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NONLINEAR ASPECTS OF SUPER WEAKLY
COMPACT SETS

by Gilles LANCIEN & Matias RAJA (*)

Abstract. — The notion of super weak compactness for subsets of Banach
spaces is a strengthening of the weak compactness that can be described as a local
version of super-reflexivity. A recent result of K. Tu [32] which establishes that
the closed convex hull of a super weakly compact set is super weakly compact has
removed the main obstacle to further development of the theory. In this paper
we provide a variety of results around super weak compactness in order to show
the great scope of this notion. We also give non linear characterizations of super
weak compactness in terms of the (non) embeddability of special trees and graphs.
We conclude with a few relevant examples of super weakly compact sets in non
super-reflexive Banach spaces.
Résumé. — La notion de partie super faiblement compacte d’un espace de Ba-

nach est un renforcement de la compacité faible qui peut être décrite comme une
version locale de la super réflexivité. Un résultat récent de K. Tu qui assure que
l’enveloppe convexe fermée d’un ensemble super faiblement compact est super fai-
blement compacte a supprimé le principal obstacle au développement de cette
théorie. Dans cet article, nous fournissons une variété de résultats autour de la
super faible compacité pour montrer la grande portée de cette notion. Nous don-
nons aussi des caractérisations non linéaires de la super faible compacité en termes
de (non) plongement de certains arbres et graphes. Nous concluons avec quelques
exemples significatifs de parties super faiblement compactes d’espaces de Banach
non super réflexifs.
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1. Background

The uniform convexity in Banach spaces and the related notion of super-
reflexivity have been largely exploited along decades, as they provide a
natural generalization of both finite dimensional spaces and Hilbert spaces.
Some ideas behind have been distilled leading to notions such as uniformly
convex functions or super-weakly compact operators. More recently, some
local versions of super-reflexivity have been proposed [13, 27, 28]. Before
going on, let us recall that we are dealing with real Banach spaces (mostly
denoted by X for general results along this paper). We believe that our
notation is totally standard and it can be found in fundamental books such
as [16] or [1] together with the basic results needed for the understanding of
what follows. We will start with the definition of super weak compactness.

Definition 1.1. — A weakly closed subset K ⊂ X is said to be super
weakly compact (SWC) if KU is a relatively weakly compact subset of XU
for any free ultrafilter U .

Let I be an infinite set and denote `∞(X) the space of all bounded
families (xi)i∈ I in X equipped with the norm ‖(xi)i‖ = supi∈ I ‖xi‖X .
Given a free ultrafilter U on I, recall that XU is the quotient of `∞(X) by
the subspace of those (xi)i∈ I such that limi,U ‖xi‖ = 0. Then KU is the set
of all equivalence classes in XU of families (xi)i∈ I such that xi ∈ K for all
i ∈ I. Note that in Definition 1.1, we only ask KU to be relatively weakly
compact because we cannot ensure that it will be weakly closed in XU . For
the characterization of super weak compactness, it is enough to consider
just one free ultrafilter on N since, by the Eberlein–Šmulyan theorem [16,
Theorem 3.109], the weak compactness is separably determined (this will
be further developed in Section 3).
Those readers acquainted with the notion of super-reflexivity will note

that Definition 1.1 implies straightforwardly that the closed unit ball BX
of a Banach space X is SWC if and only if X is super-reflexive. However,
there are examples of SWC sets which do not embed in super-reflexive
spaces [28, Example 3.11]. Other examples of SWC sets show that they are
quite ubiquitous. For instance, any weakly compact subset of L1(µ) for µ
a finite measure, or more generally of L1(µ,X) with X super-reflexive, is
SWC, see [28] and Section 6 of this paper for more general results.
The definition of a super weakly compact set was introduced in [13] for

convex sets in terms of finite representability, in a very similar way as the
one for Banach spaces, see [6] or [16]. The same class of sets was previously
studied by the second named author in [27] as finitely dentable sets, which
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SUPER WEAKLY COMPACT SETS 1307

means that the dentability index Dz(K, ε) is finite for every ε > 0 (see the
definition of this index in Section 2). In particular, one can find there the
relationship (via interpolation) with the uniformly convexifying operators
of B. Beauzamy [5], later called super weakly compact operators. To explain
the definition, note that an operator T : X → Y induces an operator
between the ultrapowers of the spaces TU : XU → Y U for a free ultrafilter
U on an index set as follows: TU ((xi)i) = (T (xi))i, for (xi)i ∈ XU . Then,
an operator T : X → Y is said to be super weakly compact if TU is weakly
compact for any ultrafilter U (equivalently, a free ultrafilter on N). A more
updated account of properties of SWC convex sets (SWCC) can be found
in [28], as well as some renorming properties of the Banach spaces generated
by such sets.
The properties of non convex SWC sets have been extensively studied

in the recent paper [12]. Among other things, it is proved there that a
set A ⊂ X such that AU is relatively weakly compact in XU (such an A

is called relatively SWC) has SWC weak closure ([12, Proposition 3.10]).
This result is quite relevant to us since the characterizations that we will
provide later are actually for relative super weak compactness.
One problem left open in [13] was to know whether the closed convex

hull of a SWC set is SWC. This has been solved in the affirmative in a
recent paper by Kun Tu [32], who provided a version of the Krein–Šmulian
theorem for SWC sets based on a short and clever argument. This will be
a precious tool for the applications developed in this paper.

Let us describe the contents of the remaining sections of the paper. In
Section 2, we exploit the stability of super weak compactness by closed
convex hulls to derive properties for SWC sets that were known for SWCC
sets. This will lead us to a characterization of super weakly compact sets
as subsets of the image of a unit ball of a reflexive Banach space by a
super weakly compact operator (see Theorem 2.3). This relation to SWC
operators is a source of properties for SWC sets: they have the Banach–
Saks property, they are uniformly Eberlein and the spaces they generate
have good renormings (see [27, 28] for SWCC sets and Corollary 2.4 for
SWC sets).

The rest of the paper is devoted to several developments around su-
per weakly compact sets (SWC) and super weakly compact convex sets
(SWCC), especially those related to non linear properties. In Section 3 we
will discuss criterions to recognize super weak compactness in the absence
of convexity based on a theorem of James. In Section 4 we will intro-
duce uniformly convex sets and discuss their properties as a tool to enjoy
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1308 Gilles LANCIEN & Matias RAJA

properties of uniformly convex norms without renorming the whole space.
In Section 5, we establish analogues for SWC sets of Bourgain’s [9] and
Johnson–Schechtman’s [19] metric characterizations of super-reflexivity in
terms of the embeddability of dyadic hyperbolic trees, diamond graphs
or Laakso graphs. These results are obtained by combining the non linear
characterization of super weakly compact operators due to Causey and Dil-
worth [10] and Kun Tu’s result (Theorem 2.2 below). We also characterize
non SWC sets in terms of the embeddabilty of the infinite dyadic tree,
obtaining an analogue of Baudier’s [4] characterization of super-reflexivity.
Finally we provide in Section 6 several examples and properties of SWC
sets in particular Banach spaces: L1(µ)-spaces, C(K)-spaces, JBW∗-triples,
c0 and Lp(µ,X) spaces.

2. First consequences of removing the convexity

Let us first us recall the most important characterizations of SWC sets
among convex sets. For that we will need some assorted definitions. Let C
be a bounded closed convex set of X. We say that C is dentable if for any
nonempty closed convex subset D of C and any ε > 0 it is possible to find
an open halfspace H of X (i.e a set of the form H = {x ∈ X, x∗(x) > α},
with x∗ ∈ X∗ and α ∈ R) intersecting D such that diam(D ∩H) 6 ε. We
shall denote H the set of all the open half-spaces of X and call “slice of D”
a set of the form D ∩H, where H ∈ H. If C is dentable we may consider
the following “derivation”:

[D]′ε = {x ∈ D : diam(D ∩H) > ε, for any H ∈ H s.t. x ∈ H} .

Clearly, [D]′ε is what remains of D after removing all the slices of D of
diameter at most ε. Consider now the sequence of sets defined by [C]0ε = C

and, for every n ∈ N, inductively by

[C]nε =
[
[C]n−1

ε

]′
ε
.

If there is an n in N such that [C]n−1
ε 6= ∅ and [C]nε = ∅ we setDz(C, ε) = n.

We say that C is finitely dentable if Dz(C, ε) is finite for every ε > 0.
For the last section of the paper, we also need to define a fragmentability

index for weakly closed and bounded subsets of X. It is based on a different
derivation. Let D be a nonempty weakly closed and bounded subset of a
Banach space X and ε > 0. Our next derivation is then defined as follows:

(D)′ε
= {x ∈ D : diam(D ∩ V ) > ε, for any weakly open set V s.t. x ∈ V } .
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SUPER WEAKLY COMPACT SETS 1309

Similarly, (D)′ε is what remains of D after removing all the weakly open
subsets ofD of diameter at most ε. Again, for C weakly closed and bounded,
we define inductively (C)0

ε = C and, for every n ∈ N, (C)nε = ((C)n−1
ε )′ε. If

there is an n in N such that (C)n−1
ε 6= ∅ and (C)nε = ∅ we set S(C, ε) = n.

We say that C is finitely fragmentable if S(C, ε) is finite for every ε > 0.
A convex set C ⊂ X is said to have the finite tree property if there exists

ε > 0 such that C contains ε-separated dyadic trees of arbitrary height.
Recall that a dyadic tree of height n ∈ N is a set of the form {xs : |s| 6 n},
indexed by finite sequences s ∈

⋃n
k=0{0, 1}k of length |s| 6 n, such that

xs = 2−1(xs_0 + xs_1) for every |s| < n, where {0, 1}0 := {∅} indexes
the root x∅ and “_” denotes concatenation. We say that a dyadic tree
{xs : |s| 6 n} is ε-separated if ‖xs_0 − xs_1‖ > ε for every |s| < n.
A function f : C → R defined on a convex subset C ⊂ X is said to be
uniformly convex if for every ε > 0 there is δ > 0 such that ‖x − y‖ < ε

whenever x, y ∈ C are such that
f(x) + f(y)

2 − f
(
x+ y

2

)
< δ.

After all these preparatory definitions the most relevant equivalences of
super weak compactness for convex sets are listed in the following state-
ment, which is taken from [28, Proposition 2.4].

Proposition 2.1. — Let X be a Banach space and K ⊂ X a bounded
closed convex subset. The following conditions are equivalent:

(i) K is super weakly compact;
(ii) K is finitely dentable;
(iii) K does not have the finite tree property;
(iv) There is a reflexive Banach space Z and a super weakly compact

operator T : Z → X such that K ⊂ T (BZ);
(v) K supports a bounded uniformly convex function;
(vi) X has an equivalent norm ||| · ||| such that ||| · |||2 is uniformly convex

on K.

We recall that a subset A of a Banach space X is said to be relatively
super weakly compact (relatively SWC) if AU is relatively weakly compact
in XU . The already mentioned result of K. Tu can be stated as follows.

Theorem 2.2 ([32]). — The closed convex hull of a relatively SWC set
is SWC.

As an immediate application to the only one statement from Propo-
sition 2.1 which offers no additional difficulties we obtain the following
characterization in terms of interpolation.

TOME 72 (2022), FASCICULE 3



1310 Gilles LANCIEN & Matias RAJA

Theorem 2.3. — A set K ⊂ X is super weakly compact if and only
if there exists a reflexive Banach space Z and a super weakly compact
operator T : Z → X such that K ⊂ T (BZ).

Proof. — Just use Theorem 2.2 together with statement (iv) from Propo-
sition 2.1. �

Theorem 2.2 allows us to remove the difficulties of dealing only with
convex sets in relation with super weak compactness. In particular, some
previously known properties of SWCC sets which in their definition do
not appeal to convexity are inherited by the SWC sets. Let us stress the
following ones.

Corollary 2.4. — Let K ⊂ X be a SWC set. Then:
(a) K is uniformly Eberlein;
(b) K has the Banach–Saks property;
(c) K is finitely dentable.

None of the above implications can be reversed.

Proof. — For SWCC, (a) was established in [27] and (b) in [28, Theo-
rem 1.3]. Finally, remember that (c) is equivalent to super weak compact-
ness in the setting of convex sets.

There exist non super-reflexive spaces with the Banach–Saks property
[15, p. 84]. In [27, Example 4.9] an example of a finitely dentable weakly
compact set whose closed convex hull is not finitely dentable is provided,
but this example is not separable and the argument quite indirect. See
Proposition 6.6 in this paper for a simpler example. �

To conclude this section, we mention that we can also remove convexity
from [28, Theorem 1.6 and Theorem 1.9]. A Banach space X is generated
by a subset K if the linear span of K is dense in X. Then we will say that
X is super weakly compactly generated (super WCG) if it is generated by
a SWC set. A Banach space X is said to be strongly generated by a subset
K of X if for any weakly compact subset H of X and any ε > 0 there
is an n in N such that H ⊂ nK + εBX . Then we say that X is strongly
super weakly compactly generated (S2WCG) if it is strongly generated by
a SWC set. It follows from Theorem 2.2 that these definitions coincide with
the definitions given in [28]. Let us just recall their links with renorming
properties. We start with a definition. Given a bounded subset H of X, the
norm of the Banach space (X, ‖ · ‖) is said to be H-UG smooth if

sup {‖x+ th‖+ ‖x− th‖ − 2 : x ∈ SX , h ∈ H} = o(|t|) when t→ 0.

ANNALES DE L’INSTITUT FOURIER
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The norm is said to be strongly UG smooth if it is H-UG smooth for some
bounded and linearly dense subset H of X. We now reformulate the results
from [28].

Theorem 2.5. — Let X be a Banach space. Then:
(a) X is generated by a SWC set (i.e. is a super WCG Banach space)

if and only if it admits an equivalent strongly UG smooth norm.
(b) If X is strongly generated by a SWC set (i.e. is a S 2WCG Banach

space), then there is an equivalent norm on X such that its restric-
tion to any reflexive subspace of X is both uniformly convex and
uniformly Fréchet-smooth.

3. Application of James sequences

For a non super-reflexive Banach space X, the dual of the ultrapower
XU is strictly larger than (X∗)U and so it contains unknown or non repre-
sentable elements making the study of weak compactness difficult. For that
reason, the following purely intrinsic characterization of weak compactness
due to James [18], is extremely useful for the characterization of SWC sets.

Theorem 3.1 (James). — A subset C of X is not relatively weakly
compact if and only if there exist θ > 0 and a sequence (xn)∞n=0 ⊂ C such
that for every k ∈ N

dist
(

conv {xj : j 6 k} , conv {xj : j > k}
)
> θ.

The straightforward application of the above statement to the defini-
tion of super weak compactness with ultrapowers leads to the following
characterization [12, Corollary 4.9] of SWC sets, which actually provides a
“measure of non super weak compactness”.

Proposition 3.2. — For a closed subset C of X the following state-
ments are equivalent:

(i) C is not relatively SWC.
(ii) There exists θ > 0 such that for every n in N it is possible to find

points (xk)nk=1 in C such that for every 1 6 k < n,

dist
(

conv {xj : j 6 k} , conv {xj : j > k}
)
> θ.

Note that this can be used in the construction of arbitrary large dyadic
trees inside a non SWCC set (see implication (iii)⇒ (i) in Proposition 2.1).
Moreover, the trees obtained that way have the following stronger separa-
tion property.

TOME 72 (2022), FASCICULE 3



1312 Gilles LANCIEN & Matias RAJA

Corollary 3.3. — LetK be closed convex non SWC. Then there exists
δ > 0 such that for every n in N there is a δ-separated dyadic tree of height
n in K such that the distance between nodes of consecutive levels is also
at least δ.

Proof. — Take 2n points in K fulfilling statement (ii) of Proposition 3.2
and build a dyadic tree by averaging on dyadic partitions of {1, 2, . . . , 2n},
see [7, p. 412] for instance. Then this tree is clearly θ-separated in the sense
of the definition of the finite tree property. Let now x, y be two nodes in
consecutive levels, and assume y is one level above x. If x is not an ancestor
of y, then both are convex combinations of the original points in such a
way that ‖x− y‖ > θ. If x is an ancestor of y, then ‖x− y‖ > θ

2 . Therefore
δ = θ

2 does the work. �

Then, the strong separation of trees provides non finitely dentable Lips-
chitz functions, thanks to an argument of Cepedello–Boiso [11]. Recall that
if C is a non empty bounded subset of a Banach space X and f is a map
from C to a metric space M . Then f is said to be finitely dentable if for
any ε > 0, the iteration of the derivation defined by

C ′ε = {x ∈ C, diam f(C ∩H) > ε for any H ∈ H s.t. x ∈ H}

exhausts the set C in finitely many steps.

Corollary 3.4. — Let K be a closed convex non SWC set. Then there
exists a non finitely dentable Lipschitz function defined on K.

Proof. — As K is not norm compact, it contains a uniformly separated
sequence. Performing contractions at all those points we deduce that K
contains a uniformly separated sequence (Kn) of translations of λK for
some λ ∈ (0, 1). So, there exists δ > 0 such that for any n in N, there exists
a δ-separated dyadic tree Tn in Kn with nodes of consecutive levels that
are also δ-separated. We may as well assume that the sequence (Kn) is also
δ-separated. For n in N, denote now On the set of nodes at odd levels of Tn
and consider the closed subset F =

⋃∞
n=1 On of K and the function defined

by f(x) = d(F, x), which is 1-Lipschitz. Note that any slice S where the
oscillation of f is less than δ cannot contain points of consecutive levels of
the same Tn. On the other hand, the derivation process cannot remove a
node of the tree Tn before all its descendants. Both things imply that f
cannot be finitely dentable. �

The next result adds up to the characterizations of SWCC sets in Propo-
sition 2.1.

ANNALES DE L’INSTITUT FOURIER
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Theorem 3.5. — A closed convex set is SWCC if and only if every real
Lipschitz (or uniformly continuous) function defined on it can be uniformly
approached by differences of convex Lipschitz functions.

Proof. — This is just a combination of [27, Corollary 5.3] where the the
approximation by differences of Lipschitz convex functions is proved for
uniformly continuous functions defined on SWCC sets, and Corollary 3.4
knowing that a function which is a uniform limit of differences of bounded
continuous convex functions is finitely dentable, see [27, Theorem 1.4]. �
The characterization of SWC sets given in Proposition 3.2 can be im-

proved from a combinatorial point of view by reducing the number of points
whose convex combinations are separated. Note that the following char-
acterizes non super weak compactness by the fact that “cubes” can be
embedded uniformly in a certain fashion.

Theorem 3.6. — A subset C of X is not relatively super weakly com-
pact if and only if there exists θ > 0 such that for every n in N it is possible
to find a map fn : {0, 1}n → C such that

dist
(

conv {fn(A0)} , conv {fn(A1)}
)
> θ

for every pair of sets A0, A1 ⊂ {0, 1}n of the form

A0 = (a1, a2, . . . , ak−1, 0)× {0, 1}n−k

A1 = (a1, a2, . . . , ak−1, 1)× {0, 1}n−k

with 1 < k 6 n and (a0, . . . , ak−1) ∈ {0, 1}k−1.

Proof. — If C is not relatively super weakly compact, then apply Propo-
sition 3.2 for 2n points and make the obvious arrangement. Only the re-
verse implication is actually an improvement, so assume now that C is
super weakly compact and, in order to get a contradiction, that there exist
θ > 0 and maps fn : {0, 1}n → C as in our statement. In the sequel we will
denote {0, 1}ω the set of all infinite sequences in{0, 1} and {0, 1}<ω, the
set of all such finite sequences. If s and t are sequences such that t strictly
extends s, we write s ≺ t. For s ∈ {0, 1}<ω, denote

Fs =
{(
fn
(
σ|n
))∞
n=0 , s ≺ σ, σ ∈ {0, 1}

ω
}
,

which we view as subset of the weakly compact subset K = CU
w

of XU .
Note that it follows from our assumptions on the maps fn that for a fixed
n ∈ N and for any s 6= t ∈ {0, 1}n, the weak closures of Fs and Ft have
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1314 Gilles LANCIEN & Matias RAJA

an empty intersection. Thus, we can apply Urysohn’s Lemma to produce a
weakly continuous map φn : K → [0, 1] such that

∀ s ∈ {0, 1}n ∀ x ∈ Fs, φn(x) = sn.

We now set φ = (φn)∞n=1, which is a weakly continuous map from K to
[0, 1]N, with the property that

∀ σ ∈ {0, 1}ω φ(
(
fn
(
σ|n
)∞
n=0

)
= σ.

Consider now the minimal weakly closed subset H of K such that φ(H) =
{0, 1}N, whose existence is easily deduced by weak compactness. We will
show thatH is not θ-dentable. Indeed, if V ⊂ XU is an open half-space such
thatH∩V 6= ∅ then φ(H\V ) 6= {0, 1}ω. Since {0, 1}ω\φ(H\V ) is nonempty
and open in {0, 1}ω, there exists n ∈ N such that φn(H∩V ) = {0, 1}. Since
H is included in the weak closure of F∅, we deduce that φn(F∅∩V ) = {0, 1}.
It follows now, again from the properties of the maps fn, that there are
two points in H ∩ V at distance not less than θ. This is a contradiction
because weakly compact subsets are dentable [16, Theorem 11.11]. �

In the case of convex sets, James [18, Theorem 3] proved the following
more precise characterization of weak compactness, which this time involves
linear functionals.

Theorem 3.7. — Let C ⊂ X be a closed convex set. Then C is not
weakly compact if and only if there exist θ > 0, and sequences (xn) ⊂ C,
(x∗n) ⊂ BX∗ such that x∗n(xk) = 0 if n > k and x∗n(xk) = θ if n 6 k.

As an application, we get the following analoguous characterization of
convex SWC sets.

Theorem 3.8. — Let C ⊂ X be closed and convex. The following state-
ments are equivalent:

(i) C is not SWCC;
(ii) There exists θ > 0 such that for every n ∈ N there exist (xk)nk=1 ⊂ C

and (x∗k)nk=1 ⊂ BX∗ such that x∗n(xk) = 0 if n > k and x∗n(xk) = θ

if n 6 k.

Proof. — In view of Proposition 3.2, we only need to show (i)⇒ (ii). So
assume that C is not SWCC. Then CU is not weakly compact, so Theo-
rem 3.7 insures the existence of θ > 0 and sequences (un) ⊂ CU , (u∗n) in the
unit ball of (XU )∗ such that u∗n(uk) = 0 if n > k and u∗n(uk) = θ if n 6 k.
Now, we can use the finite representability of CU in C to find, for a fixed n in
N, a sequence (x1, . . . , xn) in C and a linear isomorphism Rn from the lin-
ear span of {u1, . . . , un} onto the linear span En of {x1, . . . , xn} such that
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SUPER WEAKLY COMPACT SETS 1315

Rn(ui) = xi for all i 6 n, ‖Rn‖ 6 2 and ‖R−1
n ‖ 6 2. For k ∈ {1, . . . , n},

define now a linear functional y∗k on En by y∗k(xi) = u∗k(ui). Remark that
‖y∗k‖E∗

n
6 2 and denote x∗k its Hahn–Banach extension to X. Replacing θ

by θ
2 , we get the desired result. �

For our applications to embedding results in Section 5, it will be useful
to refine this last result by showing that a non SWCC set C is such that
for any finite-codimensional subspace Y of X, C ∩ Y satisfies property (ii)
with a parameter θ independent of Y . This is very much in the spirit of [10,
Corollary 5], but we will detail here the version that is the most adapted
for our embedding questions. As usual, we start with a statement about
non weakly compact sets.

Proposition 3.9. — Let C ⊂ X be closed, convex, bounded, symmet-
ric and not relatively weakly compact. Then, there exists θ > 0 such that
for every finite-codimensional subspace Y ofX, there exists x∗∗ ∈ C ∩ Y w

∗

,
the weak∗-closure of C ∩ Y in X∗∗, such that d(x∗∗, X) > θ.

Proof. — First, we claim that for every finite codimensional-subspace Y
ofX, there is a compact subsetK ofX such that C is included in (3C∩Y )+
K. Indeed, denote by Z the space linearly spanned by C and equipped with
| |C , the Minkowski functional of C, as the norm. It is standard that (Z, | |C)
is a Banach space (see [16, Exercise 2.22] for instance). Since C is bounded,
the identity mapping I, from Z to X is bounded. ThenW = I−1(Y ) is also
a closed finite-codimensional subspace of Z. Then, a well known application
of the Bartle–Graves selection theorem (see [14]) insures that there exists
a compact subset L of Z such that BZ ⊂ 3BW + L. Applying the map I
and denoting K = I(L) finishes the proof of our claim.
Assume now that the conclusion of the proposition is false. Then for

any ε > 0, there exists a finite-codimensional subspace Y of X such that
C ∩ Y w

∗

⊂ X+εBX . But our first claim implies that Cw
∗

⊂ 3C ∩ Y w
∗

+K,
for some compact subset K of X. We deduce that for any ε > 0, Cw

∗

⊂
X + 3εBX , which implies that C is weakly compact, a contradiction. �

We now turn again to non super weakly compact sets.

Theorem 3.10. — Let C ⊂ X be closed, convex, bounded and sym-
metric. The following statements are equivalent.

(i) C is not SWCC;
(ii) There exists θ > 0 such that for every finite-codimensional subspace

Y of X, every n ∈ N, there exist (xk)nk=1 ⊂ C ∩ Y and (x∗k)nk=1 ⊂
BX∗ such that x∗n(xk) = 0 if n > k and x∗n(xk) = θ if n 6 k.
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Proof. — Again, we only need to show (i) ⇒ (ii). So assume that C
is not SWCC, let U be a non trivial ultrafilter on N and Y be a finite-
codimensional subspace of X. Then, using norm compactness in a finite-
dimensional complement of Y in X, we easily see that Y U is a finite-
codimensional subspace of XU . Then, identifying (C ∩ Y )U with CU ∩ Y U
and using Proposition 3.9 we deduce the existence of θ > 0, independent
of Y , such that (C ∩ Y )U

w∗

(the weak∗ closure is meant here in (XU )∗∗)
has points at distance from XU greater than θ. Now, the proof of James’
theorem (Theorem 3.7 of this paper) provides us with sequences (un)∞n=1
in (C ∩ Y )U , (u∗n)∞n=1 in the unit ball of (XU )∗ (actually in the unit ball
of (Y U )∗, but we may consider their Hahn–Banach extensions) such that
u∗n(uk) = 0 if n > k and u∗n(uk) = θ if n 6 k. We conclude, similarly to
the proof of Theorem 3.8, by using the finite representability of (C ∩ Y )U
in C ∩ Y . �

4. Uniformly convex sets

Let us say that a symmetric bounded closed convex set K is uniformly
convex if for every ε > 0 there is δ > 0 such that

∀ x, y ∈ K, ‖x− y‖ > ε ⇒ x+ y

2 ∈ (1− δ)K.

There is a more popular definition of uniform convexity for sets in finite
dimension, but its natural extension to Banach spaces [26] is not equiva-
lent to ours and only super-reflexive spaces can contain such sets. For a
uniformly convex set K we may define the convexity modulus as

δK(ε) = inf
{

1−
∣∣∣∣x+ y

2

∣∣∣∣
K

: x, y ∈ K, ‖x− y‖ > ε
}
,

where | · |K is the Minkowski functional of K. Note that if K is not a
segment, then there is a 2-dimensional subspace Y such that K ∩ Y is an
equivalent uniformly convex ball on Y , therefore δK(ε) 6 cε2, for some
c > 0. On the other hand, a lower bound for δ of power type is not guar-
anteed as we will see later in examples.

Lemma 4.1. — Let K be uniformly convex and | · |K its Minkowski
functional. Then whenever x, y ∈ K we have∣∣∣∣x+ y

2

∣∣∣∣
K

6 max {|x|K , |y|K} − δK (‖x− y‖) .
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Proof. — Note that we always have δK(2‖x‖) 6 |x|K . Thus we may
assume x 6= −y. Let

λ = 1−max {|x|K , |y|K} and z = x+ y

|x+ y|K
.

Observe that x+ λz, y + λz ∈ K and so∣∣∣∣x+ y

2 + λz

∣∣∣∣
K

=
∣∣∣∣x+ y

2

∣∣∣∣
K

+ λ 6 1− δK(‖x− y‖)

which implies the desired inequality. �

Proposition 4.2. — Any uniformly convex set is SWC. Reciprocally,
any SWC set is contained in some uniformly convex set.

Proof. — Uniform convexity implies that [K]′ε ⊂ (1 − δK(ε))K. Then
an homogeneity argument clearly yields that [K]nε ⊂ (1 − δK(ε))nK. So,
there exists n in N such that the ‖ ‖-diameter of [K]nε is smaller than ε and
therefore such that [K]n+1

ε is empty. On the other hand, if K is SWC, by
Theorem 2.3 and [5], there is a uniformly convex operator T : Z → X such
that K ⊂ T (BZ). It is then obvious that T (BZ) is uniformly convex. �

Proposition 4.3. — Let K be SWCC and symmetric. Then for every
δ > 0 there is a uniformly convex set C such that K ⊂ C ⊂ (1 + δ)K.

Proof. — If Z is the linear span of K and | · |K the Minkowski functional
of K, then (Z, | |K) is a Banach space (see again [16, Exercise 2.22]) and
the inclusion of Z into X is a super weakly compact operator. Therefore,
there is a renorming | · |u of Z making this operator uniformly convex. Note
that all the norms | · |K + ε| · |u for ε > 0 make the operator uniformly
convex. Then, for ε > 0 small enough, the unit ball C of | · |K + ε| · |u
provides the desired set. �

Finally we will prove an intrinsic version of Kadec’s theorem [20].

Proposition 4.4. — Let K be a uniformly convex set with modulus
of convexity δK . Then for any finite or infinite sequence (xn) such that∑
n εnxn ∈ K for any (εn)n in {−1, 1}, we have that

∑
n δK(2‖xn‖) 6 1.

Proof. — As above | · |K stands for the Minkowski functional of K. Mod-
ifying the signs we may suppose without loss of generality that

|x1 + · · ·+ xk−1 − xk|K 6 |x1 + · · ·+ xk−1 + xk|K .

By Lemma 4.1 we have that for all k > 1:

δK(2‖xk‖) 6 |x1 + · · ·+ xk−1 + xk|K − |x1 + · · ·+ xk−1|K .
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Since we also have that δK(2‖x1‖) 6 |x1|K , summing up, we obtain
∞∑
n=1

δK(2‖xn‖) 6 |x1 + · · ·+ xk−1 + xk|K 6 1. �

5. Relation to metric trees, diamonds graphs and Laakso
graphs

The characterization of the non super-reflexivity of a Banach space X by
the equi bi-Lipschitz embeddability of the family of binary trees of arbitrary
height equipped with the hyperbolic metric, due to J. Bourgain [9], is one of
the milestones of the non linear geometry of Banach spaces. F. Baudier [4]
completed this result by showing that it is also equivalent to the Lips-
chitz embeddability of the infinite binary tree. Then, Johnson and Schecht-
man [19] showed that super-reflexivity is also characterized by the non equi
bi-Lipschitz embeddability of the diamond graphs or of the Laakso graphs
(we refer the reader to [19] for their precise definitions). In this section
we describe the analogous characterizations of (non) relative super weak
compactness.
In order to illustrate this section, we will only recall the definition of the

simplest of these families: the metric binary trees. For N ∈ N, we denote
TN = {∅}∪

⋃N
n=1{0, 1}n. There is a natural order on TN defined by s � t if

the sequence t extends s. This allows us to introduce the greatest ancestor
of s and t denoted as,t. For s ∈ TN , we denote |s| the length of s. We now
define a distance on TN by the formula

(5.1) d(s, t) = d (as, t, s) + d (as, t, y) = |s|+ |t| − 2 |as, t| .

The most natural way to describe this distance is as the graph (or short-
est path) metric of TN equipped with its natural graph structure (two
sequences are adjacent if one of them is the immediate predecessor of the
other in the ordering �). For s ∈ TN , s+ denotes the set made of the two
immediate successors of s for �.
We also need to add some notation and terminology. Let f : (M,d) →

(X, ‖ ‖) be a map from a metric space into a Banach space. The average
range of f is the following subset of X

ave(f) =
{
f(s)− f(t)
d(s, t) : s, t ∈M, s 6= t

}
.

Obviously a map is Lipschitz if ave(f) is bounded. We say that f is
θ-separated if ‖f(s) − f(t)‖ > θ d(s, t), which is equivalent to say that
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the inverse map is θ−1-Lipschitz. A family of maps from M into X is said
uniformly separated if they are all θ-separated for some θ > 0.
We can now state our result.

Theorem 5.1. — Let L be a bounded subset of a Banach space (X, ‖ ‖).
Let (MN , dN )N ∈N be any one of the following families : binary trees, dia-
mond graphs, Laakso graphs. Then L is not relatively SWC if and only if
there exist uniformly separated embeddings fN : (MN , dN )→ X such that
ave(fN ) is included in K = aco(L), the closed absolute convex hull of L.

Proof. — We know from Theorem 2.2 that L is not relatively SWC if
and only if K is not SWC. Denote also Z the linear span of K and T the
identity from (Z, | |K) to (X, ‖ ‖). We may as well assume that L ⊂ BX
and thus that ‖T‖ 6 1. Note now that K is not SWC if and only if the
operator T is not SWC. Although it is not exactly stated in these terms,
it follows from the work of Causey and Dilworth [10] that T is not SWC if
and only if there exists θ > 0 and maps fN : MN → Z such that

(i) For all s, t ∈MN , |fN (s)− fN (t)|K 6 dN (s, t).
(ii) For all s, t ∈MN , ‖fN (s)− fN (t)‖ > θdN (s, t).

This concludes the proof. �

Remark 5.2. — The above results apply to unit balls of Banach spaces,
which allows to recover Bourgain’s theorem. Note that in this generalization
it is very important that the characterization is given in terms of the norm
of the ambient space for the separation and in terms of the Minkowski
functional of K for the Lipschitz constant.

Remark 5.3. — For a very general approach, we refer the reader to the
recent paper by A. Swift [30], where it is shown (Theorem 6.7) that super-
reflexivity is equivalent to the non equi-Lipschitz embeddability of any
family of bundle graphs generated by a given finitely branching bundle
graph.

The article by Causey and Dilworth [10] is written in terms of super
weakly compact operators and applies to symmetric convex sets. We include
below a proof, for the case of trees, using only the tools of our paper.

Proof of Theorem 5.1. — Assume that L is not relatively SWC. Then
K is not SWC and there exists θ > 0 such that for every N ∈ N there
exists (xk)2N+1−1

k=1 in K and (x∗k)2N+1−1
k=1 in BX∗ satisfying condition (ii) in

Theorem 3.8. Bourgain’s map [9], see also [25, Lemma 13.11], defined by

f(s) =
∑
t� s

xσ(t),
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where σ : TN → {1, . . . , 2N+1 − 1} is a suitable labelling of the nodes of
the tree (see [9] or [4] for details), is clearly θ-separated and its average
range is in K.
Assume now that L is relatively SWC, and thus, by Theorem 2.2 that

K is SWC. Aiming for a contradiction, assume also that there exists f :
TN → X which is θ- separated with ave(f) ⊂ K. Since K is SWC, we
may assume, without loss of generality that K is uniformly convex with
modulus δ. Let | |K be the Minkowski functional of K and notice that f
is C-Lipschitz for some C 6 1 if we endow K with | |K . Now we will show
that Kloeckner’s fork argument [22] is valid in this context. Given nodes
s0, s1, s2, s

′
2 such that s1 ∈ s+

0 and {s2, s
′
2} = s+

1 , we claim that

min
{
|f(s0)− f(s2)|K , |f(s0)− f (s′2)|K

}
6 2(C − δ(θ)).

Indeed, assume not and set x = f(s0) − f(s1), y = f(s1) − f(s2) and
y′ = f(s1) − f(s′2) which all are in K and so that |x|K , |y|K , |y′|K 6 C.
Then we have∣∣∣∣x+ y

2

∣∣∣∣
K

> C − δ(θ) and
∣∣∣∣x+ y′

2

∣∣∣∣
K

> C − δ(θ),

which imply ‖x− y‖ < θ and ‖x− y′‖ < θ, and therefore

‖f(s2)− f(s′2)‖ = ‖y − y′‖ < 2θ

contradicting the θ-separation and proving our claim.
If N was even, the application of this argument would provide a selection

of nodes equivalent to TN
2
, on which the restriction of f is θ-separated with

respect to ‖ ‖ and the Lipschitz constant has been reduced to C − δ(θ)
with respect to | |K . Starting with a tree of height N = 2k+1, the recursive
application of this argument would provide a θ-separated map from T2 with
Lipschitz constant C − kδ(θ), which is impossible for large values of k. �

We conclude this section by showing a metrical characterization of super
weak compactness that is the exact analogue of Baudier’s characterization
of super-reflexive Banach spaces [4]. Let us denote T∞ the union of all the
TN ’s for N ∈ N, that we equip with the distance d defined as in (5.1).

Theorem 5.4. — Let L be a bounded subset of a Banach space (X, ‖ ‖).
Then L is not relatively SWC if and only if there exist θ > 0 and a θ-
separated map f : (T∞, d)→ X such that ave(f) is included inK = aco(L),
the closed absolute convex hull of L.

Proof. — It follows from Theorem 5.1 that we only need to show one
implication. So assume that L is not relatively SWC and let us build
an embedding f . Armed with Theorem 3.10, we only need to reproduce
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Baudier’s original barycentric gluing argument [4]. So we will just recall
the main steps of his construction.
Denote kn the cardinality of T2n+1 . Then we can build inductively, us-

ing Theorem 3.10 and a standard Mazur gliding hump argument, sub-
spaces (Fn)∞n=1 of X, points xn, 1, . . . , xn, kn in K ∩ Fn, linear functionals
x∗n, 1, . . . , x

∗
n, kn

in BX∗ so that x∗n, k(xn, i) = 0 if k > i and x∗n, k(xn, i) = θ

if k 6 i, for some fixed θ > 0. We also make sure in the construction
that (Fn)∞n=1 is a Schauder decomposition of its closed linear span Z. Let
now σn : T2n+1 → {1, . . . , kn} be an enumeration of T2n+1 following the
lexicographic order. Now define

fn(∅) = 0 and ∀ s ∈ T2n+1 \ {∅}, fn(s) =
∑
t� s

xn, σn(t).

Finally, still following Baudier’s lead, we define f : T∞ → Z ⊂ X as follows:
f(∅) = 0 and if 2n 6 |s| 6 2n+1, for some n ∈ N ∪ {0}, then

f(s) = λfn(s) + (1− λ)fn+1(s), where λ = 2n+1 − |s|
2n .

We have now gathered all the ingredients to follow the estimates carried
out in [4] and conclude that there exists C, η > 0 such that f is C-Lipschitz
as a function with values in the linear span of K equipped with | |K and
η-separated. A final rescaling of f by a factor 1

C yields the conclusion. �

6. Examples of super weakly compact sets

Here we will discuss some examples that we believe to be interesting.

Proposition 6.1. — For any measure space (Ω,Σ, µ) and for any com-
pact Hausdorff space K all the weakly compact subsets of L1(Ω, µ) and
C(K)∗ are SWC. Therefore, any weakly compact operator with range L1(µ)
or domain C(K) is super weakly compact.

Proof. — We may proceed only with separable weakly compact subsets
of L1(Ω, µ) as super weak compactness is separably determined. Note that
any separable subset of L1(Ω, µ) is supported on a σ-finite set Ω′. On the
other hand L1(Ω′, µ) is isometric to some space L1(ν) where ν is a finite
measure. As L1(ν) is strongly generated by the unit ball of L2(ν), we deduce
that any weakly compact subset of L1(Ω, µ) is SWC, see [5, p. 123] or [28,
Proposition 2.7(5)]. The proof for C(K)∗ is similar. Note that this space
can be decomposed as an `1 sum of L1(µ) spaces.
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The consequence for weakly compact operators with range in an L1(µ)
space is evident. Let now T : C(K) → X be a weakly compact operator.
Then T ∗ : X∗ → C(K)∗ is weakly compact too, and thus it is super
weakly compact. Then T is again super weakly compact by Beauzamy’s
duality. �

The next statement then follows straightforwardly from the application
of a well known result of Pełcyński, see [1, Corollary 5.6.4] for instance.

Corollary 6.2. — Every operator from a C(K) space into a Banach
space which contains no copy of c0 is super weakly compact.

Note that the C(K) case in Proposition 6.1 includes in particular L∞(µ)
spaces, see [29, Lemma 5.3] for a result is this direction. The particular
properties of L1(µ) as a Banach lattice may suggest a possible generaliza-
tion of Proposition 6.1 in this setting. Actually, we propose here an upgrade
of the above result that is rather based on its algebraic structure. We shall
deal with preduals of JBW∗-triples, which include in particular preduals of
Von Neumann algebras and thus the complex L1(µ) spaces. We are grateful
to Ondřej F.K. Kalenda who kindly provided us with the following result
and the arguments for the proof below. The definition of a JBW∗-triple and
basic related information can be found for instance in the papers [8, 17].

Theorem 6.3. — Every weakly compact subset of a JBW∗-triple pre-
dual is SWC.

Proof. — Let us start by noticing that any JBW*-triple E has a unique
predual [3]. As in the proof of the previous result we may suppose that
the weakly compact set K ⊂ E is separable. By [8, Theorem 1.1] E is
1-Plichko. In particular, it has 1-SCP [8, Corollary 1.3], that is, every sepa-
rable subspace is contained in a 1-complemented separable subspace, so we
may assume that K ⊂ F where F is 1-complemented in E. Now, we claim
that F ∗ is a JBW∗-triple. Indeed, by [21] a 1-complemented subspace of
a JB∗-triple is again a JB∗-triple and the claim follows by duality. Since
F is a separable predual of a JBW∗-triple, it is strongly WCG [17, Corol-
lary 9.4]. It remains to show that F is actually strongly generated by a
SWC set which would imply that K is SWC by [28, Proposition 2.7(5)].
In order to do that it is necessary to look into the extra information pro-
vided by the proofs in [17]. The compact K(φ) that strongly generates F
in [17, Theorem 9.3(c)] (see also [17, Proposition 7.11(b)]) comes from a
Hilbert space. Indeed, K(φ) is defined in [17, Lemma 7.10(b)] and it fol-
lows from the formula for Φ in [17, Lemma 7.10(a)] that it factors through
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a Hilbert space, which is the completion ofM endowed with the inner prod-
uct [x, y] = φ({x, y, e}), see [8, Proposition 3.2] and its proof for additional
details. �

We can then deduce, and extend, the following classical result of
W. Szlenk [31].

Corollary 6.4. — A weakly convergent sequence in L1(µ), or more
generally in a JBW∗-triple predual, has a subsequence whose Cesàro mean
converges in norm to the same limit.

Proof. — A weakly convergent sequence together with its limit is a wea-
kly compact set, which in L1(µ) or a JBW∗-triple predual is SWC and
therefore, by Corollary 2.4, has the Banach–Saks property. �

Now we will consider subsets of c0 which are families of characteristic
functions of finite sets of N, namely sets of the form K = {χF : F ∈ F}
with F ⊂ [N]<ω. Here [N]<ω denotes the set of finite subsets of N. For a
finite set F , we denote |F | its cardinality. Observe that for every p ∈ N
the family F = {F ⊂ N : |F | 6 p} produces a SWC set as it is covered
by I(pB`2) where I : `2 → c0 is the canonical injection, which is a SWC
operator. We now give a necessary condition for such a set K to be SWC
in c0.

Proposition 6.5. — Let F ⊂ [N]<ω a family of subsets such that K =
{χF : F ∈ F} is a SWC subset of c0. Then, there exists p ∈ N and C > 0
such that

∀ A ∈ [N]<ω, |{F ∩A : F ∈ F}| 6 C|A|p.

Proof. — Actually, we will show that the cardinality of the set in the
statement is below Np for some p ∈ N and N = |A| large enough. As-
sume that the result is false. So for any fixed p ∈ N the cardinality is not
eventually bounded by Np. Note that the expression(

N

0

)
+
(
N

1

)
+ · · ·+

(
N

p− 1

)
is a polynomial of degree p− 1 on N , so by our assumption there is N ∈ N
such that

|{F ∩A : F ∈ F}| >
(
N

0

)
+ · · ·+

(
N

p− 1

)
.

The Sauer–Shelah Lemma (see [2, Lemma 14.4.1]) then insures that there
is a subset S of A with |S| = p such that

{F ∩ S : F ∈ F} = 2S .
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Now, take an enumeration of S = {n1, . . . , np} and define points (xk)pk=1
⊂ K of the form xk = χFk

where Fk ∈ F is such that Fk∩S = {n1, . . . , nk}.
In particular, nk ∈ Fk if and only if i > k, which clearly implies that (xk)pk=1
satisfies Proposition 3.2 whith θ = 1. As p can be arbitrarily large, K is
not SWC. �

Another non trivial example leading to an explicit estimate is provided
by the Schreier family S, which is made up of those F ∈ [N]ω such that
|F | 6 min(F ), we have that {χF : F ∈ S} is weakly compact in c0 while∣∣ {F ∩ [1, N ] : F ∈ S}

∣∣ > 2 N
2 −1.

However, the property of Proposition 6.5 does not characterize super
weak compactness in c0, as it is shown by the following example.

Proposition 6.6. — There exists a family F of finite subsets of N such
that K = {χF : F ∈ F} is weakly compact, finitely dentable, non SWC
and so that for every finite set A ⊂ N we have∣∣{F ∩A : F ∈ F}

∣∣ = |A|+ 1.

Proof. — Define for every n ∈ N and m ∈ {1, . . . , n} the sets

Fn,m =
{
k ∈ N : n(n− 1)

2 < k 6
n(n− 1)

2 +m

}
.

Consider the families Fn = {Fn,m : 1 6 m 6 n} and F = {∅} ∪
⋃
n∈N Fn.

It is easy to see that any sequence in K = {χF : F ∈ F} admits a sub-
sequence that is either stationary or weakly null. Therefore, K is weakly
compact. Note that for every n in N the sequence (xm)nm=1 = (χFn, m)nm=1
satisfies condition (ii) of Proposition 3.2 with θ = 1, and so K is not SWC.
Now we will show that any x ∈ K \ {0} can be separated with a slice from
the rest of K. If x = χFn, m

take x∗ = (ak)∞k=1 ∈ `1, where ak is

1 if k ∈ Fn,m; −1 if n(n− 1)
2 +m < k 6

n(n+ 1)
2 ; 0 otherwise.

With this choice, we have that {x} = {y ∈ K : x∗(y) > m − 1/2}, which
shows that [K]′ε = {0} for any ε < 1 and implies the finite dentability of
K. Finally, observe that∣∣ {F ∩A : F ∈ Fn, F ∩A 6= ∅}

∣∣ =
∣∣∣∣A ∩ (n(n− 1)

2 ,
n(n+ 1)

2

]∣∣∣∣
leading to the estimation of the statement (adding 1 for F = ∅). �

Remark 6.7. — The set K we just described is isometric to N, equipped
with the discrete metric, and the same is true for the subset L of c0 made
of 0 together with the elements of the canonical basis of c0. However,
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K is not SWC, while L is SWC (for instance, because it is weakly compact
and included in the image of the unit ball of `2 by the identity map from
`2 in c0). This underlines the fact that convexity or the use of convex hulls
seems unavoidable if one is looking for metrical characterizations of super
weak compactness.

Now we will discuss super weak compactness of some subsets of the
Bochner–Lebesgue space Lp(X) = Lp([0, 1], X). Our starting point is the
following result of Beauzamy [5, Proposition II.3] restated in terms of super
weak compactness.

Theorem 6.8 (Beauzamy). — Let X,Y be two Banach spaces and
p ∈ (1,+∞). If T : X → Y is super weakly compact, then the induced
operator Tp : Lp(X) → Lp(Y ), defined by Tpf(t) = T (f(t)), is super
weakly compact.

For a subset K of X, we denote Lp(K) the set of all f in Lp(X) whose
essential range is included in K. Then, we deduce the following.

Corollary 6.9. — A subset K of X is SWC if and only if Lp(K) is
SWC for some or all p in (1,+∞).

Proof. — Note that K is linearly isometric to a closed subset of Lp(K).
So we have only one implication to show and we assume that K is SWC.
So, there exists a Banach space Z and a super weakly compact operator
T : Z → X such that K ⊂ T (BZ). Then Lp(K) ⊂ Tp(BLp(Z)) is super
weakly compact by Theorem 6.8. �

This last result leads to the following characterization of SWC sets by
means of the fragmentability index.

Theorem 6.10. — A weakly compact subset K ⊂ X is SWC if and
only if L2(K) is finitely fragmentable.

Proof. — Let H denote the closed convex hull of K. Assume first that
K is SWC, then so is H and then L2(H) is SWC. Indeed, property (iv) in
Proposition 2.1 insures the existence of a super weakly compact operator
T : Z → X with Z a reflexive Banach and such that H ⊂ T (BZ). Then,
we obtain that L2(H) is a subset of T2(BL2(Z)), with L2(Z) being reflex-
ive and T2 super weakly compact by Theorem 6.8. Thus L2(H) is SWC
and hence finitely dentable. Note now that L2(K) ⊂ L2(H) and that its
fragmentability index is bounded by its dentability index and therefore is
finite.
Assume now that L2(K) is finitely fragmentable. Firstly we will re-

duce the problem to the convex case by showing that L2(H) is finitely
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fragmentable. In order to do that, consider the bounded operator T :
L2([0, 1]2, X)→ L2([0, 1], X) defined by

T (f)(t) =
∫ 1

0
f(t, s) ds.

Let us remark that there is an isometry U from L2([0, 1]2, X) onto L2([0, 1],
X) such that U(L2([0, 1]2,K)) = L2([0, 1],K). Now note that any simple
function with values in conv(K) can be uniformly approximated by ele-
ments from T (L2([0, 1]2,K)). That implies that L2(H) ⊂ T (L2([0, 1]2,K))
and thus the desired result, as the fragmentability index of the linear con-
tinuous image remains finite. Now we can apply an argument of the first
named author [23, 24] that states

Dz(H, ε) 6 S
(
L2(H), ε2

)
.

Therefore H is finitely dentable and hence SWC. �

Acknowledgements

This work was initiated while the first-named author was visiting the
Universidad de Murcia and completed while the second-named author was
a visiting professor at the Université de Franche-Comté. Both authors
wish to thank these institutions for their support. The authors also thank
O. Kalenda for providing us with Theorem 6.3 and G. Grelier for fruitful
discussions.

BIBLIOGRAPHY

[1] F. Albiac & N. J. Kalton, Topics in Banach Space Theory, second revised and
udapted ed., Graduate Texts in Mathematics, vol. 233, Springer, 2016.

[2] N. M. Alon & J. H. Spencer, The probabilistic method, fourth ed., Wiley-
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons,
2016.

[3] T. J. Barton & R. M. Timoney, “Weak∗-continuity of Jordan triple products and
its applications”, Math. Scand. 59 (1986), no. 2, p. 177-191.

[4] F. Baudier, “Metrical characterization of super-reflexivity and linear type of Ba-
nach spaces”, Arch. Math. 89 (2007), no. 5, p. 419-429.

[5] B. Beauzamy, “Opérateurs uniformément convexifiants”, Stud. Math. 57 (1976),
no. 2, p. 103-139.

[6] ———, Introduction to Banach spaces and their geometry, North-Holland Mathe-
matics Studies, vol. 68, North-Holland, 1982.

[7] Y. Benyamini & J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Col-
loquium Publications, vol. 48, American Mathematical Society, 2000.

ANNALES DE L’INSTITUT FOURIER



SUPER WEAKLY COMPACT SETS 1327

[8] M. Bohata, J. Hamhalter, O. F. K. Kalenda, A. M. Peralta & H. Pfitzner,
“Preduals of JBW∗-triples are 1-Plichko spaces”, Q. J. Math. 69 (2018), no. 2,
p. 655-680.

[9] J. Bourgain, “The metrical interpretation of super-reflexivity in Banach spaces”,
Isr. J. Math. 56 (1986), p. 222-230.

[10] R. M. Causey & S. J. Dilworth, “Metric characterizations of super weakly com-
pact operators”, Stud. Math. 239 (2017), no. 2, p. 175-188.

[11] M. Cepedello-Boiso, “Approximation of Lipschitz functions by ∆-convex func-
tions in Banach spaces”, Isr. J. Math. 106 (1998), p. 269-284.

[12] L. Cheng, Q. Cheng, S. Luo, K. Tu & J. Zhang, “On super weak compactness of
subsets and its equivalences in Banach spaces”, J. Convex Anal. 25 (2018), no. 3,
p. 899-926.

[13] L. Cheng, Q. Cheng, B. Wang & W. Zhang, “On super-weakly compact sets and
uniformly convexifiable sets”, Stud. Math. 199 (2010), no. 2, p. 145-169.

[14] R. Deville, G. Godefroy & V. Zizler, Smoothness and renormings in Banach
spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64,
Longman Scientific & Technical, 1993.

[15] J. Diestel, Geometry of Banach spaces. Selected topics, Lecture Notes in Mathe-
matics, vol. 485, Springer, 1975.

[16] M. Fabian, P. Habala, P. Hájek, V. Montesinos & V. Zizler, Banach Space
Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics,
Springer, 2011.

[17] J. Hamhalter, O. F. K. Kalenda, A. M. Peralta & H. Pfitzner, “Measures of
weak non-compactness in preduals of von Neumann algebras and JBW∗-triples”, J.
Funct. Anal. 278 (2020), no. 1, article no. 108300.

[18] R. C. James, “Weak compactness and reflexivity”, Isr. J. Math. 2 (1964), p. 101-
119.

[19] W. B. Johnson & G. Schechtman, “Diamond graphs and super-reflexivity”, J.
Topol. Anal. 1 (2009), no. 2, p. 177-189.

[20] M. I. Kadec, “Unconditional convergence of series in uniformly convex spaces”,
Usp. Mat. Nauk 11 (1956), p. 185-190.

[21] W. G. Kaup, “Contractive projections on Jordan C∗-algebras and generalizations”,
Math. Scand. 54 (1984), no. 1, p. 95-100.

[22] B. Kloeckner, “Yet another short proof of Bourgain’s distortion estimate for em-
bedding of trees into uniformly convex Banach spaces”, Isr. J. Math. 200 (2014),
no. 1, p. 419-422.

[23] G. Lancien, “Théorie de l’indice et problèmes de renormage en géométrie des es-
paces de Banach”, PhD Thesis, Université Paris VI, Paris, France, 1992.

[24] ———, “On uniformly convex and uniformly Kadec–Klee renormings”, Serdica
Math. J. 21 (1995), no. 1, p. 1-18.

[25] G. Pisier, “Martingales with values in uniformly convex spaces”, Isr. J. Math. 20
(1975), p. 326-350.

[26] B. T. Polyak, “Existence theorems and convergence of minimizing sequences in
extremum problems with restrictions”, Sov. Math., Dokl. 7 (1966), p. 72-75.

[27] M. Raja, “Finitely dentable functions, operators and sets”, J. Convex Anal. 15
(2008), no. 2, p. 219-233.

[28] ———, “Super WCG Banach spaces”, J. Math. Anal. Appl. 439 (2016), no. 1,
p. 183-196.

[29] J. Rodriguez, “Cesàro convergent sequences in the Mackey topology”, Mediterr.
J. Math. 16 (2019), no. 5, article no. 117.

TOME 72 (2022), FASCICULE 3



1328 Gilles LANCIEN & Matias RAJA

[30] A. Swift, “A coding of bundle graphs and their embeddings into Banach spaces”,
Mathematika 64 (2018), no. 3, p. 847-874.

[31] W. Szlenk, “Sur les suites faiblement convergentes dans l’espace L”, Stud. Math.
25 (1965), p. 337-341.

[32] K. Tu, “Convexification of super weakly compact sets and measure of super weak
noncompactness”, Proc. Am. Math. Soc. 149 (2021), no. 6, p. 2531-2538.

Manuscrit reçu le 7 novembre 2020,
révisé le 27 juin 2021,
accepté le 9 juillet 2021.

Gilles LANCIEN
Laboratoire de Mathématiques de Besançon,
Université Bourgogne Franche-Comté,
CNRS UMR-6623, 16 route de Gray,
25030 Besançon Cédex, Besançon (France)
gilles.lancien@univ-fcomte.fr
Matias RAJA
Departamento de Matemáticas,
Universidad de Murcia,
Campus de Espinardo,
30100 Espinardo, Murcia, (Spain)
matias@um.es

ANNALES DE L’INSTITUT FOURIER

mailto:gilles.lancien@univ-fcomte.fr
mailto:matias@um.es

	1. Background
	2. First consequences of removing the convexity
	3. Application of James sequences
	4. Uniformly convex sets
	5. Relation to metric trees, diamonds graphs and Laakso graphs
	6. Examples of super weakly compact sets
	Acknowledgements

	References

