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THE MISSING (A, D, r) DIAGRAM

by Alexandre DELYON, Antoine HENROT & Yannick PRIVAT

Abstract. — In this paper we are interested in “optimal” universal geometric
inequalities involving the area, diameter and inradius of convex bodies. The term
“optimal” is to be understood in the following sense: we tackle the issue of mini-
mizing/maximizing the Lebesgue measure of a convex body among all convex sets
of given diameter and inradius. The minimization problem in the two-dimensional
case has been solved in a previous work, by M. Hernandez-Cifre and G. Salinas.
In this article, we provide a generalization to the n-dimensional case based on a
different approach, as well as the complete solving of the maximization problem
in the two-dimensional case. This allows us to completely determine the so-called
2-dimensional Blaschke–Santaló diagram for planar convex bodies with respect to
the three magnitudes area, diameter and inradius in euclidean spaces, denoted
(A, D, r). Such a diagram is used to determine the range of possible values of the
area of convex sets depending on their diameter and inradius. Although this ques-
tion of convex geometry appears to be quite elementary, it had not been answered
until now. This is probably related to the fact that the diagram description uses
unexpected particular convex sets, such as a kind of smoothed nonagon inscribed
in an equilateral triangle.
Résumé. — Dans cet article, nous nous intéressons à des inégalités géométriques

universelles “optimales” mettant en jeu l’aire, le diamètre et l’inradius des corps
convexes. Le terme“optimal” doit être compris dans le sens suivant : nous étudions
la question de la minimisation/maximisation de la mesure de Lebesgue d’un corps
convexe parmi tous les ensembles convexes de diamètre et de rayon intérieur don-
nés. Le problème de minimisation dans le cas bidimensionnel a été résolu dans un
article précédent, par M. Hernandez–Cifre et G. Salinas. Dans cet article, nous
fournissons une généralisation au cas n-dimensionnel basée sur une approche dif-
férente, ainsi que la résolution complète du problème de maximisation dans le cas
bidimensionnel. Cela nous permet de déterminer complètement le diagramme de
Blaschke–Santaló bidimensionnel pour les corps convexes planaires par rapport aux
trois grandeurs aire, diamètre et inradius dans les espaces euclidiens, noté (A, D, r).
Un tel diagramme est utilisé pour déterminer la gamme des valeurs possibles de
l’aire des ensembles convexes en fonction de leur diamètre et de leur inradius. Bien
que cette question de géométrie convexe semble assez élémentaire, elle n’avait pas
trouvé de réponse jusqu’à présent. Ceci est probablement lié au fait que la des-
cription du diagramme utilise des ensembles convexes particuliers inattendus, tels
qu’une sorte de nonagone lissé inscrit dans un triangle équilatéral.

Keywords: shape optimization, diameter, inradius, convex geometry, 2-cap bodies,
Blaschke–Santaló diagram.
2020 Mathematics Subject Classification: 49Q10, 52A40, 28A75, 49K15.
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1. Introduction

Let n ∈ N∗. In the whole article, we will denote by Kn the set of all
convex bodies (i.e. compact convex sets with non-empty interior) in Rn.

In convex geometry, the search for optimal inequalities between the six
standard geometrical quantities which are the surface A (or volume V ), the
perimeter P , the diameter D, the inradius r, the circumradius R and the
(minimal) width(1) w of any convex body, is a very old activity that dates
back to the work of W. Blaschke ([2, 3]) and has been extensively studied
by L. Santaló in [15]. For a list of such inequalities known in 2000, we
refer to the classical review paper [17].The general idea is to consider three
of the aforementioned quantities (q1, q2, q3) and to determine a complete
system of inequalities relating them, in other words a system of inequalities
describing the set {(

q1(K), q2(K), q3(K)
)
, K ∈ Kn

}
.

In general, it is convenient to summarize it into a diagram, usually called
Blaschke–Santaló diagram. It represents the set of possible values of the
triple that can be reached by a convex set (suitably normalized). Among the
20 possible choices of this three geometric quantities, L. Santaló completely
solved in his work the 6 cases (A,P,w), (A,P, r), (A,P,R), (A,D,w),
(P,D,w), (D, r,R) and gave a partial solution to (D,R,w) and (r,R,w).
These two last cases were eventually solved by M. Hernandez Cifre and S.
Segura Gomis in [12]. In a series of papers with collaborators, M. Hernan-
dez Cifre has also been able to prove complete systems of inequalities in
the cases

(A,D,R), (P,D,R) [11], in the cases (A, r,R), (P, r,R) [5] and finally in
the case (D, r, w) [10].

In spite of all these efforts, several Blaschke–Santaló diagrams (or com-
plete systems of inequalities) remain unknown. To the best of our knowl-
edge, this is the case for the diagrams (A,P,D), (A,D, r), (A, r, w), (A,R,
w), (P,D, r), (P, r, w) and (P,R,w). Let us mention that several interest-
ing inequalities for (P,D, r) and (P,R,w) can be found in [13]. Let us also
mention several works dedicated to Blaschke–Santaló diagrams involving
four geometric quantities (see e.g. [6]).
In this paper, we focus on the case (A,D, r) and completely solve it in

the two-dimensional case (n = 2), and partially in the general case n > 3.
More precisely in the case n = 2, we obtain universal inequalities involving

(1) In other words, the smallest distance between any two different parallel supporting
hyperplanes of a convex body.
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the area of a plane convex set, its diameter and inradius, and we plot the
corresponding Blaschke–Santaló diagram:

D =
{

(x, y) ∈ R2, x = 2 r(K)
D(K) , y = π

r2(K)
A(K) , K ∈ K2

}
.

To this aim, we will introduce two families of optimization problems for
the area (or the volume in higher dimension) and then solve them. More
precisely, we will tackle the issue of maximizing and minimizing the area
with prescribed diameter and inradius. It turns out that the minimization
problem has already been solved in the two dimensional case by M. Her-
nandez Cifre and G. Salinas [13]. The optimal set is known to be a two-cap
body defined as the convex hull of a disk of radius r and illustrated on
Figure 1.1. with two points that are symmetric with respect to the center
of the ball and at a distance D. This result has been extended in three
dimensions in [18] but with an additional assumption. In this paper, we
solve this minimization problem in full generality (see Theorem 1.2).

Figure 1.1. The two-cap body in 2D, minimizer of the area among
convex bodies of prescribed inradius and diameter.

Regarding the maximization problem, it is much harder and we are only
able to solve it in the two-dimensional case. At first glance, it seems intuitive
that the optimal shape should be a spherical slice defined as the intersection
of a disk of diameter D with a strip of width 2r, symmetric with respect
to the center of the disk (see Figure 1.2). Surprisingly, this is only true
for “large” values of D/r (more precisely for D > αr with α ' 2.388, see
Theorem 1.5), while for small values of D/r the optimal set is some kind of
nonagon made of 3 segments and 6 arcs of circle inscribed in an equilateral
triangle (see Figure 1.3). For the precise definition of this set, we refer to
Definition 1.4 hereafter. It is likely that this unexpected solution explains
why this elementary shape optimization problem remained unsolved up
to now.

TOME 72 (2022), FASCICULE 5
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The article is organized as follows. Section 1.1 is devoted to introducing
the optimization problems we will deal with and stating the main results.
In Section 1.2, the Blaschke–Santaló diagram D for the triple (A,D, r) is
plotted. The whole Sections 2 and 3 are respectively concerned with the
proofs of Theorems 1.2 and 1.5. Because of the variety and complexity of
optimizers, the proofs appear really difficult and involve several tools of
convex analysis, optimal control and geometry.
Let us end this section by gathering some notations used throughout this

article:
• Hn−1 is the n− 1 dimensional Hausdorff measure.
• if K is a convex set of R2, we call respectively A(K), D(K) and
r(K) (or alternatively A, D and r if there is no ambiguity) the area,
diameter and inradius of K.

• in the more general n-dimensional case, we keep the same notations,
except for the volume of K which will be either denoted V (K)
or |K|.

• x · y is the Euclidean inner product of two vectors x and y in Rn.
• B(O, r) denotes the ball of center O and radius r while S(O, r) is

the sphere (its boundary).
• The boundary of the biggest ball included into a convex set will be
called incircle in dimension 2, insphere in higher dimension.

1.1. Optimization problems and main results

Let us first make the notations precise. Let r > 0, D > 2r be given and
let Knr,D be the set of convex bodies of Rn having as inradius r and as
diameter D, namely

Knr,D = {K ∈ Kn|r(K) = r and D(K) = D} .

We are interested in the following maximization problem

(Pmax) sup
K ∈K2

r,D

|K|

and minimization problem

(Pmin) inf
K ∈Kn

r,D

|K|.

Note that the condition D > 2r guarantees that the set Knr,D is non-
empty. If D = 2r, problems are obvious since only the ball belongs to the
set of constraints Knr,D.

ANNALES DE L’INSTITUT FOURIER
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Let us first observe, since we are working with convex sets, that existence
of solutions for Problems (Pmax) and (Pmin) is almost straightforward.

Proposition 1.1. — Let (r,D) be two given parameters such that
D > 2r. Problems (Pmax) and (Pmin) have a solution.

Proof. — Without loss of generality, by using an easy rescaling argument,
one can deal with sets of constraints with unitary inradius, in other words
r = 1 and with diameter D > 2.

Let us deal with the minimization problem (Pmin), the case of the max-
imization problem (Pmax) being exactly similar. Let us consider a mini-
mizing sequence (Km)m∈N. Since we are working with sets of diameter D,
up to applying a well-chosen translation to each element of the sequence,
on can assume that every convex set Km is included in a (compact) box
B of Rn. Since the set of convex sets included in a given box is known to
be compact for the Hausdorff distance [9], there exists a subsequence (still
denoted (Km)m∈N) converging to a convex set K. To conclude, we will
prove that the objective function (the area) is continuous with respect to
the Hausdorff distance and that the diameter and inradius constraints are
stable for the Hausdorff convergence, in other words that K belongs to the
admissible set K2

r,D. Recall that the volume and diameter functionals are
not continuous in general for the Hausdorff distance. Nevertheless, when
dealing with convex sets, the continuity property becomes true (see [9, 16]).
It remains to show that the inradius constraint is also continuous for

the Hausdorff distance. Let (Km)m∈N be a sequence of convex bodies con-
verging to K for the Hausdorff distance. Let us introduce rm = r(Km),
r = r(K) and xm ∈ Km, such that B(xm, rm) ⊂ Km. Since (rm) (resp.
(xm)) is bounded, there exists subsequences still denoted rm and xm with
a slight abuse of notation, that converges respectively towards r̃ > 0 and
x̃ ∈ Rn. By stability of the Hausdorff convergence for the inclusion (see
e.g. [9, Chapter 2 and Proposition 2.2.17]), we have B(x̃, r̃) ⊂ K. There-
fore, one has r̃ 6 r. Assume by contradiction that r > r̃. Hence, there
exists x ∈ K and α > 0 such that B(x, r̃ + α) ⊂ K. Let us consider
the closed disk B̂ = B(x, (r̃ + α)/2). By stability of the Hausdorff conver-
gence, one has B ⊂ Km whenever m is large enough, which implies that
r(Km) > (1 + α)/2, yielding to a contradiction. The expected continuity
property follows. �

As underlined in the Introduction, Problem (Pmin) has already been
solved in the two-dimensional case in [13]. In what follows, we will generalize
it to the general case Rn, by proving that the two-cap body is the only
solution in any dimension.

TOME 72 (2022), FASCICULE 5
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Theorem 1.2. — The (unique) optimal shape for Problem (Pmin) is
the convex hull of a ball of radius r and two points apart of distance D
and whose middle is the center of the ball. In other words, any convex set
in Rn with volume V , diameter D and inradius r satisfies:

(1.1) V > 2ωn−1r
n

∫ π/2

arccos(2r/D)
sinn tdt+ ωn−1r

n−1

nDn

(
D2 − 4r2)(n+1)/2

where ωn−1 is the volume of the unit ball in dimension n−1. In particular,
any convex set in R2 with area A, diameter D and inradius r satisfies:

(1.2) A > r
√
D2 − 4r2 + r2

(
π − 2 arccos

(
2r
D

))
.

Let us turn to the maximization Problem (Pmax). Let us introduce par-
ticular convex sets of Knr,D that will be shown to be natural candidates to
solve the maximization problem.

Definition 1.3 (The symmetric spherical slice KS(D)). — Let D > 2.
We call symmetric spherical slice and denote by KS(D) the convex set
defined as the intersection of the disc D(O,D/2) with a strip of width 2
centered at O (see Figure 1.2). We have

|KS(D)| =
√
D2 − 4 + D2

2 arcsin
(

2
D

)
.

Definition 1.4 (The smoothed regular nonagon KE(D)). — Let D ∈
]2, 2
√

3[. We denote by KE(D) the convex set enclosed in an equilateral
triangle ∆E of inradius 1 and made of segments and arcs of circle of diam-
eter D in the following way (see Figure 1.3): let ηi be the normal angles to
the sides of ∆E (where one sets for example η1 = −π/2). Let us introduce

τ =
(

3 +
√
D2 − 3

)
/2 and h =

√
D2 − τ2

and the points Ai, Bi and Mi, i = 1, 2, 3 defined through their coordinates
by

Ai =
(

cos ηi + h sin ηi
sin ηi − h cos ηi

)
, Bi =

(
cos ηi − h sin ηi
sin ηi + h cos ηi

)
,

Mi = (1− τ)×
(

cos ηi
sin ηi

)
, i = 1, 2, 3.

The set KE(D) is then obtained as follows:
• the points A1, B1, M3, A2, B2, M1, A3, B3, M2, A1 belong to its

boundary;

ANNALES DE L’INSTITUT FOURIER
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D/2

1

O

Figure 1.2. The symmetric slice KS(D) and its (non unique) incircle.

•
>
B1M3 and>M1A3 are diametrally opposed arcs of the same circle of
diameter D, and similarly for the two other pairs of arcs of circle
>
B2M1 and>M2A1,

>
M2B3 and>M3A2.

• the boundary contains the segment [AiBi], i = 1, 2, 3. Note that the
contact point Ii with the incircle is precisely the middle of [AiBi],

Moreover, setting

t1 = arccos
(√

3
D

)
= arcsin

(
2τ − 3
D

)
,

t2 = arccos
(√

3(τ − 2)
D

)
= arcsin

( τ
D

)
,

one has

|KE(D)| = 3
4D

2(t2 − t1) + 3
√

3
2

(√
D2 − 3− 1

)
= 3

2D
2
(π

3 − t1
)

+ 3
√

3
2

(√
D2 − 3− 1

)
.

(1.3)

In a nutshell, we will prove that for r = 1 the set KE(D) is optimal for
small values of D whereas the solution is the symmetric slice for bigger
values of D. In what follows, the notation rK with r > 0 and K ∈ K2

r,D

TOME 72 (2022), FASCICULE 5
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I1

I2I3

S1

S2 S3
A1 B1

A2

B2A3

B3

M1

M2 M3

Figure 1.3. The set KE(D) and its incircle

denotes the range of K by the homothety centered at the origin of the
considered orthonormal basis, with scale factor r.

Theorem 1.5. — Let r > 0 There exists D? ' 2.3888 such that if
D < rD?, the (unique) solution of Problem (Pmax) is rKE(D/r), and for
D > rD? the unique solution is rKS(D/r). For D = D?r the two solutions
coexist.
In other words, for every plane convex set with area A, diameter D and

inradius r, one has

(1.4) A 6 ψ(D, r)

where

ψ(D, r) = 3
√

3r
2
(√
D2 − 3r2 − r

)
+ 3D2

2

(
π
3 − arccos

(√
3r
D

))
if D 6 rD?

r
√
D2 − 4 + D2

2 arcsin
( 2r
D

)
if D > rD?.

More precisely D? is the unique number in [2, 2
√

3] for which both expres-
sions of ψ(D, r) above are equal.

ANNALES DE L’INSTITUT FOURIER
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1.2. The Blaschke–Santaló Diagram for (A,D, r)

Usually, Blaschke–Santaló diagrams are normalized to fit into the unit
square [0, 1] × [0, 1]. Thus, starting from the straightforward inequalities
D > 2r and A > πr2 (where A, D and r denote respectively the area,
diameter and inradius of any two-dimensional convex set), drives us to
choose the system of coordinates x = 2r/D and y = πr2/A. We then define
the Blaschke–Santaló diagram D as the set of points

D =
{

(x, y) ∈ R2, x = 2 r(K)
D(K) , y = π

r2(K)
A(K) , K ∈ K2

}
.

The point (1, 1) corresponds to the disk, while the point (0, 0) corresponds
to an infinite strip. The solution of the minimization problem (Pmin) pro-
vided in Theorem 1.2 leads to the upper curve of D. Using (1.2), we claim
that the upper curve is the graph of y+, defined by

y+(x) = πx

x(π − 2 arccosx) + 2
√

1− x2
, x ∈ [0, 1].

According to Theorem 1.5, the lower curve is the graph of y−, piecewisely
defined by

y−(x) =


πx

2
√

1− x2 + 2 arcsin x
x

if x 6 2/D?

πx2

2π − 6 arccos(
√

3x
2 ) + 3

√
3x

2
(√

4− 3x2 − x
) if x > 2/D?.

Were already known the inequalities
• 4A 6 πD2 (see [14]) which corresponds to the inequality y > x2 on
the diagram,

• A 6 2rD (see [8]) which is equivalent to y > πx
4 on the diagram.

These two inequalities are shown with a dotted line on the diagram here-
after.
To plot the Blaschke–Santaló diagram, it remains to prove that the whole

zone between the two graphs {(x, y−(x)), x ∈ [0, 1]} and {(x, y+(x)), x ∈
[0, 1]} is filled, meaning that each point between these two graphs corre-
sponds to at least one plane convex domain.

Let us start with the part of the diagram on the left of x 6 x? := 2/D?.
For a given diameter D and inradius r, let K− denote the convex set with
minimal area (the two-cap body) andK+ the convex set with maximal area
(the symmetric slice). We have K− ⊂ K+ and for any t ∈ [0, 1] the convex
setKt : constructed according to the Minkowski sumKt = tK++(1−t)K−
with t ∈ [0, 1], is known to satisfy K− ⊂ Kt ⊂ K+. Therefore, all the

TOME 72 (2022), FASCICULE 5
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sets Kt share the same diameter D, the same inradius r and their area
is increasing from A(K−) to A(K+). This way, it follows that the whole
vertical joining (2r/D, y−(2r/d)) to (2r/D, y+(2r/d)) is included in D as
soon as 2r/D 6 2/D?.

Let us consider the remaining case x > x? := 2/D?. Starting from the
optimal domain K+ which maximizes the area with given D and r (recall
that K+ is the convex set inscribed in the equilateral triangle introduced in
Definition 1.4), we fix one of its diameter, say [A,B] and we shrink continu-
ously K+ to the set KAB defined as the convex hull of the points A,B and
the disk of radius r contained in K+. Secondly, we move the points A,B
continuously to the points A′, B′ at distance D, oppositely located with
respect to the center of the disk (in the sense that the center is the middle
of A′, B′) by keeping the convex hull with the disk at each step. The final
step is therefore the two-cap body K− and we have constructed a continu-
ous path between K+ and K− keeping the diameter and the inradius fixed:
it follows that the whole joining (2r/D, y−(2r/d)) to (2r/D, y+(2r/d)) for
2r/D > 2/D? is included in D. At the end, D has only one connected
component.
The complete Blaschke–Santaló diagram is plotted on Figure 1.4 below.

Remark 1.6. — It is notable that the two-cap body has been showed
to solve a shape optimization problem motivated by the understanding of
branchiopods eggs geometry in biology, and involving packings (see [7]).

2. Proof of Theorem 1.2

Let us first introduce several notations. For a generic convex set K, we
will denote by A and B the points of K realizing the diameter, and respec-
tively by O and r the center and radius of an insphere (the boundary of
the biggest ball included in K). Introduce B = (e1, . . . , en) an orthonormal
basis such that en = −−→AB/AB, so that the coordinates of A and B in B are

A = (0, 0, . . . , 0) and B = (0, 0, . . . , 0, D).

More generally, we will denote by (x1, . . . , xn) the coordinates of a generic
vector X in B.

First, in order to relax the conditions D(K) = D and r(K) = r in
Problem (Pmin), we show that it is equivalent to deal with the conditions
r(K) > r and D(K) > D, which are always saturated at the optimum.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.4. The Blaschke–Santaló diagram D for (A,D, r) (colored
picture). The dotted lines represents the known inequalities 4A 6 πD2

and A 6 2rD.

Lemma 2.1. — Let r > 0 and D > 2r. Let us consider the minimization
problem

(P̂min) inf
K ∈ K̂n

r,D

|K|.

where K̂nr,D = {K ∈ Kn | r(K) > r and D(K) > D}. Then, Prob-
lem (P̂min) has at least a solution K? and moreover, one has D(K?) = D

and r(K?) = r.

Proof. — Existence of K? follows by an immediate adaptation of the
proof of Proposition 1.1 (if the diameter goes to +∞ it is easy to prove
that the volume must blow up).
Regarding the second part of the statement, let us argue by contradiction,

assuming that r(K?) > r. We use the coordinate system associated to
the basis B introduced above, constructed from a diameter [AB] of K?.
Defining λ = r/r(K?) < 1 and applying to K? the linear transformation
whose matrix in B is diag(λ, . . . , λ, 1), we obtain a new convex set K ′ with
diameter D and inradius r. Moreover, its volume is λn−1|K?| < |K?|. this
is in contradiction with the minimality of K?.

TOME 72 (2022), FASCICULE 5
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Similarly, arguing still by contradiction, let us assume that D(K?) > D.
SinceD > 2r = 2r(K?), there exist A′ andB′ in [A,B] such that A′B′ = D.
Given O, the center of an insphere, we consider the set K ′ defined as the
convex hull of A′, B′ and B(O, r). From this construction and by convexity,
K ′ is strictly included in K, D(K ′) > D and r(K ′) > r. Therefore, one has
K ′ ∈ K̂nr,D and |K ′| < |K|, which is in contradiction with the optimality of
K. The conclusion follows. �

It follows in particular from this result that the solutions of Problems
(Pmin) and (P̂min) coincide.

Furthermore, if K is a general convex body in Knr,D, by repeating the ar-
gument used to deal with the diameter constraint in the proof of Lemma 2.1,
one sees that the convex hull of A, B and B(O, r) also belongs to Knr,D and
has a lower measure than the one of K.
Therefore, any minimizer K? is necessarily the convex hull of two points

A and B realizing its diameter, and B(O, r), whose boundary is an insphere
We note KO such a set. The next result proves a symmetry property of K?.

Lemma 2.2. — Let D > 2r > 0 and A,B be two points at distance D
in Rn. For any O ∈ Rn, define the set KO := conv(A,B,B(O, r)). Then
KO ∈ Kn and |KO| > |KO′ | where O′ is the orthogonal projection of O
onto the line containing A and B, with equality if and only if O = O′.

Proof. — Assume that that O 6= O′ we will prove that |KO| > |KO′ |.
Two cases may happen.

(1) The ball B(O, r) does not meet the diameter [AB].
(2) The ball meets the diameter [AB].

In the first case let a = OO′ − r > 0, and assume that e1 =
−−→
OO′/OO′.

Let us consider S(KO) the Steiner symmetrization of KO with respect to
the hyperplane with normal vector e1 and containing A and B. It is a well
known result (see [4]) that S(KO) is still convex with same area as KO.
Furthermore it contains B(O′, R), A and B. So it contains KO′ . Let us
finally remark that KO ∩ (OO′) has length 2r + a, and so S(KO) contains
the point C = (xO, r + a/2, 0, .., 0) which is not in KO′ . By convexity we
deduce that |KO′ | < |KO|.
In the second case, we will distinguish three parts in S(KO), and for each

part we will compare the volume of KO with the one of KO′ . The main
difficulty of what follows consists in proving that the area of the set KO′ is
strictly smaller than that of KO, the corresponding large inequality being
easily obtained with the properties of the symmetrization. Consider the
upper part K+

O of KO, namely KO ∩ {X ∈ Rn | X · en ∈ [xO, D]}. Let ΓB
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be the set of points of B(O, r) whose tangent hyperplane contains B, and
Γ′B be the set of points of S(O′, r) whose tangent hyperplane contains B.
By symmetry, all the points of Γ′B share the same last coordinate x′. Let
x1 and x2 denote respectively the minimal and maximal first coordinate
of points of ΓB . Hence, one has xO + r > x2 > x1 > xO and moreover,
x′ ∈ (x1, x2) (see points M,M1, and M2 in Figure 2.1).

A

B

O

M2

M1

A

B

O ′

M

Figure 2.1. Illustration of the proof of Lemma 2.2. The convex set on
the right has the same inradius and diameter as the one on the left
but a lower volume.

Let us distinguish between three zones of K+
O :

• On K+
O ∩ {X ∈ Rn | X · en ∈ [xO, x1]}. It is easy to see that

B(O′, r) ∩ {X ∈ Rn | X · en ∈ [xO, x1] is exactly the image of

K+
O ∩

{
X ∈ Rn

∣∣X ·en ∈ [xO, x1]
}

= B (O′, r)∩
{
X ∈ Rn

∣∣X ·en ∈ [xO, x1]
}
.

by the translation vector
−−→
O′O. These two sets have therefore the

same measure.
• On K+

O ∩ {x ∈ [x1, x
′]}. For x ∈ R, let Hx be the affine hyperplane

whose equation in B is {X ∈ Rn | X · en = x}, and introduce
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Kx = KO∩Hx. If x ∈ [xO−r, xO+r], let Bx be the n−1 dimensional
ball B(O′, r)∩Hx. By construction, one hasHn−1(Bx) < Hn−1(Kx)
for all x > x1. As a consequence∣∣B(O, r)∩ {X ∈ Rn|X · en ∈ [x1, x

′]}
∣∣ < ∣∣K ∩ {X ∈ Rn|X · en ∈ [x1, x

′]}
∣∣.

• On K+
O ∩ {X ∈ Rn | X · en ∈ [x′, D]}. Define Cx′ as the cone with

vertex B and basis Bx′ = B(O′, r) ∩ Hx′ . Since Cx′ is the convex
hull of Bx′ and B, it follows that |Cx′ | < |K? ∩ {X ∈ Rn | X · en ∈
[x′, D]}|.

It follows that |KO′∩{x ∈ [x0, D]}| < |KO∩{x ∈ [x0, D]}|. Doing the same
construction on the lower part of KO yields at the end that |KO′ | < |KO|.
The expected result follows. �

To sum-up, we know that any minimizerK? is of the typeKO, the convex
hull of A, B and B(O, r), where AB = D and A, B and O are collinear. it
remains to show that the minimum is reached whenever O is in the middle
of the [AB]. This can be done by an explicit computation, but we propose
a more geometrical proof based again on Steiner symmetrization.
Let us argue by contradiction, considering O ∈ [AB]\{I}, where I is the

middle of [AB] and assuming that K? = KO. Let H be the hyperplane
containing I with normal vector −−→AB. Let K ′ be the Steiner symmetrized of
K? with respect toH. We claim thatK ′ ∈ Knr,D. Indeed, by monotonicity of
the Steiner symmetrization with respect to the inclusion and since the range
of B(O, r) by the Steiner symmetrization is B(I, r), one has necessarily
r(K ′) > r(K?). In the same way, observe that the strip

S := {x ∈ Rn|x1 ∈ [−r/2, r/2]}

is invariant by the Steiner symmetrization and contains K?. By using again
the aforementioned monotonicity property, one has also K ′ ⊂ S, and there-
fore, r(K ′) 6 r = r(S). Therefore, one has r(K ′) = r. It is standard that
Steiner symmetrization reduces diameter. Moreover, since [AB] is invariant
by the Steiner symmetrization and since [AB] ⊂ K ′, one has D(K ′) > D

and thus D(K ′) = D.
Since |K ′| = |K?| by property of the Steiner symmetrization, it follows

that K ′ solves Problem (Pmin).
It now remains to investigate the equality case, namely to compare |K ′|

and |KI | where we recall that KI = hull(A,B,B(I, r)). More precisely
we will prove that K ′ has a larger volume than KI . In the basis B, let
x∗1 ∈ (0, r) be such that KI ∩ {x1 > x?1} = B(I, r) ∩ {x1 > x?1} and
B(O, r) ∩ {x1 > x?1} ( KO ∩ {x1 > x?1}. The existence of x?1 follows
from the dissymmetry of KO with respect to H. Using one more time the
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monotonicity property of the Steiner symmetrization with respect to the
inclusion, one has

B(I, r) ∩ {x1 > x
?
1} ( K ′ ∩ {x1 > x

?
1} ,

which implies that the volume of K ′ is strictly larger than the one of
hull(A,B,B(I, r)). We have thus reached a contradiction and it follows
that one has necessarily O = I, meaning that K? = hull(A,B,B(I, r)),
which concludes the proof.

3. Proof of Theorem 1.5

In the whole proof, for a given set K ∈ K2, we will denote by CK an
incircle of K. It is standard that K is tangent to CK at two points at least.

Definition 3.1. — Let K ∈ K2. A point x ∈ K is said to be diametral
if there exists y ∈ K such that ‖x− y‖ = D(K).

Obviously, if x is diametral, then it belongs necessarily to ∂K. Denoting
by y its counterpart, if the boundary of K is C 1 at x, the outward unit
normal vector at x on ∂K is n(x) = (x− y)/‖x− y‖.
In what follows, we will consider a solutionK? to Problem (Pmax), whose

existence is provided by Proposition 1.1.
Since the area is maximized, it seems natural to look for the largest

possible set and thus to saturate the diameter constraint at each point.
Nevertheless, the inradius constraint tends to stick the convex body onto
the circle. M. Belloni and E. Oudet in [1] worked on the minimal gap
between the first eigenvalue of the Laplacian λ2 and the first eigenvalue of
the ∞−Laplacian λ∞. Since λ∞(Ω) = 1/r(Ω) and λ2 is decreasing for the
inclusion, some of their results were obtained by constructing bigger sets
while maintaining the inradius and the diameter. The following lemma is
an example.

Lemma 3.2 ([1]). — Let x ∈ ∂K?. Then, one has the following alterna-
tive:

(1) x is non diametral and belongs to the interior of a segment of ∂K?.
(2) x is diametral and is not in the interior of a segment of ∂K?.
(3) x is in the intersection of two segments of ∂K?.

To locate the segments of ∂K? and provide an estimate of their numbers,
we need the notion of contact point.
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Definition 3.3. — A contact point of ∂K? is a point x at the intersec-
tion of ∂K? and an incircle CK? of K?. Similarly, a contact line is a support
line of K? passing by a contact point. Note that it is also a support line
of CK? .

Observe that the relative interior of a segment of ∂K? is necessarily made
of non diametral points.
Note that the incircle is a priori not unique. Let us consider all the

possibilities:
(Case 1) the incircle is not unique. In that case the convex K? is necessarily

included in a strip of width 2, and every incircle touches both lines
of the strip.
Indeed, let C1 and C2 be two incircle and O1 and O2 their center.

We consider a basis in which the coordinates of O1 are (−a, 0) and
those of O2 are (a, 0). Let Ni (resp Si) be the north (resp. south)
pole of Ci. By convexity the rectangle N1N2S2S1 is included in K?.
Now suppose thatK? is not included in the strip formed by the lines
(N1N2) and (S1S2). Then there exist a point M(x, y) ∈ K? with
−a 6 x 6 a and y > 1. By construction, the pentagon N1MN2S2S1
is convex, included in K?, and its inradius is larger than 1 (see
Figure 3.1) which contradicts the inradius constraint.

N2N1

S1 S2

M

C1 C2

Figure 3.1. The middle circle is larger than the others, so the inradius
is larger than 1.

(Case 1bis) the incircle is unique, but still inscribed between two strips. In this
case it is even included in a square, which is covered by the Case 1.

(Case 2) the incircle is unique, and there are exactly three contact lines,
forming a triangle containing both the circle and the convex.
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Figure 3.2. A convex set with three contact points

We sum-up these information in the following lemma.

Lemma 3.4. — Any segment of ∂K? contains a contact point. Further-
more, ∂K? contains at most three segments.

Proof. — If a segment of ∂K? does not touch an incircle, it would be
possible to inflate this part without changing the inradius nor violating
the diameter constraint. The upper bound on the number of segments is a
direct consequence of the previous analysis: ifK has more than the minimal
numbers of segments that are useful to prescribe the incircle, then some are
useless and can be inflated without consequences on the constraints. �

In what follows, we will work separately on the Case 1 and Case 2.
Section 3.1 deals with the first case, whereas Section 3.2 is devoted to the
investigation of the second case.
Thanks to an easy renormalization argument, we will assume without

loss of generality that the inradius of the considered convex sets is equal to
1 (r = 1).

diam(K) = D but |K| > |K?|, leading to a contradiction with the opti-
mality of K?.

3.1. First case: K? is included in a strip

Let CK? be an incircle ofK?. To investigate the case whereK? is included
in a strip, we consider a basis B whose origin O is the center of CK?

and such that the equations of the two contact points support lines are
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x = 1 and x = −1 (see Figure 3.3). Let us denote by S, the closed strip
{(x, y) ∈ R2 | |x| 6 1}.
We investigate in this section a constrained version of Problem (Pmax),

namely

(P ′) sup
K ∈K2

r,D

K⊂S

|K|.

Proposition 3.5. — The symmetric slice B(O,D/2) ∩ S, where B(O,
D/2) denotes the open ball centered at O with radius D/2, is the unique
solution of Problem (P ′). The optimal area is

max
K ∈K2

r,D

K⊂S

|K| =
√
D2 − 4 + D2

2 arcsin
(

2
D

)
.

The set K? is plotted on Figure 3.3 right. The end of this section is

K
K?

Figure 3.3. Left: a convex set K whose (non unique) incircle has two
parallel contact lines. Right: the optimal domain K? among convex
sets included in a slice.

devoted to the proof of Proposition 3.5. It is straightforward that, if a
convex set K belongs to K2

r,D and is included in S, then there exist two
concave nonnegative functions f and g on [−1, 1] such that

(3.1) K =
{

(x, y) ∈ R2, x ∈ [−1, 1],−g(x) 6 y 6 f(x)
}
.
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With these notations, the optimal set K? introduced in Proposition 3.5
corresponds to the choices

f = yD, g = yD where yD(x) =
√
D2/4− x2.

The proof consists of two steps: first, we provide necessary optimality
conditions on an optimal pair (f, g) and show in particular that the afore-
mentioned symmetric slice is a solution. Then, we investigate uniqueness
properties of the optimum.

Lemma 3.6. — Let K? be a solution of Problem (P ′). Then, K? is of
the form (3.1) and satisfies

(3.2) f(x) + g(x) + f(−x) + g(−x) = 4yD(x), x ∈ [−1, 1].

Furthermore, the convex set K̃ of the form (3.1) with f = g = yD solves
Problem (P ′).

Proof. — We already know that K? writes as (3.1) for some positive
concave functions f and g.

First, by Lemma 3.2, every point of the free boundary part ∂K?
free :=

∂K?∩{(x, y) ∈ R2 | x ∈ (−1, 1)} is necessarily diametral. As a consequence,
the functions f and g are strictly concave. Indeed, observe that a segment
of the boundary of a convex set contains at most two diametral points.
From the parametrization of K?, we get

(3.3)

D2 = max
(x,x′)∈ [−1,1]2

(x− x′)2 +
(
f(x) + g(x′)

)2 and |K?| =
∫ 1

−1
(f + g).

We are going to prove the result by performing two consecutive Steiner
symmetrizations, the first in the horizontal axis, the second in the vertical
axis. Note that those two particular symmetrizations do not change the
inradius.

Let us introduce the set K̂ of the form (3.1) where f and g are both
replaced by (f + g)/2. In other words, K̂ is the Steiner symmetrized of K?

with respect to the horizontal axis. Hence, one gets easily that |K?| = |K̂|,
and D(K̂) 6 D(K?). Moreover, if D(K̂) < D(K?), then K̂ is a convex set
having the same area as K?, but a strictly lower diameter. Mimicking the
argument used in the proof of Lemma 2.1 allows us to obtain a convex set
in K2

1D with a larger area than K?, which is impossible. It follows that one
has necessarily D(K̂) = D(K?).
Let us set f? = (f + g)/2 and let x ∈ [−1, 1].
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Let Kf̃ be a set of the form (3.1) where f and g are both replaced by f̃
defined by

f̃(x) = f?(x) + f?(−x)
2 , x ∈ [−1, 1].

In other words, Kf̃ corresponds to the Steiner symmetrization of K̂ with
respect to the vertical axis. Then, using one more time standard prop-
erties of the Steiner symmetrization, one gets that |K?| = |Kf̃ | and for
the same reasons as before, we have D(K?) = D(Kf̃ ). Therefore, we have
constructed a solution with two axes of symmetry.
It follows that Kf̃ solves Problem (P ′). Furthermore, using that f̃ is even

and that each point (x, f̃(x)) is diametral, associated to (−x,−f̃(x)), we
finally infer that x2 + f̃(x)2 = D2/4 for all x ∈ [−1, 1]. Noting that

f̃(x) = 1
4
(
f(x) + g(x) + f(−x) + g(−x)

)
,

every solution K? is of the form (3.1) satisfies (3.2). Proposition 3.5 thus
follows. �

It remains to investigate the uniqueness of the optimal set, which is the
purpose of the next result.

Lemma 3.7. — Let K? be a solution of Problem (P ′). Then, K? is of
the form (3.1), and for every parametrization (f, g), there exists ε > 0 such
that:

f(x) = yD(x) + ε, g(x) = yD(x)− ε, x ∈ [−1, 1].

Proof. — Let (f, g) be a pair of concave positive functions solving Prob-
lem (P ′). In particular, (f, g) satisfies (3.2). It follows from the proof of
Lemma 3.6 that there exists a continuous odd function ϕo on [−1, 1] such
that

f(x) + g(x)
2 = yD(x) + ϕo(x).

Let K be the convex set defined by (3.1) where f and g are both replaced
by (f + g)/2. Recall that, according to the proof of Lemma 3.6, K is also
a solution of Problem (P ′). Let us focus on the diameter constraint. Since
K solves Problem (P ′), then one has necessarily

D2 = max
(x,x′)∈ [−1,1]2

(x− x′)2 +
(
yD(x) + yD(x′) + ϕo(x) + ϕo(x′)

)2

> max
x∈ [−1,1]

(2x)2 +
(
yD(x) + yD(−x)

)2 = D2.
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In particular, since every point of ∂K ∩ {(x, y) ∈ R2 | x ∈ (−1, 1)} is
diametral, the function

[−1, 1] 3 x′ 7→ (x− x′)2 +
(
yD(x) + yD(x′) + ϕo(x) + ϕo(x′)

)2

is maximal at x′ = −x. Note that the function yD + ϕo is (concave and
therefore) differentiable almost everywhere in (−1, 1), and therefore so is
ϕo. Let us consider x ∈ [−1, 1] at which ϕo is differentiable. One has

d

dx′

(
(x− x′)2 +

(
yD(x) + yD(x′) + ϕo(x) + ϕo(x′)

)2
)∣∣∣∣
x′=−x

= 0

which reads −4x + 4yD(x)(−y′D(x) + ϕ′o(x)) = 0, and after calculation,
implies that ϕ′o(x) = 0. We infer that ϕ′o(x) = 0 for a.e. x ∈ (−1, 1).
Since ϕo is absolutely continuous (and even belongs to W 1,∞(−1, 1)), we
infer that ϕo is constant on (−1, 1), equal to ϕo(0) = 0. It follows that
(f + g)/2 = yD and we infer that

f(x) = yD(x) + ϕe(x) and g(x) = yD(x)− ϕe(x),

where ϕe denotes a continuous function on [−1, 1]. One has for every x ∈
[−1, 1],

D2 = max
(x,x′)∈ [−1,1]2

(x− x′)2 +
(
yD(x) + yD(x′) + ϕe(x)− ϕe(x′)

)2

> D2 + 4yD(x)
(
ϕe(x)− ϕe(−x)

)
+
(
ϕe(x)− ϕe(−x)

)2
.

and therefore, 4yD(x) (ϕe(x)− ϕe(−x)) + (ϕe(x)− ϕe(−x))2 6 0 so that

−4yD(x) 6 ϕe(x)− ϕe(−x) 6 0.

Inverting the roles played by x and −x in this relation yields that ϕe(x)−
ϕe(−x) = 0 and ϕe is therefore even.
By using the same reasoning as above, one shows that for almost every x

in (−1, 1), the derivative of the diameter functional vanishes at x′ = −x, so
that one has ϕ′e(x) = 0 a.e. x in (−1, 1). Since ϕe belongs to W 1,∞(−1, 1)
and is in particular absolutely continuous, we infer that ϕe is constant on
[−1, 1]. The expected conclusion follows noticing that the converse sense
is immediate: every pair (f, g) chosen as in the statement of Lemma 3.7
obviously drives to a solution of Problem (P ′). �

Remark 3.8 (Geometric interpretation of the proof). — The proof of
Lemma 3.6 can be understood geometrically: indeed, from a solution, we
performed two Steiner symmetrizations: one along the strip, and the other
in an orthogonal direction. From the standard properties of Steiner sym-
metrization (we proved some of them for the sake of completeness) and
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because of the specific choice of the symmetrization axes, the inradius re-
mains unchanged in this particular case, as well as the area, but the di-
ameter decreases. The difficulty here lies in proving that the diameter is
strictly decreasing, whence the uniqueness.

3.2. Second case: K∗ is included in a triangle

In that case, the incircle is unique (see Figure 3.2). We assume without
loss of generality that it is the unit circle. There are exactly three contact
lines (see Definition 3.3), forming a triangle called T (K).

Definition 3.9. — We will call “free boundary γ of ∂K?” the union
of all non flat parts of ∂K? and “free zone” every connected component of
the free boundary. D is the full disk.

Recall that according to Lemma 3.4, there are at most three free zones
located between the contact segments.

A crucial tool for the analysis is the so-called support function of the
convex body K denoted hK . Recall that hK is defined for every θ ∈ T by

(3.4) hK(θ) = sup
y∈K

y · uθ

where uθ = (cos(θ), sin(θ), and T is the torus R/[0, 2π). We will systemati-
cally choose the center of the circle as the origin. angle θ: The straight line
Dθ whose cartesian equation is x cos(θ) + y sin(θ) = hK(θ) is precisely the
support line of the convex body K in the direction uθ (in what follows, we
will also name this direction θ with a slight abuse of language).

Let us introduce the sets Fθ := Dθ ∩K. Note that Fθ is either a segment
or a single point. In the latter case, we will denote this point by M(θ).

Let us finally recall some basic facts on the support function. For a
complete survey about this notion, we refer for instance to [16]. When
there will be no ambiguity, we will sometimes write h instead of hK .

The support function h associated to a convex body K is periodic, be-
longs to H1(T) and is C1 on the strictly convex parts of K. Furthermore,
the diameter D(K), area |K| and radius of curvature RK are respectively
given in terms of h by

D(K) = sup
(0,2π)

(
h(θ) + h(θ + π)

)
,

|K| = 1
2

∫
(0,2π)

(
h2 − h′2

)
, RK = h+ h′′

(3.5)
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where h′′ has to be understood in the sense of distributions.
Let T be the set of triangles with unit inradius enclosing K. In this

section, we will investigate the optimization problem

(3.6) sup
T ∈T

sup
K ∈K2

r,D

K⊂T

|K|,

which can be recast in terms of support functions as

(Ph) sup
h∈H

1
2

∫
(0,2π)

(
h2 − h′2

)
with

H =
{
h ∈ H1(0, 2π), h+ h′′ > 0

in D′(T), ∃ T ∈ T
∣∣∣∣1 6 h 6 hT , sup

θ∈T
h(θ) + h(θ + π) 6 D

}
,

where hT is its support function of T . Note that h+h′′ is a positive Radon
measure. It is essential to ensure that h is the support function of a convex
set. The condition 1 6 h 6 hT simply means that K, whose support
function is h, contains the disk B(0, 1) and is included in the triangle T .
Before stating the main result of this section, let us introduce another

particular smoothed nonagon, denoted KC(D).

Definition 3.10 (The smoothed nonagonKC(D)). — LetD ∈]2, 2
√

3[.
We denote by KC(D) the convex set enclosed in an isosceles triangle ∆I

of inradius 1 and made of segments and arcs of circle of diameter D in the
following way (see Figure 3.4): the normal angles to the sides of ∆I are

η1 = −π/2, η2 = arcsin(τ/2− 1) and η3 = π − η2,

where τ is the unique root in [2, 3] of the equation

−τ3 +
(
D2/2 + 5

)
τ2 −

(
2D2 + 4

)
τ +D2 = 0.

Let us introduce the points Ai, Bi, i = 1, 2, 3 and M3 defined through
their coordinates by

Ai =
(

cos ηi + hi sin ηi
sin ηi − hi cos ηi

)
, Bi =

(
cos ηi − hi sin ηi
sin ηi + hi cos ηi

)
,

i = 1, 2, 3, M1 = (1− τ)×
(

cos(η1)
sin(η1)

)
.

with h1 =
√
D2 − τ2 and h2 = h3 = h1

4 (τ − 2). The set KC(D) is then
obtained as follows:
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• the points A1, B1, A2, B2, M1, A3, B3 belong to its boundary;
•
>
B2M1 (resp. >M1A3) and >A1B3 (resp. >B1A2) are diametrally op-
posed arcs of the same circle of diameter D.

• the boundary contains the segments [AiBi], i = 1, 2, 3. Note that
the contact point Ii with the incircle is precisely the middle of
[AiBi],

Moreover, setting

t1 = arcsin
(

2 (sin η1 + h1 cos η1)− τ + 2
D

)
and t2 = arcsin

( τ
D

)
,

we have the formula

(3.7) |KC(D)| = τ

τ − 2
√
D2 − τ2 + D2

2 (t2 − t1) .

I1

I2I3

S1

S2 S3
A1 B1

A2

B2A3

B3

M1

Figure 3.4. The set KC(D) and its incircle.

Proposition 3.11. — Let D > 2 be given and assume that Prob-
lem (3.6) has a solution K?. Then, K? is either the set KC(D) or KE(D).

The end of this section is devoted to proving Proposition 3.11. Hence,
let us assume that Problem (3.6) has a solution denoted K (instead of K?)
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for the sake of simplicity. Let T be the triangle of inradius 1 containing K.
Let Dηi

be the three tangent lines to the unit circle defining T , where ηi is
the angle between the horizontal axis and the normal vector to each side
of T . We assume that η1 < η2 < η3 and we introduce the contact points Ii
between the lineDηi and the unit circle. We also define ϕ1, ϕ2, ϕ3 as the
demi angles at the center (see Figure 3.5). The problem being rotationally
invariant, we will impose without loss of generality that η1 = −π/2, and
ϕ1 6 ϕ2 6 ϕ3. Identifying the index i with the index i+ 3, one has

ϕi = ηi+2 − ηi+1

2 , i = 1, 2, 3.

