions
imply that the word k is not empty. As i1 > j1, one has k > m and thus
ak > j1. Moreover k < l as i1 is Lyndon. Hence one has j1 = am 6 ak < al.

Lemma 3.2 implies that j1 is shuffled either to the left of i1, or between
ak and al, or to the right of i1. The first possibility is possible only if
m = k. But in this case one can apply Lemma 3.2 in the same way with j2.
Hence the result of the shuffle would begin either with j1j2 or j1ak. Both
are strictly smaller than akal = i1.
Now Lemma 3.2 applied to al and j1 implies that j1 has to be shuffled

to the right of i1 which finishes the proof. �

Lemma 3.4. — Assume there are exactly two occurrences of a1 in i1 as
well as in j1. Then j1 is shuffled to the right of i1 if i1 > j1, and either to
the left or to the right of i1 if i1 = j1.
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Proof. — We write i1 = akal and j1 = aman where k, l,m,n are words
whose letters are all strictly greater than a. As in the previous Lemma 3.3,
one has k < l and m < n. Moreover one has k >m, and in case of equality
one has n 6 l.
If i1 > j1 then either k < m or k = m and n < l. The same proof as for

Lemma 3.3 show that j1 is shuffled to the right of i1. The case i1 = j1 also
follows from the same arguments. �

Corollary 3.5. — Assume i1 and j1 contain at most two occurrences
of their first letters. Then σ · (µν) is either the concatenation of i1 with
i2 · · · ir � j1 · · · js or the concatenation of j1 with i1 · · · ir � j2 · · · js.

Proof. — If i1 > j1 then l1 = i1 and the previous lemmas show that
σ · (µν) is the concatenation of i1 with a shuffle of i2 · · · ir and j1 · · · js. By
the induction assumption, any such shuffle is smaller than l2 · · · lr+s. Hence
σ · (µν) 6 i1l2 · · · lr+s = l1 · · · lr+s. The case i1 < j1 is analogous.
If i1 = j1, then l1 = l2 = i1. By the previous lemmas, σ ·(µν) is either the

concatenation of l1 with a shuffle of i2 · · · ir and j1 · · · js or the concatenation
of l1 with a shuffle of i1 · · · ir and j2 · · · js. In both cases the conclusion is
the same. �

Corollary 3.6. — Assume g is of arbitrary finite type and < is the
natural ordering on I or g is of classical type and < is an arbitrary ordering
on I. Then Equation (3.1) holds.

Proof. — For g of types A,B,C,D, the positive roots contain at most
two occurences of any simple root. A fortiori the elements of GL contain
at most two occurrences of their first letter and this holds for any ordering
< on I. When g is of exceptional type and < is the natural ordering, the
elements of GL are described in [30, Section 8.2] and one can see that they
always contain at most two occurrences of their first letter. Hence in these
cases, Corollary 3.5 implies that the right hand side of Equation (3.1) is
the greatest shuffle of µ and ν, proving Proposition 2.5. �

3.2. A compatible seed for Cw

In this subsection we consider g of type An, Dn or En and we prove that
for any w ∈W , there exists a reduced expression w of w such that the seed
Sw is compatible in the sense of [5, Definition 4.7].

We fix an arbitrary total order < on I. We again denote by < the in-
duced lexicographic order on the setM as well as its restriction to GL (see
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Section 2.1). Via the bijection between GL and Φ+, one can view < as an
ordering on Φ+. For any w ∈ W , we consider the restriction of < to Φw+.
As there is a bijection between convex orderings on Φw+ and reduced ex-
pressions of w (see Section 2.2), we consider the unique reduced expression
w< of w corresponding to <. We fix once for all the order < and we write
w instead of w< if there is no ambiguity.
First we introduce a notation that will be useful in the following. For

any 1 6 k 6 N , we set

Jk := {j 6 k | ij = ik}
and we write Jk = {j0 = k > j1 > · · · > jrk}. In other words, j0 = k, j1 =
k−, j2 = (k−)−, . . . with the notations of [13, Section 9.4]. The integer rk
corresponds to the position of the first occurrence of the letter ik in the
word (i1, . . . , iN ).
The following statement is the main result of this section. It gives a

description of the simple modules in Cw corresponding to the cluster vari-
ables of the seed Sw.

Theorem 3.7. — Let (x1, . . . , xN ) denote the cluster variables of the
seed Sw and let µk denote the dominant word such that xk = [L(µk)] for
every k ∈ J . Then

µk = ij0 ij1 · · · ijrk .

Proof. — We write the canonical factorization of µk as

µk = (iN )cN,k · · · (i1)c1,k

with cN,k, . . . , c1,k ∈ N. We also set c(N+1),N := 0. By [23, Proposi-
tion 3.14], the t-uple of integers (c1,k−c1+,k, . . . , cN,k−cN+,k) is the image
of [L(µk)] under the map gRSw

0
defined in [23] (see [23, Definition 3.8]). It is

clear from this definition that the isomorphism class of the simple module
L(µk) is mapped onto the kth vector ek of the standard basis of ZN . Thus
one has

ek =
(
c1,k − c1+,k, . . . , cN,k − cN+,k

)
.

One has cj,k − cj+,k = 0 for any j 6= k. In particular, one has

ck+,k = c(k+)+,k = · · · = c(N+1),k := 0 and crk,k = · · · = ck−,k = ck,k.

Moreover, ck,k − ck+,k = 1 and hence ck,k = 1. Finally one has

crk,k = · · · = ck−,k = ck,k = 1 and ck+,k = c(k+)+,k = · · · = 0.

If j is any position such that the letter ij is different from ik then k does
not appear in the sequence (rj , . . . , j−, j, j+, . . . , N+1) and hence crj ,k =
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· · · = cj−,k = cj,k = cj+,k = · · · = 0. One concludes:

µk = ikik− · · · irk .

�

Let us point out a couple of consequences which will be useful later.

Corollary 3.8. — Let k ∈ J . For any integer-valued t-uple (cj)j∈J,j>k,
one has

µk >
⊙
j<k

µ
�cj
j

in the group G.

Proof. — By Theorem 3.7, the highest good Lyndon word in the canon-
ical factorization of µk (resp. µj , j > k) is ik (resp. ij , j > k). Hence by
definition of the lexicographic order on M one has

µk �
⊙

j<k,cj<0
µ
�−cj
j >

⊙
j<k, cj>0

µ
�cj
j

which implies

µk >
⊙
j<k

µ
�cj
j

in the Grothendieck group G of M. �

Corollary 3.9. — Let S = ((x1, . . . , xN ), B) be any seed in Aq(n(w))
and let MS denote the matrix of the vectors ϕ(Ψ̃(x1)), . . . , ϕ(Ψ̃(xN )) in
the standard basis of ZN . ThenMS ∈ GLN (Z).

Proof. — First consider the seed Sw. By Theorem 3.7, there is a bijection
between the cluster variables of Sw and good Lyndon words in Mw: indeed,
for any 1 6 j 6 N , there is a unique cluster variable in Sw whose corre-
sponding dominant word has a canonical factorization beginning with ij .
Hence choosing a good permutation of the standard basis of ZN , the ma-
trix MSw

0
is (lower) unitriangular. In particular MSw

0
is invertible with

determinant equal to 1.
Now consider a mutation in any direction k ∈ Jex. Set Ψ := ϕ ◦ Ψ̃. The

vector Ψ(x′k) is either equal to

−Ψ(xk) +
∑
bik>0

bikΨ(xi) or to −Ψ(xk) +
∑
bik<0

(−bik)Ψ(xi).

ANNALES DE L’INSTITUT FOURIER



NEWTON–OKOUNKOV BODIES AND QUIVER HECKE ALGEBRAS 1791

In the first case, one has

det
(
Ψ (x′1) , . . . , Ψ (x′N )

)
= det

(
Ψ(x1), . . . , Ψ (xk−1) ,Ψ (x′k) ,Ψ (xk+1) , . . . , Ψ (xN )

)
= − det

(
Ψ (x1) , . . . , Ψ (xk−1) ,Ψ (xk) ,Ψ (xk+1) , . . . , Ψ (xN )

)
+
∑
bik>0

det
(
Ψ (x1) , . . . , Ψ (xk−1) ,Ψ (xi) ,Ψ (xk+1) , . . . , Ψ (xN )

)
= −det

(
Ψ (x1) , . . . , Ψ (xN )

)
.

The other case is analogous. In particular the matrix obtained after mu-
tation is still invertible and has determinant either 1 or −1. By induction,
we conclude thatMS ∈ GN (Z) for any seed S. �

We end this section by proving that [5, Conjecture 4.10] holds in Cw for
every w ∈W when the underlying Lie algebra g is of finite type. The proof
is similar to the proof of [5, Theorem 6.2] in the case of Cw0 = R − gmod
in type An.

Corollary 3.10. — Fix any total order < on I. For any w ∈ W , the
seed Sw< is compatible in the sense of [5, Definition 4.7].

Proof. — As in Theorem 3.7, for every 1 6 k 6 N we let µk denote the
dominant word corresponding to the k th cluster variable of Sw< . With the
same notations as in Section 2.3, we consider the variables ŷj , j ∈ Jfr. It
follows from the construction of Sw ([13, 22]) that for every j ∈ Jfr,

ŷj = xj+x
−1
j−

∏
j<k<j+<k+

x
−|akj |
k

∏
k<j<k+<j+

x
|akj |
k .

Hence

µ̂j = µj+ �

µ�−1
j− �

⊙
k<j<k+<j+

µ
�|akj |
k �

⊙
j<k<j+<k+

µ
�−|akj |
k

 .

The expression between brackets only involves words µk such that k < j+.
Hence by Corollary 3.8,

µj+ >

µ�−1
j− �

⊙
k<j<k+<j+

µ
�|akj |
k �

⊙
j<k<j+<k+

µ
�−|akj |
k

 .

Thus one has µ̂j�µ > µ for every µ ∈Mw and this holds for every j ∈ Jfr.
This implies that the seed Sw is compatible (see [5, Remark 4.8]). �
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Remark 3.11. — By [5, Corollary 4.12], the seed Sw being compatible
implies certain relationships between dominant words and g-vectors. This
relationship is provided by [23, Proposition 3.14] for any w ∈ W . It takes
the form expected in [5, Section 7.1] in the case of R − gmod in type An
for the natural ordering.

Example 3.12. — Consider g of type A2, I = {1, 2}, w = w0 = s1s2s1 =
s2s1s2. Consider the natural ordering 1 < 2. Then Φ+ = {α1 < α1 + α2
< α2}. The corresponding reduced expression of w0 is (1, 2, 1). It is known
from [30, Section 8.4] that GL = {(1) < (12) < (2)}. By Theorem 3.7, the
simple modules corresponding to the cluster variables of the seed S(1, 2, 1)

(together with its quiver) are given by

L(1) // L(12) // L(21)
tt

.

The matrixMS(1, 2, 1) is 1 0 1
0 1 0
0 0 1

 .

4. Newton–Okounkov bodies for Cw

It follows from Theorem 3.7 that for every choice of order < on I and
every w ∈ W , there is a natural total ordering on the set of cluster vari-
ables of Sw< (and hence of every seed in Aq(n(w))). The corresponding
lexicographic order on cluster monomials yields a monomial valuation for
every seed as in [41, Section 7]. Thus it is natural to construct Newton–
Okounkov bodies in this framework. It will turn out that in our setting the
valuation will be naturally provided by parametrizations of simple objects
in R − gmod (or Cw) and hence entirely determined by <. In particular
it does not depend on the choice of a seed. Throughout the following sec-
tions, we consider a semisimple Lie algebra g of arbitrary finite type. As
in Section 3.2, we fix an index set I of the simple roots of g and a total
order < on I. We also fix an element w in the Weyl group W of g as well as
the reduced expression w< = (i1, . . . , iN ) corresponding to the restriction
of < to Φw+. In all Sections 4 and 5, we will use the following notations:
C := Cw,A := K0(C) ' Aq(n(w)),M := Mw,G = Gw.
In order to construct Newton–Okounkov bodies for subalgebras of A, we

begin by constructing a valuation with value in ZN endowed with some
total ordering, as well as a N-graduation on A.
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4.1. Newton–Okounkov bodies

In this section we briefly review the general construction of Newton–
Okounkov bodies, introduced by Kaveh–Khovanskii [26] and independently
by Lazarsfeld–Mustata [31]. It generalizes a construction of Okounkov [37].
We refer to [3, 2] for beautiful surveys on Newton–Okounkov bodies.

Let A be a N-graded commutative algebra over a base field k. Let An
denote the degree n homogeneous subspace of A for any n ∈ N. Thus
one has

A =
⊕
n

An, AnAm ⊂ An+m, A0 = k.

We assume An to be a finite-dimensional k-vector space for every n ∈ N.
We also assume that A is a domain and that the fraction field of A is of
finite type over k.
Definition 4.1 (Valuation). — A valuation on A is a map Ψ : A −→

ZN (for some N > 1) satisfying the following properties:
(1) ∀ f, g ∈ A,Ψ(fg) = Ψ(f) + Ψ(g).
(2) ∀ t ∈ k∗,∀ f ∈ A,Ψ(tf) = Ψ(f).
(3) ∀ f, g ∈ A,Ψ(f + g) 6 max(Ψ(f),Ψ(g)).
To any N-graded subalgebra B of A, one can associate a closed convex

set ∆(B) called Newton–Okounkov body of B.
Definition 4.2 (Newton–Okounkov bodies). — Let B be any graded

subalgebra of A. Decompose it as

B =
⊕
n

Bn.

The Newton–Okounkov body associated to B is defined as

∆(B) := ConvexHull
(⋃

n

1
n

Ψ(Bn \ {0})
)
.

Recall that the vector spaces Bn, n ∈ N are finite-dimensional. Hence it
follows from [26, Proposition 2.3] that the sets Ψ(Bn \ {0}) are finite. In
order to have these bodies satisfying nice properties, one needs to make
a technical assumption on the valuation Ψ, namely that it is of maxi-
mal rational rank. This means that the rank of the value group of Ψ has
to be equal to the transcendence degree of K := Frac(A). We refer to
[3, Section 2.4] for more details and precise statements about maximal ra-
tional rank valuations. The crucial observation is that under this assump-
tion, one has

dimk Bn = ]Ψ (Bn \ {0}) .
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In other words if the valuation Ψ is of maximal rational rank, then it has
one-dimensional leaves in the terminology of [26] (see [3, Proposition 2.23]).

4.2. Total order on ZN

As in Section 2.2, we write
Φw+ = {β1 < · · · < βN}

and we let i1, . . . , iN denote the corresponding good Lyndon words. Let ek
be the kth vector of the standard basis of ZN for every 1 6 k 6 N . Recall
from Section 2.3 that the isomorphism ϕ sends the good Lyndon word ik
onto ek. Equivalently, one has

(4.1) ∀ 1 6 k 6 N,ϕ
(

Ψ̃
(
[L(ik)]

))
= ek.

Using the isomorphism ϕ, one can push forward the lexicographic order
on M (resp. G) onto the (reversed) lexicographic order on NN (resp. ZN )
given by:

(a1, . . . , aN ) < (b1, . . . , bN ) ⇔ ∃ k > 1, aN = bN , . . . , ak+1

= bk+1, ak < bk.

4.3. The valuation

We let Ψ : Frac(K0(R − gmod)) −→ ZΦ+ denote the composition of Ψ̃
with ϕ:

Ψ : Frac(K0(R− gmod)) Ψ̃ // G ϕ // ZΦ+ .

We again denote by Ψ the restriction to Frac(A):

Ψ : Frac(A) Ψ̃ // G ϕ // ZN .

Recall that N denotes the length of w.
Lemma 4.3. — The map Ψ is a valuation on A with value group ZN .
Proof. — Let x = a1[L(µ1)] + · · · + ar[L(µr)] and y = b1[L(ν1)] + · · · +

bs[L(νs)] in A; as A is commutative and M is totally ordered, one can
assume µ1 > · · · > µr and ν1 > · · · > νs. Then one has

Ψ(x+ y) = Ψ
(
a1[L(µ1)] + · · ·+ ar[L(µr)] + b1[L(ν1)] + · · ·+ bs[L(νs)]

)
6 max

(
max(µi, 1 6 i 6 r), max(νj , 1 6 j 6 s)

)
= max(Ψ(x),Ψ(y)).
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One also has:

Ψ(xy) = Ψ

∑
i,j

aibj [L(µi)][L(νj)]

 .

For any i > 2 (resp. j > 2), µi < µ1 (resp. νj < ν1) hence µi � νj
< µ1 � ν1 if (i, j) 6= (1, 1). Hence µ1 � ν1 is the highest word appearing in
the decomposition on simples of the above sum. Hence

Ψ(xy) = Ψ ([L(µ1)][L(ν1)]) = ϕ(µ1 � ν1)
= ϕ(µ1) + ϕ(ν1) by Proposition 2.5
= Ψ([L(µ1)]) + Ψ([L(ν1)]) = Ψ(x) + Ψ(y).

The remaining axiom in Definition 4.1 is straightforward. Finally, recall
from Proposition 2.5 that ϕ is a bijection from M to NN . In particular,
Ψ(A) ⊃ ϕ(M) = NN and thus the value group Ψ(Frac(A) \ {0}) is indeed
the entire group ZN . �

Lemma 4.4. — The valuation Ψ is of maximal rational rank. In partic-
ular it is one-dimensional leaves in the sense of [26].

Proof. — As A = K0(C) has a cluster algebra structure, its fraction field
is just Q(x1, . . . , xN ) for any cluster (x1, . . . , xN ). Thus it is of transcen-
dence degree N . By construction, the rational rank of Ψ is also equal to
N . Thus Ψ is of maximal rational rank. �

Remark 4.5. — In fact the valuation Ψ essentially does the same thing as
a monomial valuation: up to some automorphism of ZN , it can be identified
with a valuation coming from the lexicographic order on cluster monomials
as in [41, Definition 7.1]. Representation theory provides us with a natural
choice of total order on the cluster variables of the initial seed Sw: denoting
by µi the dominant word such that xi = [L(µi)], we set

xi l xj ⇔ µi < µj .

This induces a total order on Laurent monomials in x1, . . . , xN as in [41,
Definition 7.1]. We also denote it l. Then using Corollary 3.8 one can show
that for any Laurent monomials xa =

∏
i x

ai
i and xb =

∏
i x

bi
i one has

xb l xb ⇔ Ψ
(
xb) < Ψ

(
xb) .

4.4. The grading on A

The grading on A will essentially be given by the following standard
notion of height for elements of Q+. For any β ∈ Q+, write β =

∑
i biαi.

TOME 72 (2022), FASCICULE 5



1796 Elie CASBI

The quantity
ht(β) :=

∑
i

bi

is called the height of β. For any β, γ ∈ Q+, one has ht(β + γ) = ht(β)
+ ht(γ).

Lemma 4.6. — For any word ν inM, the number of letters of ν is equal
to ht(wt(ν)).

Therefore we will denote it using the usual notation for the length of a
word namely |ν|.

Remark 4.7. — In particular, for β ∈ Q+, M a simple object in R(β)−
gmod and µ the corresponding dominant word, one has |µ| = ht(β). Con-
sider for instance the good Lyndon words i1, . . . , iN . Then for any 1 6 k

6 N , one has
|ik| = ht(βk).

Note that |µ � ν| = |µ| + |ν| for any µ, ν ∈ M. Hence the following
definition makes A into a graded algebra.

Definition 4.8 (Grading on A). — To any simple object M in C, we
associate the length of the corresponding dominant word, i.e. the integer
|Ψ̃([M ])|.

As C is a monoidal categorification of A, every cluster monomial is a
simple object and thus is homogeneous, its degree being the length of the
corresponding dominant word.

4.5. Newton–Okounkov bodies for Cw

We are now ready to construct Newton–Okounkov bodies using the above
grading and valuation. For any graded subalgebra B of A = K0(C), we get
a convex compact set ∆(B) ⊂ RN . Moreover the bodies ∆(B)(B ⊂ A) are
always contained in ∆(A).
Let us begin with the following statement, that will be useful in the

following.

Lemma 4.9. — Assume B is a graded finitely generated subalgebra of
A. Consider homogeneous generators b1, . . . , br of B and set di := deg bi for
every 1 6 i 6 r. Assume furthermore that the family (Ψ(b1), . . . , Ψ(br))
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is linearly independent. Then the Newton–Okounkov body ∆(B) is the
rational polytope given by

∆(B) = ConvexHull
(

1
di

Ψ(bi), 1 6 i 6 r
)
.

Proof. — Let f be any degree d homogeneous element in B. We prove
that

1
d

Ψ(f) ∈ ConvexHull
(

1
di

Ψ(bi), 1 6 i 6 r
)
.

Write f as
f =

∑
(i1,...,ir)

d1i1+···+drir=d

ai1, ..., irb
i1
1 · · · birr

and decompose each monomial bi11 · · · birr ∈ B ⊂ A on the basis of classes
of simple objects in C. As the vectors Ψ(b1), . . . , Ψ(br) are linearly inde-
pendent, one has Ψ(bi11 · · · birr ) 6= Ψ(bj11 · · · bjrr ) if (i1, . . . , ir) 6= (j1, . . . , jr).
Thus there is a unique maximal element µ among the images Ψ(bi11 · · · birr ).
This element is then the unique maximal element in the decomposition of f
on the basis of classes of simple objects in C. Hence by definition of Ψ, one
has Ψ(f) = µ = Ψ(bi11 · · · birr ) for some (i1, . . . , ir), d1i1 + · · · + drir = d.
In particular,

1
d

Ψ(f) = 1
d1i1 + · · · drir

(
i1Ψ(b1) + · · ·+ irΨ(br)

)
∈ ConvexHull

(
1
di

Ψ(bi), 1 6 i 6 r
)
.

�

Recall that ek stands for the vectors of the standard basis of ZN (see
Section 4.2).

Lemma 4.10. — The Newton–Okounkov body ∆(A) is given by:

∆(A) = ConvexHull
(

1
ht(βk)ek, 1 6 k 6 N

)
.

Proof. — Let x be any cluster variable in A and µ ∈ M the dominant
word such that x = [L(µ)]. We write the canonical factorization of µ as
µ = ia1

1 · · · iaNN (see Theorem 2.1 and Remark 2.3). Then by definition
|µ| = ∑k akht(βk). Hence

1
|µ|Ψ(x) = 1∑

k akht(βk)
∑
k

akek
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which implies
1
|x|Ψ(x) ∈ ConvexHull

(
1

ht(βk)ek, 1 6 k 6 N
)
.

This holds for any cluster variable in A. Now let m = xa1
1 . . . xarr be any

monomial in the cluster variables (here the xi are any cluster variables, not
necessarily of the same cluster) and let di := |xi|, 1 6 i 6 r. One has

1
|m|Ψ(m) = 1∑

i aidi

∑
i

aiΨ(xi) = 1∑
i aidi

∑
i

aidi
Ψ(xi)
di

.

Thus 1
|m|Ψ(m) lies in ConvexHull( 1

ht(βk)ek, 1 6 k 6 N).
As the valuation of any element f of A is always equal to the valuation

of some monomial as above (see the proof of Lemma 4.9), this proves the
desired statement. �

Note in particular that ∆(A) is a simplex of full dimension N − 1.

Remark 4.11. — If one chooses a different ordering on Φw+ (or equiva-
lently a different reduced expression of w), then the Newton–Okounkov
body ∆(Aq(n(w))) will be the same up to some affine isomorphism (whose
linear part is given by a permutation of the vectors of the standard basis
of ZN ).

5. The simplices ∆S

Throughout Sections 5 and 6, we will assume g is simply-laced. We will
be studying the following Newton–Okounkov bodies: for any seed S in A
which we write ((x1, . . . , xN ), B), we consider the graded subalgebra of A
generated by the cluster variables of S. This is a finitely generated algebra
and by Corollary 3.9, the images of x1, . . . , xN under the valuation Ψ are
linearly independent. Hence by Lemma 4.9 the corresponding Newton–
Okounkov body ∆S is the simplex given by

∆S = ConvexHull
(

1
|xi|

Ψ(xi), 1 6 i 6 N
)
.

We begin by outlining the fact that for any seed S, the simplex ∆S (as well
as ∆(A)) sits inside an affine hyperplane. This hyperplane is naturally de-
fined from the representation-theoretic data introduced in Section 2. Then
we use Theorem 3.7 to prove several properties of the simplices ∆S . In
particular, we exhibit a correspondence between the rational points in ∆S
and the cluster monomials for the seed S.
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5.1. The hyperplane H

Recall that (ek, 1 6 k 6 N) stands for the standard basis of ZN . We
also let 〈·, ·〉 denote the standard Euclidian scalar product on RN . We let λ
denote the vector whose kth component is the height of the positive root βk:

〈λ, ek〉 := ht(βk)
for every k ∈ {1, . . . , N}. The following Lemma shows that λ encodes the
grading on A (see Section 4.4).

Lemma 5.1. — Let M be a simple module in C and let µ ∈ M the
corresponding dominant word. Then one has

|µ| = 〈λ,Ψ([M ])〉 .
Proof. — Let us write the canonical factorization of µ as µ = icNN · · · ic11

(see Remark 2.3). Then by definition one has Ψ(µ) = t(c1, . . . , cN ). Then
using Lemma 4.6 we get

|µ| = ht(wt(µ)) = ht
(∑

k

ckβk

)
=
∑
k

ckht(βk)

=
∑
k

ck 〈λ, ek〉 =
〈
λ,Ψ([L(µ)])

〉
. �

Let H denote the affine hyperplane {〈λ, ·〉 = 1} ⊂ RN . The follow-
ing observation is a straightforward consequence of Definition 4.8 and
Lemma 4.10.

Lemma 5.2. — The simplex ∆(A) is contained in H.
As a consequence, any Newton–Okounkov body associated to a graded

subalgebra of A will also lie in H.

5.2. First properties of ∆S

Now we state a couple of algebraic and geometric properties of the sim-
plices ∆S . We use Theorem 3.7 as well as a result of Geiss–Leclerc–Schröer
([14, Theorem 8.3]).

First we exhibit a correspondence between the rational points inside ∆S
and the monoidal cluster monomials for this seed. By monoidal cluster
monomial, we mean an object in C isomorphic to

⊙
iM

di
i for some non-

negative integers di, where Mi are the simple modules corresponding to
the cluster variables of S. The monoidal categorification statements of [22]
imply that monoidal cluster monomials are always real simple objects.
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Proposition 5.3. — Let S be a seed in A with cluster variables x1, . . . ,

xN . Then for any simple object M in C, one has

M is a monoidal cluster monomial for S ⇔ 1
|M |Ψ([M ]) ∈ ∆S .

Moreover, any rational point in ∆S is of the form 1
|M |Ψ([M ]) for some

monoidal cluster monomial M in C.
Proof. — Let µ ∈ M such that M ' L(µ). We set d := |µ| and µ :=

Ψ([M ]) ∈ ZN . Fix a seed S := ((x1, . . . , xN ), B), and let µi denote the
dominant word such that xi = [L(µi)]. We also set di := |µi|,µi := Ψ(xi)
∈ ZN .
The if part is obvious: if [L(µ)] = xa1

1 · · ·xaNN , then in M one has µ =⊙
i µi
�ai . Hence µ =

∑
i aiµi and d =

∑
i aidi. This implies:

1
d
µ = 1∑

i aidi

∑
i

aidi
1
di
µi ∈ ∆S .

For the only if part, let us write 1
dµ =

∑
i ti

1
di
µi with ti > 0 for every i and∑

i ti = 1. Setting ai := dti/di for every 1 6 i 6 N , this can be rewritten
as µ =

∑
i aiµi or equivalently µ = MS t(a1, . . . , aN ). Now µ ∈ ZN and

MS ∈ GLN (Z) by Corollary 3.9. Hence t(a1, . . . , aN ) ∈ ZN i.e. ∀ i, ai ∈ Z
(and hence ai ∈ N as the ai are positive). This implies

µ =
⊙
i

µ�aii

in M and hence [M ] =
∏
i[L(µi)]ai =

∏
i x

ai
i i.e. [M ] is a cluster monomial

for the seed S.
Now let ν ∈ QN ∩ ∆S and write as before ν =

∑
i ti

1
di
µi with ti > 0

and
∑
i ti = 1. Then using similar arguments, one shows that there exists

a non-negative integer l such that µ := lν ∈ NN and M := L(µ) is a
monoidal cluster monomial for the seed S. Now |M | = l ×∑i ti = l and
thus one has ν = 1

l ν = 1
dµ. �

Corollary 5.4. — Let S and S ′ be two seeds having different sets of
cluster variables. Then the simplices ∆S and ∆S′ have disjoint interiors.

Proof. — Let ν ∈ QN ∩ ∆S ∩ ∆S′ ; the previous Proposition implies
the existence of a monoidal cluster monomial M (resp.M ′) for the seed
S (resp. S ′) such that 1

dµ = 1
d′µ
′ = ν (with the same notations as in the

previous proof). In particular one has [M ]d′ = [M ′]d. By [14, Theorem 8.3],
this implies that any cluster variable involved in the monomial [M ] has to
appear in [M ′] and vice versa. As by hypothesis S and S ′ have different
cluster variables, we conclude that at least one cluster variable of S does
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1

O
•

Ψ ([L(1)]) = (1, 0, 0)

(0, 0, 1) = Ψ ([L(2)])

(1/2, 0, 1/2) = 1
2 Ψ ([L(21)])

1
2 Ψ ([L(12)]) = (0, 1/2, 0)

•

•
n1

n2

n3

n′
1 n′

2

n′
3

∆S

∆S′

Figure 1. In type A2 the simplex ∆(Aq(n)) is covered by the two
simplices ∆S(1,2,1) and ∆S(2,1,2) .

TOME 1 (-1), FASCICULE 0

Figure 5.1. In type A2 the simplex ∆(Aq(n)) is covered by the two
simplices ∆S(1,2,1) and ∆S(2,1,2) .

not occur in [M ]. This obviously implies that 1
dµ belongs to a face of the

simplex ∆S . In other words ν /∈
◦

∆S . Hence
◦

∆S ∩
◦

∆S′ = ∅. �

Example 5.5. — Consider the case where g is of type A2 as in Exam-
ple 3.12. We choose the natural order 1 < 2 which yields a convex order
on the set of positive roots given by α1 < α1 + α2 < α2. The correspond-
ing good Lyndon words are respectively given by 1, 12 and 2. The cluster
algebra Aq(n) has exactly two seeds, namely S = S(1,2,1) and S ′ = S(2,1,2).
Each of them contains one unfrozen and two frozen variables. The clus-
ter variables of S are given by [L(1)], [L(12)], [L(21)] and their respective
images under the valuation Ψ are (1, 0, 0), (0, 1, 0), (1, 0, 1) (recall that the
last two are the frozen variables). Thus the vertices of ∆S have respective
coordinates (1, 0, 0), (0, 1/2, 0), (1/2, 0, 1/2) in the 3-dimensional euclidian
space. The unfrozen cluster variable of S ′ is given by [L(2)] and Ψ([L(2)]) =
(0, 0, 1). The vertices of ∆S′ are given by (0, 0, 1), (0, 1/2, 0), (1/2, 0, 1/2).
All these points belong to the affine plane H of equation x1 + 2x2 +x3 = 1
in R3. Figure 5.1 shows the simplex ∆(Aq(n)) covered by the two simplices
corresponding to the seeds S and S ′. The blue dots correspond to the frozen
variables and the red dots to the unfrozen variables.

Example 5.6. — Consider an underlying Lie algebra g of type A3 and
let w := s1s2s3s1s2. Then Φw+ = {α1, α1 + α2, α1 + α2 + α3, α2, α2 + α3}.
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The reduced expression of w corresponding to the restriction of the natural
ordering 1 < 2 < 3 on Φw+ is (1, 2, 3, 1, 2). By Theorem 3.7, the cluster
variables of the seed S(1,2,3,1,2) are given by the following dominant words:

(1) (12) (123) (21) (2312)
where the first two are unfrozen and the last three are frozen. Their respec-
tive images under Ψ are t(1, 0, 0, 0, 0) t(0, 1, 0, 0, 0), t(0, 0, 1, 0, 0), t(1, 0, 0,
1, 0) and t(0, 1, 0, 0, 1). The cluster algebra Aq(n(w)) has five seeds.
A straightforward computation shows that the other cluster variables of
Aq(n(w)) correspond to the dominant words (2), (23) and (231) of respec-
tive images t(0, 0, 0, 1, 0), t(0, 0, 0, 0, 1) and t(1, 0, 0, 0, 1) under Ψ. The
simplex ∆(Aq(n(w))) is of full dimension 4 inside the affine hyperplane
H ⊂ R5 given by the equation x1 + 2x2 + 3x3 + x4 + 2x5 = 1. Note that
the frozen variable [L(123)] appears in every seed and its image under Ψ
is the third vector of the standard basis of Z5 (see also Equation (4.1)).
The images under Ψ of the other cluster variables have zero entry along
this direction. Hence one can get a three-dimensional picture by projecting
on x3 = 0 as shown in Figure 5.2. As in the previous example, the blue
dots correspond to the frozen variables and the red dots to the unfrozen
variables.

5.3. Tropical ε-mutation

Tropical epsilon-mutations were defined in [36] as tropical exchange
relations similar to the mutation rules of g-vectors or c-vectors. They in-
volve a sign ε which can be chosen arbitrarily at each mutation. The usual
tropical exchange relations of g-vectors and c-vectors are obtained by choos-
ing ε to be the coherency sign of c-vectors. In this section we show how
monoidal categorifications can provide new examples of interesting tropi-
cal ε-mutations. In the case of the categorifications of coordinate rings via
finite type quiver Hecke algebras, the sign ε comes from the natural ordering
on parameters of simple objects in R− gmod.

We fix a seed S = ((x1, . . . , xN ), B) in A as well as a mutation direction
k. Let S ′ denote the seed obtained from S after mutation in the direction k.
The cluster variable xk is replaced by x′k. We let Mi (resp. M ′k) denote the
simple module whose class is xi for every 1 6 i 6 N (resp. x′k). It follows
from the constructions of [22] that this cluster mutation at the level of A
comes from a short exact sequence

(5.1) 0→
⊙
bik>0

M◦biki →Mk ◦M ′k →
⊙
bik<0

M
◦(−bik)
i → 0
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in C. We set

µi := Ψ(xi), i ∈ J and µ̂j := Ψ (ŷj) , j ∈ Jex
(see Section 2.3 for the definition of the ŷj). As the exchange matrix B has
full rank ]Jex, one can extend it into a N×N invertible matrix B̃. We then
set as before

ŷj :=
∏

16i6N
x
bij
i and µ̂j := Ψ(ŷj) for any 1 6 j 6 N.

We show that the vectors µ̂j satisfy a tropical ε-mutation in the sense of
Nakanishi [36].
As ZN is equipped with a total lexicographic order, the following defini-

tion makes sense: for any k ∈ Jex, we set

ηk :=
{

+1 if µ̂k >
−→0

−1 otherwise
.

1

Ψ ([L(1)]) =
(1, 0, 0, 0, 0)

1
2 Ψ ([L(12)]) =
(0, 1/2, 0, 0, 0)

Ψ ([L(2)]) =
(0, 0, 0, 1, 0)1

2 Ψ ([L(23)]) =
(0, 0, 0, 0, 1/2)

1
3 Ψ ([L(231)]) =
(1/3, 0, 0, 0, 1/3)

1
2 Ψ ([L(21)]) =
(1/2, 0, 0, 1/2, 0)

1
4 Ψ ([L(2312)]) =
(0, 1/2, 0, 0, 1/4)

Figure 1. In type A3 with w := s1s2s3s1s2, the simplex ∆(Aq(n(w)))
is covered by five smaller simplices, colored in white, red, yellow, blue,
and green.
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Figure 5.2. In type A3 with w := s1s2s3s1s2, the simplex ∆(Aq(n(w)))
is covered by five smaller simplices, colored in white, red, yellow, blue,
and green.
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Lemma 5.7. — The following equality holds in ZN :

µ′k = −µk +
∑
i

[ηkbik]+ µi.

Proof. — Consider the exchange relation

x′kxk =
∏

i,bik>0
xbiki +

∏
i,sbik<0

x−biki .

By Lemma 4.3, Ψ is a valuation hence we get

Ψ (x′k) = −Ψ(xk) + max
(∑
bik>0

bikΨ(xi),
∑
bik<0

(−bik) Ψ(xi)
)
.

Moreover, ∑
bik>0

bikΨ(xi) >
∑
bik<0

(−bik)Ψ(xi)

⇔
∑
i

bikΨ(xi) >
−→0 ⇔ Ψ (ŷj) >

−→0 ⇔ ηk = +1

Hence if ηk = 1, then µ′k = Ψ(x′k) = −Ψ(xk) +
∑
bik>0 bikΨ(xi) = −µk +∑

i[bik]+µi. Similarly one can show that if ηk = −1 then µ′k = Ψ(x′k) =
−Ψ(xk) +

∑
i[−bik]+Ψ(xi) = −µk +

∑
i[−bik]+µi. �

Now we describe the mutation of the vectors µ̂j . We let µ̂j
′ denote the

analogs of µ̂j for the seed S ′.

Lemma 5.8. — The vectors µ̂j
′
, 1 6 j 6 N are given by:

µ̂j
′ =

{
−µ̂k if j = k,

µ̂j + [ηkbjk]+ µ̂k otherwise.

Proof. — By [11, Proposition 3.9], one has

ŷj
′ =

{
ŷk
−1 if j = k,

ŷj ŷk
[bkj ]+ (ŷk + 1)−bkj otherwise.

Hence applying the valuation Ψ yields

µ̂j
′ =

−µ̂k if = k,

µ̂j + [bkj ]+ µ̂k − bkj
(

max
(
µ̂k,
−→0
))

otherwise.

Consider j 6= k. If ηk = 1 then µ̂k >
−→0 and thus

µ̂j
′ = µ̂j + [bkj ]+ µ̂k − bkjµ̂k = µ̂j + [−bkj ]+ µ̂k = µ̂j + [bjk]+ µ̂k.

Similarly if ηk = −1 then
µ̂j
′ = µ̂j + [bkj ]+ µ̂k = µ̂j + [−bjk]+ µ̂k. �
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Remark 5.9. — As explained in [36], tropical ε-mutations are of particu-
lar interest in cluster theory for describing mutation rules of g-vectors and
c-vectors. This follows from a particular choice of tropical sign, namely
the sign of c-vectors. This sign-coherency property has been proved by
Derksen–Weyman–Zelevinsky [7] in the skew-symmetric case and by Gross–
Hacking–Keel–Kontsevich [15] in the general case. In our setting, the sign
in the mutation rule does not come from the sign-coherence of c-vectors.
Thus the mutation rule given by Lemma 5.8 gives a new example of ε-tro-
pical mutation where the tropical sign ηk encodes the natural ordering on
dominant words.

We end this section with a couple of elementary remarks that will be
useful in Section 5.4.

Lemma 5.10. — The vectors µ̂j , j ∈ J form a basis of RN .

Proof. — Recall the matrix MS introduced in Section 3. By definition,
one has

∀ j ∈ J, µ̂j = Ψ (ŷj) =
∑

16i6N
b̃ijΨ (xi) = MSB̃ej

where B̃ is the extended exchange matrix of the seed S. By Corollary 3.9
the matrix MS is invertible. As B̃ is invertible, the composition MSB is
invertible as well and thus the family (µ̂j)j∈J is a basis. �

Remark 5.11. — By construction the three non trivial terms in the short
exact sequence (5.1) have the same weight. This implies that for any j ∈
Jex, the vector µ̂j is of weight zero. By this we mean that for j ∈ Jex, µ̂j
belongs to the kernel of the following linear map:

wt : RN −→ R]I

c = t(c1, . . . , cN ) 7−→
∑
k

ckβk

where elements of Q+ are identified with vectors in R]I in an obvious way.
Moreover ]I = ]Jfr = N−]Jex (see [23, Section 2.3]). Hence the µ̂j , j ∈ Jex
form a basis of ker wt. This holds for any seed.

5.4. The normal fan to ∆S

In this section, we provide a geometric interpretation of certain tools
used in our previous work [5] as analogues in the group Gw of Fomin–
Zelevinsky’s variables ŷj with respect to the cluster structure of Aq(n(w)).
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More precisely, we show that, up to some universal linear transformation,
the images under the valuation Ψ of the ŷj for each seed S of Aq(n(w))
form a face of the normal fan of the simplex ∆S .

Recall that for a polytope ∆ in a (finite-dimensional) Euclidian space
and for each face F of ∆, the normal cone of F is defined as the cone
whose generating rays are the outer normal vectors to the facets (i.e. the
faces of codimension 1) containing F . The collection of all these cones is
the normal fan of ∆. The rays (i.e. the faces of dimension 1) of the normal
fan of ∆ are precisely the normal vectors to the facets of ∆.
Recall that we fix a total order < on I, an element w ∈ W and the

unique reduced expression w of w corresponding to the restriction of < to
Φw+. Let us introduce a family of vectors nSj for every seed S in A. They
are defined inductively as follows:

Definition 5.12. — Consider the initial seed Sw. We define

n0
j :=

{
ej − ej+ −

(
ht (βj)− ht

(
βj+
))

λ
‖λ‖2 if j ∈ Jex,

ej − ht (βj) λ
‖λ‖2 if j ∈ Jfr.

Then given two seeds S,S ′ related to each other by a mutation in the
direction k ∈ Jex, the vectors nS′j are related to the nSj by the following
tropical ε-mutation:

nS
′

j =
{
−nSk if j = k,

nSj + [ηkbjk]+ nSk otherwise.

As any seed can be reached by a finite sequence of mutations from the
initial seed Sw, this defines in a unique way the vectors nSj for every seed
S. The main result of this section can now be stated as follows:

Theorem 5.13. — For any seed S, the vectors nSj are the rays of the
normal fan of ∆S .

Let S be an arbitrary seed inA. The simplex ∆S is of full dimensionN−1
inside H. Hence for every vertex Pj of ∆S , one can consider the facet Fj of
∆S which does not contain the vertex Pj . For every 1 6 j 6 N , consider
the linear hyperplane of RN containing the points Pi, i 6= j. One considers
the unique vector NSj normal to this hyperplane such that 〈µj ,NSj 〉 = 1
(recall that the µSj are linearly independent by Lemma 5.10).
First we show that the vectors NSj satisfy the suitable tropical muta-

tion rule:
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Lemma 5.14. — The vectors N′j , 1 6 j 6 N are given by:

N′j =
{
−Nj ifj = k,

Nj + [ηkbjk]+ Nk otherwise.

Proof. — The simplices ∆S and ∆S′ share the facet Fk consisting of the
points Pi, i 6= k. By definition, both Nk and N′k are orthogonal to the
linear hyperplane containing the points Pi, i 6= k. Hence Nk = ckN′k for
some (nonzero) real scalar ck. Now,

1 = 〈µ′k,N′k〉 = −〈µk,N′k〉+
∑

i,sgn(bik)=ηk

bik 〈µi,N′k〉

= −〈µk,N′k〉 = −ck
which proves the mutation relation for Nk.
Now let j 6= k. One has,〈

µk,N′j
〉

= −
〈
µ′k,N′j

〉
+
∑
i

[ηkbik]+
〈
µi,N′j

〉
by Lemma 5.7,

=
∑
i

[ηkbik]+
〈
µi,N′j

〉
= [ηkbjk]+ .

Thus the vectors Nj and N′j − [ηkbjk]+Nk are orthogonal to the linear
hyperplane VectR(µi, i 6= j). Hence one can write

N′j = cjNj + [ηkbjk]+ Nk

for some (nonzero) real scalar cj . Computing the scalar product of both
hand sides with µj gives cj = 1 which finishes the proof. �

Now we relate the NSj to the nSj , beginning with the initial seed Sw.

Proposition 5.15. — Consider the seed Sw. Then for any j ∈ J on
has

n0
j = N0

j −
〈
λ,N0

j

〉
‖λ‖2 λ.

Proof. — For simplicity we write Nj (resp. nj) for N0
j (resp. n0

j ) through-
out this proof. Recall from Section 3 that we set Jk := {j 6 k|ij = ik} =
{j0 = k > j1 > · · · > jrk}.

Case 1. j ∈ Jex . — First consider k ∈ J \ Jj . By Theorem 3.7, the
dominant word µk is the concatenation in the decreasing order of the good
Lyndon words il, l ∈ Jk, l 6 k. By definition, Nj is orthogonal to every
µi, i 6= j. In particular, it is orthogonal to µjrk ,µjrk−1 , . . . , µk. Thus one
has

0 =
〈
µjrk

,Nj

〉
=
〈

ejrk ,Nj

〉
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and
0 =

〈
µjrk−1 ,Nj

〉
=
〈

ejrk−1 + µjrk ,Nj

〉
=
〈

ejrk−1 ,Nj

〉
.

By a straightforward induction, this implies that the lth component of Nj

is zero for every l ∈ Jk. This holds for every k /∈ Jj .
Similar arguments show that the l th component of Nj is zero for every

l ∈ Jj with l < j. By definition, one has 〈µj ,Nj〉 = 1. Hence

1 =
〈
µj ,Nj

〉
=
〈

ej + µj− ,Nj

〉
= 〈ej ,Nj〉

and thus the jth component of Nj is equal to 1. Now as j is assumed to
lie in Jex, one has j+ 6 N (see Section 2.2). Hence one can write〈

µj+ ,Nj

〉
= 0 with µj+ = ij+ ij · · · irj

by Theorem 3.7. Thus

0 =
〈
µj+ ,Nj

〉
=
〈
ej+ + µj ,Nj

〉
=
〈
ej+ ,Nj

〉
+ 1

by definition of Nj . Hence the j+th entry of Nj is −1. Then a straightfor-
ward induction similar to the first case shows that the lth component of
Nj is zero if l > j+.

Thus we have shown that Nj has exactly two non zero entries, namely
the j th equal to 1 and the j th

+ equal to −1. Hence

Nj −
〈λ,Nj〉
‖λ‖2 λ = ej − ej+ −

(
ht (βj)− ht

(
βj+
)) λ

‖λ‖2 .

Comparing with Definition 5.12, we conclude that the desired statement
holds.

Case 2. j ∈ Jfr . — One shows as before that the k th entry of Nj is
zero for k /∈ Jj . In this case Jj is exactly the set of all indices of occurrences
of the letter j in the chosen reduced expression of w. Writing 〈µi,Nj〉 = 0
for every i ∈ Jj \ {j} implies that all the entries of Nj are zero except the
jth. This entry is equal to 〈µj ,Nj〉 which is 1 by definition. Hence Nj = ej
for every j ∈ Jfr. This implies

Nj −
〈λ,Nj〉
‖λ‖2 λ = ej − ht(βj)

λ

‖λ‖2 = nj

for every j ∈ Jfr which finishes the proof of Proposition 5.15. �

Now we show that the statement of Proposition 5.15 holds for every seed:

Lemma 5.16. — Let S be any seed in A, and let j ∈ J . Then one has

nSj = NSj −
〈
λ,NSj

〉
‖λ‖2 λ.
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Proof. — For the seed Sw, it follows from Proposition 5.15. As the func-
tion ht(·) is linear, Lemma 5.14 shows that the Ñj

S follows the same tropi-
cal mutation rule as the nj . Hence by induction the equality holds for every
seed. �

One can now finish the proof of Theorem 5.13:
Proof of Theorem 5.13. For any j ∈ J , the vector NSj is orthogonal to

every µi, i 6= j hence to the vectors µp
ht(µp) −

µq
ht(µq) for any p, q 6= j. These

generate the underlying linear space of Fj and hence NSj is orthogonal to
Fj . Moreover, the facet Fj is contained in H for any j ∈ J . Hence λ is
orthogonal to Fj . The conclusion follows from Lemma 5.16. �

Let us finish this section by explaining why Theorem 5.13 provides an
explicit geometric realization of the cluster-theoretic dominance order (see
Definition 2.6). Fix a seed S = ((x1, . . . , xN ), B) in A. The dominance
order was introduced by F.Qin as a partial ordering on Laurent monomials
in x1, . . . , xN in the study of common triangular bases for (quantum) cluster
algebras. The vectors µ̂j (see Section 5.3) were defined in [5] as a natural
analog of this order at the level of parameters for simple modules in C. More
precisely let

−−→
NS denote the linear convex cone generated by the µ̂j , j ∈ Jex.

For every simple object M in C, let NSM denote the affine cone with origin
Ψ([M ]) and direction

−−→
NS ; then one can see that the simple objects in C

whose classes are smaller than [M ] for 4S correspond to the integral points
of NSM .
Theorem 5.13 can now be reformulated as follows. Consider the vector

subspace V of RN generated by the n0
j , j ∈ Jex. By Remark 5.11, the

µ̂j , j ∈ Jex form a basis of ker wt hence one can consider the unique linear
map T defined as

T : ker (wt) −→ V
µ̂j 7−→ n0

j

for every j ∈ Jex.

Corollary 5.17. — The map T is a linear isomorphism and for every
seed S, the image under T of the cone

−−→
NS is the face nSj , j ∈ Jex of the

normal fan of ∆S .

Proof. — The vectors n0
j , j ∈ Jex form a basis of V hence T is an isomor-

phism. By Lemma 5.8, the vectors µ̂j follow the same tropical mutation
rule as the nj . Hence one has

∀ j ∈ Jex, T µ̂j = nj
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for every seed S. This is the desired statement by Theorem 5.13. �

Remark 5.18. — Definition 5.12 allows us to get an explicit description of
the subspace V. This subspace essentially describes the exchange part of the
cluster algebra A. For instance for w = w0 and w = (1, 2, 1, 3, 2, 1, . . . , n,
. . . 1) in type An, [5, Theorem 6.1] implies that ht(βj) = ht(βj+) for
every j ∈ Jex. Hence for every j ∈ Jex, the vector n0

j , j ∈ Jex is sim-
ply ej − ej+ . Let M1, . . . ,Mn denote the simple modules corresponding to
the frozen variables in A. Then using Theorem 3.7, one can check that in
this case V is exactly the orthogonal of the vector subspace generated by
Ψ([M1]), . . . ,Ψ([Mn]).

Example 5.19. — Figure 5.1 shows the normal vectors to each facet of the
simplices ∆S and ∆S′ . In this case there is only one direction of mutation,
and n1 (resp. n′1) corresponds to µ̂1 for the seed S (resp. S ′) up to some
non zero scalar.

6. Towards colored hook formulas

In this section we focus on the case where Aq(n(w)) is a cluster algebra
of finite type, i.e. there is a finite number of seeds. We obtain an equality
between rational functions involving the weights of the simple modules
corresponding to the cluster variables of Aq(n(w)). As a consequence, we
get a cluster-theoretic formula for the quantity N !∏

β∈Φw+
ht(β) . This quantity

has a well-known significance in combinatorics and Lie theory: Peterson–
Proctor related this quantity to the combinatorics of d-complete posets
(see [38, 39]). Under some technical assumption on w (w is assumed to
be dominant minuscule in the terminology of [43]) they prove that this
quantity is exactly the number of reduced expressions of w. This Peterson–
Proctor hook formula is also related to the dimension of certain remarkable
simple representations of quiver Hecke algebras constructed by Kleshchev–
Ram, see [29, Theorem 3.10].
In [34], Nakada proposed a generalization of the Peterson–Proctor hook

formula. Recall from Section 2.1 that α1, . . . , αn stand for the simple roots
of g. One considers the αi, 1 6 i 6 n as formal variables and we let L denote
the field C(α1, . . . , αn). For every β =

∑
i aiαi ∈ Q+, one associates a

formal rational function
1
β

:= 1
a1α1 + · · ·+ anαn

∈ L.
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Specializing the αi to 1, the value of this rational function is exactly 1
ht(β) .

Then Nakada proves the following colored hook formula:

Theorem 6.1 ([34, Corollary 7.2]). — Assume w is a dominant minus-
cule element of W in the terminology of [38, 39, 43]. Recall that N denotes
the length of w. Then the following equality holds in L:
(6.1)∏

β∈Φw+

1
β

=
∑

(i1, ..., iN )∈MPath(w)

1
αi1

1
αi1 + αi2

· · · 1
αi1 + αi2 + · · ·+ αiN

The set MPath(w) is a finite set in bijection with the set of all reduced
expressions of w. We refer to [34, Sections 2,7] for more details. Every term
of the sum in the right hand side of Equation (6.1) is equal to 1/N ! when
specializing the αi to 1. Hence as an immediate consequence of this result,
one gets that the cardinal of MPath(w) coincides with the Peterson–Proctor
hook formula

]MPath(w) = N !∏
β∈Φw+

ht(β) .

Remark 6.2. — In fact, the main result of [34] expresses the rational
function

∏
β∈Φw+

(1 + 1
β ) as a sum of rational functions of the form

1
αi1

1
αi1 + αi2

· · · 1
αi1 + αi2 + · · ·+ αil

with l 6 N , where the tuples (i1, . . . , il) run over a set Path(w) strictly
containing MPath(w). The equality given by Theorem 6.1 is obtained by
considering the terms of lowest degree.

For every seed S = ((xS1 , . . . , xSN ), BS) in Aq(n(w)) and any 1 6 j 6 N ,
consider the unique dominant word µSj such that xSj = [L(µSj )]. We write
the weight of µSj as wt(µSj ) =

∑
i a
S
i,jαi (see Section 2.1). Then mimick-

ing [34], one considers the rational function
1

wt(µSj )
:= 1

aS1,jα1 + · · ·+ aSn,jαn
∈ L.

We can now state the main result of this section.

Theorem 6.3. — Assume w ∈ W is such that the cluster algebra
Aq(n(w)) is of finite type. Then the following equality holds in L:

(6.2)
∏
β∈Φw+

1
β

=
∑
S

∏
16j6N

1
wt(µSj )

.
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We fix w ∈W and we write as in Section 2.2 Φw+ = {β1 < · · · < βN}. We
identify positive roots in Φw+ with elements of C[α1, . . . , αn] in a natural
way and we let β denote the vector of LN whose entries are β1, . . . , βN .
For any seed S and any 1 6 j 6 N , we also set βSj := wt(µSj ) and βS :=
(βS1 , . . . , βSN ) ∈ LN . We begin with the following lemma:

Lemma 6.4. — For any seed S one has:
1

βS1 · · ·βSN
=
∫
CS

e−(β1y1+···+βNyN )dy1 · · · dyN .

Proof. — Let CS be the open linear cone of RN whose intersection with
H is ∆S . With the notations of Section 5.4, one has CS =

⋂
16k6N{〈NSk , ·〉

> 0}. Let NS denote the N × N matrix whose columns are the NSk ,
1 6 k 6 N . By definition of the NSk one has tNSMS = IdN . Hence
one has

1
βS1 · · ·βSN

=
∫
R∗+N

e−(βS1 x1+···+βSNxN)dx1 · · · dxN

=
∫
CS

|det(NS)| e−(βS1 ( tNSy)1
+···+βSN( tNSy)

N
)dy1 · · · dyN .

By Corollary 3.9, |det(MS)| = 1 and hence |det(NS)| = 1 as well. Then
for every 1 6 j 6 N one has(

tNSy
)
j

=
∑
i

(NS)ij yi

and hence

∑
j

βSj
(
tNSy

)
j

=
∑
i

∑
j

(NS)ij β
S
j

 yi

=
∑
i

(
NSβS

)
i
yi =

∑
i

(
tM−1
S β

S
)
i
yi.

Then it suffices to note that for any j one has(
tMSβ

)
j

=
〈
tMSβ, ej

〉
=
〈
β,µSj

〉
= wt

(
µSj
)

= βSj .

Thus we have proven that
1

βS1 · · ·βSN
=
∫
CS

e−(β1y1+···+βNyN )dy1 · · · dyN .

We conclude by performing the change of variables R∗+×∆S −→ CS given
by (r,y) 7−→ ry. �
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Proof of Theorem 6.3. — If Aq(n(w)) is a cluster algebra of finite type,
then all the simple objects in Cw are cluster monomials. Hence the union
of the cones CS for all the seeds in Aq(n(w)) is equal to the whole positive
orthant R∗+N (up to some set of zero measure). Hence one has∏

β∈Φw+

1
β

=
∫
R∗+N

e−(β1x1+···+βNxN )dx1 · · · dxN

=
∑
S

∫
CS

e−(β1x1+···+βNxN )dx1 · · · dxN =
∑
S

1
βS1 · · ·βSN

. �

One can also state another consequence of Lemma 6.4:

Corollary 6.5. — Let S be any seed in Aq(n(w)). The volume of the
simplex ∆S is given by

V ol (∆S) = 1∏
16j6N

∣∣µSj ∣∣ .
Proof. — Specializing the variables α1, . . . , αn to 1 we get

1∏
16j6N

∣∣µSj ∣∣ =
∫
CS

e−(ht(β1)y1+ ···+ht(βN )yN )dy1 · · · dyN .

We perform the change of variables
R∗+ ×∆S −→ CS

(r,y) 7−→ ry
in the right hand side. By construction, ∆S is included in the affine
hyperplane H defined as {ht(β1)y1 + · · · + ht(βN )yN = 1}. Hence we get
CV ol(∆S) where C is some constant. A straightforward computation shows
that this constant is equal to 1. �

Consequently we also get the following statement:

Corollary 6.6. — Assume w ∈ W is such that the cluster algebra
Aq(n(w)) is of finite type. Then one has

N !∏
β∈Φw+

ht(β) =
∑
S

N !∏
16j6N

∣∣µSj ∣∣ .
Remark 6.7. — In the general case, Aq(n(w)) can be of infinite cluster

type but the sum ∑
S

N !∏
16j6N

∣∣µSj ∣∣
still makes sense (as the disjoint union of the simplices ∆S is always in-
cluded in ∆(Aq(n(w)))). We don’t know if this sum still takes a remarkable
form in this general situation.
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In order to make sense of a link between Theorem 6.1 and Theorem 6.3,
one should take care of the conditions imposed on w. Theorem 6.1 holds
under the assumption that w is dominant minuscule whereas a necessary
condition for Theorem 6.3 to hold is that Aq(n(w)) has to be a cluster
algebra of finite type. We conjecture the following:

Conjecture 6.8. — If w ∈W is dominant minuscule, then the cluster
algebra Aq(n(w)) has a finite number of seeds.

This would imply that the equality given by Theorem 6.3, although of
different nature than Theorem 6.1, holds in a larger generality.

Let us give an example where Conjecture 6.8 holds. It corresponds to
the example considered in [34, Section 2]. We consider a Lie algebra g of
type A3 with simple roots Π := {α1, α2, α3}. We let s1, s2, s3 denote the
simple reflections of the Weyl group W of g. We set w := s2s1s3s2 and we
choose the reduced expression w = (2, 1, 3, 2) of w. It is straightforward to
check that w is dominant minuscule using the criterion [43, Proposition 2.3].
By [13, Equation 7.6] (see also [23, Section 2.3]), the subset of positive roots
Φw+ ordered with respect to our choice of w are given by

Φw+ = {α2 < α1 + α2 < α2 + α3 < α1 + α2 + α3}
In this case Nakada’s colored hook formula is given in [34, Section 2] and
can be written as

(6.3) 1
α2

1
α1 + α2

1
α2 + α3

1
α1 + α2 + α3

= 1
α2

1
α1 + α2

1
α1 + α2 + α3

1
α1 + 2α2 + α3

+ 1
α2

1
α2 + α3

1
α1 + α2 + α3

1
α1 + 2α2 + α3

.

On the other hand, the cluster algebra Aq(n(w)) is of rank 4 and with the
notations of Section 2.2, Jex = {1} and Jfr = {2, 3, 4}. Thus there is only
one mutation direction and hence by the involutivity of cluster mutations
there are exactly two seeds in Aq(n(w)). Each of these two seeds contains
one unfrozen variable and three frozen variables. The chosen reduced ex-
pression of w corresponds to the restriction on Φw+ of the ordering 2 < 1 < 3
on the A3 Dynkin diagram. Thus Theorem 3.7 gives the dominant words
µSi , i = 1, . . . , 4 for the seed S = Sw. Here we only need their weights,
which are given by

wt(µ1) = α2 wt(µ2) = α1 + α2

wt(µ3) = α2 + α3 wt(µ4) = α1 + 2α2 + α3.
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The exchange matrix of the seed Sw is given by B = t(0, 1, 1,−1) and
thus the cluster variable x′1 obtained after performing the mutation at x1
of the seed Sw is given by

x′1 = 1
x1

(x2x3 + x4) .

The corresponding dominant word µ′1 has weight wt(µ′1) = α1 + α2 + α3.
Thus the sum in the right hand side of Equation (6.2) is

1
α2

1
α1 + α2

1
α2 + α3

1
α1 + 2α2 + α3

+ 1
α1 + α2 + α3

1
α1 + α2

1
α2 + α3

1
α1 + 2α2 + α3

.

In this example one can check by a straightforward calculation that this
rational function is equal to

1
α2

1
α1 + α2

1
α2 + α3

1
α1 + α2 + α3

which is exactly the statement of Theorem 6.3.

Remark 6.9. — The sums of rational functions on the right hand side
of Equations (6.1) and (6.2) are a priori of a very different combinatorial
natures. For instance these sums do not have the same number of terms
in general. Moreover when specializing the αi to 1, the terms in the right
hand side of Equation (6.1) all take the same value 1/N !. On the contrary
the value taken by the term indexed by a seed S in Equation (6.2) is essen-
tially the volume of the simplex ∆S , which is not the same for every seed.
However, it turns out (even in more complicated examples) that these two
different expressions take rather similar forms. This might suggest closer
connections between the combinatorics of fully-commutative elements of
Weyl groups and cluster theory.

Remark 6.10. — The rational functions on the right hand-side of Equa-
tion (6.1) also appeared in the recent work of Baumann–Kamnitzer–Knu-
tson [1]. They are related with the definition of Duistermaat–Heckman
measures used to compare various bases in Aq(n). In an appendix of the
same work [1], Dranowski–Kamnitzer–Morton–Ferguson used these tools
to prove that the Mirković–Vilonen basis and the dual semicanonical basis
are not the same.
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