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VANISHING COHOMOLOGY AND BETTI BOUNDS
FOR COMPLEX PROJECTIVE HYPERSURFACES

by Laurenţiu G. MAXIM,
Laurenţiu PĂUNESCU & Mihai TIBĂR (*)

Abstract. — We employ the formalism of vanishing cycles and perverse sheaves
to introduce and study the vanishing cohomology of complex projective hypersur-
faces. As a consequence, we give upper bounds for the Betti numbers of projective
hypersurfaces, generalizing those obtained by different methods by Dimca in the
isolated singularities case, and by Siersma–Tibăr in the case of hypersurfaces with
a 1-dimensional singular locus. We also prove a supplement to the Lefschetz hyper-
plane theorem for hypersurfaces, which takes the dimension of the singular locus
into account, and we use it to give a new proof of a result of Kato.
Résumé. — Nous utilisons le formalisme des cycles évanescents et des faisceaux

pervers pour introduire et étudier la cohomologie évanescente des hypersurfaces
projectives. Nous déduisons des majorants pour les nombres de Betti des hypersur-
faces projectives, en généralisant ceux obtenus avec des méthodes différentes par
Dimca dans le cas des singularités isolées, et par Siersma–Tibăr dans le cas des
hypersurfaces avec lieu singulier de dimension 1. Nous prouvons aussi un complé-
ment au théorème de la section hyperplane de Lefschetz pour les hypersurfaces qui
tient compte de la dimension du lieu singulier, et nous l’utilisons pour donner une
nouvelle preuve du résultat de Kato.

1. Introduction. Results

Let V = {f = 0} ⊂ CPn+1 be a reduced complex projective hypersurface
of degree d, with n > 1. By the classical Lefschetz Theorem, the inclusion
map j : V ↪→ CPn+1 induces cohomology isomorphisms

(1.1) jk : Hk
(
CPn+1;Z

) ∼=−→ Hk(V ;Z) for all k < n,
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and a primitive monomorphism for k = n (e.g., see [2, Theorem 5.2.6]).
Moreover, if s = dimVsing < n is the complex dimension of the singular
locus of V (with dim ∅ = −1), then Kato [4] showed that (see also [2,
Theorem 5.2.11])

(1.2) Hk(V ;Z) ∼= Hk
(
CPn+1;Z

)
for all n+ s+ 2 6 k 6 2n,

and the homomorphism jk induced by inclusion is given in this range (and
for k even) by multiplication by d = deg(V ). It therefore remains to study
the cohomology groups Hk(V ;Z) for n 6 k 6 n+ s+ 1.

In the case when V ⊂ CPn+1 is a smooth degree d hypersurface, the
above discussion yields that Hk(V ;Z) ∼= Hk(CPn;Z) for all k 6= n. This is
in fact the only information we take as an input in this note (it also suffices
to work with (1.1), its homology counterpart, and Poincaré duality). The
Universal Coefficient Theorem also yields in this case that Hn(V ;Z) is free
abelian, and its rank bn(V ) can be easily deduced from the formula for the
Euler characteristic of V (e.g., see [10, Proposition 10.4.1]):

(1.3) χ(V ) = (n+ 2)− 1
d

[
1 + (−1)n+1(d− 1)n+2] .

Specifically, if V ⊂ CPn+1 is a smooth degree d projective hypersurface,
one has:

(1.4) bn(V ) = (d− 1)n+2 + (−1)n+1

d
+ 3(−1)n + 1

2 .

The case when V has only isolated singularities was studied by Dimca
[1, 2], (see also [13] and [17]) while projective hypersurfaces with a one-
dimensional singular locus have been more recently considered by Siersma–
Tibăr [17].
In the singular case, let us fix aWhitney stratification V of V and consider

a one-parameter smoothing of degree d, namely

Vt := {ft = f − tg = 0} ⊂ CPn+1 (t ∈ C),

for g a general polynomial of degree d. Here, the meaning of “general” is
that the hypersurface W := {g = 0} is smooth and transverse to all strata
in the stratification V of V . Then, for t 6= 0 small enough, all the Vt are
smooth and transverse to the stratification V. Let

B = {f = g = 0}

be the base locus (axis) of the pencil. Consider the incidence variety

VD :=
{

(x, t) ∈ CPn+1 ×D
∣∣x ∈ Vt}

ANNALES DE L’INSTITUT FOURIER



VANISHING COHOMOLOGY 1707

with D a small disc centered at 0 ∈ C so that Vt is smooth for all t ∈ D∗ :=
D \ {0}. Denote by π : VD → D the proper projection map, and note that
V = V0 = π−1(0) and Vt = π−1(t) for all t ∈ D∗. In what follows we write
V for V0 and use Vt for a smoothing of V (i.e., with t ∈ D∗). In this setup,
one can define the Deligne vanishing cycle complex of the family π, see [10,
Section 10.3] for a quick introduction. More precisely, one has a bounded
constructible complex

ϕπZVD ∈ D
b
c(V )

on the hypersurface V , whose hypercohomology groups fit into a long exact
sequence (called the specialization sequence):

· · · → Hk(V ;Z) sp
k

→ Hk (Vt;Z) α
k

→ Hk
(
V ;ϕπZVD

)
→ Hk+1(V ;Z) sp

k+1

→ · · ·
(1.5)

The maps spk are called the specialization morphisms, while the αk’s are
usually referred to as the canonical maps. For any integer k, we define

Hk
ϕ(V ) := Hk

(
V ;ϕπZVD

)
and call it the kth vanishing cohomology group of V . This is an invariant
of V , i.e., it does not depend on the choice of a particular smoothing of de-
gree d (since all smooth hypersurfaces of a fixed degree are diffeomorphic).
By its very definition, the vanishing cohomology measures the difference
between the topology of a given projective hypersurface V and that of a
smooth hypersurface of the same degree.

Remark 1.1. — Since the incidence variety VD = π−1(D) deformation
retracts to V = π−1(0), and the specialization map spk : Hk(V ;Z) →
Hk(Vt;Z) of (1.5) factorizes as

Hk(V ;Z)
∼=−→ Hk (VD;Z) −→ Hk (Vt;Z)

with Hk(VD;Z)→ Hk(Vt;Z) induced by the inclusion map, it follows read-
ily that the vanishing cohomology of V can be identified with the relative
cohomology of the pair (VD, V ), i.e.,

(1.6) Hk
ϕ(V ) ∼= Hk+1 (VD, Vt;Z) .

In particular, the groups Hk
ϕ(V ) are the cohomological version of the van-

ishing homology groups

Hgk (V ) := Hk (VD, Vt;Z)

introduced and studied in [17] in special situations. For the purpose of
computing Betti numbers of projective hypersurfaces, the two “vanishing”
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theories yield the same answer, but additional care is needed to handle
torsion when computing the actual integral cohomology groups.

Our first result gives the concentration degrees of the vanishing cohomol-
ogy of a projective hypersurface in terms of the dimension of the singular
locus.

Theorem 1.2. — Let V ⊂ CPn+1 be a reduced complex projective
hypersurface with s = dimVsing the complex dimension of its singular locus.
Then

(1.7) Hk
ϕ(V ) ∼= 0 for all integers k /∈ [n, n+ s].

Moreover, Hn
ϕ(V ) is a free abelian group.

In view of Remark 1.1, one gets by Theorem 1.2 and the Universal Coeffi-
cient Theorem the concentration degrees of the vanishing homology groups
Hgk (V ) of a projective hypersurface in terms of the dimension of its singular
locus:

Corollary 1.3. — With the above notations and assumptions, we
have that

(1.8) Hgk (V ) ∼= 0 for all integers k /∈ [n+ 1, n+ s+ 1].

Moreover, Hgn+s+1(V ) is free.

Remark 1.4. — In the case when the projective hypersurface V ⊂ CPn+1

has a 1-dimensional singular locus, it was shown in [17, Theorem 4.1] that
Hgk (V ) ∼= 0 for all k 6= n + 1, n + 2. Moreover, [17, Theorem 6.1] shows
that in this case one also has that Hgn+2(V ) is free. So, Corollary 1.3 pro-
vides a generalization of the results of [17] to projective hypersurfaces with
arbitrary singularities. Nevertheless, the methods used in its proof are fun-
damentally different from those in [17].

As a consequence of Theorem 1.2, the specialization sequence (1.5) to-
gether with the fact that the integral cohomology of a smooth projective
hypersurface is free, yield the following result on the integral cohomology
of a complex projective hypersurface (where the estimate on the nth Betti
number uses formula (1.4)):

Corollary 1.5. — Let V ⊂ CPn+1 be a degree d reduced projective
hypersurface with a singular locus Vsing of complex dimension s. Then:

(i) Hk(V ;Z) ∼= Hk(Vt;Z) ∼= Hk(CPn;Z) for all integers k /∈ [n, n +
s+ 1].

(ii) Hn(V ;Z) ∼= ker(αn) is free.

ANNALES DE L’INSTITUT FOURIER



VANISHING COHOMOLOGY 1709

(iii) Hn+s+1(V ;Z) ∼= Hn+s+1(CPn;Z)⊕ coker(αn+s).
(iv) Hk(V ;Z) ∼= ker(αk)⊕ coker(αk−1) for all integers k ∈ [n+ 1, n+ s],

s > 1.
In particular,

bn(V ) 6 bn(Vt) = (d− 1)n+2 + (−1)n+1

d
+ 3(−1)n + 1

2 ,

and

bk(V ) 6 rank Hk−1
ϕ (V ) + bk(CPn) for all k ∈ [n+ 1, n+ s+ 1], s > 0.

The homological version of the specialisation sequence (1.5) identifies to
the long exact sequence of the pair (VD, Vt), namely:

· · · → Hk+1 (Vt;Z)→ Hk+1 (VD;Z)→ Hgk+1(V ;Z) αk−→ Hk (Vt;Z)→ · · ·

The inclusions Vt ↪→ VD ↪→ CPn+1×D induce in homology a commutative
triangle, where Hk(Vt;Z) → Hk(CPn+1 ×D;Z) is injective for k 6= n (by
the Lefschetz Theorem for k < n, and it is multiplication by d for k > n, see,
e.g., Remark 5.5 for the homological version of the proof of Theorem 5.3).
This shows that the morphisms Hk(Vt;Z) → Hk(VD;Z) is also injective
for all k 6= n, and therefore αk = 0 for k 6= n. Consequently, the above
long exact sequence splits into a 5-term exact sequence, and short exact
sequences:

0→ Hn+1 (Vt;Z)→ Hn+1(V ;Z)→ Hgn+1(V ;Z)
αn→ Hn (Vt;Z)→ Hn(V ;Z)→ 0.

0→ Hk (Vt;Z)→ Hk (VD;Z)→ Hgk (V ;Z)→ 0 for k > n+ 1.
(1.9)

We then get the following homological version of Corollary 1.5((i)-(iv)),
with the same upper bounds for Betti numbers, but with an interesting
improvement for (iii) and (iv) showing more explicitly the dependence of
the homology of V on the vanishing homology groups:

Corollary 1.6. — Let V ⊂ CPn+1 be a degree d reduced projective
hypersurface with a singular locus Vsing of complex dimension s. Then:

(i’) Hk(V ;Z) ∼= Hk(Vt;Z) ∼= Hk(CPn;Z) for all k 6 n − 1 and all
k > n+ s+ 2.

(ii’) Hn(V ;Z) ∼= coker(αn).
(iii’) Hn+1(V ;Z) ∼= ker(αn)⊕Hn+1(CPn;Z).
(iv’) Hk(V ;Z) ∼= Hgk (V ;Z)⊕Hk(CPn;Z), for all n+ 2 6 k 6 n+ s+ 1,

whenever s > 1, and Hn+s+1(V ;Z) is free.

TOME 72 (2022), FASCICULE 4
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The ranks of the (possibly non-trivial) vanishing (co)homology groups
can be estimated in terms of the local topology of singular strata and of
their generic transversal types by making use of the hypercohomology spec-
tral sequence. Such estimates can be made precise for hypersurfaces with
low-dimensional singular loci. Concretely, as special cases of Corollaries 1.5
and 1.6, in Section 3 we recast Siersma–Tibăr’s [17] result for s 6 1, and in
particular Dimca’s [1, 2] computation for s = 0. Concerning the estimation
of the rank of the highest interesting (co)homology group, we prove the
following general result:

Theorem 1.7. — Let V ⊂ CPn+1 be a degree d reduced projective
hypersurface with a singular locus Vsing of complex dimension s. For each
connected stratum Si ⊆ Vsing of top dimension s in a Whitney stratification
of V , let Fti denote its transversal Milnor fiber with corresponding Milnor
number µti . Then:

(1.10) bn+s+1(V ) 6 1 +
∑
i

µti ,

and the inequality is strict for n+ s even.

In fact, the inequality in (1.10) is deduced from

(1.11) bn+s+1(V ) 6 1 + rank Hn+s
ϕ (V ),

together with

(1.12) rank Hn+s
ϕ (V ) 6

∑
i

µti ,

and the inequality (1.11) is strict for n + s even. For further refinements
of Theorem 1.7, see Remark 3.1. Note also that if s = 0, i.e., V has only
isolated singularities, then µti is just the usual Milnor number of such a
singularity of V .
Let us remark that if the projective hypersurface V ⊂ CPn+1 has sin-

gularities in codimension 1, i.e., s = n− 1, then bn+s+1(V ) = b2n(V ) = r,
where r denotes the number of irreducible components of V . Indeed, in this
case, one has (e.g., see [2, (5.2.9)]):

(1.13) H2n(V ;Z) ∼= Zr.

In particular, Theorem 1.7 yields the following generalization of [17, Corol-
lary 7.6]:

ANNALES DE L’INSTITUT FOURIER
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Corollary 1.8. — If the reduced projective hypersurface V ⊂ CPn+1

has singularities in codimension 1, then the number r of irreducible com-
ponents of V satisfies the inequality:

(1.14) r 6 1 +
∑
i

µti .

Remark 1.9. — Note that if the projective hypersurface V ⊂ CPn+1 is
a rational homology manifold, then the Lefschetz isomorphism (1.1) and
Poincaré duality over the rationals yield that bi(V ) = bi(CPn) for all i 6= n.
Moreover, bn(V ) can be deduced by computing the Euler characteristic of
V , e.g., as in [10, Section 10.4].

The computation of Betti numbers of a projective hypersurface which is a
rational homology manifold can be deduced without appealing to Poincaré
duality by using the vanishing cohomology instead, as the next result shows:

Proposition 1.10. — If the projective hypersurface V ⊂ CPn+1 is a
Q-homology manifold, then Hk

ϕ(V )⊗Q ∼= 0 for all k 6= n. In particular, in
this case one gets: bi(V ) = bi(Vt) = bi(CPn) for all i 6= n, and bn(V ) =
bn(Vt) + rankHn

ϕ(V ).

At this end, we note that Corollary 1.5(i) reproves Kato’s isomorphism
(1.2) about the integral cohomology of V , by using only the integral co-
homology of a smooth hypersurface (for this it suffices to rely only on the
Lefschetz isomorphism (1.1), its homological version, and Poincaré dual-
ity). In Section 5, we give a new proof of Kato’s result (see Theorem 5.3),
which relies on the following supplement to the Lefschetz hyperplane sec-
tion theorem for hypersurfaces, which may be of independent interest:

Theorem 1.11. — Let V ⊂ CPn+1 be a reduced complex projective
hypersurface with s = dimVsing the complex dimension of its singular locus.
(By convention, we set s = −1 if V is nonsingular.) Let H ⊂ CPn+1 be a
generic hyperplane. Then

(1.15) Hk(V, V ∩H;Z) = 0 for k < n and n+ s+ 1 < k < 2n.

Moreover, H2n(V, V ∩ H;Z) ∼= Zr, where r is the number of irreducible
components of V , and Hn(V, V ∩H;Z) is (torsion-)free.

Note that the vanishing (1.15) for k < n is equivalent to the classical
Lefschetz hyperplane section theorem. The proof of (1.15) for n+ s+ 1 <
k < 2n reduces to understanding the homotopy type of the complement
of a smooth affine hypersurface transversal to the hyperplane at infinity;
see [7, Corollary 1.2] for such a description. Homological counterparts of

TOME 72 (2022), FASCICULE 4
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Theorem 1.11 and of Kato’s result are also explained in Section 5, see
Corollary 5.2 and Remark 5.5.

Finally, let us note that similar techniques apply to the study of Milnor
fiber cohomology of complex hypersurface singularity germs. This is ad-
dressed by the authors in the follow-up paper [11] (see also [16] for the case
of 1-dimensional singularities).

Acknowledgements

L. Maxim thanks the Sydney Mathematical Research Institute (SMRI)
for support and hospitality, and Jörg Schürmann for useful discussions.

2. Concentration degrees of vanishing cohomology

The proof of Theorem 1.2 makes use of the formalism of perverse sheaves
and their relation to vanishing cycles, see [3, 10] for a brief introduction.

2.1. Proof of Theorem 1.2

By definition, the incidence variety VD is a complete intersection of pure
complex dimension n + 1. It is non-singular if V = V0 has only isolated
singularities, but otherwise it has singularities where the base locus B =
V ∩W of the pencil {ft}t∈D intersects the singular locus Σ := Vsing of V .
If ZVD denotes the constant sheaf with stalk Z on the complete inter-

section VD, a result of Lê [6] implies that the complex ZVD [n + 1] is a
perverse sheaf on VD. It then follows that ϕπZVD [n] is a Z-perverse sheaf
on π−1(0) = V (see, e.g., [10, Theorem 10.3.13] and the references therein).

Recall that the stalk of the cohomology sheaves of ϕπZVD at a point
x ∈ V are computed by (e.g., see [10, (10.20)]):

(2.1) Hj
(
ϕπZVD

)
x
∼= Hj+1 (Bx, Bx ∩ Vt;Z) ,

where Bx denotes the intersection of VD with a sufficiently small ball in
some chosen affine chart Cn+1×D of the ambient space CPn+1×D (hence
Bx is contractible). Here Bx ∩ Vt = Fπ,x is the Milnor fiber of π at x. Let
us now consider the function

h = f/g : CPn+1 \W → C

ANNALES DE L’INSTITUT FOURIER
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where W := {g = 0}, and note that h−1(0) = V \ B with B = V ∩W the
base locus of the pencil. If x ∈ V \B, then in a neighborhood of x one can
describe Vt (t ∈ D∗) as

{x|ft(x) = 0} = {x|h(x) = t} ,

i.e., as the Milnor fiber of h at x. Note also that h defines V in a neighbor-
hood of x /∈ B. Since the Milnor fiber of a complex hypersurface singularity
germ does not depend on the choice of a local equation (e.g., see [2, Re-
mark 3.1.8]), we can therefore use h or a local representative of f when
considering Milnor fibers (of π) at points in V \ B. From here on we will
use the notation Fx for the Milnor fiber of the hypersurface singularity
germ (V, x), and we note for future reference that the above discussion also
yields that Fx is a manifold, which moreover is contractible if x ∈ V \B is
a smooth point.
It was shown in [14, Proposition 5.1] (see also [12, Proposition 4.1] or [17,

Lemma 4.2]) that there are no vanishing cycles along the base locus B, i.e.,

(2.2) ϕπZVD |B ' 0.

Therefore, if u : V \B ↪→ V is the open inclusion, we get that

(2.3) ϕπZVD ' u!u
∗ϕπZVD .

Since pullback to open subvarieties preserves perverse sheaves, we note that
u∗ϕπZVD [n] is a perverse sheaf on the affine variety V \B. Artin’s vanishing
theorem for perverse sheaves (e.g., [15, Corollary 6.0.4]) then implies that:

Hk
ϕ(V ) := Hk

(
V ;ϕπZVD

)
∼= Hk−n

(
V ;ϕπZVD [n]

)
∼= Hk−n

(
V ;u!u

∗ϕπZVD [n]
)

∼= Hk−nc

(
V \B;u∗ϕπZVD [n]

)
∼= 0

(2.4)

for all k − n < 0, or equivalently, for all k < n.
Contractibility of Milnor fibers at smooth points of V \ B implies that

the support of ϕπZVD is in fact contained in Σ \ B, with Σ denoting as
before the singular locus of V . In particular, if v : Σ \ B ↪→ V \ B is the
closed inclusion, then

(2.5) u∗ϕπZVD ' v!v
∗u∗ϕπZVD .

Next, consider the composition of inclusion maps

Σ \B
q
↪→ Σ

p
↪→ V

TOME 72 (2022), FASCICULE 4
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with p ◦ q = u ◦ v. By using (2.3) and (2.5), we get:
ϕπZVD ' u!v!v

∗u∗ϕπZVD
' (u ◦ v)!(u ◦ v)∗ϕπZVD
' (p ◦ q)!(p ◦ q)∗ϕπZVD
' p!q!q

∗p∗ϕπZVD
' p∗p∗ϕπZVD ,

(2.6)

where the last isomorphism uses the fact that p∗ϕπZVD is supported on
Σ \ B, hence p∗ϕπZVD ' q!q

∗p∗ϕπZVD . Since the support of the perverse
sheaf ϕπZVD [n] on V is contained in the closed subset Σ, we get that
p∗ϕπZVD [n] is a perverse sheaf on Σ (e.g., see [10, Corollary 8.2.10]). Since
the complex dimension of Σ is s, the support condition for perverse sheaves
together with the hypercohomology spectral sequence yield that

H`
(
Σ; p∗ϕπZVD [n]

) ∼= 0

for all ` /∈ [−s, s]. This implies by (2.6) that

(2.7) Hk
ϕ(V ) = Hk−n

(
V ;ϕπZVD [n]

) ∼= Hk−n
(
Σ; p∗ϕπZVD [n]

) ∼= 0

for all k /∈ [n− s, n+ s].
The desired concentration degrees for the vanishing cohomology is now

obtained by combining (2.4) and (2.7).
Let us finally show that Hn

ϕ(V ) is free. Fix a Whitney stratification V of
V , so that V \Σ is the top stratum. (Note that together with π−1(D∗), this
also yields a Whitney stratification of VD.) Since W intersects V transver-
sally (i.e., W intersects each stratum S in V transversally in CPn+1), we
can assume without any loss of generality that the base locus B = V ∩W
is a closed union of strata of V. Next, we have by (2.4) that

Hn
ϕ(V ) ∼= H0

c

(
V \B;u∗ϕπZVD [n]

)
,

with
P := u∗ϕπZVD [n]

a Z-perverse sheaf on the affine variety V \B and u : V \B ↪→ V the open in-
clusion. In particular, this implies that if S ∈ V is any stratum in V \B with
inclusion iS : S ↪→ V \ B then Hk(i!SP) ' 0 for all integers k < −dimC S.
By the Artin–Grothendieck type result of [15, Corollary 6.0.4], in order to
show that H0

c(V \ B;P) is free it suffices to check that the perverse sheaf
P satisfies the following costalk condition (see(1) [15, Example 6.0.2(3)]):

(2.8) H− dimC S
(
i!SP

)
x
is free

(1)We thank Jörg Schürmann for indicating the relevant references to us.
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VANISHING COHOMOLOGY 1715

for any point x in any stratum S in V \ B with inclusion iS : S ↪→ V \ B.
Let us now fix a stratum S ∈ V contained in V \B and let x ∈ S be a point
with inclusion map kx : {x} ↪→ S. Consider the composition ix := iS ◦ kx :
{x} ↪→ V \B. Using the fact that

k∗xi
!
S ' k!

xi
!
S [2 dimC S] ' i!x [2 dimC S]

(e.g., see [15, Remark 6.0.2(1)]), the condition (2.8) for x ∈ S is equivalent
to the following:

(2.9) HdimC S
(
i!xP

)
is free.

In fact, the above discussion applies to any algebraically constructible com-
plex F � ∈ pD>0, with (pD6 0, pD> 0) denoting the perverse t-structure on
Db
c(V \ B). Furthermore, in our setup (i.e., working with PID coefficients

and having finitely generated stalk cohomology) F � ∈ pD> 0 satisfies the
additional costalk condition (2.8) (or, equivalently, (2.9)) if and only if the
Verdier dual DF � satisfies DF � ∈ pD6 0.
Let i : V = V0 ↪→ VD denote the closed inclusion, and consider the

following variation triangle for the projection map π : VD → D:

(2.10) i![1] −→ ϕπ
var−→ ψπ

[1]−→

with ψπ denoting the corresponding nearby cycle functor for π (e.g., see [15,
(5.90)]). Apply the functor u! = u∗ to the triangle (2.10), and the apply
the resulting triangle of functors to the complex ZVD [n] to get the following
triangle of constructible complexes on V \B:

Z := u!i!ZVD [n+ 1] −→ P := u∗ϕπZVD [n]

−→ R := u∗ψπZVD [n] [1]−→
(2.11)

Let x ∈ S be a point in a stratum of V \B with inclusion map ix : {x} ↪→
V \ B as before, and apply the functor i!x to the triangle (2.11) to get the
triangle:

(2.12) i!xZ −→ i!xP −→ i!xR
[1]−→

The cohomology long exact sequence associated to (2.12) contains the terms

· · · −→ HdimC S
(
i!xZ

)
−→ HdimC S

(
i!xP

)
−→ HdimC S

(
i!xR

)
−→ · · ·

Since the category of (torsion-)free abelian groups is closed under exten-
sions, in order to prove (2.9) it suffices to check that HdimC S(i!xZ) and
HdimC S(i!xR) are (torsion-)free. (Note that, in fact, all costalks in question
are finitely generated.)
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Let us first show that HdimC S(i!xZ) is free. Regard the stratum S con-
taining x as a stratum in VD, and let rx : {x} → VD be the point inclusion,
i.e., rx = i ◦ u ◦ ix. So i!xZ = r!

xZVD [n + 1]. Recall that ZVD [n + 1] is
a Z-perverse sheaf on VD, i.e., ZVD [n + 1] ∈ pD6 0(VD) ∩ pD> 0(VD). As
already indicated above, in order to show that HdimC S(r!

xZVD [n + 1]) is
free it suffices to verify that D(ZVD [n + 1]) ∈ pD6 0(VD), or equivalently,
DZVD ∈

pD6−n−1(VD). This fact is a consequence of [15, Definition 6.0.4,
Example 6.0.11], where it is shown that the complete interesection VD has
a rectified homological depth equal to its complex dimension n+ 1.

Next note that, due to the local product structure, the Milnor fiber Fx
of the hypersurface singularity germ (V, x) with x ∈ S has the homotopy
type of a finite CW complex of real dimension n − dimC S. In particular,
Hn−dimC S(Fx;Z) is free. Since by the costalk calculation (cf. [15, (5.92)])
and Poincaré duality we have for x ∈ S that

(2.13) HdimC S
(
i!xR

) ∼= Hn+dimC S
c (Fx;Z) ∼= Hn−dimC S (Fx;Z) ,

it follows that HdimC S(i!xR) is free. This completes the proof of Theo-
rem 1.2.

2.2. Proof of Proposition 1.10

Since V is a Q-homology manifold, it follows by standard arguments
involving the Hamm fibration (e.g., see [2, Theorem 3.2.12]) that VD is
also a Q-homology manifold (with boundary). Thus Q

VD
[n + 1] is a self-

dual Q-perverse sheaf on VD. Moreover, since ϕπ[−1] commutes with the
Verdier dualizing functor (see [8, Theorem 3.1] and the references therein),
we get that Q := ϕπQVD [n] is a Verdier self-dual perverse sheaf on V .
Using the Universal Coefficients Theorem, we obtain:

Hk
ϕ(V )⊗Q = Hk−n (V ;Q) ∼= Hk−n (V ;DQ) ∼= Hn−k(V ;Q)∨

=
(
H2n−k
ϕ (V )⊗Q

)∨
.

The desired vanishing follows now from Theorem 1.2.

3. Bounds on Betti numbers of projective hypersurfaces

In this section, we prove Theorem 1.7 and specialize it, along with Corol-
lary 1.5, in the case when the complex dimension s of the singular locus is
6 1.
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3.1. Proof of Theorem 1.7

Proof of Theorem 1.7. — Let Σ := Vsing be the singular locus of V , of
complex dimension s, and fix a Whitney stratification V of V so that V \Σ
is the top open stratum. We have by Corollary 1.5 (or by the specialization
sequence (1.5)) that

bn+s+1(V ) 6 1 + rank Hn+s
ϕ (V ).

So it suffices to show that

(3.1) rank Hn+s
ϕ (V ) 6

∑
i

µti ,

where the summation on the right-hand side runs over the top s-dimensional
connected strata Si of Σ, and µti denotes the corresponding transversal
Milnor number for such a stratum Si.
If s = 0, an easy computation shows that (3.1) is in fact an equality,

see (3.10) below. Let us next investigate the case when s > 1.
For any ` 6 s, denote by Σ` the union of strata in Σ of complex dimension

6 `. In particular, we can filter Σ by closed (possibly empty) subsets

Σ = Σs ⊃ Σs−1 ⊃ · · · ⊃ Σ0 ⊃ Σ−1 = ∅.

Let
U` := Σ` \ Σ`−1

be the union of `-dimensional strata, so Σ` = tk6 `Uk. (Here, t denotes
disjoint union.) Recall that the smooth hypersurface W = {g = 0} was
chosen so that it intersects each stratum in Σ transversally.
In the notations of the proof of Theorem 1.2, it follows from equa-

tions (2.4) and (2.5) that:

Hn+s
ϕ (V ) ∼= Hn+s

c

(
V \B;u∗ϕπZVD

) ∼= Hn+s
c

(
Σ \B; v∗u∗ϕπZVD

)
,

with B = V ∩ W the axis of the pencil, and with v : Σ \ B ↪→ V \ B
and u : V \ B ↪→ V the inclusion maps. We also noted that either h or a
local representative of f can be used when considering Milnor fibers of π
at points in V \B. For simplicity, let us use the notation

R := v∗u∗ϕπZVD ∈ D
b
c(Σ \B),

and consider the part of the long exact sequence for the compactly sup-
ported hypercohomology of R associated to the disjoint union

Σ \B = (Us \B) t (Σs−1 \B)
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involving Hn+s
ϕ (V ), namely:

· · · → Hn+s
c (Us \B;R)→ Hn+s

ϕ (V )→ Hn+s
c (Σs−1 \B;R)→ · · ·

We claim that

(3.2) Hn+s
c (Σs−1 \B;R) ∼= 0,

so, in particular, there is an epimorphism:

(3.3) Hn+s
c (Us \B;R)� Hn+s

ϕ (V ).

In order to prove (3.2), consider the part of the long exact sequence for
the compactly supported hypercohomology of R associated to the disjoint
union

Σs−1 \B = (Us−1 \B) t (Σs−2 \B)
involving Hn+s

c (Σs−1 \B;R), namely:

· · · → Hn+s
c (Us−1 \B;R)→ Hn+s

c (Σs−1 \B;R)
→ Hn+s

c (Σs−2 \B;R)→ · · ·

We first show that

(3.4) Hn+s
c (Us−1 \B;R) ∼= 0.

Indeed, the (p, q)-entry in the E2-term of the hypercohomology spectral
sequence computing Hn+s

c (Us−1 \B;R) is given by

Ep, q2 = Hp
c (Us−1 \B;Hq(R)) ,

and we are interested in those pairs of integers (p, q) with p + q = n + s.
Since a point in a (s−1)-dimensional stratum of V has a Milnor fiber which
has the homotopy type of a finite CW complex of real dimension n− s+ 1,
it follows that

Hq(R)|Us−1\B ' 0 for any q > n− s+ 1.

Also, by reasons of dimension, we have that Ep, q2 = 0 if p > 2s − 2. In
particular, the only possibly non-trivial entries on the E2-page of the above
spectral sequence are those corresponding to pairs (p, q) with p 6 2s − 2
and q 6 n−s+1, none of which add up to n+s. This proves (3.4). If s = 1,
this completes the proof of (3.2) since Σ−1 = ∅. If s > 1, the long exact
sequences for the compactly supported hypercohomology of R associated
to the disjoint union

Σ` \B = (U` \B) t (Σ`−1 \B) ,

0 6 ` 6 s−1, can be employed to reduce the proof of (3.2) to showing that

(3.5) Hn+s
c (U` \B;R) ∼= 0
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for all 0 6 ` 6 s− 1. To prove (3.5), we make use of the hypercohomology
spectral sequence whose E2-term is computed by

Ep, q2 = Hp
c (U` \B;Hq(R)) ,

and we are interested again in those pairs of integers (p, q) with p+q = n+s.
Since a point in an `-dimensional stratum of V has a Milnor fiber which
has the homotopy type of a finite CW complex of real dimension n− `, it
follows that

Hq(R)|U`\B ' 0 for any q > n− `.
Moreover, by reasons of dimension, Ep,q2 = 0 if p > 2`. So the only possibly
non-trivial entries on the E2-page are those corresponding to pairs (p, q)
with p 6 2` and q 6 n−`, none of which add up to n+s. This proves (3.5),
and completes the proof of (3.2) in the general case.
In order to prove (3.1), we make use of the epimorphism (3.3) as fol-

lows. Recall that, in our notations, Us \B is a disjoint union of connected
strata Si \B of complex dimension s. Each Si \B has a generic transversal
Milnor fiber Fti , which has the homotopy type of a bouquet of µti (n− s)-
dimensional spheres. So the integral cohomology of Fti in concentrated in
degree n − s. Moreover, for each i, there is a local system Lti on Si \ B
with stalk H̃n−s(Fti ;Z), whose monodromy is usually refered to as the ver-
tical monodromy. This is exactly the restriction of the constructible sheaf
Hn−s(R) to Si \ B. It then follows from the hypercohomology spectral
sequence computing Hn+s

c (Us \B;R) and by Poincaré duality that

(3.6) Hn+s
c (Us \B;R) ∼=

⊕
i

H2s
c

(
Si \B ; Lti

) ∼= ⊕
i

H0
(
Si \B ; Lti

)
which readily gives (3.1). �

Remark 3.1. — Note that the upper bound on bn+s+1(V ) can be formu-
lated entirely in terms of coinvariants of vertical monodromies along the top
dimensional singular strata of V . Indeed, if in the notations of the above
proof we further let hvi denote the vertical monodromy along Si \ B, then
each term on the right-hand side of (3.6) is computed by the coinvariants of
hvi , i.e., H0(Si \ B;Lti ) ∼= H̃n−s(Fti ;Z)hv

i
. Note that the latter statement,

when combined with (3.3), yields an epimorphism

(3.7)
⊕
i

H̃n−s (Fti ;Z
)
hv
i

� Hn+s
ϕ (V ),

the summation on the left hand side being over the top dimensional singular
strata of V . One can, moreover, proceed like in [11] and give a more pre-
cise dependence of all (possibly non-trivial) vanishing cohomology groups
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Hk
ϕ(V ), n 6 k 6 n + s, in terms of the singular strata of V . We leave the

details to the interested reader.

3.2. Isolated singularities

Assume that the projective hypersurface V ⊂ CPn+1 has only isolated
singularities (i.e., s = 0). Then the incidence variety VD is smooth since
the pencil has an empty base locus, and the projection π : VD → D has
isolated singularities exactly at the singular points of V . The only non-
trivial vanishing homology group, Hgn+1(V ), is free, and is computed as:

(3.8) Hgn+1(V ) ∼=
⊕

x∈Vsing

H̃n(Fx;Z) ∼=
⊕

x∈Vsing

Zµx ,

where Fx denotes the Milnor fiber of the isolated hypersurface singularity
germ (V, x), with corresponding Milnor number µx. The second isomor-
phism follows from the fact that Fx has the homotopy type of a bouquet
of µx n-spheres.
The 5-term exact sequence (1.9) then reads as:

(3.9)
0→ Hn+1 (Vt;Z)→ Hn+1(V ;Z)→

⊕
x∈Vsing

H̃n (Fx;Z)

αn→ Hn (Vt;Z)→ Hn(V ;Z)→ 0.

Therefore Corollary 1.5(i)–(iii), together with the following bound via The-
orem 1.7:

bn+1(V ) 6 1 +
∑

x∈Vsing

µx.

recover [17, Proposition 2.2], which in turn is a homology counterpart
of Dimca’s result [2, Theorem 5.4.3]. In fact, Dimca’s result was formu-
lated in cohomology, and it is a direct consequence of the specialization
sequence (1.5) via Theorem 1.2, together with the observation that the
only non-trivial vanishing cohomology group, Hn

ϕ(V ), is computed as:

(3.10) Hn
ϕ(V ) ∼=

⊕
x∈Vsing

H̃n (Fx;Z) .

Remark 3.2. — Let us recall here that if V ⊂ CPn+1 is a degree d re-
duced projective hypersurface with only isolated singularities, then its Euler
characteristic is computed by the formula (e.g., see [2, Exercise 5.3.7(i) and
Corollary 5.4.4] or [10, Proposition 10.4.2]):

(3.11) χ(V ) = (n+ 2)− 1
d

[
1 + (−1)n+1(d− 1)n+2]+ (−1)n+1

∑
x∈Vsing

µx,
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with µx denoting as before the Milnor number of the isolated hypersur-
face singularity germ (V, x). In particular, if V is a projective curve (i.e.,
n = 1), then H0(V ;Z) ∼= Z, H2(V ;Z) ∼= Zr, with r denoting the number
of irreducible components of V , and H1(V ;Z) is a free group whose rank
is computed from (3.11) by the formula:

(3.12) b1(V ) = r + 1 + d2 − 3d−
∑

x∈Vsing

µx.

3.3. 1-dimensional singular locus

This particular case was treated in homology in [17, Proposition 7.7].
Let us recall the preliminaries, in order to point out once more that in this
paper we have transposed them to a fully general setting.

One starts with V ⊂ CPn+1, a degree d projective hypersurface with
a singular locus Σ := Vsing of complex dimension 1. The singular locus Σ
consists of a union of irreducible projective curves Σi and a finite set I of
isolated singular points. Each curve Σi has a generic transversal type of
transversal Milnor fiber

Fti '
∨
µt
i

Sn−1

with corresponding transversal Milnor number µti . Each Σi also contains a
finite set Si of special points of non-generic transversal type. One endows
V with the Whitney stratification whose strata are:

• the isolated singular points in I,
• the special points in S =

⋃
i Si,

• the (top) one-dimensional components of Σ \ S,
• the open stratum V \ Σ.

The genericity of the pencil {Vt}t∈D implies that the base locus B inter-
sects each Σi in a finite set Bi of general points, which are not contained
in I ∪ Si. The total space VD of the pencil has in this case only isolated
singularities (corresponding to the points where B intersects Σ), and the
projection π : VD → D has a 1-dimensional singular locus Σ× {0}.
With the above specified landscape, the Siersma–Tibăr result [17, Propo-

sition 7.7] reads now as the specialisation for s = 1 of Corollary 1.6, together
with the bound provided by Theorem 1.7.
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4. Examples

In this section we work out a few specific examples. In particular, in § 4.1
we show that the upper bound given by Theorem 1.7 is sharp, § 4.2 deals
with a hypersurface which is a rational homology manifold, while § 4.3
discusses the case of a projective cone on a singular curve. However, as
pointed out in [1] already in the case of isolated singularities, it is difficult in
general to compute the integral cohomology of a hypersurface by means of
Corollary 1.5. It is therefore important to also develop alternative methods
for exact calculations of cohomology and/or Betti numbers, e.g., see [2] for
special situations.

4.1. Singular quadrics

Let n and q be integers satisfying 4 6 q 6 n+ 1, and let

fq (x0, . . . xn+1) =
∑

06 i, j6n+1
qijxixj

be a quadric of rank q := rank(Q) with Q = (qij). The singular locus Σ
of the quadric hypersurface Vq = {fq = 0} ⊂ CPn+1 is a linear space of
complex dimension s = n + 1 − q satisfying 0 6 s 6 n − 3. The generic
transversal type for Σ = CP s is an A1-singularity, so µt = 1. Theorem 1.7
yields that

(4.1) bn+s+1(Vq) 6 2.

In what follows, we show that if the rank q is even (i.e., n+ s+ 1 is even),
the upper bound on bn+s+1(Vq) given in (4.1) is sharp. Indeed, in our
notation, the quadric Vq is a projective cone with vertex Σ over a smooth
quadric Wq ⊂ CPn−s. Moreover, since n − s > 3, the homotopy version
of the Lefschetz hyperplane theorem yields that Wq is simply-connected
(see, e.g., [2, Theorem 1.6.5]). Let U = Vq \ Σ and consider the long exact
sequence

· · · → Hk
c (U ;Z)→ Hk (Vq;Z)→ Hk (Σ;Z)→ Hk+1

c (U ;Z)→ · · ·

Note that projecting from Σ gives U the structure of a vector bundle of
rank s+ 1 over Wq. Let p : U →Wq denote the bundle map. Then

Hk
c (U ;Z) ∼= Hk (Wq;Rp!ZU )

can be computed by the corresponding hypercohomology spectral sequence
(i.e., the compactly supported Leray–Serre spectral sequence of the map p),
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with Ea,b2 = Ha(Wq;Rbp!ZU ). Since π1(Wq) = 0, the local system Rbp!ZU
is constant on Wq with stalk Hb

c (Cs+1;Z). Since the latter is Z if b =
2s + 2 and 0 otherwise, the above spectral sequence yields isomorphisms
Hk
c (U ;Z) ∼= Hk−2−2s(Wq;Z) if k > 2s+ 2 and Hk

c (U ;Z) ∼= 0 if k < 2s+ 2.
On the other hand, Hk(Σ;Z) = 0 if k > 2s, so the above long exact
sequence yields:

(4.2) Hk (Vq;Z) ∼=


Hk (Σ;Z) 0 6 k 6 2s
0 k = 2s+ 1
Hk−2−2s (Wq;Z) 2s+ 2 6 k 6 2n.

Since Wq is a smooth quadric, its integral cohomology is known from (1.1),
(1.2) and (1.4). Altogether, this gives:

(4.3) Hk (Vq;Z) ∼=


0 k odd
Z k even, k 6= n+ s+ 1
Z2 k = n+ s+ 1 even.

4.2. One-dimensional singular locus with a two-step filtration

Let V = {f = 0} ⊂ CP 4 be the 3-fold in homogeneous coordinates
[x : y : z : t : v], defined by

f = y2z + x3 + tx2 + v3.

The singular locus of V is the projective line Σ = {[0 : 0 : z : t : 0]
| z, t ∈ C}. By (1.1), we get: b0(V ) = 1, b1(V ) = 0, b2(V ) = 1. Since
V is irreducible, (1.13) yields: b6(V ) = 1. We are therefore interested to
understand the Betti numbers b3(V ), b4(V ) and b5(V ).
It was shown in [9, Example 6.1] that V has a Whitney stratification

with strata:

S3 := V \ Σ, S1 := Σ \ [0 : 0 : 0 : 1 : 0], S0 := [0 : 0 : 0 : 1 : 0],

giving V a two-step filtration V ⊃ Σ ⊃ [0 : 0 : 0 : 1 : 0].
The transversal singularity for the top singular stratum S1 is the Bries-

korn type singularity y2 + x3 + v3 = 0 at the origin of C3 (in a normal
slice to S1), with corresponding transversal Milnor number µt1 = 4. So
Theorem 1.7 yields that b5(V ) 6 5, while Corollary 1.5 gives b3(V ) 6 10.
As we will indicate below, the actual values of b3(V ) and b5(V ) are zero.
It was shown in [9, Example 6.1] that the hypersurface V is in fact a

Q-homology manifold, so it satisfies Poincaré duality over the rationals. In
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particular, b5(V ) = b1(V ) = 0 and b4(V ) = b2(V ) = 1. To determine b3(V ),
it suffices to compute the Euler characteristic of V , since χ(V ) = 4−b3(V ).
Let us denote by Y ⊂ CP 4 a smooth 3-fold which intersects the Whitney
stratification of V transversally. Then (1.3) yields that χ(Y ) = −6 and we
have by [10, (10.40)] that

(4.4) χ(V ) = χ(Y )− χ (S1 \ Y ) · µt1 − χ(S0) · (χ(F0)− 1) ,

where F0 denotes the Milnor fiber of V at the singular point S0. As shown
in [9, Example 6.1], F0 ' S3∨S3. So, using the fact that the general 3-fold
Y intersects S1 at 3 points, we get from (4.4) that χ(V ) = 4. Therefore,
b3(V ) = 0, as claimed. Moreover, since H3(V ;Z) is free, this also shows
that in fact H3(V ;Z) ∼= 0.

Remark 4.1. — Note that the hypersurface of the previous example has
the same Betti numbers as CP 3. This fact can also be checked directly, by
noting that the monodromy operator acting on the reduced homology of
the Milnor fiber of f at the origin in C5 has no eigenvalue equal to 1 (see [2,
Corollary 5.2.22]).
More generally, consider a degree d homogeneous polynomial g(x0, . . . ,

xn) with associated Milnor Fg such that the monodromy operator h∗ acting
on H̃∗(Fg;Q) is the identity. Then the hypersurface V = {g(x0, . . . , xn) +
xdn+1 = 0} ⊂ CPn+1 has the same Q-(co)homology as CPn. For example,
the hypersurface Vn = {x0x1 . . . xn + xn+1

n+1 = 0} has singularities in codi-
mension 2, but the same Q-(co)homology as CPn. However, Vn does not
have in general the Z-(co)homology of CPn; indeed, H3(V2;Z) contains
3-torsion (cf. [2, Proposition 5.4.8]).

4.3. Projective cone on a curve

The projective curve C = {xyz = 0} ⊂ CP 2 has three irreducible com-
ponents and three singularities of type A1 (each having a corresponding
Milnor number equal to 1). Therefore, by Remark 3.2 and formula (3.12),
the integral cohomology of C is given by:

H0(C;Z) ∼= Z, H1(C;Z) ∼= Z, H2(C;Z) ∼= Z3.

The projective cone on C is the surface V = {xyz = 0} ⊂ CP 3. The
singular locus of V consists of three projective lines intersecting at the
point [0 : 0 : 0 : 1], each having a (generic) transversal singularity of type
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A1, i.e., with corresponding transversal Milnor number equal to 1. By [2,
(5.4.18)], we have that

Hk(V ;Z) ∼= Hk−2(C;Z), for all k > 2.

Together with (1.1), this yields:

(4.5)
H0(V ;Z) ∼= Z, H1(V ;Z) ∼= 0, H2(V ;Z) ∼= Z,

H3(V ;Z) ∼= Z, H4(V ;Z) ∼= Z3.

By Theorem 1.2, the only non-trivial vanishing cohomology groups of V
are H2

ϕ(V ), which is free, and H3
ϕ(V ). These can be explicitly computed by

using (1.4), (1.9) and (4.5), to get:

H2
ϕ(V ) ∼= Z7, H3

ϕ(V ) ∼= Z2

(compare with [17, Example 7.5]).

5. Supplement to the Lefschetz hyperplane theorem and
applications

In this section, we give a new proof of Kato’s result mentioned in the
Introduction. Our proof is different from that of [2, Theorem 5.2.11], and it
relies on a supplement to the Lefschetz hyperplane section theorem (The-
orem 1.11), which is proved in Theorem 5.1 below.

5.1. A supplement to the Lefschetz hyperplane theorem

In this section, we prove the following result of Lefschetz type:

Theorem 5.1. — Let V ⊂ CPn+1 be a reduced complex projective
hypersurface with s = dimVsing the complex dimension of its singular locus.
(By convention, we set s = −1 if V is nonsingular.) Let H ⊂ CPn+1 be a
generic hyperplane (i.e., transversal to a Whitney stratification of V ), and
denote by VH := V ∩H the corresponding hyperplane section of V . Then

(5.1) Hk (V, VH ;Z) = 0 for k < n and n+ s+ 1 < k < 2n.

Moreover, H2n(V, VH ;Z) ∼= Zr, where r is the number of irreducible com-
ponents of V , and Hn(V, VH ;Z) is (torsion-)free.
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Proof. — Let us first note that the long exact sequence for the cohomol-
ogy of the pair (V, VH) together with (1.13) yield that:

H2n (V, VH ;Z) ∼= H2n(V ;Z) ∼= Zr.

Moreover, we have isomorphisms:

Hk (V, VH ;Z) ∼= Hk
c (V a;Z) ,

where V a := V \ VH . Therefore, the vanishing in (5.1) for k < n is a
consequence of the Artin vanishing theorem (e.g., see [15, Corollary 6.0.4])
for the perverse sheaf ZV a [n] (cf. [6]) on the affine hypersurface V a obtained
from V by removing the hyperplane section VH . Indeed,

Hk
c (V a;Z) = Hk−nc (V a;ZV a [n]) ∼= 0

for all k − n < 0. (Note that vanishing in this range is equivalent to the
classical Lefschetz hyperplane section theorem.)
Since V is reduced, we have that s < n. If n = s+ 1 then n+ s+ 1 = 2n

and there is nothing else to prove in (5.1). So let us now assume that
n > s + 1. For n + s + 1 < k < 2n, we have the following sequence of
isomorphisms:

Hk (V, VH ;Z) ∼= Hk (V ∪H,H;Z)
∼= H2n+2−k

(
CPn+1 \H,CPn+1 \ (V ∪H);Z

)
∼= H2n+1−k

(
CPn+1 \ (V ∪H);Z

)
,

(5.2)

where the first isomorphism follows by excision, the second is an application
of the Poincaré–Alexander–Lefschetz duality, and the third follows from the
cohomology long exact sequence of a pair. Set

U = CPn+1 \ (V ∪H),

and let L = CPn−s be a generic linear subspace (i.e., transversal to both
V and H). Then, by transversality, L ∩ V is a nonsingular hypersurface in
L, transversal to the hyperplane at infinity L∩H in L. Therefore, U ∩L =
L \ (V ∪H) ∩ L has the homotopy type of a wedge

U ∩ L ' S1 ∨ Sn−s ∨ . . . ∨ Sn−s,

e.g., see [7, Corollary 1.2]. Thus, by the Lefschetz hyperplane section the-
orem (applied s+ 1 times), we obtain:

Hi(U ;Z) ∼= Hi(U ∩ L;Z) ∼= 0

for all integers i in the range 1 < i < n − s. Substituting i = 2n + 1 − k
in (5.2), we get that Hk(V, VH ;Z) ∼= 0 for all integers k in the range n +
s+ 1 < k < 2n.
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It remains to show that Hn(V, VH ;Z) ∼= Hn
c (V a;Z) ∼= H0

c(V a;ZV a [n])
is (torsion-)free. This follows as in the proof of Theorem 1.2 since the
affine hypersurface V a has rectified homological depth equal to its complex
dimension n. This completes the proof of the theorem. �

Theorem 5.1 and the Universal Coefficient Theorem now yield the fol-
lowing consequence:

Corollary 5.2. — In the notations of Theorem 5.1 we have that:

(5.3) Hk(V, VH ;Z) = 0 for k < n and n+ s+ 1 < k < 2n.

Moreover, H2n(V, VH ;Z) ∼= Zr, where r is the number of irreducible com-
ponents of V .

5.2. Kato’s theorem for hypersurfaces

The isomorphism (1.2) from the introduction was originally proved by
Kato [4], and it holds more generally for complete intersections. We derive
it here as a consequence of Theorem 5.1.

Theorem 5.3 (Kato). — Let V ⊂ CPn+1 be a reduced degree d com-
plex projective hypersurface with s = dimVsing the complex dimension of
its singular locus. (By convention, we set s = −1 if V is nonsingular.) Then

(5.4) Hk(V ;Z) ∼= Hk
(
CPn+1;Z

)
for all n+ s+ 2 6 k 6 2n.

Moreover, if j : V ↪→ CPn+1 denotes the inclusion, the induced cohomology
homomorphisms

(5.5) jk : Hk
(
CPn+1;Z

)
−→ Hk(V ;Z), n+ s+ 2 6 k 6 2n,

are given by multiplication by d if k is even.

Proof. — The statement of the theorem is valid only if n > s + 2, so
in particular we can assume that V is irreducible and hence H2n(V ;Z) ∼=
Z. Moreover, the fact that j2n is multiplication by d = deg(V ) is true
regardless of the dimension of singular locus, see [2, (5.2.10)]. If n = s+ 2
there is nothing else to prove, so we may assume (without any loss of
generality) that n > s+ 3.
We next proceed by induction on s.
If V is nonsingular (i.e., s = −1), the assertions are well-known for any

n > 1. We include here a proof for completeness. The isomorphism (5.4)
can be obtained in this case from the Lefschetz isomorphism (1.1), its ho-
mology analogue, and Poincaré duality. The statement about jk can also
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be deduced from (1.1) and Poincaré duality, but we include here a dif-
ferent argument inspired by [2]. Consider the isolated singularity at the
origin for the affine cone CV ⊂ Cn+2 on V , and the corresponding link
LV := S2n+3 ∩CV , for S2n+3 a small enough sphere at the origin in Cn+2.
Then LV is a (n − 1)-connected closed oriented manifold of real dimen-
sion 2n+1, so its only possibly nontrivial integral (co)homology appears in
degrees 0, n, n+ 1 and 2n+ 1. The Hopf fibration S1 ↪→ S2n+3 −→ CPn+1

induces by restriction to CV a corresponding Hopf fibration for V , namely
S1 ↪→ LV −→ V . Then for any n+ 1 6 k 6 2n− 2, the cohomology Gysin
sequences for the diagram of fibrations

S2n+3 // CPn+1

LV

OO

// V

OO

yield commutative diagrams (with Z-coefficients):
(5.6)
Hk+1

(
S2n+3

)
−−−−−−→ Hk

(
CPn+1

)
ψ−−−−−−→
∼=

Hk+2
(
CPn+1

)
−−−−−−→ Hk+2

(
S2n+3

)
y jk

y jk+2
y y

Hk+1 (LV ) −−−−−−→ Hk(V )
ψV−−−−−−→
∼=

Hk+2(V ) −−−−−−→ Hk+2 (LV )

Here, if k = 2` is even, the isomorphism ψ is the cup product with the coho-
mology generator a ∈ H2(CPn+1;Z), and similarly, ψV is the cup product
with j2(a). The assertion about jk follows now from (5.6) by decreasing
induction on `, using the fact mentioned at the beginning of the proof that
j2n is given by multiplication by d.

Let us next choose a generic hyperplane H ⊂ CPn+1 (i.e., H is transver-
sal to a Whitney stratification of V ), and set as before VH = V ∩ H. It
then follows from Theorem 5.1 and the cohomology long exact sequence of
the pair (V, VH) that H2n−1(V ;Z) ∼= 0. It therefore remains to prove (5.4)
and the corresponding assertion about jk for k in the range for n+ s+ 2 6
k 6 2n− 2. Let us consider the commuting square

VH
δ−−−−→ H = CPn

γ

y y
V −−−−→

j
CPn+1
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and the induced commutative diagram in cohomology:

(5.7)

Hk
(
CPn+1;Z

) jk−−−−→ Hk(V ;Z)

∼=
y yγk

Hk (CPn;Z) −−−−→
δk

Hk (VH ;Z)

By Theorem 5.1 and the cohomology long exact sequence of the pair (V, VH)
we get that γk is an isomorphism for all integers k in the range n+ s+ 2 6
k 6 2n − 2. Moreover, since VH ⊂ CPn is a degree d reduced projec-
tive hypersurface with a (s − 1)-dimensional singular locus (by transver-
sality), the induction hypothesis yields that Hk(VH ;Z) ∼= Hk(CPn;Z) for
n + s 6 k 6 2n − 2 and that, in the same range and for k even, the
homomorphism δk is given by multiplication by d. The commutativity
of the above diagram (5.7) then yields (5.4) for all integers k satisfying
n+ s+ 2 6 k 6 2n− 2, and the corresponding assertion about the induced
homomorphism jk for k even in the same range. This completes the proof
of the Theorem 5.3. �

Remark 5.4. — Let us remark here that the proof of Kato’s theorem
in [2, Theorem 5.2.11] relies on the Kato–Matsumoto result [5] on the con-
nectivity of the Milnor fiber of the singularity at the origin of the affine
cone CV ⊂ Cn+2.

Remark 5.5. — One can prove the homological version of Theorem 5.3 in
the similar manner, namely by using Corollary 5.2 instead of Theorem 5.1.
This yields the isomorphisms:

(5.8) Hk(V ;Z) ∼= Hk

(
CPn+1;Z

)
for all n+ s+ 2 6 k 6 2n,

and the homomorphisms induced by the inclusion j : V ↪→ CPn+1 in
homology are given in this range (and for k even) by multiplication by
d = deg(V ).

Remark 5.6. — We already noted that Theorem 1.2 yields the isomor-
phism (1.2) of Kato’s theorem (see Corollary 1.5(i)). On the other hand,
Kato’s Theorem 5.3 may be used to obtain a weaker version of Theorem 1.2
by more elementary means. Indeed, in the notations from the Introduction
consider the diagram:

Hk
(
CPn+1; Z

) ∼=−−−−−−→ Hk
(
CPn+1 ×D; Z

)
bk−−−−−−→ Hk (VD; Z) ck−−−−−−→ Hk (Vt; Z)

∼=
y

Hk(V ; Z)
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and let ak := ck ◦ bk. By Theorem 5.3, we have that:
(i) ak is the multiplication by d if k > n even and an isomorphism for

k < n;
(ii) bk is the multiplication by d if n+ s+ 2 6 k 6 2n (k even) and an

isomorphism for k < n.
Therefore, ck is an isomorphism if n+ s+ 2 6 k 6 2n or k < n. The coho-
mology long exact sequence of the pair (VD, Vt) then yields that Hk

ϕ(V ) ∼=
Hk+1(VD, Vt;Z) ∼= 0 for all integers k /∈ [n− 1, n+ s+ 1].
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