Local-to-Global-rigidity of lattices in SL n (đť•‚)
Annales de l'Institut Fourier, Volume 72 (2022) no. 5, pp. 1733-1771.

A vertex-transitive graph 𝒢 is called Local-to-Global rigid if there exists R>0 such that every other graph whose balls of radius R are isometric to the balls of radius R in 𝒢 is covered by 𝒢. An example of such a graph is given by the Bruhat–Tits building of PSL n (𝕂) with n≥4 and 𝕂 a non-Archimedean local field of characteristic zero. In this paper we extend this rigidity property to a class of graphs quasi-isometric to the building including torsion-free lattices of SL n (𝕂).

The proof is the opportunity to prove a result on the local structure of the building. We show that if we fix a PSL n (đť•‚)-orbit in it, then a vertex is uniquely determined by the neighbouring vertices in this orbit.

Un graphe transitif 𝒢 est dit Local-Global rigide s’il existe R>0 tel que tout autre graphe dont les boules de rayon R sont isométriques aux boules de rayon R de 𝒢 est revêtu par 𝒢. Un exemple de tel graphe est donné par l’immeuble de Bruhat–Tits de PSL n (𝕂) lorsque n≥4 et 𝕂 est un corps local non-Archimédien de caractéristique nulle. Dans cet article nous étendons cette propriété de rigidité à une classe de graphes quasi-isométriques à l’immeuble, incluant les réseaux sans torsion de SL n (𝕂).

La démonstration est l’occasion de prouver un résultat sur la structure locale des immeubles. Nous montrons que si l’on fixe une PSL n (𝕂)-orbite dans l’immeuble, alors un sommet est uniquement déterminé par les sommets voisins contenus dans cette orbite.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3490
Classification: 20F65
Keywords: Lattices, Buildings, Rigidity, Local Field
Mot clés : Réseaux, Immmeubles, Régidité, Corps locaux
Escalier, Amandine 1

1 Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, F-75013 Paris (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2022__72_5_1733_0,
     author = {Escalier, Amandine},
     title = {Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$},
     journal = {Annales de l'Institut Fourier},
     pages = {1733--1771},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {5},
     year = {2022},
     doi = {10.5802/aif.3490},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3490/}
}
TY  - JOUR
AU  - Escalier, Amandine
TI  - Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 1733
EP  - 1771
VL  - 72
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3490/
DO  - 10.5802/aif.3490
LA  - en
ID  - AIF_2022__72_5_1733_0
ER  - 
%0 Journal Article
%A Escalier, Amandine
%T Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$
%J Annales de l'Institut Fourier
%D 2022
%P 1733-1771
%V 72
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3490/
%R 10.5802/aif.3490
%G en
%F AIF_2022__72_5_1733_0
Escalier, Amandine. Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$. Annales de l'Institut Fourier, Volume 72 (2022) no. 5, pp. 1733-1771. doi : 10.5802/aif.3490. https://aif.centre-mersenne.org/articles/10.5802/aif.3490/

[1] Abramenko, Peter; Brown, Kenneth S. Buildings. Theory and applications, Graduate Texts in Mathematics, 248, Springer, 2008 | Zbl

[2] Bader, Uri; Furman, Alex; Sauer, Roman Lattice envelopes, Duke Math. J., Volume 169 (2020) no. 2, pp. 213-278 | DOI | MR | Zbl

[3] Barré, Sylvain; Pichot, Mikaël Sur les immeubles triangulaires et leurs automorphismes, Geom. Dedicata, Volume 130 (2007), pp. 71-91 | DOI | MR | Zbl

[4] Benjamini, Itai Coarse Geometry and Randomness, Lecture Notes in Mathematics, 2100, Springer, 2013 (Notes de cours de l’école d’été de probabilités de Saint-Flour XLI – 2011) | DOI | Zbl

[5] Benjamini, Itai; Ellis, David On the structure of graphs which are locally indistinguishable from a lattice, Forum Math. Sigma, Volume 4 (2016), e31 | DOI | MR | Zbl

[6] Benoist, Yves; Quint, Jean-François Lattices in S-adic Lie groups, J. Lie Theory, Volume 24 (2014) no. 1, pp. 179-197 | MR | Zbl

[7] Cornulier, Yves On the quasi-isometric classification of locally compact groups, New Directions in Locally Compact Groups (Caprace, Pierre-Emmanuel, ed.) (London Mathematical Society Lecture Note Series), Volume 447, Cambridge University Press, 2018, pp. 275-342 | DOI | MR | Zbl

[8] Georgakopoulos, Agelos On covers of graphs by Cayley graphs, Eur. J. Comb., Volume 64 (2017), pp. 57-65 | DOI | MR | Zbl

[9] Kleiner, Bruce; Leeb, Bernard Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math., Inst. Hautes Étud. Sci., Volume 86 (1997), pp. 115-197 | DOI | Numdam | MR | Zbl

[10] de la Salle, Mikael; Tessera, Romain Local-to-global rigidity of Bruhat–-Tits buildings, Ill. J. Math., Volume 60 (2016) no. 3-4, pp. 641-654 | DOI | MR | Zbl

[11] de la Salle, Mikael; Tessera, Romain Characterizing a vertex-transitive graph by a large ball, J. Topol., Volume 12 (2019) no. 3, pp. 705-743 | DOI | MR | Zbl

[12] Tits, Jacques A Local Approach to Buildings, The Geometric Vein (1981), pp. 519-547 | DOI | Zbl

Cited by Sources: