A vertex-transitive graph is called Local-to-Global rigid if there exists such that every other graph whose balls of radius are isometric to the balls of radius in is covered by . An example of such a graph is given by the Bruhat–Tits building of with and a non-Archimedean local field of characteristic zero. In this paper we extend this rigidity property to a class of graphs quasi-isometric to the building including torsion-free lattices of .
The proof is the opportunity to prove a result on the local structure of the building. We show that if we fix a -orbit in it, then a vertex is uniquely determined by the neighbouring vertices in this orbit.
Un graphe transitif est dit Local-Global rigide s’il existe tel que tout autre graphe dont les boules de rayon sont isométriques aux boules de rayon de est revêtu par . Un exemple de tel graphe est donné par l’immeuble de Bruhat–Tits de lorsque et est un corps local non-Archimédien de caractéristique nulle. Dans cet article nous étendons cette propriété de rigidité à une classe de graphes quasi-isométriques à l’immeuble, incluant les réseaux sans torsion de .
La démonstration est l’occasion de prouver un résultat sur la structure locale des immeubles. Nous montrons que si l’on fixe une -orbite dans l’immeuble, alors un sommet est uniquement déterminé par les sommets voisins contenus dans cette orbite.
Revised:
Accepted:
Published online:
Keywords: Lattices, Buildings, Rigidity, Local Field
Mot clés : Réseaux, Immmeubles, Régidité, Corps locaux
@article{AIF_2022__72_5_1733_0, author = {Escalier, Amandine}, title = {Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$}, journal = {Annales de l'Institut Fourier}, pages = {1733--1771}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {5}, year = {2022}, doi = {10.5802/aif.3490}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3490/} }
TY - JOUR AU - Escalier, Amandine TI - Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$ JO - Annales de l'Institut Fourier PY - 2022 SP - 1733 EP - 1771 VL - 72 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3490/ DO - 10.5802/aif.3490 LA - en ID - AIF_2022__72_5_1733_0 ER -
%0 Journal Article %A Escalier, Amandine %T Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$ %J Annales de l'Institut Fourier %D 2022 %P 1733-1771 %V 72 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3490/ %R 10.5802/aif.3490 %G en %F AIF_2022__72_5_1733_0
Escalier, Amandine. Local-to-Global-rigidity of lattices in $SL_n(\protect \mathbb{K})$. Annales de l'Institut Fourier, Volume 72 (2022) no. 5, pp. 1733-1771. doi : 10.5802/aif.3490. https://aif.centre-mersenne.org/articles/10.5802/aif.3490/
[1] Buildings. Theory and applications, Graduate Texts in Mathematics, 248, Springer, 2008 | Zbl
[2] Lattice envelopes, Duke Math. J., Volume 169 (2020) no. 2, pp. 213-278 | DOI | MR | Zbl
[3] Sur les immeubles triangulaires et leurs automorphismes, Geom. Dedicata, Volume 130 (2007), pp. 71-91 | DOI | MR | Zbl
[4] Coarse Geometry and Randomness, Lecture Notes in Mathematics, 2100, Springer, 2013 (Notes de cours de l’école d’été de probabilités de Saint-Flour XLI – 2011) | DOI | Zbl
[5] On the structure of graphs which are locally indistinguishable from a lattice, Forum Math. Sigma, Volume 4 (2016), e31 | DOI | MR | Zbl
[6] Lattices in S-adic Lie groups, J. Lie Theory, Volume 24 (2014) no. 1, pp. 179-197 | MR | Zbl
[7] On the quasi-isometric classification of locally compact groups, New Directions in Locally Compact Groups (Caprace, Pierre-Emmanuel, ed.) (London Mathematical Society Lecture Note Series), Volume 447, Cambridge University Press, 2018, pp. 275-342 | DOI | MR | Zbl
[8] On covers of graphs by Cayley graphs, Eur. J. Comb., Volume 64 (2017), pp. 57-65 | DOI | MR | Zbl
[9] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math., Inst. Hautes Étud. Sci., Volume 86 (1997), pp. 115-197 | DOI | Numdam | MR | Zbl
[10] Local-to-global rigidity of Bruhat–-Tits buildings, Ill. J. Math., Volume 60 (2016) no. 3-4, pp. 641-654 | DOI | MR | Zbl
[11] Characterizing a vertex-transitive graph by a large ball, J. Topol., Volume 12 (2019) no. 3, pp. 705-743 | DOI | MR | Zbl
[12] A Local Approach to Buildings, The Geometric Vein (1981), pp. 519-547 | DOI | Zbl
Cited by Sources: