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LOCAL-TO-GLOBAL-RIGIDITY OF LATTICES IN
SLn(K)

by Amandine ESCALIER

Abstract. — A vertex-transitive graph G is called Local-to-Global rigid if there
exists R > 0 such that every other graph whose balls of radius R are isometric to
the balls of radius R in G is covered by G. An example of such a graph is given by
the Bruhat–Tits building of P SLn(K) with n > 4 and K a non-Archimedean local
field of characteristic zero. In this paper we extend this rigidity property to a class
of graphs quasi-isometric to the building including torsion-free lattices of SLn(K).

The proof is the opportunity to prove a result on the local structure of the
building. We show that if we fix a P SLn(K)-orbit in it, then a vertex is uniquely
determined by the neighbouring vertices in this orbit.
Résumé. — Un graphe transitif G est dit Local-Global rigide s’il existe R > 0 tel

que tout autre graphe dont les boules de rayon R sont isométriques aux boules de
rayon R de G est revêtu par G. Un exemple de tel graphe est donné par l’immeuble
de Bruhat–Tits de P SLn(K) lorsque n > 4 et K est un corps local non-Archimédien
de caractéristique nulle. Dans cet article nous étendons cette propriété de rigidité
à une classe de graphes quasi-isométriques à l’immeuble, incluant les réseaux sans
torsion de SLn(K).

La démonstration est l’occasion de prouver un résultat sur la structure locale des
immeubles. Nous montrons que si l’on fixe une P SLn(K)-orbite dans l’immeuble,
alors un sommet est uniquement déterminé par les sommets voisins contenus dans
cette orbite.

1. Introduction

A recurring theme in geometric group theory is that local properties of
an object can have global implication for its geometry. A classical exam-
ple is given by Lie groups and their locally defined Lie algebras. Another
striking illustration is provided by the work of Tits [12] who gave a local
characterization of a particular family of graphs called “buildings of type
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1734 Amandine ESCALIER

Ãd−1” (see Section 2.1 for a definition). Precisely, graphs and their local-
to-global properties are the objects we focus on in this article. All graphs
will be equipped with the usual metric, fixing the length of an edge to one.
A natural local condition to impose on a graph is to be d-regular for

some d ∈ N, which means that all the vertices must have degree d. A well-
known result about such a graph is that the d-regular tree is its universal
convering. This is a first example of a global information deduced only by
a local knowledge of the graph.
One can now ask what happens if we impose a local condition which is

stronger than d-regularity. We formalize this in the next definition.

Definition 1.1. — Let R > 0 and let X and Y be two graphs.
We say that Y is R-locally X if every ball of radius R in Y is isometric

to a ball of radius R in X.
If Y is R-locally X and X is R-locally Y then we say that they are

R-locally the same.

Example 1.2. — In Figure 1.1, BX(x0, 2) is isometric to BY (y0, 2).

X

x0

Y

y0

Figure 1.1. Two graphs 2-locally the same.

The previous covering result on the d-regular tree is a first example of
a more general notion called the Local-to-Gobal rigidity, also named LG-
rigidity.

Definition 1.3. — Let R > 0.We say that X is Local-to-Global-rigid
at scale R (or R-LG-rigid for short) if every graph Y which is R-locally X
is covered by X.
We say that a graph X is LG-rigid if there exists R > 0 such that X is

R-LG-rigid.

Example 1.4. — Benjamini and Ellis [5] showed that for any d > 2 the
Cayley graph of Zd endowed with its usual generating set is 3-LG-rigid.

ANNALES DE L’INSTITUT FOURIER
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They also proved that 3 was optimal showing that Z3 is not LG-rigid at
scale 2.

Example 1.5. — De la Salle et Tessera [11, Theorem C] proved that every
cocompact graph quasi-isometric to a tree is LG-rigid.

Benjamini [4] and Georgakopoulos [8] conjectured that any Cayley graph
of a finitely presented group is LG-rigid at some scale R > 0. That con-
jecture was proven to be false in [11, Theorem B], where the authors built
counter-examples using groups with torsion elements.

Counter-Example 1.6. — The groups F2 × F2 × Z/2Z and SL4(Z)
admit Cayley graphs that are not LG-rigid.

Remark here that we do not state that every Cayley graph of these groups
is non-LG-rigid, but that each group admits a non-LG-rigid Cayley graph.
Indeed, in [11, Theorem J] the authors also showed that every finitely pre-
sented group with an element of infinite order has a Cayley graph which is
LG-rigid. Hence, LG-rigidity for a Cayley graph depends on the generating
set. In particular LG-rigidity is not invariant under quasi-isometries.
With a little bit more of material, we will be able to give a topological

interpretation of Local-to-Global rigidity (see page 1745).
That rigidity notion can be refined in what is called the Strong Local-

to-Global rigidity, also named SLG-rigidity.

Definition 1.7. — Let r,R > 0. We say that X is SLG-rigid at scale
(r,R) if for all Y which is R-locally X and for all isometry f from BX(x,R)
to BY (y,R), the restriction of f to BX(x, r) extends to a covering of Y
by X.
We say that X is SLG-rigid if there exist two radius r and R such that

X is SLG-rigid at scale (r,R).

Such a refinement is far more than just a subtlety: it actually proves
necessary to obtain our main result (see page 1762 for more details).

The following proposition gives us many examples of SLG-rigid graphs.

Proposition 1.8 (de la Salle, Tessera [11, Proposition 3.8]). — A graph
with cocompact isometry group is LG-rigid if and only if it is SLG-rigid.

For example, any LG-rigid Cayley graph is actually SLG-rigid. In the
same article, de la Salle and Tessera proved a powerful condition relating
to the isometry group of a Cayley graph. We will refer to the isometry
group of a Cayley graph (Γ, S) as Isom(Γ, S).
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1736 Amandine ESCALIER

Theorem 1.9 (de la Salle, Tessera [11, Theorem E]). — Let Γ be a
finitely presented group and S be a symmetric generating set and denote
by (Γ, S) the corresponding Cayley graph. If Isom(Γ, S) is discrete, then
(Γ, S) is SLG-rigid.

As stated in [11, Corollary F], we can deduce two new classes of examples
from the above theorem. But before, let us introduce what we call LG-rigid
groups.

Definition 1.10. — We say that a finitely presented group is LG-rigid
(resp. SLG-rigid) if all its Cayley graphs are LG-rigid (resp. SLG-rigid).

Example 1.11. — Torsion-free groups of polynomial growth are SLG-
rigid.

Example 1.12. — Torsion-free, non-virtually free lattices in connected
simple real Lie groups are SLG-rigid.

So far, the graphs chosen as examples are mostly Cayley graphs, but these
are not the only LG-rigid ones. Indeed, besides the case of quasi-trees seen
above, another interesting example is given by Bruhat-Tits buildings (see
Section 2.1 for a definition).

Theorem 1.13 (de la Salle, Tessera [10, Theorem 0.1]). — Let K be a
non-Archimedean local skew field.
If K has positive characteristic and n > 3, then the Bruhat-Tits building

of PSLn(K) is not LG-rigid.
If K has characteristic zero and n > 4, then the Bruhat-Tits building of

PSLn(K) is SLG-rigid.

Keeping in mind the above theorem, consider the following question
asked in [11].

Question 1.14. — Among lattices in semi-simple Lie groups, which
ones are LG-rigid?

This question concerns real Lie groups but one can also wonder what
happens for the p-adic case. Indeed, by a well known result of Svarc and
Milnor, any lattice of SLn(K) is quasi-isometric to the associated building
(see Section 5.2 for more details). The fact that such a lattice is “almost”
a building encouraged us to study the p-adic version of Question 1.14.

Question 1.15. — Among lattices in p-adic Lie groups, which ones are
LG-rigid?

ANNALES DE L’INSTITUT FOURIER
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De la Salle and Tessera showed [10] that if K has positive characteristic,
then there exist p-adic lattices that are torsion-free, cocompact but not
LG-rigid.

Example 1.16. — Let n > 3. There exists a torsion-free cocompact lattice
in PGLn(Fp) that is not LG-rigid.

When K is a non-Archimedean local skew field of characteristic zero,
an element of response to Question 1.15 is provided by our first result
hereunder.

Theorem 1.17. — Let n 6= 3 and K be a non-Archimedean local skew
field of characteristic zero. The torsion-free lattices of SLn(K) are SLG-
rigid.

This result is actually a corollary of our main theorem below which goes
beyond the lattices framework and gives a rigidity result in a more general
case.

Theorem 1.18. — Let n 6= 3 and K be a non-Archimedean local skew
field of characteristic zero. Let X be the Bruhat–Tits building of PSLn(K)
and X be a transitive graph. If X verifies that

• There is an injective homomorphism ρ from Isom(X) to Isom(X )
such that ρ(Isom(X)) is of finite index in Isom(X );

• There is a Isom(X)-equivariant injective quasi-isometry q from X

to X ;
then X is SLG-rigid.

Let us discuss the hypothesis, starting with the assumption made on n.
If n = 2 then X is the (p+ 1)-regular tree, thus by Example 1.5 any graph
quasi-isometric to X is LG-rigid which proves the theorem. Now, as we will
see in the sketch of the proof, the main tool of our demonstration is the
LG-rigidity of the building. But if n = 3 the question of the rigidity of
X is still open. Indeed in that case a lot of flexibility seems to be allowed
(see [3]). Thus our demonstration deals mainly with the case where n > 4.

Secondly, let us look at the hypothesis made on the characteristic of K.
According to [10, Theorem 0.4] and more precisely according to its proof,
we get Counter-Example 1.19 below. It implies in particular that if we
omit the characteristic zero hypothesis, then Theorems 1.18 and 1.17 are
not true.

Counter-Example 1.19. — There exists a non-LG-rigid torsion-free
cocompact lattice in PGLn

(
Fp((T ))

)
.

TOME 72 (2022), FASCICULE 5



1738 Amandine ESCALIER

Finally, before moving to the sketch of the proof let us discuss the hy-
pothesis made on the torsion in Theorem 1.17. First, introducing torsion in
a group is in some case a useful way to build non-LG-rigid graphs. Indeed
the Counter-Example 1.6 is built this way. Second, in order to link (Γ, S)
to X we will need an injection of Isom(Γ, S) into Isom(X ). Using a famous
result of Kleiner and Leeb we will show that Isom(Γ, S) acts on the build-
ings by isometries. The injection into Isom(X ) will then be allowed by the
following proposition.

Proposition 1.20 (de la Salle, Tessera [11, Proposition 6.2]).
Let Γ be an infinite, torsion-free, finitely generated group and let S be a

finite symmetric generating subset of Γ. Then the isometry group of (Γ, S)
has no non-trivial compact normal subgroup.

For more details on how we use this proposition see the proof of Lem-
ma 5.3.

Sketch of the proof of Theorem 1.18

As stated in the discussion below Theorem 1.18, the proof deals mainly
with the case where n > 4. So, Let n > 4 and K be non-Archimedean
local skew field of characteristic zero and and denote by X the Bruhat–
Tits building of PSLn(K). Let X be the studied graph and Y be a graph
R-locally the same as X. The main idea of the proof is to use the rigidity of
X to build the wanted covering from X to Y (see Figure 1.2), thus we need
to build a graph locally the same as X . We will denote such a graph Y.LG-RIGIDITY OF P-ADIC LATTICES 7

X

Y

R-loc

Y

X

covering

q.i.

RX -loc

Goal:
induce a convering from X to Y

Figure 1.2. Sketch of the proof

a copy of each vertex in X\q(X) and define the edges to correspond to
edges in X. With such a description Y is a “hybrid” graph and to define
its edges we might need to understand how to link a vertex coming from
Y to a vertex coming from X . Hence, to avoid such a hybridation we chose
to define the vertices only with informations encoded in Y . That is why
we introduce the notion of print in the building (see Section 3.1). It allows
us to characterize a vertex in X by a set of neighbouring vertices in im(q)
and, using a well chosen set of isometries from Y to X, to transfer this
print notion to Y . Each print in Y corresponds to a vertex in X\q(X). The
vertices of the wanted graph Y will be composed of the vertices of Y and
of prints in Y . It will now be easier to build edges between these vertices;
the key argument to construct such edges is presented in Section 2.3.

Using the rigidity of the building we will obtain an isometry between X
and Y. To conclude the proof we will show that this isometry induces the
wanted covering between Y and X.

Organization of the paper. The first section is devoted to the defini-
tion of our framework. We recall some material about Bruhat-Tits buildings
and large scale simple connectedness and present a fundamental result on
isometries’ extension. The second and third sections are devoted to the
proof of Theorem 1.9. In the second section we develop the necessary engi-
neering to build a graph locally the same as the building —this is where we
define and study prints— while in the third one we use the rigidity of the
building to prove the rigidity of the studied graph. We prove Theorem 1.8
in the fourth section where we check that the lattice verifies the hypothesis
of our main theorem.

TOME 1 (-1), FASCICULE 0

Figure 1.2. Sketch of the proof
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Moreover, for the rigidity of the building to induce a covering between
X and Y , we want Y to contain a copy of the vertices of Y . Hence the goal
is to define the vertices of Y to be composed of the vertices of Y and a
copy of each vertex in X\q(X) and define the edges to correspond to edges
in X.

With such a description Y is a “hybrid” graph and to define its edges we
might need to understand how to link a vertex coming from Y to a vertex
coming from X . Hence, to avoid such a hybridation we chose to define the
vertices only with informations encoded in Y . That is why we introduce the
notion of print in the building (see Section 3.1). It allows us to characterize
a vertex in X by a set of neighbouring vertices in im(q) and, using a well
chosen set of isometries from Y to X, to transfer this print notion to Y .
Each print in Y corresponds to a vertex in X\q(X). The vertices of the
wanted graph Y will be composed of the vertices of Y and of prints in Y .
It will now be easier to build edges between these vertices; the key argument
to construct such edges is presented in Section 2.3.
Using the rigidity of the building we will obtain an isometry between X

and Y. To conclude the proof we will show that this isometry induces the
wanted covering between Y and X.

Organization of the paper

The first section is devoted to the definition of our framework. We recall
some material about Bruhat–Tits buildings and large scale simple con-
nectedness and present a fundamental result on isometries’ extension. The
second and third sections are devoted to the proof of Theorem 1.18.

In the second section we develop the necessary engineering to build a
graph locally the same as the building —this is where we define and study
prints—while in the third one we use the rigidity of the building to prove
the rigidity of the studied graph. We prove Theorem 1.17 in the fourth
section where we check that the lattice verifies the hypothesis of our main
theorem.
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2. Framework

Let us start by setting up the framework of the next sections. We first
recall some material about Bruhat–Tits buildings, and large scale simple
connectedness. Then we present a useful tool concerning the extension of
isometries. We conclude by a result one step further in to the proof of our
main theorem, linking the PSLn(K)-orbits in the building and the image
q(X) of the graph studied.

2.1. Bruhat–Tits building

Let n > 2. Since it is the object at the center of our proof, let us recall
the description of the Bruhat–Tits building associated to PSLn(K) where
n > 2, see [1] for more details.

2.1.1. Non-Archimedean local skew fields

Let K be a field (not necessarily commutative). A discrete valuation
on K is a surjective homomorphism v : K∗ → Z satisfying v(x + y) >
min{v(x), v(y)} for all x, y ∈ K∗ such that x+ y 6= 0. If K is endowed with
such a valuation, we can extend v on all K by setting v(0) = +∞. We say
that K is a non-Archimedean local skew field if it is locally compact for the
topology associated to a discrete valuation.

Example 2.1. — If K = Q and p is a prime, then every x ∈ K can be
written as x = pna/b where a and b are integers non-divisible by p. The
map defined by v(pna/b) := n is a discrete valuation over K. The field Qp
is the completion of Q with respect to the p-adic absolute value defined by
|x|p = p−v(x).

Example 2.2. — Let K = Fp((T )), the field of formal Laurent series over
Fp. Denote by f =

∑
k∈Z akT

k an element in Fp((T )) then the map defined
by v(f) := min{k : ak 6= 0} is a valuation over K.

ANNALES DE L’INSTITUT FOURIER
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Let O denote the ring of integers of K with respect to v, that is to say
O := {x ∈ K : v(x) > 0}. This ring has a unique prime ideal m := {x ∈
K : v(x) > 0}. Finally, let π be a generator of m as a O-module.

Example 2.3. — If K = Qp then its ring of integers is O = Zp. Moreover
m = pZp and π = p.

Example 2.4. — If K = Fp((T )) then O = Fp[[T ]]. Moreover m =
XFp[[T ]] and π = X.

2.1.2. Buildings

Let K be a non-Archimedean local skew field endowed with a valuation v.
AO-lattice ofKn is aO-submodule which generatesKn as aK vector space.
Such a lattice can be written as Oe1 + · · · + Oen for a basis (e1, . . . , en)
of Kn. Since for any a ∈ K∗ and any lattice L, the module aL is also a
lattice, we can define the equivalence relation of lattices modulo homothety.
We denote by [L] the class of a lattice L.
The Bruhat–Tits building of PSLn(K) is a simplicial complex of dimen-

sion n − 1 denoted by X̂ whose 1-skeleton (denoted by X ) is described as
follows. The vertices are the classes of O-lattices modulo homothety. Two
vertices x1 and x2 are linked by an edge if there exists representatives L1
of x1 and L2 of x2 such that:

pL1 ⊂ L2 ⊂ L1.

Example 2.5. — One can show that the building of PSL2(Qp) is a (p+1)-
regular tree. Figure 2.1a gives a representation of the building when p = 2.

2.1.3. Orbits and types

The usual action of GLn(K) on Kn induces an action of PGLn(K) on
X by isometry. Since GLn(K) acts transitively on the bases, the action of
PGLn(K) on the vertices of X is also transitive.
If L = ⊕iOei is a lattice we define its type to be v (det(e1, . . . , en)).

Since:

∀ a ∈ K∗ v (det(ae1, . . . , aen)) = v (det(e1, . . . , en)) mod n,

one can define the type of a vertex x in X to be the value modulo n of the
type of one of its representatives. We denote by τ(x) the type of x.

TOME 72 (2022), FASCICULE 5
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(a) The building has two
SL2(Q2)-orbits

*
(b) Representation of one apart-
ment

Figure 2.1. The building of PSL2(Q2)

If L′ is a second lattice, we can choose our basis e1, . . . , en for L in
such a way that L′ admits a basis of the form a1e1, . . . , anen for some
ai ∈ K∗. The scalars ai can be taken to be powers of π. The incidence
relation defined above implies that if the classes of L and L′ are linked by
an edge in X , then they have different types.

Remark 2.6. — Remark that if L = ⊕iOei and
L′ = Oπe1 ⊕ · · · ⊕ Oπej ⊕ ej+1 ⊕ · · · ⊕ en,

then τ
(
[L′]
)

= τ
(
[L]
)

+ j mod n.

The action of SLn(K) on X preserves the determinant and is transitive
on the pairs of vertices of the same type. So there are exactly n orbits under
the action of SLn(K) (see Figure 2.1a and Figure 2.2 for examples).

2.1.4. Apartments

If e is a basis of Kn then the sub-complex A induced by the set of vertices{
⊕ni=1Oπkiei | ki ∈ Z

}
is isometric to a (n−1)-dimensional Euclidean space

tiled by regular (n− 1)-simplices. We call such sub-complexes apartments.
For example an apartment in the building of PSL2(Q2) is isometric to R1

tiled with segments of length 1 (see Figure 2.1b), whereas for PSL3(Q2)
the apartment are isometric to R2 and tiled with triangles (see Figure 2.2).

ANNALES DE L’INSTITUT FOURIER
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Figure 2.2. Apartment in the building of PSL3(Q2). The colors cor-
respond to SL3(Q2)-orbits.

For any two points in X̂ there exists an apartment containing them. If
x, y ∈ X̂ let A be an apartment containing x and y and define dX̂ (x, y) to be
equal to the euclidean distance dA(x, y). This definition does not depend on
the choice of apartment A and thus endows X̂ with a well defined distance.
Moreover, this distance verifies the negative curvature inequality: for all
x, y, z ∈ X̂ and t ∈ [0, 1]

(2.1) d2
X̂ (z, tx+ (1− t)y) 6 td2

X̂ (z, x) + (1− t)d2
X̂ (z, y)− t(1− t)d2

X̂ (x, y).

Denote by dX the distance on the 1-skeleton X assigning length 1 to an
edge. Then dX (x, y) is greater than dX̂ (x, y) for all vertices x and y in X .

2.1.5. Contractibility

Using the above inequality one can show that the building is contractible
(see [1] for more details). We can actually show that convex sets in X̂ are
themselves contractible.

Claim 2.7. — Let r > 0. Any convex set in X̂ is contractible.

Proof. — Let r > 0 and C a convex set in X̂ and endow it with the
distance induced by dX̂ . Take x0 ∈ C and define,

H :
{

[0, 1]× C → C,
(t, x) 7→ tx+ (1− t)x0.

Since C is convex, the map H is well-defined. Moreover H(0, ·) = idC and
H(1, x) = x0 for all x in C. Let us show that H is continuous. Take x, x′ ∈ C
and t, t′ ∈ [0, 1] and let z = t′x′ + (1− t′)x0. By eq. (2.1)

(2.2) d2
X̂
(
z, tx+(1−t)x0

)
6 td2

X̂ (z, x)+(1−t)d2
X̂ (z, x0)−t(1−t)d2

X̂ (x, x0).

TOME 72 (2022), FASCICULE 5
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But if A is a an apartment containing z and x0, then by property of the
Euclidean distance dA

dX̂ (z, x0) = dA (t′x′ + (1− t′)x0, x0) = t′dA(x′, x0) = t′dX̂ (x′, x0),

which tends to tdX̂ (x, x0) as (t′, x′) tends to (t, x). Similarly

dX̂ (z, x) = dA (t′x′ + (1− t′)x0, x) 6 dX̂ (z, x′) + dX̂ (x′, x)
= dX̂ (t′x′ + (1− t′)x0, x

′) + dX̂ (x′, x) ,
= (1− t′) dX̂ (x′, x0) + dX̂ (x′, x),

which converges to (1 − t)dX̂ (x, x0) + dX̂ (x′, x) as (t′, x′) tends to (t, x).
Thus the right term of eq. (2.2) converges to 0 as (t′, x′) tends to (t, x).
Hence the continuity of H and the contractibility of C. �

2.2. Large scale simple connectedness

For a graph G and k ∈ N, we define a 2-complex, noted Pk(G), such that:
• Its 1-skeleton is given by G ;
• Its 2-skeleton is composed of m-gons (for m ∈ [0, k]) defined by the
simple loops of length m in G (up to cyclic permutations).

Definition 2.8. — We say that G is k-simply connected or simply con-
nected at scale k if Pk(G) is simply connected.

Example 2.9. — Let G be a finitely generated group and T a finite sym-
metric generating set. The Cayley graph (G,T ) is simply connected at
scale k if and only if G has a presentation 〈T,R〉 with relations of length
at most k.

Example 2.10. — Let n > 2. The Bruhat–Tits building of PSLn(K) is
simply connected at scale 3.

Remark 2.11. — If k 6 k′, then every k-simply connected graph is k′-
simply connected.

The following proposition allows us to restrict the study of the LG-
rigidity of a graph G to some smaller class of graphs.

Proposition 2.12 (de la Salle, Tessera, [10, Proposition 1.5]).
Let k ∈ N and G be a k-simply connected graph, with cocompact isome-

try group. Then G is LG-rigid if and only if there exists R such that every
k-simply connected graph which is R-locally G is isometric to G.

ANNALES DE L’INSTITUT FOURIER
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To apply this result to our proof we will need to show that the studied
graph X is simply connected. The following proposition shows that being
simply connected is invariant under quasi-isometry.

Proposition 2.13 (de la Salle, Tessera, [10, Theorem 2.2]). — Let k ∈
N∗ and let G be a k-simply connected graph. If H is quasi-isometric to G,
then there exists k′ ∈ N∗ such that H is simply connected at scale k′.

Before moving to the next section, let us mention a consequence of Propo-
sition 2.12. Indeed, this result allows us to look at the LG-rigidty notion
with a topological point of view. Let’s denote Gk the set of isometry classes
of locally finite k-simply connected graphs. We can define a distance on this
set by:

dGk(X,Y ) := inf
{

2−R : X andY areR-close
}
,

which endows Gk with a topology. Proposition 2.12 implies that a graph is
LG-rigid if and only if its isometry class in Gk is isolated for this topology.

2.3. Extension of isometries

In order to build the “hybrid” graph mentionned above, we will need
some result to extend globally our local definition of edges. We recall here
the result of de la Salle and Tessera [11, Lemma 4.1] that will serve our
purpose.

Proposition 2.14 (de la Salle, Tessera). — Let G be a graph with co-
compact isometry group. Given some r1 > 0, there exists r2 > 0 such that:
for every g ∈ G, the restriction to BG(g, r1) of an isometry f : BG(g, r2)→ G
coincides with the restriction of an element of Isom(G).

It is however not necessarily true that f coincides on the whole B(g, r2)
with an isometry of G. Indeed, truncating the entire graph to some ball
might allow some kind of flexibility near the boundary of the ball (see
Example 2.15 and Figure 2.3). Hence, in order to coincide with a global
isometry we need to restrict the local isometry f to a smaller ball which
does not contain the flexible area.

Example 2.15. — Let G be the Cayley graph of Z2 endowed with its gen-
erating part. We consider in Figure 2.3 an isometry f defined on B

(
(0, 0), 1

)

such that f fixes (0, 0), (−1, 0) and (0,−1) (represented by the blue ver-
tices) and exchange (1, 0) with (0, 1) (the orange and brown vertices). Then
f is an isometry from B

(
(0, 0), 1

)
to B

(
(0, 0), 1

)
, but can not coincide with
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a global isometry of G on that ball. Indeed, if such a global isometry existed,
then it should send the vertex (−1, 1) (represented by the light brown ver-
tex on the left part of the figure) at distance 1 from both f(−1, 0) = (−1, 0)
and f(0, 1) = (1, 0). Which is impossible since the only point at distance 1
from (1, 0) and (−1, 0) is (0, 0) and it is already the image of (0, 0).

f

Figure 2.3. Local isometry that can not coincide with a global isometry
on its entire domain of definition

2.4. Preliminary results on X

Lemma 2.16. — If X verifies the hypothesis of Theorem 1.18, then
PSLn(K) is included in ρ(Isom(X)). Moreover, if q(X) contains a vertex
of a certain type i, then q(X) contains all the vertices of type i.

Proof. — Since ρ(Isom(X)) is of finite index in the isometry group of the
building X , the same goes for its normal core ∩g ∈ Isom(X )gρ(Isom(X))g−1.
Then, by simplicity of PSLn(K), the normal core of ρ(Isom(X)) contains
PSLn(K). Hence the result.
Then, the second part of the lemma follows from the equivariance of q

and the transitivity of PSLn(K) on vertices of the same type. �
Without loss of generality, we can assume that im(q) contains type 0

vertices, that is to say τ−1(0) ⊂ im(q). Moreover, using Proposition 2.13
we obtain that X is simply connected at some scale k > 0.

∗

The aim of the next two sections is to prove Theorem 1.18 for n > 4.
For the sake of clarity we recapitulate here the needed assumptions for the
proof.
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Hypothesis (H). —
(1) Let X be a k-simply-connected transitive graph;
(2) Let Y be a graph R-locally X and k-simply connected;
(3) Let n > 4 and K a non-Archimedean local skew field of character-

istic zero. Denote by X be the Bruhat–Tits building of PSLn(K);
(4) Let ρ : Isom(X)→ Isom(X ) be an injective homomorphism and q:

X → X an Isom(X)-equivariant injective quasi-isometry;
(5) Assume that ρ(Isom(X)) is of finite index in Isom(X ) and that

q(X) contains τ−1(0).

3. Tracking vertices through their prints

This section is dedicated to the definition of a graph locally the same
as X which we will call Y. Before moving to the detailed definition let
us explain the idea of the construction. Recall that the vertices of X are
partitioned into different types (see Section 2.1) denoted by integers in
{0, . . . , n− 1}. By Lemma 2.16, if q(X) contains a vertex of a certain type
then it contains all the vertices of that type. Denote by T the set of types
that are not contained in q(X), namely T = {0, . . . , n − 1}\τ(q(X)). We
have the following partition
(3.1) X = q(X) t

(
ti∈T τ−1(i)

)
.

Example 3.1. — Take K = Q2 and assume that im(q) is composed only
of type zero vertices.
When n = 2 we have T = {1} and the building is represented in Fig-

ure 2.1a. The partition in eq. (3.1) corresponds to the partition of vertices
in two different colors.
When n = 3, we get T = {1, 2}. An apartment of X is represented in

Figure 2.2 and the partition of this part of X corresponds to the partition
in three different colors.

Example 3.2. — Let n = 4 and K = Q2 and assume that im(q) contains
type zero and type 2 vertices. Then T = {1, 3}. We will not try to represent
X or an apartment but recall that it is tiled by tetrahedrons. The partition
is illustrated on a tetrahedron in Figure 3.1, where im(q) corresponds to
the two blue vertices.

The idea of the construction of Y is to take the vertices of Y and add to
them vertices of the missing types, ie. vertices with type in T (see Figure 3.5
for an example). But we want to build this vertices only with informations
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encoded in V (Y ). That is why we introduce the local characterization of
a vertex in the building (see Section 3.1). Then, using a well chosen set of
isometries from Y to X, we transfer this print notion to Y , each print in
Y corresponding to a vertex of a missing type.

3.1. Prints in a building

In this section we show that a vertex in X can be determined by a part of
its 1-neighbourhood. More precisely, we prove that a vertex in the building
is entirely determined by the vertices in its 1-neighbourhood having type
zero.

Definition 3.3. — Let x be a vertex of X . We define the print of x,
denoted by P(x), to be the intersection of the 1-neighbourhood of x with
the vertices of type zero, viz. P(x) := BX (x, 1) ∩ τ−1(0).

Remark 3.4. — We choose to define a print as a set of vertices of type
zero because (in order to simplify notations and proofs) we assumed from
the beginning that τ−1(0) was contained in im(q). But we could have taken
any other type.

Example 3.5. — Figure 3.2 represents a ball of radius 1 in two different
cases. The case when n = 2 and |O/πO| = 2 (for example when K = Q2)
is represented on the left figure. The case when K = Q2 and n = 3 is
represented on the right figure. In each case, the print of x corresponds to
the set of blue vertices.

The following result proves that a vertex in X is uniquely determined by
its print.16 Amandine ESCALIER

Type 3

Type 1

im(q) (Type 0 and 2)

Figure 3.1. Partition of a simplex

The idea of the construction of Y is to take the vertices of Y and add to
them vertices of the missing types, ie. vertices with type in T (see Figure 3.5
for an example). But we want to build this vertices only with informations
encoded in V (Y ). That is why we introduce the local characterization of
a vertex in the building (see Section 3.1). Then, using a well chosen set of
isometries from Y to X, we transfer this print notion to Y , each print in
Y corresponding to a vertex of a missing type.

3.1. Prints in a building

In this section we show that a vertex in X can be determined by a part of
its 1-neighbourhood. More precisely, we prove that a vertex in the building
is entirely determined by the vertices in its 1-neighbourhood having type
zero.

Definition 3.1. — Let x be a vertex of X . We define the print of x,
denoted by P(x), to be the intersection of the 1-neighbourhood of x with
the vertices of type zero, viz. P(x) := BX (x, 1) ∩ τ−1(0).

Remark 3.2. — We choose to define print as a set of vertices of type zero
because (in order to simplify notations and proofs) we assumed from the
beginning that τ−1(0) was contained in im(q). But we could have taken
any other type.

Example 17. — Figure 3.2 represents a ball of radius 1 in two different
cases. The case when n = 2 and |O/πO| = 2 (for example when K = Q2)
is represented on the left figure. The case when K = Q2 and n = 3 is
represented on the right figure. In each case, the print of x corresponds to
the set of blue vertices.
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x1

x3

x2

x

P(x) = {x1, x2, x3}

B(x, 1) for n = 2 = p

Type 0 vertices
Type 1 vertices
Type 2 vertices

x

B(x, 1) for p = 2 and n = 3

Figure 3.2. Prints and 1-neighbourhood of a vertex in X

Proposition 3.6. — Let x1, x2 ∈ X . If P(x1) = P(x2), then x1 = x2.

Before showing the above property, let us recall (and prove) a useful fact
concerning the choice of representative of a vertex.

Claim 3.7. — For any vertex in X , we can always find a representative
⊕iOπkiei of the vertex such that

(3.2)
{
∀ i ∈ {1, . . . , n} ki > 0,
∃ i0 ∈ {1, . . . , n} ki0 = 0.

Proof of the claim. — Indeed, let x ∈ X and let (l1, . . . , ln) be a repre-
sentative of x and let i0 be such that li0 = mini li, then

[
⊕ni=1Oπliei

]
= π−li0

[
⊕ni=1Oπli−li0 ei

]
=
[
⊕ni=1Oπli−li0 ei

]
.

Thus (l1− li0 , . . . , l1− li0) is a representative of x and verifies eq. (3.2). �
Now, let us prove that the print determines the vertex.
Proof of Proposition 3.6. — Let x1, x2 ∈ X such that P(x1) = P(x2).
First remark that if τ(x1) = 0 then P(x1) = {x1} which implies that

P(x2) = P(x1) = {x1}. But then x2 has only one neighbour of type 0,
which is only possible if τ(x2) = 0. Thus {x2} = P(x2) = {x1} and so
x1 = x2.
Now assume that τ(x1) 6= 0 and take A to be an apartment containing

x1 and x2. Define P := P(x) ∩ A and let e be a basis such that

A =
{
⊕ni=1Oπkiei

∣∣ ki ∈ Z
}

and x1 = (0, . . . , 0).

By Claim 3.7, we can choose a representative (k1, . . . , kn) of x2 such
that ki > 0 for all i and there exists j ∈ {1, . . . , n} such that kj = 0. Now
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define the sequence i1, . . . , in of indices such that ki1 > · · · > kin = 0 and
let

li1 = · · · = liτ(x) = 0 lin−τ(x)+1 = · · · = lin = 1.
Then by Remark 2.6 the vertex z = (l1, . . . , ln) has type 0. Moreover it is
at distance 1 from x1, so z belongs to P . But if ki1 > 0, then d(z, x2) > 1
thus z can not belong to P(x2). Hence ki1 6 0, that is to say ki = 0 for all
i and thus x2 = x1. �
This proves that a vertex in X is uniquely determined by its print. Thus,

we can introduce the following definition without ambiguity.

Definition 3.8. — Let x to be a vertex in X . We say that x is the
source of P(x).

In order to prove Theorem 1.18, we will need to know how prints behave
under the action of PSLn(K). So, let x ∈ X and let α ∈ PSLn(K). Since
α is an isometry, we get

α
(
P(x)

)
= α

(
B(x, 1) ∩ τ−1(0)

)

= α
(
B(x, 1)

)
∩ ατ−1(0)

= B (α(x), 1) ∩ τ−1(0).

We deduce the following lemma.

Lemma 3.9. — Let x ∈ X . If α belongs to PSLn(K), then α (P(x)) =
P (α(x)).

3.2. Atlas of local isometries

To build our graph locally the same as X , we need to restrict ourselves
to a particular set of local isometries from Y to X. More precisely, if y1
and y2 are close in Y and f1 (resp. f2) is an isometry from BY (y1, R) (resp.
BY (y1, R)) to X, we want the transition map f2f

−1
1 to coincide with an

element in ρ−1PSLn(K) on a small ball. This is what we formalize here
and schematize in Figure 3.3.
In order to avoid any ambiguity regarding the notion of center of a ball,

let us precise our definition of ball in a graph. What we mean when we
talk of “a ball of radius R” is actually a pointed ball of radius R that is
to say, a couple (B, y) such that y is a vertex in Y and B = BY (y,R). We
will abuse notation by denoting such a pointed ball BY (y,R) (instead of
(BY (y,R), y)). This way, the center of a ball is always well defined.
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Definition 3.10. — Let A be a set of isometries from balls of radius
R in Y to X. We say that A is an atlas of local isometries from Y to X
if the map that associates to each isometry in A the center of its ball of
definition is a bijection from A to Y . That is to say, we can write

A := {fy : BY (y,R)→ X | y ∈ Y } ,
where the map that associates fy to y is bijective.

We say that fy is the isometry associated to y in A.

Let H0 := ρ−1PSLn(K). Now, we show that we can construct an atlas
of local isometries from Y to X such that the transition maps between
two isometries defined on balls with neighbouring centers coincide with
elements of H0. We will note a path between two vertices v1 and v2 as a
sequence (v1, . . . , vl) of adjacent vertices.

Lemma 3.11. — Let rA > 0 and let H0 := ρ−1PSLn(K). For R large
enough, if Y is R-locally X, then there exists an atlas A such that for any
two neighbours y and z in Y
(3.3) ∃ a ∈ H0 fy · f−1

z |B(fz(z),rA) = a|B(fz(z),rA).

Before proving it, let us schematize the framework of this lemma. In
Figure 3.3 we represent two isometries fy and fz with z neighbour to y.
The larger discs correspond to balls of radius R and the smaller ones to
balls of radius rA. The map fyf

−1
z restricted to B(fz(z), rA) takes fz(z)

to fy(z) which is a neighbour of fy(y) and coincide on this ball with an
element in H0.
Let us discuss the idea of the proof. First, for two neighbours y and z we

use Proposition 2.14 to prove that fyf−1
z coincides on a small ball with an

element a in Isom(X).
This isometry corresponds to the “default” of belonging to H0 we want

to correct.
Hence, we consider in our atlas the new isometry defined on B(z,R) by

afz. Finally, we extend this construction along paths in Y and prove that
the wanted property for A does not depend on the choice of path.
Proof. — Let rA > 0 and let H0 := ρ−1PSLn(K). Now, let y ∈ Y and

fy be an isometry from B(y,R) to X. Let z be a neighbour of y in Y and
f̃z be an isometry from B(z,R) to X. Then the map

fy · f̃
−1
z : BX

(
f̃z(z), R− 1

)
→ BX (fy(z), R− 1)

is a well defined local-isometry of X. By Proposition 2.14 if R is large
enough, there exists a in Isom(X) such that fy · f̃

−1
z coincides with a on
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Y
y

X

fz(z)

fy(z)

fy(y)

fyf
−1
z

z

fy

fz

f−1
z

fy

Figure 3.3. Composition of isometries with neighbouring centers

BX(f̃z(z), rA + k), where we recall that k refers to the scale at which Y is
simply connected. We will see below why we need to consider such a radius.
Now let fz := af̃z. By definition we have

fz :
{
BY (z,R) → BX (fy(z), R) ,
z 7→ af̃z(z) = fy(z),

thus the transition map fyf−1
z is well defined on BX(fz(z), R− 1). More-

over, by choice of fz we get that fyf−1
z restricted to B(fy(z), rA + k)

coincides with the identity and thus belongs to H0.
Extending this construction along paths in Y we get an atlas A of local

isometries from Y to X.
Now if y ∈ Y and fy is the associated isometry in A, we want to show

that (up to a multiplication by an element in PSLn(K)) this isometry does
not depend on the choice of path. So let y ∈ Y and (y0 = y, y1, . . . , yl = y)
be a loop of length l. Take f0 to be an isometry from BY (y0, R) to X and
using the process detailed above, build a sequence of isometries f1, . . . , fl
such that fi is defined on BY (yi, R) and

∀ i ∈ {1, . . . , l} ∃ ai ∈ H0 |
(
fi−1f

−1
i

)
|B(fi(yi),rA+k) = ai|B(fi(yi),rA+k).

We have to prove that the restrictions to B(y0, rA) of f0 and fl are equal
up to a multiplication by an element in H0. Since Y is simply connected at
scale k, we only have to prove this for loop of length smaller than k. Hence,
we assume that l 6 k.
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First, remark that for all i ∈ {0, . . . , l − 1}
{
fi−1f

−1
i : BX (fi(yi), rA + k) → BX (fi−1(yi), rA + k) ,

fif
−1
i+1 : BX (fi+1(yi+1), rA + k) → BX (fi(yi+1), rA + k) .

Now since yi and yi+1 are at distance 1, the ball BX(fi(yi+1), rA +
k − 1) is included in BX(fi(yi), rA + k). Hence the map (fi−1f

−1
i )(fif−1

i+1)
is well defined and coincides with aiai+1 on BX(fi+1(yi+1), rA+k−1). By
induction we get that for all x in BX(fi+1(yi+1), rA + k − l + 1)

f0f
−1
l (x) =

(
f0f
−1
1
)
· · ·
(
fl−1f

−1
l

)
(x) = a1 · · · al(x).

Since
∏l
i=1 ai belongs to H0 and l is smaller than k, it implies that f0 is

equal to fl on BY (y0, rA) up to multiplication by an element in H0. �
The atlas is defined such that a transition map between two isometries

defined on balls with neighbouring centers belongs to H0. But in fact, this
property is also true when the centers are at a slightly bigger distance.

Lemma 3.12. — Let r > 0 and A be an atlas verifiying the conditions
of Lemma 3.11 with rA > 3r. Let y and z in Y be at distance less than 2r
and fy, fz the associated isometries in A. Then

(3.4) ∃ a ∈ H0
(
fyf
−1
z

)
|BY (z,r) = a|BY (z,r).

Proof. — Let r > 0 and assume rA > 3r. Let y, z ∈ Y be at distance
l 6 2r and let fy, fz be two elements of A such that

fy : BY (y,R)→ X fz : BY (z,R)→ X.

Take (y0 = y, y1, . . . , yl = z) to be a geodesic between y and z, and for all
i ∈ {0, . . . , l}, let fi ∈ A be the isometry associated to yi. Remark that by
definition of an atlas, it implies f0 = fy and fl = fz and

∀ i ∈ {0, . . . , l − 1} ∃ ai ∈ H0
(
fif
−1
i+1
)
|B(fi+1(yi+1),rA)

= ai|B(fi+1(yi+1),rA).

Now, if rA > 3r and l 6 2r, then BY (z, r) is contained in BY (y, rA). Hence
the composition of transition maps (f0f

−1
1 ) · · · (f−1f

−1
r ) is well defined on

BY (fl(yl), rA − l) and verifies on that ball

(3.5) f0f
−1
l =

(
f0f
−1
1
)
· · ·
(
fl−1f

−1
l

)
= a0 · · · al−1.

Hence the result. �
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3.3. Prints in Y

Using the atlas built above, we can now transfer this print notion to
the graph Y . Let rP > 0 and assume that Y is endowed with an atlas of
isometries A as given by Lemma 3.11 with rA > 3rP . Hence, we have

R > rA > 3rP > rP .

Definition 3.13. — Let P be a set of vertices in Y . We say that P is a
print if there exists y in Y and ∈ A an isometry from BY (y,R) to X such
that

• The set P is contained in BY (y, rP);
• There exists x ∈ X\im(q) such that P(x) = qf(P ).

Remark 3.14. — Note that in the definition above we ask that x does
not belong to im(q). The definition would also make sense if x belonged
to im(q) but the purpose of these prints is to reconstruct the “missing”
vertices, namely vertices that are not in the image of q. Thus to simplify
formalism in the next pages, we chose to restrict now the definition to prints
of vertices in X\im(q).

Example 3.15. — If n = 3 and p = 2 there are exactly 3 types of vertices,
each represented in Figure 3.4 by a different color. The 1-neighbourhood of
a vertex x in X is then composed of fourteen vertices, represented on the
right side of the aforementioned figure (where x is the brown vertex at the
center). If x ∈ X\im(q) then seven of these fourteen vertices are in im(q)
(the blue vertices). On the left side of the figure is represented P (the black
dots) inside B(y, rP) (the darker disc). The set qf(P ) is exactly the set of
blue vertices. Hence P is a print.

For now, let’s say that P verifying the definition above is a print associ-
ated to y and f . We are going to show that this definition depends neither
on y nor f .

Lemma 3.16. — Let y1, y2 ∈ Y and f1, f2 be the associated isometries
in A. Let P be a print associated to y1 and f1. If P ⊂ B(y2, rP) then P is
a print associated to y2 and f2.

Proof. — First, remark that since P ⊂ B(y2, rP)∩B(y1, rP), then taking
any y in P we get

dY (y1, y2) 6 dY (y1, y) + dY (y, y2) 6 2rP .
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Y
qf

X

B(y,R)

B(y, rP)

Elements of P

qf
(
B(y,R)

)

qf
(
B(y, rP)

)

qf(P ) = P(x)

x

B(x, 1)\qf(P )

Figure 3.4. Definition of a print in Y

Applying Lemma 3.12 with r = rP , we get that there exists a ∈ H0 such
that (

f1f
−1
2
)
|BX(f2(y2),rP) = a|BX(f1(y2),rP).

Now let x ∈ X be such that P(x) = qf1(P ). Using the equivariance of q
and Lemma 3.9, we get

qf2(P ) = ρ(a)−1qf1(P ) = ρ(a)−1P(x) = P
(
ρ(a)−1(x)

)
.

Hence P is a print associated to y2 and f2. �
This last lemma proves that being a print does not depend on the choice

of local isometry.

Remark 3.17. — In the above proof ρ(a)−1(x) has same type as x since
ρ(a) is type preserving. Thus, once we have taken our atlas in PSLn(K),
the type of the source of qf(P ) does not depend on the choice of local
isometry f .

3.4. Definition of Y: a building’s replica

The following property defines the graph Y we will demonstrate to be
locally the same as X .

Proposition 3.18. — Let rP > 0 and A be the atlas given by Lem-
ma 3.11 for rA > 3rP . If R is large enough, then the following graph is well
defined.
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Let Y be the graph whose vertices are given by

V (Y) := V (Y ) t {P :∃ x ∈ X\im(q), P(x) = P} ,

and edges are given by:

• If y1, y2 ∈ V (Y), then (y1, y2) is an edge if there exists z in Y

and f ∈ A defined on BY (z,R) such that y1, y2 ∈ B(z, rP) and
dX (qf(y1), qf(y2)) = 1.

• If y ∈ V (Y) and P is a print, then (y, (i, P )) is an edge if there
exists z in Y and f ∈ A defined on BY (z,R) cointaining y and P
and such that qf(y) is at distance 1 from the source of qf(P ).

• If P1 and P2 are two prints, then (P1, P2) is an edge if there exists z
in Y and f ∈ A defined on BY (z,R) such that P1, P2 ⊂ BY (z, rP)
and such that the source of qf(P1) is at distance 1 from the source
of qf(P2).

Before looking to the proof of this property, let us sketch some part of
this graph.

Example 3.19. — If n = 4 then X is composed of vertices of type 0, 1,
2 and 3. Assume that q(X) is composed of vertices of type 0 and 2, then
T = {1, 3} and we saw the corresponding partition of X in Example 3.2
and Figure 3.1. The appearance of the corresponding V (Y) is represented
in Figure 3.5.
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• If y1, y2 ∈ V (Y), then (y1, y2) is an edge if there exists z in Y

and f ∈ A defined on BY (z,R) such that y1, y2 ∈ B(z, rP) and
dX (qf(y1), qf(y2)) = 1.

• If y ∈ V (Y) and P is a print, then
(
y, (i, P )

)
is an edge if there

exists z in Y and f ∈ A defined on BY (z,R) cointaining y and P
and such that qf(y) is at distance 1 from the source of qf(P ).

• If P1 and P2 are two prints, then
(
P1, P2

)
is an edge if there exists z

in Y and f ∈ A defined on BY (z,R) such that P1, P2 ⊂ BY (z, rP)
and such that the source of qf(P1) is at distance 1 from the source
of qf(P2).

Before looking to the proof of this property, let us sketch some part of
this graph.

Example 19. — If n = 4 then X is composed of vertices of type 0, 1,
2 and 3. Assume that q(X) is composed of vertices of type 0 and 2, then
T = {1, 3} and we saw the corresponding partition of X in Example 16
and Figure 3.1. The appearance of the corresponding V (Y) is represented
in Figure 3.5.

Prints

V (Y )

Figure 3.5. Schematic of V (Y) in the case of Example 19

Proof. — Let Y be as in proposition 3.13 and let us show that the defi-
nition of the edges does not depend on the choice of f in the atlas.
First, let y1, y2 ∈ Y and y, z ∈ Y such that y1 and y2 belongs toB(y, rP)∩

B(z, rP). Then, take two local maps fy, fz in A associated to y and z

respectively. Then d(y, z) 6 2rP and by lemma 3.8 there exists a ∈ Isom(X)
verifying eq. (3.4). Hence, by Isom(X)-equivariance of q we get

dX
(
qfz(y1), qfz(y2)

)
= dX

(
ρ(a)qfz(y1), ρ(a)qfz(y2)

)

= dX
(
q (afz(y1)) , q (afz(y2))

)
= dX

(
qfy(y1), qfy(y2)

)
.

Thus dX
(
qfz(y1), qfz(y2)

)
= 1 if and only if dX

(
qfy(y1), qfy(y2)

)
= 1 and

the definition of edges between two vertices of Y does not depend on the
choice of local isometry.
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Figure 3.5. Schematic of V (Y) in the case of Example 3.19

Proof. — Let Y be as in Proposition 3.18 and let us show that the defi-
nition of the edges does not depend on the choice of f in the atlas.
First, let y1, y2 ∈ Y and y, z ∈ Y such that y1 and y2 belongs toB(y, rP)∩

B(z, rP). Then, take two local maps fy, fz in A associated to y and z

respectively. Then d(y, z) 6 2rP and by Lemma 3.12 there exists a ∈
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Isom(X) verifying eq. (3.4). Hence, by Isom(X)-equivariance of q we get

dX
(
qfz(y1), qfz(y2)

)
= dX

(
ρ(a)qfz(y1), ρ(a)qfz(y2)

)

= dX
(
q (afz(y1)) , q (afz(y2))

)

= dX
(
qfy(y1), qfy(y2)

)
.

Thus dX (qfz(y1), qfz(y2)) = 1 if and only if dX (qfy(y1), qfy(y2)) = 1 and
the definition of edges between two vertices of Y does not depend on the
choice of local isometry.
Now take y ∈ Y and let P ⊂ Y be a print. Let z and z′ such that y and

P are contained in B(z, rP) ∩B(z′, rP) and take f (resp. f ′) in A defined
on B(z,R) (resp. B(z′, R)). Then d(z, z′) 6 2rP and by Lemma 3.12 there
exists a ∈ Isom(X) verifying eq. (3.4). Hence,

dX
(
qf(y), x

)
= dX

(
ρ(a)qf(y), ρ(a)(x)

)

= dX
(
q (af(y)) , ρ(a)(x)

)
= dX

(
qf ′(y), ρ(a)(x)

)
.

If x is the source of qf(P ) then, by Lemma 3.9 we get

P(ρ(a)(x)) = ρ(a) (P(x)) = ρ(a)qf(P ) = qf ′(P ).

Thus, the existence of en edge between y and P in Y does not depend of
the choice of map in A.
Finally, take P1, P2 ⊂ Y two prints and let z, z′ in Y and f ∈ A (resp.

f ′) defined on BY (z,R) (resp. B(z′, R)) such that P1, P2 ⊂ BY (z, rP) ∩
BY (z′, rP). Again d(z, z′) 6 2rP and by Lemma 3.12 there exists a ∈
Isom(X) verifying eq. (3.4). Hence if x1 is the source of qf(P1) and x2 the
source of qf(P2), then d(x1, x2) = 1 if and only if d(ρ(a)(x1), ρ(a)(x2)) = 1.
Moreover, by Lemma 3.9

∀ i = 1, 2 P(ρ(a)(xi)) = ρ(a) (P(x1)) = ρ(a)qf(Pi) = qf ′(Pi).

Hence the existence of en edge between P1 and P2 in Y does not depend
of the choice of map in the atlas A. �

4. From one graph to the other

In this section we prove the isometry between the graph Y built and
the Bruhat–Tits building and show that it induces an isometry between X
and Y .
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4.1. Isometry with the building

We can now prove that Y is isometric the Bruhat–Tits building. Recall
that rA is the radius used to define our atlas A (see Lemma 3.11) and rP is
the radius used to define prints in Y (see Definition 3.13). These constants
verify R > rA > 3rP > rP .

Lemma 4.1. — Let RX > 0. If rP (and hence R) is large enough, then
Y is RX -locally X .

To prove this lemma, we define explicitely the local isometries on balls
of radius RX and prove that these maps are well defined injections. Then,
we compute the minimal value of rP necessary for these applications to be
surjective on balls of radius RX . We conclude by showing that these maps
preserve the distance.

Proof. — Let v ∈ V (Y). If v ∈ V (Y ) let f ∈ A be the isometry defined
on BY (v,R). If v is a print P let y and f ∈ A be such that P is a print
associated to y and f . Our goal is to show that the map

φf :





BY(v,RX ) → X ,
z ∈ Y 7→ qf(y),
Q 7→ x where P(x) = qf(Q),

is an isometry.
By Proposition 3.6, it is a well defined map. Moreover, using the injec-

tivity of q and Proposition 3.6 and eq. (3.1) we get that φf is an injective
map.
Now, recall that since q is a quasi-isometry, two elements q(x1) and q(x2)

joined by an edge in X might be at distance greater than 1 in X. If we want
to prove that φf is surjective onBX (φf (v), RX ) and preserves the distance,
we have to show that there exists a radius rP allowing us to “reconstruct”
all the edges ofBX (φf (v), RX ) inBY(v,RX ). Let L, ε > 0 be such that q is a
(L, ε)-quasi-isometry. We distinguish three cases, represented in Figure 4.1.

If χ1, χ2 ∈ im(q), then let x1, x2 ∈ X such that q(xi) = χi. They verify
dX(x1, x2) 6 LdX (χ1, χ2) + ε. This case is represented in Figure 4.1a.
If χ1 ∈ im(q) and χ2 /∈ im(q), let x1 = q−1(χ1). For all x2 ∈ X such

that q(x2) ∈ P(χ2), we have (see Figure 4.1b)

dX (q(x1), q(x2)) 6 1 + dX (χ1, χ2) ⇒ dX (x1, x2) 6 LdX (χ1, χ2) + L+ ε.
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If χ1, χ2 /∈ im(q), let xi ∈ X such that q(xi) ∈ P(χi) for i = 1, 2. Then
(see Figure 4.1b)

d (χ1, χ2) = 1 ⇒ dX (q(x1), q(x2)) 6 2 + dX (χ1, χ2)
⇒ dX (x1, x2) 6 LdX (χ1, χ2) + 2L+ ε.

LG-RIGIDITY OF P-ADIC LATTICES 27

χ2

χ1

(a) First case

χ2

q(x2)

χ1

P(χ∈)

(b) Second case

χ2

q(x2)

χ1

P(χ∞) q(x1)

P(χ∈)

(c) Third case

Figure 4.1. The three cases (im(q) is represented by the blue vertices)

Hence dX (φf (v1), φf (v2)) 6 l. To get the reversed inequality, take χ1, χ2 in
BX (φf (v), RX ). Since φf is bijective there exists v0, . . . , vl in Y such that
(φf (v0), . . . , φf (vl)) is a geodesic between χ1 and χ2. Again, by definition
of Y and choice of rP , an edge between φf (vi) and φf (vi+1) gives an edge
between vi and vi+1 in Y and thus dY(v1, v2) 6 l.

Hence, if rP > LRX + 2L+ ε then φf is an isometry. �
The LG-rigidity of the building will give us a covering from X to Y. In

order to obtain an isometry we need to prove (by proposition 2.4) that Y
is simply connected at the same scale than X .
Lemma 4.2. — If RX (and hence R) is large enough, then Y is simply

connected at scale 3.

We first prove that Y is quasi-isometric to Y and use it to show that Y
is simply connected at some scale k′. We conclude using the contractibility
of the building and the fact that Y is locally the same as the building. But
before looking at the detail of the proof, let us make a remark.

Remark 4.3. — Let P be a print associated to some z ∈ Y and f ∈ A and
let y ∈ P . If x is the source of qf(P ), then dY(P, y) = dX (x, qf(y)) = 1.

Proof of lemma 4.2. — Let us show that Y is quasi-isometric to Y .
Define π : Y → Y such that if y ∈ V (Y ) then π(y) = y and if P is a print
then π(P ) = y for some y ∈ P arbitrarily chosen. Let (v0, . . . , vm) be a
geodesic in Y and for all i ∈ {0, . . . ,m} define yi := π(vi) and fi to be the
isometry of A associated to yi. Using that q is a (L, ε)-quasi-isometry, we
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(a) First case
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χ2

χ1

(a) First case

χ2

q(x2)

χ1

P(χ∈)

(b) Second case

χ2

q(x2)

χ1

P(χ∞) q(x1)

P(χ∈)

(c) Third case

Figure 4.1. The three cases (im(q) is represented by the blue vertices)

Hence dX (φf (v1), φf (v2)) 6 l. To get the reversed inequality, take χ1, χ2 in
BX (φf (v), RX ). Since φf is bijective there exists v0, . . . , vl in Y such that
(φf (v0), . . . , φf (vl)) is a geodesic between χ1 and χ2. Again, by definition
of Y and choice of rP , an edge between φf (vi) and φf (vi+1) gives an edge
between vi and vi+1 in Y and thus dY(v1, v2) 6 l.

Hence, if rP > LRX + 2L+ ε then φf is an isometry. �
The LG-rigidity of the building will give us a covering from X to Y. In

order to obtain an isometry we need to prove (by proposition 2.4) that Y
is simply connected at the same scale than X .
Lemma 4.2. — If RX (and hence R) is large enough, then Y is simply

connected at scale 3.

We first prove that Y is quasi-isometric to Y and use it to show that Y
is simply connected at some scale k′. We conclude using the contractibility
of the building and the fact that Y is locally the same as the building. But
before looking at the detail of the proof, let us make a remark.

Remark 4.3. — Let P be a print associated to some z ∈ Y and f ∈ A and
let y ∈ P . If x is the source of qf(P ), then dY(P, y) = dX (x, qf(y)) = 1.

Proof of lemma 4.2. — Let us show that Y is quasi-isometric to Y .
Define π : Y → Y such that if y ∈ V (Y ) then π(y) = y and if P is a print
then π(P ) = y for some y ∈ P arbitrarily chosen. Let (v0, . . . , vm) be a
geodesic in Y and for all i ∈ {0, . . . ,m} define yi := π(vi) and fi to be the
isometry of A associated to yi. Using that q is a (L, ε)-quasi-isometry, we
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(b) Second case

LG-RIGIDITY OF P-ADIC LATTICES 27

χ2

χ1

(a) First case

χ2

q(x2)
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(b) Second case

χ2

q(x2)

χ1

P(χ∞) q(x1)

P(χ∈)

(c) Third case

Figure 4.1. The three cases (im(q) is represented by the blue vertices)

Hence dX (φf (v1), φf (v2)) 6 l. To get the reversed inequality, take χ1, χ2 in
BX (φf (v), RX ). Since φf is bijective there exists v0, . . . , vl in Y such that
(φf (v0), . . . , φf (vl)) is a geodesic between χ1 and χ2. Again, by definition
of Y and choice of rP , an edge between φf (vi) and φf (vi+1) gives an edge
between vi and vi+1 in Y and thus dY(v1, v2) 6 l.

Hence, if rP > LRX + 2L+ ε then φf is an isometry. �
The LG-rigidity of the building will give us a covering from X to Y. In

order to obtain an isometry we need to prove (by proposition 2.4) that Y
is simply connected at the same scale than X .
Lemma 4.2. — If RX (and hence R) is large enough, then Y is simply

connected at scale 3.

We first prove that Y is quasi-isometric to Y and use it to show that Y
is simply connected at some scale k′. We conclude using the contractibility
of the building and the fact that Y is locally the same as the building. But
before looking at the detail of the proof, let us make a remark.

Remark 4.3. — Let P be a print associated to some z ∈ Y and f ∈ A and
let y ∈ P . If x is the source of qf(P ), then dY(P, y) = dX (x, qf(y)) = 1.

Proof of lemma 4.2. — Let us show that Y is quasi-isometric to Y .
Define π : Y → Y such that if y ∈ V (Y ) then π(y) = y and if P is a print
then π(P ) = y for some y ∈ P arbitrarily chosen. Let (v0, . . . , vm) be a
geodesic in Y and for all i ∈ {0, . . . ,m} define yi := π(vi) and fi to be the
isometry of A associated to yi. Using that q is a (L, ε)-quasi-isometry, we
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(c) Third case

Figure 4.1. The three cases (im(q) is represented by the blue vertices)

Hence, assume rP > LRX+2L+ε and let us show that φf is an isometry.
Let χ ∈ BX (φf (v), RX ), by choice of rP either χ ∈ im(q) and then there

exists z ∈ BY (y, rP) such that qf(z) = χ or χ /∈ im(q) and then there exists
P ⊂ BY (y, rP) such that qf(P ) = P(χ). Hence, in both cases χ ∈ im(φf )
and thus, φf is a bijection from BY(v,RX ) to BX (φf (v), RX ). Now take
v1, v2 in BY(v,RX ) at distance l in Y and let (w0 = v1, w1, . . . , wl = v2) be
a geodesic in Y. By definition of Y and choice of rP , for all i ∈ {0, . . . , l−1}
if there is an edge between wi and wi+1, then d(φf (wi), φf (wi+1)) = 1.
Hence dX (φf (v1), φf (v2)) 6 l.
To get the reversed inequality, take χ1, χ2 in BX (φf (v), RX ). Since φf

is bijective there exists v0, . . . , vl in Y such that (φf (v0), . . . , φf (vl)) is a
geodesic between χ1 and χ2. Again, by definition of Y and choice of rP , an
edge between φf (vi) and φf (vi+1) gives an edge between vi and vi+1 in Y
and thus dY(v1, v2) 6 l.

Hence, if rP > LRX + 2L+ ε then φf is an isometry. �
The LG-rigidity of the building will give us a covering from X to Y. In

order to obtain an isometry we need to prove (by Proposition 2.12) that Y
is simply connected at the same scale than X .
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Lemma 4.2. — If RX (and hence R) is large enough, then Y is simply
connected at scale 3.

We first prove that Y is quasi-isometric to Y and use it to show that Y
is simply connected at some scale k′. We conclude using the contractibility
of the building and the fact that Y is locally the same as the building. But
before looking at the detail of the proof, let us make a remark.

Remark 4.3. — Let P be a print associated to some z ∈ Y and f ∈ A and
let y ∈ P . If x is the source of qf(P ), then dY(P, y) = dX (x, qf(y)) = 1.

Proof of Lemma 4.2. — Let us show that Y is quasi-isometric to Y .
Define π : Y → Y such that if y ∈ V (Y ) then π(y) = y and if P is a print
then π(P ) = y for some y ∈ P arbitrarily chosen. Let (v0, . . . , vm) be a
geodesic in Y and for all i ∈ {0, . . . ,m} define yi := π(vi) and fi to be
the isometry of A associated to yi. Using that q is a (L, ε)-quasi-isometry,
we get

dY
(
π(v0), π(vm)

)
= dY (y0, ym) 6

m∑

i=0
dY (yi, yi+1) ,

6
m∑

i=0

[
LdX (qfi(yi), qfi(yi+1)) + ε

]
.

Now let i ∈ {0, . . . , m}. If vi is a print, denote by xi the source of qf(vi)
and if vi belongs to the copy of V (Y ) contained in Y let xi := qfiπ(vi).
Then dY(vi, vi+1) = dX (xi, xi+1) for all i. Thus, using Remark 4.3, we get

dX
(
qfi(yi), qfi(yi+1)

)

6 dX
(
qfi(yi), xi

)
+ dX (xi, xi+1) + dX

(
qfi(yi+1), xi+1

)
,

6 2 + dX (xi, xi+1) = 2 + dY (vi, vi+1) .

Since dY(vi, vi+1) = 1, we obtain

dY (π(v0), π(vm)) = dY (y0, ym) 6
m∑

i=0

[
L2 + LdY (vi, vi+1) + ε

]
,

= (3L+ ε)m = (3L+ ε)dY (v0, vm) .

Now let v, v′ ∈ Y and let (π(v) = z0, . . . , π(v′) = zl) be a geodesic in Y .
For all i ∈ {0, . . . , l} take f ′i ∈ A the isometry associated to zi. Then

dY (v, v′) 6 dY (v, z0) +
l−1∑

i=0
dY (zi, zi+1) + dY (zl, v′) .
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But by Remark 4.3 if v (resp. v′) is a print then dY(v, z0) = 1 (resp.
dY(v′, zl) = 1). And if v (resp. v′) belongs to V (Y ) then v = z0 (resp.
v′ = zl). Thus both dY(v, z0) and dY(v′, zl) are always smaller than 1.
Hence,

dY(v, v′) 6 2 +
l−1∑

i=0
dY(zi, zi+1)

= 2 +
l−1∑

i=0
dX (qf ′i(zi), qf ′ (zi+1)) ,

6 2 +
l−1∑

i=0

[
LdY (zi, zi+1) + ε

]
,

= 2 + (L+ ε)l = 2 + (L+ ε)dY (π(v), π(v′)).

Thus π is a quasi-isometry between Y and Y . Hence Proposition proposi-
tion 2.13 implies that there exists k′ ∈ N∗ such that Y is simply-connected
at scale k′.
Finally, let ` be loop in Y of length less than k′. If RX is large enough

then ` is contained in some ball B in Y. By Lemma 4.1 there exists a
local isometry φ from B to some ball B in X . But φ(`) is contractible
inside its convex hull, by Claim 2.7. In particular it is simply-connected.
Since X is 3-simply-connected and if RX is large enough, the convex hull
of φ(`) is contained in the complex obtained by gluing triangles on all the
loops of length 3 in B. Which, by local isometry with B, proves the wanted
assertion. �
Thanks to the previous Lemma 4.2, we can now use the rigidity of the

Bruhat–Tits building.

Proposition 4.4. — If RX (and hence R) is large enough, then Y is
isometric to X .

Proof. — Recall that we have R > rA > 3rP > rP > 3RX+2L+ε > RX .
By Theorem 1.13, the building X is LG-rigid. Moreover, since its isome-

try group is transitive Proposition 2.12 gives us the existence of some radius
Rsc > 0 such that every graph which is 3-simply connected and Rsc-locally
X is isometric to X .

By definition of the edges on Y, this graph is simply connected at scale 3.
Taking rP (and hence R) large enough so that RX > Rsc the preceding
paragraph combined with Lemma 4.1 give us the existence of an isometry
between X and Y. �
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4.2. Change of local map, change of global isometry

Let y ∈ Y and fy ∈ A be the isometry defined on B(y,R).
Let

(4.1) φy :





BY(y,RX ) → X
z ∈ Y 7→ qfy(z)
Q 7→ x whereP(x) = qfy(Q).

Lemma 4.5. — Let y and z be neighbours in Y and a ∈ H0 such that
fyf
−1
z coincide with a on BX(f(z), rA). If RX is large enough, then φyφ−1

z

coincide with ρ(a) on BX (φz(z), 2).

Proof. — Let y and z be neighbours in Y and a ∈ H0 such that fyf−1
z

coincide with a on BX(f(z), rA). If RX (and hence R) is large enough,
then BY(z, 2) is contained in BY(y,RX ). Thus, φyφ−1

z is well defined on
BX (φz(z), 2).

Let v ∈ BY(z, 2). If v ∈ V (Y ), then

φy(v) = qfy(v) = qafz(v) = ρ(a)qfz(v) = ρ(a)φz(v).

If v = P with P ⊂ Y a print, then

P
(
φy(v)

)
= qfy(P ) = qafz(P ) = ρ(a)qfz(P ) = P

(
ρ(a)φz(v)

)
,

Thus φy(v) = ρ(a)φz(v), since the print determines the vertex. Hence the
result. �
Now let rX > 0. If RX is large enough then, by SLG-rigidity of X there

exists an isometry ιy from Y to X that coincides with φy on B(y, rX ). Thus,
the lemma above allows us to work with a set of isometries from Y to X
that differs only by a multiplication by an element of PSLn(K).

Lemma 4.6. — If y and z belong to Y and RX is large enough, then
ιyι
−1
z ∈ PSLn(K). Hence for all y ∈ Y , the isometry ιy sends the copy of

V (Y ) contained in Y to im(q) and sends prints contained in Y to vertices
in X\im(q).

Proof. — Let y and z be neighbours in Y . Since ιyι−1
z is an isometry

of X it permutes the PSLn(K)-orbits. Recall that ιy coincides with φy on
B(y, rX ).
Hence, if rX (and hence R) is large enough, then BY(z, 2) is contained

in BY(y, rX ), thus (
ιyι
−1
z

)
|BX (ιz(z), 2) = φyφ

−1
z .
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But φyφ−1
z coincides with an element of PSLn(K) on BX (φz(z), 2), by Lem-

ma 4.5. Hence ιyι−1
z restricted to a ball of radius 2 preserves the PSLn(K)-

orbits. Since such a ball contains a vertex of each type, it implies that ιyι−1
z

preserves the PSLn(K)-orbits and thus belongs to PSLn(K).
Now take y and z in Y (not necessarily neighbours), denote by (y0 =

y, y1 . . . , yl = z) a geodesic in Y . By the preceding paragraph, there exists
a sequence α1, . . . , αl of elements in PSLn(K) such that

∀ i ∈ {1, . . . , l} ιyiι
−1
yi−1 = αi.

Thus, recalling that z = yl and y = y0, we get ιz = αl · · ·α1ιy. Which
proves the first assertion of the Lemma 4.6.
Let us now prove the second part of the lemma. Let y ∈ Y and v ∈ Y.

There exists z ∈ Y such that v ∈ BY(z, 2), and using the paragraph above,
there exists α ∈ PSLn(K) such that ιy = αιz. In particular, since v belongs
to BY(z,RX ),

ιy(v) = αιz(v) = αφz(v).
By definition of φz, if v ∈ V (Y ) then φz(v) belongs to im(q) and if v = P

with P ⊂ Y a print, then φz(v) belongs to X\im(q). This finishes the proof
of the Lemma 4.6. �
Now we have all the tools we need to prove the isometry between Y

and X.

4.3. Isometry from Y to X

Let κ be the natural injection of Y in YZ and ι an isometry given by
Proposition 4.4. With the objects constructed so far we get the diagram in
Figure 4.2.
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The aim of this section is to prove the following result.

Proposition 4.7. — For RX large enough, the graphs Y and X are
isometric.

Let us discuss the strategy of the proof. Using the preceding section,
we chose an isometry ι from Y to X that coincides with a φy on a small
ball. Then, we show that κιq−1 is locally an isometry, viz. there exists a
radius rY such that q−1ικ restricted to any ball of radius rY preserves the
distance. We conclude by showing that it forces κιq−1 to be an isometry.

Proof of proposition 4.7. — By lemma 4.6, for any y ∈ Y the map
q−1ιyκ is well defined. Now fix y0 ∈ Y and consider ι := ιy0 . We want to
prove that q−1ικ restricted to small balls preserves the distance. Then we
will show that it is an isometry from Y to X.

Claim 3. — Let y ∈ Y and rY > 1. If R is large enough, then q−1ικ

restricted to BY (y, rY ) preserves the distance.

Proof of the claim. — Let rY > 1 and recall that we have R > rA >

3rP > rP > 3RX + 2L+ ε > RX > rX . Let y ∈ Y and recall that L and ε
are constants such that q is a (L, ε)-quasi-isometry. If rX > LrY + ε (and
hence if R is large enough) then κ(BY (y, rY )) is included in BY(y, rX ).
Indeed if z ∈ BY (y, rY ) then

dX
(
qfy(y), qfy(z)

)
6 Ld

X

(
fy(y), fy(z)

)
+ε = LdY (y, z)+ε 6 LrY +ε 6 rX .
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restricted to BY (y, rY ) preserves the distance.

Proof of the claim. — Let rY > 1 and recall that we have R > rA >

3rP > rP > 3RX + 2L+ ε > RX > rX . Let y ∈ Y and recall that L and ε
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The aim of this section is to prove the following result.
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Proposition 4.7. — For RX large enough, the graphs Y and X are
isometric.
Let us discuss the strategy of the proof. Using the preceding section,

we chose an isometry ι from Y to X that coincides with a φy on a small
ball. Then, we show that κιq−1 is locally an isometry, viz. there exists a
radius rY such that q−1ικ restricted to any ball of radius rY preserves the
distance. We conclude by showing that it forces κιq−1 to be an isometry.

Proof of Proposition 4.7. — By Lemma 4.6, for any y ∈ Y the map
q−1ιyκ is well defined. Now fix y0 ∈ Y and consider ι := ιy0 . We want to
prove that q−1ικ restricted to small balls preserves the distance. Then we
will show that it is an isometry from Y to X.
Claim 4.8. — Let y ∈ Y and rY > 1. If R is large enough, then q−1ικ

restricted to BY (y, rY ) preserves the distance.
Proof of the claim. — Let rY > 1 and recall that we have R > rA >

3rP > rP > 3RX + 2L+ ε > RX > rX . Let y ∈ Y and recall that L and ε
are constants such that q is a (L, ε)-quasi-isometry. If rX > LrY + ε (and
hence if R is large enough) then κ(BY (y, rY )) is included in BY(y, rX ).
Indeed if z ∈ BY (y, rY ) then

dX
(
qfy(y), qfy(z)

)
6 Ld

X

(
fy(y), fy(z)

)
+ ε

= LdY (y, z) + ε 6 LrY + ε 6 rX .
Thus φy(κ(z)) = qfy(z) and

dY
(
κ(y), κ(z)

)
= dX

(
φy
(
κ(y)

)
, φy
(
κ(z)

))
= dX

(
qfy(y), qfy(z)

)
6 RX .

Now, recall that H0 = ρ−1PSLn(K). Then, by Lemma 4.6 there exists
ay ∈ H0 such that ιyι−1 = ρ(ay). Hence, using the equivariance of q we get
that for all z1 and z2 in BY (y, rY )

dX

(
q−1ικ(z1), q−1ικ(z1)

)
= dX

(
ayq
−1ικ(z1), ayq−1ικ(z1)

)

= dX

(
q−1ρ(ay)ικ(z1), q−1ρ(ay)ικ(z1)

)

= dX

(
q−1ιyκ(z1), q−1ιyκ(z1)

)
.

But z1 and z2 belong to BY (y, rY ), hence for i = 1, 2 we have ιyκ(zi) =
qfy(zi). Thus,

dX

(
q−1ικ(z1), q−1ικ(z1)

)
= dX

(
q−1qfy(z1), q−1qfy(z2)

)

= dX

(
fy(z1), fy(z2)

)
= dY (z1, z2).
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Thus q−1ικ restricted to BY (y, rY ) preserves the distance. �
Let’s show that the claim forces q−1ικ to be an isometry from Y to X.

Take rY > 2 and let y, y′ ∈ Y and (y0 = y, y1, . . . , yl = y′) be a geodesic
in Y . Since for all i the vertices yi and yi+1 are adjacent, then Claim 4.8
implies that dX(q−1ικ(yi), q−1ικ(yi+1)) = 1. Hence

dX

(
q−1ικ(y), q−1ικ(y′)

)
6

l−1∑

i=0
dX

(
q−1ικ(yi), q−1ικ(yi)

)
= l.

Moreover, if (x0 = q−1ικ(y), x1, . . . , xm = q−1ικ(y′)) is a geodesic in X,
then by bijectivity of q−1ικ there exists zi ∈ Y such that q−1ικ(zi) = xi
for all i in {1, . . . ,m − 1}. Denote z0 = y and zm = y′. Since for all i the
vertices xi and xi+1 are adjacent, then Claim 4.8 implies that dX(zi, zi+1) =
dX (q−1ικ(zi), q−1ικ(zi+1)). Thus

dY (y, y′) 6
m−1∑

i=0
dY (zi, zi+1)

=
m−1∑

i=0
dX

(
q−1ικ(zi), q−1ικ(zi+1)

)

=
m−1∑

i=0
dX (xi, xi+1) = m. �

We conclude by the proof of Theorem 1.18.
Proof of Theorem 1.18. — Let n 6= 3 and X verifying the hypothesis

of Theorem 1.18. If n = 2 then X is the (p + 1)-regular tree, thus by
Example 1.5 if X is quasi-isometric to X then X is LG-rigid. If n > 4, let
k ∈ N such that X is simply connected at scale k. Then by Proposition 4.7
for R large enough, any k-simply-connected graph Y being R-locally the
same as X is isometric to X. Thus X is LG-rigid. Finally for any n 6= 3,
since X is assumed transitive it is actually SLG-rigid by Proposition 1.8.

�

5. Application to p-adic lattices

In this section we prove Theorem 1.17 which we recall below.

Corollary 5.1. — Let n 6= 3 and K be a non-Archimedean skew field
of characteristic zero. The torsion-free lattices of SLn(K) are SLG-rigid.
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Let n 6= 3, let K be a non-Archimedean skew field of characteristic zero
and Γ 6 SLn(K) be a lattice without torsion. Denote by (Γ, S) one of its
Cayley graphs. Recall that any lattice in SLn(K) is uniform (i.e. cocom-
pact).

5.1. Quasi-isometry between the lattice and the building

To show the corollary, we first check that the lattice is quasi-isometric
to the building. Then, using a famous result of Kleiner and Leeb we show
that the isometry group of the lattice acts on the building and that the
quasi-isometry can be chosen to be equivariant under this action.

Lemma 5.2. — Let Λ be a lattice of SLn(K). Then Λ is quasi-isometric
to X .

Proof. — First, recall that any lattice in SLn(K) is uniform, viz. cocom-
pact (see for example [6]).
Since Λ is a lattice of SLn(K), there is a natural action on the Bruhat–

Tits building induced by the action of PSLn(K). Moreover, since Λ is
cocompact and the PSLn(K) action has exactly n orbits, the Λ action is
also cocompact. Hence by the Svarc–Milnor’s lemma Λ is quasi-isometric
to X. �

By a result of Kleiner and Leeb [9] and Cornulier [7, Theorem 3.B.1]
applied to our lattice Γ, this quasi-isometry implies the existence of a ho-
momorphism from Isom(Γ, S) to Isom(X) and a quasi-isometry from (Γ, S)
to X which is Isom(Γ, S)-equivariant. Since Γ is assumed to be torsion-free,
we can refine the informations about these two applications.

Lemma 5.3. — Let Λ be a lattice of SLn(K) and T a symmetric gener-
ating set. If Λ is torsion-free, then there exists an injective homomorphism

ρ : Isom(Λ, T ) → Isom(X),

and an injective quasi-isometry which is Isom(Λ, T )-equivariant

q : (Λ, T )→ X.

Proof. — Since we assumed that Λ has no torsion element, by Propo-
sition 1.20 the isometry group of (Λ, T ) contains no non-trivial compact
normal subgroup. Hence the morphism ρ given by Kleiner–Leeb’s theorem
is injective.
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Assume that there exist λ1, λ2 ∈ Λ such that λ1 6= λ2 and q(λ1) = q(λ2).
Then, the equivariance of q implies that

q
({(

λ1λ
−1
2
)n : n ∈ N

})
= {q (e)} ,

which contradicts the fact that q is a quasi-isometry. �

5.2. Relation between the isometry groups

To apply Theorem 1.18, we still need to check that Isom(Γ, S) is of finite
index in Isom(X ). As stated in the lemma below, this is not always the
case: the lattice’s isometry group can also be discrete. But as we will see
in Section 5.3 we will be able to prove the rigidity of the lattice in that
case too.

Lemma 5.4. — Using the previous notations,
• Either Isom(Γ, S) is discrete.
• Or Isom(Γ, S) is of finite index in Isom(X) and contains PSLn(K).

Before proving this lemma, let us recall a useful consequence of a theorem
of Benoist and Quint. The original and more general statement can be found
in [6, Corollary 4.5].

Proposition 5.5 (Benoist, Quint [6]). — Let G be p-adic Lie group
and H be a finite covolume closed subgroup of G, with Lie algebra h. If G
has no proper cocompact normal subgroup, then G normalizes h.

Proof of Lemma 5.4. — Let G = PSLn(K) and H = Isom(Γ, S) ∩ G
and note h =: Lie(H) and G := Lie(G) their respective Lie algebras.
Since Γ is a lattice in SLn(K), we get that ρ(Γ) ∩ PSLn(K) is a lattice in
PSLn(K). Hence H contains the uniform lattice ρ(Γ)∩G of G, thus H has
finite covolume in PSLn(K). If K is a non-Archimedean local skew field
of characteristic zero then it is an extension of Qp for some prime p (see
for example [10, Section 1]). In particular G is a p-adic Lie group. Thus
the above property applied to G and H implies that G normalises h, in
other words h is an ideal of G. Since G is simple, we get that h is either
trivial or the full Lie algebra G. If Isom(Γ, S) isn’t discrete, then it is a
closed subgroup of Isom(X). Hence H is a closed subgroup of G and its
Lie algebra is non-trivial. By the previous point it can only be G. Hence,
it implies that is an open subgroup of G. Since it is also cocompact, it is
necessarily of finite index in G. Thus, we get that ρ (Isom(Γ, S)) is of finite
index in Isom(X).
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Let’s show that PSLn(K) is a subgroup of ρ(Isom(Γ, S)). First assume
that ρ(Isom(Γ, S)) is strictly contained in PSLn(K). Since these two groups
are of finite index in Isom(X), we get that ρ(Isom(Γ, S)) is of finite index
in PSLn(K). But then the core:

⋂

g ∈PSLn
g · ρ (Isom(Γ, S)) · g−1

of ρ(Isom(Γ, S)) is itself of finite index in PSLn(K) (and different from
PSLn(K)), which contradicts the simplicity of PSLn(K).
Now, let’s go back to the general case. Assume that PSLn(K) isn’t in-

cluded in ρ(Isom(Γ, S)) and remark that:
h = Lie (Isom(X)) = Lie (PSLn(K)) .

In particular ρ(Isom(Γ, S)) is “locally” PSLn(K) so, up to apply what
precedes to an open set centered on eΓ sufficiently small of ρ(Isom(Γ, S)), we
obtain a contradiction. Hence PSLn(K) is contained in ρ(Isom(Γ, S)). �

5.3. Rigidity of p-adic lattices

We conclude by the proof of Corollary 5.1.
Proof of Corollary 5.1. — Let n 6= 3 and p be a prime. Let Γ be a

torsion-free lattice of PSLn(K) and S be a symmetric generating part.
If n = 2, then X is the (p + 1)-regular tree. Since by Lemma 5.2, the

graph (Γ, S) is quasi-isometric to X , Example 1.5 implies that (Γ, S) is
LG-rigid.
Assume now that n > 3. If Isom(Γ, S) is discrete the LG-rigidity of the

lattice is given by Theorem 1.9.
If Isom(Γ, S) is non-discrete, then by Lemma 5.4 it has finite index in

Isom(X) and in this case the hypothesis of Theorem 1.18 are satisfied,
hence the rigidity of the lattice.

Finally, for all n 6= 3 the lattice Γ acts transitively on (Γ, S) thus, by
Proposition 1.8, it is SLG-rigid. �

6. Conclusion and open problems

Our main result is proved for graphs quasi-isometric to the Bruhat-Tits
building of PSLn(K) and the key idea of the proof is to use the rigidity of
this building to “transfer it” to the graph quasi-isometric thereto. One can
ask wether we can generalize this idea to other LG-rigid graphs.
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Question 6.1. — Let G be quasi-isometric to a LG-rigid graph H,
both having cocompact isometry group. If the quasi-isometry is Isom(G)-
equivariant, is G LG-rigid?

Remark that if H and G are two Cayley graphs of the same group, we
can chose H to be LG-rigid and G to be non-rigid (see the discussion be-
low Counter-Example 1.6 for more details). In that case the hypothesis of
the preceding question are satisfied without G being LG-rigid. Thus, more
restrictive hypothesis will be needed to get the rigidity of G.
Our result on lattices is proved for n 6= 3; when n = 3 we don’t know

(yet) the answer. Indeed, ou proof is based on the rigidity of the Bruhat–
Tits building of PSLn(K), a result known to be true only for n 6= 3.
In the n = 3 case, a lot of flexibility seems to be allowed (see for example
[3]) obstructing any local recognizability result. Hence the following ques-
tion:

Question 6.2. — Are torsion-free lattices of SL3(K) LG-rigid?

Lattices in p-adic Lie groups can be viewed as particular cases of S-
arithmetic lattices.

Definition 6.3. — Let S be a set of prime. We say that Γ an S-
arithmetic lattice if it’s a lattice in a product of the form

∏
iGi where

Gi is either a real Lie group or a p-adic Lie group for p ∈ S.

Hence, one we can ask what happens in that more general case.

Question 6.4. — Are torsion-free S-arithmetic lattices LG-rigid?

A result by Bader, Furman and Sauer [2, Theorem B] can be used to deal
with irreducible torsion-free S-arithmetic lattices. Indeed, if the product∏
iGi contains at least a non-compact real factor, then the aforementioned

theorem implies that the isometry group of a Cayley graph of Γ is discrete.
Thus, by Theorem 1.9 the lattice is LG-rigid. Now, if the product contains
a compact real factor then the isometry group of the Cayley graph might
not be discrete and in that case, the problem is still open.
When the lattice is reducible, we now know that the projection on the

p-adic factors gives LG-rigid lattices. Moreover, if we suppose the real fac-
tors to be simple and connected, then a result by de la Salle and Tessera [11]
shows that the projection on these factors are also LG-rigid. Hence it re-
mains to understand how to combine these results on the factors in order
to get a result on the product.
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Notations Index

A: Atlas of isometries from Y to X.
A: An apartment in X .
(Γ, S): Cayley graph of Γ with respect to the generating part S.
H0: The group ρ−1(PSLn(K)).
Isom(G): Isometry group of G.
ιy: Isometry from Y to X based at y (see page 1762).
κ: Natural injection of Y in Y (see section 4.3).
[L]: Class modulo homothety of the lattice L.
P(x): The print of the vertex x (see Definition 3.3).
P : A print in Y (see Definition 3.13).
φy: Local isometry from Y to X based at y (see eq. (4.1)).
q: Quasi-isometry between X and X .
R: Radius such that Y is R-locally the same as X.
ρ: Injective homomorphism from Isom(X) to Isom(X ).
rA: See Lemma 3.11.
rP : Radius considered to define prints (see Definition 3.13).
RX : Radius such that Y is RX -locally X .
rX : Radius such that ιy coincide with φy onBY(y, rX ) (see page 1762).
rY : See Claim 4.8.
τ(x): The type of the vertex x, where x belongs to the Bruhat–Tits

building of PSLn(K).
X : The Bruhat–Tits building of PSLn(K).
Y: Hybrid graph built to be locally the same as the building (see

Section 3.4).
(y1, . . . , yl): A path of adjacent vertices y1, y2, . . . , yl.
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