The set K ∩ Dηi
is a segment (possibly reduced to the point Ii) denoted

[Ai, Bi]. The free boundary γ being strictly convex according to Lemma 3.4,
we parametrize it with the help of a function θ 7→ M(θ) defined on Iγ=
(0, 2π)\{ηi}i=1,2,3, where θ is the angle between the normal to the support
line of the pointM(θ) and the abscissa axis. A pointM of the free boundary
may have several support lines. More precisely, two cases may arise: either
a point has a unique supporting line or a point has at least two supporting
lines.
Each pointM of the second kind is a kind of vertex of K called “angular

point” of ∂K. Moreover, considering the smallest and the largest angle
made by its supporting lines, one can associate toM a closed interval JM ⊂
Iγ . Notice that two consecutive verticesM andN cannot admit overlapping
intervals JM and JN since it would mean that γ contains a violating the
property that every point in γ saturates the diameter constraint. It also
implies that angular points of γ are isolated, whereas points of ∂K of the
first kind are represented by a unique angle.
This remark rewrites in the following way in terms of the support function

h of K:
(i) if M(θ) has a unique supporting line, then θ + π ∈ Iγ and h(θ) +

h(θ + π) = D;
(ii) in the converse case, there exists θ ∈ JM such that θ + π ∈ Iγ and

h(θ) + h(θ + π) = D.
Regarding the segments [Ai, Bi]i=1,2,3, one has

Ai = M
(
η−i
)

= lim
θ→ ηi, θ < ηi

M(θ) and Bi = M
(
η+
i

)
= lim
θ→ ηi, θ > ηi

M(θ).

For i = 1, 2, 3, let αi and βi be such that M(θ) = Ai for all θ ∈ [ηi−αi, ηi)
and M(θ) = Bi for all θ ∈ (ηi, ηi + βi]. Since angular points are isolated,
the free boundary γ near Ai and Bi is made of points of ∂K having a
unique supporting line. An easy continuity argument shows that Ai and
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M1

η1 + π

M2

M3

O

I1
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S1

S2 S3

η1

η2

η3

A1 B1

A2

B2

A3

B3

ϕ3

ϕ1

ϕ2

Figure 3.5. Example of a convex K and the triangle T (K).

Bi saturate the diameter constraint. Let us make their diametral point(s)
precise. Recall that we introduced Fθ as Dθ ∩ K and let us characterize
Fηi+π. Since ηi+1− ηi < π, ηi +π cannot belong to {ηj}j=1,2,3, then Fηi+π
is a point denoted M(ηi + π) or more simply Mi. Considering for instance
the point M1, we have to distinguish between three cases:

• if η1 + π ∈ (η2 + β2, η3 − α3), meaning that M1 lies in the interior
of the free boundary, then M1 is diametral with both A1 and B1.

• if η1 + π ∈ (η2, η2 + β2), then M1 = B2 and one easily infers that
M1A1 = D.

• if η1 + π ∈ (η3 − α3, η3), then M1 = A3 and it follows that M1B1
= D.

3.2.1. Geometrical description of optimizers

Lemma 3.12. — Let i ∈ [[1, 3]]. The contact points Ii between the line
Dηi

and the incircle is the middle of the segment [Ai, Bi].

Proof. — To prove this, we will use a small perturbation of an angle
ηi and get optimality conditions. Without loss of generality, consider I1
and introduce the lengths lA = I1A1 and lB = I1B1. Let us consider the
following perturbation: we replace η1 by η1 + ε for ε > 0 small, and denote
by Tε the triangle whose incircle is B(0, 1), and whose angles are η1 + ε,
η2, and η3. We denote by Lη1+ε the corresponding tangent line of the unit
disk. We now define Jε as the intersection point between Dη1 and Lη1+ε.
This point satisfies Jε = I1 + ε

2 (− sin η1, cos η1). We build a new convex set
included in the triangle Tε by slightly modifying the previous one : replace
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A1 and B1 by Aε and Bε located on Lη1+ε in such a way that the diameter
constraint is still fulfilled (see Figure 3.6). We explicit the construction of
Aε below as the intersection of Lη1+ε with a well chosen line issued from
A1, while Bε is the intersection of Lη1+ε with the boundary of K. We have
to make the balance between

• the area we gain: this is triangle T (A1JεAε)
• the area we lose: this is the intersection of K with the half-space
{x · uη1+ε > 1}. At first order, this area is the same than the area
of the triangle T (B1JεBε)

Iε

I

Jε

A

B

Bε

Aε

Figure 3.6. Gain of area (strips) vs loss of area (dots)

The two triangles share the same angle ε, therefore the balance of area is

δA := 1
2 sin ε (JεA1.JεAε − JεB1.JεBε)

Now we can explicitly compute these lengths and get the expansions

JεA1 = lA +O(ε), JεB1 = lB +O(ε),

Let us introduce the angle θεA = ̂JεA1Aε. Using elementary trigonometry,
we can rewrite the length JεAε as

JεAε = A1Jε
cos ε+ sin ε cot θεA

= lA
(
1− ε cot θεA + o(ε)

)
.

Now let us prove that we can choose an angle θεA which does not go to
zero while keeping the diameter constraint satisfied. Suppose η1 ∈ [0, π/2].
Recall that A1 is represented by an interval of angles IA1 = [η1 − α, η1].
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Let DA1 be the set of points that are diametrical to A1 and ΘA1 ⊂ IA1 +π

the set of angles representing elements of DA1 :

ΘA1 =
{
θ ∈ Iγ ,M(θ) ∈ DA1 and h(θ) + h(θ + π) = D

}
⊂ [0, 2π).

We claim that there exists γ > 0 such that for all θ′ ∈ [η1 +π−γ, η1 +π],
θ′ /∈ ΘA. Otherwise the diameter constraint on I1 would be broken. Let
ζ = max(ΘA1) < π + η1. Choosing θεA = (π + η1 − ζ)/2 fulfills the desired
condition for ε small enough and provides a gain of area as l2Aε/2 + o(ε)).
Neighborhood of A on this flat portion does not saturate the diameter

constraint. one can prove that at the first order in ε, it consists in taking
the line with vector ζ + π. Take Aε as the intersection of this line with
the tangent of the unit circle with angle η1 + ε. The desired angle is θ =
η1 − ζ − π = O(1). This construction is such that K ∪ T (AJεAε) still
fulfills the diameter constraint as well as the convexity constraint. since
δ − π > η1 − α
On the side of B there is no problem with the diameter constraint, thus

we simply observe that JεBε = lB + O(ε) by construction. Therefore we
get a loss of area as l2Bε/2 + o(ε)).
Thus we infer that the difference of areas is equal to δA = ε

2 (l2A−l2B)+o(ε)
which has to be non-positive, which leads to lA 6 lB at the optimum. We
repeat the argument with ε < 0 to get lB 6 lA, whence the equality. �

Now we are going to prove that the free boundary is made of arcs of
circle of radius D/2 by working on the radius of curvature R. It consists
of three steps. We show first that this radius can only take the values 0,
D/2 or D on the free boundary. Then we prove that the set {R = D} is
necessarily of empty interior to finally deduce that the radius of curvature
on non angular points can only be D/2.

Lemma 3.13. — On the free boundary γ of K, the radius of curvature
is almost everywhere equal to either 0, D/2 or D.

Proof. — According to the above discussion, we will distinguish between
points of the free boundary γ having a unique support line, and angular
points. Since angular points are isolated on ∂K, it means that points of
γ having a unique support line define an open subset γ1 of γ or equiv-
alently that their angle parametrization define an open subset I1 of Iγ=
(0, 2π)\{ηi}i=1,2,3. Any point of the complement set of γ1 is an angular
point, and therefore its radius of curvature is zero. Thus, it remains to look
at points of γ1.
Recall that, since K is a convex set, its radius of curvature defines a

nonnegative Radon measure. For any θ ∈ I1 one has h(θ) + h(θ + π) = D.
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Differentiating twice this equality and since R = h + h′′, one gets that
R + τπR = D in the sense of measures in I1, where τπ is the translation
operator given by τπ(f) = f(π + ·) for every continuous function f . It
follows that 0 6 R(θ) 6 D for a.e. θ in T and thus, R is a bounded
function, allowing us to write

(3.8) ∀ θ ∈ I1, R(θ) +R(θ + π) = D.

Let us now prove that for almost every θ ∈ I1, one has R(θ) ∈ {0, D/2,
D}. Let us assume that the set ω = {θ ∈ I1 | 0 < R(θ) < D} has a
positive measure, otherwise it means that R = 0 or R = D a.e. and we
are done. Let us first show that R is necessarily constant on ω. Let us
argue by contradiction: assume there exist two subsets ω1 and ω2 such that
|ω1| = |ω2| > 0 and

(3.9)
∫
ω1

R(θ) dθ >
∫
ω2

R(θ) dθ.

Let us consider a regularization ξ of the function v defined by

v(θ) =
{

+1 if θ ∈ ω1,−1 if θ ∈ ω1 + π

−1 if θ ∈ ω2, 1 if θ ∈ ω2 + π

and we will deal with the perturbation h + εv of the support function h

for ε > 0 small. In what follows, we should deal with the regularization
ξ, work on a subset of ω on which 0 < η 6 h(θ), and finally pass to the
limit η ↘ 0. To avoid technicalities, we will directly write the asymptotic
of the derivative of the area under this perturbation, with a slight abuse of
notation.

Since the area of the domain is

|K| = J(h) where J(h) = 1
2

∫ 2π

0

(
h2(θ)− h′2(θ)

)
dθ,

the first derivative of the area under the perturbation above reads as〈
dJ(h), ξ

〉
=
∫
ω1 ∪ω2 ∪(ω1+π)∪(ω2+π)

hξ − h′ξ′

=
∫
ω1 ∪ω2 ∪ (ω1+π)∪ (ω2+π)

(h+ h′′) ξ.

By definition of ξ, one gets〈
dJ(h), ξ

〉
=
∫
ω1

R−
∫
ω2

R−
∫
ω1+π

R+
∫
ω2+π

R
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and according to (3.8), it comes〈
dJ(h), ξ

〉
=
∫
ω1

R−
∫
ω2

R−
∫
ω1

(D −R) +
∫
ω2

(D −R)

= 2
(∫

ω1

R−
∫
ω2

R

)
> 0

leading to a contradiction. It follows that R is necessarily constant on ω.
Let us moreover show that the constant value of R is precisely D/2. We
proceed similarly: let us choose a perturbation ξ equal to 1 on a subset ω1
and −1 on ω1 + π. The same computation as above leads to〈

dJ(h), ξ
〉

=
∫
ω1

R−
∫
ω1

(D −R) =
∫
ω1

(2R−D),

and we conclude since this derivative must be zero (indeed, if this derivative
would not vanish, either the admissible perturbation ξ or −ξ would make
the area increase). We conclude that necessarily R ∈ {0, D/2, D} on I1.
{R = D} are unions of intervals and to locate them. For that purpose we

will now study the perturbation on R = h+ h′′. By definition of R, it is a
radon measure such that

∫
(0,2π) cos dR =

∫
(0,2π) sin dR = 0. Now Suppose

that R is optimal. Let J ⊂ I1 and consider a perturbation ξ on J ∪ J + π

such that
C1 and h′′ ∈ L∞ with h + h′′ = R. Differentiating twice and adding

yields ψ + ψ′′ = R − D/2. suppose for example that JD = J ∩ SD has
nonempty interior. Then ψ > 0 on JD and ψ+ψ′′ = D. Let ψ evolve freely
along the differential equation until ψ vanishes and goes below 0. Then psi
becomes negative and is ruled by the differential equation ψ + ψ′′ = 0 �

From this lemma we deduce that if the boundary ∂K contains an arc of
circle of radius D/2, it also contains its antipodal part (in other words the
set of points of ∂K diametrically opposed to those of the arc of circle), and
if it contains an arc of circle of radius D, it also contains its center. Let us
show that this second case cannot occur, following an idea in [1].

Lemma 3.14. — The two assertions are incompatible:
• the free boundary γ contains an arc of circle of radius D;
• its center belongs to ∂K.

Proof. — Let us argue by contradiction. Let us denote by C the circle
of radius D one arc of which belongs to γ and by P ∈ ∂K its center. Note
that since C saturates the diameter constraint, according to Lemma 3.2, it
belongs to the free boundary γ or lies in the intersection of two segments.
In this last case K has only two free zones and C is an edge of T . Anyway
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C is not in the neighborhood of any contact point. By choosing adequately
an orthonormal basis, assume that the coordinates of P are (−D/2, 0) and
the coordinate of the center of the arc, denoted by Q, are (D/2, 0). Now
for ε > 0 consider Qε whose coordinates are (D/2 + ε, 0) and define

Kε = hull (K ∪Qε) ∩B (Qε, D) .

where B(Qε, D) is the disc of center Qε and radius D.

Qε

B1

B2

x θε

ε

Figure 3.7. Left: gain of area (red crosshatch) vs loss of area (blue
horizontal lines). Right: calculus of the gain.

Since the free boundary is modified locally, far from the contact point,
the inradius remains unchanged and the diameter also by construction.
This transformation drives to a gain of area on the right part, and a loss
on the left part (see Figure 3.7). Let us show that the gain is O(ε

√
ε) and

the loss is O(ε2).
• gain: using the notations on the right part of Figure 3.7, one deter-
mine a lower bound of the area gain by computing the area of the
triangle B1QεB2. Here x = ε/ tan(θε) with cos(θε) = D/(D + ε),
and therefore, x = O(

√
ε), and thus, a lower bound on the area gain

is O(ε
√
ε).

• loss: note that if the radius of curvature is D on an open interval,
thus it is equal to 0 on its antipodal interval. It means that the
center of the corresponding arc of circle is an angular point, and
hence it admits two different tangent lines. By convexity, the loss
area is less than the one of the triangle formed by the point P , and
the two intersection points of the tangent with the circle C(Qε, D).
Now the angle of the tangents does not depend on ε, and the same
kind of calculus shows that the area loss is O(ε2).
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Hence, choosing ε > 0 small enough guarantees that |Kε| > |K| and we
have thus reached a contradiction. �

Let us complete the description of the free boundary with the help of
two lemmas.

Lemma 3.15. — The free boundary γ of K is the union of arc of circles
of diameter D (i.e. the radius of curvature is equal almost everywhere to
D/2 on γ), that are mutually antipodal.

Proof. — Either 0, D/2 or D on the free boundary, and Lemma 3.14
shows that on every interval I where the relation h(θ) + h(θ + π) = D

holds, the curvature cannot be 0 or D in any subinterval. Otherwise we
would have an arc of circle of diameter D, which is impossible. As usual,
we denote the optimal set by K in this proof. We will consider its radius
of curvature R as a variable. Recall that, globally, R is a Radon measure
on T such that

(3.10) 〈R, cos〉M(T),C 0(T) = 0 = 〈R, sin〉M(T),C 0(T) = 0

(we choose here to fix the origin at the Steiner point of the convex set K).
Its associated support function h solves the ODE

(3.11)
{

h+ h′′ = R in T∫ 2π
0 h(θ)eiθ dθ = 0

Let F be the associated resolvent operator, in other words,

F : RD 3 R 7→ F [R] = h ∈ H1(T),

where h is the unique solution to System (3.11) and

RD =
{
R ∈M(T)

∣∣∣〈R, cos +i sin〉M(T),C 0(T)

= 0 and F [R](θ) + F [R](θ + π) 6 D, θ ∈ T
}
.

In what follows and for the sake of notational simplicity, we will denote
the quantity 〈R, f〉M(T),C 0(T), where f is a continuous function in T, by∫ 2π

0 R(θ)f(θ) dθ with a slight abuse.
We recall that the area of K is given by

(3.12) |K| = J(R) where J(R) =
∫ 2π

0
F [R](θ)R(θ) dθ.

Let R be the radius of curvature function of the optimal set K, and
h = F (R). Let I denote a subset of (0, π) of positive measure (assumed to
contain an interval without loss of generality since angular points are iso-
lated) on which there holds h(θ)+h(θ+π) = D. According to Lemma 3.13,
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R is bounded on I, such that R(θ) + R(θ + π) = D and R ∈ {0, D/2, D}
a.e. on I. Moreover, according to Lemma 3.14, the interiors of I ∩ {R = 0}
and I ∩ {R = D} are empty.
We want to write the optimality conditions satisfied by R locally on

the interval I. For that purpose we need to use admissible deformations:
these are precisely deformations ξ belonging to the tangent cone at R, we
recall this definition: the tangent cone to the set L∞(I; [0, D]) at R, (also
called the admissible cone) denoted TR is the set of functions ξ ∈ L∞(I)
such that, for any sequence of positive real numbers (ηn)n∈N decreasing
to 0, there exists a sequence of functions ξn ∈ L∞(I) converging to ξ as
n→ +∞, and R+ ηnξn ∈ L∞(I; [0, D]) for every n ∈ N.
Let us now give the first order optimality condition. This is a quite

classical result in control theory, but for sake of completeness, we postpone
the proof of the following lemma to Appendix A.

Lemma 3.16. — There exist three real numbers (µ, α, β) (Lagrange mul-
tipliers), which are not all zero, such that the radius of curvature R of the
optimal domain and its support function h satisfy

(3.13) ∀ ξ ∈ TR,
∫
I

(
µ(2h(θ)−D) + α cos θ + β sin θ

)
ξ(θ) dθ 6 0.

To finish the proof of Lemma 3.15, let us introduce the switching function

ΨR : θ 7→ µ(2h(θ)−D) + α cos θ + β sin θ,

where h is the solution to (3.11) associated to R. The first order necessary
condition can be recast as

∀ ξ ∈ TR,
∫
I

ΨRξ 6 0.

Let y0 ∈ I be a Lebesgue point of I ∩ {R = 0} and let (Gn)n∈N denote
a subset of I ∩ {u? = 0} containing y0. Then, ξ = 1Gn

belongs to TR and
therefore ∫

Gn

ΨR 6 0.

By dividing this inequality by |Gn| and letting Gn shrink to y0 as n→ +∞,
we infer that ΨR(y0) 6 0 according to the Lebesgue density theorem.
Generalizing this reasoning to the sets I∩{R = D} and I∩{0 < R < D},

it follows that
• on I ∩ {R = 0}, ΨR 6 0;
• on I ∩ {R = D}, ΨR > 0;
• on I ∩ {0 < R < D}, ΨR = 0.
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Note that ΨR is continuous. Let us distinguish between two cases. If µ = 0,
then ΨR(θ) = α cos θ + β sin θ with (α, β) 6= (0, 0) and then, {ΨR = 0}
has zero measure. It follows that R is bang-bang, equal to 0 and D almost
everywhere in I. By continuity, since I contains an interval, one has either
R = 0 or R = D on an interval, which is in contradiction with Lemma 3.14.
In the same way, if ψR < 0 (or ψR > 0) somewhere, it will remain negative
(or positive) on an interval, implying that R = 0 on that interval, in con-
tradiction with Lemma 3.14. Therefore, we deduce that ψR is identically
zero which implies that

h = D

2 + α

µ
cos +β

µ
sin on I.

The same identities hold true on I + π, which corresponds to an antipodal
arc of circle. The expected result follows. Notice finally that, since angular
points are isolated (which allowed us to assume that I contained an open
interval), γ is the union of arcs of circle of diameter D. �

Another necessary point is to determine when ones switches from an arc
of circle to another one.

Lemma 3.17. — Arc of circles only end at an angular point of the free
boundary. Furthermore, the only angular points in the interior of the free
boundary are the points Mi, i = 1, 2, 3.

Proof. — We have seen that a piece of γ whose points have a unique
supporting line corresponds to an arc of a given circle with diameter D.
All such points are represented by a unique angle. Hence, denoting by I
the corresponding interval of angles, the relation h(·) + h(·+ π) = D holds
true on I. It follows that an arc of circle breaks in the interior of γ if, and
only if there exists an angular point M represented by an interval JM on
which the relation h(·) + h(·+ π) = D is not satisfied (otherwise we would
necessarily have R = D on JM because of Lemma 3.13, which is impossible
because of Lemma 3.15). Therefore, only an angular point can break an
arc of circle and we claim that such a point is necessarily one of the points
M1, M2, M3. Indeed, let us write JM = [α, β] with α 6 β and recall that
for ε > 0 small enough, θ ∈ [α − ε, α] (and respectively θ ∈ [β, β + ε])
is associated to a point on an arc of circle with diameter D. Let A (resp.
B) be the points of ∂K? corresponding by α + π (resp. β + π). If A = B,
there are two pairs of arc of circle with same center, same radius meeting
with a nonzero angle, which is impossible. Thus, one has A 6= B and there
is a point in the boundary between A and B which does not saturate the
diameter constraint (otherwise, using the same arguments as above, there
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would exist an arc of circle of radius D between A and B). This point
belongs necessarily to a contact line, which proves that JM contains one of
the angles ηi + π, i = 1, 2, 3. It follows that M corresponds to a point Mi,
i = 1, 2, 3. �

According to Lemma 3.15 and Lemma 3.17, each free zone of γ is made
of one or two arc of circles, and for each one, the antipodal arc of circle is
in γ.
We end our study by distinguishing between two cases, depending on

whether γ is made of two or three free zones.

3.2.2. Case of two free zones

First of all, let us remark that the case where the boundary contains only
one free zone cannot occur. Indeed, it would mean that all the points in
this free zone, that we know to be diametral, would be at the distance D of
one vertex of the triangle. But this is impossible, according to Lemma 3.14.
Thus, it remains to look at the case of two free zones. In that case, one
of the vertices of the triangle belongs to the boundary ∂K?. Exactly for
the same reason, it is impossible that one piece of the free boundary is
diametral to this vertex. Therefore, the two remaining free zones that we
denote Z1 and Z2 are mutually diametral, which means that for each M1
in Z1 there exists M2 in Z2 with M1M2 = D.

Figure 3.8. A convex set with two free zones

The case of two free zones arises whenever some points Ai and Bi on
Figure 3.5 coincide with a vertex Si. According to Lemma 3.12, the contact

TOME 72 (2022), FASCICULE 5



1976 Alexandre DELYON, Antoine HENROT & Yannick PRIVAT

point are the middle of the contact segments. Moreover, two segments have
a vertex as endpoint, and it is necessary for the contact segment to be
included in the edges of the triangle that this vertex is closer to the contact
points than the other vertices. With the notations previously introduced
(and summed-up on Figure 3.5), we have SiIj = tanϕi for i 6= j. Since we
assumed that 0 < ϕ1 6 ϕ2 6 ϕ3 < π/2, the vertex is necessarily S1 and
one has I2A2 = I3B3 = tanϕ1.

Assume hence without loss of generality that Z1 contains A1. Since A1 is
diametral, there existsM ∈ Z2 such thatMA1 = D. We are going to prove
that M is unique and equal to A2. Assume by contradiction that it is not
the case. Then there exists an angle θ /∈ [η2 − α2, η2] representing M with
θ + π ∈ [η1 − α1, η1] and h(θ) + h(θ + π) = D. Consider ε > 0 small such
that η2−α2−ε > θ. Since the only angular point is a pointMi, every angle
θ′ ∈]η2−α2− ε, η2−α2[ uniquely represents a point that is diametral. We
deduce that for all θ′ ∈]η2 − α2 − ε, η2 − α2[, h(θ′) + h(θ′ + π) = D. From
the inequalities: θ+π > η1−α1 and θ′ > θ we obtain that θ′+π > η1−α1.
The inequality η2 − η1 < π guarantees that θ′ + π ∈ [η1 − α1, η1], which
means that every point represented by the angles θ′ ∈]η2−α2− ε, η2−α2[
are diametral to A1, hence the existence of an arc of radius D, which is
impossible.
Assume hence without loss of generality that Z1 contains A1. Since A1

is diametral, there exists M ∈ Z2 such that MA1 = D. Assume by contra-
diction that A2 is not diametral to A1, hence there is a unique supporting
line at M . Let θ be the angle associated to this support line. By unique-
ness of the supporting line, one has necessarily h(θ) + h(θ + π) = D with
θ + π ∈ [η1 − α1, η1]. Then, every point “above” M is represented by a
unique angle θ′ > θ and we have h(θ′) + h(θ′ + π) = D but θ′ + π > θ+ π,
so the angle θ′ + π also represents A1. It shows that every point above
M is diametral to A1. In particular, A1 and A2 are diametral, whence the
contradiction. Similarly, one shows that B3B1 = D.
Recall that the free zones are only made of arc of circles of diameter

D. Let us show that each free zone is one arc of circle, that is antipodal
to the other free zone. If it were not the case, one point Mi with i = 2, 3
would be in the interior of the free zone. Let us consider without loss of
generality that M3 belongs to the interior of the free boundary. Let N be
a point of γ strictly between B1 and M3. Let θ be the corresponding angle
of the associated supporting line, which is unique. Then, θ < η3 + π and
N is diametral with a point whose angles set of its supporting line(s) is
included in (η2, η3). It is necessarily S1. But this is impossible according
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to Lemma 3.14 since γ cannot contain an arc of circle of radius D whose
center is a vertex of T .
Therefore, the free zones are antipodal arcs of circle of radius D/2. Since

the points A1, B1, A2, B3 belong to the same circle and are two by two
diametral, they are the vertices of a rectangle, meaning that T is an isosceles
triangle (we use here the fact that the incircle and the rectangle share the
same axis of symmetry). Taking the convention that η1 = −π/2, we have
η3 = π − η2 and ϕ1 = π/2− η2 (see Figure 3.9).

I1

I2I3

S1

S2 S3
A1 B1

A2B3

Figure 3.9. Picture of an admissible set with two free zones

Now let us compute the exact value of η2 with respect to D. Since ϕ1 6
π/3, one has necessarily η2 > π/6.

Let us consider the orthonormal basis (O;
−−−→
A1B1
A1B1

,
−−−→
A1B3
A1B3

) centered at O, the
incircle center. Since the abscissa of A1 is the same as the one of B3 and
since I3 is the middle of [S1B3] (and resp. I2 is the middle of [S1A2]), we
infer that the coordinates of A1 and A2 are then

A1 = (−2 cos η2,−1) and A2 =
(

2 cos η2,
cos(2η2)

sin η2

)
.

Solving the equation A1A2 = D leads to the polynomial equation:

(3.14) P (sin η2) = 0 with P (X) = X3 − D2 − 1
4 X2 − 1

2X + 1
4 .

We need to determine a solution in [1/2, 1]. Assume that D > 2. Let us
observe that P (1) = 4−D2

4 < 0 and P (1/2) = 3−D2

16 < 0. Furthermore, one
shows easily that P is either decreasing on (1/2, 1) or decreasing and then
increasing on (1/2, 1). Thus the equation P (sin η2) = 0 has no solution on
[1/2, 1]. We conclude that this is not possible to build an optimal set with
two free zones.
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3.2.3. Case of three free zones

Let us distinguish between two cases.

Subcase 1: all the pointsMi, i = 1, 2, 3 belong to the interior of γ.
In this case, the previous study has shown that the free boundary is as

follows (see Figure 3.10)

•
>
A3M1 and>B1M3 are antipodal arcs of circle of radius D/2,

•
>
A2M3 and>B3M2 are antipodal arcs of circle of radius D/2,

•
>
A1M2 and>B2M1 are antipodal arcs of circle of radius D/2,

• Ii is on the middle of [Ai, Bi]
• Mi is on the perpendicular bisector of [Ai, Bi] (or Ii, O and Mi are
aligned).

We deduce the relationships

(3.15) −−−→
M3B1 = −−−→M1A3,

−−−→
M1B2 = −−−→M2A1, and −−−→

M2B3 = −−−→M3A2.

I1

I2

I3

S1

S2 S3
A1 B1

A2

B2

A3

B3

M1

M2

M3

h1

τ1

Figure 3.10. Case of three free zones and theMi’s belong to the interior
of the free zones.
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Let τi = MiIi and hi = IiAi. Then necessarily τi > 2 and we have the
relationship

(3.16) hi =
√
D2 − τ2

i

Let us consider the orthonormal basis (O;
−−−→
I1B1
I1B1

,
−−→
I1O
I1O

) centered at O, the
incircle center. For i = 1, 2, 3, the coordinates of Ai, Bi and Mi are

Ai =
(

cos ηi + hi sin ηi
sin ηi − hi cos ηi

)
, Bi =

(
cos ηi − hi sin ηi
sin ηi + hi cos ηi

)
,

Mi = (1− τi)×
(

cos ηi
sin ηi

)
.

By assimilating the index i with i+3, the vector relationships above rewrites

(3.17) i = 1, 2, 3,{
2− τi = (2− τi+1) cos (ηi − ηi+1) + hi+1 sin (ηi − ηi+1)
hi = (2− τi+1) sin (ηi − ηi+1)− hi+1 cos (ηi − ηi+1) ,

from which we infer that

(3.18)


(2− τ1) tan (η3 − η2) = h1

(2− τ2) tan (η1 − η3) = h2

(2− τ3) tan (η2 − η1) = h3.

With the value of hi given by (3.16), we have the quadratic equation on τ1:

(3.19) (2− τ1)2 tan2(η3 − η2) = D2 − τ2
1 .

and similarly for the others. This yields

(3.20) 2− τ1 = 2 cos2 (η3 − η2)± cos (η3 − η2)
√
D2 − 4 sin2 (η3 − η2).

Since 2− τ1 is negative, we can choose the sign depending on the value
of cos. Recall that ηi+1 − ηi ∈ (0, π) and η3 − η2 6 η1 − η3 6 η2 − η1.
Furthermore, ηi+1 − ηi ∈ (0, π/2) means that the triangle has an obtuse
angle. This can happen only once, and for η3 − η2. So at least η1 − η3 and
η2 − η1 are in (π/2, π) and their cosine is negative. Assuming now that we
have η3 − η2 > π/2 leads to
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2− τ1 = 2 cos2 (η3 − η2)
+ cos (η3 − η2)

√
D2 − 4 sin2 (η3 − η2)

2− τ2 = 2 cos2 (η1 − η3)
+ cos (η1 − η3)

√
D2 − 4 sin2 (η1 − η3)

2− τ3 = 2 cos2 (η2 − η1)
+ cos (η2 − η1)

√
D2 − 4 sin2 (η2 − η1).

(3.21)

By replacing hi by its value (3.18) in (3.15), we obtain after calculation

(3.22)


(2− τ3) cos (η3 − η2) = (2− τ1) cos (η1 − η2)
(2− τ2) cos (η2 − η1) = (2− τ3) cos (η3 − η1)
(2− τ1) cos (η1 − η3) = (2− τ2) cos (η2 − η3) .

Finally, replacing 2− τi by his expression in (3.22) and using that

cos (ηi+1 − ηi) 6= 0,

we get 
2 cos (η2 − η1) +

√
D2 − 4 sin2 (η2 − η1)

= 2 cos (η3 − η2) +
√
D2 − 4 sin2 (η3 − η2)

2 cos (η2 − η1) +
√
D2 − 4 sin2 (η2 − η1)

= 2 cos (η1 − η3) +
√
D2 − 4 sin2 (η1 − η3).

(3.23)

Let f : x 7→ 2 cosx +
√
D2 − 4 sin2 x. One easily shows that f is de-

creasing on (π/2, π) and hence injective (see Figure 3.11). We thus infer
that

η3 − η2 = η1 − η3 = η2 − η1 = 2π
3 .

The triangle T is therefore equilateral and one has τ1 = τ2 = τ3 =
(3 +

√
D2 − 3)/2. We recover the smoothed nonagon introduced in Def-

inition 1.4.
Assume now that η3− η2 6 π/2. If η3− η2 = π/2, then τ1 = 2 and M1 is

on in the incircle, which is impossible for D > 2, otherwise the arc of circle
would cross the incircle.
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Now we have

2− τ1 = 2 cos2 (η3 − η2)
− cos (η3 − η2)

√
D2 − 4 sin2 (η3 − η2)

2− τ2 = 2 cos2 (η1 − η3)
+ cos (η1 − η3)

√
D2 − 4 sin2 (η1 − η3)

2− τ3 = 2 cos2 (η2 − η1)
+ cos (η2 − η1)

√
D2 − 4 sin2 (η2 − η1).

(3.24)

The same computations as above yield

2 cos (η3 − η2)−
√
D2 − 4 sin2 (η3 − η2)

= 2 cos (η1 − η3) +
√
D2 − 4 sin2 (η1 − η3).

(3.25)

Now, let us introduce g : x 7→ 2 cosx −
√
D2 − 4 sin2 x. One easily sees

that g is negative while f is positive and therefore, the equation f(x) = g(y)
has no solution. We conclude that this case cannot happen.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0.5

1

1.5

2

x

f(x)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−2

−1.5

−1

−0.5

x

g(x)

Figure 3.11. D2 = 6. Left: plot of the function f . Right: plot of the
function g.

Finally, the solution for this sub-case is KE(D) defined in Definition 1.4.
Observe that since KE(D) is inscribed in the equilateral triangle, we need
to have h <

√
3, ie τ < 3 and D < 2

√
3, whence the requirement on D for

the sake of the definition of KE(D).

Subcase 2: at least one point Mi is on the boundary of the free
zone, namely it is one of the points Aj or Bj.
Assume here that a point Mi, say M1 is not in the interior of the free

zone. ThenM1 = B2 orM1 = A3, sayM1 = B2. The free zone Z1 is an arc
of circle of radius D/2 whose antipodal arc is >B1M3. If M3 is also on the
boundary of Z3 then Z1 and Z3 would be antipodal and Z2 would not have
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any antipodal arc of circle. This is impossible. So M3 lies in the interior of
Z3 and it has a second arc of circle: >M3A2 which antipodal arc is >M2B3.
We claim that M2 = A1 otherwise>M2A1 would not have antipodal arc.

I1

I2

I3

S1

S2 S3
A1 B1

A2

B2

A3

B3

M3

Figure 3.12. An approximate illustration of the case of three free zones
and M1 in the boundary of the free zone.

Now, in comparison with the first case, only two vector relation are valid,
namely

(3.26) −−−→
B1M3 = −−−→A3B2 and −−−→

A2M3 = −−−→B3A1.

Taking the same notations as in the first case with τ = τ3, one has


cos η2 − h2 sin η2 − cos η3 − h3 sin η3

= (1− τ) cos η3 − cos η1 + h1 sin η1

sin η2 + h2 cos η2 − sin η3 + h3 cos η3

= (1− τ) sin η3 − sin η1 − h1 cos η1

(3.27)
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and 
cos η1 + h1 sin η1 − cos η3 + h3 sin η3

= (1− τ) cos η3 − cos η2 − h2 sin η2

sin η2 − h1 cos η1 − sin η3 − h3 cos η3

= (1− τ) sin η3 − sin η2 + h2 cos η2

(3.28)

The same kind of computations as in the first case lead to the following
statements: 

η3 − η2 = η1 − η3 = y

h1 = h2

2− τ = 2 cos y < 0
τ2 + h2

3 = D2

2h1 = −h3 cos y.

(3.29)

Now set η3 = −π/2. then η1 = y − π/2 ∈ [0, π/2] and η2 = π − η1.
Observe thatA2M3A1B3 is a rectangle which leads to the new equation−−−→
A1M3 ·

−−−→
A2M3 = 0. It rewrites

(3.30) (τ − 1)2 − 2(τ − 1) sin η1 +
(
h2

1 + 1
) (

2 sin2 η1 − 1
)

= 0

and using that

(3.31) sin η1 = τ/2− 1 and h2
1 + 1 = D2 − τ2

(τ − 2)2 + 1,

Equation (3.30) becomes

(3.32) − τ3 +
(
D2/2 + 5

)
τ2 −

(
2D2 + 4

)
τ +D2 = 0.

Since τ has to be a root of the polynomial in [2, 3], a calculus argument
shows that for D ∈ [2, 2

√
3], the polynomial has a unique root in [2, 3], with

τ(2) = 2, τ(2
√

3) = 3 and τ is an increasing function.
Finally this leads to the construction of the set KC(D) shown in Fig-

ure 3.4.
Furthermore, if we set

t1 = arcsin
(

2(sin η1 + h1 cos η1)− τ + 2
D

)
and t2 = arcsin(τ/D)

then we have the formula

(3.33) |KC(D)| = τ

τ − 2
√
D2 − τ2 + D2

2 (t2 − t1) .
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Let us remark that, using (3.31), we have cos2 t2 = (D2 − τ2)/D2 and
(τ − 2)2 = 4 sin2 η1, thus

h2
1 = D2 − τ2

(τ − 2)2 = D2 cos2 t2

4 sin2 η1
=⇒ h1 = D cos t2

2 sin η1
,

and replacing in the definition of t1, it provides the alternative formula

(3.34) t1 = arcsin
(

cos t2
tan η1

)
.

3.3. Comparison

Now we have to determine what is the optimal shape for a given D.
Previous analysis show that for D > 2

√
3 it is not possible to construct the

sets KE and KC . Hence the stadium KS is optimal for such D. Let us have
a look to the graphics of the area of the three domain for D ∈ [2, 2

√
3].

Now let us investigate the case D ∈ [2, 2
√

3]. Graphics 3.13 suggest that,
the inradius r being prescribed, the set KE is optimal for small values of
D and KS is optimal for large values of D. In the following we prove two
facts:

(1) The domain KC(D) is never optimal,
(2) the existence of D? such that for D 6 D?, |KE(D)| > |KS(D)| and

for D > D?, |KS(D)| > |KE(D)|.

3.3.1. Proof that KC(D) is never optimal

We are going to prove that KC(D) < KS(D) for D ∈ (2, 2
√

3] by com-
paring their derivatives (we know that KC(2) = KS(2) = π). Let us write
Equation (3.32) in the following way

(3.35) D2 = τ
τ2 − 5τ + 4
τ2

2 − 2τ + 1
:= τg(τ)

where the function g : x 7→ (x2 − 5x + 4)/(x2/2 − 2x + 1) is increasing.
Thus we make the change of variable D → τ and rewrite the areas KC(D)
and KS(D) in terms of τ ∈ [2, 3]. More precisely, we write τ = 2 + h with
h ∈ [0, 1] and we write all quantities in term of h. Let us observe that

(3.36) g(2 + h) = 2 + h

1− h2/2 .
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|KS(D)|
|KE(D)|
|KC(D)|

(a) D ∈ (2, 3)

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

3.5

4

4.5

5

D

A

|KS(D)|
|KE(D)|
|KC(D)|

(b) D ∈ (2, 2.5)

Figure 3.13. Comparison of the three areas

We start with KC(D) given by (3.33). By (3.36)

D2 − τ2 = (2 + h)g(2 + h)− (2 + h)2 = h2h+ h2/2
1− h2/2

and then the first term of KC(D) is

(3.37) τ

τ − 2
√
D2 − τ2 = (2 + h)

√
h+ h2/2
1− h2/2 .

A simple computation gives its derivative with respect to h:

(3.38) d

dh

(
τ

τ − 2
√
D2 − τ2

)
=

√
2 + h

2h(1− h2/2)
1 + 2h+ h2/2− h3/2

1− h2/2 .
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Now we look at the other term in KC(D):

(3.39) t2 = arcsin
(√

τ

g(τ)

)
= arcsin

(√
2 + h− h2 − h3/2

2 + h− h2

)
.

Now, let us express t1 using (3.34):

cos t2 =
√

1− τ2

D2 =

√
1− 2 + h

g(2 + h) = h

√
h/2

2 + h− h2

while, from sin η1 = h/2, we get

tan η1 =

√
1

1− sin2 η1
− 1 = h

4− h2 .

From this, we infer:

(3.40) t1 = arcsin
(√

h(2 + h)
2(1 + h)

)
.

Now using the formula arcsin b − arcsin a = arcsin
(
b
√

1− a2 − a
√

1− b2
)

(all numbers a and b are between 0 and 1), we finally get thanks to (3.39)
and (3.40):

(3.41) t2 − t1 = arcsin
(

(1− h)
√

2 + h

2− h

)
.

In particular, we have
d

dh
(t2 − t1) = h2 − 2h− 2

(2− h)
√

2h(2 + h)(1− h2/2)
.

Thus, one has
D2

2
d

dh
(t2 − t1) = (1 + h)(2− h)(2 + h)

2 (1− h2/2)
h2 − 2h− 2

(2− h)
√

2h(2 + h) (1− h2/2)

=

√
2 + h

2h (1− h2/2)
−1− 2h− h2/2 + h3/2

1− h2/2

which is exactly the opposite of (3.38). Therefore

d

dh
KC(2 + h) = D

dD

dh
arcsin

(
(1− h)

√
2 + h

2− h

)
.

On the other hand, since
d

dD
KS(D) = D arcsin

(
2
D

)
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we have
d

dh
KS(2 + h) = D

dD

dh
arcsin

(
2
D

)
and to compare the derivatives, it suffices to compare the arguments in the
arcsin. Now

2
D

=

√
2 (1− h2/2)

(1 + h)(2− h)(2 + h)
and squaring and simplifying amounts to prove

4
(
1− h2/2

)
(1 + h)(2 + h) > (1− h)2(2 + h)⇔ h2 (5 + h− 3h2 − h3) > 0

which is true for 0 < h 6 1. This finishes the proof of KS(D) > KC(D) for
D > 2.

3.3.2. Existence of D?

Note that |KS(2)| = |KE(2)| = π. Now we compute the derivative of
D 7→ |KE(D)| − |KS(D)| which is given by

d

dD
(|KE(D)| − |KS(D)|)

= 3
2 ×D

(
2π
3 − 2 arccos

(√
3
D

))
−D arcsin

(
2
D

)
,

which has the same sign as π − 3 arccos(
√

3
D ))− arcsin(2/D) = g(D).

Now, we have

g′(D) = − 3
√

3
D
√
D2 − 3

+ 2
D
√
D2 − 4

which is positive if and only if

D ∈

[
2,
√

96
23

]
.

Together with g(0) = 0 and g(2
√

3) = − arcsin( 1√
3 ) < 0 we get that g is

positive then negative. Finally we deduce that D 7→ |KE(D)| − |KS(D)|
is increasing then decreasing with value 0 at 2 and taking negative value
at 2
√

3. We finally get the existence of some D? ∈ [2, 2
√

3] such that for
D 6 D?, |KE(D)| > |KS(D)| and for D > D?, |KE(D)| 6 |KS(D)|. This
conclude the proof.
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Appendix A. Proof of Lemma 3.16

To prove the Lemma 3.16, we will introduce an auxiliary problem whose
unknown is the restriction ofR to the set I. Let us introduce J = [0, 2π]\(I∪
(I + π)). Let us decompose R as R = R01J + u?1I + (D− u?(· − π))1I+π,
and observe that

J(R) =
∫
I

(
2F [R]u? −DF [R]−Du? +D2)+

∫
J

F [R]R0.

and∫
I

u?(θ) cos θ dθ = α and
∫
I

u?(θ) sin θ dθ = β,

with

α = −1
2

∫
J

R0(θ) cos θ dθ + D

2

∫
I

cos θ dθ

and β = −1
2

∫
J

R0(θ) sin θ dθ + D

2

∫
I

sin θ dθ.

We will now characterize u? by exploiting that it solves the optimization
problem

(A.1) sup
u∈ R̃D

J̃(u) where J̃(u) =
∫
I

(
2hu−Dh−Du+D2)+

∫
J

hR0,

where h solves the ODE

(A.2)


h+ h′′ = R01J + u1I + (D − u(· − π))1I+π in (0, 2π)∫ 2π

0 h(θ)eiθ dθ = 0
h(0) = h(2π), h′(0) = h′(2π)

and
R̃D =

{
u ∈ L∞ (I; [0, D])

∣∣∣∣ ∫
I

u(θ)eiθ dθ = α+ iβ

}
.

Let us now derive the first order necessary optimality conditions for this
problem. Since the method is standard, we briefly comment on the method
allowing us to write such conditions: first, the mapping R̃D 3 u 7→ h,
where h solves (A.2), being linear it is Gâteaux-differentiable at u? in every
direction ξ belonging to the tangent cone to the set R̃D at u?. Furthermore,
its differential ḣ is the unique solution of the ODE

ḣ+ ḣ′′ = ξ1I − ξ(· − π)1I+π in (0, 2π)∫ 2π
0 ḣ(θ)eiθ dθ = 0

ḣ(0) = ḣ(2π), ḣ′(0) = ḣ′(2π).
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It follows that R̃D 3 u 7→ J̃(u) is Gâteaux-differentiable at u? and its
differential reads〈

dJ̃ (u?) , ξ
〉

= lim
η↘ 0

J̃ (u? + ηξ)− J̃ (u?)
η

=
∫
I

(
2ḣu? + 2hξ −Dḣ−Dξ

)
+
∫
J

ḣR0

=
∫
I

(2h−D)ξ +
∫
I

ḣ (2u? −D) +
∫
J

ḣR0 = 2
∫
I

(2h−D)ξ,

by using several times integration by parts and the relation h(θ)+h(θ+π) =
D on I.
We now have to deal with two kinds of constraints in R̃D: a global L1 one

and point-wise ones, since u belongs to [0, D] almost everywhere. Although
such constraints are standard, we briefly explain how to derive the Euler
inequation for this problem with the help of a penalization approach, for
the sake of completeness. For ε > 0, let us introduce J̃ε as the penalized
functional

J̃ε(u) = J̃(u) + 1
ε

∣∣∣∣∫
I

u(θ)eiθ dθ − (α+ iβ)
∣∣∣∣2 .

We consider the optimization problem

(A.3) sup
u∈L∞(I ; [0,D])

J̃ε(u).

On what follows, we will need to consider an element ξ to the tangent cone
Tu to L∞(I; [0, D]) at u, that we describe hereafter.

Since they follow from a basic variational analysis, we do not provide all
the details to the following claims:

• Since L∞(I; [0, D]) is compact for the weak-star convergence in L∞,
the resolvent operator R̃D 3 u 7→ h ∈ L2(T) is compact and there-
fore, the penalized problem (A.3) has a solution uε ∈ L∞(I; [0, D]).

• Let hε be the solution to (A.2) associated to uε. There exists a
sequence (εn)n∈N decreasing to 0, there exists ũ ∈ L∞(I; [0, D])
such that (uεn

)n∈N converges weakly-star to ũ in L∞(I; [0, D]) and
(hεn)n∈N converges strongly to h̃ ∈ H1(0, 2π) and uniformly in
C 0([0, 2π]) as n→ +∞. Furthermore, one has necessarily∫

I

uεn
(θ)eiθ dθ = (α+ iβ) + O (εn)

and therefore, ũ belongs to R̃D.
• Let ξ ∈ T

ũ
. There exists ξn ∈ Tuεn

such that (ξn)n∈N converges
weakly-star to ξ as n→ +∞ (this follows from the definition of the
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tangent cone and the fact that pointwise inequalities are preserved
by the weak-star convergence).

Let ξ ∈ T
ũ
. According to the computations above, the necessary first

order optimality conditions for the penalized problem (A.3) read: for every
n ∈ N, since ξ ∈ Tuεn

, one has∫
I

(
2hεn

(θ)−D + αn cos θ + βn sin θ
)
ξn(θ) dθ 6 0,

where

αn = 1
εn

(∫
I

uεn
(s) cos s ds− α

)
and βn = 1

ε

(∫
I

uεn
(s) sin s ds− β

)
.

Let us divide the inequality above by
√

1 + α2
n + β2

n. Since the quanti-
ties

√
1 + α2

n + β2
n, αn/

√
1 + α2

n + β2
n and βn/

√
1 + α2

n + β2
n are uniformly

bounded with respect to n, one can assume that they respectively con-
verge (up to a new extraction) to µ > 0, ᾱ ∈ R and β̄ ∈ R such that
(µ, ᾱ, β̄) 6= (0, 0, 0). Since ξ was arbitrarily chosen, by passing to the limit
as n → +∞, we get at the end that the first order necessary conditions
associated to Problem (A.2) read

(A.4) x ∀ ξ ∈ T
ũ
,

∫
I

(
µ
(

2h̃(θ)−D
)

+ ᾱ cos θ + β̄ sin θ
)
ξ(θ) dθ 6 0.

Now, since J̃εn
(u) = J̃(u) for every u ∈ R̃D, it follows that

J̃εn
(uε) = max

u∈L∞(I ; [0,D])
J̃εn

(u) > max
u∈L∞(I ; [0,D])

J̃(u) = J̃ (u?) > J̃ (uεn
) .

Passing to the limit in this inequality yields J̃(u?) > J̃(ũ). Using that ũ
belongs to R̃D, we infer that ũ solves Problem (A.1). Therefore, we can
assume without loss of generality that ũ = u?.
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